
Multi-component topology optimization of

functionally-graded lattice structures with bulk solid

interfaces (MTO-L)

Bing Yia,1, Kazuhiro Saitoub

aSchool of Traffic and Transportation Engineering, Central South University, Changsha,
China

bDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, USA

Abstract

This paper presents a topology optimization method for structures consist-
ing of multiple lattice components under a certain size, which can be man-
ufactured with an additive manufacturing machine with a size limit and
assembled via conventional joining processes, such as welding, gluing, rivet-
ing, and bolting. The proposed method can simultaneously optimize overall
structural topology, partitioning to multiple components and functionally-
graded lattices within each component. The functionally-graded lattice infill
with guaranteed connectivity is realized by applying the Helmholtz PDE fil-
ter with a variable radius on the density field in the Solid Isotropic Material
with Penalization (SIMP) method. The partitioning of an overall structure
into multiple components is realized by applying the Discrete Material Op-
timization (DMO) method, in which each material is interpreted as each
component, and the size limit for each component imposed by a chosen addi-
tive manufacturing machine. A gradient-free coating filter realizes bulk solid
boundaries for each component, which provide continuous mating surfaces
between adjacent components to enable the subsequent joining. The struc-
tural interfaces between the bulk solid boundaries are extracted and assigned
a distinct material property, which model the joints between the adjacent
components. Several numeral examples are solved for demonstration.
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structures, bulk solid interfaces

1. Introduction1

Lattice structures exhibit superior structural properties such as low stiffness-2

to-weight ratio, robustness for random direction loads, damage resistance3

against defects, and extreme physical properties such as large energy absorp-4

tion [1, 2], negative Poisson’s ratio [3, 4], large thermal expansion [5, 6],5

and special acoustic absorption [7, 8]. Owing to the recent advancement in6

additive manufacturing processes, especially those in metals, the fabrication7

and testing of engineered lattice structures have become much more acces-8

sible to researchers. Thompson et al. [9] reviewed recent work on design for9

additive manufacturing including the design of engineered lattice structures.10

They pointed out there was still a lack of systematic design method to over-11

come the complexity of lattice structures whose dimension spans from the12

micro/meso-scale to macro-scale. In addition to the structural complexity,13

additively-manufactured lattice structures for industrial applications would14

be subject to the physical and economical constraints imposed by additive15

manufacturing processes.In particular, the maximum printing size for the16

available additive manufacturing machines (within budget) can be a signifi-17

cant design constraint. While a large scale additive manufacturing machines18

(e.g., [10]) are being developed, it still suffers from low precision, large dis-19

tortion, and limitation of compatible materials.20

A remedy to the size limitation of additive manufacturing is to print21

multiple smaller components and then assemble them to a large structure,22

as commonly done in the conventional manufacturing processes. For engi-23

neered lattice structures, the idea is analogous to the multi-domain crystal24

structures that were proposed to enhance the mechanical behaviour of engi-25

neered crystalline materials [11]. The difference, however, is that the lattice26

components produced separately by additive manufacturing would have to27

be assembled subsequently using joining processes such as welding, gluing,28

riveting, and bolting. Since it would be practically infeasible to reliably and29

economically join each of numerous meso-scale geometric features that make30

up individual lattices (Fig. 1 (a)), each lattice component should have bulk31

solid boundary that provide adjacent components with continuous mating32

surfaces that enable the subsequent joining (Fig. 1 (b)).33

This paper presents a topology optimization method for structures con-34

sisting of multiple lattice components, which can be manufactured via ad-35
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Figure 1: Two types of interface between lattice components: (a) no bulk solid interface
(extremely difficult to join) and (b) bulk solid interface (straightforward to join).

ditive manufacturing and then assembled via conventional joining processes.36

Each component has functionally-graded lattice infill surrounded by a bulk37

solid boundary, which greatly facilitates its assembly via the conventional38

joining processes such as welding, gluing, riveting, and bolting. The pro-39

posed method can simultaneously optimize overall structural topology, its40

partitioning to multiple components, and functionally-graded lattice infill41

within each component. Structural compliance is considered as the objective42

function, and constraints are imposed on the volume of the entire structure,43

the size of each component, and the amount of the bulk solid boundaries44

around and the joints between components. Based on our previous work45

on the topology optimization of the assemblies of additively-manufactured46

solid components [12] and functionally-graded monolithic lattice structures47

[13] (which, in turn, is based on [14]), the novelty of the proposed method48

beyond these works is three-fold: it realizes 1) multiple functionally-graded49

lattice components with guaranteed connectivity of lattices therein, 2) the50

bulk solid boundaries for each component, which provide continuous mat-51

ing surfaces between adjacent components, and 3) the structural interfaces52

between the bulk solid boundaries with a distinct material property, which53

model the joints (eg., weld, glue, rivets, and bolts) between the adjacent54

components.55

The paper is organized as follows. Section 2 discusses related work and56

Section 3 describes the mathematical formulation of the optimization prob-57

lem. Several numerical examples are presented in Section 4. Finally, Sec-58

tion 5 concludes the paper with discussion of possible future work. The59

sensitivities of the60
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2. Related work61

2.1. Optimal design of multi-component structures62

Most structural products are made as assemblies of components with63

simpler geometry. Despite the sacrifice in structural performances due to64

the introduction of joints, multi-component assemblies are preferred, or of-65

ten the only choices in industry, primarily due to economical reasons – the66

manufacturing and assembly of multiple components with simpler geometry67

is often far less costly than of a monolithic structure with complex geometry.68

Assembly synthesis is a process of partitioning a structure into multiple com-69

ponents, each with simpler geometry, to enhance the ease of manufacturing.70

By viewing the problem as the optimal balance between structural per-71

formance and manufacturing cost, computational optimal assembly synthesis72

for structural products were attempted in [15, 16] for stamped sheet metal73

structures and in [17] for extruded space frame structures. In the filed of74

computer graphics, there also is recent work addressing the partitioning of75

product geometry into smaller components, so each can fit within the max-76

imum printer size for additive manufacturing [18, 19, 20]. However, these77

work only deal with manufacturability-driven partitioning of prescribed fixed78

geometries without considering the optimization of the overall product ge-79

ometries.80

Early work on topology optimization of multi-component structures, On81

the other hand, was the optimization of the overall product geometry with82

prescribed fixed partitioning, where each component is optimized within the83

prescribed design domain, and joints are optimized within the overlaps among84

these domains [21, 22, 23, 24, 25]. In these work, therefore, an optimized85

structure must be an assembly of prescribed number of components with86

prescribed adjacency. Considering that joints are usually structurally in-87

ferior to components and therefore should be introduced only if justifiable88

by performance-cost balance, this formulation can only explore very small89

subset of all possible multi-component structures.90

Multi-component topology optimization (MTO) was motivated by the91

need of automatically generating optimal structures made as assemblies of92

multiple ready-to-manufacture components, each of which conforms geomet-93

ric constraints imposed by a chosen manufacturing process, such as compo-94

nent sizes, undercuts, and uniform wall thickness. Lyu et al. [26], Yildiz et95

al. [27], and Guirguis et al. [28] formulated MTO as discrete optimization96

problems for (2D approximations of) stamped sheet metal assemblies and97
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solved them by genetic algorithms. However, it is extremely time consum-98

