
This is the author manuscript accepted for publication and has undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/GCB.15650

This article is protected by copyright. All rights reserved

1

2 DR. JUSTIN  SURACI (Orcid ID : 0000-0001-5952-2186)

3 MR. JEFFREY DOUGLAS HAIGHT (Orcid ID : 0000-0002-3773-1566)

4

5

6 Article type      : Primary Research Articles

7

8

9 Disturbance type and species life history predict mammal responses to humans

10

11 Justin P. Suraci1*, Kaitlyn M. Gaynor2, Maximilian L. Allen3,4, Peter Alexander5, Justin S. 

12 Brashares6, Sara Cendejas-Zarelli7, Kevin Crooks8, L. Mark Elbroch9, Tavis Forester10, Austin 

13 M. Green11, Jeffrey Haight12, Nyeema C. Harris13, Mark Hebblewhite14, Forest Isbell15, Barbara 

14 Johnston16, Roland Kays17,18, Patrick E. Lendrum19, Jesse S. Lewis20, Alex McInturff21, William 

15 McShea22, Thomas W. Murphy23, Meredith S. Palmer24, Arielle Parsons18, Mitchell A. Parsons25, 

16 Mary E. Pendergast26, Charles Pekins27, Laura Prugh28, Kimberly A. Sager-Fradkin7, Stephanie 

17 Schuttler17, Çağan H. Şekercioğlu11,29, Brenda Shepherd30, Laura Whipple4, Jesse Whittington16, 

18 George Wittemyer8, Christopher C. Wilmers1

19

20 1Center for Integrated Spatial Research, University of California, Santa Cruz, California 95064, 

21 USA

22 2National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, 

23 Santa Barbara, CA 93101, USA

24 3Illinois Natural History Survey, University of Illinois, Champaign, IL 61820, USA

25 4Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, 

26 IL 61801, USA

27 5Craighead Beringia South, WY 83011, USA

28 6Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, USA

29 7Lower Elwha Klallam Tribe, Port Angeles, Washington 98362, USA

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/GCB.15650
https://doi.org/10.1111/GCB.15650
https://doi.org/10.1111/GCB.15650


This article is protected by copyright. All rights reserved

30 8Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort 

31 Collins, CO 80523, USA

32 9Panthera, New York, NY 10018, USA

33 10Oregon Department of Fish and Wildlife, La Grande, OR 97850, USA

34 11School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA

35 12School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA

36 13Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

37 14Department of Ecosystem and Conservation Science, University of Montana, Missoula, MT 

38 59812, USA

39 15Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 

40 55108, USA

41 16Parks Canada Agency, Banff, AB, T1L 1K2, Canada

42 17North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, USA

43 18Department of Forestry and Environmental Resources, North Carolina State University, 

44 Raleigh, NC, 27607, USA

45 19World Wildlife Fund, Northern Great Plains Program, Bozeman, MT 59715, USA

46 20College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, USA

47 21University of California, Santa Barbara, CA 93117, USA

48 22Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA

49 23Edmonds College, Lynnwood, WA 98036, USA

50 24Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, 

51 USA

52 25Wildland Resources Department, Utah State University, Logan, UT 84321, USA

53 26Wild Utah Project, Salt Lake City, UT 84101, USA

54 27Fort Hood Natural Resources Management Branch, United States Army Garrison, Fort Hood, 

55 TX 76544, USA

56 28School of Environmental and Forest Sciences, University of Washington, Seattle WA 98195, 

57 USA

58 29Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey

59 30Parks Canada Agency, Jasper, AB, T0E1E0, Canada

60

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

61 *Corresponding author

62 Current Address: Conservation Science Partners, Inc.

63 11050 Pioneer Trail, Suite 202, Truckee, CA 96161 

64 Telephone: 831-999-0492

65 Email:  justin.suraci@gmail.com

66

67 Running head: Mammal traits predict responses to humans

68 Abstract

69 Human activity and land use change impact every landscape on Earth, driving declines in many 

70 animal species while benefiting others. Species ecological and life history traits may predict 

71 success in human-dominated landscapes such that only species with “winning” combinations of 

72 traits will persist in disturbed environments. However, this link between species traits and 

73 successful coexistence with humans remains obscured by the complexity of anthropogenic 

74 disturbances and variability among study systems. We compiled detection data for 24 mammal 

75 species from 61 populations across North America to quantify the effects of (1) the direct 

76 presence of people and (2) the human footprint (landscape modification) on mammal occurrence 

77 and activity levels. Thirty-three percent of mammal species exhibited a net negative response 

78 (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across 

79 populations, while 58% of species were positively associated with increasing disturbance. 

80 However, apparent benefits of human presence and footprint tended to decrease or disappear at 

81 higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate 

82 disturbance or exploit human-dominated landscapes. Species ecological and life history traits 

83 were strong predictors of their responses to human footprint, with increasing footprint favoring 

84 smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human 

85 presence were distributed more randomly with respect to species trait values, with apparent 

86 winners and losers across a range of body sizes and dietary guilds. Differential responses by 

87 some species to human presence and human footprint highlight the importance of considering 

88 these two forms of human disturbance separately when estimating anthropogenic impacts on 

89 wildlife. Our approach provides insights into the complex mechanisms through which human 

90 activities shape mammal communities globally, revealing the drivers of the loss of larger 

91 predators in human-modified landscapes. 
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97 Introduction

98 As the spatial extent and intensity of human activity expands worldwide (Larson et al., 2016; 

99 Venter et al., 2016), it is increasingly critical to understand how animal communities respond to 

100 anthropogenic disturbance (Gallo et al., 2017; Magle et al., 2016; Parsons et al., 2018). 

