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Abstract 

In several author name disambiguation studies, some ethnic name groups such as East Asian names are 
reported to be more difficult to disambiguate than others. This implies that disambiguation approaches 
might be improved if ethnic name groups are distinguished before disambiguation. We explore the 
potential of ethnic name partitioning by comparing performance of four machine learning algorithms 
trained and tested on the entire data or specifically on individual name groups. Results show that 
ethnicity-based name partitioning can substantially improve disambiguation performance because the 
individual models are better suited for their respective name group. The improvements occur across all 
ethnic name groups with different magnitudes. Performance gains in predicting matched name pairs 
outweigh losses in predicting nonmatched pairs. Feature (e.g., coauthor name) similarities of name pairs 
vary across ethnic name groups. Such differences may enable the development of ethnicity specific 
feature weights to improve prediction for specific ethic name categories. These findings are observed for 
three labeled data with a natural distribution of problem sizes as well as one in which all ethnic name 
groups are controlled for the same sizes of ambiguous names. This study is expected to motive scholars to 
group author names based on ethnicity prior to disambiguation.     

Keywords: supervised machine learning; author name disambiguation; feature engineering, name 
ethnicity; data partition 

 

Introduction and Background 

A big challenge in managing digital libraries is that author names in bibliographic data are ambiguous 
because many authors have the same names (homonyms) or variant names are recorded for the same 
authors (synonyms). One study estimates that about two-thirds of author names in PubMed, the largest 
biomedicine digital library, are vulnerable to either or both of these two ambiguity types (Torvik & 
Smalheiser, 2009). Research findings obtained by mining bibliographic data can be distorted by merged 
and/or split author identities due to incorrect disambiguation (Fegley & Torvik, 2013; J. Kim & Diesner, 
2015, 2016; Schulz, 2016). In addition, digital library users query author names most frequently (Islamaj 
Dogan, Murray, Névéol, & Lu, 2009). This means that the users will receive inaccurate information about 
research production, citation, and collaboration for authors if author name ambiguity is not properly 
resolved (Harzing, 2015; Strotmann & Zhao, 2012).  

To address the challenge, researchers have proposed a variety of author name disambiguation (AND, 
hereafter) methods. Some scholars have used heuristics such as string-based matching (e.g., names that 
have the same full surname and forename initials are assumed to represent the same author), which is the 
most widely used approach in bibliometrics (Milojević, 2013). Others have developed rule-based 
programming and supervised/unsupervised machine learning techniques, as systemically reviewed in 
several papers (Ferreira, Gonçalves, & Laender, 2012; Hussain & Asghar, 2017; Sanyal, Bhowmick, & 
Das, 2019; Smalheiser & Torvik, 2009). In industry, several bibliographic data providers such as DBLP, 
Scopus, and Web of Science have disambiguated author names to improve their service quality 
(Kawashima & Tomizawa, 2015; J. Kim, 2018; Ley, 2009; Zhao, Rollins, Bai, & Rosen, 2017), while 
others still rely on the name string matching to output author-related search results. 

Despite the differences in methods and datasets, a few AND studies have observed that some ethnic name 
groups (ENG, hereafter) (e.g., Chinese names) are more difficult to disambiguate than others (Deville et 



al., 2014; J. Kim & Diesner, 2016; Strotmann & Zhao, 2012; Torvik & Smalheiser, 2009; J. Wu & Ding, 
2013). This implies that author names may be better disambiguated if their associated ethnicities are 
considered as inputs in disambiguation models. But this possibility has been little explored. First, the 
observations made in several studies that certain ethnic names are harder to disambiguate are based on 
post-hoc evaluations of AND results. In other words, many of those studies did not integrate ethnic name 
partitions during machine learning. A very small number of studies have divided names into subgroups in 
their disambiguation model building (Chin et al., 2013; Louppe, Al-Natsheh, Susik, & Maguire, 2016) 
and evaluation process (Lerchenmueller & Sorenson, 2016). But their ethnic name categories are limited 
in number (e.g., dichotomy of Chinese vs non-Chinese; Caucasian, Asian, and Hispanic) or mixed up 
with racial distinctions based on the U.S. Social Security information (e.g., White, Black, Hispanic, 
Asian, etc.). Such racial classifications can be inappropriate for bibliographic data in which author names 
come from diverse regions around the world. In addition, those studies have typically used a single 
labeled data source, which makes it hard to expand and generalize their findings to other AND scenarios. 

This study aims to empirically evaluate the effect ethnic name partitioning has on AND. In this study, 
author name disambiguation is a task to assign either ‘match’ or ‘nonmatch’ label to a pair of author name 
instances. For this, specifically, name instances are grouped into a block that share the same first 
forename initial and full surname and pairwisely compared with the block for their similarities over a set 
of features (e.g., coauthor name) to produce similarity scores. Machine learning algorithms combine the 
scores to learn weights of each feature to decide if a given pair of instances to refer to the same author or 
not. Although our work is motivated by the studies reviewed above and follows their common data pre-
processing, blocking and machine learning steps, this paper differs from them in three important ways. 
First, this study evaluates AND performance by four different machine learning algorithms applied to 
four different labeled datasets before and after inclusion of a standard ethnic name group partition. Here, a 
name instance is assigned to an ethnic name group based on a name ethnicity classification system, 
Ethnea. Second, unlike traditional labeled data in which a specific ENG (i.e., Chinese) dominates, this 
study disambiguates new labeled data in which all ENGs are controlled to have the same numbers of 
instances, to demonstrate that performance changes induced by ethnic name partitioning may not be 
solely due to the well-known relationship between the number of cases and their ambiguity (more names, 
more ambiguity). Third, this study shows that different combinations of features (e.g., coauthor name and 
title words) appear to be related to AND performance for different ENGs suggesting future directions to 
further improve AND performance with ambiguous ethnic group names. The findings of this study can 
provide practical insights to researchers and practitioners who handle authority control in digital libraries. 
In the following sections, details on labeled data and setups for machine learning are described. 

Method 

Labeled Data and Pre-Processing 

To measure the effect of ethnic name partition on machine learning for AND, this study disambiguates 
names in four labeled datasets – KISTI, AMINER, GESIS, and UM-IRIS. The first three datasets have 
been used in many AND studies to train and test machine learning algorithms (Cota, Ferreira, 
Nascimento, Gonçalves, & Laender, 2010; Ferreira, Veloso, Gonçalves, & Laender, 2014; Hussain & 
Asghar, 2018; J. Kim & Kim, 2018, In print; Momeni & Mayr, 2016; Alan Filipe Santana, Gonçalves, 
Laender, & Ferreira, 2017; Shin, Kim, Choi, & Kim, 2014; H. Wu, Li, Pei, & He, 2014; Zhu et al., 2018). 



The last one is added to investigate how the ethnic name partition affects AND under the condition in 
which all ENGs are constrained to have the same numberss of ambigous name instances1. 

KISTI: Scientists at the Korea Institute of Science & Technology Information (KISTI) and Kyungsung 
University in Korea constructed this labeled dataset. It is made up of 41,673 author name instances that 
belong to 6,921 unique authors (Kang, Kim, Lee, Jung, & You, 2011)2. 

AMINER: Researchers in China and U.S. collaborated to create this labeled data to build and evaluate 
AND models for a computer science digital library, AMiner (Tang et al., 2008; X. Wang, Tang, Cheng, & 
Yu, 2011)3. It consists of 7,528 author name instances that refer to 1,546 unique authors.  

GESIS: Scholars at the Leibniz Institute for the Social Sciences (GESIS) in Germany produced this 
labeled data. It contains author name instances of 5,408 unique authors (Momeni & Mayr, 2016) 4. This 
study reuses the ‘Evaluation Set’ (29,965 author name instances of 2,580 unique authors) but with a few 
enhancements (J. Kim & Kim, 2020). Each author name instance is converted into the ‘surname, 
forename’ format and, through linking GESIS to its base DBLP data, is associated with the title of the 
paper in which it appears and the name of the conference or journal where the paper is published.  

UM-IRIS: This dataset was generated by the researchers at the University of Michigan Institute for 
Research on Innovation & Science (UM-IRIS) and the University of Illinois through matching selected 
name instances in publication records to an authority database, ORCID (Kim & Owen-Smith, in print). 
First, author full names (e.g., ‘Brown, Michael’) that appear 50 times or more in MEDLINE-indexed 
publications published between 2000 and 2019 were listed5. Then, all instances of each selected full name 
(e.g., 158 instances of ‘Brown, Michael’ in MEDLINE) and their associated publication metadata were 
compared to 6 million researcher profiles in ORCID6. If an instance had a single match in the publication 
list of an ORCID researcher profile (matching on full name, paper title, and publication venue), the 
matched researcher’s ORCID id was assigned as an author label to the instance. Next, among the ORCID 
id-linked instances, those whose full names are associated with 5 or more ORCID ids (e.g., 6 unique 
ORCID researchers share the name ‘Brown, Michael’ which appear 158 times in MEDLINE) were 
randomly selected to produce 1,000 name instances for each of six ENGs. The resulting data contain 
6,000 instances of 822 authors.     

