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Summary

We introduce new estimators of the inhomogeneous K-function and the pair correlation

function of a spatial point process as well as the cross K-function and the cross pair

correlation function of a bivariate spatial point process under the assumption of second-

order intensity-reweighted stationarity. These estimators rely on a ‘global’ normalisation

factor which depends on an aggregation of the intensity function, whilst the existing

estimators depend ‘locally’ on the intensity function at the individual observed points. The

advantages of our new global estimators over the existing local estimators are demonstrated

by theoretical considerations and a simulation study.

5
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function; second-order intensity-reweighted stationarity; spatial point process
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1. Introduction7

Functional summary statistics like the nearest-neighbour-, the empty space-, and8

Ripley’s K-function have a long history in statistics for spatial point processes (Møller &9

Waagepetersen 2004; Illian et al. 2008; Chiu et al. 2013). For many years the theory of these10

functional summary statistics was confined to the case of stationary point processes with11

consequently constant intensity functions. The paper Baddeley, Møller & Waagepetersen12

(2000) was therefore a big step forward since it relaxed substantially the assumption of13

stationarity in case of the K-function and the closely related pair correlation function.14

Baddeley, Møller & Waagepetersen (2000) introduced the notion of second-order15

intensity-reweighted stationarity (soirs) for a spatial point process. When the pair correlation16
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2 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

function g exists for the point process, soirs is equivalent to g being translation invariant.17

However, the intensity function does not need to be constant, which is a great improvement18

compared to assuming stationarity, see e.g. Møller & Waagepetersen (2007). When the point19

process is soirs, Baddeley, Møller & Waagepetersen (2000) introduced a generalisation of20

Ripley’s K-function, the so-called inhomogeneous K-function, which is based on the idea of21

intensity-reweighting the points of the spatial point process, and they discussed its estimation.22

The inhomogeneous K-function has found applications in a very large number of applied23

papers and has also been generalised e.g. to the case of space-time point processes (Gabriel24

& Diggle 2009) and to point processes on spheres (Lawrence et al. 2016; Møller & Rubak25

2016). Moreover, van Lieshout (2011) used the idea of intensity-reweighting to generalise the26

so-called J-function to the case of inhomogeneous point processes.27

A generic problem in spatial statistics, when just one realisation of a spatial process is28

available, is to separate variation due to random interactions from variation due to a non-29

constant intensity or mean function. In general, if an informed choice of a parsimonious30

intensity function model is available for a point process, the intensity function can be31

estimated consistently. Consistent estimation of the inhomogeneous K-function is then32

also possible when the consistent intensity function estimate is used to reweight the point33

process, see e.g. Waagepetersen & Guan (2009) in case of regression models for the intensity34

function. When a parsimonious model is not available, one may resort to non-parametric35

kernel estimation of the intensity function as considered initially in Baddeley, Møller36

& Waagepetersen (2000). However, kernel estimators are not consistent for the intensity37

function and they are strongly upwards biased when evaluated at the observed points. This38

implies strong bias of the resulting inhomogeneous K-function estimators when the kernel39

estimators are plugged in for the true intensity.40

In this paper, we introduce a new approach to non-parametric estimation of the41

(inhomogeneous) K and g-functions for a spatial point process, or of the cross K-function42

and the cross pair correlation for a bivariate spatial point process, assuming soirs in both43

cases. This formalises an approach that was used by Stone et al. (2017) to estimate space-44

time cross pair correlation functions in live-cell single molecule localisation microscopy45

experiments with spatially varying localisation probabilities. In the univariate case, our new46

as well as the existing estimators are given by a sum over all distinct points x and y from47

an observed point pattern. For the new estimators, each term in the sum depends on an48

aggregation of the intensity function through a ‘global’ normalization factor γ(y − x) instead49

of depending ‘locally’ on the intensity function at x and at y as for the existing estimators50

(a similar remark applies in the bivariate case). Intuitively one may expect this to mitigate51

the problem of using biased kernel estimators of the intensity function in connection to non-52

parametric estimation of theK-function or pair correlation function. Moreover, to reduce bias53
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 3

when using a non-parametric kernel estimator of γ, we propose a ‘leave-out’ modification54

of our γ estimator. Our simulation study shows that our new globally intensity reweighted55

estimators are superior to the existing local estimators in terms of bias and estimation variance56

regardless of whether the intensity function is estimated parametrically or non-parametrically.57

The remainder of the paper is organised as follows. Some background on spatial point58

processes and notational details are provided in Section 2. Section 3 introduces our global59

estimator for the K-function or the cross K-function, discusses modifications to account60

for isotropy, and compares with the existing local estimators. Section 4 is similar but for61

our new global estimator of the g-function or cross pair correlation function. Section 562

describes sources of bias in the local and global estimators when kernel estimators are used,63

and modifications to reduce bias. In Section 6, the global and local estimators of K and g64

are compared in a simulation study. Possible extensions are discussed in Section 7. Finally,65

Section 8 contains some concluding remarks.66

2. Preliminaries67

We consider the usual setting for a spatial point process X defined on the d-dimensional68

Euclidean space R
d, that is, X is a random locally finite subset of R

d. This means that69

the number of points from X falling in A, denoted N(A), is almost surely finite for any70

bounded subset A of Rd. For further details we refer to Møller & Waagepetersen (2004). In71

our examples, d = 2.72

For any integer n ≥ 1, we say that X has n’th order intensity function ρ(n) : (Rd)n 7→73

[0,∞) if for any disjoint bounded Borel sets A1, . . . , An ⊂ R
d,74

E{N(A1) · · ·N(An)} =

∫

A1

· · ·
∫

An

ρ(n)(x1, . . . , xn) dx1 · · · dxn <∞.

By the so-called standard proof we obtain the n’th order Campbell’s formula (see e.g. Møller75

& Waagepetersen 2004): for any Borel function k : (Rd)n 7→ [0,∞),76

E

6=
∑

x1,...,xn∈X

k(x1, . . . , xn) =

∫

· · ·
∫

k(x1, . . . , xn)ρ
(n)(x1, . . . , xn) dx1 · · · dxn,

which is finite if the left or right hand side is so. Here, 6= over the summation sign means that77

x1, . . . , xn are pairwise distinct.78

Throughout this paper, we assume that X has an intensity function ρ and a translation79

invariant pair correlation function g. This means that for all x, y ∈ R
d, ρ(1)(x) = ρ(x)80

and ρ(2)(x, y) = ρ(x)ρ(y)g(x, y), where g(x, y) = g0(x− y) with g0 : Rd 7→ [0,∞) a81

symmetric Borel function. If ρ is constant we say that X is (first-order) homogeneous. In82
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4 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

particular, if X is stationary, that is, the distribution of X is invariant under translations in83

R
d, then ρ is constant and g is translation invariant.84

Following Baddeley, Møller & Waagepetersen (2000), the translation invariance of g85

implies thatX is second-order intensity reweighted stationary (soirs) and the inhomogeneous86

K-function (or just K-function) is then given by87

K(t) :=

∫

‖h‖≤t

g0(h) dh, t ≥ 0.

This is Ripley’s K-function when X is stationary.88

Suppose X1 and X2 are locally finite point processes on R
d such that Xi has intensity89

function ρi, i = 1, 2, and (X1, X2) has a translation invariant cross pair correlation function90

g12(x1, x2) = c(x1 − x2) for all x1, x2 ∈ R
d. That is, for bounded Borel sets A1, A2 ⊂ R

d
91

and Ni(Ai) denoting the cardinality of Xi ∩Ai, i = 1, 2, we have92

E{N1(A1)N2(A2)} =

∫

A1

∫

A2

ρ1(x1)ρ2(x2)c(x1 − x2) dx1 dx2.

Then the cross K-function is defined by93

K12(t) :=

∫

‖h‖≤t

c(h) dh, t ≥ 0.