101 Disturbance effects on animal distribution and activity are typically assumed to be negative 

102 (Belote et al., 2020; Dirzo et al., 2014), yet for some species, human activities confer benefits as 

103 well as costs. These trade-offs are particularly common for mammals, as greater resource 

104 availability and reduced competition or predation in human-dominated landscapes (Bateman & 

105 Fleming, 2012; Moll et al., 2018) may offset the impacts of habitat loss and exposure to 

106 anthropogenic mortality (Hill et al., 2020; Sévêque et al., 2020). At the community level, the 

107 differential responses of species to human disturbance may have a filtering effect (Aronson et al., 

108 2016; Santini et al., 2019), such that only species with “winning” combinations of ecological and 

109 life history traits (i.e., those suited to coexistence with humans) will persist in disturbed 

110 environments (Pineda-Munoz et al., 2021). Human disturbance may therefore reshape mammal 

111 communities in ways that are predictable from suites of species traits, with implications for both 

112 single-species conservation efforts and broader patterns of ecosystem functioning (Estes et al., 

113 2011; Schmitz et al., 2018). 

114

115 Anthropogenic activity involves multiple distinct stressors, which may interact with species traits 

116 to determine the net effect of human influence on mammal behavior and habitat use. Recent 

117 work (Doherty et al., 2021; Nickel et al., 2020) demonstrates that two broad types of human 

118 disturbance – direct human presence (e.g., recreation, hunting; (Kays et al., 2017; Naidoo & 

119 Burton, 2020)) and human footprint on the landscape (e.g., habitat fragmentation, development; 

120 (Smith et al., 2019; Suraci et al., 2020; Venter et al., 2016)) – have different and often opposing 

121 effects on mammals, likely because these two disturbance types represent distinct sets of filters 

122 that interact differently with species traits. For instance, mammal body size and trophic position 
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123 may determine whether the immediate presence of humans induces fear responses that result in 

124 reduced habitat use and suppressed activity (Clinchy et al., 2016; Ordiz et al., 2019; Suraci, 

125 Clinchy, et al., 2019) or whether human presence leads to indirect benefits through relaxed 

126 predation/competition (Berger, 2007; Muhly et al., 2011). Species traits may similarly determine 

127 mammal responses to human footprint. Species with large space requirements may be more 

128 negatively impacted by habitat loss and fragmentation (Crooks et al., 2017; Ripple et al., 2014), 

129 while those with higher dietary flexibility may benefit from increased resource availability in 

130 modified landscapes (Bateman & Fleming, 2012; Newsome & Van Eeden, 2017).  Across 

131 disturbance types, suites of traits may be strongly related to both the likelihood that a species will 

132 occur in areas of high human influence (Aronson et al., 2016; Evans et al., 2011; Santini et al., 

133 2019), as well as the intensity with which a species uses such areas when present (e.g., the 

134 number of individuals present and/or the frequency with which a site is visited; (Lewis et al., 

135 2015; Moll et al., 2018; Suraci, Clinchy, et al., 2019)), potentially allowing ecologists to predict 

136 shifts in mammal community structure and species interactions with increasing disturbance 

137 intensity.

138

139 However, variation among populations may obscure the link between species-level traits and 

140 measured responses to human disturbance. Within a given mammal species, populations 

141 frequently vary in the intensity or directionality of their response to a given disturbance type 

142 depending on local conditions, including habitat productivity and exposure to anthropogenic 

143 mortality (Belote et al., 2020; Kays et al., 2017; Moreno-Rueda & Pizarro, 2009; Sévêque et al., 

144 2020). Indeed, studies of recreation impacts in protected areas commonly report contrasting 

145 responses to human presence by different populations of the same species (Bateman & Fleming, 

146 2017; Patten & Burger, 2018; Reed & Merenlender, 2008; Reilly et al., 2017), and use of 

147 developed areas may also vary among populations based on trade-offs between anthropogenic 

148 threat and resource availability (Bateman & Fleming, 2012; Carlos et al., 2009). Therefore, 

149 elucidating general patterns in mammal responses to human disturbance requires explicitly 

150 accounting for variation among populations as well as across species. 

151

152 Here we examine the link between mammal species traits and responses to human disturbance at 

153 the continental scale, hypothesizing that species with particular combinations of trait values are 
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154 more negatively impacted by human influence. Specifically, we hypothesized that larger, more 

155 carnivorous species and those with slower life history strategies (i.e., longer maturation periods, 

156 slower reproductive rates) are more negatively affected by both human presence and human 

157 footprint, given that these species are typically more likely to come into conflict with humans 

158 (Oriol-Cotterill et al., 2015; Ripple et al., 2014) and may experience higher rates of 

159 anthropogenic mortality (Darimont et al., 2015; Hill et al., 2020). To test our hypotheses, we 

160 compiled camera trap data for 24 medium-to-large ungulate and carnivore species from 61 study 

161 areas across North America (Fig. 1A), which collectively represent a substantial proportion of 

162 the North American range for all mammal species in our analysis. Each camera trapping project 

163 deployed cameras across gradients of both human presence (Fig. 1B) and human footprint (Fig. 

164 1C), covering a broad range of both disturbance types, from undeveloped, remote landscapes to 

165 well used parks and urban centers. Our analysis addresses two objectives. We first quantify 

166 mammal species responses to human disturbance across North America, incorporating variation 

167 among populations of the same species to determine the net effect of human presence and human 

168 footprint on habitat use and activity levels for each species. We then model mammal responses to 

169 anthropogenic disturbance as a function of species ecological and life history traits to discern the 

170 mechanistic drivers of human influence on mammal communities.

