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Abstract
This article presents a topology optimization method for structures consisting
of multiple lattice components under a certain size, which can be manufactured
with an additive manufacturing machine with a size limit and assembled via
conventional joining processes, such as welding, gluing, riveting, and bolting.
The proposed method can simultaneously optimize overall structural topology,
partitioning to multiple components and functionally graded lattices within
each component. The functionally graded lattice infill with guaranteed connec-
tivity is realized by applying the Helmholtz PDE filter with a variable radius on
the density field in the solid isotropic material with penalization (SIMP) method.
The partitioning of an overall structure into multiple components is realized
by applying the discrete material optimization (DMO) method, in which each
material is interpreted as each component, and the size limit for each com-
ponent imposed by a chosen additive manufacturing machine. A gradient-free
coating filter realizes bulk solid boundaries for each component, which pro-
vide continuous mating surfaces between adjacent components to enable the
subsequent joining. The structural interfaces between the bulk solid bound-
aries are extracted and assigned a distinct material property, which model the
joints between the adjacent components. Several numeral examples are solved
for demonstration.
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1 INTRODUCTION

Lattice structures exhibit superior structural properties such as low stiffness-to-weight ratio, robustness for random direc-
tion loads, damage resistance against defects, and extreme physical properties such as large energy absorption,1,2 negative
Poisson’s ratio,3,4 large thermal expansion,5,6 and special acoustic absorption.7,8 Owing to the recent advancement in
additive manufacturing processes, especially those in metals, the fabrication and testing of engineered lattice structures
have become much more accessible to researchers. Thompson et al.9 reviewed recent work on design for additive man-
ufacturing including the design of engineered lattice structures. They pointed out there was still a lack of systematic
design method to overcome the complexity of lattice structures whose dimension spans from the micro/meso-scale to
macro-scale. In addition to the structural complexity, additively manufactured lattice structures for industrial applications
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(A) (B)

F I G U R E 1 Two types of interface between lattice components: (A) no bulk solid interface (extremely difficult to join) and (B) bulk
solid interface (straightforward to join)

would be subject to the physical and economical constraints imposed by additive manufacturing processes. In particular,
the maximum printing size for the available additive manufacturing machines (within budget) can be a significant design
constraint. While a large scale additive manufacturing machines (e.g., Reference 10) are being developed, it still suffers
from low precision, large distortion, and limitation of compatible materials.

A remedy to the size limitation of additive manufacturing is to print multiple smaller components and then assemble
them to a large structure, as commonly done in the conventional manufacturing processes. For engineered lattice struc-
tures, the idea is analogous to the multidomain crystal structures that were proposed to enhance the mechanical behavior
of engineered crystalline materials.11 The difference, however, is that the lattice components produced separately by addi-
tive manufacturing would have to be assembled subsequently using joining processes such as welding, gluing, riveting,
and bolting. Since it would be practically infeasible to reliably and economically join each of numerous meso-scale geo-
metric features that make up individual lattices (Figure 1(A)), each lattice component should have bulk solid boundary
that provide adjacent components with continuous mating surfaces that enable the subsequent joining (Figure 1(B)).

This article presents a topology optimization method for structures consisting of multiple lattice components, which
can be manufactured via additive manufacturing and then assembled via conventional joining processes. Each compo-
nent has functionally graded lattice infill surrounded by a bulk solid boundary, which greatly facilitates its assembly via
the conventional joining processes such as welding, gluing, riveting, and bolting. The proposed method can simultane-
ously optimize overall structural topology, its partitioning to multiple components, and functionally graded lattice infill
within each component. Structural compliance is considered as the objective function, and constraints are imposed on
the volume of the entire structure, the size of each component, and the amount of the bulk solid boundaries around and
the joints between components. Based on our previous work on the topology optimization of the assemblies of additively
manufactured solid components12 and functionally graded monolithic lattice structures13 (which, in turn, is based on
Reference 14), the novelty of the proposed method beyond these works is three-fold: it realizes 1) multiple functionally
graded lattice components with guaranteed connectivity of lattices therein, 2) the bulk solid boundaries for each compo-
nent, which provide continuous mating surfaces between adjacent components, and 3) the structural interfaces between
the bulk solid boundaries with a distinct material property, which model the joints (e.g., weld, glue, rivets, and bolts)
between the adjacent components.

The article is organized as follows. Section 2 discusses related work and Section 3 describes the mathematical formu-
lation of the optimization problem. Several numerical examples are presented in Section 4. Finally, Section 5 concludes
the article with discussion of possible future work. The sensitivities of the objective function and constraints are outlined
in Appendix A.

2 RELATED WORK

2.1 Optimal design of multicomponent structures

Most structural products are made as assemblies of components with simpler geometry. Despite the sacrifice in struc-
tural performances due to the introduction of joints, multicomponent assemblies are preferred, or often the only choices
in industry, primarily due to economical reasons—the manufacturing and assembly of multiple components with sim-
pler geometry is often far less costly than of a monolithic structure with complex geometry. Assembly synthesis is a
process of partitioning a structure into multiple components, each with simpler geometry, to enhance the ease of
manufacturing.
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By viewing the problem as the optimal balance between structural performance and manufacturing cost, computa-
tional optimal assembly synthesis for structural products were attempted in References 15,16 for stamped sheet metal
structures and in Reference 17 for extruded space frame structures. In the field of computer graphics, there also is recent
work addressing the partitioning of product geometry into smaller components, so each can fit within the maximum
printer size for additive manufacturing.18-20 However, these work only deal with manufacturability-driven partitioning of
prescribed fixed geometries without considering the optimization of the overall product geometries.

Early work on topology optimization of multicomponent structures, on the other hand, was the optimization of the
overall product geometry with prescribed fixed partitioning, where each component is optimized within the prescribed
design domain, and joints are optimized within the overlaps among these domains.21-25 In these work, therefore, an
optimized structure must be an assembly of prescribed number of components with prescribed adjacency. Consider-
ing that joints are usually structurally inferior to components and therefore should be introduced only if justifiable by
performance-cost balance, this formulation can only explore very small subset of all possible multicomponent structures.

