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Vaccination safety is critical for individual and public health.
Many existing methods have been used to conduct safety
studies with the VAERS (Vaccine Adverse Event Reporting
System) database. However, these methods frequently iden-
tify many adverse event (AE) signals and they are often hard
to interpret in a biological context. The AE ontology in-
troduces biologically meaningful structures to the VAERS
database by connecting similar AEs, which provides mean-
ingful interpretation for the underlying safety issues. In
this paper, we develop rigorous statistical methods to iden-
tify “interesting" AE groups by performing AE enrichment
analysis. We extend existing gene enrichment tests to per-
form AE enrichment analysis, while incorporating the spe-
cial features of the AE data. The proposed methods were
evaluated using simulation studies and were further illus-
trated on two studies using VAERS data. The proposed
methods were implemented in R package AEenrich and can
be installed from the Comprehensive R Archive Network,
CRAN, and source code are available at https://github.

com/umich-biostatistics/AEenrich.
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2 | vaccine safety study

1 | INTRODUCTION

The Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) conduct post-
licensure vaccine safety monitoring using the Vaccine Adverse Event Reporting System (VAERS) [1, 2]. VAERS accepts
spontaneous reports of suspected vaccine adverse events after administration of any vaccine licensed in the United
States from 1990 to present. As a national public health surveillance resource, VAERS is a key component in ensuring
the safety of vaccines. The VAERS report form includes data fields for date of vaccination, vaccine(s) administered,
date of onset and description of the adverse event, recovery status, and other relevant information. VAERS data
from the primary reports, with identifying patient information removed, are publicly available on the VAERS website
(www.vaers.hhs.gov/data/index); for a detailed description of the VAERS system and its limitations, see [3].

Numerous methods have been used to conduct safety studies with the VAERS database [4, 5, 6,7, 8,9, 10,11, 12,
13, 14, 15, 16]. In these methods, a contingency table is generally created to display counts for all vaccine and adverse
event pairs during a specified time period. In this table, each row represents a vaccine and each column represents
an adverse event (AE). Each cell in the table contains the number of VAERS reports that mention both that vaccine
and that event for a defined period. A statistical measure is then calculated to quantify the association between an
adverse event and a vaccine. A large value of the measure shows a strong association, which might indicate a vaccine
safety problem (called “signal"). A signal is considered evidence that an adverse event might be caused by vaccination
and warrants further investigation or action. However, these methods frequently identify many AE signals and they
are often hard to interpret in a biological context.

Adverse events are naturally related; for example, events of retching, dysphagia and reflux all belong to an AE
at a higher-level(i.e., the abnormal digestive system). AE group analysis (i.e., enrichment analysis) is able to provide
meaningful interpretation for the underlying safety issues. For example, strong signals of muscle weakness, loss of
sensation and seizures might indicate a potential problem in the nervous system. Moreover, enrichment analysis is able
to detect AE groups containing weak/moderate but concordant AE signals. For example, the AE group of respiratory
system includes five AEs: pneumonia, sinusitis, asthma, bronchitis, and rhinorrhea, which all carry weak to moderate
signals. Each individual AE might not be detected due to lack of statistical power, but the respiratory system as a whole
might be detected by the enrichment analysis. In this paper, we use the phrase “enriched AE groups" to describe AE
groups containing unexpectedly large number safety signals.

The largest resource for AE ontology is MedDRA (Medical Dictionary for Regulatory Activities) [17]. It has a
five level hierarchy. VAERS uses the second lowest term, “Preferred Terms" (PT), which is a distinct descriptor for a
symptom, sign and disease. Related PTs are grouped into higher-level AE terms, including “High Level Group Terms"
(HLGT) and “System Organ Classes" (SOC). Higher layers of HLGT and SOC represent biologically and clinically mean-
ingful categories for the AEs observed on the lower PT level. The AE ontology has been used to classify AE signals
[18, 19, 20, 21]. For example, [18] showed that most AE signals identified on the PT level were found to be in be-
havior/neurological AEs on the SOC level. However, these findings are based on an ad-hoc strategy of comparing
proportions of signaled AEs between AE groups. In this paper, we present rigorous statistical methods to identify AE
group that are associated with a vaccine of interest and quantify AE group uncertainty in the enrichment analysis.

