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A series of substituted boron aza-dipyridylmethene (aD) compounds are demonstrated as fluorescent 

dopant emitters in blue organic light emitting diodes (OLEDs).  Replacing the meso-carbon of a 

dipyridylmethene dye with nitrogen to form the aD chromophore leads to a destabilization of the 

highest occupied molecular orbital in aD, as evidenced both from their experimentally determined 

photophysical and electrochemical properties.  These properties are consistent with theoretical 

calculations of the molecular energetics.  These aD derivatives emit violet to blue light, peaking 

between 400 and 460 nm with photoluminescent quantum yields over 85%.  The aD compounds have 

small energy differences (< 400 meV) between their singlet and triplet excited states.  OLEDs 

fabricated with an aza-boron-dipyridylmethene emitting fluorophore give an external quantum 

efficiency of 4.5% on glass substrates, close to the theoretical maximum for fluorescent OLEDs.   
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1.  Introduction 

Organic light emitting diodes (OLEDs) have been commercialized for use in the displays of mobile 

phones, tablets, televisions, and wearable technologies, as well as in solid-state lighting panels.  The 

electroluminescent process involves hole/electron recombination that leads to a mixture of singlet 

and triplet excitons.1  In the late 1990’s, phosphorescent emitters were incorporated into OLEDs, 

making it possible to harvest both types of excitons and achieve 100 % internal efficiency for 

conversion of electrical charges into photons.  OLEDs with green and red phosphorescent emitters 

have been shown to achieve both high quantum efficiencies and long device lifetimes, and have thus 

become standard emissive dopants in commercial OLED displays.2 While the internal quantum 

efficiencies of OLEDs utilizing blue phosphorescent dopants have also reached the theoretical limit 

of 100%, the operational lifetimes of these devices have thus far been short and can be improved for 

practical application in displays.3  The stability of blue phosphorescent OLEDs is limited by 

degradation of the host and/or dopant materials via bimolecular decay processes, i.e.  exciton-

exciton or exciton-polaron annihilation.3j, 4  These second order processes are exacerbated by the 

long excited state decay lifetimes of phosphorescent emitters, typically a few microseconds.  

Fluorescent blue emitters are less efficient in OLEDs, but their markedly shorter excited state 

lifetimes (nanoseconds) dramatically reduce the rate of bimolecular decay, thereby increasing the 

device operational lifetime.  Thus, fluorescence-based blue dopants are conventionally used for 

OLEDs in commercial displays.   

Blue fluorescent materials also have utility in white OLEDs (WOLEDs) for solid state lighting.5  Our 

interest in blue fluorophores stems from a device architecture that splits the singlet and triplet 

excitons spatially within the WOLED, allowing for the singlet excitons to be harvested on a blue 
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fluorescent dopant and the triplets on red and green phosphorescent dopants.5-6 This hybrid 

fluorescent/phosphorescent WOLED has the potential to give high color quality with an internal 

quantum efficiency of 100%, without the need for blue phosphors.  However, aside from highly 

efficient blue luminescence, the energy of the triplet state of the fluorescent dopant in this 

architecture needs to be high enough to enable endothermic energy transfer to the green-to-red 

phosphorescent dopant.  This requirement places a restriction on the most common structural 

motifs used to create fluorescent blue lumiphores (stilbenes, anthracenes, etc.), as energies for the 

triplet state in these materials is typically too low (ET < 2 eV) for effective energy transfer to the 

phosphor.  Moreover, the hybrid WOLED puts a further restriction on the fluorophore in that it 

needs to have a blue emissive singlet and a high triplet energy, thus requiring a small energy 

difference between the singlet and triplet excited states (EST), preferably with EST < 400 meV. 