Multicomponent topology optimization (MTO) was motivated by the need of automatically generating optimal struc-
tures made as assemblies of multiple ready-to-manufacture components, each of which conforms geometric constraints
imposed by a chosen manufacturing process, such as component sizes, undercuts, and uniform wall thickness. Lyu and
Saitou,26 Yildiz et al.,27 and Guirguis et al.28 formulated MTO as discrete optimization problems for (2D approximations
of) stamped sheet metal assemblies and solved them by genetic algorithms. However, it is extremely time consuming
and hence can only solve simple “toy” problems. Zhou and Saitou29 proposed a continuous relaxation of MTO for 2D
stamped sheet metal assemblies, which enabled the use of efficient gradient-based optimization algorithms. Zhou et al.30

extended the formulation to composite structures, which is capable of simultaneously optimizing the overall topology,
component partitioning, and tailored material orientation for each component. By considering the size constraint of the
additive manufacture machines, Zhou et al.12 presented a MTO formulation for additive manufacturing with a build vol-
ume constraint. Despite its promise, MTO is still at an infancy and yet to become robust enough for industry applications.
These researches, in particular, have only considered bulk solid structures or 2D approximation of thin-wall structures.

Recently, Francesco et al.31 presented a method to optimize the distribution of the lattice infill in multiple domains by
using two-step method consisting of domain boundary optimization followed by infill lattice optimization. Gao et al.32 also
proposed a multiscale topology optimization method for the design of porous composites composed of the multidomain
material microstructures. In these work, however, multiple domains are defined within a single structure that is assumed
to be produced as one piece, with no considerations of manufacturing constraints. To the best of the author’s knowledge,
there is no previous research work considering the topology optimization of structural assemblies consisting of multiple
lattice components driven by the manufacturability of each component and the assembleability of multiple components,
such as the ones addressed in this article.

2.2 Interface modeling in multidomain structures

While a model of structural interfaces between adjacent components (i.e., joints) were included in the discrete formulation
of MTO,26-28 it was based on the discrete representations of component boundaries, which required the use of inefficient
non-gradient optimization algorithms.

A related problem of modeling interfaces between distinct materials has been discussed in the area of multimaterial
topology optimization. Most work utilizes level set based topology optimization, since it has an advantage of representing
explicit boundaries between material phases at each iteration of optimization. Vermaak et al.33 proposed a framework for
the modeling of material interface properties in multiphase elastic and thermoelastic structures, which can model the
material interfaces with monotonic and non-monotonic property variations. Faure et al.34 extended this method for the
modeling of smooth and graded transitions for micro-structures and investigated the influence of graded interfaces in
multimaterial topology optimization. Liu et al.35 presented monolothic topology optimization of structures that embed
prescribed components with fixed geometry, with the interface model between the embedding structure and embedded
component.

Little work has been published on material interface modeling based on the solid isotropic material with penaliza-
tion (SIMP) method, where the “gray” zones that always exist between two material phases pose challenges in modeling
material interfaces. Francesco et al.31 proposed the framework for the modeling of solid internal interface for lattice infill
structures by using the artificial threshold for the density field. Chu et al.36 proposed the graded interface modeling of
multimaterial topology optimization,36 which employs the coating filter proposed by Clausen et al.37 The filter, however,
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requires computing the maximum of the norm of the gradient vector of the density field, which poses numerical chal-
lenges both in efficiency and accuracy. To overcome this challenge, Yoon et al.38 proposed simple two-step filtering for
the topology optimization of coated structures without the need of density gradient.

3 DESIGN MODEL

3.1 Overview

Three fields are defined to represent the design model for a structural assembly of functionally graded lattice compo-
nents with continuous component interface: material density 𝜌, radius rl for local density averaging, and component
membership vector m= (m(1), m(2), … , m(K)), where K is the prescribed maximum allowable number of components.
Figure 2 illustrates an instance where K = 3. The overall structure with functionally graded lattice is represented as
filtered density field 𝜌 by variable-radius Helmholtz PDE filter with radius rl.13 The multiple components within the
overall structure are represented as a fractional membership m(k) to each component k, where k= 1, 2, … , K in a
similar manner DMO represents multiple material orientations12 (Figure 2(A)). The bulk solid boundaries for each
component are obtained by applying the coating filters in Reference 38 for each element m(k) of the component mem-
bership vector field m (Figure 2(B)). With the carefully controlled filter radii, the joints between the mating boundaries
are extracted as the overlap region of the coatings of two adjacent components. Finally, the design model is con-
structed by compiling the overall lattice structure, component membership, and the bulk solid boundaries and joints
(Figure 2(C)).

3.2 Functionally graded lattice structures

Let 𝜙 ∶ D → [−1, 1] be the (unregularized) design variable, where D is a fixed design domain. To avoid checkerboard
patterns and achieve mesh-independent results, design variable 𝜙 is regularized by the Helmholtz PDE filter:39

−r2
𝜌∇2𝜙 + 𝜙 = 𝜙, (1)

where r𝜌 is the filter radius for smoothing, and 𝜙 is the smoothed design variable. Then, density field 𝜌 ∶ D → [0, 1] is
obtained by using a smoothed Heaviside function Hs ∶ R → [0, 1] for the regularized design variable as follows:

𝜌 = Hs(𝜙). (2)

(A)

(B)

(C)

F I G U R E 2 overview of
the design model: (A) design
fields, (B) bulk solid boundaries
and joints, and (C) the compiled
design model
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Functionally graded lattices can be realized by imposing an upper bound on density values 𝜌 averaged over a small
neighborhood, and letting the upper bound vary at each design point in D.13 To compute locally regularized, “average”
material density field 𝜌l, the Helmholtz PDE filter is adopted again:

−r2
l ∇

2𝜌l + 𝜌l = 𝜌, (3)

where rl is the (variable) filter radius for averaging density around a design point. If the lower bound of rl is set to be
larger than the (constant) filter radius r𝜌 for the regularization of the density field, the functionally graded lattices can be
obtained by imposing the upper bound Pmax on locally averaged density 𝜌l:

𝜌l ≤ Pmax. (4)

Equation (4) should be defined for each design point, which may cause numerical difficulty during optimization.
Hence, it can be rewritten equivalently as:

max
x∈D

(𝜌l) ≤ Pmax (5)

and further approximately as:

(
∫D

𝜌
p
l dx

) 1
p ≤ Pmax, (6)

which is differentiable with respect to 𝜙 and 𝜌l. As power p of the p-norm approximation goes to infinity, Equation (6)
becomes equivalent to Equation (4). In this article, p= 10 is used since larger values will increase numerical instability
during optimization.