Over the last few decades, bioinformatics methods have used gene ontology to systematically dissect large gene
lists in order to assemble a summary of the most enriched and pertinent biology. The first idea for gene enrichment
analysis is to take the user’s pre-selected significant genes, and then compare the difference between the proportion
of significant genes that fall into the gene set and the proportion of significant genes that do not [22]. There are
several drawbacks of this method as discussed in [23, 24]. For example, it depends on an arbitrary threshold to select

the significant genes, and it is incapable of detecting low but concordant signals (below the used threshold) from
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genes within a gene set. Also, it relies on the gene-gene independence assumption that is known to be biologically
invalid. A more recent approach is the Gene Set Enrichment Analysis (GSEA) method [25, 26], which assumes that
few major gene expression changes have a considerable effect on pathways function, and the sum of several weaker
and concurrent changes in pathways’ genes impact the general functioning as well [27]. GSEA uses gene ranks based
on a difference measure, such as fold change, and compares the distribution of gene ranks from the gene set to the
distribution for the rest of the genes based on a Kolmogorov-Smirnov statistic. Compared to the “cut-off" strategy
based on gene significance, GSEA is more statistical powerful by using more data information of the ranks.

The enrichment analyses for gene sets can be applied to study AE groups. However, important issues exist when
gene enrichment analysis is applied to adverse event enrichment analysis. Unlike continuous gene expression data,
adverse event data are counts, and a large amount of AEs have a zero count. For example, in the VAERS dataset,
approximately 40% AEs were never mentioned with the “FLU4" vaccine, resulting in 40% AEs with a zero count.
The current gene enrichment tests can not handle excessive zeros. Additionally, we encountered 20% ties in a ratio
measure (as defined in the Methods section below) with the count data. The current GSEA assigns random ranks
to the tied statistics, which can lead to inaccurate results. In this work, we extend the current enrichment tests to
appropriately address these two issues to perform AE enrichment analysis. The proposed method was implemented
as R package AEenrich https://CRAN.R-project.org/package=AEenrich.

2 | METHODS

Data Structure

For a particular vaccine (denoted as the target vaccine), we create a 2x N contingency table (see Table 1), with two rows
for the target vaccine (Yes/No) and N columns for the AEs reported in the VAERS database during a study period. In
this table, ny; is the number of VAERS reports that mention both the target vaccine and the it AE in a defined period,
n.; is the total number of reports that mention the i*" AE, n;. is the total number of reports that mention the target

vaccine, and n.. is the total number of reports in the study period.

TABLE 1 AE countdataina2x N table for a target vaccine

VaccineAE AE, AE, cee AEN Total
Yes n na my ny.
No ny —nn ny—ny nN—my n. —n.

Total na no cee ny n.

2.1 | AEKS: AE enrichment analysis based on modified K-S statistic

In this section, we extend the current GSEA [25, 26] to handle AE data with ties and excessive zero. Poisson distribu-

tion has been commonly used to model the nq; [4, 11, 28],
ny; ~ Poisson(n.;xA;), fori=1,--- N, (1)

where J; is the reporting ratio (RR) for the i* AE with the target vaccine, with a large value indicating a strong safety
mr

—’s as observed values.
-l

signal. RRs are the statistics of interest and we will use their maximum likelihood estimates



4 vaccine safety study

Our goal is to determine whether members of a AE group tend to have higher RRs.

Calculate enrichment score for each AE group

1. Rank order the N AEs based on the statistic RR. Assume that there are J distinct RRs (/ < N) and we order the
N AEs from the highest to the lowest rank as L = {AEq, AE,,..., AE,}, where AE; = {AEjq,... AEj, }is a set
of n; AEs with same RR.

2. Extend GSEA to handle tied RRs. Given position / in L, evaluate the fraction of AEs in group G (“hits") and the
fraction of AEs not in G (“misses"). Ng denotes the number of distinct AE terms in group G.

. 1
Phie(G.) =}, 3 =1 (AEjk € G),

J<i k<nj

Poiss(Goi) = S — L 1(AE; ¢ 6),

j<i k<n; N=Ng

where 1(-) is the indicator function. We then compute a running sum across all N AEs. The K-S statistic for AE
group G is defined as KS(G) = maxi<j<y(Phit (G, i) — Pniss (G, i), which is the maximum value that Py, is above
Ppmiss- When many members of G appear at the top of the list, KS(G) is high.