Four features – author name, coauthor name(s), paper title, and publication venue - are used as machine 
learning features because they have been widely used in algorithmic AND studies (Schulz, 2016; Song, 
Kim, & Kim, 2015) and are commonly available in the four labeled datasets. The string of each feature is 
stripped of non-alphabetical characters, converted into ASCII format, and lowercased. For title words, 
common English words like ‘the’ and ‘to’ are removed (i.e., stop-word listed) using the dictionary in 
Stanford NLP7 and stemmed (e.g., ‘solution’ → ‘solut’) using the Porter’s algorithm8. Name instances in 
KISTI are converted into the full surname and first forename initial format (‘Wang, Wei’ → ‘Wang, W’)     
to make them more ambiguous (see J. Kim & Kim, 2020). 

                                                            
1 This new labeled dataset was created following the idea of a reviewer who suggested that the impact of ethnic 
name partition on AND may be confounded by the size differences of ambiguous names.  
2 http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/DBLP.tar.gz/at_download/file 
3 http://arnetminer.org/lab-datasets/disambiguation/rich-author-disambiguation-data.zip 
4 http://dx.doi.org/10.7802/1234 
5 https://www.nlm.nih.gov/bsd/medline.html 
6 https://orcid.org/ 
7 https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt 
8 https://tartarus.org/martin/PorterStemmer/ 



Ethnic Name Group (ENG) Tagging 

This study assigns an ENG tag to a name instance in each labeled dataset using the author name ethnicity 
classification database, Ethnea, developed by Torvik and Agarwal (2016)9. Ethnea is a collection of more 
than 9 million author name instances that are tagged one of 26 ENG classes based on the name’s 
association with national-level geo-locations10. For example, “Wang, Wei” is classified as ‘Chinese’ as it 
is most frequently associated with organizations in China. However, Ethnea makes no distinctions based 
on any anthropological, cultural, or linguistic characteristics of authors. Instead it relies entirely on 
observations of names and geo-locations of their frequently associated institutions so an author named 
‘Wang, Wei’ who was born in the U.S. and has never visited China would still be assigned a ‘Chinese 
name’ tag. We link all four labelled datasets to Ethnea and, if a matched name is found, assign that 
name’s ENG tag to all its observed instances. If a queried name does not have a match in Ethnea, we 
search again using only the surname and assign the modal Ethnea ENG tag associated with it to all its 
instances. Table 1 summarizes the frequencies and ratios of ENG tags assigned by Ethnea to author name 
instances in each labeled dataset. 

Table 1 shows the list of ENGs in each labeled data. Small-sized ENGs are excluded from analysis 
because most name instances in those ENGs tend to belong to a single author while a few instances 
referring to other author(s). When randomly split into training and test subsets for machine learning, these 
instances do not produce negative pairs at all. 

 

[Table 1] 

 

Chinese names represent the majority of ENGs in three labeled data. This is because these labeled data 
were created from computer science papers where Chinese researchers are particularly large contributors. 
In addition, as the three datasets were designed to collate challenging names to disambiguate, Chinese 
names that tend to be more ambiguous than other ENGs were over-sampled (Müller, Reitz, & Roy, 2017). 
In contrast, 6,000 instances in UM-IRIS are evenly distributed over six ENGs. For validation and reuse, 
these labeled data with ENG tags are publicly available11. Note that the original KISTI contains 41,673 
name instances, whereas the ENG-tagged KISTI has 41,605 instances. Such discrepancy occurs because 
this paper uses the revised version of KISTI that corrects record errors and duplicates in the original data 
(J. Kim, 2018). 

Machine Learning Process 

Machine learning methods for AND can be divided into two groups: author assignment and author 
grouping (Ferreira et al., 2012). While the former aims to assign an author name instance to one of pre-
disambiguated author name clusters, the latter aims to group all and only instances that belong to the same 
authors. This study takes the latter approach in evaluating the effect of ENG on AND. Specifically, author 

                                                            
9 https://databank.illinois.edu/datasets/IDB-9087546 
10 26 ethnicities include: African, Arab, Baltic, Caribbean, Chinese, Dutch, English, French, German, Greek, 
Hispanic, Hungarian, Indian, Indonesian, Israeli, Italian, Japanese, Korean, Mongolian, Nordic, Polynesian, 
Romanian, Slav, Thai, Turkish, and Vietnamese. In Ethnea, some name instances are assigned two ethnicities (e.g., 
“Jane Kim” → Korean-English) if the surname and forename of an author name are associated frequently with 
different ethnicities.   
11 Download link TBA 



name instances in each labeled dataset are pairwise compared to assess whether a given instance pair of 
plausibly represents the same author (a match) or not (a nonmatch). Although some scholars take a further 
step to cluster pairwise comparisons (e.g., J. Kim & Kim, 2018; Levin, Krawczyk, Bethard, & Jurafsky, 
2012; Louppe et al., 2016; Alan Filipe Santana et al., 2017), this study only evaluates disambiguation 
performance at a pair level (i.e., classification), following the practice of previous AND studies (e.g., 
Han, Giles, Zha, Li, & Tsioutsiouliklis, 2004; Song et al., 2015; Treeratpituk & Giles, 2009; 
Vishnyakova, Rodriguez-Esteban, Ozol, & Rinaldi, 2016). 

As the first machine learning step, author name instances in each labeled dataset are randomly divided 
into training (50%) and test (50%) subsets. Then, instances in each subset are put into blocks in which all 
member instances share the same full surname and first forename initial (e.g., ‘Wang, W’). Only instances 
in the same block are compared for disambiguation. This blocking is typical in AND studies because it 
reduces computational complexity with only slight performance degradation (K. Kim, Sefid, & Giles, 
2017; Torvik & Smalheiser, 2009). Next, instance pairs in the same block are compared to establish their 
similarity over four other data features: author name, coauthor name(s), paper title, and publication venue. 
To quantify how much a pair is similar over a feature, this study calculates the cosine similarity of Term 
(n-gram) Frequency for each feature (Han, Zha, & Giles, 2005; J. Kim & Kim, In print; Levin et al., 2012; 
Louppe et al., 2016; A. F. Santana, Gonçalves, Laender, & Ferreira, 2015; Treeratpituk & Giles, 2009). 
Specifically, the string of a feature is converted into an array of 2~4-grams (e.g., author name ‘Wang, 
Wei’ → ‘wa|an|ng|gw|we|ei|wan|ang|ngw|gwe|wei|wang|angw|ngwe|gwei’). After the conversion, two n-
gram arrays of an instance pair are compared to produce a cosine similarity score for the feature.  

Besides the four basic features, ENGs are used as a feature set for ENG-aware disambiguation. For this, 
especially, an instance pair’s ENG is encoded into a binary value (i.e., one-hot encoding) for a pre-
defined set of ENGs12. For example, in AMINER, a pair of name instances (‘Wang, Wei’ and ‘Wang, 
W.’) is assigned either ‘Yes’ or ‘No’ for each of five ethnicities – Chinese (‘Yes’), English (‘No’), Indian 
(‘No’), German (‘No’), and Hispanic (‘No’) – as shown in Table 1. Table 2 shows examples of the cosine 
similarity scores calculated over four features and ENG encoding results for instance pairs.  

 

[Table 2] 

 

We focus on four algorithms – Gradient Boosting, Logistic Regression, Naïve Bayes, and Random Forest 
– for supervised machine learning that have been widely used as baselines or best performing methods in 
AND studies (e.g., Han et al., 2004; J. Kim & Kim, In print; K. Kim, Sefid, Weinberg, & Giles, 2018; 
Louppe et al., 2016; Song et al., 2015; Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009; 
Vishnyakova et al., 2016; J. Wang et al., 2012). In the first scenario, they are trained on the list of 
similarity scores and labels, as shown in Table 2 to learn relative weights for features and an absolute 
weight or threshold for instance pairs to be disambiguated without considering ENGs (→ ENG-ignorant 
learning). In the second scenario, the same algorithms are trained on the list of similarity scores, ENGs, 
and labels (→ ENG-aware disambiguation). Here, the ethnic name partition adds more features 
(dimensions) to each instance pair’s feature set, allowing algorithms to combine the similarities of the 
expanded features. The machine learning procedure is implemented using the python Scikit-learn 
package. For Gradient Boosting, 500 estimators are used with max depth=9 and learning rate = 0.125. For 
                                                            
12 As only instances in the same block in which they share at least the same full name and first forename initial are 
compared, all the pairs in the block have the same ethnicity tag. 



Logistic Regression, L2 Regularization with class weight = 1 is used. Gaussian Naïve Bayes with 
maximum likelihood estimator is used for Naïve Bayes. For Random Forest, 500 trees are used after a 
grid search. 

Trained algorithmic models are applied to the instance pairs in test subsets in which the cosine similarity 
is calculated for the four basic features and, in the second scenario, ethnicities are encoded in the same 
fashion but explicitly include ENG information. As in Table 2, an algorithmic model receives a set of 
feature similarity scores and, if ENG-aware disambiguation is conducted, a list of encoded ENGs for an 
instance pair to output a binary classification decision (match or nonmatch). Once trained, each algorithm 
produces a single score that predicts the probability of an instance pair being negative (nonmatch). If the 
predicted probability is above a certain threshold (> 0.5), the pair is decided to be a nonmatch, whereas if 
below the threshold, a match.   