3.3 Multicomponent partitioning

Similar to the density field, component membership is represented by a (unregularized) design variable 𝜇(k) ∶ D → [0, 1].
To achieve mesh independency of component boundary, deign variable 𝜇(k) is regularized by the Helmholtz PDE filter:

−r2
𝜇∇2𝜇

(k) + 𝜇
(k) = 𝜇(k), (7)

where r𝜇 is the filter radius for the controlling of the maximum width of the bulk solid boundaries and the joints, as
discussed in the following section.

To encourage that each design point belongs to a unique component at the convergence of the optimization, the DMO
projection40 is applied to the smoothed membership field 𝜇

(k) as follows:

m(k) =
{
𝜇
(k)
}pm

K∏
i=1,i≠k

[
1 −

{
𝜇
(i)
}Pm

]
, (8)

where pm is the penalization parameter to drive each membership vector converge to 0 or 1. As can be seen in Equation (8),
an increase in one component membership always leads to a decrease in all the other component memberships. With
the DMO projection, the membership vector at a design point will converge to a sparse vector with at most one element
being 1 and all the other element being 0, which represents the partition of design domain D to up to K components.

3.4 Bulk solid component boundaries

Our modeling of bulk solid boundaries for each lattice component is inspired by the gradient-free coating filter
for SIMP-based (monolithic) topology optimization.38 Instead of density field 𝜌 that represents the entire structure,
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however, the filter is applied to each element m(k) of the component membership vector field, as illustrated in
Figure 3.

First, the Helmholtz PDE filter with filter radius rm, which controls the thickness of the bulk solid boundary, is applied
on each element m(k) of component membership vector field:

−r2
m∇2m(k) + m(k) = m(k), (9)

where rm controls the thickness of the bulk solid boundary, and hence should be rm < r𝜇. Then, a smoothed Heaviside
function is applied to the filtered component membership m(k) to obtain the field with “crisp” edges:

𝜔(k) = Hr(m
(k)) (10)

and finally, the membership for bulk solid boundary can be obtained as:

b(k) = {1 − m(k)} 𝜔(k). (11)

It should be noted that due to its construction, b(k) is bounded between 0 and 1, and therefore will effec-
tively avoid the need of normalization, which is subject to numerical errors for the gradient-based coating filter in
Reference 37.

3.5 Joints

We consider joints as to model the outcome of joining processes such as welding, gluing, screwing, and riveting, which
mechanically connects the bulk solid boundaries of two adjacent components. A separate modeling is needed for the
joint regions, since they have different, often inferior, material property from the component material. This can be
accomplished by extracting a narrow overlap between the two adjacent bulk solid boundaries.

Figure 4 illustrates a (2D) close-up view of the interface between two adjacent components k and l at the opti-
mization convergence, overlaid with the corresponding values of smoothed component membership m(k) and m(l) in
Equation (8). The regions with rapid decrease in m(k) and m(l), colored with the gradation from yellow to green for
each of component, represent the bulk solid boundaries as defined by b(k) and b(l) in Equation (11). The characteris-
tics of the Helmholtz PDE filter39 suggests this region approximately has width rm∕2

√
3 for each component, where

rm is the filter radius in Equation (9). Similarly, the entire interface region consisting the (potentially) overlapping
regions of bulk solid boundaries (and any space in-between), approximately has width r𝜇∕2

√
3, where r𝜇 is the filter

radius in Equation (7). Under an appropriate setting of these filter radii satisfying r𝜇∕2 < rm < r𝜇, there will be a small
overlap between two regions of bulk solid boundaries b(k) and b(l), which can be extracted as a joint. Since this over-
lapping region would have near zero component membership values, joint membership Jkl is obtained by scaling up
b(k) and b(l):

J(kl) =
{

m0 + b(k)(1 − m0)
}{

m0 + b(l)(1 − m0)
}
, (12)

where l≠ k and m0 is a small positive number, that defines the lower bound for the scaling. For notational convenience,
J(kl) is defined as 0 for l= k.

F I G U R E 3 Simple two-step
filtering approach for modeling bulk
solid component boundaries
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F I G U R E 4 Joint modeling between each component membership with bulk solid
boundaries

3.6 Interpolation functions

For simplicity as an initial attempt, the infill lattices, bulk solid boundaries, and joints are all assumed to be isotropic in
this article. Similar to conventional SIMP method, the Young’s modulus of lattice infill for component k, excluding the
bulk solid boundaries and joints, is given as:

E(k)
𝜌 = E

{
𝜌p𝜌m(k) − b(k) −

k∑
l=1

J(kl)

}
, (13)

where E is the Young’s modulus of the component material and p𝜌 is the SIMP penalization parameter. The sum for Jkl

is taken over l= 1, 2, … , k instead of l= 1, 2, … , K to avoid “double counting” of the joint region when the contribution
of all K components are summed together. The bulk solid boundaries of component k, excluding the overlapping regions
which are considered as joints, are also made from the component material:

E(k)
b = E

{
b(k) −

K∑
l=1

J(kl)

}
. (14)

In this case, the sum for Jkl is taken over l= 1, 2, … , K since the joints are defined in the overlapping region of b(k)

and b(l). The Young’s modulus for the joint between components k and l= 1, 2, … , K is given as:

E(k)
J = 𝜂E

k∑
l=1

J(kl), (15)

where 𝜂 is the ratio of the Young’s modulus of the joint material to the one for the structural material. Similar to
Equation (13), the sum is taken over l= 1, 2, … , k. Finally, the Young’s modulus for each point in the design domain can
be defined as:

Et =
K∑

k=1

{
E(k)
𝜌 + E(k)

b g(𝜌l) + E(k)
J

}
, (16)

where g(𝜌l) is an interpolation function to enable a smooth transition from infill lattices to bulk solid boundaries. Using
the fact that

∑K
k=1

∑K
l=1 = 2

∑K
k=1

∑k
l=1, Equation (16) can be rewritten as:

Et = E
K∑

k=1

[
𝜌p𝜌m(k) − {1 − g(𝜌l)} b(k) − {1 + 2g(𝜌l) − 𝜂}

k∑
l=1

J(kl)

]
. (17)

3.7 Optimization model

The optimization model is formulated as compliance minimization subject to constraints on structural volume, com-
ponent size, maximum allowable local average density, component interface cost, and maximum allowable number of
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component:

minimize
𝜙,𝜇,rl

UTKU

subject to: KU = F

∫D

K∑
k=1

𝜌m(k)dx ≤ Vmax(
∫D

𝜌
p
l dx

) 1
p ≤ Pmax

R(k) ≤ Rmax; k = 1, 2, … ,K
C ≤ Cmax

𝜙 ∈ [−1, 1]D

𝜇(k) ∈ [0, 1]D; k = 1, 2, … ,K
rl ∈ [r𝜌, 5r𝜌]D,

(18)

where K , U, and F are the stiffness matrix, the displacement vector, and the force vectors of the finite element mesh of
domain D, respectively; V max, Rmax, and Cmax are the maximum allowable volume of the entire structure, the maximum
radius of the printable sphere for the additive manufacturing machine, and the maximum allowable amount for the bulk
solid boundaries and joints within the structure, respectively.

Instead of rectangular (prismatic) bounding boxes adopted in References 12,29, the components sizes are approx-
imated by their bounding spheres for the sake of computational simplicity. The radius of the bounding sphere of
component k is given as:

R(k) = max
x∈D

||𝜌m(k){x − x(k)c }|| ≈ [
∫D

𝜌m(k){x − x(k)c }pdx
] 1

p

, (19)

where x(k)c is the centroid of component k:

x(k)c =
∫D𝜌m(k)xdx
∫D𝜌m(k)dx

. (20)

The total amount of the bulk solid boundaries and joints within the structure is approximated as:

C =
K∑

k=1

[
∫D

g(𝜌l)

{
m(k) −

k∑
l=1

J(kl)

}
dx

]
. (21)

This amount needs to be constrained by the maximum allowable amount in Equation (18), since otherwise the opti-
mizer tends to exploit the solid bulk boundaries to minimize the compliance objective and place them everywhere in the
structure.

For the examples in the next section, the optimization model in Equation (18) is implemented with MATLAB and
COMSOL is used for solving FEM and optimization. The method of moving asymptotes (MMA)41 is adopted as the
optimization algorithm. The derivations of the sensitivities of the objective function and constraints are outlined in
Appendix A.

4 EXAMPLES

This section presents two simple examples on a cantilever beam and an MBB and an industry example on a railcar body
profile for high-speed trains. In all examples, the design domains are discretized with identical square four-node elements
with size re = 0.02, and filter radius r𝜌 in Equation (1) is set as re. The design variables are initialized as𝜙 = 0 and 𝜇(k) = 0.5
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T A B L E 1 Common parameter values in the examples Symbol Definition Value

p𝜌 SIMP penalty 3

pm Membership penalty 6

p p-norm power 10

E Young’s modulus 1

𝜐 Poisson’s ratio 0.3

Pmax Max. local density 0.6

T A B L E 2 Other input parameters for the
examples

Symbol Definition

K Maximum allowable number of components

Ejoint Young’s modulus of the joint material (= 𝜂E in Equation 15)

r𝜌 Filter radius for density (Equation 1)

rm Filter radius for membership vector (Equation 9)

V max Max. volume of the entire structure (Equation 18)

Rmax Max. radius of the printable sphere (Equation 18)

Cmax Max. amount for bulk solid boundaries and joints (Equation 18)

F I G U R E 5 Design domain and boundary conditions for the cantilever problem

uniformly in the design domain. Tables 1 summarizes the parameter values common in the examples. As a recap, Table 2
lists the other input parameters that can take various values in the examples.

4.1 Cantilever beam

The design domain is a rectangle area of unit thickness with width w= 2 and height h= 1, and a concentrated load f = 1
is applied at the lower right corner of the rectangle, as shown in Figure 5.

The iteration snapshots are shown in Figure 6 for the case with K = 2, Ejoint = 0.5, r𝜇 = 3re, rm = 1.75re, Rmax = 0.55,
and Cmax = 0.12. In each of the subfigure, the first row shows the density and membership fields for each component, the
second row shows the joints and bulk solid boundaries for each component, and the third row show the optimized struc-
ture and components. Since initially 𝜙 = 0 and 𝜇(k) = 0.5 everywhere, density 𝜌 is 0.5, and membership mk is almost zero
due to the DMO projection. As a result, the bulk solid boundary and joints are also almost zero, so are the overall struc-
ture and components (Figure 6(A)). As the iteration proceeds, the overall structure and memberships becomes clearer,
but the bulk solid boundaries and the joints remains unclear (Figure 6(B)). Then, the memberships quickly become clear
between iteration 200 and 400 and so is the solid interface and joints (Figure 6(C)). The overall structures and other
quantities appear to reach local optima at iteration 1200 (Figure 6(D)).

Figures 7, 8, and 9 show the results for different joint stiffness with Ejoint = 0.25, 0.5, and 0.75, respectively. For these
runs, K = 2, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1 are used. It can be seen that, the bulk solid bound-
ary (and the joint in between) is straight and short when the Young’s modulus of joints is small, and becomes curved
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and long as the joint becomes stiffer, taking advantage of the more use of bulk solid boundary, until the upper bound
Cmax is reached. In response to the changes in the boundary, the lattice patterns also change. The von Mises stress of
these optimized structures are shown in Figure 10. The maximum stress (shown in red) is observed at the periphery of
the structures. The stress is much smaller (shown in blue) in the regions of bulk-solid boundary and joint, since the bulk
solid boundaries are much stiffer than the rest of lattice structure. While the joints are less stiff than the lattice structure,
the stress there is still smaller than the lattices, since they are “protected” by stiff boundaries.