3. Handle zero counts. The maximum likelihood estimate for A; is ',7,—1; Thus, a zero count will produce a zero RR. The
above KS(G) treats zero RRs as ties and can not efficiently handle excessive zeros. For example, it may identify
a group as enriched if the group has majority of AEs with zero counts and only a few AEs with large signals. To
include the number of zero counts in the enrichment test, we define group G as enriched only if it contains a
smaller proportion of zero counts compared to the rest of groups. To this end, we let pg denote the proportion of
zero counts in group G, pgc denote the proportion not in group G, and create an indicator function by comparing
these two zero proportions. The function is zero if pOG is larger than pgc.

4. Combine the statistics in 2 and 3, we propose a composite enrichment score (ES)
ES(G) = KS(G) x 1(pS < pS°), ()
where ES(G) € [0,1],and ES(G) is zero if the proportion of zero counts in group G is larger than the proportion
of zero counts in other groups. ES(G) is large if group G has a smaller proportion of zero counts than the

remaining groups and the non-zero counts in group G are concentrated at the top of the list L.

Estimate statistical significance for an AE group
The distribution of £S(G) under the null is not analytically tractable and is obtained using Monte Carlo hypothesis

testing[28]. Under the null hypothesis, Ho: A7 = A = --- = Ay = Ag. Under this hypothesis, ny; ~ Poisson(n.; x
Ag), fori =1,...,N. Based on the relationship between Poisson and Multinonial distributions, the joint distribution
of (n11,...,n1n), conditioning on ZL nij=ny.and (n.q,...,n.p) is
(m1,ma2,...,mn)|n;nq,...,ny ~multinomial (n1., {r,...,rn}) (3)
njdo _ n;
where r; = ,Mg =i,

Given this multinomial distribution, we generate the AE count data and compute ES*(G) using formula (2). We
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repeat this process M times (M is generally large; say 5000) to create a null distribution of £S5*(G). The p-value is the
proportion of £S*(G) that is greater than or equal to the observed E S(G). Finally, we apply the Benjamini-Hochberg
procedure [29] converting p-values into g-values to control the false discovery rate.

Estimate statistical significance for individual AEs within the AE group

Based on the null distribution generated by the Monte Carlo hypothesis testing method, we can also estimate the
statistical significance of each individual AE by computing the proportion of RR* in the null distribution that is greater
than or equal to the observed RR. The Benjamini-Hochberg procedure is then used to adjust for the false discovery

rate.

2.2 | AEFisher: AE Enrichment test based on modified Fisher’s exact test

This approach first assesses the significance of the association between each AE and the vaccine and then uses a
“cutoff" strategy to classify the AEs into signaled and unsignaled AEs. To test the significance of the association, we
apply the Fisher's exact test to data in a 2 by 2 table (see Table 2) and then use the Benjamini-Hochberg procedure
to convert p-values into g-values for controlling the false discovery rate. A signaled AE is defined based on both the

strength of the signal and statistical significance, such as g-value < 0.1 and odds ratio (OR) > 1.5.

TABLE 2 A 2by 2 contingency table for a vaccine-AE; pair

VaccineAE; Yes No
Yes mi n;—mi
No n.;—nmj (n.. *"1-)* (n.,-—m,-)

To conduct the enrichment analysis for a particular AE group G, a conventional approach is to compare proportions
of the signaled AEs in group G and not in group G. If there are significantly more signaled AEs in group G, then group
G is enriched. To incorporate the excessive zero RRs in the test, we propose a composite enrichment score

ES(G) = OR® -1(p§ <p§"),

where ORC is the odds ratio estimating the association between signaled AEs and group G. A large OR® (ORC > 1)
indicates more signaled AEs in group G than in the remaining groups. As in the AEKS test, 1(p0G < pOGC) ensures that

an enriched group has the proportion of zeros smaller or equal to remaining groups.