Here, we focus on demonstrating a DIPYR (boron dipyridylmethene, Figure 1) family of dyes7 to 

achieve highly efficient blue fluorescence in OLEDs.  DIPYR dyes are related to the more widely 

studied BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) chromophores, dyes that have high 

photoluminescent efficiencies (PL > 0.8), short emission lifetimes ( < 10 ns) and narrow emission 

linewidths (full width half maxima, FWHM < 50 nm).  However, shifting the emission color of BODIPY 

into the blue is difficult, and these compounds have intrinsically low triplet energies.8  These 

drawbacks make DIPYR motifs attractive alternatives for blue fluorescent dopants for use in 

WOLEDs.   
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Figure 1.  Atomic transmutation of meso-position in DIPYR from methine-bridge to nitrogen-bridge 

alters the optical properties of the molecule.  Photoluminescence quantum yields were obtained in 

methylcyclohexane. 

 

A simple transmutation from methene carbon to nitrogen converts the green-emissive DIPYR to a 

blue emissive azaDIPYR (aD) (Figure 1).  This structural modification stabilizes the energy of the 

highest occupied molecular orbital (HOMO), but leaves the lowest unoccupied molecular orbital 

(LUMO) relatively unperturbed, thereby inducing a hypsochromic shift in the emission energy.9  The 

emission lifetimes of  < 10 ns of DIPYRs are suitable for use in OLEDs, but the low PL limits the 

external quantum efficiency (EQE).  Previous work on DIPYR compounds suggests that 

benzannulation of the molecular core can improve photoluminescence efficiency, while maintaining 

the short emission lifetime and narrow linewidths.9b, 10 We have examined benzannulation along 

with substitution around the core structure to modify the photophysical properties of a set of aD 

molecules shown in Figure 2.  Heterocyclic ligands conjugated with boron fluoride, analogous to the 

aD core, have been previously investigated as dyes,9a, 11 aggregation-induced emitters,12 and pH 

sensors,13 but few studies have been reported on aD materials as emitters aside from a citation in 

the patent literature.14  Benzannulated derivatives of the aD core are potentially useful as blue 

fluorescent dopants due to their narrow emission profile, nanosecond lifetime, high thermal 

stability, and high PL.  The development of these organic blue-emitting materials is described, 



 

  

 

This article is protected by copyright. All rights reserved. 

6 

 

including their synthesis, electrochemical and photophysical characterization, and performance of 2a 

in blue OLEDs.   

 

Figure 2.  Structures of aza-boron-dipyridylmethene (aD) in this work.   
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2.  Results and Discussion 

2.1.  Synthesis 

The synthesis of the aD dyes follows a procedure similar to one previously reported (Figure 3).9a, 13a  

A palladium catalyzed coupling reaction of 2-amino and 2-bromo substituted heteroaryl compounds 

was used to form the desired ligand.  The ligand was deprotonated with Hunig’s base and treated 

with BF3·OEt2 to give the aD dye.  Aryl substituted derivative was prepared by treating the ligand 

with 2-aminoethoxydiphenyl borate.  The products were obtained as microcrystalline solids, which 

are white-to-yellow for 1a-1b and bright yellow for 2a-c, 3 and 4. 

 

 

Figure 3.  General synthetic scheme to make substituted aza-boron-dipyridylmethene derivatives.  

Precursors can be pyridyl, quinolyl or isoquinolyl.  Detailed procedures are given in the SI. 

 

2.2.  Electrochemistry  

The electrochemical properties of the aD compounds were analyzed by cyclic voltammetry (CV), see 

Table 1.  Oxidation is irreversible for all the compounds, whereas reduction is irreversible for 1a-1b 

and reversible or quasi-reversible in the benzannulated derivatives, i.e.  2a-2c, 3, 4.  The oxidation 
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potentials of the aD dyes span a range of 0.72-1.15 V (Eredox ~ 400 meV).  The reduction potentials 

span a larger range of -1.91 to -2.59 V (Eredox ~ 700 meV).  The potentials of the benzannulated 

derivatives 2a-2c, 3, 4 are anodically shifted relative to 1a-1b, suggesting stabilization of both the 

filled and vacant frontier molecular orbitals, similar to what is observed in the DIPYR system.9b 

Addition of substituents such as isopropyl (2b) or methoxy (2c and 4) groups leads to the cathodic 

shifts in both oxidation and reduction potentials.  For example, the electrochemical potentials of 2c 

are shifted relative to 2a by 0.21 V for oxidation and 0.12 V for reduction.   