Figures 11 and 12 show the results for different thickness in bulk solid boundary with (r𝜇, rm) = (4re, 2.25re) and
(5re, 2.75re), respectively. For these runs, K = 2 and Ejoint = 0.5, V max = 0.5, Rmax = 0.55, and Cmax = 0.12 are used. Similar
to the results of different joint stiffness, the lattice patterns change in response to the changes in the boundary thick-
ness. Interestingly, both structures show intercomponent gaps formed by bulk solid boundaries without joint material,
effectively creating a “lattice” by utilizing bulk solid boundaries. This is because the large thickness of the bulk solid
boundaries makes them stiff enough to bear the load by themselves even without forming joints. Indeed, the von Mises
stress in the bulk-solid boundaries near the intercomponent gaps is much smaller (blue) than the rest of the structure in

F I G U R E 6 (Continued)
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F I G U R E 6 Iteration
snapshots of cantilever beam
with K = 2, Ejoint = 0.5, r𝜌 = 3re,
r𝜇 = 3re, rm = 1.75re,
V max = 0.5, Rmax = 0.55, and
Cmax = 0.12: (A) first, (B) 200th,
(C) 400th, and (D) 1200th
iterations. Its optimized
structural compliance is 17.671

F I G U R E 7 Cantilever beam with K = 2 and Ejoint = 0.25, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1: (A) membership 1,
(B) membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 19.450
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F I G U R E 8 Cantilever beam with K = 2 and Ejoint = 0.5, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1: (A) membership 1,
(B) membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 19.228

F I G U R E 9 Cantilever beam with K = 2 and Ejoint = 0.75, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1: (A) membership 1,
(B) membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 18.489

F I G U R E 10 Stress of cantilever beam with K = 2 and (A) Ejoint = 0.25, (B) Ejoint = 0.5, and (C) Ejoint = 0.75

Figure 13. While mathematically making sense, such intercomponent gaps may not be desirable in industry applications.
In that case, the gaps can be easily eliminated by setting a lower value of rm and/or Cmax, as shown in Figure 9.

Figures 14 and 15 show the results for different sizes of bounding spheres of each component with Rmax = 0.4 and
0.55, respectively. For these runs, K = 3, Ejoint = 0.5, r𝜇 = 4re, and rm = 2.25re, V max = 0.5, and Cmax = 0.12 are used. For
a smaller bounding sphere, the optimized structure is made of three components as shown in Figure 14, whereas the
optimizer decides to virtually eliminate one component for a larger bounding sphere (Figure 15). This appears rational,
since the joint material is less stiff than the structural material and K only specifies the maximum allowable number of
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F I G U R E 11 Cantilever beam with K = 2 and Ejoint = 0.5, r𝜇 = 4re, rm = 2.25re, V max = 0.5, Rmax = 0.55, and Cmax = 0.14: (A)
membership 1, (B) membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its
optimized structural compliance is 18.671

F I G U R E 12 Cantilever beam with K = 2 and Ejoint = 0.5, r𝜇 = 5re, rm = 2.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.16: (A)
membership 1, (B) membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its
optimized structural compliance is 18.317

F I G U R E 13 Stress of cantilever beam with K = 2 and (A) r𝜇 = 4re, rm = 2.25re and (B) r𝜇 = 5re, rm = 2.75re
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F I G U R E 14 Cantilever beam with K = 3, Ejoint = 0.5, r𝜇 = 4re, rm = 2.25re, V max = 0.5, Rmax = 0.40, and Cmax = 0.18: (A) membership 1,
(B) membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid
boundary and joint. Its optimized structural compliance is 17.949

components. Both results also show the intercomponent gaps formed by bulk solid boundaries without joint material due
to a relatively large value of rm and Cmax.

Figures 16 and 17 show the results for different upper limits of the volume of entire structure and the amount of bulk
solid boundaries and joints, with (V max, Cmax)= (0.5, 0.2) and (0.45, 0.25), respectively. For these runs, K = 3, Ejoint = 0.5,
r𝜇 = 3re, rm = 1.75re, and Rmax = 0.40 are used. With large structural volume and small interface amount, the optimal
structure consists of more lattice infill (Figure 16), whereas the optimizer utilizes more bulk solid boundaries with smaller
structural volume and large interface amount (Figure 17). Despite this difference in the strategy to minimize the com-
pliance objective, the compliance values are comparable: c= 18.030 and c= 18.260, respectively. Owing to large Cmax,
both structures show the intercomponent gaps, similar to the results in Figures 11 and 12. The von Mises stress of these
optimized structures are shown in Figure 18. Similar to the earlier results, the stress is much smaller in the regions of
bulk-solid boundary and joint, as well as the intercomponent gaps.
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F I G U R E 15 Cantilever beam with K = 3, Ejoint = 0.5, r𝜇 = 4re, rm = 2.25re, V max = 0.5, Rmax = 0.55, and Cmax = 0.18: (A) membership 1,
(B) membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid
boundary and joint. Its optimized structural compliance is 17.542

4.2 MBB

The design domain is a rectangle area of unit thickness with width w= 2 and height h= 1 with a symmetry constraint on
the left edge, and a concentrated load of f = 1 is applied at the upper left corner of the rectangle, as shown in Figure 19.

Figures 20,21, and 22 show the results for different joint stiffness with Ejoint = 0.25, 0.5, and 0.75, respectively. For these
runs, K = 2, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1 are used. Similar to the cantilever example, the
bulk solid boundary (and the joint in between) is straight and short with compliant joint and curved and long with stiff
joint, with varying lattice patterns. The von Mises stress in Figure 23 shows small stress (shown in blue) in the interface
regions, similar to the cantilever example.

Figures 24 and 25 show the results for different thickness in bulk solid boundary with (r𝜇, rm) = (4re, 2.25re) and
(5re, 2.75re), respectively. For these runs, K = 2 and Ejoint = 0.5, V max = 0.5, Rmax = 0.55, and Cmax = 0.12 are used. Similar
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F I G U R E 16 Cantilever beam with K = 3, Ejoint = 0.5, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.40, and Cmax = 0.2: (A) membership 1,
(B) membership 2, (C) membership 3, (D) component 1, (E) component 2, (f) component 3, (G) overall structure, and (H) bulk solid
boundary and joint. Its optimized structural compliance is 18.260

to the cantilever case, the lattice patterns and the intercomponent gaps change in response to the changes in the bound-
ary thickness. The von Mises stress of these optimized structures in Figure 26 shows low stress in the interface regions
including the intercomponent gaps.

