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1  |  INTRODUC TION

Psoriasis is a chronic inflammatory autoimmune skin disorder that 
affects more than 8 million people in the United States.1 Due to the 
nature of visible skin symptoms including the appearance of skin le-
sions, characterized by sharply demarcated red scaly plaques, pru-
ritus, skin pain and often psoriatic arthritis, patients with psoriasis 
generally have decreased quality of life.2,3 However, the pathogenic 
mechanism of psoriasis remains incompletely elucidated and many 
of the currently available therapeutic approaches still have limited 
long- term effectiveness4,5 and substantial patient dissatisfaction.6,7 
As a result, better understanding of the pathogenesis of psoriasis is 
needed in order to develop better treatment options.

Histological and immunological analyses have revealed that 
many of the clinical symptoms of psoriasis are related to abnormal 
epidermal hyperproliferation and differentiation, together with 
increased infiltration and activation of immune cells.8,9 Multiple 
factors, including genetic susceptibility10- 12 and environmental fac-
tors,13 contribute to development of psoriasis. Thus, a recent twin 
study showed that genetic factors may explain up to 68% of the 
variation in susceptibility, while non- shared environmental factors 
may explain the rest.14 Thus, epigenetic changes may play a critical 

role in psoriasis development as it mediates the mechanisms for both 
genetic and environmental factors.12,15,16

Epigenetic modifications are processes that alter genome activ-
ity around DNA without changing DNA sequences and are mitoti-
cally stable. Alteration of gene expression leads to the differential 
regulation of cell signalling pathways. Genetic changes, such as 
single nucleotide polymorphism and copy number variation, can 
affect transcript expression level and are enriched among factors 
associated with diseases.17 Recently, epigenetic mechanisms have 
been shown to regulate gene expression at both transcriptional and 
post- transcriptional levels18,19 and contribute to the pathogenesis 
of various diseases.20- 22 Importantly, similar to genetic alterations, 
if epigenetic modifications are present in germline cells, the modi-
fication can be passed to future generations,23 making epigenetics 
target for some heritable diseases.24

The major epigenetic processes include DNA methylation, 
histone post- translational modifications and non- coding RNAs 
(ncRNAs). DNA methylation25 and histone modifications26 modu-
late chromatin structure and are part of transcriptional regulation, 
while ncRNAs participate in post- transcriptional regulation.27 The 
influence of non- hereditary epigenetic changes is best shown by 
monozygotic twin comparison, with about 4- fold increase in DNA 
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methylation and histone acetylation differences being observed in 
50- year- old twins compared to 3- year- old twins.28

In stark contrast to DNA abnormalities, epigenetic changes can be 
reversible. This nature of epigenetic processes allows for reprogram-
ming of cellular processes,29 making them feasible targets for therapeu-
tics. Thus, many of the epigenetic machineries have been targeted and 
applied in cancer therapy,30 and 6 epigenetic drugs have currently been 
approved by the food and drug administration (FDA) for clinical use.31

Here in this review, we summarize recent discoveries (Figure 1) 
regarding the mechanisms by which epigenetic factors contribute 
to the pathogenesis of psoriasis, the factors that drive epigenetic 
modifications, and discuss how epigenetic changes can be targeted 
therapeutically.

2  |  EPIGENETIC ALTER ATION IN PSORIASIS

2.1  |  DNA methylation

DNA methylation is the best studied epigenetic mechanism. DNA 
methylation is involved in various essential biological processes 
such as genomic imprinting, X- chromosome inactivation and 

silencing of repetitive DNA elements.32 Dysregulation of DNA 
methylation has been identified in a wide range of diseases in-
cluding cancer,33 inflammatory disorders34 and neurological dis-
eases.35 In this process, methyltransferases recruit a methyl group 
to a cytosine or adenine residue at the 5th position on the pyrimi-
dine ring within the CpG dinucleotide.36 When DNA methylation 
occurs in the promoter or enhancer region of a gene, it leads to 
decreased binding of transcription factors that mediate or enhance 
gene transcriptional activity, leading to repression of gene tran-
scription.37 On the contrary, loss of DNA methylation, caused by 
DNA hydroxy- methylation and demethylation, in the promoter or 
enhancer region of a gene will lead to re- activation or increased 
gene expression.38,39