  

Table 1.  Electrochemical potentials of 1a-1c, 2a-2c, 3 and 4.a 

 
Eox (V)

a
 Ered (V)

a
 Eredox (V)

1a +0.92 -2.30 3.22 

1b +0.72 -2.59 3.31 

2a +1.15 -1.91 3.06 

2b +1.08 -1.98 3.06 

2c +1.09 -2.07 3.16 

3 +1.10 -2.09 3.19 

4 +1.04 -2.14 3.18 
a Redox potentials obtained from cyclicvoltammetry in  

acetonitrile with ferrocenium/ferrocene as an internal standard.   

 

2.3.  Photophysical characterization  

The UV-visible absorption spectra of 1a-1b, 2a-2c, 3 and 4 are shown in Figure 4.  All of the aD 

compounds have high molar absorptivities ( ~ 104-105 M-1 cm-1), similar to dyes such as fluorescein, 

BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene), and porphyrin.  The aD compounds display 

vibronically structured -absorption bands between 300-445 nm.  The lowest energy absorption 
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bands in compounds 1a-1b (max = 395-410 nm) are broader than the same transitions in 2a-2c, 3 

and 4 (max = 420-445 nm).  The decrease in absorption energy in the benzannulated derivatives 

follows a related decrease in the redox gap, Table 1.  The full width half maximum (fwhm) for the 0-0 

transition in 2a-2c is narrow (fwhm = 310 cm-1) and 3, 4 (fwhm = 515 cm-1).  Narrow linewidths are 

similarly observed for the structurally related DIPYR dyes.9b  The intensity ratios for the 0-0 to 0-1 

transitions in 1a-1b are also smaller than in the benzannulated derivatives.  The narrow linewidths 

along with the large ratio in 0-0 to 0-1 transition intensity suggest that the benzannulated 

compounds undergo minimal structural change in their excited states.   
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Figure 4.  Normalized absorption spectra for aD dyes in 2-MeTHF at 298 K. 

The full width half maximum (fwhm) for the 0-0 transition is narrow in 2a-2c.  
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Photoluminescence spectra of 1a-1b, 2a-2c, 3 and 4 are shown in Figure 5 and their photophysical 

data summarized in Table 2.  The photophysical properties of PMMA films doped at 1 % with the aD 

dyes are similar to those in solution (see SI).  The aD series give fluorescent emission between 

em = 400-450 nm.  Compounds 1a-1b exhibit violet-to-blue fluorescence spectra that are mirror 

images of their absorption bands.  The Stokes shift increases from 6 nm for 1a to 20 nm upon 

addition of phenyl groups in 1b.  The emission profiles of the benzannulated derivatives are 

bathochromically shifted compared to the non-benzannulated analogs, yet they retain similar 

vibrational features with an average Stokes shift of ~ 4 nm.  Phosphorescence spectra for aD 

compounds taken in 2-MeTHF at 77 K have emission maxima ~ 460 nm for 1a-1b and 484-502 nm for 

2a-2c, 3 and 4 (Figure 5).  The E0-0 energies for the lowest excited singlet (S1) and triplet (T1) states 

determined from the peak maxima of the fluorescence and phosphorescence emission spectra, 

respectively are given in Table 2.  The material has a cyanine-like property where there is relatively 

little orbital overlap between the HOMO and LUMO as these orbitals are distributed on different 

atoms in the molecule (vide infra).  Thus, Franck-Condon factors are correspondingly small, 

minimizing vibronic coupling and structural relaxation in the excited state leading to a narrow 

emission line shape.15  In addition, this orbital configuration gives rise to the small singlet-triplet gap 

of these materials.   
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Figure 5.  Normalized emission spectra at room temperature (upper plots), and gated 

phosphorescence emission (bottom plots) recorded after 500 µs delay time at 77 K.  Measurements 

were performed in 2-methyltetrahydrofuran (2-MeTHF).   