171

172 Materials and methods

173 Camera trapping projects and species

174 We compiled data from 61 camera trapping studies (here after, “projects”) from across the 

175 continental United States, Canada, and Mexico, representing 3,212 unique camera locations 

176 sampled for a total of 454,252 trap days. Details of each camera trapping project are presented in 

177 Table S1. Projects were conducted between 2007 and 2019, ranged in spatial extent between 0.4 

178 and 61,506 km2 ( ± SD = 3,473.1 ± 9834.9), deployed camera traps at three to 487 unique � 

179 camera sites (  ± SD = 52.6 ± 87.6) and operated for between 63 and 106,480 trap days ( ± SD � � 

180 = 7,446.7 ± 17,488.5). While the specific locations across North America sampled in this study 

181 were driven by the availability of existing camera trap data sets, we endeavored to cover a large 

182 and representative proportion of the continent and to focus on areas with overlapping mammal 

183 species composition. We focused our analyses on 24 medium-to-large mammal species in the 

184 orders Artiodactyla and Carnivora that were reliably identifiable from camera trap images and 
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185 which represented three trophic guilds: herbivores, omnivores, and carnivores (Table S2). We 

186 only included those species that were detected by at least three camera trapping projects and with 

187 a total of at least 100 independent detections to ensure convergence of occupancy models (see 

188 below). Due to data limitations, we treated eastern and western spotted skunks (Spilogale 

189 putorius and S. gracilis) as a single species. We considered different camera trapping projects to 

190 approximate separate populations of each focal species, while acknowledging that there may be 

191 some overlap among adjacent projects.

192

193 We used the geographic location of each camera site to standardize the spacing between sites by 

194 (i) treating groups of camera sites within 10 m of each other as a single site and (ii) subsampling 

195 camera sites such that each site was at least 500 m from its nearest neighbor. For the latter step, 

196 when two or more camera sites were within 500 m of each other, we retained the site with the 

197 longest sampling duration. Because data on camera activity and camera failures were 

198 inconsistently recorded across projects, we used detection (i.e., photograph) time stamps to 

199 algorithmically identify breaks in camera activity of greater than four weeks (28 days). We 

200 considered these to be likely camera failures and the durations of these activity breaks were 

201 therefore subtracted from the total trap nights for the corresponding camera site. Averaged across 

202 all camera sites, these breaks in activity accounted for 4.6% (± 12.3% SD) of the total time a 

203 camera was deployed across the study.

204

205 Estimating human presence and human footprint

206 We estimated human presence as the detection rate (i.e., detections per trap day) of humans at 

207 each camera site. Human detections included all people on foot, bicycles, and motorized 

208 vehicles, but did not include detections of domestic animals unless a person was also present in 

209 the photograph. Because the number of individuals in each photograph was inconsistently 

210 reported between projects, each detection event could include one or multiple humans and thus 

211 detection rates should be interpreted as groups of humans detected per trap day (Nickel et al., 

212 2020). Detections of people on camera provide a fine-scale estimate of hotspots of human 

213 presence across a landscape (e.g., where recreational activity is highest). 

214
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215 Human footprint at each camera site was estimated from the Human Footprint Index (HFI) which 

216 ranges between 0 and 50 and integrates multiple anthropogenic pressures on the landscape 

217 including development, agriculture, and transportation infrastructure (Venter et al., 2016). We 

218 used the most recent (i.e., 2009) HFI map and extracted the average HFI value within a 1-km 

219 buffer around each camera site. This buffer size matches the resolution of the HFI layer itself and 

220 is comparable to the buffer size used in previous studies examining the effects of landscape 

221 context on occupancy model parameters across multiple study areas and for species with a range 

222 of movement capacities (e.g., Nickel et al., 2020; Rich et al., 2017). We note that the spatial 

223 resolution of the HFI (i.e., 1 km) may not match the optimal scale of effect of human footprint 

224 for all species considered here (Moll et al., 2020). However, this layer is among the few available 

225 at the necessary geographic extent (i.e., all of North America) and has been found to correlate 

226 strongly with wildlife behavioral responses in previous large-scale studies considering a range of 

227 mammal species (e.g., Tucker et al., 2018).

228

229 Across all projects human presence ranged from zero people/groups per day in remote areas to 

230 more than 10 per day (max = 12.5) in heavily used protected areas and suburban neighborhoods 

231 (Fig. S1a). The human footprint ranged from an HFI of zero, representing undeveloped 

232 landscapes in or near protected areas, to more than 40 (max = 46.1) in urban centers such as 

233 Detroit, Michigan and Albany, New York (Fig. S1b). Areas of high human footprint often also 

234 have many people present (though this is not always the case, e.g., in heavily modified 

235 agricultural landscapes). However, given that camera trap detections represent a fine-scale 

236 estimate of human presence (i.e., in the immediate vicinity of the camera), and because cameras 

237 in suburban and urban landscapes were often set in locations frequented by wildlife but not by 

238 people (e.g., riparian corridors, woodlots, or private property), our measures of human presence 

239 and footprint are uncorrelated at the level of individual cameras (Pearson’s r = 0.003, p = 0.77) 

240 and only weakly correlated at the project level (project-level means; r = 0.22, p = 0.09).  

241

242 Quantifying mammal responses to human disturbance via occupancy models

243 We fit a series of single-species occupancy models to detection data for each of the 24 focal 

244 species. Occupancy models estimate two linked parameters, occupancy probability, �, the 

245 probability that at least one individual of a focal species “occupies” a given site, and intensity of 
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246 use, p, the probability of detecting the species at that site, given that the site is occupied (Burton 

247 et al., 2015; MacKenzie et al., 2002). When studying wide-ranging wildlife species, individuals 

248 may use multiple camera sites and may be absent from any given camera site for periods longer 

249 than the survey interval (Burton et al., 2015; Efford & Dawson, 2012; Neilson et al., 2018). We 

250 therefore interpret � as ‘site use’ rather than occupancy per se (Kays et al., 2020). We refer to p 

251 as “intensity of use” (rather than simply “detection probability” (sensu MacKenzie et al., 2002)) 

252 to reflect the fact that the likelihood of detecting a species at a used site depends strongly on the 

253 local abundance of the species at that site (Royle, 2004; Royle & Nichols, 2003) and likely also 

254 varies with changes in individual behavior (e.g., increased crypsis or reduced activity levels 

255 where perceived mortality risk is high (Suraci, Clinchy, et al., 2019)). We therefore use 

256 covariates on p to investigate how anthropogenic disturbance affects the frequency or intensity 

257 with which an occupied site is used (Lewis et al., 2015). 