Several whole- genome DNA methylation analyses have 
shown similar number of hypermethylated and hypomethylated 
differential methylated regions (DMRs) in whole skin biopsies 
from patients with psoriasis when compared to normal healthy 
controls,40,41 suggesting the existence of altered methylation 
mechanism in psoriatic skin. A closer look at these differentially 
methylated genes, such as S100A9, SELENBP1 and CARD14, fur-
ther reveals the relationship of DNA methylation and pathologic 
features in psoriasis.42

F I G U R E  1  Epigenetic regulations in psoriasis. DNA methylation, histone modifications and non- coding RNAs are the 3 major mechanisms 
that regulate epigenomic profiles in psoriatic immune cells and keratinocytes. (A) DNA methyltransferases (DMNTs) are upregulated, 
while methylcytosine dioxygenases TET1/2 are downregulated in psoriatic cells, leading to change of DNA methylation level in regulatory 
elements in genes that are important for proliferation, apoptosis and immune responses. (B) Histone methylation and acetylation regulated 
by histone methyltransferases (EZH2), demethylases (Jmjd3) and deacetylases (HDAC1). These changes lead to alteration of expressions 
of genes related to epidermal proliferation and Th17 differentiation. (C) Non- coding RNAs (ncRNAs), including microRNA (miRNA), circular 
RNA (circRNA) and long non- coding RNA (lncRNA), are found differentially expressed in psoriatic cells. These ncRNAs may influence gene 
expression by interacting with each other, binding to transcription factors and mRNA. (D) Microbiota, stress, diet and smoking are some of 
the common factors that may contribute to epigenetic changes in psoriatic cells
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DNA methylation can also serve as a biomarker for effective pso-
riasis treatment. Thus, comparison between psoriatic skin prior to 
and after 1 month of successful anti- TNF treatment (with >75% im-
provement in PASI score) showed that after TNF inhibitor treatment, 
methylation status of several methylated loci became more similar to 
uninvolved skin.41

In addition, recent studies have identified several male- specific 
differential methylated sites in psoriatic skin, which regulate genes 
that are tightly associated with psoriasis.43 This may provide insights 
into the mechanisms why psoriasis severity tends to be greater in 
males.44

As keratinocytes and immune cells are both playing important 
roles in the pathogenesis of psoriasis, reports of dysregulated DNA 
methylome in these cell types suggest their contribution to altered 
biological processed related to psoriasis.

2.2  |  Abnormal regulation of DNA methylation in 
keratinocytes

2.2.1  |  Hypermethylation

In the epidermis of skin, where 90% of cells are keratinocytes, hyper-
methylation has been identified in the promoter area of the p16INK4a 
gene in 30% of patients of psoriasis.45 This leads to decreased expres-
sion of p16INK4a, which is negatively related to disease severity (as 
measured by Psoriasis Area and Severity Index (PASI)). p16INK4a is 
also a tumor suppressor, and its suppression has been demonstrated 
to promote cell proliferation46 providing a plausible explanation how 
hypermethylation relates to increased PASI score.

2.2.2  |  Hypomethylation

Hypomethylation was identified in 12 CpG sites from epidermal 
differentiation complex in psoriatic skin and correlates with en-
hanced expression of several psoriatic signature genes (including 
OAS2, S100A7 and S100A12).41 Decreased methylation has also 
been shown in the intragenic area of CYP2S1 in psoriatic keratino-
cytes.47 Further studies have revealed that these methylation loci 
overlap with the enhancer region of CYP2S1, leading to change of 
CYP2S1 expression affecting proliferation and immune response in 
keratinocytes.48

2.2.3  |  DMNT dysregulation

DNA methyltransferases (DMNTs) are important for the mainte-
nance of DNA methylation in cells. Keratinocytes express DNMT1, 
DMNT3A and DNMT3B.49 Under physiological conditions, DNMT1 
is important for maintaining epidermal progenitor cell function 
and suppression of epidermal differentiation.49,50 Recent study has 
shown that inhibition of DNMT1 activity, using indirubin, suppresses 

