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1 | INTRODUCTION

The Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) conduct
post-licensure vaccine safety monitoring using the Vaccine Adverse Event Reporting System (VAERS).!> VAERS accepts
spontaneous reports of suspected vaccine adverse events (AEs) after administration of any vaccine licensed in the
United States from 1990 to present. As a national public health surveillance resource, VAERS is a key component
in ensuring the safety of vaccines. The VAERS report form includes data fields for date of vaccination, vaccine(s)
administered, date of onset and description of the AE, recovery status, and other relevant information. VAERS data
from the primary reports, with identifying patient information removed, are publicly available on the VAERS website
(www.vaers.hhs.gov/data/index); for a detailed description of the VAERS system and its limitations, see Reference 3.
Numerous methods have been used to conduct safety studies with the VAERS database.*1 In these methods, a con-
tingency table is generally created to display counts for all vaccine and AE pairs during a specified time period. In this
table, each row represents a vaccine and each column represents an AE. Each cell in the table contains the number of
VAERS reports that mention both that vaccine and that event for a defined period. A statistical measure is then calculated
to quantify the association between an AE and a vaccine. A large value of the measure shows a strong association, which
might indicate a vaccine safety problem (called “signal”). A signal is considered evidence that an AE might be caused by

Abbreviation: ABC, a black cat; DEF, does not ever fret; GHI, goes home immediately.
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vaccination and warrants further investigation or action. However, these methods frequently identify many AE signals
and they are often hard to interpret in a biological context.

AEs are naturally related; for example, events of retching, dysphagia and reflux all belong to an AE at a higher-level
(e, the abnormal digestive system). AE group analysis (ie, enrichment analysis) is able to provide meaningful interpreta-
tion for the underlying safety issues. For example, strong signals of muscle weakness, loss of sensation and seizures might
indicate a potential problem in the nervous system. Moreover, enrichment analysis is able to detect AE groups containing
weak/moderate but concordant AE signals. For example, the AE group of respiratory system includes five AEs: pneumo-
nia, sinusitis, asthma, bronchitis, and rhinorrhea, which all carry weak to moderate signals. Each individual AE might
not be detected due to lack of statistical power, but the respiratory system as a whole might be detected by the enrichment
analysis. In this paper, we use the phrase “enriched AE groups” to describe AE groups containing unexpectedly large
number safety signals.

The largest resource for AE ontology is MedDRA (Medical Dictionary for Regulatory Activities).!” It has a five-level
hierarchy. VAERS uses the second lowest term, “Preferred Terms" (PT), which is a distinct descriptor for a symp-
tom, sign and disease. Related PTs are grouped into higher-level AE terms, including “High Level Group Terms"
(HLGT) and “System Organ Classes” (SOC). Higher layers of HLGT and SOC represent biologically and clinically
meaningful categories for the AEs observed on the lower PT level. The AE ontology has been used to classify AE
signals.'®2! For example,'® showed that most AE signals identified on the PT level were found to be in behav-
ior/neurological AEs on the SOC level. However, these findings are based on an ad hoc strategy of comparing
proportions of signaled AEs between AE groups. In this paper, we present rigorous statistical methods to iden-
tify AE group that are associated with a vaccine of interest and quantify AE group uncertainty in the enrichment
analysis.

Over the last few decades, bioinformatics methods have used gene ontology to systematically dissect large gene
lists in order to assemble a summary of the most enriched and pertinent biology. The first idea for gene enrichment
analysis is to take the user’s preselected significant genes, and then compare the difference between the proportion
of significant genes that fall into the gene set and the proportion of significant genes that do not.?> There are sev-
eral drawbacks of this method as discussed in References 23,24. For example, it depends on an arbitrary threshold
to select the significant genes, and it is incapable of detecting low but concordant signals (below the used thresh-
old) from genes within a gene set. Also, it relies on the gene-gene independence assumption that is known to
be biologically invalid. A more recent approach is the Gene Set Enrichment Analysis (GSEA) method,?>?¢ which
assumes that few major gene expression changes have a considerable effect on pathways function, and the sum of
several weaker and concurrent changes in pathways’ genes impact the general functioning as well.”” GSEA uses
gene ranks based on a difference measure, such as fold change, and compares the distribution of gene ranks from
the gene set to the distribution for the rest of the genes based on a Kolmogorov-Smirnov statistic. Compared to the
“cut-off” strategy based on gene significance, GSEA is more statistical powerful by using more data information of the
ranks.