Performance Evaluation 

We evaluate each algorithm’s classification results on reserved test subsets of each labeled dataset by 
calculating precision and recall for positive (P; match) and negative (N; nonmatch) pairs respectively. In 
addition, we calculate the F1 score as a harmonic mean of precision and recall. 

Specifically, precision for positive pairs (Prec-Pos) measures how many predicted match pairs are correct 
ones (true positives; TP) over the total number of predicted match pairs that may contain correct match 
pairs (true positives; TP) and incorrect match pairs (false positives; FP). In contrast, recall for positive 
pairs (Rec-Pos) measures the ratio of correct match pairs (true positives; TP) over the total number of true 
match pairs that may be predicted correctly as match pairs (true positives; TP) or incorrectly as nonmatch 
pairs (false negatives; FN). 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)      (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ
=

𝑇𝑇𝑃𝑃
(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)     (2) 

𝐹𝐹1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

       (3) 

 

Likewise, precision for negative pairs (Prec-Neg) measures how many predicted nonmatch pairs are 
correct ones (true negatives; TN) over the total number of predicted nonmatch pairs that may contain 
correct nonmatch pairs (true negatives; TN) and incorrect nonmatch pairs (false negatives; FN). In 
contrast, recall for negative pairs (Rec-Neg) measures the ratio of correct nonmatch pairs (true negatives; 
TN) over the total number of true nonmatch pairs that may be predicted correctly as nonmatch pairs (true 
negatives; TN) or incorrectly as match pairs (false positives; FP). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)      (4) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ  =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)    (5) 

𝐹𝐹1 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁       (6) 



The metrics are calculated on the entire set of test results for each labeled dataset. We separately calculate 
performance measures for difference ENGs rather than averaging them across multiple ethnicity groups.  

Results 

Cross-Data Performance Evaluation 

Figure 1 shows disambiguation results on KISTI, reporting precision and recall before and after ENG-
aware disambiguation by four algorithms – Gradient Boosting (GB), Logistic Regression (LR), Naïve 
Bayes (NB), and Random Forest (RF). Figure 1a shows that when ENGs are included as features, the 
algorithms tend to produce better precision in the prediction of positive (match) pairs than when they are 
not considered. This is shown by black bars (‘After’) being higher than stripped bars (‘Before’) in Figure 
1a. This observation indicates that ethnic name partitioning helps algorithms increase the ratio of TP 
among predicted positive pairs (= TP + FP). This can be confirmed by checking the numbers of true and 
false positive pairs in Table 3. For example, when trained only on the four basic (non-ENG) features, LR 
predicts that 76,201 (= TP + FP = 55,998 + 20,203) pairs refer to the same authors (match) and 73.49% of 
the predictions are right (= TP/(TP + FP)). After trained on the same but ENG-tagged data, however, it 
predicts 170,432 pairs to be match sets, increasing its prediction accuracy this time to 77.08%.    
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Ethnic name partitioning also reduces the number of falsely predicted nonmatch cases (FN), increasing 
recall in Figure 1b. Performance gains by ENG-aware disambiguation are more pronounced for recall 
than for precision, as evidenced by larger differences between ‘Before’ and ‘After’ bars for recall (Figure 
1b) than those for precision (Figure 1a). In other words, ENG aware disambiguation across four common 
algorithms appears to reduce false negative predictions more than true positive predictions, potentially 
providing better performance for applications (such as network analysis) that are particularly sensitive to 
biases due to erroneous “lumping” of name instances that actually refer to different individuals. The 
improvements in precision and recall together increase the F1 scores by ENG-aware disambiguation 
(Figure 1c).   

ENG-aware disambiguation also does a better job of accurately predicting non-match (negative pair) 
cases. The ‘After’ bars are taller than those of ‘Before’ in Figure 1d. Unlike the positive pair prediction in 
which ENG-aware disambiguation works in favor of both precision and recall by all algorithms, however, 
the performance gains in precision for negative pairs come with slightly decreased recall by GB and LR 
in Figure 1e. This means that while disambiguation models by GB and LR trained on ENG-added features 
are good at increasing the numbers of true nonmatch pairs among predicted nonmatch pairs (= TN +FN), 
they incorrectly predict that true nonmatch pairs match (FP predictions) more frequently than when they 
are trained on the four basic features alone. Reduced recall for negative pair prediction is, however, offset 
by increased precision, leading to the F1 scores by ENG-aware disambiguation being better than those by 
ENG-blind one in Figure 1f. Meanwhile, NB and RF still obtain improvements in both precision and 
recall as well as F1. 



Algorithmic performances are also enhanced by ENG-aware disambiguation on AMINER, GESIS, and 
UM-IRIS. Figure 2 ~ 4 report that the algorithms trained on ENG-tagged data perform better than those 
trained only on the basic features across almost all metrics for both positive and negative pairs. NB 
models prove the exception, producing worse results in recall for positive pairs and in precision for 
negative pairs after ethnic name partition. However, this degraded performance is offset by increased 
precision for positive pairs and increased recall for negative pairs, respectively, so the overall 
performance metric (F1), which equally weights precision and recall, indicates an overall improvement 
due to the inclusion of ENG features. 

 

[Figure 2] 

 

[Figure 3] 

 

[Figure 4] 

 

Performance Evaluation per ENG 

ENG-aware disambiguation produces substantial improvements in both precision and recall for predicting 
match and nonmatch instance pairs in different labeled datasets. But are those improvements uniform 
across different ENGs? If not, a more nuanced approach to model evaluation may be necessary. To 
answer this question, we compare performance changes due to ENG-aware disambiguation within ENG 
groups. For this, precision, recall, and F1 scores for positive and negative pairs predicted by four 
algorithms are calculated separately for instance pairs that belong to the same ENG in each of four 
labeled data: 4 algorithms × 4 data = 16 evaluations. Presenting all the results at the same time would 
consume too much space in this paper. So, we present random forest (RF) predictions on the GESIS 
dataset as an illustration for the purposes of this discussion. Reports of other algorithms and data are 
presented in a supplementary document attached to this paper. 

Figure 5 shows the by ENG performance metrics for the RF algorithm trained on GESIS with and without 
ENG-aware disambiguation. The ENG-aware disambiguation leads to better precision (positive pairs; 
Figure 5A) and recall (negative pairs; Figure 5E) for Chinese names but worse precision (positive pairs) 
and recall (negative pairs) for other ethnicities. In contrast, name disambiguation for Chinese names 
results in lower recall (positive pairs; Figure 4B) and precision (negative pairs; Figure 4D) than those for 
other ENGs. Similar patterns are observed for other algorithms tested on GESIS (see Figure S5~S8 in 
Supplementary Material). This suggests that the effect of ENG-aware disambiguation occurs in different 
ways for different ENGs. Thus, its application can be beneficial in some instances but detrimental in 
others.  Variations in the effects of ENG-aware disambiguation on precision and recall for positive and 
negative pair prediction across ethnicity groups suggest that care must be taken to design disambiguation 
strategies that fit particular analytic or empirical needs. 

 

[Figure 5] 



These observations can be explained as follows. ENGs have different distributions of similarity scores 
over the four basic (non-ethnicity) features we use. Figure 6 presents the feature similarity score 
distributions per ENG for positive (left) and negative (right) pairs in the GESIS test data. Training and 
test subsets show similar distributions in each labeled dataset. For visual simplicity, a score is rounded up 
into nearest bins with intervals of 0.1 on x-axis and the ratios of the numbers of scores in the same bin 
over all scores are plotted on y-axis. A solid red line represents the distribution of all instance pairs 
regardless of ENG.  

In Figure 6, each ENG has different distributions of, for example, ‘COAUTHOR’ similarity scores for both 
positive and negative pairs (Figure 6C and 6D). So, the four algorithms come to use different ‘coauthor’ 
similarity score distributions in ENG-aware disambiguation. Such heterogeneous distributions also occur 
for other features but with different variations of differences. For example, ‘VENUE’ distributions in 
Figure 6G and 6H differ less across ENGs than do ‘COAUTHOR’ distributions. Because ENG-aware 
disambiguation allows training and testing on different feature similarity score distributions for each 
ENG, the algorithms combine features using different weightings for each ethnicity, producing different 
predictions for name pairs with the same feature similarity scores but different ENG tags. In other words, 
this method takes into account the likelihood that researchers in different ENGs organize their scientific 
work differently, favoring distinct co-authorship and publication venue patterns. This also occurs in 
disambiguation of other labeled data, whose feature similarity score distributions are reported in Figure 
S17 ~ S20 in Supplementary Material. 