Estimate statistical significance for an AE group

We perform a permutation test to assess the significance of the enrichment score for group G by randomly reshuffling
the signaled/unsignaled labels. This in spirit is the same as the Fisher’s exact test of fixing the row and column margins
(here, the group size and the total number of signaled and unsignaled AEs are fixed), while considering the zero

proportions.
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FIGURE 1 ROC curves using K-S statistics (AEKS vs GSEA) (left) and Fisher’s exact tests (AEFisher vs Fisher’s exact test) (right). The
ROC curve is constructed using p-values from the 10 simulated datasets. By comparing the enrichment decision from the test to the true

enrichment status in the data generating step, the true and false positive rates were estimated and connected to make the ROC curve.

3 | SIMULATION STUDIES

We ran simulation studies to investigate our proposed methods and compared them to existing enrichment tests. To
make simulation studies more realistic, data in simulated datasets were made similar to the real dataset. We first
created the AE group structure using the AE groups defined on the HLGT level in MedDRA. In each simulated dataset,
we set the number of AE groups to be 150 and determined the group size, Ng, by randomly sampling the group size
data in MedDRA under the constraint of Ng > 10. Similarly, the total count of each AE was determined by randomly
sampling the AE total count data in VAERS. Then we randomly selected 10% of the AE groups as enriched and the
remaining groups as un-enriched. In VAERS, the proportion of zero AEs per group, po, is between 10-60%, therefore,
we used py in this range in simulations. We generated a non-zero AE count from a Poisson distribution in formula (1)
with the rate parameter randomly sampled from the estimated A’s in VAERS. Specifically, in an enriched group, py was
sampled uniformly from 0.1 to 0.3 and the rate parameter was constrained to be larger than 0.3. In an un-enriched
AE group, we either set the range of py between 0.4 to 0.6 without constraining the rate parameter, or set the rate
parameter smaller than 0.4 with pg in the range of 0.1 to 0.6.

To compare performance of different methods, we constructed the ROC curve using p-values from the 10 simu-
lated datasets. By using a threshold on the p-values, an AE group is identified as enriched if it has a p-value smaller
than the threshold. By comparing the enrichment decision from the test to the true enrichment status in the data
generating step, we estimated the true positive rate (i.e., the percentage of AE groups that are correctly identified
as enriched) and false positive rate (i.e., the percentage of AE groups that are incorrectly identified as enriched). By
varying the threshold, we obtained a series of false and true positive rates and then connected them to make an
ROC curve. As shown in Figure 1, AEKS and the AEFisher performed significantly better than the GSEA and the
conventional Fisher's exact test, respectively.

In order to study the effect of sample size on the results of the analysis, we repeated the simulation studies with
different sample sizes. Specifically, we let the total count, n;, for the /" AE (i = 1, - - -, N) equal to 10%, 20%, 40%,
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60% or 80% of the original count, such that the total sample size is reduced proportionally. All the parameters in the
data generating model remain the same. For each sample size, we calculated the area under the ROC curves (AUC) (see
Figure 2). As shown in this Figure, both AEKS and AEFisher improve its performance in distinguishing enriched from
un-enriched AE groups as sample size increases, and AEKS performs better than AEFisher for different sample sizes.
This result is expected as AEKS is more statistical powerful by using ranks of individual AEs rather than the binary
(significant vs non-significant) data from the single-AE analysis in AEFisher. Moreover, the advantage of AEKS over
AEFisher is more obvious when the sample size is small. One reason is that a small sample size produces inaccurate
estimations on statistical significance for individual AEs in AEFisher, thereby leading to under-performed enrichment
test.

—

01 02 03 04 05 06 07 08 09 10
Proportion of the original sample size

Methods ~*= AEFisher =#= AEKS

FIGURE 2 Areaunder the ROC curves for AEKS and AEFisher with the reduced sample sizes.The ROC curve is constructed using
p-values from the 10 simulated datasets. By comparing the enrichment decision from the test to the true enrichment status in the data

generating step, the true and false positive rates were estimated and connected to make the ROC curve.

4 | APPLICATION TO VAERS DATASETS

We applied AEKS and AEFisher to VAERS dataset to study flu and hepatitis vaccines. In both studies, we used the
HLGT level of MedDRA to define AE groups. In AEKS, a signaled AE is defined if the g-value < 0.1. In AEFisher, a
signaled AE is defined if the g-value < 0.1 and OR > 1.5. In both AEKS and AEFisher, an AE group is enriched if
g-value < 0.1.