WIF1 promoter hypermethylation, leading to inhibition of prolifera-
tion and induction of apoptosis in keratinocytes.51 This also provides 
additional mechanism by which indirubin alleviates psoriasis- like 
skin phenotype in the IMQ- induced murine model.52

2.2.4  |  Hydroxyl- methylation

Another group of enzymes that is important for altered DNA meth-
ylation profiles in cells is the ten- eleven translocation (TET) dioxy-
genase family. TET enzymes cause DNA hydroxy- methylation by 
converting 5- methylcytosine to 5- hydroxymethylcytosine (5- hmC). 
The 5- hmC modification leads to recruitment of a different set of 
binding factors than 5- methylcytosine.53 In the psoriatic epidermis, 
and the IMQ- induced mouse model, decreased expression of TET1 
and TET2 is observed together with loss of 5- hmC modifications in 
several genes related to stem cell homeostasis regulations.54 The 
loss of 5- hmC leads to accumulation of nestin which contributes to 
the formation of psoriasis epidermal architecture.54,55 In addition, 
in vitro modelling suggests that TET2 may regulate inflammatory 
response in keratinocytes through modulation of expression levels 
of pro- inflammatory cytokines and chemokines.56

2.3  |  Abnormal regulation of DNA methylation in 
immune cells

In psoriasis, abnormal DNA methylation has been identified in 
peripheral blood mononuclear cells (PMBCs). Thus, PBMCs ob-
tained from psoriatic patients showed global DNA methylation 
changes, most likely related to the increased DNMT1 activity and 
decreased MBD2 and MeCP2 mRNA level in psoriatic PBMCs.57 
Naïve psoriatic CD4+ T cells also show distinct methylation pro-
file compared to healthy controls or patients with atopic derma-
titis.58 These differential methylated sites were found to coincide 
with histone modifications and transcription factor binding sites, 
suggesting an active influence on gene transcription regulation. 
Combinatory analysis of methylation and transcriptome profiles 
of CD4+ and CD8+ T cells from monozygotic twins discordant for 
psoriasis showed effect on multiple immune response– related 
genes such as IL13, TNFSF11, PTPN6, CCL5, NFATC1 and PRF1.59,60 
Furthermore, in peripheral blood from psoriasis patients, FOXP3 
gene methylation was significantly higher in Tregs from patients 
with psoriasis compared to Tregs derived from normal healthy 
controls.61 The hypermethylation may lead to decreased FOXP3 
expression and reduction in the number of Treg cells resulting in 
unrestrained autoimmune responses.

2.4  |  Histone modification

In eukaryotic cells, octamer of histones is wrapped with 147 bp 
of DNA into nucleosome, which is the fundamental subunit of 
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chromatin. As a result, the alteration of histone influences the nucle-
osome positioning and unwrapping characteristics, which changes 
the accessibility of DNA sequences near the nucleosome region.62 
The histone octamer is composed of two copies of the four core 
histones: H2A, H2B, H3 and H4. Post- translational modifications 
(PTMs) on these histones, including methylation, acetylation, phos-
phorylation, ubiquitylation and ADP- ribosylation, have been shown 
to alter histone- DNA and histone- histone interactions, which then 
changes the transcription activity.62 In skin, several histone modifi-
cations have been described and implicated in the pathogenesis of 
psoriasis. Here, we summarized some of the more recent discoveries.

2.4.1  |  Histone methylation

Histone methylation is normally observed on the side chains of lysine 
and arginine, and multiple methyl groups could be added to the histones: 
mono- , di-  and tri- methylation are all observed.63 Different than DNA 
methylation, histone methylation can result in either an active or re-
pressed status of transcriptional activity. The result of histone methylation 
is based on both methylation site and number of methyl groups added.

Histone methylation is important in regulating cytokine produc-
tion and drug responses in psoriasis. A recent study showed that 
H3K9me2 is important in modifying IL- 23 expression in keratino-
cytes, and keratinocyte- derived IL- 23 is sufficient to drive psoriatic 
phenotype in a psoriasis murine model.64 Increased H3K4 methyla-
tion has been identified in PBMCs from psoriasis patients compared 
to controls, potentially contributing to differentially expressed 
genes in PBMCs.65 Interestingly, following treatment with biologics, 
H3K4 and H3K27 methylation level differs significantly between 
drug responder and non- responder,65 supporting a role of histone 
methylation marks as potential biomarkers for treatment response.