 

[Figure 6] 

 

Figure 5 also shows that some ENGs manifest substantial improvements in recall for positive pairs 
(Figure 5B) but degraded recall for negative pairs (Figure 5E). This might be explained in two ways. In 
our ‘before’ (ENG-unaware) case, algorithms combine features to produce per-feature weights for 
positive pairs based on feature similarity scores aggregated across multiple ENGs that can have very 
different feature distributions. Such aggregated distributions cannot effectively capture the single match 
patterns specific to each ENG, which seem to lead models to falsely predict positive pairs as negative 
ones (FN), reducing the recall for positive pairs. Conversely, increased recall for positive pairs after ENG-
aware disambiguation means that the algorithms trained and tested on ENG-tagged data successfully 
produce per-feature weights optimized to each ENG, thus making better predictions that push up the 
recall scores for many ENGs. 

Second, decreased negative pair recall after ENG-aware disambiguation means that the algorithms trained 
and tested on ENG-tagged data fail to produce proper per-feature weights for accurately predicting 
nonmatch for known negative pairs. When the algorithms are trained only on the four basic (non-
ethnicity) features, they do a better job of predicting nonmatch pairs based on aggregated feature 
similarity distributions that are invariant across particular ENGs. In other words, feature distributions 
aggregated across ENGs appear to be more effective for predicting negative case pairs while ENG-aware 
disambiguation techniques more accurately capture positive pairs.  

These observations imply that disambiguation models for positive pair prediction would be improved by 
ENG-aware procedures, while nonmatch patterns for negative pair prediction can aggregate across ENGs 
(J. Kim & Kim, 2018). Table 4 shows that in the GESIS training data, each ENG has different sizes of 
positive and negative (pairwise) pairs. CHINESE name instances produce the largest numbers of positive 



(≈ 146K) and negative pairs (≈ 551K), while ITALIAN name instances generate around a few thousand 
positive and a few hundred negative pairs. In other training data, CHINESE pairs constitute substantially 
large proportions (KISTI: 71.28 % and AMINER: 91.26 %) or over one-third (UM-IRIS: 37.54 %) of all 
negative pairs, while other ENG pairs make up small or less-than-expected (approximately 17% per ENG 
in UM-IRIS) proportions. In contrast, the numbers of positive pairs are less concentrated (GESIS, KISTI, 
and AMINER) or more evenly distributed (UM-IRIS) for positive pairs than those for negative pairs.  
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As noted above for Figure 5 and observed in other labeled data (see Figure S1 ~ S16 in Supplementary 
Material), the algorithms work better in finding more true negative pairs even for non-CHINESE name 
pairs when they are trained on data in which ethnic name partitioning is not performed (‘BEFORE’) and, 
thus, negative pairs are dominated by CHINESE ones as shown in Table 4~6. This implies that the 
nonmatch patterns in CHINESE name pairs are applicable to predicting nonmatch pairs for other ENGs. 
In contrast, during ENG-aware disambiguation, the algorithms come to rely on the small-size negative 
pairs that may skew or distort true nonmatch patterns for some ENGs. This seems to result in the 
decreased recall in predicting negative pairs (i.e., many true negatives classified as false positives, which 
reduces precision for positive pair prediction), while increasing slightly precision in predicting negative 
pairs. 

Despite the aforementioned conflicting changes in precision and recall per ENG, the overall performance 
by the four algorithms on the whole test set are shown in Figure 1~4 to substantially increase across the 
four labeled data after ethnic name partitioning is included in machine learning. One reason would be that 
performance gains outweigh losses at each ENG level overall. Another reason would be that especially 
for KISTI, AMINER, and GESIS, the improved performances in disambiguating CHINESE that 
constitute the majority of name instances may affect the overall evaluation results. As shown by the case 
of UM-IRIS in which ENG sizes are controlled to be equal, however, the overall performance 
improvements can be observed for all the ENGs by ENG-aware disambiguation. As such, this study 
illustrates that the ethnic name partition can be truly effective in improving disambiguation performances. 

Discussion 

These results suggest that AND tasks may produce better results by using ethnic name partition in 
machine learning. Considering that adding more features can improve generally machine learning 



performances, the enhanced disambiguation performances by ENG partitioning might not be a surprise. 
With that said, the real contribution of this study would be that it demonstrates many machine learning 
based disambiguation models have a potential to be improved by introducing ethnic name grouping into 
ambiguous data without additional collection of feature information. 

To fully realize this potential, however, a few issues need to be addressed. First, ENG tagging can be a 
non-trivial task that requires an intricate algorithmic technique itself. Thanks to the ENG classification 
system developed and publicly shared by Torvik and Agarwal (2016), this study could assign ENGs to the 
names in four labeled data. Although Ethnea was constructed based on more than 9 million author name 
instances in PubMed, the world largest biomedicine library, it is unknown how well it can help us tag 
ENGs to names in other fields. Ideally, Ethnea may be updated regularly to reflect new author names 
entering bibliographic data in various fields. Practically, further research may be focused on finding out a 
set of ENGs that are most influential in improving disambiguation results and thus simplifying ENG 
tagging for author name disambiguation (e.g., CHINESE vs Non-CHINESE).  

Second, the findings of this study were based on three labeled data (KISTI, AMINER, and GESIS) in 
which CHINESE names are dominant and the overall performance improvements were heavily affected 
by those for CHINESE name instances. To overcome such an imbalance of instance distribution in 
labeled data, a new labeled data (UM-IRIS) were created in a way that six ENGs have the same amount of 
ambiguous name instances. Disambiguation results from the new labeled data were in line with those 
from other three labeled data. In addition, all ENGs including CHINESE were able to obtain gains in 
disambiguation performances. But all these findings were obtained from small-sized labeled data, whether 
they are biased or controlled for ENG sizes. So, it is still unknown whether such improvements are 
achievable in author name disambiguation for large-scale bibliographic data in which ENG composition 
may be quite different from those in the labeled data used in this paper.  

Another issue would be that there can be other features than the four used in this study that can lead 
ethnic name partition to different AND performances. For example, English authors may appear in 
publication records that are more complete in affiliation information and use more diverse title terms. 
Meanwhile, Chinese authors may tend to work with coauthors who have similar names in same 
institutions. Various features need to be explored to study further the impact of ethnic name partition on 
AND.   

Fourth, ENG-aware disambiguation may be beneficial for positive pair prediction but not so much for 
negative pair prediction. This was illustrated in Figure 5 above and Figure S1 ~ S16 in Supplementary 
Material by the dramatically decreased recall in negative pair predictions for many ENGs. It was 
contrasted with the substantial increase of precision in positive pair prediction for those ENGs. This study 
speculates that by ethnic name partitioning, classifiers become stricter for CHINESE pairs while relaxed 
for other ENG pairs. In other words, a pairs of CHINESE instances that would be classified as ‘match’ 
before partitioning are classified as ‘nonmatch’ after partitioning (PREC-POS↑; REC-POS↓), while 
‘nonmatch’ pairs of other ENG instances as matched ones (PREC-POS↓; REC-POS↑). This might be 
because while some CHINESE pairs sharing coauthor names, venue names, or title words refer to 
different authors, other ethnic names sharing the features are more likely to represent the same authors 
(see Figure 6 B, D, F, and H in which Chinese name pair share is denoted in square). During training, such 
different similarity patterns are mixed up before partitioning but distinguished after it. Another conjecture 
is that due to the relaxed classification after partitioning, true negative pairs of other-than-CHINESE 
ENGs are falsely classified as false positive pairs (PREC-POS↓; REC-NEG↓). As the sizes of negative 
pairs in most non-CHINESE ENGs are smaller than positive pairs (see Table 4~7), misclassified negative 
pairs have larger impacts on REC-NEG than on PREC-POS across the ENGs. But these conjectures are 



based on the observations on labeled data in which Chinese name instances are prevalent. Using an 
additional labeled data with controlled ENG sizes, however, the conjecture has been confirmed. But only 
six ENGs in a small dataset were considered for analysis. More ENGs need to be investigated to check if 
this conjecture holds good under the different combinations of ENGs. 

Conclusion and Discussion 

This study evaluated the effects ethnic name partitioning has on author name disambiguation (AND) 
using machine learning methods. For this, author name instances in four labeled datasets were 
disambiguated under two scenarios. First, similarity scores of instance pairs over four basic features – 
author name, coauthor names, paper title, and publication venue – were used to train and test 
disambiguation algorithms. Second, in addition to the basic features, ethnic name group (ENGs) were 
tagged to name instances to allow algorithms to build models that are optimized to each ENG. 
Comparisons of disambiguation performances before and after ENG-aware disambiguation showed that 
using ethnic name partition can substantially improve algorithmic performances. Such performance 
improvements occurred across all ENGs, although performance gains and losses at each ENG level were 
observed in different ways depending on the types of measures – precision or recall – and target 
classifications – positive (match) or negative (nonmatch) pairs.  