4.1 | Study flu vaccines

Influenza vaccine is given in large quantities and it prevents millions of illnesses and flu-related doctor’s visits each
year. CDC recommends the appropriate vaccine during the flu season. Options include inactivated influenza vaccine
(V) (“FLU3" or “FLU4" in VAERS) or live attenuated influenza vaccine (LAIV) (“FLUN3" or “FLUN4" in VAERS). By
restricting the age of the vaccine recipients between 2 and 49, there were 139,353 and 21820 reports for 11V and
LAIV, respectively. To compare LAIV relative to IV, we created a contingency table with two rows representing vaccine
(LAIV vs 11V) and 3,534 columns representing AEs. These AEs were classified into 287 AE groups. As in the gene set

enrichment analysis, we removed AE groups containing less than 5 AEs, resulting in 132 AE groups with a total of
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TABLE 3 The enriched AE groups (bolded) and significant AEs using AEKS and AEFisher to study LAIV relative to
IV.

Method AE (group size) q value (AEKS) g value (AEFisher)  Odds ratio

Upper respiratory tract

disorders (excl infections) (19) 3.30x 1072 6.60 x 1072
Epistaxi 0.00 8.79 x 10747 12.10
Nasal congestion 0.00 1.99 x 10738 6.36
Stridor 1.13x 1072 2.44 %107 4.61
Tonsillar hypertrophy 2.38x 1072 6.61x 1073 7.30
Nasal oedema 2.99 x 1072 7.30x 1073 12.78
Sinus disorder 5.07 x 1072 2.07 x 1072 6.39
AEKS Anosmia 6.79 x 1072 2.50 x 1072 25.54
s Seasonal allergy 6.79 x 1072 2.86 x 1072 10.65
AEFisher Respiratory tract infections (17)  6.60 x 1072 6.60 x 1072
Epistaxi 0.00 8.79x 1074 5.82
Nasal congestion 0.00 1.74x107"° 6.11
Stridor 4.25x107° 7.03x 10712 5.69
Tonsillar hypertrophy 2.93x 1078 3.40x 10713 115.05
Nasal oedema 3.88x107° 1.04 x 1077 3.88
Sinus disorder 5.06 x 1073 3.36 x 1076 2.95
Anosmia 1.35% 1073 1.63x 107 3.95
Seasonal allergy 2.46 x 1072 8.13x 1073 3.78

1,828 AEs. Finally, we applied both AEKS and AEFisher to identify enriched AE groups based on the data contained
in this 2 x 1, 828 contingency table.

As shown in Table 3, of the 132 AE groups we studied, both AEKS and AEFisher identified the same two enriched
AE groups: respiratory tract infections and upper respiratory tract disorders. Relative to IV, LAIV is associated with
increased risk of respiratory system disorders. Individual AE identified in each group include rhinitis, nasal congestion,
sinus disorder, which have been reported before [30, 31, 32], New signals, such as epistaxis, is clinically interesting,

and it might be true signals that need to be validated in large healthcare databases.

4.2 | Study hepatitis A and B combination vaccines

In this study, we were interested in identifying safety problems that are likely due to interactions of two vaccines
when they are administered to an individual at the same time. Specifically, we compared AE profiles induced by the
hepatitis A and B combination vaccine (“Twinrix" in VAERS) to monovalent hepatitis A and B vaccines (“Havrix" for
hepatitis A and “Engerix-B" for hepatitis B in VAERS). We selected vaccine reports from 2002 to 2018. There were
53,415, 33,087, 10,356 reports with Havrix, Engerix-B, and Twinrix, respectively. To compare the combination vac-
cine to the two monovalent vaccines, we created a contingency table with one row for Twinrix, one row for Harvrix
or Engerix-B, and 1,528 AEs (after removing AE groups containing less than 5 AEs). These AEs are grouped into 127
AE groups. Finally, we applied both AEKS and AEFisher to identify enriched AE groups based on the data contained
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TABLE 4 The enriched AE groups (bolded) and significant AEs using AEKS and AEFisher to study hepatitis A and
B combination relative to monovalent Hepatitis A and B vaccines