In practice X,X1, X2 are observed within a bounded window W ⊂ R
d, and we use94

the following notation. The translate of W by x ∈ R
d is denoted Wx := {w + x |w ∈W}.95

For a Borel set A ⊆ R
d, 1[x ∈ A] denotes the indicator function which is 1 if x ∈ A and 096

otherwise. The Lebesgue measure of A (or area of A when d = 2) is denoted |A|, and ‖x‖ is97

the usual Euclidean length of x ∈ R
d.98

3. Global and local intensity-reweighted estimators for K-functions99

3.1. The case of one spatial point process100

Considering the setting in Section 2 for the spatial point process X , we define101

γ(h) =

∫

W∩W
−h

ρ(u)ρ(u+ h) du, h ∈ R
d. (1)
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 5

Clearly, γ is symmetric, that is, γ(h) = γ(−h), for all h ∈ R
d. We assume that with102

probability 1, γ(y − x) > 0, for all distinct x, y ∈ X ∩W . Then, for t ≥ 0, we can define103

K̂global(t) =

6=
∑

x,y∈X∩W

1[‖y − x‖ ≤ t]

γ(y − x)
. (2)

If γ(h) > 0 whenever ‖h‖ ≤ t, then K̂global(t) is an unbiased estimator ofK(t). This follows

from the second-order Campbell’s formula:

EK̂global(t) =

∫ ∫

1[x ∈W, y ∈W, ‖y − x‖ ≤ t]

γ(y − x)
ρ(x)ρ(y)g0(y − x) dx dy

=

∫ ∫

1[x ∈W ∩W−h, ‖h‖ ≤ t]

γ(h)
ρ(x)ρ(x+ h)g0(h) dx dh

=

∫

‖h‖≤t

γ(h)

γ(h)
g0(h) dh = K(t).

We call K̂global the global estimator since it contrasts with one of the estimators104

suggested in Baddeley, Møller & Waagepetersen (2000): assuming that almost surely |W ∩105

Wy−x| > 0, for all distinct x, y ∈ X ∩W ,106

K̂local(t) =

6=
∑

x,y∈X∩W

1[‖y − x‖ ≤ t]

ρ(x)ρ(y)|W ∩Wy−x|
, (3)

which we refer to as the local estimator. Note that K̂local(t) is also an unbiased estimator of107

K(t) provided |W ∩Wh| > 0, for ‖h‖ ≤ t. In the homogeneous case,108

γ(h) = ρ2|W ∩W−h|,

whereby K̂global = K̂local, and in the stationary case, these estimators coincide with the Ohser109

& Stoyan (1981) translation estimator.110

In practice ρ and hence γ must be replaced by estimates. Estimators of ρ and γ and the111

bias of these estimators are discussed in Section 5.112

3.1.1. Modifications to account for isotropy113

In addition to soirs, it is frequently assumed that the pair correlation function is isotropic114

meaning that g0(h) = g1(‖h‖) for some Borel function g1 : [0,∞) 7→ [0,∞). We benefit115

from this by integrating over the sphere: for r > 0, define116

γiso(r) =

∫

Sd−1

γ(rs) dνd−1(s)
/

ςd, (4)
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6 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

where S
d−1 = {s ∈ R

d | ‖s‖ = 1} denotes the (d− 1)-dimensional unit-sphere, νd−1 is the117

(d− 1)-dimensional surface measure on S
d, and ςd = 2πd/2/Γ(d/2) is the surface area of the118

unit sphere S
d−1. Thus γiso(r) is the mean value of γ(H) when H is a uniformly distributed119

point on the (d− 1)-dimensional sphere of radius r and center at the origin.120

Assuming that almost surely γiso(‖y − x‖) > 0, for all distinct x, y ∈ X ∩W , this121

naturally leads to another global estimator for K when the pair correlation function is122

isotropic, namely123

K̂ iso
global(t) =

6=
∑

x,y∈X∩W

1 [‖y − x‖ ≤ t]

γiso(‖y − x‖) . (5)

That K̂ iso
global is unbiased follows from a similar derivation as for K̂global: for any t ≥ 0 such

that γiso(r) > 0 whenever r ≤ t,

EK̂ iso
global(t) =

∫

‖h‖≤t

γ(h)

γiso(‖h‖)g0(h) dh

=

∫ t

0

g1(r)r
d−1

∫

Sd−1

γ(rs)

γiso(r)
dνd−1(s) dr (6)

=

∫ t

0

g1(r)ςdr
d−1 dr

=

∫

‖h‖≤t

g1(‖h‖) dh = K(t), (7)

where (6) and (7) employ changes of variables to and from polar coordinates, respectively.124

When X is homogeneous, (5) coincides with the Ohser & Stoyan (1981) isotropic125

estimator. A local estimator of this form can also be defined:126

K̂ iso
local(t) =

∑

x,y∈X∩W

1[‖y − x‖ ≤ t]

ρ(x)ρ(y)aW (‖y − x‖) , (8)

where127

aW (r) =

∫

Sd−1

|W ∩W−rs| dνd−1(s)
/

ςd (9)

is an isotropized edge correction factor, and where it is assumed that almost surely aW (‖y −128

x‖) > 0, for all distinct x, y ∈ X ∩W . The local estimator is unbiased when aW (r) > 0, for129

all r ≤ t.130

3.1.2. Comparison of local and global estimators131

The global and local estimators (2) and (3) differ in the relative weighting of distinct132

points x, y ∈ X ∩W . Namely, K̂local weights pairs x, y from low-density areas more133

strongly than those from high-density areas, whilst for K̂global, the weight only depends134
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 7

on the difference y − x. Theoretical expressions for the variances of the global and local K-135

function estimators are very complicated, not least when the intensity function is replaced by136

an estimate. This makes it difficult to make a general theoretical comparison of the estimators137

in terms of their variances. However, under some simplifying assumptions insight can be138

gained as explained in the following.139

Consider a quadratic observation window W of sidelength nm. Then W is a disjoint

union of n2 quadrats W1, . . . ,Wn2 each of sidelength m. Assume that the intensity function

is constant and equal to ρi within each Wi, with ρ naturally estimated by ρ̂(u) = ρ̂i =

N(Wi)/m
2, for u ∈Wi. For fixed t and large m, when ρ is replaced by its estimator ρ̂,

we can now approximate the local estimator:

K̂local(t) =

6=
∑

u,v∈X∩W

1[‖u− v‖ ≤ t]

ρ̂(u)ρ̂(v)|W ∩Wu−v|
≃

n2
∑

i=1

6=
∑

u,v∈X∩Wi

1[‖u− v‖ ≤ t]

ρ̂2i |W ∩Wu−v|

≃
n2
∑

i=1

6=
∑

u,v∈X∩Wi

1[‖u− v‖ ≤ t]

ρ̂2i |Wi ∩ (Wi)u−v|n2
=

1

n2

n2
∑

i=1

K̂i,local(t).

where K̂i,local is the local estimator based on X ∩Wi. We use here ≃ in a rather loose sense,140

meaning that asymptotically, as m tends to infinity, the difference between the two quantities141

on each side of ≃ tends to zero in a suitable sense (e.g. in mean square) under appropriate142

regularity conditions. The first approximation above follows because contributions from u ∈143

Xi and v ∈ Xj , i 6= j, are negligible for fixed t and m large, and the second approximation144

is justified since for ‖h‖ ≤ t, |W |/|W ∩Wh| and |Wi|/|Wi ∩ (Wi)h| will tend to 1 as m145

increases. Following similar steps, we obtain for the global estimator,146

K̂global(t) ≃
n2
∑

i=1

K̂i,local(t)
ρ̂2i

∑n2

l=1 ρ̂
2
l

.

Suppose X is a Poisson process. Note that K̂local(t) is an equally weighted average147

of the K̂i,local(t), but since the K̂i,local(t) are independent, the optimal weighted average is148

obtained with weights inversely proportional to the variances of the K̂i,local(t). For large149

m, the variance of K̂i,local(t) is well approximated by 2πt2/(ρ2im
2) (Ripley 1988; Lang &150

Marcon 2013) and the optimal weights wi are thus proportional to ρ2i . Our global estimator151

is obtained from the optimal weighted average by replacing the optimal weights by natural152

consistent estimates. Hence one may anticipate that the global estimator has smaller variance153

than the local estimator. In a small-scale simulation study this was indeed the case, and the154

global estimator with (random) weights proportional to ρ̂2i even had slightly smaller variance155

than when the optimal fixed weights wi ∝ ρ2i were used.156
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8 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

3.2. The case of two spatial point processes157

For two spatial point processes X1 and X2 observed on the same observation window158

W (cf. Section 2), we define the following global estimator for the cross K-function: for159

t ≥ 0,160

K̂12,global(t) =
∑

x∈X1∩W,y∈X2∩W

1[‖y − x‖ ≤ t]

γ12(y − x)
(10)

where161

γ12(h) =

∫

W∩W
−h

ρ1(u)ρ2(u+ h) du

and it assumed that almost surely γ12(y − x) > 0, for all x ∈ X1 ∩W and y ∈ X2 ∩W . It162

is straightforwardly verified that K̂12,global(t) is unbiased for any t ≥ 0 such that γ12(h) > 0163

whenever ‖h‖ ≤ t.164

The corresponding local estimator is165

K̂12,local(t) =
∑

x∈X1∩W,y∈X2∩W

1[‖y − x‖ ≤ t]

ρ1(x)ρ2(y)|W ∩Wy−x|
, (11)

assuming that almost surely |W ∩Wy−x| > 0 for x ∈ X1 ∩W and y ∈ X2 ∩W . The local166

estimator is unbiased when |W ∩Wh| > 0 for ‖h‖ ≤ t.167

Interchanging X1 and X2 does not affect (10): K̂12,global(t) = K̂21,global(t) when168

K̂21,global(t) is defined as in (10) with γ12 replaced by169

γ21(h) =

∫

W∩W
−h

ρ1(u+ h)ρ2(u) du.