The enrichment analyses for gene sets can be applied to study AE groups. However, important issues exist when gene
enrichment analysis is applied to AE enrichment analysis. Unlike continuous gene expression data, AE data are counts,
and a large amount of AEs have a zero count. For example, in the VAERS dataset, approximately 40% AEs were never
mentioned with the “FLU4" vaccine, resulting in 40% AEs with a zero count. The current gene enrichment tests can not
handle excessive zeros. Additionally, we encountered 20% ties in a ratio measure (as defined in the Methods section below)
with the count data. The current GSEA assigns random ranks to the tied statistics, which can lead to inaccurate results.
In this work, we extend the current enrichment tests to appropriately address these two issues to perform AE enrich-
ment analysis. The proposed method was implemented as R package AEenrich https://CRAN.R-project.org/package=
AEenrich.

2 | METHODS
2.1 | Data structure
For a particular vaccine (denoted as the target vaccine), we create a 2 X N contingency table (see Table 1), with two rows

for the target vaccine (Yes/No) and N columns for the AEs reported in the VAERS database during a study period. In this
table, ny; is the number of VAERS reports that mention both the target vaccine and the ith AE in a defined period, n,; is
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TABLE 1 Adverse event (AE) count data

. ) Vaccine/AE AE, AE, e AEy Total
in a2 X N table for a target vaccine
Yes ni nip eee mn ny.
No ni—ngp ny—njy oo n.N—nmy n. —nj.
Total n, n, ny n.

the total number of reports that mention the ith AE, n;. is the total number of reports that mention the target vaccine,
and n.. is the total number of reports in the study period.

2.2 | AEKS: AE enrichment analysis based on modified K-S statistic

In this section, we extend the current GSEA?>% to handle AE data with ties and excessive zero. Poisson distribution has
been commonly used to model the ny;,*11-28

ny; ~ Poisson(n.; x 4;), for i=1, ... N, (1)

where 4; is the reporting ratio (RR) for the ith AE with the target vaccine, with a large value indicating a strong safety
signal. RRs are the statistics of interest and we will use their maximum likelihood estimates "—1s as observed values. Our

i

goal is to determine whether members of a AE group tend to have higher RRs.

2.21 | Calculate enrichment score for each AE group

1. Rank order the N AEs based on the statistic RR. Assume that there are J distinct RRs (J < N) and we order the N AEs
from the highest to the lowest rank as L = {AE,, AE,, ... , AE;}, where AE; = {AE;, ... AEj,, } is a set of n; AEs with
same RR.

2. Extend GSEA to handle tied RRs. Given position i in L, evaluate the fraction of AEs in group G (“hits") and the fraction
of AEs not in G (“misses”). N denotes the number of distinct AE terms in group G.

. 1
Phit(G, l) = Z Z N—l(AEjk (S G),
J<iksn N C

Puiss(G.) = Y Y —L—1(AE; ¢ O),

i=izn N ~No

where 1(-) is the indicator function. We then compute a running sum across all N AEs. The K-S statistic for AE group
G is defined as KS(G) = max;<;<j(Phit(G, i) — Pniss(G, i), which is the maximum value that Py; is above Pp;ss. When
many members of G appear at the top of the list, KS(G) is high.

3. Handle zero counts. The maximum likelihood estimate for 4; is Z—l Thus, a zero count will produce a zero RR. The

above KS(G) treats zero RRs as ties and can not efficiently handle excessive zeros. For example, it may identify a group
as enriched if the group has majority of AEs with zero counts and only a few AEs with large signals. To include the
number of zero counts in the enrichment test, we define group G as enriched only if it contains a smaller proportion
of zero counts compared to the rest of groups. To this end, we let pg denote the proportion of zero counts in group G,
pgc denote the proportion not in group G, and create an indicator function by comparing these two zero proportions.
The function is zero if p§ is larger than pS".