Method AE (group size) q value QOdds ratio
Peripheral neuropathies (10) 3.18 x 1072
Guillain-Barre syndrome 7.08 x 1077
AEKS
Neuropathy peripheral 1.83x1073
Miller Fisher syndrome 3.48x 1073

Musculoskeletal and connective

tissue disorders NEC (19) 6.35x 1072
Pain in extremity 337x10% 157
Back pain 8.25x107* 224
AEFisher
Neck pain 204x10% 203
Musculoskeletal pain 2.42 %1072 217
Mobility decreased 598x102 214

Musculoskeletal disorder 8.98 x 1072 11.14

in this 2 x 1, 528 contingency table. In this study, AEKS and AEFisher identified different AE groups. As shown in Table
4, AEKS identified peripheral neuropathies, while AEFisher identified musculoskeletal and connectivetissue disorders.
Peripheral neuropathies were also mentioned in [33] as an important AE group associated with the combination hep-

atitis vaccine.

5 | DISCUSSION

AEKS and AEFisher have inherited pros and cons from the GSEA and Fisher’s exact test in the gene enrichment
analysis, respectively. For example, AEFisher depends on the threshold to select the significant AEs, and it can't be
applied if no AEs are found to be significant based on the threshold. Compared to AEFisher, AEKS is more statistical
powerful by using ranks of individual AEs rather than a “cut-off" strategy based on an arbitrary threshold. AEKS is
capable of detecting AE groups with a few large AE signals or several weaker and concordant AE signals. In simulation
studies, we have demonstrated the advantage of AEKS over AEFisher. Moreover, similar to the gene enrichment
analysis, both AEKS and AEFisher can not efficiently deal with AE group overlap, where some AEs may belong to
several AE groups. There have been several attempts to alleviate the effect of gene set overlap [24]. However, these
methods suffer from low sensitivity. Developing methods dealing AE group overlap in the context of adverse events

would be an interesting future work.

AEFisher uses a list of binary (signaled vs unsignaled AEs) data from the single-AE analysis to perform the en-
richment test. In this paper, signaled AEs are determined using the Fisher's exact test. Alternatively, other tests for
single-AE analysis can be used, including methods in [4, 7, 28]. On the other hand, AEKS uses ranks of reporting
ratios of individual AEs, but other statistics can be used as alternatives to the reporting ratio, such as odds ratios or
p-values. This is the first study on adverse event enrichment analysis, and we aim to set up a general framework for
future research in this field.

In both AEKS and AEFisher, the enrichment score has two components, one for AEs with non-zero counts and

one for AEs with zero counts. For the zero component, we used an indicator function, which is O when the proportion
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of zero counts in group G is larger than the proportion in other groups. This is created based on our definition that
an enriched AE group is required to have the zero count proportion less than or equal to other groups. However, this
definition can be modified; for example, an AE group may be considered as enriched if it has many large AE signals
from the non-zero component and slightly larger proportion of zero counts compared to other groups. In this case, a
ratio of zero proportion not in the group versus in the group can replace the indicator function. However, an extremely
large or small ratio will make the zero-component dominate the enrichment decision (i.e., ES is solely driven by the
ratio). To mitigate this issue, a weight may be introduced for the ratio to achieve a good balance in decision between
the zero and non-zero components. This topic will be an interesting work for future research.

6 | CONCLUSIONS

In this article, we develop two enrichment tests for vaccine adverse event enrichment analysis by incorporating the
special features of the AE count data. AEFisher is a modified Fisher's exact test based on pre-selected significant AEs,
while AEKS is based on a modified Kolmogorov-Smirnov statistic. By appropriately addressing the issues of ties and
excessive zeros in AE count data, our enrichment tests performed well as demonstrated by simulation studies and
analyses of VAERS data. While the proposed methods are developed for vaccine safety, they are broadly applicable
to other safety surveillance projects. For example, they can be directly applied to the FDA Adverse Events Reporting

System (FAERS) and the Adverse Drug Reactions (ADR) database for national and international drug safety.

Data Availability

VAERS data from the primary reports, with identifying patient information removed, are publicly available on the

VAERS website (www.vaers.hhs.gov/data/index).
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