In psoriasis epidermis, histone H3K27me3 modification and en-
hancer of zeste homolog 2 (EZH2), a histone H3K27 methylase, are 
both upregulated.66 Pharmacological and genetic inhibition of EZH2 
leads to downregulation of H3K27me3, suppresses epidermal pro-
liferation and ameliorates psoriatic phenotype in mouse model.66 
However, it still remains unclear whether this protective effect is 
achieved by H3K27me3 downregulation given that EZH2 can also 
act as a methyltransferase on non- histone targets such as STAT3.67

Histone H3K27me3 modifications are also important for Th17 
differentiation. Th17 cells plays a pathogenic role in psoriasis, and 
inhibition of IL- 17 signalling frequently leads to marked clinical im-
provement.68 Overexpression of the H3K27me3 demethylase Jmjd3 
leads to reduced H3K27me3 levels and promotes Th17 cell differen-
tiation.69 Further studies are needed to determine the role of Jmjd3 
in the pathogenesis of psoriasis.

2.4.2  |  Histone acetylation

Histone acetylation typically occurs on the lysine side chain of 
the N- terminal tail histone proteins. The addition of acetyl group 

neutralized the positive charge of lysine and results in weaker inter-
actions between histone and DNA leading to open chromatin and 
facilitation of active transcription.

Reduced level of acetylation in H3 and H4 has been observed in 
psoriatic PBMCs, with H4 acetylation levels correlating negatively 
with disease severity (as measured by PASI).65,70 One of the mecha-
nisms that may link altered histone acetylation in immune cells with 
psoriasis development involves GLS1- mediated glutaminolysis.71 In 
this paper, GLS1 was shown to promote Th17 and γδ T17 differenti-
ation through enhancement of H3K9Ac and H3K27Ac in the IL17A 
promoter region.71

Histone acetyltransferases (HATs) and histone deacetylases 
(HDACs) are two major groups of enzymes that are responsible for 
histone acetylation. HDAC- 1 has been shown to be upregulated in 
psoriatic skin.72,73 Previous studies have shown that HDAC inhibi-
tion regulates Treg function74 by increasing Foxp3 expression75 and 
preventing production of IL- 17A.76 As Treg plays an important role 
in the pathogenesis of psoriasis,77 HDAC may be important for im-
mune regulation in psoriasis. Moreover, HDAC has been shown to 
suppress expression of inflammatory genes in both macrophages 
and keratinocytes.78 Another histone deacetylase, Sirtuin- 1 (SIRT1), 
may also have a role in psoriasis pathogenesis. SIRT1 is regulated by 
TNF- a and is decreased in psoriatic skin.73,79 Several studies have 
shown that SIRT1 activation can induce anti- inflammatory80 and 
apoptotic81 effects in keratinocytes. However, histone substrates of 
SIRT1 that may contribute to the psoriatic phenotype are yet to be 
identified.

Recently, inhibition of BET proteins, readers of histone acetyl-
ation, has been shown to suppress IMQ- induced psoriatic pheno-
types in mice.82 This study showed that BET inhibition decreases 
the expression of RORC, IL- 17A and IL- 22, which are all important 
pro- inflammatory factors in psoriasis. This further indicates the im-
portance of histone acetylation in the pathogenesis of psoriasis.

2.5  |  Non- coding RNA

Non- coding RNAs (ncRNAs) are RNAs that are not translated 
into protein. Some of the major groups of ncRNAs are micro-
RNA (miRNA), long non- coding RNA (lncRNA) and circular RNA 
(circRNA). These non- coding RNAs are known to perform their 
role through interacting with RNA, DNA and proteins, leading 
to changes of their structure and ultimately alteration of gene 
expression.83,84