258

259 In addition to human presence and footprint, we estimated several covariates for each camera site 

260 with the potential to affect occupancy and/or intensity of use (Table S1). We calculated percent 

261 forest cover around each camera site using the 2010 Global Tree Cover database (30-m 

262 resolution) (Hansen et al., 2013) and estimated net primary productivity (NPP) around each site 

263 using NASA’s MODIS system annual NPP layer (500-m resolution) (Running & Zhao, 2019) for 

264 2016, the median year of all detection events in this study. Forest cover and NPP were estimated 

265 within a 1-km buffer around each camera site, matching the spatial scale at which the human 

266 footprint was estimated and capturing the landscape context experienced by animals using that 

267 camera site (Nickel et al., 2020; Rich et al., 2017). We also estimated forest cover in the 

268 immediate vicinity of each site (i.e., 100-m buffer) to capture the effects of local vegetation 

269 cover on species detection probability. Given the large number of ecoregions represented by our 

270 continental-scale data set, we elected to use forest cover and NPP as continuous proxies for 

271 habitat and ecosystem type rather than expending model degrees of freedom on several discrete 

272 habitat categories. Principal investigators for each camera trapping project provided data on 

273 whether their project baited camera sites (with either scent lures or food rewards) as well as the 

274 prevalence of legal hunting within the project area for both carnivores and ungulates. Typically, 

275 hunting data were not available for each individual camera site within a project. We therefore 

276 assigned each camera site to one of two hunting prevalence categories depending on hunting 
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277 activity across the project area: 0 = no or only limited hunting (of carnivores and/or ungulates) 

278 within the project area, where limited hunting implies that only a subset of camera sites was 

279 located within areas where hunting was permitted/occurring; 1 = hunting occurred across the 

280 project area (i.e., at most or all camera sites, as reported by data contributors). Finally, we 

281 included the geographic location of each camera site (latitude and longitude) in our occupancy 

282 models to account for potential similarities between sites in occupancy and intensity of use 

283 stemming from geographic proximity (Rota et al., 2016). Several other aspects of camera 

284 deployment (e.g., camera height, whether cameras were set on trails) may affect the probability 

285 of detecting mammal species, but data on these variables were only available for a subset of 

286 camera trapping projects. We therefore included a random effect for each project in the 

287 occupancy models described below to accommodate variation between projects not explicitly 

288 modeled by detection covariates.

289

290 Several camera trapping projects spanned multiple seasons and years (Table S1). To satisfy the 

291 occupancy model assumption of closure to changes in site-level occupancy status during a given 

292 sampling period (Burton et al., 2015), data for each camera site were divided into seasonal 

293 sampling periods of at most six months: summer (March to August) and winter (September to 

294 February). We determined the total duration that each camera was active within each sampling 

295 period using the timestamp of the first and last detection event within that period. We treated 

296 each week of a given sampling period as a separate survey and modeled the number of weeks in 

297 which the focal species was detected during sampling period i at camera site j in project k as

298

299  ���� ∼ ���������(���� ∗ ����,  ����,  �)
300  ���� ∼ ���������(����)

301 where Sijk is the total number of weeks that camera site j (nested in project k) was active during 

302 sampling period i and thus available for sampling, and � is the overdispersion parameter of the 

303 beta-binomial distribution. We modeled y as beta-binomially distributed because preliminary 

304 analyses indicated that variation between projects led to overdispersion in detection data relative 

305 to the variability accommodated by the more standard binomial distribution, a situation that is 

306 well handled by a beta-binomial model (Gelman & Hill, 2007). The mean of the beta-binomial 
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307 distribution for camera site j during sampling period i is given by the intensity of use, p, 

308 multiplied by z, the latent occupancy state of the focal species at that camera site (Royle & 

309 Dorazio, 2008). zijk is in turn drawn from a Bernoulli distribution with probability �, i.e., the 

310 probability that the focal species occupies camera site j during sampling period i.

311

312 Occupancy probability and intensity of use were modeled as

313 �����(����) = �0�� + �1����������� + �2����������� + �3���������2�� + �4����������2�
314 + + �5����� + �6������_1��� + �7���� + �8������� �9��������� + �10

315 ����������
316

317 �����(����) = �0�� + �1����������� + �2����������� + �3���������2�� + �4����������2�
318 + �5����� + �6������_100�� + �7����� + �8�������
319

320 We modeled occupancy as a function of percent forest cover in a 1-km radius around the camera 

321 site to estimate the effect of local habitat type on the probability of site use, while detection 

322 probability was modeled as a function of forest cover in the immediate vicinity of the camera 

323 (100-m radius), as sight lines and thus the ability to detect species that are present may be 

324 reduced in more heavily forested habitats relative to open areas.  For both human presence and 

325 human footprint, we fit linear and quadratic terms to test for potential non-linear effects of 

326 increasing human disturbance on species responsiveness. Because all covariates were mean 

327 centered for direct comparison (see below for details), linear terms are interpretable 

328 independently of quadratic terms (Schielzeth, 2010). Different populations of a given mammal 

329 species may not necessarily exhibit consistent responses to human disturbance. For both � and p, 

330 we therefore allowed the intercept (�0, �0) and the coefficient estimates for human presence (�1, 

331 �1) and human footprint (�2, �2), as well as their quadratic terms (�3, �4, �3, �4), to vary by 

332 camera trapping project k. All project-level covariates were modeled as being drawn from a 

333 common distribution, with hyperparameters  and 2 describing the mean and variance across all 

334 projects in the data set. For instance, α0k was modeled as 

335 . �0� ∼ �(��0,�2�0)
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336 To account for the fact that many camera sites were sampled repeatedly across multiple sampling 