ing and hence can only solve simple “toy” problems. Zhou and Saitou [29]99

proposed a continuous relaxation of MTO for 2D stamped sheet metal as-100

semblies, which enabled the use of efficient gradient-based optimization al-101

gorithms. Zhou et al. [30] extended the formulation to composite structures,102

which is capable of simultaneously optimizing the overall topology, compo-103

nent partitioning, and tailored material orientation for each component. By104

considering the size constraint of the additive manufacture machines, Zhou105

et al. [12] presented a MTO formulation for additive manufacturing with a106

build volume constraint. Despite its promise, MTO is still at an infancy and107

yet to become robust enough for industry applications. These researches, in108

particular, have only considered bulk solid structures or 2D approximation109

of thin-wall structures.110

Recently, Francesco et al. [31] presented a method to optimize the dis-111

tribution of the lattice infill in multiple domains by using two-step method112

consisting of domain boundary optimization followed by infill lattice opti-113

mization. Gao et al. [32] also proposed a multi-scale topology optimization114

method for the design of porous composites composed of the multi-domain115

material microstructures. In these work, however, multiple domains are de-116

fined within a single structure that is assumed to be produced as one piece,117

with no considerations of manufacturing constraints. To the best of the au-118

thor’s knowledge, there is no previous research work considering the topology119

optimization of structural assemblies consisting of multiple lattice compo-120

nents driven by the manufacturability of each component and the assem-121

bleability of multiple components, such as the ones addressed in this paper.122

2.2. Interface modeling in multi-domain structures123

While a model of structural interfaces between adjacent components (i.e.,124

joints) were included in the discrete formulation of MTO [26, 27, 28], it125

was based on the discrete representations of component boundaries, which126

required the use of inefficient non-gradient optimization algorithms.127

A related problem of modeling interfaces between distinct materials has128

been discussed in the area of multi-material topology optimization. Most129

work utilizes level set based topology optimization, since it has an advantage130

of representing explicit boundaries between material phases at each iteration131

of optimization. Vermaak et al. [33] proposed a framework for the model-132

ing of material interface properties in multi-phase elastic and thermoelas-133

tic structures, which can model the material interfaces with monotonic and134
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non-monotonic property variations. Faure et al. [34] extended this method135

for the modeling of smooth and graded transitions for micro-structures and136

investigated the influence of graded interfaces in multi-material topology op-137

timization. Liu et al. [35] presented monolothic topology optimization of138

structures that embed prescribed components with fixed geometry, with the139

interface model between the embedding structure and embedded component.140

Little work has been published on material interface modeling based on141

the Solid Isotropic Material with Penalisation (SIMP) method, where the142

“gray” zones that always exist between two material phases pose challenges143

in modeling material interfaces. Francesco et al. [31] proposed the framework144

for the modeling of solid internal interface for lattice infill structures by145

using the artificial threshold for the density field. Chu et al. [36] proposed146

the graded interface modeling of multi-material topology optimization [36],147

which employs the coating filter proposed by Clausen et al. [37]. The filter,148

however, requires computing the maximum of the norm of the gradient vector149

of the density field, which poses numerical challenges both in efficiency and150

accuracy. To overcome this challenge, Yoon et al. [38] proposed simple two-151

step filtering for the topology optimization of coated structures without the152

need of density gradient.153

3. Design model154

3.1. Overview155

Three fields are defined to represent the design model for a structural156

assembly of functionally-graded lattice components with continuous compo-157

nent interface: material density ρ, radius rl for local density averaging, and158

component membership vector m = (m(1),m(2), · · · ,m(K)), where K is the159

prescribed maximum allowable number of components. Figure 2 illustrates160

an instance where K = 3. The overall structure with functionally-graded161

lattice is represented as filtered density field ρ by variable-radius Helmholtz162

PDE-filter with radius rl [13]. The multiple components within the overall163

structure are represented as a fractional membership m(k) to each compo-164

nent k, where k = 1, 2, . . . , K in a similar manner DMO represents multiple165

material orientations [12] (Fig. 2 (a)). The bulk solid boundaries for each166

component are obtained by applying the coating filters in [38] for each ele-167

ment m(k) of the component membership vector filed m (Fig. 2 (b)). With168

the carefully controlled filter radii, the joints between the mating boundaries169
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Figure 2: overview of the design model: (a) design fields, (b) bulk solid boundaries and
joints, and (c) the compiled design model.

are extracted as the overlap region of the coatings of two adjacent com-170

ponents. Finally, the design model is constructed by compiling the overall171

lattice structure, component membership, and the bulk solid boundaries and172

joints (Fig. 2 (c)).173

3.2. Functionally-graded lattice structures174

Let φ : D → [−1, 1] be the (un-regularized) design variable, where D is175

a fixed design domain. To avoid checkerboard patterns and achieve mesh-176

independent results, design variable φ is regularized by the Helmholtz PDE-177

filter [39]:178

−r2ρ∇2φ+ φ = φ (1)

where rρ is the filter radius for smoothing, and φ is the smoothed design179

variable. Then, density field ρ : D → [0, 1] is obtained by using a smoothed180

Heaviside function Hs : R → [0, 1] for the regularized design variable as181

follows:182

ρ = Hs(φ) (2)

Functionally-graded lattices can be realized by imposing an upper bound183

on density values ρ averaged over a small neighborhood, and letting the up-184

7



per bound vary at each design point in D [13]. To compute locally regular-185

ized, “average” material density field ρl, the Helmholtz PDE-filter is adopted186

again:187

−r2l∇2ρl + ρl = ρ (3)

where rl is the (variable) filter radius for averaging density around a design188

point. If the lower bound of rl is set to be larger than the (constant) filter189

radius rρ for the regularization of the density field, the functionally-graded190

lattices can be obtained by imposing the upper bound Pmax on locally aver-191

aged density ρl:192

ρl ≤ Pmax (4)