 

The photoluminescence quantum yields of the benzannulated compounds in solution and in doped 

PMMA film are high (PL > 0.80).  Polymer films doped at high concentrations (> 1 wt %) display 

bathochromic shifts, broadened emission spectra and lower quantum yields due to self-absorption, 

as expected for fluorophores with small Stokes shifts.16  The excited state lifetimes (= 2 to 4 ns) and 

radiative rates [kr = (0.93 - 3.2) x 108 s-1] are similar across the series, which aligns with common 

organic fluorophores.17  However, the non-radiative rates are an order of magnitude higher for the 

non-benzannulated compounds (knr = 108 s-1) relative to the benzannulated derivatives (knr = 107 s-1).  

The higher non-radiative rates in the non-benzannulated derivatives are attributed to the faster 

rates for intersystem crossing (ISC) in these systems.9b   

Table 2.  Summary of the photophysical parameters for 1a-1b, 2a-2d, 3 and 4.a 
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abs 

(nm) 

em max 

(nm)
b
 

PL 

(ns) 

kr 

(10
8
 s

-1
)

c
 

knr 

(10
8
 s

-1
)

d
 

em max 

(nm)
e
 

EST (eV) 

1a 398 404 0.42 2.1 2.0 2.7 464 0.44 

1b 409 429 0.30 2.1 1.4 3.4 463 0.34 

2a 433 434 0.86 3.3 2.7 0.43 484 0.30 

2b 440 444 0.87 3.8 2.3 0.34 494 0.30 

2c 441 442 0.84 3.3 2.6 0.49 488 0.27 

3 422 432 0.87 3.2 2.8 0.41 498 0.44 

4 433 437 0.90 2.8 3.2 0.36 502 0.39 

a Recorded in 2-MeTHF.  b Fluorescence measured at 298 K.  c kr = PL/.  d knr = (1-PL)/. 

e Phosphorescence measured at 77 K.   

 

The singlet and triplet excited state energies were calculated using TD-DFT (B3LYP functional, 

6-311G** basis set; see SI for details).  Previous studies with BF2-pyridylmethene and BODIPY dyes 

have shown that these DFT tends to overestimate the singlet energy but give acceptable values for 

the triplets.8l, 9b, 18 Thus, a correction factor of -0.44 eV is needed for the calculated singlet energies 

to align with the experimental values.  The corrected S1 and uncorrected T1 state energies predicted 

by these modeling studies fall within 0.2 eV of spectroscopically determined values.  Intersystem 
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crossing transitions between the S1 and T1 states are symmetry forbidden, hence a comparatively 

slow rate for ISC is expected for S1T1.  However, the S1T2 transition is symmetry allowed, so it is 

important for the T2 state to be higher in energy than the S1 state to prevent ISC via S1T2 from 

being competitive with fluorescence.  The T2 state is lower in energy than S1 in 1a-1b, but is 

calculated to be higher than S1 in 2a-2c, 3 and 4.  Thus, low quantum yields (PL  ≤ 42%) for 

derivatives 1a-1b are attributed to exergonic ISC between the S1 and T2 states.9b  Benzannulation in 

aD dyes stabilizes the S1 state more than the T2 state, thereby making the S1T2 transition 

thermodynamically unfavorable.   

The experimental S1-T1 gaps fall in a small range within the aD series (EST = 0.20-0.45 eV).  The 

largest gap is observed for 1a (EST = 0.44 eV), where the singlet and triplet gap is similar to that of 

DIPYR (EST = 0.42 eV) and the benzannulated DIPYR derivatives (EST = 0.43-0.48 eV).9b  

Interestingly, the aD benzannulated derivatives have singlet-triplet gaps smaller than the parent aD 

compound (1a).  Quinoline-based systems (2a-2d) maintain a EST ~ 0.30 eV, whereas isoquinoline 

systems (3 and 4) have a larger gap (EST ~ 0.40).  To determine the origin of the small S1-T1 gaps in 

the aD compounds, the extent of spatial overlap (Λ) between the hole and electron natural 

transition orbitals (NTOs) was calculated for transitions associated with the first excited states (S1/T1) 

(see SI for details).  The value of Λ is near unity for strongly localized excitations such as in - 

transitions (where the hole and electron involve the same orbitals), giving rise to a large EST, and Λ 