337 periods, the intercepts were further modeled as camera site-level random effects, with camera 

338 site j nested in project k, i.e.,

339  �0�� ∼ �(�0�,�2��)
340  �0�� ∼ �(�0�,�2��)
341 where  is an error term describing the variance between camera sites for a given project (and �2��
342 likewise for ). �2��
343

344 Because a primary objective of this study was to model mammal responses to human disturbance 

345 (estimated from occupancy model coefficients) as a function of species traits, it was essential 

346 that model coefficients were comparable across species. We therefore fit identical occupancy 

347 models to each species’ data (using all model terms just described) rather than attempting to 

348 identify the best model for each individual species through model comparison. All model 

349 covariates were mean-centered, and continuous covariates were scaled by two standard 

350 deviations. We centered and scaled disturbance covariates prior to subsetting the data for each 

351 single-species model such that a given value of human presence/footprint received the same 

352 standardized value in all models to ensure comparability across species.  Pearson correlation 

353 coefficients (r) between all pairs of model covariates were < 0.6, with the exception of latitude 

354 and longitude (r = -0.62). For each focal species, occupancy models only included data from 

355 projects that detected the species at least once. 

356

357 To determine whether each human disturbance type had a net positive or negative effect on site 

358 occupancy and intensity of use for a given species, we calculated the probability that each human 

359 disturbance linear effect (i.e., �1, �2, �1, and �2 above) was more extreme (greater or less) than 

360 zero using the Bayesian posterior distribution of the coefficient estimate (referred to as the 

361 “posterior probability” of the disturbance effect).  We quantified the number of species 

362 exhibiting an effect of each disturbance type by counting the species for which the posterior 

363 probability of a positive or negative effect was > 0.9.  This value corresponds to 80% Bayesian 

364 credible intervals around the disturbance coefficient that do not include zero and was chosen to 
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365 capture species with limited sample sizes and/or high variability between populations that 

366 nonetheless exhibited a strong trend towards a positive or negative association with 

367 anthropogenic influence. 

368

369 Modeling mammal responses to disturbance as a function of species traits

370 A primary objective of this study was to examine how a species’ traits affect its responsiveness 

371 to human disturbance while explicitly accounting for variation between populations of the same 

372 species. We therefore extracted project-level estimates for the (linear) effect of human presence 

373 and human footprint on both occupancy and detection probability (i.e., �1k, �2k, �1k, and �2k 

374 above) from each single-species occupancy model and modeled these values as a function of 

375 species traits. We modeled each of the four disturbance-response combinations (i.e., presence 

376 and footprint effects on � and p) separately. 

377

378 For each focal species, we used the PanTHERIA database (Jones et al., 2009) to extract a suite of 

379 species traits that may affect responsiveness to human disturbance. This included several traits 

380 related to size and space use requirements, namely adult body mass, home range size, and 

381 longevity (i.e., maximum lifespan). We also extracted traits related to species reproductive 

382 strategy, including litter size, weaning age (i.e., the average age at which young become 

383 independent of their mother for nutritional needs), and age at sexual maturity (Jones et al., 2009). 

384 We used the EltonTraits database (Wilman et al., 2014) to extract data on the proportion of each 

385 of 10 diet categories in the diet of each species and used these data to calculate two dietary 

386 indices. Following Santini et al. (2019), we used the Shannon Index to estimate dietary diversity 

387 for each species based on all 10 diet categories. We also calculated the proportion of the diet 

388 consisting of vertebrate prey as an estimate of each species’ degree of carnivory (EltonTraits diet 

389 categories “vertebrate-endoderm”, “vertebrate-ectoderm”, “vertebrate-fish”, and “vertebrate-

390 unknown”). The proportion of vertebrate prey and scavenging in the diet was used to classify 

391 each species into three trophic guilds: herbivore (0%), omnivore (1-50%), and carnivore (>50% 

392 vertebrate prey and scavenging). All species trait values are presented in Table S2. We 

393 conducted a principal components analysis (PCA) on all trait and dietary data and extracted the 

394 first two principal components (PC1 and PC2), which collectively accounted for 72.3% of the 
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395 variation in trait values between species. We then used PC1 and PC2 as covariates in modeling 

396 species responses to human disturbance.  

397

398 Our response variables in these models, i.e., the effects of presence or footprint on species 

399 occupancy or detection, are themselves model estimates and are thus not perfectly observed. We 

400 therefore determined the posterior variance around each project-level disturbance effect size, as 

401 estimated by single-species occupancy models, and propagated this error through the multi-

402 species trait models. We treated the “true” disturbance effect on occupancy or detection, wis, as 

403 an unobserved latent variable for which we have an observed value, vis, with an associated 

404 “observation” error value, �2�,��
405  ��� ∼ �(���,�2�,��)
406 where i is a project-level disturbance effect size observation for species s. We then modeled the 

407 true, unobserved disturbance effect, wis, as a function of PC1, PC2 and their interaction using a 

408 Gaussian linear model. We also included the geographic location of each project (project-level 

409 mean latitude and longitude, Table S1) in all models to account for potential similarities between 

410 projects in mammal responses stemming from geographic proximity. The linear models included 

411 a random intercept for species to account for the fact that each species’ response to disturbance 

412 was estimated for several camera trapping projects. The species-level random effect was nested 

413 within family to account for the influence of taxonomic relatedness in driving similar responses 

414 between species. Other taxonomic levels were not included because there were either too few 

415 categories (only two orders, Artiodactyla and Carnivora, were represented) or too few 

416 observations per category (most genera were only represented by a single species) to estimate the 

417 random effects, inhibiting model convergence.