Equation 4 should be defined for each design point, which may cause193

numerical difficulty during optimization. Hence, it can be rewritten equiva-194

lently as:195

max
x∈D

(ρl) ≤ Pmax (5)

and further approximately as:196 (∫
D

ρpl dx

) 1
p

≤ Pmax (6)

which is differentiable with respect to φ and ρl. As power p of the p-norm197

approximation goes to infinity, Eq.6 becomes equivalent to Eq.4. In this198

paper, p = 10 is used since larger values will increase numerical instability199

during optimization.200

3.3. Multi-component partitioning201

Similar to the density field, component membership is represented by a202

(un-regularized) design variable µ(k) : D → [0, 1]. To achieve mesh inde-203

pendency of component boundary, deign variable µ(k) is regularized by the204

Helmholtz PDE filter:205

−r2µ∇2µ(k) + µ(k) = µ(k) (7)

where rµ is the filter radius for the controlling of the maximum width of the206

bulk solid boundaries and the joints, as discussed in the following section.207

To encourage that each design point belongs to a unique component at208

the convergence of the optimization, the DMO projection [40] is applied to209

the smoothed membership field µ(k) as follows:210
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Figure 3: Simple two-step filtering approach for modeling bulk solid component bound-
aries.

m(k) =
{
µ(k)
}pm K∏

i=1,i 6=k

[
1−

{
µ(i)
}Pm]

(8)

where pm is the penalization parameter to drive each membership vector211

converge to 0 or 1. As can be seen in Eq.8, an increase in one component212

membership always leads to a decrease in all the other component member-213

ships. With the DMO projection, the membership vector at a design point214

will converge to a sparse vector with at most one element being 1 and all the215

other element being 0, which represents the partition of design domain D to216

up to K components.217

3.4. Bulk solid component boundaries218

Our modeling of bulk solid boundaries for each lattice component is in-219

spired by the gradient-free coating filter for SIMP-based (monolithic) topol-220

ogy optimization [38]. Instead of density field ρ that represents the entire221

structure, however, the filter is applied to each element m(k) of the component222

membership vector field, as illustrated in Fig.3.223

First, the Helmholtz PDE filter with filter radius rm, which controls the224

thickness of the bulk solid boundary, is applied on each element m(k) of225

component membership vector field:226

−r2m∇2m(k) +m(k) = m(k) (9)

where rm controls the thickness of the bulk solid boundary, and hence should227

be rm < rµ. Then, a smoothed Heaviside function is applied to the filtered228

component membership m(k) to obtain the field with “crisp” edges:229

ω(k) = Hr(m
(k)) (10)
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Figure 4: Joint modeling between each component membership with bulk solid boundaries.

and finally, the membership for bulk solid boundary can be obtained as:230

b(k) = {1−m(k)}ω(k) (11)

It should be noted that due to its construction, b(k) is bounded between 0231

and 1, and therefore will effectively avoid the need of normalization, which232

is subject to numerical errors for the gradient-based coating filter in [37].233

3.5. Joints234

We consider joints as to model the outcome of joining processes such as235

welding, gluing, screwing, and riveting, which mechanically connects the bulk236

solid boundaries of two adjacent components. A separate modeling is needed237

for the joint regions, since they have different, often inferior, material prop-238

erty from the component material. This can be accomplished by extracting239

a narrow overlap between the two adjacent bulk solid boundaries.240

Figure 4 illustrates a (2D) close-up view of the interface between two241

adjacent components k and l at the optimization convergence, overlaid with242

the corresponding values of smoothed component membership m(k) and m(l)
243

in Eq. 8. The regions with rapid decrease in m(k) and m(l), colored with the244

gradation from yellow to green for each of component, represent the bulk245

solid boundaries as defined by b(k) and b(l) in Eq. 11. The characteristics of246

the Helmholtz PDE filter [39] suggests this region approximately has width247

rm/2
√

3 for each component, where rm is the filter radius in Eq.9. Similarly,248

the entire interface region consisting the (potentially) overlapping regions of249

bulk solid boundaries (and any space in-between), approximately has width250

rµ/2
√

3, where rµ is the filter radius in Eq.7. Under an appropriate setting251

10



of these filter radii satisfying rµ/2 < rm < rµ, there will be a small overlap252

between two regions of bulk solid boundaries b(k) and b(l), which can be253

extracted as a joint. Since this overlapping region would have near zero254

component membership values, joint membership Jkl is obtained by scaling255

up b(k) and b(l):256

J (kl) =
{
m0 + b(k)(1−m0)

}{
m0 + b(l)(1−m0)

}
(12)

where l 6= k and m0 is a small positive number, that defines the lower bound257

for the scaling. For notational convenience, J (kl) is defined as 0 for l = k.258

3.6. Interpolation functions259

For simplicity as an initial attempt, the infill lattices, bulk solid bound-260

aries, and joints are all assumed to be isotropic in this paper. Similar to261

conventional SIMP method, the Young’s modulus of lattice infill for compo-262

nent k, excluding the bulk solid boundaries and joints, is given as:263

E(k)
ρ = E

{
ρpρm(k) − b(k) −

k∑
l=1

J (kl)

}
(13)

where E is the Young’s modulus of the component material and pρ is the264

SIMP penalization parameter. The sum for Jkl is taken over l = 1, 2, .. · · · , k265

instead of l = 1, 2, .. · · · , K to avoid “double counting” of the joint region266

when the contribution of all K components are summed together. The bulk267

solid boundaries of component k, excluding the overlapping regions which268

are considered as joints, are also made from the component material:269

E
(k)
b = E

{
b(k) −

K∑
l=1

J (kl)

}
(14)

In this case, the sum for Jkl is taken over l = 1, 2, .. · · · , K since the joints270

are defined in the overlapping region of b(k) and b(l). The Young’s modulus271

for the joint between components k and l = 1, 2, · · · , K is given as:272

E
(k)
J = ηE

k∑
l=1

J (kl) (15)

where η is the ratio of the Young’s modulus of the joint material to the273

one for the structural material. Similar to Eq. 13, the sum is taken over274
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l = 1, 2, .. · · · , k. Finally, the the Young’s modulus for each point in the275

design domain can be defined as:276

Et =
K∑
k=1

{
E(k)
ρ + E

(k)
b g(ρl) + E

(k)
J

}
(16)

where g(ρl) is an interpolation function to enable a smooth transition from277

infill lattices to bulk solid boundaries. Using the fact that
∑K

k=1

∑K
l=1 =278

2
∑K

k=1

∑k
l=1, Eq. 16 can be rewritten as:279

Et = E
K∑
k=1

[
ρpρm(k) − {1− g(ρl)} b(k) − {1 + 2g(ρl)− η}

k∑
l=1

J (kl)