Figures 27 and 28 show the results for different sizes of bounding spheres of each component with Rmax = 0.4 and
0.55, respectively. For these runs, K = 3, Ejoint = 0.5, r𝜇 = 4re, and rm = 2.25re, V max = 0.5, and Cmax = 0.12 are used. Similar
to the cantilever case, the resulting structure is made of three components for a smaller bounding sphere, and of two
components for a larger bounding sphere, and both with the intercomponent gaps due to a relatively large value of rm
and Cmax.

Figures 29 and 30 show the results for different upper limits of the volume of entire structure and the amount of bulk
solid boundaries and joints, with (V max, Cmax)= (0.5, 0.25), and (0.45, 0.35), respectively. For these runs, K = 3, Ejoint = 0.5,
r𝜇 = 3re, rm = 1.75re, and Rmax = 0.40 are used. Similar to the cantilever case, the optimal structure consists of more lattice
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F I G U R E 17 Cantilever beam with K = 3, Ejoint = 0.5, r𝜇 = 3re, rm = 1.75re, V max = 0.45, Rmax = 0.40, and Cmax = 0.25: (A) membership 1,
(B) membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid
boundary and joint. Its optimized structural compliance is 18.030

infill with large structural volume and small interface amount (Figure 29), and the optimizer utilizes more bulk solid
boundaries with smaller structural volume and large interface amount (Figure 30). The compliance of these structures are
c= 19.470 and c= 20.910. Owing to large Cmax, both structures show long and curved component interfaces with many
intercomponent gaps. The von Mises stress of these optimized structures are shown in Figure 31. Similar to the earlier
results, the stress is much smaller in the regions of bulk-solid boundary and joint, as well as the intercomponent gaps

4.3 Lightweighting design of a railcar body profile for high-speed trains

This section presents the lightweighting design of a railcar body profile for high-speed trains. The body is manufac-
tured as an assembly of multiple functionally graded lattice components due to the size limitation of the manufacturing
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F I G U R E 18 Stress of cantilever beam with K = 3 and (A) Rmax = 0.40, (B) Rmax = 0.55, (C) (V max , Cmax)= (0.5, 0.2), and (D)
(V max , Cmax)= (0.45, 0.25)

F I G U R E 19 Design domain and boundary conditions for the MBB problem

F I G U R E 20 MBB with K = 2 and Ejoint = 0.25, r𝜇 = 3re, rm = 2re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1: (A) membership 1, (B)
membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 20.689
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F I G U R E 21 MBB with K = 2 and Ejoint = 0.5, r𝜇 = 3re, rm = 2re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1: (A) membership 1, (B)
membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 20.514

F I G U R E 22 MBB with K = 2 and Ejoint = 0.75, r𝜇 = 3re, rm = 2re, V max = 0.5, Rmax = 0.55, and Cmax = 0.1: (A) membership 1, (B)
membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 20.210

F I G U R E 23 Stress of MBB with K = 2 and (A) Ejoint = 0.25, (B) Ejoint = 0.5, and (C) Ejoint = 0.75

equipment. The design domain shown in Figure 32, where the maximum width w= 1.8 and the maximum height
h= 2.9 with a symmetry constraint on the left edge, and a fixed support on the right bottom, and a distributed load
of p1 = 1 is applied in the floor and p1 = 0.2 for the outside surface. In this example, re = 0.01, the joint stiffness
Ejoint = 0.5, K = 3, r𝜇 = 8re, rm = 4re, V max = 0.4, Rmax = 0.8, and Cmax = 0.02 are used. The joint stiffness and cost set to
be moderate and small, respectively, which reflects the situation of welded train bodies. Figures 33, shows the opti-
mization results. Similar to the cantilever and MBB examples, the bulk solid boundaries are straight to minimize the
length of compliant joints in-between. The von Mises stress in Figure 33(B) shows small stress (shown in blue) in the
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F I G U R E 24 MBB with K = 2 and Ejoint = 0.5, r𝜇 = 4re, rm = 2.25re, V max = 0.5, Rmax = 0.55, and Cmax = 0.14: (A) membership 1, (B)
membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 19.703

F I G U R E 25 MBB with K = 2 and Ejoint = 0.5, r𝜇 = 5re, rm = 2.75re, V max = 0.5, Rmax = 0.55, and Cmax = 0.16: (A) membership 1, (B)
membership 2, (C) component 1, (D) component 2, (E) overall structure, and (F) bulk solid boundary and joint. Its optimized structural
compliance is 19.108

F I G U R E 26 Stress of MBB
with K = 2 and (A)
r𝜇 = 4re, rm = 2.25re and (B)
r𝜇 = 5re, rm = 2.75re
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F I G U R E 27 MBB with K = 3, Ejoint = 0.5, r𝜇 = 4re, rm = 2.25re, V max = 0.5, Rmax = 0.4, and Cmax = 0.18: (A) membership 1, (B)
membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid boundary
and joint. Its optimized structural compliance is 20.108
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F I G U R E 28 MBB with K = 3, Ejoint = 0.5, r𝜇 = 4re, rm = 2.25re, V max = 0.5, Rmax = 0.55, and Cmax = 0.18: (A) membership 1, (B)
membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid boundary
and joint. Its optimized structural compliance is 19.031
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F I G U R E 29 MBB with K = 3, Ejoint = 0.5, r𝜇 = 3re, rm = 1.75re, V max = 0.5, Rmax = 0.40, and Cmax = 0.25: (A) membership 1, (B)
membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid boundary
and joint. Its optimized structural compliance is 19.470

interface regions, which would increase the safety of the structure to reduce the probability of fatigue failure of the
joints.