As detailed in the discussion above, ethnic name partition requires further research for us to understand 
better its impact on author name disambiguation and apply it to disambiguation tasks for digital libraries 
that are struggling with authority control over fast-growing ambiguous author names. This study is 
expected to motivate scholars and practitioners to study toward that direction by demonstrating the 
potential of ENG-aware disambiguation in improving disambiguation performances. 
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Abstract 

In several author name disambiguation studies, some ethnic name groups such as East Asian names are 
reported to be more difficult to disambiguate than others. This implies that disambiguation approaches 
might be improved if ethnic name groups are distinguished before disambiguation. We explore the 
potential of ethnic name partitioning by comparing performance of four machine learning algorithms 
trained and tested on the entire data or specifically on individual name groups. Results show that 
ethnicity-based name partitioning can substantially improve disambiguation performance because the 
individual models are better suited for their respective name group. The improvements occur across all 
ethnic name groups with different magnitudes. Performance gains in predicting matched name pairs 
outweigh losses in predicting nonmatched pairs. Feature (e.g., coauthor name) similarities of name pairs 
vary across ethnic name groups. Such differences may enable the development of ethnicity specific 
feature weights to improve prediction for specific ethic name categories. These findings are observed for 
three labeled data with a natural distribution of problem sizes as well as one in which all ethnic name 
groups are controlled for the same sizes of ambiguous names. This study is expected to motive scholars to 
group author names based on ethnicity prior to disambiguation.     

Keywords: supervised machine learning; author name disambiguation; feature engineering, name 
ethnicity; data partition 

 

Introduction and Background 

A big challenge in managing digital libraries is that author names in bibliographic data are ambiguous 
because many authors have the same names (homonyms) or variant names are recorded for the same 
authors (synonyms). One study estimates that about two-thirds of author names in PubMed, the largest 
biomedicine digital library, are vulnerable to either or both of these two ambiguity types (Torvik & 
Smalheiser, 2009). Research findings obtained by mining bibliographic data can be distorted by merged 
and/or split author identities due to incorrect disambiguation (Fegley & Torvik, 2013; J. Kim & Diesner, 
2015, 2016; Schulz, 2016). In addition, digital library users query author names most frequently (Islamaj 
Dogan, Murray, Névéol, & Lu, 2009). This means that the users will receive inaccurate information about 
research production, citation, and collaboration for authors if author name ambiguity is not properly 
resolved (Harzing, 2015; Strotmann & Zhao, 2012).  

To address the challenge, researchers have proposed a variety of author name disambiguation (AND, 
hereafter) methods. Some scholars have used heuristics such as string-based matching (e.g., names that 
have the same full surname and forename initials are assumed to represent the same author), which is the 
most widely used approach in bibliometrics (Milojević, 2013). Others have developed rule-based 
programming and supervised/unsupervised machine learning techniques, as systemically reviewed in 
several papers (Ferreira, Gonçalves, & Laender, 2012; Hussain & Asghar, 2017; Sanyal, Bhowmick, & 
Das, 2019; Smalheiser & Torvik, 2009). In industry, several bibliographic data providers such as DBLP, 
Scopus, and Web of Science have disambiguated author names to improve their service quality 
(Kawashima & Tomizawa, 2015; J. Kim, 2018; Ley, 2009; Zhao, Rollins, Bai, & Rosen, 2017), while 
others still rely on the name string matching to output author-related search results. 

Despite the differences in methods and datasets, a few AND studies have observed that some ethnic name 
groups (ENG, hereafter) (e.g., Chinese names) are more difficult to disambiguate than others (Deville et 



al., 2014; J. Kim & Diesner, 2016; Strotmann & Zhao, 2012; Torvik & Smalheiser, 2009; J. Wu & Ding, 
2013). This implies that author names may be better disambiguated if their associated ethnicities are 
considered as inputs in disambiguation models. But this possibility has been little explored. First, the 
observations made in several studies that certain ethnic names are harder to disambiguate are based on 
post-hoc evaluations of AND results. In other words, many of those studies did not integrate ethnic name 
partitions during machine learning. A very small number of studies have divided names into subgroups in 
their disambiguation model building (Chin et al., 2013; Louppe, Al-Natsheh, Susik, & Maguire, 2016) 
and evaluation process (Lerchenmueller & Sorenson, 2016). But their ethnic name categories are limited 
in number (e.g., dichotomy of Chinese vs non-Chinese; Caucasian, Asian, and Hispanic) or mixed up 
with racial distinctions based on the U.S. Social Security information (e.g., White, Black, Hispanic, 
Asian, etc.). Such racial classifications can be inappropriate for bibliographic data in which author names 
come from diverse regions around the world. In addition, those studies have typically used a single 
labeled data source, which makes it hard to expand and generalize their findings to other AND scenarios. 

This study aims to empirically evaluate the effect ethnic name partitioning has on AND. In this study, 
author name disambiguation is a task to assign either ‘match’ or ‘nonmatch’ label to a pair of author name 
instances. For this, specifically, name instances are grouped into a block that share the same first 
forename initial and full surname and pairwisely compared with the block for their similarities over a set 
of features (e.g., coauthor name) to produce similarity scores. Machine learning algorithms combine the 
scores to learn weights of each feature to decide if a given pair of instances to refer to the same author or 
not. Although our work is motivated by the studies reviewed above and follows their common data pre-
processing, blocking and machine learning steps, this paper differs from them in three important ways. 
First, this study evaluates AND performance by four different machine learning algorithms applied to 
four different labeled datasets before and after inclusion of a standard ethnic name group partition. Here, a 
name instance is assigned to an ethnic name group based on a name ethnicity classification system, 
Ethnea. Second, unlike traditional labeled data in which a specific ENG (i.e., Chinese) dominates, this 
study disambiguates new labeled data in which all ENGs are controlled to have the same numbers of 
instances, to demonstrate that performance changes induced by ethnic name partitioning may not be 
solely due to the well-known relationship between the number of cases and their ambiguity (more names, 
more ambiguity). Third, this study shows that different combinations of features (e.g., coauthor name and 
title words) appear to be related to AND performance for different ENGs suggesting future directions to 
further improve AND performance with ambiguous ethnic group names. The findings of this study can 
provide practical insights to researchers and practitioners who handle authority control in digital libraries. 
In the following sections, details on labeled data and setups for machine learning are described. 

Method 

Labeled Data and Pre-Processing 

To measure the effect of ethnic name partition on machine learning for AND, this study disambiguates 
names in four labeled datasets – KISTI, AMINER, GESIS, and UM-IRIS. The first three datasets have 
been used in many AND studies to train and test machine learning algorithms (Cota, Ferreira, 
Nascimento, Gonçalves, & Laender, 2010; Ferreira, Veloso, Gonçalves, & Laender, 2014; Hussain & 
Asghar, 2018; J. Kim & Kim, 2018, In print; Momeni & Mayr, 2016; Alan Filipe Santana, Gonçalves, 
Laender, & Ferreira, 2017; Shin, Kim, Choi, & Kim, 2014; H. Wu, Li, Pei, & He, 2014; Zhu et al., 2018). 



The last one is added to investigate how the ethnic name partition affects AND under the condition in 
which all ENGs are constrained to have the same numberss of ambigous name instances1. 

KISTI: Scientists at the Korea Institute of Science & Technology Information (KISTI) and Kyungsung 
University in Korea constructed this labeled dataset. It is made up of 41,673 author name instances that 
belong to 6,921 unique authors (Kang, Kim, Lee, Jung, & You, 2011)2. 

AMINER: Researchers in China and U.S. collaborated to create this labeled data to build and evaluate 
AND models for a computer science digital library, AMiner (Tang et al., 2008; X. Wang, Tang, Cheng, & 
Yu, 2011)3. It consists of 7,528 author name instances that refer to 1,546 unique authors.  

GESIS: Scholars at the Leibniz Institute for the Social Sciences (GESIS) in Germany produced this 
labeled data. It contains author name instances of 5,408 unique authors (Momeni & Mayr, 2016) 4. This 
study reuses the ‘Evaluation Set’ (29,965 author name instances of 2,580 unique authors) but with a few 
enhancements (J. Kim & Kim, 2020). Each author name instance is converted into the ‘surname, 
forename’ format and, through linking GESIS to its base DBLP data, is associated with the title of the 
paper in which it appears and the name of the conference or journal where the paper is published.  

UM-IRIS: This dataset was generated by the researchers at the University of Michigan Institute for 
Research on Innovation & Science (UM-IRIS) and the University of Illinois through matching selected 
name instances in publication records to an authority database, ORCID (Kim & Owen-Smith, in print). 
First, author full names (e.g., ‘Brown, Michael’) that appear 50 times or more in MEDLINE-indexed 
publications published between 2000 and 2019 were listed5. Then, all instances of each selected full name 
(e.g., 158 instances of ‘Brown, Michael’ in MEDLINE) and their associated publication metadata were 
compared to 6 million researcher profiles in ORCID6. If an instance had a single match in the publication 
list of an ORCID researcher profile (matching on full name, paper title, and publication venue), the 
matched researcher’s ORCID id was assigned as an author label to the instance. Next, among the ORCID 
id-linked instances, those whose full names are associated with 5 or more ORCID ids (e.g., 6 unique 
ORCID researchers share the name ‘Brown, Michael’ which appear 158 times in MEDLINE) were 
randomly selected to produce 1,000 name instances for each of six ENGs. The resulting data contain 
6,000 instances of 822 authors.     