2.5.1  |  MicroRNA

MicroRNAs are single- stranded, small non– protein- coding, en-
dogenous RNAs. miRNAs regulate gene expression primarily by 
binding to the 3’ UTR of mRNA, forming miRNA- mRNA complex 
and leading to degradation of mRNA. Depending on the binding 
partners, miRNAs can regulate various cellular processes. Aside 
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from interacting with mRNA, miRNAs are able to modulate gene 
expression by influencing epigenetic modifications. miRNAs are 
able to produce mitotically heritable gene silencing and may con-
tribute to human diseases by modulating DNA methylation in CpG 
island.85 In addition, miRNAs are showed to target enzymes that 
are important for DNA methylation86,87 and histone modifica-
tions.88,89 Together, these suggest important roles of miRNAs in 
epigenetic processes.

miRNA125b is one of the most downregulated miRNAs in lesional 
psoriatic skin. In vitro studies have shown that increased expression 
of miRNA125b suppresses keratinocyte proliferation and promotes 
differentiation. miRNA125b has been shown to regulate expression 
and translation of fibroblast growth factor receptor 2 (FGFR2)90 and 
ubiquitin- specific peptidase 2 (USP2) in keratinocytes.91 A recent 
study further suggested that miRNA125b can mediate keratinocyte 
proliferation through suppression of BRD4 expression, thus influ-
encing Jagged- 1/Notch signalling pathway.92

miR- 200c is elevated in plasma and lesional skin from psoriasis 
patients compared to normal healthy control. More importantly, 
miR- 200c levels are positively correlated with disease severity in 
psoriasis.93 One of the confirmed targets of miR- 200c is SIRT1,94 a 
histone deacetylase influencing inflammatory and proliferation pro-
cess in psoriasis, as mentioned before. Furthermore, circulating miR- 
200c in psoriasis is positively correlated with cardiovascular risk.93

microRNAs may also regulate the function of T cells. microR-
NA- 210 (miR- 210) is highly expressed in psoriatic CD4+ T cells and 
psoriatic skin.95 The inhibition of miR- 210, through both pharmaco-
logical and genetic methods, results in amelioration of psoriasis- like 
symptoms in a mouse model, suggesting the crucial role of miR- 210 
in modulating immune responses.95 An in vitro study further demon-
strated that small extracellular vesicles, derived from psoriatic ke-
ratinocytes, have an increased expression of miR- 381- 3p.96 The 
increased miR- 381- 3p was shown to target several genes including 
UBR5, FOXO1 and RORC2, and influencing the polarization of Th1 
and Th17 cells.

Aside from those mentioned above, multiple other miRNAs 
have been found to influence keratinocyte function in psoria-
sis. MiR- 125b- 5p,97 miR- 181- 5p,97 miR- 187,98 miR- 145- 5p,99 miR- 
320b,100 miR- 20a- 3p,101 miR- 876- 5p,102 miR- 99a,103 miR- 4516,104 
miR- 330,105 let- 7b,106 miR- 155,107 miR- 194108 and miR- 138109 
are downregulated in psoriatic keratinocytes. miR- 223,110 miR- 
744- 3p,111 miR- 31,112 miR- 126,113 miR- 17– 92114 and miR- 146115 
are upregulated in lesional psoriatic skin. In addition, upregulation 
of miR- 31116 and miR- 155117 has been shown to affect expression 
of inflammatory mediators in psoriatic skin. Let- 7b downregula-
tion is related to increased T- cell proliferation and IFN- g secretion 
through STAT3 targeting.118

2.5.2  |  Long non- coding RNA

lncRNAs are non– protein- coding RNAs that are longer than 200 
nt. LncRNAs act as epigenetic modulators through recruitment of 

transcription factors and chromatin modifying proteins to transcrip-
tionally active loci.119

Microarray studies have identified around 2200 lncRNAs that are 
dysregulated in psoriatic skin.119 Another study using RNA- seq iden-
tified over 4,000 differentially expressed lncRNAs in psoriatic skin 
compared to non- lesional and healthy skin.120 Further co- expression 
analysis showed that differentially expressed lncRNAs are involved 
in immune related functions and epidermal differentiation.