This follows since by a change of variable, γ12 is symmetric, γ21(h) = γ12(−h) = γ12(h).170

When the cross pair correlation function c(h) is also isotropic, additional unbiased171

estimators of K12 are readily obtained in the same way as for the one point process case.172

Thus, defining173

γiso
12 (r) =

∫

Sd−1

γ12(rs) dνd−1(s)
/

ςd, r ≥ 0, (12)

and assuming that almost surely γiso
12 (‖y − x‖) > 0 for x ∈ X1 ∩W and y ∈ X2, we define174

an isotropic global estimator by175

K̂ iso
12,global(t) =

6=
∑

x∈X1∩W,y∈X2∩W

1[‖y − x‖ ≤ t]

γiso
12 (‖y − x‖) . (13)
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 9

This is easily seen to be unbiased when γiso
12 (r) > 0 for r ≤ t. Finally, the isotropic local176

estimator is177

K̂ iso
12,local(t) =

6=
∑

x∈X1∩W,y∈X2∩W

1[‖y − x‖ ≤ t]

ρ1(x)ρ2(y)aW (‖y − x‖) , (14)

with aW (r) as defined in Section 3.1.1, and it becomes unbiased if aW (r) > 0, for all r ≤ t.178

4. Global and local intensity-reweighted estimators for pair correlation functions179

4.1. The case of one spatial point process180

Considering again the setting in Section 2 for the spatial point process X , this section181

introduces global and local estimators for the translation invariant pair correlation function182

given by g0. Note that it may be easier to interpret g0 than K, but non-parametric kernel183

estimation of g0 involves the choice of a bandwidth.184

Let κb : R
d 7→ [0,∞) be a (normalised) kernel with bandwidth b > 0, that is, κb(h) =

κ1(h/b)/b
d, for all h ∈ R

d, where κ1 is a probability density function. We assume that κ1

has support centered in the origin and contained in [−k, k]d for some k > 0; e.g. κ1 could

be a standard d-dimensional normal density truncated to [−k, k]d (this choice is convenient

when W is rectangular with sides parallel to the usual axes in R
d). Note that the bounded

support of κb shrinks to {0} when b tends to zero. Then, for h ∈ R
d,

E

6=
∑

x,y∈X∩W

κb(h− (y − x))

=

∫

W

∫

W

κb(h− (y − x))ρ(x)ρ(y)g0(y − x) dx dy (15)

=

∫

W

{

∫

W
−h−x

κb(−z)ρ(x)ρ(x+ h+ z)g0(h+ z) dz

}

dx

≃ g0(h)

∫

W

ρ(x)

{

∫

W
−h−x

κb(−z)ρ(x+ h+ z) dz

}

dx (16)

≃ g0(h)γ(h) (17)

where γ(h) is defined in (1). Here, (15) follows from the second-order Campbell’s formula185

and ≃ in (16) and (17) means that the difference between the quantities on each side of ≃186

converges to zero as the bandwidth b tends to zero, under appropriate continuity conditions187

on ρ(·) and g0(·). The expression (16) is expected to be more accurate but (17) is simpler to188

compute.189
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10 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

From (17) we conclude that g0(h) can be estimated by the following global estimator,

ĝglobal(h) =

6=
∑

x,y∈X∩W

κb(h− (y − x))
/

γ(h),

provided γ(h) > 0. This contrasts with the local estimator

ĝlocal(h) =

6=
∑

x,y∈X∩W

κb(h− (y − x))
/

{ρ(x)ρ(y) |W ∩Wx−y|} ,

which is analogous to the estimator suggested in Baddeley, Møller & Waagepetersen (2000)190

for an isotropic pair correlation function, see also Section 4.1.1.191

4.1.1. Modifications to account for isotropy192

For isotropic point processes as defined in Section 3.1.1, the global pair correlation193

function estimator may be modified to estimate the isotropic pair correlation function given194

by g1: for r > 0 such that γiso(r) > 0, define195

ĝisoglobal(r) =
1

ςdrd−1

6=
∑

x,y∈X∩W

κ̃b(r − ‖x− y‖)
/

γiso(r), (18)

where for b > 0, κ̃b(t) = κ̃1(t/b)/b, t ∈ R, for a probability density κ̃1 : R 7→ [0,∞) with

support centered at 0 and contained in the interval [−k, k] for some constant k > 0, and where

γiso(r) is defined in (4). This definition is motivated by the following derivation:

E

6=
∑

x,y∈X∩W

κ̃b(r − ‖y − x‖)

=

∫

W

∫

W

κ̃b(r − ‖y − x‖)ρ(x)ρ(y)g1(‖y − x‖) dy dx (19)

=

∫

W

{
∫ ∞

0

κ̃b(r − ξ)g1(ξ)ξ
d−1

∫

Sd−1

ρ(x)ρ(x+ ξs)1[x+ ξs ∈W ] dνd−1(s) dξ

}

dx

(20)

≃ g1(r)ςdγ
iso(r)rd−1

∫ ∞

0

κ̃b(r − ξ) dξ (21)

≃ g1(r)ςdγ
iso(r)rd−1, (22)

using the second-order Cambell formula in (19), a ‘shift to polar coordinates’ in (20), the196

assumption that b is small in (21), and that the kernel is a probability density function in (22).197
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 11

Note regarding (22) that198

∫ ∞

0

κ̃b(r − ξ) dξ =

∫ r

−∞

κ̃b(ξ) dξ

which is not 1 in general. Since κ̃b(ξ) = 0 for ξ 6∈ [−bk, bk], the integral is 1 if bk < r. From199

(22) we obtain (18).200

In the isotropic case the most commonly used local estimators (Baddeley, Møller &201

Waagepetersen 2000) are202

ĝisolocal(r) =
1

ςdrd−1

6=
∑

x,y∈X∩W

κ̃b(r − ‖y − x‖)
ρ(x)ρ(y)|W ∩Wx−y|

and203

g̃isolocal(r) =
1

ςd

6=
∑

x,y∈X∩W

κ̃b(r − ‖y − x‖)
ρ(x)ρ(y)|W ∩Wx−y|‖y − x‖d−1

,

assuming that almost surely |W ∩Wx−y| > 0 for distinct x, y ∈ X ∩W . These estimators204

suffer from strong positive respectively negative bias for values of r close to 0.205

4.2. Two point processes206

A similar derivation is possible for the cross pair correlation function of a bivariate point

process (X1, X2), yielding similar global and local estimators of c(h): for γ12(h) > 0,

ĉglobal(h) =
∑

x∈X1∩W,y∈X2∩W

κb(h− (y − x))
/

γ12(h);

for γiso12 (r) > 0,

ĉisoglobal(r) =
1

ςdrd−1

∑

x∈X1∩W,y∈X2∩W

κ̃b(r − ‖y − x‖)
/

γiso12 (r);

and for |W ∩Wx−y| > 0 almost surely when x ∈ X1 ∩W and y ∈ X2 ∩W ,

ĉlocal(h) =
∑

x∈X1∩W,y∈X2∩W

κb(h− (y − x))/ {ρ1(x)ρ2(y) |W ∩Wx−y|}

and

ĉisolocal(r) =
1

ςdrd−1

∑

x∈X1∩W,y∈X2∩W

κ̃b(r − ‖y − x‖)
ρ1(x)ρ2(y)|W ∩Wx−y|

.