Four features – author name, coauthor name(s), paper title, and publication venue - are used as machine 
learning features because they have been widely used in algorithmic AND studies (Schulz, 2016; Song, 
Kim, & Kim, 2015) and are commonly available in the four labeled datasets. The string of each feature is 
stripped of non-alphabetical characters, converted into ASCII format, and lowercased. For title words, 
common English words like ‘the’ and ‘to’ are removed (i.e., stop-word listed) using the dictionary in 
Stanford NLP7 and stemmed (e.g., ‘solution’ → ‘solut’) using the Porter’s algorithm8. Name instances in 
KISTI are converted into the full surname and first forename initial format (‘Wang, Wei’ → ‘Wang, W’)     
to make them more ambiguous (see J. Kim & Kim, 2020). 

                                                            
1 This new labeled dataset was created following the idea of a reviewer who suggested that the impact of ethnic 
name partition on AND may be confounded by the size differences of ambiguous names.  
2 http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/DBLP.tar.gz/at_download/file 
3 http://arnetminer.org/lab-datasets/disambiguation/rich-author-disambiguation-data.zip 
4 http://dx.doi.org/10.7802/1234 
5 https://www.nlm.nih.gov/bsd/medline.html 
6 https://orcid.org/ 
7 https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt 
8 https://tartarus.org/martin/PorterStemmer/ 



Ethnic Name Group (ENG) Tagging 

This study assigns an ENG tag to a name instance in each labeled dataset using the author name ethnicity 
classification database, Ethnea, developed by Torvik and Agarwal (2016)9. Ethnea is a collection of more 
than 9 million author name instances that are tagged one of 26 ENG classes based on the name’s 
association with national-level geo-locations10. For example, “Wang, Wei” is classified as ‘Chinese’ as it 
is most frequently associated with organizations in China. However, Ethnea makes no distinctions based 
on any anthropological, cultural, or linguistic characteristics of authors. Instead it relies entirely on 
observations of names and geo-locations of their frequently associated institutions so an author named 
‘Wang, Wei’ who was born in the U.S. and has never visited China would still be assigned a ‘Chinese 
name’ tag. We link all four labelled datasets to Ethnea and, if a matched name is found, assign that 
name’s ENG tag to all its observed instances. If a queried name does not have a match in Ethnea, we 
search again using only the surname and assign the modal Ethnea ENG tag associated with it to all its 
instances. Table 1 summarizes the frequencies and ratios of ENG tags assigned by Ethnea to author name 
instances in each labeled dataset. 

Table 1 shows the list of ENGs in each labeled data. Small-sized ENGs are excluded from analysis 
because most name instances in those ENGs tend to belong to a single author while a few instances 
referring to other author(s). When randomly split into training and test subsets for machine learning, these 
instances do not produce negative pairs at all. 

 

[Table 1] 

 

Chinese names represent the majority of ENGs in three labeled data. This is because these labeled data 
were created from computer science papers where Chinese researchers are particularly large contributors. 
In addition, as the three datasets were designed to collate challenging names to disambiguate, Chinese 
names that tend to be more ambiguous than other ENGs were over-sampled (Müller, Reitz, & Roy, 2017). 
In contrast, 6,000 instances in UM-IRIS are evenly distributed over six ENGs. For validation and reuse, 
these labeled data with ENG tags are publicly available11. Note that the original KISTI contains 41,673 
name instances, whereas the ENG-tagged KISTI has 41,605 instances. Such discrepancy occurs because 
this paper uses the revised version of KISTI that corrects record errors and duplicates in the original data 
(J. Kim, 2018). 

Machine Learning Process 

Machine learning methods for AND can be divided into two groups: author assignment and author 
grouping (Ferreira et al., 2012). While the former aims to assign an author name instance to one of pre-
disambiguated author name clusters, the latter aims to group all and only instances that belong to the same 
authors. This study takes the latter approach in evaluating the effect of ENG on AND. Specifically, author 

                                                            
9 https://databank.illinois.edu/datasets/IDB-9087546 
10 26 ethnicities include: African, Arab, Baltic, Caribbean, Chinese, Dutch, English, French, German, Greek, 
Hispanic, Hungarian, Indian, Indonesian, Israeli, Italian, Japanese, Korean, Mongolian, Nordic, Polynesian, 
Romanian, Slav, Thai, Turkish, and Vietnamese. In Ethnea, some name instances are assigned two ethnicities (e.g., 
“Jane Kim” → Korean-English) if the surname and forename of an author name are associated frequently with 
different ethnicities.   
11 Download link TBA 



name instances in each labeled dataset are pairwise compared to assess whether a given instance pair of 
plausibly represents the same author (a match) or not (a nonmatch). Although some scholars take a further 
step to cluster pairwise comparisons (e.g., J. Kim & Kim, 2018; Levin, Krawczyk, Bethard, & Jurafsky, 
2012; Louppe et al., 2016; Alan Filipe Santana et al., 2017), this study only evaluates disambiguation 
performance at a pair level (i.e., classification), following the practice of previous AND studies (e.g., 
Han, Giles, Zha, Li, & Tsioutsiouliklis, 2004; Song et al., 2015; Treeratpituk & Giles, 2009; 
Vishnyakova, Rodriguez-Esteban, Ozol, & Rinaldi, 2016). 

As the first machine learning step, author name instances in each labeled dataset are randomly divided 
into training (50%) and test (50%) subsets. Then, instances in each subset are put into blocks in which all 
member instances share the same full surname and first forename initial (e.g., ‘Wang, W’). Only instances 
in the same block are compared for disambiguation. This blocking is typical in AND studies because it 
reduces computational complexity with only slight performance degradation (K. Kim, Sefid, & Giles, 
2017; Torvik & Smalheiser, 2009). Next, instance pairs in the same block are compared to establish their 
similarity over four other data features: author name, coauthor name(s), paper title, and publication venue. 
To quantify how much a pair is similar over a feature, this study calculates the cosine similarity of Term 
(n-gram) Frequency for each feature (Han, Zha, & Giles, 2005; J. Kim & Kim, In print; Levin et al., 2012; 
Louppe et al., 2016; A. F. Santana, Gonçalves, Laender, & Ferreira, 2015; Treeratpituk & Giles, 2009). 
Specifically, the string of a feature is converted into an array of 2~4-grams (e.g., author name ‘Wang, 
Wei’ → ‘wa|an|ng|gw|we|ei|wan|ang|ngw|gwe|wei|wang|angw|ngwe|gwei’). After the conversion, two n-
gram arrays of an instance pair are compared to produce a cosine similarity score for the feature.  

Besides the four basic features, ENGs are used as a feature set for ENG-aware disambiguation. For this, 
especially, an instance pair’s ENG is encoded into a binary value (i.e., one-hot encoding) for a pre-
defined set of ENGs12. For example, in AMINER, a pair of name instances (‘Wang, Wei’ and ‘Wang, 
W.’) is assigned either ‘Yes’ or ‘No’ for each of five ethnicities – Chinese (‘Yes’), English (‘No’), Indian 
(‘No’), German (‘No’), and Hispanic (‘No’) – as shown in Table 1. Table 2 shows examples of the cosine 
similarity scores calculated over four features and ENG encoding results for instance pairs.  

 

[Table 2] 

 

We focus on four algorithms – Gradient Boosting, Logistic Regression, Naïve Bayes, and Random Forest 
– for supervised machine learning that have been widely used as baselines or best performing methods in 
AND studies (e.g., Han et al., 2004; J. Kim & Kim, In print; K. Kim, Sefid, Weinberg, & Giles, 2018; 
Louppe et al., 2016; Song et al., 2015; Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009; 
Vishnyakova et al., 2016; J. Wang et al., 2012). In the first scenario, they are trained on the list of 
similarity scores and labels, as shown in Table 2 to learn relative weights for features and an absolute 
weight or threshold for instance pairs to be disambiguated without considering ENGs (→ ENG-ignorant 
learning). In the second scenario, the same algorithms are trained on the list of similarity scores, ENGs, 
and labels (→ ENG-aware disambiguation). Here, the ethnic name partition adds more features 
(dimensions) to each instance pair’s feature set, allowing algorithms to combine the similarities of the 
expanded features. The machine learning procedure is implemented using the python Scikit-learn 
package. For Gradient Boosting, 500 estimators are used with max depth=9 and learning rate = 0.125. For 
                                                            
12 As only instances in the same block in which they share at least the same full name and first forename initial are 
compared, all the pairs in the block have the same ethnicity tag. 



Logistic Regression, L2 Regularization with class weight = 1 is used. Gaussian Naïve Bayes with 
maximum likelihood estimator is used for Naïve Bayes. For Random Forest, 500 trees are used after a 
grid search. 

Trained algorithmic models are applied to the instance pairs in test subsets in which the cosine similarity 
is calculated for the four basic features and, in the second scenario, ethnicities are encoded in the same 
fashion but explicitly include ENG information. As in Table 2, an algorithmic model receives a set of 
feature similarity scores and, if ENG-aware disambiguation is conducted, a list of encoded ENGs for an 
instance pair to output a binary classification decision (match or nonmatch). Once trained, each algorithm 
produces a single score that predicts the probability of an instance pair being negative (nonmatch). If the 
predicted probability is above a certain threshold (> 0.5), the pair is decided to be a nonmatch, whereas if 
below the threshold, a match.   