]
(17)

3.7. Optimization model280

The optimization model is formulated as compliance minimization sub-281

ject to constraints on structural volume, component size, maximum allow-282

able local average density, component interface cost, and maximum allowable283

number of component:284

minimize
φ,µ,rl

UTKU

subject to: KU = F∫
D

K∑
k=1

ρm(k)dx ≤ Vmax(∫
D

ρpl dx

) 1
p

≤ Pmax

R(k) ≤ Rmax; k = 1, 2, . . . , K

C ≤ Cmax

φ ∈ [−1, 1]D

µ(k) ∈ [0, 1]D; k = 1, 2, . . . , K

rl ∈ [rρ, 5rρ]
D

(18)

where K , U, and F are the stiffness matrix, the displacement vector, and285

the force vectors of the finite element mesh of domain D, respectively; Vmax,286

Rmax, and Cmax are is the maximum allowable volume of the entire structure,287
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the maximum radius of the printable sphere for the additive manufacturing288

machine, and the maximum allowable amount for the bulk solid boundaries289

and joints within the structure, respectively.290

Instead of rectangular (prismatic) bounding boxes adopted in [29, 12], the291

components sizes are approximated by their bounding spheres for the sake of292

computational simplicity. The radius of the bounding sphere of component293

k is given as:294

R(k) = max
x∈D
‖ρm(k){x− x(k)c }‖ ≈

[∫
D

ρm(k){x− x(k)c }pdx
] 1
p

(19)

where x
(k)
c is the centroid of component k:295

x(k)c =

∫
D
ρm(k)xdx∫

D
ρm(k)dx

(20)

The total amount of the bulk solid boundaries and joints within the structure296

is approximated as:297

C =
K∑
k=1

[∫
D

g(ρl)

{
m(k) −

k∑
l=1

J (kl)

}
dx

]
(21)

This amount needs to be constrained by the maximum allowable amount in298

Eq. 18, since otherwise the optimizer tends to exploit the solid bulk bound-299

aries to minimize the compliance objective and place them everywhere in the300

structure.301

For the examples in the next section, the optimization model in Eq. 18302

is implemented with MATLAB and COMSOL is used for solving FEM and303

optimization. The method of moving asymptotes (MMA) [41] is adopted304

as the optimization algorithm. The derivations of the sensitivities of the305

objective function and constraints are outlined in Appendix A.306

4. Examples307

This section presents two simple examples on a cantilever beam and an308

MBB and an industry example on a railcar body profile for high-speed trains.309

In all examples, the design domains are discretized with identical square four-310

node elements with size re = 0.02, and filter radius rρ in Eq. 1 is set as re.311
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Table 1: Common parameter values in the examples

symbol definition value
pρ SIMP penalty 3
pm membership penalty 6
p p-norm power 10
E Young’s modulus 1
υ Poisson’s ratio 0.3
Pmax max. local density 0.6

Table 2: Other input parameters for the examples

symbol definition
K maximum allowable number of components
Ejoint Young’s modulus of the joint material (= ηE in Eq. 15)
rρ filter radius for density (Eq. 1)
rm filter radius for membership vector (Eq. 9)
Vmax max. volume of the entire structure (Eq. 18)
Rmax max. radius of the printable sphere (Eq. 18)
Cmax max. amount for bulk solid boundaries and joints (Eq. 18)

The design variables are initialized as φ = 0 and µ(k) = 0.5 uniformly in the312

design domain. Tables 1 summarizes the parameter values common in the313

examples. As a recap, Table 2 lists the other input parameters that can take314

various values in the examples.315

4.1. Cantilever beam316

The design domain is a rectangle area of unit thickness with width w = 2317

and height h = 1, and a concentrated load f = 1 is applied at the lower right318

corner of the rectangle, as shown in Fig. 5.319

The iteration snapshots are shown in Fig.6 for the case with K = 2,320

Ejoint = 0.5, rµ = 3re, rm = 1.75re, Rmax = 0.55, and Cmax = 0.12. In each321

of the sub-figure, the first row shows the density and membership fields for322

each component, the second row shows the joints and bulk solid boundaries323

for each component, and the third row show the optimized structure and324

components. Since initially φ = 0 and µ(k) = 0.5 everywhere, density ρ is 0.5,325

and membership mk is almost zero due to the DMO projection. As a result,326

the bulk solid boundary and joints are also almost zero, so are the overall327
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Figure 5: Design domain and boundary conditions for the cantilever problem.

structure and components (Fig.6 (a)). As the iteration proceeds, the overall328

structure and memberships becomes clearer, but the bulk solid boundaries329

and the joints remains unclear (Fig.6 (b)). Then, the memberships quickly330

become clear between iteration 200 and 400 and so is the solid interface and331

joints (Fig.6 (c)). The overall structures and other quantities appear to reach332

local optima at iteration 1200 (Fig.6 (d)).333

Figures 7, 8, and 9 show the results for different joint stiffness with334

Ejoint = 0.25, 0.5, and 0.75, respectively. For these runs, K = 2, rµ = 3re,335

rm = 1.75re, Vmax = 0.5, Rmax = 0.55, and Cmax = 0.1 are used. It can336

be seen that, the bulk solid boundary (and the joint in between) is straight337

and short when the Young’s modulus of joints is small, and becomes curved338

and long as the joint becomes stiffer, taking advantage of the more use of339

bulk solid boundary, until the upper bound Cmax is reached. In response340

to the changes in the boundary, the lattice patterns also change. The von341

Mises stress of these optimized structures are shown in Fig.10. The maxi-342

mum stress (shown in red) is observed at the periphery of the structures. The343

stress is much smaller (shown in blue) in the regions of bulk-solid boundary344

and joint, since the bulk solid boundaries are much stiffer than the rest of345

lattice structure. While the joints are less stiff than the lattice structure, the346

stress there is still smaller than the lattices, since they are “protected” by347

stiff boundaries.348

Figures 11 and 12 show the results for different thickness in bulk solid349

boundary with (rµ, rm) = (4re, 2.25re) and (5re, 2.75re), respectively. For350

these runs, K = 2 and Ejoint = 0.5, Vmax = 0.5, Rmax = 0.55, and Cmax =351

0.12 are used. Similar to the results of different joint stiffness, the lattice352

patterns change in response to the changes in the boundary thickness. In-353

terestingly, both structures show inter-component gaps formed by bulk solid354
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(b)
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(c)

(d)

Figure 6: Iteration snapshots of cantilever beam with K = 2, Ejoint = 0.5, rρ = 3re,
rµ = 3re, rm = 1.75re, Vmax = 0.5, Rmax = 0.55, and Cmax = 0.12: (a) 1st, (b) 200th,
(c) 400th, and (d) 1200th iterations. Its optimized structural compliance is 17.671.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Cantilever beam with K = 2 and Ejoint = 0.25, rµ = 3re, rm = 1.75re,
Vmax = 0.5, Rmax = 0.55, and Cmax = 0.1: (a) membership 1, (b) membership 2, (c)
component 1, (d) component 2, (e) overall structure, and (f) bulk solid boundary and
joint.Its optimized structural compliance is 19.450.