4. Combine the statistics in 2 and 3, we propose a composite enrichment score (ES)

ES(G) = KS(G) x 1(p§ < p§). @)
where ES(G) € [0, 1], and ES(G) is zero if the proportion of zero counts in group G is larger than the proportion of zero
counts in other groups. ES(G) is large if group G has a smaller proportion of zero counts than the remaining groups
and the nonzero counts in group G are concentrated at the top of the list L.



4272 Wl L EY—Stati stics LI AND ZHAO

TABLE 2 A2by 2 contingency table for a vaccine-AE; pair

Vaccine/AE; Yes No
Yes ny; n.;—ny;
No n;—ny; (n.—ny.)—(n;—ny)
2.2.2 | Estimate statistical significance for an AE group

The distribution of ES(G) under the null is not analytically tractable and is obtained using Monte Carlo hypothesis

testing.?® Under the null hypothesis, Hy: A1 = A, = ... = Ay = A¢. Under this hypothesis, ny; ~ Poisson(n.; X Ay), for i=
1, ... ,N.Based on the relationship between Poisson and Multinonial distributions, the joint distribution of (ny1, ... , n1n),
conditioning on Zﬁil ni =ny. and (n.4, ... ,ny)is
(I’lll, ny, ..., nlN)lnl.; niy, ... , .y ~ multinomial (l’ll., {}"1, ey VN}) (3)
n;Ay n,;
where r; = =22 = -,
n. Ay n.

Given this multinomial distribution, we generate the AE count data and compute ES’(G) using formula (2). We repeat
this process M times (M is generally large; say 5000) to create a null distribution of ES*(G). The P-value is the proportion
of ES’(G) that is greater than or equal to the observed ES(G). Finally, we apply the Benjamini-Hochberg procedure®
converting P-values into g-values to control the false discovery rate.

2.2.3 | Estimate statistical significance for individual AEs within the AE group

Based on the null distribution generated by the Monte Carlo hypothesis testing method, we can also estimate the statistical
significance of each individual AE by computing the proportion of RR" in the null distribution that is greater than or
equal to the observed RR. The Benjamini-Hochberg procedure is then used to adjust for the false discovery rate.

2.3 | AEFisher: AE enrichment test based on modified Fisher’s exact test

This approach first assesses the significance of the association between each AE and the vaccine and then uses a “cutoff”
strategy to classify the AEs into signaled and unsignaled AEs. To test the significance of the association, we apply the
Fisher’s exact test to data in a 2 by 2 table (see Table 2) and then use the Benjamini-Hochberg procedure to convert P-values
into g-values for controlling the false discovery rate. A signaled AE is defined based on both the strength of the signal and
statistical significance, such as g-value <0.1 and odds ratio (OR) >1.5.

To conduct the enrichment analysis for a particular AE group G, a conventional approach is to compare proportions
of the signaled AEs in group G and not in group G. If there are significantly more signaled AEs in group G, then group G
is enriched. To incorporate the excessive zero RRs in the test, we propose a composite enrichment score

ES(G) = OR? - 1(p§ < p%"),

where ORY is the odds ratio estimating the association between signaled AEs and group G. A large OR® (OR® > 1) indi-
cates more signaled AEs in group G than in the remaining groups. As in the AEKS test, 1(pS < p$') ensures that an
enriched group has the proportion of zeros smaller or equal to remaining groups.