418

419 Model fitting and checking

420 We analyzed all occupancy models (24, one for each focal species) and species trait models (4) 

421 in a Bayesian framework using the Stan programming language called through the Rstan 

422 package in R (Stan Development Team, 2020). For each model we ran three Hamiltonian Monte 

423 Carlo (HMC) chains of either 2000 or 4000 iterations each (depending on ease of model 

424 convergence) and retained 1,000 samples from the posterior distribution of each chain for 

425 inference. Following Gelman et al. (2008) and Gabry et al. (2019), we chose vague or weakly 
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426 informative priors for all random variables and random starting values for each HMC chain. We 

427 confirmed convergence of HMC chains by visual inspection of trace plots and via the Gelman-

428 Rubin statistic (“R-hat” values < 1.1 for all parameters) (Gelman, 2006), and verified the 

429 reliability of model inference following the procedure outlined by Gabry et al. (2019). We tested 

430 model fit using Bayesian p-values, which compare test statistics calculated from observed and 

431 expected (i.e., model-generated) data (Hobbs & Hooten, 2015). P-values were calculated using 

432 test statistics appropriate for the model distributions – for occupancy models we calculated 

433 Freeman-Tukey (Conn et al., 2018) and chi-squared statistics (Royle & Dorazio, 2008), and for 

434 the trait models we used the mean and coefficient of variation (Hobbs & Hooten, 2015). We 

435 detected satisfactory to excellent fit between model and data for all occupancy models (0.41 ≤ p 

436 ≤ 0.92; all p-values shown in Table S5) and trait models (0.35 ≤ p ≤ 0.81; all p-values shown in 

437 Table S4). All code for performing the analyses described here can be found at 

438 https://github.com/jsuraci/Suraci-etal-MammalLifeHistory.

439

440 Results 

441 Standardized occupancy model coefficients, summarizing the average response to disturbance 

442 across all populations of a given species, revealed that 17% of the 24 mammal species in our 

443 study (three herbivores and one carnivore) were negatively affected by human presence (i.e., the 

444 posterior probability of a negative effect of human presence on occupancy and/or intensity of use 

445 was > 0.9, see Methods). Elk (Cervus elaphus) exhibited reduced site occupancy with increasing 

446 human presence, while moose (Alces alces), mountain goats (Oreamnos americanus) and 

447 wolverines (Gulo gulo) exhibited reduced intensity of use (Fig. 2A and B). Thirty-three percent 

448 of species were positively associated with human presence (two herbivores, two omnivores, four 

449 carnivores). Bighorn sheep (Ovis canadensis), black bears (Ursus americanus), and wolverines 

450 exhibited increased site occupancy with increasing human presence, while mule deer 

451 (Odocoileus hemionus), bobcats (Lynx rufus), grey foxes (Urocyon cinereoargenteus), pumas 

452 (Puma concolor), and wolves (Canis lupus) tended to increase intensity of use in areas of higher 

453 human activity (Fig. 2A and B).

454

455 Human footprint had a negative effect on site occupancy and/or intensity of use for 25% of 

456 mammal species (one herbivore, one omnivore, and four carnivores), and a positive effect for 
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457 38% of species (three herbivores, two omnivores, and four carnivores). Species negatively 

458 associated with human footprint included grizzly bears (Ursus arctos), lynx (Lynx canadensis), 

459 wolves, and wolverines, all of which were less likely to occupy sites with increasing footprint 

460 and exhibited decreased intensity of use when present, while moose and martens (Martes 

461 americanus) exhibited decreased intensity of use only. Raccoons (Procyon lotor) and white-

462 tailed deer (O. virginianus) were positively associated with human footprint in terms of both 

463 occupancy and intensity of use, while elk, mule deer, striped skunks (Mephitis mephitis), red 

464 foxes (Vulpes vulpes), bobcats, coyotes (Canis latrans), and pumas all tended to use occupied 

465 sites more intensively at higher levels of human footprint (Fig. 2A and B).

466

467 For several species exhibiting positive responses to disturbance, intensity of use peaked at low to 

468 intermediate values of human presence (six species, Fig. 3A) or footprint (eight species, Fig. 

469 3B), indicative of thresholds in these species’ capacity to tolerate disturbance or exploit human-

470 dominated landscapes. Red foxes were the single exception, being the only species to exhibit an 

471 increasingly positive association with human presence at medium to high disturbance levels (Fig. 

472 3A). Full results for all occupancy models are presented in Figure S2

473

474 The first two components of the PCA performed on species trait values (accounting for 72.3% of 

475 trait variation) describe axes of increasing body size with decreasing life history speed (i.e., 

476 smaller litters, slower maturation; PC1), and increasing space use with greater carnivory (PC2; 

477 Fig. 4A and Table S3). Bayesian regression models revealed that the effects of human footprint 

478 on both site occupancy (Fig. 4B; � = -0.22 [95% CI = -0.48,0.01]) and intensity of use (Fig. 4C; 

479 � = -0.23 [-0.57,0.04]) were increasingly negative at higher values of PC1 (posterior probability 

480 of a negative slope = 0.97 and 0.95, respectively; Table S4), indicating that larger, longer-lived 

481 mammal species and those with slower maturation and reproductive rates are less likely to occur 

482 in modified landscapes and are less active when present. Human footprint also had an 

483 increasingly negative effect on occupancy (but not intensity of use; Table S4) for species with 

484 higher PC2 values (Fig. 4D; � = -0.40 [-0.76, -0.04]; probability of a negative slope = 0.99), 

485 indicating that species with more carnivorous diets and larger home ranges are less likely to use a 

486 given site as landscape modification increases. We did not detect a relationship between human 

487 presence and species traits in their effects on site occupancy or intensity of use (Bayesian 
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488 regression; posterior probability of a negative slope ranged between 0.33 and 0.85 for all 

489 relationships; Table S4).