(a) (b) (c)

(d) (e) (f)

Figure 8: Cantilever beam with K = 2 and Ejoint = 0.5, rµ = 3re, rm = 1.75re, Vmax =
0.5, Rmax = 0.55, and Cmax = 0.1: (a) membership 1, (b) membership 2, (c) component 1,
(d) component 2, (e) overall structure, and (f) bulk solid boundary and joint.Its optimized
structural compliance is 19.228.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Cantilever beam with K = 2 and Ejoint = 0.75, rµ = 3re, rm = 1.75re,
Vmax = 0.5, Rmax = 0.55, and Cmax = 0.1: (a) membership 1, (b) membership 2, (c)
component 1, (d) component 2, (e) overall structure, and (f) bulk solid boundary and
joint.Its optimized structural compliance is 18.489.

(a) (b) (c)

Figure 10: Stress of cantilever beam with K = 2 and (a) Ejoint = 0.25, (b) Ejoint = 0.5,
and (c) Ejoint = 0.75.
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(a) (b) (c)

(d) (e) (f)

Figure 11: Cantilever beam with K = 2 and Ejoint = 0.5, rµ = 4re, rm = 2.25re,
Vmax = 0.5, Rmax = 0.55, and Cmax = 0.14: (a) membership 1, (b) membership 2, (c)
component 1, (d) component 2, (e) overall structure, and (f) bulk solid boundary and
joint. Its optimized structural compliance is 18.671.

boundaries without joint material, effectively creating a “lattice” by utiliz-355

ing bulk solid boundaries. This is because the large thickness of the bulk356

solid boundaries makes them stiff enough to bear the load by themselves357

even without forming joints. Indeed, the von Mises stress in the bulk-solid358

boundaries near the inter-component gaps is much smaller (blue) than the359

rest of the structure in Fig. 13. While mathematically making sense, such360

inter-component gaps may not be desirable in industry applications. In that361

case, the gaps can be easily eliminated by setting a lower value of rm and/or362

Cmax, as shown in Fig. 9.363

Figures 14 and 15 show the results for different sizes of bounding spheres364

of each component with Rmax = 0.4 and 0.55, respectively. For these runs,365

K = 3, Ejoint = 0.5, rµ = 4re, and rm = 2.25re, Vmax = 0.5, and Cmax = 0.12366

are used. For a smaller bounding sphere, the optimized structure is made of367

3 components as shown in Fig. 14, whereas the optimizer decides to virtually368

eliminate one component for a larger bounding sphere (Fig. 15). This appears369

rational, since the joint material is less stiff than the structural material and370

K only specifies the maximum allowable number of components. Both results371

also show the inter-component gaps formed by bulk solid boundaries without372

joint material due to a relatively large value of rm and Cmax.373

Figures 16 and 17 show the results for different upper limits of the vol-374

ume of entire structure and the amount of bulk solid boundaries and joints,375
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(a) (b) (c)

(d) (e) (f)

Figure 12: Cantilever beam with K = 2 and Ejoint = 0.5, rµ = 5re, rm = 2.75re,
Vmax = 0.5, Rmax = 0.55, and Cmax = 0.16: (a) membership 1, (b) membership 2, (c)
component 1, (d) component 2, (e) overall structure, and (f) bulk solid boundary and
joint. Its optimized structural compliance is 18.317.

(a) (b)

Figure 13: Stress of cantilever beam with K = 2 and (a) rµ = 4re, rm = 2.25re and (b)
rµ = 5re, rm = 2.75re.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Cantilever beam with K = 3, Ejoint = 0.5, rµ = 4re, rm = 2.25re, Vmax = 0.5,
Rmax = 0.40, and Cmax = 0.18: (a) membership 1, (b) membership 2, (c) membership 3,
(d) component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk
solid boundary and joint.Its optimized structural compliance is 17.949.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: Cantilever beam with K = 3, Ejoint = 0.5, rµ = 4re, rm = 2.25re, Vmax = 0.5,
Rmax = 0.55, and Cmax = 0.18: (a) membership 1, (b) membership 2, (c) membership 3,
(d) component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk
solid boundary and joint. Its optimized structural compliance is 17.542.
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with (Vmax, Cmax) = (0.5, 0.2) and (0.45, 0.25), respectively. For these runs,376

K = 3, Ejoint = 0.5, rµ = 3re, rm = 1.75re, and Rmax = 0.40 are used.377

With large structural volume and small interface amount, the optimal struc-378

ture consists of more lattice infill (Fig. 16), whereas the optimizer utilizes379

more bulk solid boundaries with smaller structural volume and large inter-380

face amount (Fig. 17). Despite this difference in the strategy to minimize381

the compliance objective, the compliance values are comparable: c = 18.030382

and c = 18.260, respectively. Owing to large Cmax, both structures show383

the inter-component gaps, similar to the results in Figs. 11 and 12. The384

von Mises stress of these optimized structures are shown in Fig. 18. Similar385

to the earlier results, the stress is much smaller in the regions of bulk-solid386

boundary and joint, as well as the inter-component gaps.387

4.2. MBB388

The design domain is a rectangle area of unit thickness with width w =389

2 and height h = 1 with a symmetry constraint on the left edge, and a390

concentrated load of f = 1 is applied at the upper left corner of the rectangle,391

as shown in Fig. 19.392

Figures 20, 21, and 22 show the results for different joint stiffness with393

Ejoint = 0.25, 0.5, and 0.75, respectively. For these runs, K = 2, rµ = 3re,394

rm = 1.75re, Vmax = 0.5, Rmax = 0.55, and Cmax = 0.1 are used. Similar to395

the cantilever example, the bulk solid boundary (and the joint in between)396

is straight and short with compliant joint and curved and long with stiff397

joint, with varying lattice patterns. The von Mises stress in Fig.23 shows398

small stress (shown in blue) in the interface regions, similar to the cantilever399