Performance Evaluation 

We evaluate each algorithm’s classification results on reserved test subsets of each labeled dataset by 
calculating precision and recall for positive (P; match) and negative (N; nonmatch) pairs respectively. In 
addition, we calculate the F1 score as a harmonic mean of precision and recall. 

Specifically, precision for positive pairs (Prec-Pos) measures how many predicted match pairs are correct 
ones (true positives; TP) over the total number of predicted match pairs that may contain correct match 
pairs (true positives; TP) and incorrect match pairs (false positives; FP). In contrast, recall for positive 
pairs (Rec-Pos) measures the ratio of correct match pairs (true positives; TP) over the total number of true 
match pairs that may be predicted correctly as match pairs (true positives; TP) or incorrectly as nonmatch 
pairs (false negatives; FN). 
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2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

       (3) 

 

Likewise, precision for negative pairs (Prec-Neg) measures how many predicted nonmatch pairs are 
correct ones (true negatives; TN) over the total number of predicted nonmatch pairs that may contain 
correct nonmatch pairs (true negatives; TN) and incorrect nonmatch pairs (false negatives; FN). In 
contrast, recall for negative pairs (Rec-Neg) measures the ratio of correct nonmatch pairs (true negatives; 
TN) over the total number of true nonmatch pairs that may be predicted correctly as nonmatch pairs (true 
negatives; TN) or incorrectly as match pairs (false positives; FP). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)      (4) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ  =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)    (5) 

𝐹𝐹1 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁       (6) 



The metrics are calculated on the entire set of test results for each labeled dataset. We separately calculate 
performance measures for difference ENGs rather than averaging them across multiple ethnicity groups.  

Results 

Cross-Data Performance Evaluation 

Figure 1 shows disambiguation results on KISTI, reporting precision and recall before and after ENG-
aware disambiguation by four algorithms – Gradient Boosting (GB), Logistic Regression (LR), Naïve 
Bayes (NB), and Random Forest (RF). Figure 1a shows that when ENGs are included as features, the 
algorithms tend to produce better precision in the prediction of positive (match) pairs than when they are 
not considered. This is shown by black bars (‘After’) being higher than stripped bars (‘Before’) in Figure 
1a. This observation indicates that ethnic name partitioning helps algorithms increase the ratio of TP 
among predicted positive pairs (= TP + FP). This can be confirmed by checking the numbers of true and 
false positive pairs in Table 3. For example, when trained only on the four basic (non-ENG) features, LR 
predicts that 76,201 (= TP + FP = 55,998 + 20,203) pairs refer to the same authors (match) and 73.49% of 
the predictions are right (= TP/(TP + FP)). After trained on the same but ENG-tagged data, however, it 
predicts 170,432 pairs to be match sets, increasing its prediction accuracy this time to 77.08%.    
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Ethnic name partitioning also reduces the number of falsely predicted nonmatch cases (FN), increasing 
recall in Figure 1b. Performance gains by ENG-aware disambiguation are more pronounced for recall 
than for precision, as evidenced by larger differences between ‘Before’ and ‘After’ bars for recall (Figure 
1b) than those for precision (Figure 1a). In other words, ENG aware disambiguation across four common 
algorithms appears to reduce false negative predictions more than true positive predictions, potentially 
providing better performance for applications (such as network analysis) that are particularly sensitive to 
biases due to erroneous “lumping” of name instances that actually refer to different individuals. The 
improvements in precision and recall together increase the F1 scores by ENG-aware disambiguation 
(Figure 1c).   

ENG-aware disambiguation also does a better job of accurately predicting non-match (negative pair) 
cases. The ‘After’ bars are taller than those of ‘Before’ in Figure 1d. Unlike the positive pair prediction in 
which ENG-aware disambiguation works in favor of both precision and recall by all algorithms, however, 
the performance gains in precision for negative pairs come with slightly decreased recall by GB and LR 
in Figure 1e. This means that while disambiguation models by GB and LR trained on ENG-added features 
are good at increasing the numbers of true nonmatch pairs among predicted nonmatch pairs (= TN +FN), 
they incorrectly predict that true nonmatch pairs match (FP predictions) more frequently than when they 
are trained on the four basic features alone. Reduced recall for negative pair prediction is, however, offset 
by increased precision, leading to the F1 scores by ENG-aware disambiguation being better than those by 
ENG-blind one in Figure 1f. Meanwhile, NB and RF still obtain improvements in both precision and 
recall as well as F1. 



Algorithmic performances are also enhanced by ENG-aware disambiguation on AMINER, GESIS, and 
UM-IRIS. Figure 2 ~ 4 report that the algorithms trained on ENG-tagged data perform better than those 
trained only on the basic features across almost all metrics for both positive and negative pairs. NB 
models prove the exception, producing worse results in recall for positive pairs and in precision for 
negative pairs after ethnic name partition. However, this degraded performance is offset by increased 
precision for positive pairs and increased recall for negative pairs, respectively, so the overall 
performance metric (F1), which equally weights precision and recall, indicates an overall improvement 
due to the inclusion of ENG features. 
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Performance Evaluation per ENG 

ENG-aware disambiguation produces substantial improvements in both precision and recall for predicting 
match and nonmatch instance pairs in different labeled datasets. But are those improvements uniform 
across different ENGs? If not, a more nuanced approach to model evaluation may be necessary. To 
answer this question, we compare performance changes due to ENG-aware disambiguation within ENG 
groups. For this, precision, recall, and F1 scores for positive and negative pairs predicted by four 
algorithms are calculated separately for instance pairs that belong to the same ENG in each of four 
labeled data: 4 algorithms × 4 data = 16 evaluations. Presenting all the results at the same time would 
consume too much space in this paper. So, we present random forest (RF) predictions on the GESIS 
dataset as an illustration for the purposes of this discussion. Reports of other algorithms and data are 
presented in a supplementary document attached to this paper. 

Figure 5 shows the by ENG performance metrics for the RF algorithm trained on GESIS with and without 
ENG-aware disambiguation. The ENG-aware disambiguation leads to better precision (positive pairs; 
Figure 5A) and recall (negative pairs; Figure 5E) for Chinese names but worse precision (positive pairs) 
and recall (negative pairs) for other ethnicities. In contrast, name disambiguation for Chinese names 
results in lower recall (positive pairs; Figure 4B) and precision (negative pairs; Figure 4D) than those for 
other ENGs. Similar patterns are observed for other algorithms tested on GESIS (see Figure S5~S8 in 
Supplementary Material). This suggests that the effect of ENG-aware disambiguation occurs in different 
ways for different ENGs. Thus, its application can be beneficial in some instances but detrimental in 
others.  Variations in the effects of ENG-aware disambiguation on precision and recall for positive and 
negative pair prediction across ethnicity groups suggest that care must be taken to design disambiguation 
strategies that fit particular analytic or empirical needs. 

 

[Figure 5] 



These observations can be explained as follows. ENGs have different distributions of similarity scores 
over the four basic (non-ethnicity) features we use. Figure 6 presents the feature similarity score 
distributions per ENG for positive (left) and negative (right) pairs in the GESIS test data. Training and 
test subsets show similar distributions in each labeled dataset. For visual simplicity, a score is rounded up 
into nearest bins with intervals of 0.1 on x-axis and the ratios of the numbers of scores in the same bin 
over all scores are plotted on y-axis. A solid red line represents the distribution of all instance pairs 
regardless of ENG.  

In Figure 6, each ENG has different distributions of, for example, ‘COAUTHOR’ similarity scores for both 
positive and negative pairs (Figure 6C and 6D). So, the four algorithms come to use different ‘coauthor’ 
similarity score distributions in ENG-aware disambiguation. Such heterogeneous distributions also occur 
for other features but with different variations of differences. For example, ‘VENUE’ distributions in 
Figure 6G and 6H differ less across ENGs than do ‘COAUTHOR’ distributions. Because ENG-aware 
disambiguation allows training and testing on different feature similarity score distributions for each 
ENG, the algorithms combine features using different weightings for each ethnicity, producing different 
predictions for name pairs with the same feature similarity scores but different ENG tags. In other words, 
this method takes into account the likelihood that researchers in different ENGs organize their scientific 
work differently, favoring distinct co-authorship and publication venue patterns. This also occurs in 
disambiguation of other labeled data, whose feature similarity score distributions are reported in Figure 
S17 ~ S20 in Supplementary Material. 
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Figure 5 also shows that some ENGs manifest substantial improvements in recall for positive pairs 
(Figure 5B) but degraded recall for negative pairs (Figure 5E). This might be explained in two ways. In 
our ‘before’ (ENG-unaware) case, algorithms combine features to produce per-feature weights for 
positive pairs based on feature similarity scores aggregated across multiple ENGs that can have very 
different feature distributions. Such aggregated distributions cannot effectively capture the single match 
patterns specific to each ENG, which seem to lead models to falsely predict positive pairs as negative 
ones (FN), reducing the recall for positive pairs. Conversely, increased recall for positive pairs after ENG-
aware disambiguation means that the algorithms trained and tested on ENG-tagged data successfully 
produce per-feature weights optimized to each ENG, thus making better predictions that push up the 
recall scores for many ENGs. 