= 0 for purely CT transitions with little or no spatial overlap, and thus a small EST.  The computed Λ 

values and experimental S1-T1 gaps of the aD series are intermediate between those of a localized 

transition (anthracene)19 and a nearly pure CT state (4CzIPN)20.  Both S1 and T1 states in the aD 

compounds show similar degrees of spatial overlap (1a-1b, Λ = 0.64-0.68; 2a-2c, 3 and 4, Λ = 0.61-
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0.68).  Λ is 0.84 for anthracene (EST = 1.46 eV) and 0.29 for 4CzIPN (EST = 0.10 eV).  It is evident 

that the small Λ range, with ~ 0.15 eV difference between the highest and lowest value, is 

responsible for the relatively invariant EST ~ 0.30 eV found in the benzannulated derivatives.   

2.4.  Electroluminescence 

OLEDs were fabricated using compound 2a as an emissive dopant since its frontier orbital energies 

and photophysical properties are representative of the aD series.  The photoluminescence 

properties of 2a are also not significantly affected by solvent polarity (see SI), suggesting that a wide 

range of host materials with different dielectric constants can be employed to equal effect.   

Compounds reported to be effective hosts for fluorescent blue dopants in OLEDs, N,N′-di(1-

naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPD),21 bis[2-(diphenylphosphino)phenyl] 

ether oxide (DPEPO)22, 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy)23 and 4,4′-bis(N-

carbazolyl)-1,1′-biphenyl (CBP)24 were investigated as host materials for 2a.  NPD and DPEPO proved 

to be poor host materials; NPD films doped at 1 and 10 wt% percent 2a exhibit a broad 

photoluminescence between 470 nm to 750 nm, whereas OLEDs with an emissive layer of 2a doped 

in DPEPO displayed featureless electroluminescence between 550 nm to 750 nm, which is attributed 

to emission from an exciplex (see SI).  Fortunately, photoluminescence spectra of2a doped at 1 and 

5 wt % in CBP and 26DCzPPy hosts retain the sharp vibronic emission bands observed in solution.  

However, the small Stokes shift of 2a leads to the reabsorption of emitted photons resulting in self-

quenching of the fluorophore when doped at higher concentrations.  The intensity of the (0-0) 

photoluminescent emission peak of 2a (max = 453 nm), decreases markedly in 5 wt % films (Figure 
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6).  The PL efficiency of CBP and 26DCzPPy films doped at 1 wt % were higher (PL = 0.71 and 0.66, 

respectively) than those doped at 5 wt % (PL= 0.39 and 0.43, respectively). OLEDs with a 15 nm 

thick emissive layer (EML) were fabricated with 2a doped at 1 wt % into CBP or 26DCzPPy.  The hole 

transport layer (HTL) consisted of 10 nm of dipyrazino[2,3,-f:20,30-h]quinoxaline 2,3,6,7,10,11-

hexacarbonitrile (HATCN) and 45 nm of 4,4′-cyclohexylidenebis[N,N-bis(4-

methylphenyl)benzenamine]  (TAPC), whereas the electron transport layer (ETL) comprised of 45 nm 

of 4,7-diphenyl-1,10-phenanthroline (Bphen) and 1.5 nm of (8-quinolinolato)lithium (LiQ) (1.5 nm).  

ITO was used as the anode and aluminum as the cathode.  The properties of the OLEDs are tabulated 

in Table 3.   
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Figure 6: PL emission of 1% and 5% 2a dopant in CBP and 26DCzPPY host materials.   
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Figure 7.  (A) Device architecture and energy levels of an OLED with CBP host and 2a dopant.  (B) 

Electroluminescence spectra with increasing current (1-100 mA/cm2) (C) Current vs voltage plots and 

(D) EQE vs current plots for devices using CBP and 26DCzPPy hosts. 
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Figure 7 shows the device architecture (Figure 7A) employing CBP.25   The electroluminescent 

emission spectrum in Figure 7B retains the sharp and narrow vibronic structure with increasing 

current density (J = 1-100 mA/cm2); similar EL spectra are observed in devices using 26DCzPPy (see 

SI).  The turn-on voltage of CBP (Von = 3.5 V; Figure 7C and Table 3) is lower than 26DCzPPy (Von = 