490

491 Discussion

492 By bringing together data on activity and habitat use from mammal populations across North 

493 America, our study provides a comprehensive understanding of mammal responses to human 

494 disturbance. We found that species’ ecological and life history traits were strong predictors of 

495 their responses to human footprint on the landscape, confirming our hypothesis that larger, more 

496 carnivorous, and slower reproducing species are more negatively affected by human landscape 

497 modification. Contrary to our expectations, however, species traits were not strongly related to 

498 their responses to human presence, highlighting the importance of considering these two forms 

499 of human disturbance separately when estimating anthropogenic impacts on wildlife (Nickel et 

500 al., 2020; Sévêque et al., 2020). 

501

502 Our occupancy model estimates revealed relatively few overall “winners” and “losers”, i.e., 

503 species that tended to respond positively or negatively across disturbance types. Instead, most 

504 species exhibited differing, and frequently opposing, responses to human presence and footprint 

505 (Fig. 2A and B). This pattern was previously reported for mammals in a single study area (Nickel 

506 et al., 2020), and our results suggest this is a common feature of human-mammal interactions 

507 across North America. Negative effects of human presence likely stem from fear of humans 

508 causing mammals to suppress their activity levels (Suraci, Clinchy, et al., 2019) or avoid areas of 

509 high human influence entirely (Oriol-Cotterill et al., 2015), while positive associations may 

510 reflect the shield that human presence provides for some species against predators or competitors 

511 (Berger, 2007; Hebblewhite et al., 2005; Muhly et al., 2011). Positive responses to human 

512 presence by larger bodied species with substantial space requirements (e.g., pumas, wolves, 

513 wolverines; Fig. 2B) may also reflect the growing intensity of recreation and ecotourism in 

514 otherwise relatively undisturbed areas of wildlife habitat (Anton et al., 2020; Nickel et al., 2020), 

515 leaving such species with little choice but to share space with people. 

516

517 Despite the loss of natural habitat associated with increasing human footprint, agricultural lands 

518 and developed areas nonetheless present opportunities for some species through resource 
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519 subsidies or relaxed predation/competition (Prugh & Sivy, 2020; Sévêque et al., 2020). Increased 

520 human footprint is also associated with decreased movement and smaller home ranges for many 

521 mammal species (Doherty et al., 2021; Tucker et al., 2018), including large predators such as 

522 pumas (Nickel et al., 2021). Thus, higher intensity of use in more heavily modified habitats by 

523 species that otherwise tend to avoid human footprint (e.g., pumas and bobcats, (Serieys et al., 

524 2021; Suraci et al., 2020)) may reflect restricted movement options and thus intensified use of 

525 remaining habitat fragments in moderately developed areas. 

526

527 Importantly, for several mammal species that exhibited positive associations with human 

528 presence or footprint, the apparent benefits of human activity were diminished or reversed at 

529 higher disturbance levels (Fig. 3). For instance, black bears, elk, and wolves were most active at 

530 sites visited by approximately one person/group every 8-12 days (Fig. 3A), and several species 

531 exhibited peak intensity of use in partially cleared habitats with low density development (i.e., 

532 intermediate HFI values, Fig. 3B). These results indicate that several mammal species exhibit 

533 thresholds in their tolerance for human disturbance beyond which habitat may no longer be 

534 viable. We suggest that such thresholds are critical to consider when attempting to promote 

535 “landscapes of coexistence” (i.e., ecological conditions that allow the long-term persistence of 

536 sensitive mammal species in human-dominated landscapes; (Gehr et al., 2017; Oriol-Cotterill et 

537 al., 2015)) and functional connectivity between populations, particularly as several large 

538 mammal species continue to recolonizing modified landscapes in North American and globally 

539 (Gantchoff & Belant, 2017; Gilbert et al., 2016; Hemmingmoore et al., 2020; Rio-Maior et al., 

540 2019).

541

542 Larger mammal species and those with slower life histories were both less likely to occur in 

543 areas of high human footprint and exhibited a lower intensity of use when present. The human 

544 footprint is associated with a multitude of threats including vehicle strikes (Grilo et al., 2020), 

545 sensory pollution (Dominoni et al., 2020), and invasive species (Shochat et al., 2010). Our results 

546 suggest that smaller mammals and those with faster life histories are better able to avoid these 

547 threats (Hill et al., 2020) or can offset heightened anthropogenic mortality through high 

548 reproductive rates (Santini et al., 2019). Additionally, species with more carnivorous diets and 

549 larger space requirements were less likely to occur in modified landscapes. Wide ranging 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

550 carnivores frequently come into conflict with humans over perceived threats to human life and 

551 livelihood (Carter & Linnell, 2016; Chapron & López-Bao, 2016; Treves & Karanth, 2003), and 

552 their large home range sizes may make them more susceptible to the impacts of habitat 

553 fragmentation in modified landscapes (Crooks, 2002; Ripple et al., 2014). While our analyses 

554 were focused on North American mammal communities, we suggest that the patterns observed 

555 here are likely applicable to medium-to-large mammal species globally. Recent work focused on 

556 urban environments has similarly shown that both high reproductive output (large litter size) and 

557 high dietary diversity are frequently associated with mammal use of urban areas worldwide 

558 (Santini et al., 2019), highlighting the importance of these traits in allowing mammals to 

559 successfully exploit modified landscapes. Additionally, the exclusion of larger predatory 

560 mammals from areas of high human footprint is a common phenomenon in systems around the 

561 world (Ordiz et al., 2013; Oriol-Cotterill et al., 2015).

562

563 Our study provides a framework for predicting the filtering effect of human land use change on 

564 mammal communities, helping to clarify the often ambiguous relationship between human 

565 footprint and mammal community composition (Belote et al., 2020; Hill et al., 2020). Our results 

566 indicate that as human footprint increases, mammal community composition will shift towards 

567 smaller herbivorous and omnivorous species with faster reproductive strategies and smaller 

568 space requirements. The speed and extent of shifts in community composition following land 

569 conversion to agriculture or development will likely depend on local legal protections (e.g., 

570 hunting regulations; (Chapron & Treves, 2016)) and environmental conditions (e.g., ecosystem 

571 productivity; (Belote et al., 2020)). Our analysis accounted for population-level variation in these 

572 and additional factors, showing that, while the effects of hunting and environmental covariates 

573 varied substantially between species (Fig. S2), trends towards reduced occurrence and activity of 

574 large-bodied, slow-reproducing mammals in more developed areas were robust to variation in 

575 local conditions.  