2.3.1 | Estimate statistical significance for an AE group

We perform a permutation test to assess the significance of the enrichment score for group G by randomly reshuffling
the signaled/unsignaled labels. This in spirit is the same as the Fisher’s exact test of fixing the row and column mar-
gins (here, the group size and the total number of signaled and unsignaled AEs are fixed), while considering the zero
proportions.
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FIGURE 1 ROC curves using K-S statistics (AEKS vs GSEA) (left) and Fisher’s exact tests (AEFisher vs Fisher’s exact test) (right). The
ROC curve is constructed using P-values from the 10 simulated datasets. By comparing the enrichment decision from the test to the true
enrichment status in the data generating step, the true and false positive rates were estimated and connected to make the ROC curve [Colour
figure can be viewed at wileyonlinelibrary.com]

3 | SIMULATION STUDIES

We ran simulation studies to investigate our proposed methods and compared them to existing enrichment tests. To make
simulation studies more realistic, data in simulated datasets were made similar to the real dataset. We first created the
AE group structure using the AE groups defined on the HLGT level in MedDRA. In each simulated dataset, we set the
number of AE groups to be 150 and determined the group size, Ng, by randomly sampling the group size data in MedDRA
under the constraint of Ng > 10. Similarly, the total count of each AE was determined by randomly sampling the AE
total count data in VAERS. Then we randomly selected 10% of the AE groups as enriched and the remaining groups as
un-enriched. In VAERS, the proportion of zero AEs per group, po, is between 10% and 60%, therefore, we used py in this
range in simulations. We generated a nonzero AE count from a Poisson distribution in formula (1) with the rate parameter
randomly sampled from the estimated A’s in VAERS. Specifically, in an enriched group, Py was sampled uniformly from
0.1 to 0.3 and the rate parameter was constrained to be larger than 0.3. In an un-enriched AE group, we either set the
range of po between 0.4 and 0.6 without constraining the rate parameter, or set the rate parameter smaller than 0.4 with
Do in the range of 0.1 to 0.6.

To compare performance of different methods, we constructed the ROC curve using P-values from the 10 simulated
datasets. By using a threshold on the P-values, an AE group is identified as enriched if it has a P-value smaller than
the threshold. By comparing the enrichment decision from the test to the true enrichment status in the data-generating
step, we estimated the true positive rate (ie, the percentage of AE groups that are correctly identified as enriched) and
false positive rate (ie, the percentage of AE groups that are incorrectly identified as enriched). By varying the thresh-
old, we obtained a series of false and true positive rates and then connected them to make an ROC curve. As shown in
Figure 1, AEKS and the AEFisher performed significantly better than the GSEA and the conventional Fisher’s exact test,
respectively.

In order to study the effect of sample size on the results of the analysis, we repeated the simulation studies with dif-
ferent sample sizes. Specifically, we let the total count, n;, for the ith AE (i=1, ... ,N) equal to 10%, 20%, 40%, 60%, or
80% of the original count, such that the total sample size is reduced proportionally. All the parameters in the data gener-
ating model remain the same. For each sample size, we calculated the area under the ROC curves (AUC) (see Figure 2).
As shown in this figure, both AEKS and AEFisher improve its performance in distinguishing enriched from un-enriched
AE groups as sample size increases, and AEKS performs better than AEFisher for different sample sizes. This result is
expected as AEKS is more statistical powerful by using ranks of individual AEs rather than the binary (significant vs
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104 FIGURE 2 Areaunder the ROC curves for AEKS and
//' AFEFisher with the reduced sample sizes. The ROC curve is
constructed using p-values from the 10 simulated datasets. By
comparing the enrichment decision from the test to the true
091 enrichment status in the data generating step, the true and false
positive rates were estimated and connected to make the ROC curve
[Colour figure can be viewed at wileyonlinelibrary.com]
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nonsignificant) data from the single-AE analysis in AEFisher. Moreover, the advantage of AEKS over AEFisher is more
obvious when the sample size is small. One reason is that a small sample size produces inaccurate estimations on statistical
significance for individual AEs in AEFisher, thereby leading to under-performed enrichment test.

4 | APPLICATION TO VAERS DATASETS

We applied AEKS and AEFisher to VAERS dataset to study flu and hepatitis vaccines. In both studies, we used the HLGT
level of MedDRA to define AE groups. In AEKS, a signaled AE is defined if the g-value <0.1. In AEFisher, a signaled AE
is defined if the g-value <0.1 and OR >1.5. In both AEKS and AEFisher, an AE group is enriched if g-value <0.1.