Also an intermediate estimator is possible, with the intensity weighting for one of the

processes applied locally, and the other applied globally: with X1, X2, and κb as above, we
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12 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

have

E
∑

x∈X1∩W,y∈X2∩W

κb(h− (y − x))

ρ2(y)

=

∫

W

∫

W

κb(h− (y − x))c(y − x)ρ1(x) dx dy

=

∫

W

∫

W
−x−h

κb(−z)c(h+ z)ρ1(x) dz dx

≃ c(h)

∫

W∩W
−h

ρ1(x) dx

for a small bandwidth b > 0, which suggests the partially-reweighted estimator

ĉpartial(h) =
∑

x∈X1∩W,y∈X2∩W

κb(h− (y − x))

ρ2(y)
∫

W∩W
−h
ρ1(x) dx

,

provided
∫

W∩W
−h
ρ1(x) dx > 0. This estimator may be useful when ρ2 is much easier to207

estimate than ρ1, e.g. when X2 is homogeneous.208

5. Sources of bias when ρ is estimated209

All of the estimators of K(t), K12(t), g0(h), and g1(r) discussed above are unbiased210

(at least when t, ‖h‖, r are sufficiently small) when the true intensity function ρ is used to211

compute the weight functions ρ(x)ρ(y) in the local estimators or γ, γiso, γ12, or γiso12 in the212

global estimators. However, in most applications ρ is not known, and must be replaced by213

an estimate. When the source of inhomogeneity is well understood, it is recommended to214

fit a model with an appropriate parametric intensity function and use it as the estimate, cf.215

Baddeley, Møller & Waagepetersen (2000) and Waagepetersen & Guan (2009).216

In the absence of such a model, the most common alternative is a kernel estimator217

ρ̂(x) =
∑

y∈X∩W

κσ(y − x)

wW (x; y)
(23)

where κσ is a symmetric kernel on R
d with bandwidth σ > 0, and where wW (x; y) is an

appropriate edge correction weight. We take the standard choice from Diggle (1985),

wW (x; y) =

∫

W

κσ(u− x) du,

see also Van Lieshout (2012) (other types of edge corrections may depend on both x and y218

which is why we write wW (x; y) although the weight here only depends on x.)219
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 13

In the following we discuss estimators for ρ and γ with particular focus on the220

implications of estimation bias when kernel estimators are used to replace the true γ or ρ221

in the global and local estimators.222

5.1. Bias of local estimators with estimated ρ223

We start by considering a single spatial point process X . For each point pair x, y ∈ X224

(x 6= y), the corresponding term in the local K- and pair correlation function estimators is225

normalized by the product ρ(x)ρ(y). While an exact expression for the bias of the estimators226

with estimated ρ is not analytically tractable, we can understand major sources of bias by227

considering the expression 1/(ρ̂(x)ρ̂(y)), which appears in each of the local estimators.228

First, following Baddeley, Møller & Waagepetersen (2000), we note that ρ̂ as defined in229

(23) is subject to bias when evaluated at the points of X , and that a ‘leave-one-out’ kernel230

estimator given by231

ρ̄(x) =
∑

y∈(X∩W )\{x}

κσ(y − x)

wW (x; y)
, x ∈W, (24)

is a better choice, with reduced bias in most cases.232

Second, we note that233

E(1/ρ̄(x)) > 1/E(ρ̄(x))

(if E(1/ρ̄(x)) exists; in some cases it may be infinite). This follows from Jensen’s inequality,234

since x 7→ 1/x is strictly convex for x > 0. In addition, note that the leading contribution to235

E(1/ρ̄(x))− 1/E(ρ̄(x)) is proportional to varρ̄(x) (Liao & Berg 2019). This discrepancy236

leads to a strong positive bias of the local K- and pair correlation function estimators,237

especially at large ‖y − x‖, where 1/ρ̄(x) and 1/ρ̄(y) are almost independent. This effect238

becomes more pronounced for smaller σ, since varρ̄(x) typically increases as σ decreases.239

Third, we note that for distinct points x, y ∈W that are close compared to the bandwidth240

σ, the covariance of ρ̄(x) and ρ̄(y) leads to bias. For the local (and global) estimators,241

we consider sums over distinct x, y ∈ X ∩W , which leads us to condition on x, y ∈ X as242

follows (for details, see Coeurjolly, Møller & Waagepetersen 2017). By X conditioned on243

distinct points x, y ∈ X with ρ(2)(x, y) > 0, we mean that X is equal to Xxy ∪ {x, y} in244

distribution, where Xxy follows the second-order reduced Palm distribution of X at x, y:245

Pr(X ∈ F | x, y ∈ X) = Pr(Xxy ∪ {x, y} ∈ F ).

Assuming X has n’th order joint intensity functions ρ(n) for n ≤ 4, Xxy has intensity

function ρxy(u) = ρ(3)(x, y, u)/ρ(2)(x, y) and second order joint intensity function
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14 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

ρ
(2)
xy (u, v) = ρ(4)(x, y, u, v)/ρ(2)(x, y). Now, for distinct x, y ∈W with ρ(2)(x, y) > 0,

neglecting the edge correction in (24) for simplicity, we obtain the following by the first

and second-order Campbell’s formulas for Xxy and using that κσ is symmetric:

E
[

ρ̄(x)ρ̄(y)
∣

∣x, y ∈ X∩W
]

= E







∑

u∈(Xxy∩W )∪{y}

κσ(x− u)
∑

v∈(Xxy∩W )∪{x}

κσ(y − v)







= E

6=
∑

u,v∈Xxy∩W

κσ(x− u)κσ(y − u) + E
∑

u∈Xxy∩W

κσ(x− u)κσ(y − u)

+ κσ(x− y)κσ(y − x) (25)

+ κσ(x− y)E
∑

v∈Xxy∩W

κσ(y − v) + κσ(y − x)E
∑

u∈Xxy∩W

κσ(x− u)

=

∫

W

∫

W

κσ(x− u)κσ(y − v)
ρ(4)(x, y, u, v)

ρ(2)(x, y)
du dv (26)

+

∫

W

κσ(x− u)κσ(y − u)
ρ(3)(x, y, u)

ρ(2)(x, y)
du (27)

+ κσ(x− y)2 + κσ(x− y)

∫

W

{κσ(x− u) + κσ(y − u)} ρ
(3)(x, y, u)

ρ(2)(x, y)
du. (28)

If X is a Poisson process, then X and Xxy are identically distributed, and so the term246

in (26) simplifies to Eρ̄(x)Eρ̄(y), which differs from ρ(x)ρ(y) only by the inherent bias of247

the kernel estimators. In general, the joint intensity ρ(4)(x, y, u, v) in the integrand of that248

term represents the additional covariance of ρ̄(x) and ρ̄(y) due to interactions between the249

points of the process, and induces further bias. For example, this bias will tend to overestimate250

ρ(x)ρ(y) for clustered processes, and lead to an underestimate of K, g0, and g1. The terms in251

(27) and (28) are non-negative, and in particular the term in (27) can be large when x and y252

are close together compared to σ. This positive bias leads to substantial negative bias at short253

distances of the local estimators of K, g0, and g1.254

In comparison, the conditional expectation E{ρ̂(x)ρ̂(y) | x, y ∈ X} would have255

additional positive terms depending on κ(0). In the two point process case, the relevant256

conditional expectation E{ρ̄1(x)ρ̄2(y) | x ∈ X1, y ∈ X2} has an expression (of which we257

omit the details) analogous to (27). However, since X1 and X2 are assumed to have a cross258

pair correlation function, almost surely u = v does not occur for u ∈ X1 and v ∈ X2, so no259

term analogous to the second term in (27) occurs in E{ρ̄1(x)ρ̄2(y) | x ∈ X1, y ∈ X2}. This260

reduces the bias problem in the two point process case compared to the single point process261

case.262
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 15

For distinct x, y ∈W with ρ(2)(x, y) > 0, a superior estimator for ρ(x)ρ(y) might be263

given by264

ρ(x)ρ(y) =

6=
∑

u,v∈X∩W\{x,y}

κ(x− u)κ(y − v)

wW (x;u)wW (y; v)
. (29)

Then the terms in (27) and (28) are avoided, since265

E{ρ(x)ρ(y) | x, y ∈ X ∩W} =

∫

W

∫

W

κ(x− u)κ(y − v)

wW (x;u)wW (y; v)

ρ(4)(x, y, u, v)

ρ(2)(x, y)
du dv.