4.5 V).  Additionally, the maximum EQE for CBP (4.5 ± 0.2%) is higher than 26DCzPPy (3.5 ± 0.2%), 

and closer to the theoretical maximum of ~ 5% in a fluorescent OLED on a glass substrate (Figure 

7D).  One drawback in these devices is the steep roll-off in EQE at high current densities, likely 

caused by hole leakage since the HOMO energy in 2a (-6.11 eV) is lower than that of either host 

(CBP, -5.80 eV; 26DCzPPy, 6.05 eV).  The small peak observed between wavelengths of 380 and 410 

nm with increasing current is attributed to emission from Bphen owing to the hole leakage in these 

devices (see SI). The observed EQE of 2a in CBP could be due to one of two scenarios: one where the 

device architecture is optimized and the dopants are isotopically aligned or one where the dopants 

have significant horizontal alignment but the device architecture has not been completely optimized. 

Based on the hole leakage observed in these devices, the latter seems more likely. Further studies 

are needed to determine the molecular orientation of these blue dopants. 

 Table 3: Properties of OLEDs doped with 1 wt % 2a into CBP and 26DCzPPy hosts. 

 

host max EL 

(nm) 

Von  

(V) 

EQEmax 
(%) 

EQE 

(%, 100 cd/m
2
) 

EQE 

(%, 1000 cd/m
2
) 

CIE 

coordinate 

 

CBP  445 3.0 4.5
a 4.1 2.7 (0.15, 0.14)  

26DCzPPy  445 3.7 3.5 3.5 2.7 (0.15, 0.14)  

a Maximum EQE is the average of 7 devices with a standard deviation of 0.13. 



 

  

 

This article is protected by copyright. All rights reserved. 

18 

 

3.  Conclusion 

Substituted aza-boron-dipyridylmethenes (aD) were explored as candidates for fluorescent blue 

dopants in OLEDs.  The synthetic flexibility of these materials makes them easy to modify with 

different substituents to alter their energetics, while also maintaining the high quantum efficiency, 

small S1-T1 gap and small Stokes shift.  Seven substituted aD compounds were synthesized to study 

their photophysical and electrochemical properties.  All of the compounds display blue fluorescence 

(em = 400 - 500 nm) with quantum efficiencies > 85%.  Minimal overlap between the HOMO and 

LUMO leads to the small singlet-triplet energy gaps of these materials (ΔEST ≤ 0.4 eV).  OLEDs 

prepared using one of these derivatives (2a) have low turn-on voltages (3 V) and high efficiency 

(EQEmax = 4.5 ± 0.2%), approaching the maximum theoretical limit of fluorescent OLEDs on glass 

substrates (EQE = 5%).  These studies suggest that 2a and the other compounds in the aD series can 

serve as fluorescent blue dopants in both monochromatic and white OLEDs.  Furthermore, their 

small single-triplet energy gaps present an opportunity to harvest the triplet excitons to increase the 

internal quantum efficiency in hybrid fluorescent/phosphorescent white light emitting diodes.   

 

4.  Experimental Section  

Synthesis:  Precursors for 1a-1b were purchased from Sigma-Aldrich.  Aza-boron-dipyridylmethene 

(aD) synthesis for 1a-1b, 2a-2c, 3 and 4 were prepared using similar coupling reaction synthesis with 

pyridine, quinoline or isoquinoline core.13b The detailed synthesis and characterization of each of the 

compounds are given in the Supporting Information. 
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Electrochemical Measurements:  Cyclic voltammetry and differential pulsed voltammetry were 

performed using a VersaSTAT potentiostat measured at 100 mV/s scan.  Anhydrous acetonitrile 

(DriSolv) from Sigma Aldrich was used as the solvent under nitrogen environment, and 0.1 M 

tetra(n-butyl)ammoniumhexafluorophosphate (TBAF) was used as the supporting electrolyte.  A 

glassy carbon rod was used as the working electrode; a platinum wire was used as the counter 

electrode, and a silver wire was used as a pseudoreference electrode.  The redox potentials are 

based on values measured from differential pulsed voltammetry and are reported relative to a 

ferrocenium/ferrocene (Cp2Fe+/Cp2Fe) redox couple used as an internal reference; electrochemical 

reversibility was determined using cyclic voltammetry.   