576

577 Our estimates of human footprint (i.e., contemporary landscape modification) represent only a 

578 snapshot in time and do not explicitly incorporate legacies of human land use (e.g., historical 

579 management regimes; Jonason et al., 2014; Moreira & Russo, 2007) or other forms of ecological 

580 disturbance such as fire (Geary et al., 2020; Pastro et al., 2014), both of which are known to play 
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581 important roles in shaping observed community structure by affecting vegetation composition 

582 and species interactions. Our objective in the present study was to detect general patterns in 

583 human disturbance impacts on mammals across a range of ecological conditions. However, we 

584 note that understanding the interaction between current human land use and other drivers of 

585 landscape pattern, both historical and contemporary, will be critical in accurately predicting 

586 mammal community responses to future landscape modification in any particular location.       

587

588 While species traits predicted responses to human footprint, they were not predictive of 

589 responses to human presence, suggesting that the benefits and costs of using habitats frequently 

590 visited by humans (e.g., recreationists in protected areas or urban green spaces) are distributed 

591 somewhat randomly across body sizes, trophic guilds, and reproductive strategies. This finding 

592 likely reflects the fact that many species are able to mitigate the impacts of human presence on 

593 space use through increased nocturnality (Gaynor et al., 2018). Whereas landscape modification 

594 is relatively constant in space and time, human presence is largely diurnal, meaning that even 

595 species that are relatively sensitive to the immediate presence of people (e.g., many carnivores, 

596 (Suraci, Clinchy, et al., 2019)) may be able to use human-dominated areas at night when people 

597 are less active (Anton et al., 2020; Suraci, Frank, et al., 2019). Importantly, however, shifting 

598 temporal activity to avoid humans may be costly by constraining temporal niche space and 

599 forcing increased overlap with predators or competitors (Sévêque et al., 2020; Smith et al., 

600 2018). 

601

602 The structure and diversity of mammal communities are key determinants of ecosystem 

603 processes, with larger-bodied mammals affecting primary production and nutrient cycling 

604 through herbivory and trophic interactions (Estes et al., 2011; Schmitz et al., 2018). Here we 

605 show that the capacity of mammal species to coexist with humans in modified landscapes is 

606 predictable from suites of species traits, highlighting the types of mammal communities that are 

607 likely to persist with increased landscape conversion. Such communities will be composed of 

608 smaller, faster breeding species with limited space requirements, which may play a more muted 

609 role in driving ecosystem processes relative to larger, more mobile, and more carnivorous 

610 species (Estes et al., 2011; Ripple et al., 2014; Tucker et al., 2018). Human presence has less 

611 predictable spatial impacts on mammal communities but may nonetheless alter wildlife behavior 
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612 in ways that dampen trophic interactions and the links between ecosystems (Suraci, Clinchy, et 

613 al., 2019; Tucker et al., 2018). Continued landscape modification and increased human use of 

614 remaining natural areas portend greater reliance of mammal species on human-dominated 

615 landscapes. Predicting which species are likely to thrive or perish under multiple sources of 

616 anthropogenic pressure is critical to conserving mammal communities and the ecosystem 

617 services they provide.

618
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932

933 Figure legends:

934 Figure 1. Continental-scale assessment of mammal responses to human disturbance. 

935 (a) Locations of 61 camera trap projects across North America are shown. Projects ranged from 

936 undeveloped but heavily used protected areas (i.) through mosaics of developed and undeveloped 

937 land (ii.) to urban centers (iii.). Within each project, camera sites spanned a gradient of both (b) 

938 human presence and (c) human footprint. The color of each camera site (point) in b and c 

939 represents human detections per day and the Human Footprint Index value, respectively, at that 

940 location (both color gradients on the log scale). Mean ± SD disturbance levels are shown for the 

941 three example projects.

942

943 Figure 2. Human presence and footprint have contrasting impacts within and among mammal 

944 species. Occupancy model coefficient estimates for the effects of human presence (square) and 

945 human footprint (diamond) on (a) site occupancy and (b) intensity of site use. Error bars are 95% 

946 (thin) and 80% (thick) Bayesian credible intervals. Coefficient estimates are grouped by trophic 

947 guild (based on percent of vertebrate prey and scavenging in the diet, see Table S2).
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948

949 Figure 3. Non-linear effects of human disturbance. Occupancy model predictions for the change 

950 in intensity of site use with increasing (a) human presence and (b) human footprint. Results are 

951 shown for species for which models estimated a > 0.9 probability of a quadratic effect. Lines are 

952 color coded by trophic guild, as defined in Figure 2.

953

954 Figure 4. Species traits predict responses to human footprint. (a) Biplot of the principal 

955 components analysis performed on species trait data, with each mammal species plotted based on 

956 its values of the first two principal components (PC1 – larger body size and slower life history 

957 and PC2 – greater space use and more carnivorous). Factor loadings for each trait are shown in 

958 grey (see also Table S3). Mammal responses to human footprint were increasingly negative with 

959 increasing values of PC1 for both (b) site occupancy and (c) intensity of use. Occupancy 

960 responses to footprint (d) were also negatively associated with PC2. Data points in b-d are 

961 population-level estimates of each species’ response to human footprint, where values above 

962 zero (dashed line) indicate a positive response (i.e., increased occupancy or intensity of use with 

963 increasing footprint) and those below zero a negative response. Solid lines and shaded areas are 

964 the estimated slope and 95% Credible Intervals from hierarchical linear models (see also Table 

965 S4). Data in all plots are color-coded by trophic guild, as defined in Figure 2.
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