We do not investigate this idea further in the current work.266

5.2. Bias of global estimators with estimated γ267

Given the kernel estimate in (23) an immediate estimator of γ(h), h ∈ R
d, is268

γ̂(h) =

∫

W∩W
−h

ρ̂(z)ρ̂(z + h) dz. (30)

To understand properties of this estimator we evaluate its expected value. We start with the269

simplest case where h is a fixed vector in R
d. This case is relevant for the global estimator270

of the pair correlation function. We return in the end of this section to the case where h is an271

observed difference h = y − x for distinct x, y ∈ X , which occurs for the global estimator272

of the K-function.273

Neglecting edge corrections for simplicity, we get

Eγ̂(h) =

∫

W∩W
−h

∫

W

κσ(z − u)ρ(u)

∫

W

κσ(z + h− v)ρ(v)g0(u− v) dv du dz (31)

+

∫

W∩W
−h

∫

W

κσ(z − u)κσ(z + h− u)ρ(u) du dz. (32)

The two resulting terms are analogous to the terms in (26) and (27).274

When g0 = 1 as for a Poisson process, the term in the right hand side of (31) simplifies275

to276
∫

W∩W
−h

Eρ̂(x)Eρ̂(x+ h) dx.

This differs from γ(h) due to the inherent bias of the kernel estimators which depends on277

the spatial structure of the intensity function: Eρ̂(x)− ρ(x) becomes large when σ is large278

compared to the length scale of spatial variation of ρ(x). On the other hand, when g0 6= 1,279

the term in the right hand side of (31) includes an additional bias due to the interaction280

between points. For example, this bias will tend to overestimate γ for clustered processes,281

and therefore lead to an underestimate of K or the pair correlation function. This interaction282
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16 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

bias is most pronounced when σ is small. In particular, as σ → 0, this term approaches283

g0(y − x)γ(y − x), so that e.g. Eĝglobal(h) → 1 for all h ∈ R
d. However, in the typical case284

where the strength of pairwise interactions decreases with distance, increasing σ reduces bias285

due to interactions. Therefore, it is important to choose σ to be larger than the length-scale of286

interesting correlations.287

The term in (32), though, is always positive when h/2 is in the support of κσ . We can288

avoid this term by using the following ‘leave-out’ estimator289

γ̄(h) =

∫

W∩W
−h

6=
∑

u,v∈X∩W

κσ(z − u)κσ(z + h− v)

w(z;u)w(z + h; v)
dz, (33)

where leave-out refers to omitting ‘diagonal terms’ u = v in ρ̂(z)ρ̂(z + h) (with u, v ∈290

X ∩W ). Similarly, when X is isotropic, an estimator of γiso can be defined in terms of291

γ̄, as292

γ̄iso(r) = rd−1

∫

Sd−1

γ̄(rs) dνd−1(s). (34)

For the globalK-function estimators, γ is evaluated at y − x for distinct x, y ∈ X ∩W .

In this case the relevant expectation is E{γ̄(y − x) | x, y ∈ X}. As in Section 5.1 we obtain

this by considering the second-order reduced Palm distribution at distinct x, y ∈W with

ρ(2)(x, y) > 0, by assuming that X has n’th order intensity functions ρ(n) for n ≤ 4, and by

neglecting the edge corrections for simplicity:

E{γ̄(y − x) | x, y ∈ X} =
∫

W∩W
−(y−x)

(
∫

W

∫

W

ρ(4)(x, y, u, v)

ρ(2)(x, y)
κσ(z − u)κσ(z + (y − x)− v) du dv

+ κσ(z − x)2 + κσ(z − y)κσ(z + y − 2x)

+

∫

W

ρ(3)(x, y, u)

ρ(2)(x, y)

[

{κσ(z − x) + κσ(z − y)}κσ(z + (y − x)− u)

+ κσ(z − u){κ(z − x) + κσ(z + y − 2x)}
]

du

)

dz.

Again, in case of a Poisson process, ρ(4)(x, y, u, v)/ρ(2)(x, y) = ρ(u)ρ(v) and the first term293

is approximately γ(y − x), subject to the subtleties discussed above. The other three terms294

are related to the terms with u, v ∈ {x, y} of the double sum in (33), and yield a positive bias.295

We expect this bias to be small when σ is reasonably small, since the excess terms become296

negligible far from x and y, and the integral is over all of W ∩W−h. The three terms could297
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 17

be avoided by considering the further modified ‘leave-one pair-out’ estimator298

γ̃(h;x, y) =

∫

W∩W
−h

6=
∑

u,v∈(X∩W )\{x,y}

κ(z − u)κ(z + h− v)

w(z;u)w(z + h; v)
dz, with h = y − x,

but this depends on (x, y) not only through h = y − x which precludes the use of299

interpolation schemes as discussed in Section 5.3.300

In case of two point processes we just use301

γ̂12(h) =

∫

W∩W
−h

ρ̂1(z)ρ̂2(z + h) dz

for kernel estimators ρ̂1 and ρ̂2, since in this case almost surely there are no diagonal terms302

u = v in ρ̂1(z)ρ̂2(z + h) (with u ∈ X1 and v ∈ X2).303

5.3. Computation of γ and γiso
304

We compute γ(h) for a given intensity function ρ using a simple Monte Carlo305

integration algorithm: we generate uniform random samples Ui, i = 1, . . . , n, on W ∩W−h306

and approximate γ(h) by the unbiased Monte Carlo estimate307

γMC(h) =
|W ∩W−h|

n

n
∑

i=1

ρ(Ui)ρ(Ui + h). (35)

To achieve a desired precision, we consider the standard error σMC/
√
n of γMC(h) and308

choose n so that the coefficient of variation becomes less than a selected threshold α:309

σMC/(
√
nµMC) < α. For the simulation studies in Section 6, we used α = .001 or α = .005.310

In practice, we wish to evaluate γ at many values of h. Thus it is convenient to generate a311

single sequence of random samples Vj , j = 1, . . . , n′ onW , and for each h use a subsequence312

{U (h)
i } = {Vj | Vj ∈W ∩W−h}. We choose n′ sufficiently large to produce the requisite313

length of sub-sequence for each h.314

For γiso(r), we follow a similar approach, generating also random independent si315

uniformly on {s | s ∈ S
d−1, Ui + rs ∈W}, and computing316

γiso
MC =

∫

Sd−1 |W ∩W−rs| dνd−1(s)

ςdn

n
∑

i=1

ρ(Ui)ρ(Ui + rsi). (36)

The integral
∫

Sd−1 |W ∩W−rs| dνd−1(s) is easy to compute when W is a rectangular317

window. As above, Ui and si are typically generated for each r as appropriate subsequences318

© 2020 Australian Statistical Publishing Association Inc.

Prepared using anzsauth.cls

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



18 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

of shared larger sequences Vj and tj , respectively, sampled uniformly on W and S
d−1,319

respectively.320

In practice ρ is replaced by an estimate. Then for the kernel-based leave-out estimator321

(33), ρ(Ui)ρ(Ui + h) in (35) is replaced by322

6=
∑

u,v∈X∩W

κσ(Ui − u)κσ(Ui + h− v)

w(z;u)w(z + h; v)
,

which is evaluated using a fast routine written in C. In a similar way, whenX is isotropic and323

(34) is used, ρ(Ui)ρ(Ui + rsi) in (36) is replaced by a double sum.324

Since γ and γiso are quite smooth, it is possible to interpolate them very accurately based325

on a moderate number of points hj or rj . This is especially helpful for γiso because it is one-326

dimensional. For the kernel-estimated γ̄iso or γ̂iso, we find that linear interpolation based on327

sample spacing of |rj+1 − rj | < σ/10 gives estimates within .01% of the true values. The328

interpolation scheme is especially helpful for the K-functions as the number of points grows329

large, in which case we must evaluate γ (or γiso in the isotropic case) at a very large number330

of pairs of points.331

The proposed Monte Carlo computation becomes very slow when especially precise332

coefficient of variation α is desired, or when using kernel-based estimates with very small333

kernel bandwidth σ or large number of pointsN . For these cases, it may be beneficial to apply334

a variance reduction technique such as antithetic variables, or to consider an approximate335

convolution based on discrete Fourier transforms, with a kernel-based estimate of ρ, when336

desired, based on quadrat counts. When the side length of the quadrats is much less than σ,337

we expect this method to produce accurate estimates of γ (or γiso in the isotropic case).338