One of the highly upregulated lncRNAs in psoriasis is lncRNA- 
RP6- 65G23.1. By altering the expression of Bcl- xl, Bcl2 and influ-
encing ERK1/2- AKT signalling pathway, RP6- 65G23.1 was shown to 
promote keratinocyte proliferation and suppression of apoptosis.121 
Similarly, lncRNA MIR31HG is upregulated in psoriatic lesions and 
influences keratinocyte proliferation through G2/M cell cycle ar-
rest.122 In addition, lncRNA- MSX2P1 is upregulated in IL- 22- treated 
keratinocytes and induces increased cell proliferation and expres-
sion of S100A7 through suppression of miR- 6731- 5p.123

Psoriasis susceptibility- related RNA gene induced by stress 
(PRINS) is another important lncRNA that has been implicated in the 
pathogenesis of psoriasis. Thus, PRINS is upregulated in both lesional 
and non- lesional psoriatic skin.124 It can induce the expression of the 
anti- apoptotic protein G1P3 in psoriatic keratinocytes, thus promot-
ing cell proliferation.125

Another lncRNA is the maternally expressed gene 3 (MEG3), 
which is downregulated in psoriatic skin, potentially due to the expo-
sure of TNF- a.126 MEG3 binds to miR- 21 and influences proliferation 
of skin keratinocytes through the inhibiting effect of miR- 21 towards 
caspase- 8.126

2.5.3  |  Circular RNA

Circular RNAs are long non- coding RNAs that are covalently linked 
on the 5’ and 3’ termini. As circRNAs contain binding motifs for sev-
eral miRNAs and proteins, they are able to influence biological pro-
cesses through binding to miRNA and proteins.127

Transcriptome analysis demonstrated that circRNAs are less 
abundant in psoriatic skin compared to non- lesional and healthy 
skin.128 The circRNAs, ciRS- 7 and circZRANB1, are identified as 
promising psoriasis diagnostic biomarkers. ciRS- 7 inhibits miR- 7 ac-
tivity through binding.129 As miR- 7 is known to negatively regulate 
genes that are involved in cell growth,130 its inhibitor ciRS- 7 may 
contribute to the increased cell proliferation in psoriasis. However, 
further functional studies are needed to validate the circular RNAs 
in psoriasis pathogenesis.

3  |  ENVIRONMENTAL FAC TORS THAT 
CONTRIBUTE TO THE EPIGENETIC 
CHANGES IN PSORIA SIS

Environmental factors are believed to be important drivers of 
psoriasis pathogenesis.131 They are also considered to be a major 



    |  1161ZENG Et al.

promoter of epigenetic modifications that lead to transgenerational 
inheritance and phenotypic variation in human diseases. Here, we 
summarized how some of the environmental factors may contribute 
to psoriasis symptoms through epigenetic modifications.

3.1  |  Microbiota

The skin microbiome population in psoriatic skin differs markedly 
compared to healthy skin.132 Activated immune responses, and high 
expression of various antimicrobial proteins, lead to dysbiosis re-
sulting in reduced population of bacteria such as Corynebacterium 
spp.133 Interestingly, gut microbiota is also altered in patients with 
psoriasis.134 Using antibiotic that target Gram- positive bacteria in 
IMQ- induced psoriatic murine model led to decreased IL- 17-  and 
IL- 22- producing T cells,135 suggesting the importance of micro-
biota in influencing inflammatory processes central to psoriasis 
pathogenesis.

Several epigenetic modifiers are strongly influenced by microbi-
ome and their metabolites. For example, short- chain fatty acids se-
creted by gut bacteria are able to inhibit HDAC activities.136 Another 
example is that depletion of gut microbiome leads to changes in the 
methylation of the TLR4 gene.137 In addition, different microbiota re-
sult in different expression signature of miRNA in mice.137 Together, 
these findings suggest the importance of endogenous bacteria in 
modifying epigenome in cells. However, not much information is 
available regarding whether skin microbiota directly changes the 
epigenetic profile in skin, and how different microbiota may contrib-
ute to psoriasis pathogenesis. Further research is needed to address 
this.