Photophysical Measurements:  All samples in fluid solution were dissolved in 2-

methyltetrahydrofuran (2-MeTHF) with absorbance between 0.05-0.15 to prevent reabsorption 

when performing photoluminescence measurements due to the small Stokes shift in the aD series.  

Doped poly(methyl methacrylate) thin films were prepared from a solution of poly(methyl 

methacrylate) (PMMA) in dichloromethane.  Samples of 1a, 2a and 3 (1 vol %) were dissolved in the 

PMMA solution and spin coated on a quartz substrate (2 cm x 2 cm) rotating at 700 rpm for 45 

seconds.  The UV-visible spectra were recorded on a Hewlett-Packard 4853 diode array 

spectrometer.  Steady state fluorescence emission measurements were performed using a 

QuantaMaster Photon Technology International spectrofluorometer.  Gated phosphorescence 

measurements were carried on the fluorimeter using a 500 microsecond delay on samples at 77 K.  

All reported spectra are corrected for photomultiplier response.  Fluorescence lifetime 

measurements were performed using an IBH Fluorocube instrument equipped with 331 nm LED and 

405 nm laser excitation sources using a time-correlated single photon counting method.  
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Photoluminescence quantum yields were obtained using the C9920 Hamamatsu integrating sphere 

system. 

Molecular Modeling:  All calculations reported in this work were performed using the Q-Chem 5.1 

program.  Ground-state optimization calculations were performed using B3LYP functional along with 

6-311G** basis set.  Time dependent density functional theory (TDDFT) calculations on the ground-

state optimized geometries were performed using B3LYP/6-311G** level.  The singlet energies were 

corrected by subtracting 0.44 eV as a correction factor commonly used for cyanine-like dyes.9b  

Device Fabrication: OLEDs were fabricated and tested on glass substrates with pre-patterned, 1 mm 

wide indium tin oxide (ITO) stripes cleaned by sequential sonication in tergitol, deionized water, 

acetone, and isopropanol, followed by 15 min UV ozone exposure.  Organic materials and metals 

were deposited at rates of 0.5-2 Å/s through shadow masks in a vacuum thermal evaporator with a 

base pressure of 10-7 Torr.  A separate shadow mask was used to deposit 1 mm wide stripes of 

100 nm thick Al films perpendicular to the ITO stripes to form the cathode, resulting in a 1 mm2 

device area.  The device structure is: glass substrate/70 nm ITO/10 nm dipyrazino[2,3,-f:20,30-

h]quinoxaline 2,3,6,7,10,11-hexacarbonitrile (HATCN)/45 nm 4,4′-cyclohexylidenebis [N,N-bis(4-

methylphenyl)benzenamine] (TAPC)/1 wt % 2a: 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) 

host/45 nm 4,7-diphenyl-1,10-phenanthroline (BPhen)/ 1.5 nm (8-quinolinolato)lithium (LiQ)/ 

100 nm Al.  A semiconductor parameter analyzer (HP4156A) and a calibrated large area photodiode 

that collected all light exiting the glass substrate in the viewing direction were used to measure the 

J-V-luminance characteristics.  The device spectra were measured using a fiber-coupled 

spectrometer. 
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Supporting Information 

Supplementary Information includes: synthesis of precursors and final compounds, cyclic 

voltammetry curves, photophysical data of the final compounds in 2-methyltetrahydrofuran, 

polymer matrix and various OLED host materials, computational data, Organic LED device fabrication 

and characteristics, TGA, 1HNMR, 13CNMR and CHNS data of final compounds. 

Supporting Information is available from the Wiley Online Library or from the author. 
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A class of blue fluorescent boron-aza-dipyridylmethene with small excited state energy gaps 

(EST < 400 meV) and high photoluminescence efficiencies (PL > 0.8) lead to blue 

monochromatic devices with external quantum efficiencies close to the theoretical maximum. 

The synthetic and optical tunability along with the thermal and chemical stability of these 

materials make them viable options for organic optoelectronics. 

 