6. Simulation study339

To compare global and local estimators for K and g, we simulated 100 point patterns340

on the unit square W = [0, 1]2 for each of nine point process models obtained by combining341

three different types of point process interactions with four types of intensity functions. For342

plots of estimated K or g we simulated a further 1000 point patterns of the considered point343

process model.344

More specifically we simulated stationary point processes of the types Poisson345

(no interaction), log-Gaussian Cox (LGCP – these are clustered/aggregated, see Møller,346

Syversveen & Waagepetersen 1998), and determinantal (DPP – these are regular/repulsive,347

see Lavancier, Møller & Rubak 2012), and subsequently subjected them to independent348

thinning to obtain various types of intensity functions. Note that independent thinnings349
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 19

Figure 1. Plots of the ‘hole’, ‘waves’ and ‘LGF’ thinning profiles.

of stationary point processes are soirs (cf. Baddeley, Møller & Waagepetersen 2000). The350

intensities of the stationary point processes were adjusted to obtain on average 200 or 400351

points in the simulated point patterns (that is, after independent thinning).352

For the Gaussian random field underlying the LGCP we used an exponential covariance353

function with unit variance and correlation scale 0.05 resulting in the isotropic pair correlation354

function355

gLGCP(r) = exp{exp(−r/.05)}.

For the DPP we used a Gaussian kernel with scaling parameter α = 0.02 leading to356

gDPP(r) = 1− exp
{

−2(r/.02)2
}

.

The intensity functions were of type constant (no thinning), ‘hole’, ‘waves’, or log-

Gaussian random field (‘LGF’). Intensity functions of the ‘hole’ and ‘waves’ types were

obtained by independent thinning using spatially varying retention probabilities

phole(x, y) = 1− .5 exp
[

−
{

(x− .5)2 + (y − .5)2
}

/.18
]

,

pwaves(x, y) = 1− .5 cos2(5x),

pLGF(x, y) = λ(x, y)/ sup
(u,v)∈W

λ(u, v),

for (x, y) ∈ [0, 1]2. In case of ‘LGF’, log λ was generated as a realisation of a Gaussian357

random field with exponential covariance function, with variance .1 and correlation scale .3.358

The resulting ‘LGF’ retention probability surface is much less smooth than for ‘hole’ and359

‘waves’ but similar to ‘hole’ and ‘waves’ in terms of intensity contrast and spatial separation360

of high-intensity and low-intensity regions. The surfaces of retention probabilities are shown361

in Figure 1.362
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20 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

Simulations were carried out and analyzed using the R package spatstat, and a363

new package globalKinhom that implements the global K- and pair correlation function364

estimators using Monte-Carlo estimates of γ as described in Section 5.3 (?Baddeley, Rubak365

& Turner 2015; ?). In most cases we set the precision of the Monte-Carlo estimates to366

α = .005. When probability intervals and root integrated mean square error (RIMSE) values367

are shown, we use α = .001 instead, where the more precise calculation produced slightly368

smaller RIMSE values. We also tested smaller values of α in a few particular cases, and did369

not observe any reduction in RIMSE values below α = .001. We do not show simulation370

results for all scenarios since in many cases the different scenarios led to qualitatively similar371

conclusions.372

To investigate our cross K and cross pair correlation function estimators we generated373

simulations from a bivariate LGCP detailed in Section 6.2.374

6.1. Estimation of K and pair correlation functions375

We initially compare the bias of global and local estimators of the K-function using376

in both cases kernel estimators of the intensity function obtained with a Gaussian kernel377

with bandwidth σ chosen by the method of Cronie & van Lieshout (2018), as implemented378

in the spatstat procedure bw.CvL (CVL for convenience in the following). The selected379

bandwidths vary around .05 (see third column in Table 1), with slightly larger bandwidths for380

LGCP than for Poisson and DPP. For the global estimator we consider the isotropic estimator381

(5), since the pair correlation functions of the point processes tested here are all isotropic, as382

in the setting of Section 3.1.1, and the estimation of γiso is less computationally intensive than383

that of γ. We consider both the estimator (30) and the leave-out estimator (33) of the function384

γ. Similarly we also consider the local estimator using either the original kernel estimator385

(23) or the leave-out estimator (24) suggested in Baddeley, Møller & Waagepetersen (2000).386

For better visualisation of the simulation results we transform theK-function estimators387

into estimators of the so-called {L(r)− r}-function via the one-to-one transformation388

L(r)− r =
√

K(r)/π − r.

We only show results in case of the waves intensity function with on average 400 simulated389

points, since the results for the other intensity functions and with on average 200 simulated390

points give the same qualitative picture.391

Figure 2 shows averages of the simulated estimates and it is obvious that the global392

estimators are much less biased than the local estimators. It is clearly advantageous to use the393

leave-out versions for the global estimator. The leave-out approach is also advantageous for394

the local estimator, at least for small distances r. The biases of the leave-out local estimator395
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 21

Figure 2. Averages of estimates of L(r)− r obtained from simulations in case of the waves intensity
function with 400 simulated points on average. Left to right: DPP, Poisson, LGCP. The estimates are

obtained using K̂ iso
global with or without the leave-out approach ( , , respectively) or

K̂local with or without the leave-out approach ( , , respectively) for kernel estimation
of γ or the intensity function. True values of L(r)− r are shown for comparison ( ).

Table 1. Mean (± st. dev.) of CVL and LCV bandwidths, for each type of spatial point process we
considered. The expected number of points for each listed process is 400.

Interaction type Intensity function σCVL σLCV

DPP constant 0.046 (0.005) 0.63 (0.15)

hole 0.045 (0.004) 0.33 (0.22)

waves 0.048 (0.004) 0.28 (0.25)

LGF 0.047 (0.005) 0.22 (0.16)

Poisson constant 0.047 (0.006) 0.59 (0.21)

hole 0.048 (0.007) 0.29 (0.23)

waves 0.050 (0.006) 0.14 (0.11)

LGF 0.050 (0.006) 0.17 (0.13)

LGCP constant 0.066 (0.009) 0.040 (0.007)

hole 0.064 (0.012) 0.044 (0.008)

waves 0.071 (0.011) 0.042 (0.008)

LGF 0.066 (0.011) 0.042 (0.007)

are as discussed in Section 5.1: strong negative bias at short distances due to the covariance396

of ρ̄(x) and ρ̄(y), and strong positive bias at large distances due to Jensen’s inequality397

E(1/ρ̄(x)) > 1/E(ρ̄(x)). The leave-out global estimator appears to be close to unbiased in398

case of DPP and Poisson but is too small on average in case of LGCP.399

There exist a number of alternatives to the CVL approach to choosing the bandwidth400

for the kernel estimation. We therefore also investigate bias in the case where the bandwidth401

is selected using the likelihood cross validation (LCV) method implemented in the spatstat402

procedure bw.ppl. Results regarding the LCV selected bandwidths are summarised in the403

fourth column of Table 1. Comparison of the CVL and LCV results in Table 1 shows that the404
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22 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

Figure 3. Averages of estimates of L(r)− r obtained from simulations in case of the waves intensity
function with 400 simulated points on average. Left to right: DPP, Poisson, LGCP. The estimates are
obtained using the global ( CVL, LCV) or local ( CVL, LCV)
estimators of the K-function with either CVL or LCV for selecting the bandwidth (in all cases the
leave-out approach is used). True values of L(r)− r are shown for comparison ( ).