5 CONCLUSIONS

This article proposed a topology optimization method for structures consisting of multiple lattice components under a
certain size, which can be manufactured with an additive manufacturing machine with a size limit. Each component
has functionally graded lattice infill surrounded by a bulk solid boundary, which greatly facilitates its assembly via the
conventional joining processes such as welding, gluing, riveting, and bolting. The method simultaneously optimizes
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F I G U R E 30 MBB with K = 3, Ejoint = 0.5, r𝜇 = 3re, rm = 1.75re, V max = 0.4, Rmax = 0.40, and Cmax = 0.35: (A) membership 1, (B)
membership 2, (C) membership 3, (D) component 1, (E) component 2, (F) component 3, (G) overall structure, and (H) bulk solid boundary
and joint. Its optimized structural compliance is 20.910

overall structural topology, its partitioning to multiple components, and functionally graded lattice infill within each
component. Based on our previous work on the topology optimization of the assemblies of additively manufactured solid
components12 and functionally graded monolithic lattice structures,13 the novelty of the proposed method beyond these
works is threefold: it realizes 1) multiple functionally graded lattice components with guaranteed connectivity of lattices
therein, 2) the bulk solid boundaries for each component, which provide continuous mating surfaces between adjacent
components, and 3) the structural interfaces between the bulk solid boundaries with a distinct material property, which
model the joints (e.g., weld, glue, rivets, and bolts) between the adjacent components. The functionally graded lattice
infill with guaranteed connectivity was realized by applying Helmholtz PDE filter with a variable radius, on the density
field in the solid isotropic material with penalization (SIMP) method. The partitioning of an overall structure into mul-
tiple components was realized by applying the discrete material optimization (DMO) method, in which each material
is interpreted as each component. A gradient-free coating filter38 applied on the component membership field realized
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F I G U R E 31 Stress of MBB
with K = 3 and (A) Rmax = 0.40, (B)
Rmax = 0.55, (C)
(V max , Cmax)= (0.5, 0.2), and (D)
(V max , Cmax)= (0.45, 0.25)

F I G U R E 32 Design domain and boundary conditions for the lightweighting
design of a high-speed railcar body profile

the bulk solid boundaries for each component, which provide continuous mating surfaces between adjacent components
to enable subsequent joining. The structural interfaces between the bulk solid boundaries were extracted and assigned
a distinct material property, which model the joints between the adjacent components. Several numeral examples were
solved for demonstration.

The article only presented simple 2D examples, although the proposed formulation is not limited to 2D. Also,
joints are idealistically modeled as isotropic, and the constraint models on component size and joint volume are
admittedly simple. These simplifications are chosen since, to the best of the authors’ knowledge, it is the first
time that the manufacturability-driven simultaneous partitioning and topology design for functionally graded lat-
tice structures is presented in the literature. We expect the simple mathematical formulations presented in this
article would inform the other researchers to implement more detailed and realistic models, including constraints
on maximum stress in joints, guard against buckling in lattices, and tool accessibility to component interfaces for
joining.
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F I G U R E 33 Optimized
lightweighting design of a
high-speed railcar body profile
with K = 3, Ejoint = 0.5,
r𝜇 = 8re, rm = 4re, V max = 0.4,
Rmax = 0.8, and Cmax = 0.02:
(A) overall structure, (B) stress,
(C) component 1, (D)
component 2, and (E)
component 3. Its optimized
structural compliance is 80.205
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APPENDIX A. SENSITIVITIES

This appendix presents the sensitivities of the objective function and constraints in Equation (18) with respect to design
variables 𝜙, 𝜇, and rl. The partial derivatives of intermediate variables 𝜌, 𝜌l, m(k), and b(k), which these sensitivities depend
on, are also presented in Section A.5.

A.1 Sensitivity of the objective
Using the adjoint method, the sensitivity of the objective function f :=UTKU subject to the static equilibrium KU=F is
derived as:

df
d𝜙

= −UT 𝜕K
𝜕𝜙

U = −UTK0U𝜕Et

𝜕𝜙
, (A1)

df
d𝜇(k)

= −UT 𝜕K
𝜕𝜇(k)

U = −UTK0U 𝜕Et

𝜕𝜇(k)
, (A2)

df
drl

= −UT 𝜕K
𝜕rl

U = −UTK0U𝜕Et

𝜕rl
, (A3)

where K = EtK0. Using Equation (17), the partial derivatives of Et can be given as:

𝜕Et

𝜕𝜙
= E

K∑
k=1

{
p𝜌𝜌

p𝜌−1 𝜕𝜌

𝜕𝜙
m(k) + g′(𝜌l)

𝜕𝜌l

𝜕𝜙
b(k) − 2g′(𝜌l)

𝜕𝜌l

𝜕𝜙

k∑
l=1

J(kl)

}
, (A4)

𝜕Et

𝜕𝜇(k)
= E

[
𝜌p𝜌

𝜕m(k)

𝜕𝜇(k)
− {1 − g(𝜌l)}

𝜕b(k)

𝜕𝜇(k)

− {1 + 2g(𝜌l) − 𝜂} (1 − m0)
𝜕b(k)

𝜕𝜇(k)

{
m0 + b(l)(1 − m0)

}]
(A5)

𝜕Et

𝜕rl
= E

K∑
k=1

{
g′(𝜌l)

𝜕𝜌l

𝜕rl
b(k) − 2g′(𝜌l)

𝜕𝜌l

𝜕rl

k∑
l=1

J(kl)

}
. (A6)

A.2 Sensitivity of global and local volume constraint
The sensitivity of the constraint function on the entire structural volume g1 ∶= ∫D

∑K
k=1 𝜌m(k)dx − Vmax is given:
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𝜕g1

𝜕𝜙
= ∫D

K∑
k=1

𝜕𝜌

𝜕𝜙
m(k)dx, (A7)

𝜕g1

𝜕𝜇(k)
= ∫D

K∑
k=1

𝜌
𝜕m(k)

𝜕𝜇(k)
dx, (A8)

𝜕g1

𝜕rl
= 0. (A9)

Similarly, the sensitivity of the constraint function on the locally averaged density g2 ∶=
(∫D𝜌

p
l dx

) 1
p − Pmax is given as:

𝜕g2

𝜕𝜙
=
(
∫D

𝜌
p
l dx

) 1
p
−1

∫D
𝜌

p−1
l

𝜕𝜌l

𝜕𝜙
dx, (A10)

𝜕g2

𝜕𝜇(k)
= 0, (A11)

𝜕g2

𝜕rl
=
(
∫D

𝜌
p
l dx

) 1
p
−1

∫D
𝜌

p−1
l

𝜕𝜌l

𝜕rl
dx. (A12)

A.3 Sensitivity of bounding sphere
The sensitivity of the constraint function on the bounding sphere g3 :=R(k) −Rmax is given as:

𝜕g3

𝜕𝜙
= 1

p

[
∫D

𝜌m(k)
{

x − x(k)c

}p
dx

] 1
p
−1

× ∫D

[
𝜕𝜌

𝜕𝜙
m(k)