example.400

Figures 24 and 25 show the results for different thickness in bulk solid401

boundary with (rµ, rm) = (4re, 2.25re) and (5re, 2.75re), respectively. For402

these runs, K = 2 and Ejoint = 0.5, Vmax = 0.5, Rmax = 0.55, and Cmax =403

0.12 are used. Similar to the cantilever case, the lattice patterns and the404

inter-component gaps change in response to the changes in the boundary405

thickness. The von Mises stress of these optimized structures in Fig.26 shows406

low stress in the interface regions including the inter-component gaps.407

Figures 27 and 28 show the results for different sizes of bounding spheres408

of each component with Rmax = 0.4 and 0.55, respectively. For these runs,409

K = 3, Ejoint = 0.5, rµ = 4re, and rm = 2.25re, Vmax = 0.5, and Cmax = 0.12410

are used. Similar to the cantilever case, the resulting structure is made of 3411

components for a smaller bounding sphere, and of 2 components for a larger412
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16: Cantilever beam with K = 3, Ejoint = 0.5, rµ = 3re, rm = 1.75re, Vmax = 0.5,
Rmax = 0.40, and Cmax = 0.2: (a) membership 1, (b) membership 2, (c) membership 3,
(d) component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk
solid boundary and joint. Its optimized structural compliance is 18.260.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17: Cantilever beam with K = 3, Ejoint = 0.5, rµ = 3re, rm = 1.75re, Vmax = 0.45,
Rmax = 0.40, and Cmax = 0.25: (a) membership 1, (b) membership 2, (c) membership 3,
(d) component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk
solid boundary and joint. Its optimized structural compliance is 18.030.
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(a) (b)

(c) (d)

Figure 18: Stress of cantilever beam with K = 3 and (a) Rmax = 0.40, (b) Rmax = 0.55,
(c) (Vmax, Cmax) = (0.5, 0.2), and (d) (Vmax, Cmax) = (0.45, 0.25).

Figure 19: Design domain and boundary conditions for the MBB problem.
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(a) (b) (c)

(d) (e) (f)

Figure 20: MBB with K = 2 and Ejoint = 0.25, rµ = 3re, rm = 2re, Vmax = 0.5,
Rmax = 0.55, and Cmax = 0.1: (a) membership 1, (b) membership 2, (c) component 1,
(d) component 2, (e) overall structure, and (f) bulk solid boundary and joint. Its optimized
structural compliance is 20.689.

(a) (b) (c)

(d) (e) (f)

Figure 21: MBB with K = 2 and Ejoint = 0.5, rµ = 3re, rm = 2re, Vmax = 0.5,
Rmax = 0.55, and Cmax = 0.1: (a) membership 1, (b) membership 2, (c) component 1,
(d) component 2, (e) overall structure, and (f) bulk solid boundary and joint. Its optimized
structural compliance is 20.514.
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(a) (b) (c)

(d) (e) (f)

Figure 22: MBB with K = 2 and Ejoint = 0.75, rµ = 3re, rm = 2re, Vmax = 0.5,
Rmax = 0.55, and Cmax = 0.1: (a) membership 1, (b) membership 2, (c) component 1,
(d) component 2, (e) overall structure, and (f) bulk solid boundary and joint. Its optimized
structural compliance is 20.210.

(a) (b) (c)

Figure 23: Stress of MBB with K = 2 and (a) Ejoint = 0.25, (b) Ejoint = 0.5, and (c)
Ejoint = 0.75.
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(a) (b) (c)

(d) (e) (f)

Figure 24: MBB with K = 2 and Ejoint = 0.5, rµ = 4re, rm = 2.25re, Vmax = 0.5,
Rmax = 0.55, and Cmax = 0.14: (a) membership 1, (b) membership 2, (c) component 1,
(d) component 2, (e) overall structure, and (f) bulk solid boundary and joint. Its optimized
structural compliance is 19.703.

(a) (b) (c)

(d) (e) (f)

Figure 25: MBB with K = 2 and Ejoint = 0.5, rµ = 5re, rm = 2.75re, Vmax = 0.5,
Rmax = 0.55, and Cmax = 0.16: (a) membership 1, (b) membership 2, (c) component 1,
(d) component 2, (e) overall structure, and (f) bulk solid boundary and joint. Its optimized
structural compliance is 19.108.
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(a) (b)

Figure 26: Stress of MBB with K = 2 and (a) rµ = 4re, rm = 2.25re and (b) rµ =
5re, rm = 2.75re.

bounding sphere, and both with the inter-component gaps due to a relatively413

large value of rm and Cmax.414

Figures 29 and 30 show the results for different upper limits of the volume415

of entire structure and the amount of bulk solid boundaries and joints, with416

(Vmax, Cmax) = (0.5, 0.25) and (0.45, 0.35), respectively. For these runs, K =417

3, Ejoint = 0.5, rµ = 3re, rm = 1.75re, and Rmax = 0.40 are used. Similar418

to the cantilever case, the optimal structure consists of more lattice infill419

With large structural volume and small interface amount, (Fig. 29), and the420

optimizer utilizes more bulk solid boundaries with smaller structural volume421

and large interface amount (Fig. 30). The compliance of these structures422

are c = 19.470 and c = 20.910. Owing to large Cmax, both structures show423

long and curved component interfaces with many inter-component gaps. The424

von Mises stress of these optimized structures are shown in Fig. 31. Similar425

to the earlier results, the stress is much smaller in the regions of bulk-solid426

boundary and joint, as well as the inter-component gaps.427

4.3. Lightweighting design of a railcar body profile for high-speed trains428

This section presents the lightweighting design of a railcar body profile429

for high-speed trains. The body is manufactured as an assembly of multi-430

ple functionally-graded lattice components due to the size limitation of the431

manufacturing equipment. The design domain shown in Fig. 32, where the432

maximum width w = 1.8 and the maximum height h = 2.9 with a symmetry433

constraint on the left edge, and a fixed support on the right bottom, and434

a distributed load of p1 = 1 is applied in the floor and p1 = 0.2 for the435

outside surface. In this example, re = 0.01, the joint stiffness Ejoint = 0.5,436