LCV approach tends to select considerably larger bandwidths σ than the CVL method for the405

DPP and Poisson process, and somewhat smaller σ for the LGCP.406

Figure 3 compares averages of the global and local estimators using either of the two407

approaches to bandwidth selection and with leave-out in all cases. Again we show only results408

for the waves intensity function and expected number of points equal to 400. The bias of the409

estimators is quite sensitive to the choice of bandwidth selection method. In case of DPP and410

Poisson, the global estimator using CVL and the local estimator using LCV perform similarly411

with the global estimator a bit more biased than the local for DPP and vice versa for Poisson.412

The global estimator performs slightly worse when combined with LCV than with CVL,413

likely due to the inherent biases of the kernel estimator ρ̄, which become more pronounced as414

σ increases. The local estimator with CVL is strongly biased for almost all r considered. The415

improved performance with LCV is likely due to the reduced variances and covariances for416

ρ̄ when a larger bandwidth is used. This also explains the strong bias of the local estimator417

with LCV for the LGCP, since σLCV is typically smaller than σCVL in that case. The global418

estimator for the LGCP has the smallest bias with the CVL method and has much less bias419

than the local estimator regardless of whether CVL or LCV is used. It is not surprising that420

the LGCP is the most challenging case for both the global and local estimators, since the421

random aggregation of the LGCP tends to be entangled with the variation in the intensity422

function.423

We finally compare the sampling variability of the leave-out global estimator using424

CVL and the leave-out local estimator using LCV. Figure 4 shows 95% pointwise probability425

intervals and averages for the two estimators, again with 400 simulated points on average and426

the ‘waves’ intensity function, and Table 2 gives root integrated mean square error (RIMSE)427
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 23

Figure 4. Averages and 95% pointwise probability intervals for estimates of L(r)− r in case of the
waves intensity function with 400 simulated points on average. Left to right: DPP, Poisson, LGCP.
The estimators used are the leave-out global estimator using CVL ( ) and the leave-out local
estimator using LCV. ( ), with pointwise probability intervals shown in like shade. True values
of L(r)− r are also shown ( ).

values for theK-function estimators applied to each process, for each combination of CVL or428

LCV with the local or global leave-out estimator. Figure 4 indicates that the global estimator429

has smaller variance than the local estimator. This should also result in smaller mean square430

error for Poisson and LGCP where the bias is also smallest for the global estimator. For DPP431

the picture is not completely clear regarding mean square error since in this case the global432

estimator has larger bias than the local estimator. Table 2 gives more insight where a first433

observation is that the leave-out local estimator is very sensitive to the choice of bandwidth434

selection method with LCV performing much better than CVL for DPP and Poisson and vice435

versa for LGCP. The leave-out global estimator is much less sensitive to choice of bandwidth436

selection method. Best results in terms of RIMSE are obtained with the leave-out global437

estimator combined with CVL.438

Figure 5 shows averages of leave-out global and local estimators of the isotropic pair439

correlation function using either CVL or LCV in case of the wave intensity with 400 points on440

average. Once again, local estimators are most strongly biased with the bandwidth selection441

method that produces the smaller bandwidth: CVL for the DPP and Poisson processes, and442

LCV for the LGCP. The bias is small to moderate for the global estimators with largest bias443

in case of LGCP. For the DPP and Poisson case positive bias of the local and global estimator444

occurs for very small distances.445

6.2. Estimation of cross K and cross pair correlation functions446

To investigate the cross K and cross pair correlation function estimators, we simulated447

100 bivariate point patterns for each model of a bivariate point process (X1, X2), where448

either X1 and X2 are independent or display segregation or co-clustering. Processes that449
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24 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

Table 2. RIMSE ×102 of local and global K-function estimators with CVL and LCV bandwidths.

K̂local K̂global

Interaction type Intensity function CVL LCV CVL LCV

DPP flat 0.59 0.069 0.029 0.060

hole 0.64 0.107 0.031 0.128

waves 0.60 0.052 0.049 0.121

LGF 0.59 0.060 0.050 0.110

Poisson flat 0.45 0.083 0.028 0.069

hole 0.45 0.120 0.034 0.103

waves 0.40 0.061 0.037 0.093

LGF 0.37 0.087 0.050 0.089

LGCP flat 0.89 0.999 0.573 0.628

hole 0.87 1.554 0.576 0.636

waves 0.89 1.146 0.528 0.613

LGF 0.90 1.506 0.542 0.625

Figure 5. Averages of estimates of g1(r) obtained from simulations in case of the waves intensity
function with 400 simulated points on average. Left to right: DPP, Poisson, LGCP. The estimates are
obtained using the global ( CVL, LCV) or local ( CVL, LCV)
estimators of the pair correlation function with either CVL or LCV bandwidth selection. (In each case,
the leave-out approach is used.) True values of g(r) are shown for comparison ( ).

were chosen for plotting were simulated an additional 1000 times. Inhomogeneous intensity450

functions were subsequently obtained using independent thinning of stationary bivariate point451

processes, where the two point processes have the same intensity, and the constant, ‘hole’,452

and ‘waves’ retention probabilities p as described in connection to Figure 1 were used. This453

implies ρ1(x) = ρ2(x) for x ∈ [0, 1]2 (we did not investigate any scenarios where ρ1 6= ρ2).454

In the case of independence, X1 and X2 are independent Poisson processes. For the455

dependent cases, we considered a bivariate LGCP. Specifically, for i = 1, 2, Xi has random456

intensity function457

Λi(u) = p(u) exp{µi + αiY (u) + βUi(u)}, i = 1, 2,
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 25

where Y , U1, and U2 are independent zero-mean unit-variance Gaussian random fields with458

isotropic exponential correlation functions given by exp(−r/φ) and exp(−r/ψi) (r ≥ 0),459

i = 1, 2, respectively, and where µi ∈ R, αi ∈ R, and β > 0 are parameters. This means460

that X1 and X2 conditioned on (Λ1,Λ2) are independent Poisson processes with intensity461

functions Λ1 and Λ2, respectively. The (cross) pair correlation functions for this class of462

bivariate LGCP are isotropic, where the pair correlation function of Xi is given by463

gisoi (r) = exp{α2
i exp(−r/φ) + β exp(−r/ψi)}, i = 1, 2,

and the cross pair correlation function of (X1, X2) is given by464

ciso(r) = exp{α1α2 exp(−r/φ)}.

Note that ciso < 1 if α1α2 < 0 (the case of segregation between X1 and X2), and ciso > 1465

if α1α2 > 0 (the case of co-clustering between X1 and X2). For the segregated processes,466

we chose α1 = −α2 = 1, φ = .03, β = .25, ψ1 = .02, and ψ2 = .01. For the co-clustered467

case, we used α1 = α2 = 1 and the other parameters as for the segregated case. With these468

choices, the cross correlation functions become469

cisosegr(r) = exp{− exp(−r/.03)}

for the segregation case and470

cisocluster(r) = exp{exp(−r/.03)}

for the co-clustered case. Finally, we adjusted µ1 and µ2 so that the expected number of points471

after independent thinning is 200 or 400.472

For the global estimator of K12, we consider again the isotropic estimator (13), since473

in each case the cross pair correlation function is isotropic, and estimation of γiso12 (r) is474

less computationally intensive than that of γ12(h). For the local estimator we consider the475

estimator (11), with ρi estimated by the leave-out kernel estimator ρ̄ from (24). Similar to the476

{L(r)− r}-function used above, we transform the K12-function estimators into estimators477

of the {L12(r)− r}-function, by the one-to-one transformation478

L12(r)− r =
√

K12(r)/π − r.

Figure 6 shows averages of estimators of L12(r)− r in case of the waves intensity and479

expected number of points equal to 400. The bandwidth is selected using the CVL or LCV480

procedure applied to X1. Table 3 gives selected bandwidth values for the pairs of spatial481
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26 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

Table 3. Mean (± st. dev.) of CVL and LCV selected bandwidths for the simulated two point process
cases. Expected number of points is 400 for each listed process.

Interaction type Intensity function σCVL σLCV

Segregated constant 0.063 (0.008) 0.038 (0.006)

hole 0.062 (0.009) 0.039 (0.008)

waves 0.064 (0.010) 0.040 (0.008)

Poisson constant 0.048 (0.006) 0.60 (0.19)

hole 0.048 (0.006) 0.28 (0.22)

waves 0.051 (0.006) 0.19 (0.20)

Co-clustered constant 0.062 (0.008) 0.040 (0.008)

hole 0.060 (0.009) 0.040 (0.007)

waves 0.064 (0.011) 0.040 (0.009)

Figure 6. Averages of estimates of cross-L(r)− r in case of the waves intensity function with 400
simulated points on average. Left to right: segregation, independence, co-clustering. The estimators used
are the standard global ( CVL, LCV) and local ( CVL, LCV)
leave-out estimators of K12 combined with the CVL and LCV methods for the bandwidth selection.
True values of L12(r)− r are shown for comparison ( ).

point processes we considered. The results are similar to the one point process case. Both the482

segregated and co-clustered LGCP typically yield σLCV < σCVL while the opposite is true483

for the Poisson case. Further, the local estimators are strongly biased, and the bias increases as484

the bandwidth σ decreases: in the case of segregation and co-clustering, the local estimators485

are better with CVL, while LCV is better in the case of independence. Note also that the486

negative bias that is observed at small distances r for K̂local is absent here as predicted in the487

discussion in Section 5.1. The bias for the global estimator with CVL is smaller than for the488

best local estimators in each case.489

To compare sampling variability for the estimators of the cross K-function, we show490

pointwise 95% probability intervals for estimated L12(r)− r in Figure 7. The bandwidth491

selection method that produces the least bias in each case is shown. Table 4 shows root492

integrated mean square error of the estimators ofK12. In every case, the best global estimator493
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T SHAW, J MØLLER, AND R P WAAGEPETERSEN 27

Figure 7. Averages and 95% pointwise probability intervals for estimates of L12(r)− r in case of the
waves intensity function with 400 simulated points on average. Left to right: segregation, independence,
co-clustering. The estimators used are the leave-out global estimator ( ) and the leave-out
local estimator ( ), with pointwise probability intervals shown in like shade. In each case,
the bandwidth selection method was chosen to produce the least bias: LCV for the local estimator
on the independent process, and CVL for all the other cases. True values of L12(r)− r are also shown
( ).