{
x − x(k)c

}p
− p𝜌m(k)

{
x − x(k)c

}p−1 𝜕x(k)c

𝜕𝜙

]
dx, (A13)

𝜕g3

𝜕𝜇(k)
= 1

p

[
∫D

𝜌m(k)
{

x − x(k)c

}p
dx

] 1
p
−1

× ∫D

[
𝜌
𝜕m(k)

𝜕𝜇(k)

{
x − x(k)c

}p
− p𝜌m(k)

{
x − x(k)c

}p−1 𝜕x(k)c

𝜕𝜇(k)

]
dx, (A14)

𝜕g3

𝜕rl
= 0, (A15)

where

𝜕x(k)c

𝜕𝜙
=

∫D
𝜕𝜌

𝜕𝜙
m(k)xdx × ∫D𝜌m(k)dx − ∫D𝜌m(k)xdx × ∫D

𝜕𝜌

𝜕𝜙
m(k)dx{∫D𝜌m(k)dx

}2 , (A16)

𝜕x(k)c

𝜕𝜇(k)
=

∫D𝜌
𝜕m(k)

𝜕𝜇(k) xdx × ∫D𝜌m(k)dx − ∫D𝜌m(k)xdx × ∫D𝜌
𝜕m(k)

𝜕𝜇(k) dx{∫D𝜌m(k)dx
}2 . (A17)

A.4 Sensitivity of joint cost constraint
The sensitivity of the constraint function on the bulk solid boundaries and joints g4 :=C −Cmax is given as:

𝜕g4

𝜕𝜙
=

K∑
k=1

[
∫D

g′(𝜌l)
𝜕𝜌l

𝜕𝜙

{
m(k) −

k∑
l=1

J(kl)

}
dx

]
, (A18)

𝜕g4

𝜕𝜇(k)
=

K∑
k=1

[
∫D

g(𝜌l)
[
𝜕m(k)

𝜕𝜇(k)
− 𝜕b(k)

𝜕𝜇(k)
(1 − m0)

{
m0 − b(l)(1 − m0)

}]
dx

]
, (A19)

𝜕g4

𝜕rl
=

K∑
k=1

[
∫D

g′(𝜌l)
𝜕𝜌l

𝜕rl

{
m(k) −

k∑
l=1

J(kl)

}
dx

]
. (A20)



4248 YI AND SAITOU

A.5 Sensitivity of intermediate variables
The partial derivatives of 𝜌 and 𝜌l with respect to 𝜙 are given by Equations (1), (2), and (3) as:

𝜕𝜌l

𝜕𝜙
= 𝜕𝜌l

𝜕𝜌

𝜕𝜌

𝜕𝜙
, (A21)

𝜕𝜌l

𝜕𝜌
=
( ne

A
e=1

NT
e

)T [
K−1

f (rl)
ne
A

e=1

(
∫De

NT
e dx

)]
, (A22)

𝜕𝜌

𝜕𝜙
= 𝜕𝜌

𝜕𝜙

𝜕𝜙

𝜕𝜙
, (A23)

𝜕𝜌

𝜕𝜙
= 𝜕Hs(𝜙)

𝜕𝜙
= 𝛿(𝜙), (A24)

𝜕𝜙

𝜕𝜙
=
( ne

A
e=1

NT
e

)T [
K−1

f (r𝜌)
ne
A

e=1

(
∫De

NT
e dx

)]
, (A25)

where A is the standard finite element assembly operator, ne is the number of elements, Ne and De are the vector of the
element shape functions and the domain of finite element e, respectively, for solving the Helmholtz filter functions, and

Kf (r) =
ne
A

e=1

[
∫De

{
−(∇Ne)T r2 ∇Ne + NT

e Ne
}

dx
]
. (A26)

The details of the derivation is described in Reference 39. Since both 𝜌 and 𝜌l do not depends on 𝜇(k):

𝜕𝜌l

𝜕𝜇(k)
= 𝜕𝜌

𝜕𝜇(k)
= 0. (A27)

Similarly, 𝜌 does not depend on rl, hence:

𝜕𝜌

𝜕rl
= 0. (A28)

From Equation (3), 𝜕𝜌l∕𝜕rl is given as:

𝜕𝜌l

𝜕rl
=
( ne

A
e=1

NT
e

)T [
K−1

f (rl)
ne
A

e=1

(
∫De

(∇Ne)T 2rl ∇Nedx
)]

. (A29)

Since m(k) and b(k) do not depend on either 𝜙 or rl:

𝜕m(k)

𝜕𝜙
= 𝜕m(k)

𝜕rl
= 𝜕b(k)

𝜕𝜙
= 𝜕b(k)

𝜕rl
= 0. (A30)

The partial derivatives of m(k) and b(k) with respect to 𝜇(k) are given by Equations (9), (10), (11), (7), and (8)
as:

𝜕b(k)

𝜕𝜇(k)
= −𝜔(k) 𝜕m(k)

𝜕𝜇(k)
+ (1 − m(k))𝜕𝜔

(k)

𝜕𝜇(k)
, (A31)

where

𝜕𝜔(k)

𝜕𝜇(k)
= 𝜕𝜔(k)

𝜕m(k)
𝜕m(k)

𝜕m(k)
𝜕m(k)

𝜕𝜇(k)
, (A32)
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𝜕𝜔(k)

𝜕m(k)
= 𝜕Hr(m

(k))

𝜕m(k)
= 𝛿(m(k)), (A33)

𝜕m(k)

𝜕m(k)
=
( ne

A
e=1

NT
e

)T [
K−1

f (rm)
ne
A

e=1

(
∫De

NT
e dx

)]
, (A34)

𝜕m(k)

𝜕𝜇(k)
= Pm

{
𝜇
(k)
}Pm−1 𝜕𝜇

(k)

𝜕𝜇(k)

K∏
i=1,i≠k

[
1 −

{
𝜇
(i)
}Pm

]
, (A35)

𝜕𝜇
(k)

𝜕𝜇(k)
=
( ne

A
e=1

NT
e

)T [
K−1

f (r𝜇)
ne
A

e=1

(
∫De

NT
e dx

)]
. (A36)