K = 3, rµ = 8re, rm = 4re, Vmax = 0.4, Rmax = 0.8, and Cmax = 0.02 are437
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 27: MBB with K = 3, Ejoint = 0.5, rµ = 4re, rm = 2.25re, Vmax = 0.5, Rmax =
0.4, and Cmax = 0.18: (a) membership 1, (b) membership 2, (c) membership 3, (d)
component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk solid
boundary and joint. Its optimized structural compliance is 20.108.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 28: MBB with K = 3, Ejoint = 0.5, rµ = 4re, rm = 2.25re, Vmax = 0.5, Rmax =
0.55, and Cmax = 0.18: (a) membership 1, (b) membership 2, (c) membership 3, (d)
component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk solid
boundary and joint. Its optimized structural compliance is 19.031.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 29: MBB with K = 3, Ejoint = 0.5, rµ = 3re, rm = 1.75re, Vmax = 0.5, Rmax =
0.40, and Cmax = 0.25: (a) membership 1, (b) membership 2, (c) membership 3, (d)
component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk solid
boundary and joint. Its optimized structural compliance is 19.470.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 30: MBB with K = 3, Ejoint = 0.5, rµ = 3re, rm = 1.75re, Vmax = 0.4, Rmax =
0.40, and Cmax = 0.35: (a) membership 1, (b) membership 2, (c) membership 3, (d)
component 1, (e) component 2, (f) component 3, (g) overall structure, and (h) bulk solid
boundary and joint. Its optimized structural compliance is 20.910.
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(a) (b)

(c) (d)

Figure 31: Stress of MBB with K = 3 and (a) Rmax = 0.40, (b) Rmax = 0.55, (c)
(Vmax, Cmax) = (0.5, 0.2), and (d) (Vmax, Cmax) = (0.45, 0.25).

used. The joint stiffness and cost set to be moderate and small, respectively,438

which reflects the situation of welded train bodies. Figures 33, shows the439

optimization results. Similar to the cantilever and MBB examples, the bulk440

solid boundaries are straight to minimize the length of compliant joints in-441

between. The von Mises stress in Fig.33 (b) shows small stress (shown in442

blue) in the interface regions, which would increase the safety of the structure443

to reduce the probability of fatigue failure of the joints.444

5. Conclusions445

This paper proposed a topology optimization method for structures con-446

sisting of multiple lattice components under a certain size, which can be man-447

ufactured with an additive manufacturing machine with a size limit. Each448

component has functionally-graded lattice infill surrounded by a bulk solid449

boundary, which greatly facilitates its assembly via the conventional joining450

processes such as welding, gluing, riveting, and bolting. The method simul-451

taneously optimizes overall structural topology, its partitioning to multiple452

components, and functionally-graded lattice infill within each component.453

Based on our previous work on the topology optimization of the assemblies454
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Figure 32: design domain and boundary conditions for the lightweighting design of a
high-speed railcar body profile.

of additively-manufactured solid components [12] and functionally-graded455

monolithic lattice structures [13], the novelty of the proposed method be-456

yond these works is three-fold: it realizes 1) multiple functionally-graded lat-457

tice components with guaranteed connectivity of lattices therein, 2) the bulk458

solid boundaries for each component, which provide continuous mating sur-459

faces between adjacent components, and 3) the structural interfaces between460

the bulk solid boundaries with a distinct material property, which model the461

joints (eg., weld, glue, rivets, and bolts) between the adjacent components.462

The functionally-graded lattice infill with guaranteed connectivity was real-463

ized by applying Helmholtz PDE-filter with a variable radius, on the density464

field in the Solid Isotropic Material with Penalization (SIMP) method. The465

partitioning of an overall structure into multiple components was realized by466

applying the Discrete Material Optimization (DMO) method, in which each467

material is interpreted as each component. A gradient-free coating filter [38]468

applied on the component membership field realized the bulk solid bound-469

aries for each component, which provide continuous mating surfaces between470

adjacent components to enable subsequent joining. The structural interfaces471
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(a) (b)

(c) (d) (e)

Figure 33: Optimized lightweighting design of a high-speed railcar body profile with K = 3,
Ejoint = 0.5, rµ = 8re, rm = 4re, Vmax = 0.4, Rmax = 0.8, and Cmax = 0.02: (a)
overall structure, (b) stress, (c) component 1, (d) component 2, and (e) component 3. Its
optimized structural compliance is 80.205.
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between the bulk solid boundaries were extracted and assigned a distinct472

material property, which model the joints between the adjacent components.473

Several numeral examples were solved for demonstration.474

The paper only presented simple 2D examples, although the proposed475

formulation is not limited to 2D. Also, joints are idealistically modeled as476

isotropic, and the constraint models on component size and joint volume are477

admittedly simple. These simplifications are chosen since, to the best of the478

authors’ knowledge, it is the first time that the manufactruabilty-driven si-479

multaneous partitioning and topology design for functionally-graded lattice480

structures is presented in the literature. We expect the simple mathematical481

formulations presented in this paper would inform the other researchers to482

implement more detailed and realistic models, including constraints on maxi-483

mum stress in joints, guard against buckling in lattices, and tool accessibility484

to component interfaces for joining.485
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Appendix A. Sensitivities628

This appendix presents the sensitivities of the objective function and629

constraints in Eq. 18 with respect to design variables φ, µ, and rl. The630

partial derivatives of intermediate variables ρ, ρl, m
(k), and b(k), which these631

sensitivities depend on, are also presented in Appendix A.5.632

Appendix A.1. Sensitivity of the objective633

Using the adjoint method, the sensitivity of the objective function f :=
UTKU subject to the static equilibrium KU = F is derived as:

df

dφ
= −UT∂K

∂φ
U = −UTK0U

∂Et
∂φ

(A.1)

df

dµ(k)
= −UT ∂K

∂µ(k)
U = −UTK0U

∂Et
∂µ(k)

(A.2)

df

drl
= −UT∂K

∂rl
U = −UTK0U

∂Et
∂rl

(A.3)

where K = EtK
0. Using Equation 17, the partial derivatives of Et can be634

given as:635

∂Et
∂φ

= E
K∑
k=1

{
pρρ

pρ−1 ∂ρ

∂φ
m(k) + g′(ρl)

∂ρl
∂φ

b(k) − 2g′(ρl)
∂ρl
∂φ

k∑
l=1

J (kl)

}
(A.4)

∂Et
∂µ(k)

=E

[
ρpρ

∂m(k)

∂µ(k)
− {1− g(ρl)}

∂b(k)

∂µ(k)

− {1 + 2g(ρl)− η} (1−m0)
∂b(k)

∂µ(k)

{
m0 + b(l)(1−m0)

}] (A.5)

∂Et
∂rl

= E
K∑
k=1

{
g′(ρl)

∂ρl
∂rl

b(k) − 2g′(ρl)
∂ρl
∂rl

k∑
l=1

J (kl)

}
(A.6)
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Appendix A.2. Sensitivity of global and local volume constraint636