Table 4. Root integrated mean squared errors ×102 of local and global K12-function estimators with
CVL and LCV bandwidths.

K̂12,local K̂12,global

Interaction type Intensity function CVL LCV CVL LCV

Segregated flat 0.65 390.125 0.161 0.181

hole 0.69 4.574 0.171 0.185

waves 0.64 270.633 0.208 0.201

Independent flat 1.03 0.066 0.024 0.049

hole 1.09 0.112 0.026 0.109

waves 0.95 0.191 0.037 0.104

Co-clustered flat 0.92 18.783 0.234 0.262

hole 0.97 3.510 0.239 0.265

waves 0.92 5.238 0.195 0.244

has smaller integrated mean square error than the best local estimator, as expected from the494

considerations of Section 3.1.2.495

For the estimation of the cross pair correlation functions, the conclusions are similar to496

those for the cross K-functions, see Figure 8. The average of the global estimator is quite497

close to the true cross pair correlation function, while the local estimator is strongly biased.498

Note that ĉLCV
local is missing for the segregated and co-clustered processes, because the average499

values of that estimator were extremely large.500
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28 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

Figure 8. Averages of estimates of c(r) in case of the waves intensity function with 400 simulated
points on average. Left to right: segregation, independence, co-clustering. The estimators used are the
leave-out global ( CVL, LCV) and local ( CVL, LCV) estimators
combined with the CVL and LCV methods for bandwidth selection. True values of L12(r)− r are
shown for comparison ( ).

6.3. Estimation of K-function using a parametric estimate for ρ501

Returning to the setting of a single point process X as in the beginning of Section 6,502

we also consider the case of a parametric model where the intensity α > 0 of the underlying503

stationary point process (that is, before thinning) is unknown but the retention probability504

function p that was used to thin the point process is known. Then a simple parametric505

estimator for ρ is given by506

ρ̂p(x) = Np(x)
/

∫

W

p(x) dx, (37)

where N is the number of points in X ∩W . We apply this intensity estimator to K̂local and507

K̂global for 1000 realisations of each interaction type, with the ‘waves’ intensity function and508

expected number of points equal to 400. In addition, we generate 1000 simulations for each509

interaction type with a new thinning profile, ‘deep waves’, given by510

pdeep(x, y) = 1− .9 cos2(5x), (x, y) ∈ [0, 1]2.

The deep waves profile is similar to the waves profile, but with much more extreme intensity511

variations.512

Pointwise probability intervals for estimates of L(r)− r are shown in Figure 9, and root513

integrated mean square error for estimates of K are given in Table 5. We observe that in all514

cases the error of the global estimator is comparable to or better than the corresponding local515

estimator. For the ‘waves’ intensity function, the difference is small. Both estimators have516

larger error when applied to the patterns with the ‘deep waves’ intensity function. However,517

© 2020 Australian Statistical Publishing Association Inc.

Prepared using anzsauth.cls

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



T SHAW, J MØLLER, AND R P WAAGEPETERSEN 29

Figure 9. Averages and 95% pointwise probability intervals for estimates of L(r)− r in case of the
‘waves’ (top row) or ‘deep waves’ (bottom row) intensity function with 400 simulated points on average.
Left to right: DPP, Poisson, LGCP. The estimators used are the global ( ) and local ( )
estimators using the parametric intensity estimator (37). Pointwise probability intervals are shown in
like shade. True values of L(r)− r are also shown ( ).

the performance of the local estimator degrades much more strongly, reflecting the fact that518

regions of low intensity are weighted more heavily in K̂local than in K̂global, as discussed in519

Section 3.1.2. The LGCP yielded the largest errors with the parametric intensity estimates,520

similar to our observations with the kernel-based intensity estimates. We also note that for521

the DPP and the Poisson process, using the parametric estimates for the ‘waves’ intensity522

function results in higher integrated mean square error than for the kernel-based estimates523

(Table 2). We believe this is because the kernel-based estimates of ρ are adapted to the524

random local fluctuations of the point processes, similar to how homogeneous K-function525

estimates have lower variance when using estimated intensity than true intensity. However,526

for the LGCP, best results are obtained with the parametric estimates, which presumably are527

less prone to confounding of random clustering with variations in the intensity function.528

7. Extensions529

The same sort of analysis as in Sections 3–4 could be applied to point processes defined530

on a non-empty manifold on which a group acts transitively (a so-called homogeneous space),531
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30 GLOBALLY INTENSITY-REWEIGHTED ESTIMATORS

Table 5. Root integrated mean squared errors ×102 of local and global K-function estimators with
parametric intensity estimator, applied to point processes with intensity function ‘waves’ or ‘deep
waves’.

Interaction type Intensity function K̂local K̂global

DPP waves .111 .102

deep waves .227 .103

Poisson waves .132 .122

deep waves .239 .133

LGCP waves .416 .417

deep waves .601 .516

where the space is equipped with a reference measure which is invariant under the group532

action. In this paper, the space was R
d, the group action was given by translations, and533

the reference measure was Lebesgue measure. For example, instead we could consider the534

space to be a d-dimensional sphere, with the group action given by rotations and where the535

reference measure is the corresponding d-dimensional surface measure. Then the global and536

local estimators considered in this paper are simply modified to the case of the sphere by537

replacing Lebesgue with surface measure and using appropriate edge correction factors as538

defined in Lawrence et al. (2016). Similarly, our global estimators could also be extended539

to the case of spatio-temporal point processes, as in Gabriel & Diggle (2009) and Møller &540

Ghorbani (2012).541

8. Conclusion542

According to our simulation studies, our new global estimators outperform the existing543

local estimators in terms of bias and mean integrated squared error when kernel or parametric544

estimators are used for the intensity function. The kernel intensity function estimators545

depend strongly on the choice of bandwidth and we considered two different data-driven546

approaches, CVL and LCV, to bandwidth selection. In our simulation studies the two547

approaches gave similar selected bandwidths in the LGCP case but very different results548

in case of Poisson and DPP. This has a considerable impact on the K- and pair correlation549

function estimators but the global estimators appear to be much less sensitive to the choice of550

bandwidth selection method than the local estimators. The simulation studies with parametric551

estimates of the intensity function, along with the theory of Section 3.1.2, indicate that the552

global estimators are also much less sensitive to regions of especially low intensity. The553

improved statistical efficiency comes at a considerable extra computational cost. Therefore,554

we especially recommend the global estimators for situations where intensity variations are555

large and where computational speed is not a primary concern.556
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STONE, M.B., SHELBY, S.A., NÚÑEZ, M.F., WISSER, K. & VEATCH, S.L. (2017). Protein sorting by lipid594

phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6,595

e19891.596

VAN LIESHOUT, M.N.M. (2011). A J-function for inhomogeneous point processes. Statistica Neerlandica597

65, 183–201.598

VAN LIESHOUT, M.N.M. (2012). On estimation of the intensity function of a point process. Methodology599

and Computing in Applied Probability 14, 567–578.600

WAAGEPETERSEN, R. & GUAN, Y. (2009). Two-step estimation for inhomogeneous spatial point processes.601

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71, 685–702.602

© 2020 Australian Statistical Publishing Association Inc.

Prepared using anzsauth.cls

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t