4.1 | Study fluvaccines

Influenza vaccine is given in large quantities and it prevents millions of illnesses and flu-related doctor’s visits each year.
CDC recommends the appropriate vaccine during the flu season. Options include inactivated influenza vaccine (ITV)
(“FLU3" or “FLU4" in VAERS) or live attenuated influenza vaccine (LAIV) (“FLUN3" or “FLUN4" in VAERS). By restrict-
ing the age of the vaccine recipients between 2 and 49, there were 139 353 and 21 820 reports for IIV and LAIV, respectively.
To compare LAIV relative to 1TV, we created a contingency table with two rows representing vaccine (LAIV vs IIV) and
3534 columns representing AEs. These AEs were classified into 287 AE groups. As in the GSEA, we removed AE groups
containing less than 5 AEs, resulting in 132 AE groups with a total of 1,828 AEs. Finally, we applied both AEKS and
AEFisher to identify enriched AE groups based on the data contained in this 2 X 1828 contingency table.

As shown in Table 3, of the 132 AE groups we studied, both AEKS and AEFisher identified the same two enriched
AE groups: respiratory tract infections and upper respiratory tract disorders. Relative to IV, LAIV is associated with
increased risk of respiratory system disorders. Individual AE identified in each group include rhinitis, nasal congestion,
sinus disorder, which have been reported before.3%32 New signals, such as epistaxis, are clinically interesting, and it might
be true signals that need to be validated in large health care databases.

4.2 | Study hepatitis A and B combination vaccines

In this study, we were interested in identifying safety problems that are likely due to interactions of two vaccines when
they are administered to an individual at the same time. Specifically, we compared AE profiles induced by the hepatitis A
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TABLE 3 The enriched adverse event (AE) groups (bolded) and significant AEs using AEKS and AEFisher to study LAIV
relative to IIV

AE
Method (group size) 3a1ue (AEKS) :1/alue (AEFisher) Odds ratio
AEKS & AEFisher  Upper respiratory tract disorders 3.30x 1072 6.60 X 1072
(excl infections) (19)
Epistaxi 0.00 8.79x 10~ 12.10
Nasal congestion 0.00 1.99 x 10~8 6.36
Stridor 1.13x 1072 2.44x1073 4.61
Tonsillar hypertrophy 2.38x 1072 6.61x1073 7.30
Nasal oedema 2.99x 1072 7.30x 1073 12.78
Sinus disorder 5.07x 1072 2.07x 1072 6.39
Anosmia 6.79 x 1072 2.50 x 1072 25.54
Seasonal allergy 6.79x 1072 2.86x1072 10.65
Respiratory tract infections (17) 6.60x 1072 6.60 x 1072
Epistaxi 0.00 8.79x10~¥ 5.82
Nasal congestion 0.00 1.74x 107 6.11
Stridor 4.25x107° 7.03x 10712 5.69
Tonsillar hypertrophy 2.93%x1078 3.40x 10713 115.05
Nasal oedema 3.88x 107 1.04 x 1077 3.88
Sinus disorder 5.06 x 1073 3.36 x10° 2.95
Anosmia 1.35x 1073 1.63x107* 3.95
Seasonal allergy 2.46 x1072 8.13x 1073 3.78

and B combination vaccine (“Twinrix" in VAERS) to monovalent hepatitis A and B vaccines (“Havrix" for hepatitis A and
“Engerix-B" for hepatitis B in VAERS). We selected vaccine reports from 2002 to 2018. There were 53415, 33087, 10356
reports with Havrix, Engerix-B, and Twinrix, respectively. To compare the combination vaccine to the two monovalent
vaccines, we created a contingency table with one row for Twinrix, one row for Harvrix or Engerix-B, and 1528 AEs (after
removing AE groups containing less than 5 AEs). These AEs are grouped into 127 AE groups. Finally, we applied both
AEKS and AEFisher to identify enriched AE groups based on the data contained in this 2 X 1528 contingency table. In this
study, AEKS and AEFisher identified different AE groups. As shown in Table 4, AEKS identified peripheral neuropathies,
while AEFisher identified musculoskeletal and connectivetissue disorders. Peripheral neuropathies were also mentioned
in Reference 33 as an important AE group associated with the combination hepatitis vaccine.