3.2  |  Diet

Epidemiology studies have found that different diets influence 
treatment response in psoriasis. Low calorie and fish oil diet have 
shown to lead to improvement in disease activity.138 One of the 
ways diet may alter epigenetic profile is through dietary intake and 
the effect of dietary metabolites in influencing microbiota com-
position.139 Another way is through direct influence on epigenetic 
modifying enzymes. Several dietary components, such as butyrate, 
sulphoraphane, curcumin, resveratrol and genistein, are able to 
change the activity of HDAC, HAT and DNMTs.140 Fish oil that con-
tains omega- 3 polyunsaturated fatty acids has been shown to affect 
DNA methylation profile.141,142

3.3  |  Smoking

Cigarette smoking has been shown to contribute to the onset of 
psoriasis, disease severity, response to treatment and increasing in-
cidence of various psoriasis- associated comorbidities.143 A genome- 
wide DNA methylation study suggested that, when comparing 

current smokers with never smokers, that there were 18,760 differ-
entially methylated CpG sites in relation to 7,201 annotated genes.144 
Smoking may also influence histone modifications by decreasing the 
activity of HDAC145 and increasing histone methylation.146 In addi-
tion, smoking influences epigenetic modifications through altering 
the expression of miRNAs147 and lncRNAs.148

Cigarette and cannabis smoking have been shown to lead to hy-
permethylation of two CpGs located in GPR15 and AHRR genes in 
helper T cells, leading to increased number of GPR15+CD3+CD4+ 
cells in peripheral blood, a well- known marker for autoimmune dis-
eases, including psoriasis.149

3.4  |  Stress

Epidemiology study suggested that stress contributes to both onset 
and exacerbation of psoriasis.150,151 Experiments using IMQ- induced 
psoriasis- like mouse model found that emotional stress induces higher 
expression of pro- inflammatory cytokines and resulted in more severe 
epidermal hyperplasia.152 Furthermore, other studies have shown 
that, when under stress, patients with psoriasis experience decreased 
level of cortisol.153 Aside from its anti- inflammatory effect, cortisol 
induces epigenetic modifications including DNA methylation,154- 156 
histone modifications157 and miRNA expression.158 Although no stud-
ies have been done to determine whether stress causes epigenetic 
changes in psoriatic skin, the altered cortisol level159 and its relation-
ship with epigenetic changes suggest a potential role of stress in con-
tributing to the epigenomic profile in psoriasis.

4  |  EPIGENETIC THER APY

The concept that epigenetic factors play an important role in 
the pathogenesis of psoriasis is emerging, and increasing effort 
has been put into targeting epigenetic modifiers. For example, 
5- azacytidine (5- Za) has been used as inhibitor of DNA meth-
ylation.160 Topical application of 5- Za on mouse model shows 
amelioration of IMQ- induced epidermal thickening, suggesting a 
potential therapeutic use of methylation inhibitor on psoriasis.161 
Histone acetylation and deacetylation enzymes are another popu-
lar target in psoriasis treatment. HDAC inhibitor piperlongumine 
has been shown to alleviate IMQ- induced skin inflammation and 
keratinocyte hyperproliferation,78 while another inhibitor trichos-
tatin A has been shown to prevent T- cell differentiation towards 
pathogenic Th17 polarization.162 Furthermore, clinical trial using 
SIRT1 activator in treating psoriasis demonstrated significant his-
tological improvement.163

Several studies have also shown that alteration of non- coding 
RNA can be effective in treating psoriasis. Topical treatment of miR- 
210 inhibitor showed decreased acanthosis and inflammatory infil-
tration in IMQ- induced psoriasis.164 Interestingly, treatment using 
ultrasound to target Q- starch and miR- 197 resulted in significant 
improvement in psoriatic histology.165
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5  |  CONCLUSION

Emerging importance of epigenetic regulation has been established 
in the pathogenesis of psoriasis. The specific epigenetic regulations 
in psoriasis can provide new targets for treatment development 
and serve as potential biomarker for diagnosis and treatment re-
sponse.166 However, greater understandings of epigenetic modifi-
cations in psoriasis are needed. For example, many of the current 
epigenetic studies have been performed in in vitro models that only 
contain a single cell type, but more complex models are required to 
fully assess the effectiveness of epigenetic therapies. Combinatorial 
therapies that utilize epigenetic targeting approaches together with 
standard psoriasis treatment should be also explored. As medications 
that target epigenetic modulators are rapidly being implemented in 
other diseases, a deeper understanding of the epigenetic mechanism 
involved in psoriasis pathogenesis will accelerate and facilitate the 
future use of epigenetic modifiers in psoriasis management.
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