The sensitivity of the constraint function on the entire structural volume637

g1 :=
∫
D

∑K
k=1 ρm

(k)dx− Vmax is given:638

∂g1
∂φ

=

∫
D

K∑
k=1

∂ρ

∂φ
m(k)dx (A.7)

639

∂g1
∂µ(k)

=

∫
D

K∑
k=1

ρ
∂m(k)

∂µ(k)
dx (A.8)

640

∂g1
∂rl

= 0 (A.9)

Similarly, the sensitivity of the constraint function on the locally averaged641

density g2 :=
(∫

D
ρpl dx

) 1
p − Pmax is given as:642

∂g2
∂φ

=

(∫
D

ρpl dx

) 1
p
−1 ∫

D

ρp−1l

∂ρl
∂φ

dx (A.10)

643

∂g2
∂µ(k)

= 0 (A.11)

644

∂g2
∂rl

=

(∫
D

ρpl dx

) 1
p
−1 ∫

D

ρp−1l

∂ρl
∂rl

dx (A.12)

Appendix A.3. Sensitivity of bounding sphere645

The sensitivity of the constraint function on the bounding sphere g3 :=646

R(k) −Rmax is given as:647

∂g3
∂φ

=
1

p

[∫
D

ρm(k)
{
x− x(k)c

}p
dx

] 1
p
−1

×
∫
D

[
∂ρ

∂φ
m(k)

{
x− x(k)c

}p − pρm(k)
{
x− x(k)c

}p−1 ∂x(k)c
∂φ

]
dx

(A.13)

648

∂g3
∂µ(k)

=
1

p

[∫
D

ρm(k)
{
x− x(k)c

}p
dx

] 1
p
−1

×
∫
D

[
ρ
∂m(k)

∂µ(k)

{
x− x(k)c

}p − pρm(k)
{
x− x(k)c

}p−1 ∂x(k)c
∂µ(k)

]
dx

(A.14)
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649

∂g3
∂rl

= 0 (A.15)

where650

∂x
(k)
c

∂φ
=

∫
D

∂ρ
∂φ
m(k)xdx×

∫
D
ρm(k)dx−

∫
D
ρm(k)xdx×

∫
D

∂ρ
∂φ
m(k)dx{∫

D
ρm(k)dx

}2 (A.16)

651

∂x
(k)
c

∂µ(k)
=

∫
D
ρ∂m

(k)

∂µ(k)
xdx×

∫
D
ρm(k)dx−

∫
D
ρm(k)xdx×

∫
D
ρ∂m

(k)

∂µ(k)
dx{∫

D
ρm(k)dx

}2 (A.17)

Appendix A.4. Sensitivity of joint cost constraint652

The sensitivity of the constraint function on the bulk solid boundaries653

and joints g4 := C − Cmax is given as:654

∂g4
∂φ

=
K∑
k=1

[∫
D

g′(ρl)
∂ρl
∂φ

{
m(k) −

k∑
l=1

J (kl)

}
dx

]
(A.18)

655

∂g4
∂µ(k)

=
K∑
k=1

[∫
D

g(ρl)

[
∂m(k)

∂µ(k)
− ∂b(k)

∂µ(k)
(1−m0)

{
m0 − b(l)(1−m0)

}]
dx

]
(A.19)656

∂g4
∂rl

=
K∑
k=1

[∫
D

g′(ρl)
∂ρl
∂rl

{
m(k) −

k∑
l=1

J (kl)

}
dx

]
(A.20)

Appendix A.5. Sensitivity of intermediate variables657

The partial derivatives of ρ and ρl with respect to φ are given by Eqs 1,658

2, and 3 as:659

∂ρl
∂φ

=
∂ρl
∂ρ

∂ρ

∂φ
(A.21)

660

∂ρl
∂ρ

=

(
ne

A
e=1

NT
e

)T [
K−1f (rl)

ne

A
e=1

(∫
De

NT
e dx

)]
(A.22)

661

∂ρ

∂φ
=
∂ρ

∂φ

∂φ

∂φ
(A.23)

662

∂ρ

∂φ
=
∂Hs(φ)

∂φ
= δ(φ) (A.24)
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663

∂φ

∂φ
=

(
ne

A
e=1

NT
e

)T [
K−1f (rρ)

ne

A
e=1

(∫
De

NT
e dx

)]
(A.25)

where A is the standard finite element assembly operator, ne is the number664

of elements, Ne and De are the vector of the element shape functions and665

the domain of finite element e, respectively, for solving the Helmholz filter666

functions, and667

Kf (r) =
ne

A
e=1

[∫
De

{
−(∇Ne)

T r2∇Ne + NT
eNe

}
dx

]
(A.26)

The details of the derivation is described in [39]. Since both ρ and ρl do not668

depends on µ(k):669

∂ρl
∂µ(k)

=
∂ρ

∂µ(k)
= 0 (A.27)

Similarly, ρ does not depend on rl, hence:670

∂ρ

∂rl
= 0 (A.28)

From Eq. 3, ∂ρl/∂rl is given as:671

∂ρl
∂rl

=

(
ne

A
e=1

NT
e

)T [
K−1f (rl)

ne

A
e=1

(∫
De

(∇Ne)
T 2rl∇Nedx

)]
(A.29)

Since m(k) and b(k) do not depend on either φ or rl:672

∂m(k)

∂φ
=
∂m(k)

∂rl
=
∂b(k)

∂φ
=
∂b(k)

∂rl
= 0 (A.30)

The partial derivatives of m(k) and b(k) with respect to µ(k) are given by Eqs.673

9, 10, 11, 7, and 8 as:674

∂b(k)

∂µ(k)
= −ω(k)∂m

(k)

∂µ(k)
+ (1−m(k))

∂ω(k)

∂µ(k)
(A.31)

where675

∂ω(k)

∂µ(k)
=
∂ω(k)

∂m(k)

∂m(k)

∂m(k)

∂m(k)

∂µ(k)
(A.32)
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∂ω(k)

∂m(k)
=
∂Hr(m

(k))

∂m(k)
= δ(m(k)) (A.33)

∂m(k)

∂m(k)
=

(
ne

A
e=1

NT
e

)T [
K−1f (rm)

ne

A
e=1

(∫
De

NT
e dx

)]
(A.34)

∂m(k)

∂µ(k)
= Pm

{
µ(k)
}Pm−1 ∂µ(k)

∂µ(k)

K∏
i=1,i 6=k

[
1−

{
µ(i)
}Pm]

(A.35)

∂µ(k)

∂µ(k)
=

(
ne

A
e=1

NT
e

)T [
K−1f (rµ)

ne

A
e=1

(∫
De

NT
e dx
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(A.36)
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