5 | DISCUSSION

AEKS and AEFisher have inherited pros and cons from the GSEA and Fisher’s exact test in the gene enrichment analysis,
respectively. For example, AEFisher depends on the threshold to select the significant AEs, and it can’t be applied if no
AEs are found to be significant based on the threshold. Compared to AEFisher, AEKS is more statistical powerful by using
ranks of individual AEs rather than a “cut-off” strategy based on an arbitrary threshold. AEKS is capable of detecting
AE groups with a few large AE signals or several weaker and concordant AE signals. In simulation studies, we have
demonstrated the advantage of AEKS over AEFisher. Moreover, similar to the gene enrichment analysis, both AEKS and
AEFisher can not efficiently deal with AE group overlap, where some AEs may belong to several AE groups. There have
been several attempts to alleviate the effect of gene set overlap.?* However, these methods suffer from low sensitivity.
Developing methods dealing AE group overlap in the context of AEs would be an interesting future work.

AEFisher uses a list of binary (signaled vs unsignaled AEs) data from the single-AE analysis to perform the enrich-
ment test. In this paper, signaled AEs are determined using the Fisher’s exact test. Alternatively, other tests for single-AE
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TABLE 4 The enriched adverse event (AE) groups (bolded) and significant AEs using AEKS and AEFisher to
study hepatitis A and B combination relative to monovalent Hepatitis A and B vaccines

Method AE (group size) g-Value Odds ratio

AEKS Peripheral neuropathies (10) 3.18x 1072
Guillain-Barre syndrome 7.08 x 1077
Neuropathy peripheral 1.83x1073
Miller Fisher syndrome 3.48x 1073

AEFisher Musculoskeletal and connective tissue disorders NEC (19) 6.35x 1072
Pain in extremity 3.37x107* 1.57
Back pain 8.25x 1074 2.24
Neck pain 2.04x1073 2.03
Musculoskeletal pain 2.42x1072 2.17
Mobility decreased 5.98 x 1072 2.14
Musculoskeletal disorder 8.98 x 1072 11.14

analysis can be used, including methods in References 4,7,28. On the other hand, AEKS uses ranks of reporting ratios
of individual AEs, but other statistics can be used as alternatives to the reporting ratio, such as odds ratios or P-values.
This is the first study on AE enrichment analysis, and we aim to set up a general framework for future research in
this field.

In both AEKS and AEFisher, the enrichment score has two components, one for AEs with nonzero counts and one
for AEs with zero counts. For the zero component, we used an indicator function, which is 0 when the proportion of zero
counts in group G is larger than the proportion in other groups. This is created based on our definition that an enriched
AE group is required to have the zero count proportion less than or equal to other groups. However, this definition can
be modified; for example, an AE group may be considered as enriched if it has many large AE signals from the nonzero
component and slightly larger proportion of zero counts compared to other groups. In this case, a ratio of zero proportion
not in the group versus in the group can replace the indicator function. However, an extremely large or small ratio will
make the zero-component dominate the enrichment decision (ie, ES is solely driven by the ratio). To mitigate this issue, a
weight may be introduced for the ratio to achieve a good balance in decision between the zero and nonzero components.
This topic will be an interesting work for future research.

6 | CONCLUSIONS

In this article, we develop two enrichment tests for vaccine AE enrichment analysis by incorporating the special features
of the AE count data. AEFisher is a modified Fisher’s exact test based on pre-selected significant AEs, while AEKS is
based on a modified Kolmogorov-Smirnov statistic. By appropriately addressing the issues of ties and excessive zeros in
AE count data, our enrichment tests performed well as demonstrated by simulation studies and analyses of VAERS data.
While the proposed methods are developed for vaccine safety, they are broadly applicable to other safety surveillance
projects. For example, they can be directly applied to the FDA AEs Reporting System and the Adverse Drug Reactions
database for national and international drug safety.
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