Second, decreased negative pair recall after ENG-aware disambiguation means that the algorithms trained 
and tested on ENG-tagged data fail to produce proper per-feature weights for accurately predicting 
nonmatch for known negative pairs. When the algorithms are trained only on the four basic (non-
ethnicity) features, they do a better job of predicting nonmatch pairs based on aggregated feature 
similarity distributions that are invariant across particular ENGs. In other words, feature distributions 
aggregated across ENGs appear to be more effective for predicting negative case pairs while ENG-aware 
disambiguation techniques more accurately capture positive pairs.  

These observations imply that disambiguation models for positive pair prediction would be improved by 
ENG-aware procedures, while nonmatch patterns for negative pair prediction can aggregate across ENGs 
(J. Kim & Kim, 2018). Table 4 shows that in the GESIS training data, each ENG has different sizes of 
positive and negative (pairwise) pairs. CHINESE name instances produce the largest numbers of positive 



(≈ 146K) and negative pairs (≈ 551K), while ITALIAN name instances generate around a few thousand 
positive and a few hundred negative pairs. In other training data, CHINESE pairs constitute substantially 
large proportions (KISTI: 71.28 % and AMINER: 91.26 %) or over one-third (UM-IRIS: 37.54 %) of all 
negative pairs, while other ENG pairs make up small or less-than-expected (approximately 17% per ENG 
in UM-IRIS) proportions. In contrast, the numbers of positive pairs are less concentrated (GESIS, KISTI, 
and AMINER) or more evenly distributed (UM-IRIS) for positive pairs than those for negative pairs.  
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As noted above for Figure 5 and observed in other labeled data (see Figure S1 ~ S16 in Supplementary 
Material), the algorithms work better in finding more true negative pairs even for non-CHINESE name 
pairs when they are trained on data in which ethnic name partitioning is not performed (‘BEFORE’) and, 
thus, negative pairs are dominated by CHINESE ones as shown in Table 4~6. This implies that the 
nonmatch patterns in CHINESE name pairs are applicable to predicting nonmatch pairs for other ENGs. 
In contrast, during ENG-aware disambiguation, the algorithms come to rely on the small-size negative 
pairs that may skew or distort true nonmatch patterns for some ENGs. This seems to result in the 
decreased recall in predicting negative pairs (i.e., many true negatives classified as false positives, which 
reduces precision for positive pair prediction), while increasing slightly precision in predicting negative 
pairs. 

Despite the aforementioned conflicting changes in precision and recall per ENG, the overall performance 
by the four algorithms on the whole test set are shown in Figure 1~4 to substantially increase across the 
four labeled data after ethnic name partitioning is included in machine learning. One reason would be that 
performance gains outweigh losses at each ENG level overall. Another reason would be that especially 
for KISTI, AMINER, and GESIS, the improved performances in disambiguating CHINESE that 
constitute the majority of name instances may affect the overall evaluation results. As shown by the case 
of UM-IRIS in which ENG sizes are controlled to be equal, however, the overall performance 
improvements can be observed for all the ENGs by ENG-aware disambiguation. As such, this study 
illustrates that the ethnic name partition can be truly effective in improving disambiguation performances. 

Discussion 

These results suggest that AND tasks may produce better results by using ethnic name partition in 
machine learning. Considering that adding more features can improve generally machine learning 



performances, the enhanced disambiguation performances by ENG partitioning might not be a surprise. 
With that said, the real contribution of this study would be that it demonstrates many machine learning 
based disambiguation models have a potential to be improved by introducing ethnic name grouping into 
ambiguous data without additional collection of feature information. 

To fully realize this potential, however, a few issues need to be addressed. First, ENG tagging can be a 
non-trivial task that requires an intricate algorithmic technique itself. Thanks to the ENG classification 
system developed and publicly shared by Torvik and Agarwal (2016), this study could assign ENGs to the 
names in four labeled data. Although Ethnea was constructed based on more than 9 million author name 
instances in PubMed, the world largest biomedicine library, it is unknown how well it can help us tag 
ENGs to names in other fields. Ideally, Ethnea may be updated regularly to reflect new author names 
entering bibliographic data in various fields. Practically, further research may be focused on finding out a 
set of ENGs that are most influential in improving disambiguation results and thus simplifying ENG 
tagging for author name disambiguation (e.g., CHINESE vs Non-CHINESE).  

Second, the findings of this study were based on three labeled data (KISTI, AMINER, and GESIS) in 
which CHINESE names are dominant and the overall performance improvements were heavily affected 
by those for CHINESE name instances. To overcome such an imbalance of instance distribution in 
labeled data, a new labeled data (UM-IRIS) were created in a way that six ENGs have the same amount of 
ambiguous name instances. Disambiguation results from the new labeled data were in line with those 
from other three labeled data. In addition, all ENGs including CHINESE were able to obtain gains in 
disambiguation performances. But all these findings were obtained from small-sized labeled data, whether 
they are biased or controlled for ENG sizes. So, it is still unknown whether such improvements are 
achievable in author name disambiguation for large-scale bibliographic data in which ENG composition 
may be quite different from those in the labeled data used in this paper.  

Another issue would be that there can be other features than the four used in this study that can lead 
ethnic name partition to different AND performances. For example, English authors may appear in 
publication records that are more complete in affiliation information and use more diverse title terms. 
Meanwhile, Chinese authors may tend to work with coauthors who have similar names in same 
institutions. Various features need to be explored to study further the impact of ethnic name partition on 
AND.   

Fourth, ENG-aware disambiguation may be beneficial for positive pair prediction but not so much for 
negative pair prediction. This was illustrated in Figure 5 above and Figure S1 ~ S16 in Supplementary 
Material by the dramatically decreased recall in negative pair predictions for many ENGs. It was 
contrasted with the substantial increase of precision in positive pair prediction for those ENGs. This study 
speculates that by ethnic name partitioning, classifiers become stricter for CHINESE pairs while relaxed 
for other ENG pairs. In other words, a pairs of CHINESE instances that would be classified as ‘match’ 
before partitioning are classified as ‘nonmatch’ after partitioning (PREC-POS↑; REC-POS↓), while 
‘nonmatch’ pairs of other ENG instances as matched ones (PREC-POS↓; REC-POS↑). This might be 
because while some CHINESE pairs sharing coauthor names, venue names, or title words refer to 
different authors, other ethnic names sharing the features are more likely to represent the same authors 
(see Figure 6 B, D, F, and H in which Chinese name pair share is denoted in square). During training, such 
different similarity patterns are mixed up before partitioning but distinguished after it. Another conjecture 
is that due to the relaxed classification after partitioning, true negative pairs of other-than-CHINESE 
ENGs are falsely classified as false positive pairs (PREC-POS↓; REC-NEG↓). As the sizes of negative 
pairs in most non-CHINESE ENGs are smaller than positive pairs (see Table 4~7), misclassified negative 
pairs have larger impacts on REC-NEG than on PREC-POS across the ENGs. But these conjectures are 



based on the observations on labeled data in which Chinese name instances are prevalent. Using an 
additional labeled data with controlled ENG sizes, however, the conjecture has been confirmed. But only 
six ENGs in a small dataset were considered for analysis. More ENGs need to be investigated to check if 
this conjecture holds good under the different combinations of ENGs. 

Conclusion and Discussion 

This study evaluated the effects ethnic name partitioning has on author name disambiguation (AND) 
using machine learning methods. For this, author name instances in four labeled datasets were 
disambiguated under two scenarios. First, similarity scores of instance pairs over four basic features – 
author name, coauthor names, paper title, and publication venue – were used to train and test 
disambiguation algorithms. Second, in addition to the basic features, ethnic name group (ENGs) were 
tagged to name instances to allow algorithms to build models that are optimized to each ENG. 
Comparisons of disambiguation performances before and after ENG-aware disambiguation showed that 
using ethnic name partition can substantially improve algorithmic performances. Such performance 
improvements occurred across all ENGs, although performance gains and losses at each ENG level were 
observed in different ways depending on the types of measures – precision or recall – and target 
classifications – positive (match) or negative (nonmatch) pairs.  

As detailed in the discussion above, ethnic name partition requires further research for us to understand 
better its impact on author name disambiguation and apply it to disambiguation tasks for digital libraries 
that are struggling with authority control over fast-growing ambiguous author names. This study is 
expected to motivate scholars and practitioners to study toward that direction by demonstrating the 
potential of ENG-aware disambiguation in improving disambiguation performances. 
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Abstract 

In several author name disambiguation studies, some ethnic name groups such as East Asian names are 
reported to be more difficult to disambiguate than others. This implies that disambiguation approaches 
might be improved if ethnic name groups are distinguished before disambiguation. We explore the 
potential of ethnic name partitioning by comparing performance of four machine learning algorithms 
trained and tested on the entire data or specifically on individual name groups. Results show that 
ethnicity-based name partitioning can substantially improve disambiguation performance because the 
individual models are better suited for their respective name group. The improvements occur across all 
ethnic name groups with different magnitudes. Performance gains in predicting matched name pairs 
outweigh losses in predicting nonmatched pairs. Feature (e.g., coauthor name) similarities of name pairs 
vary across ethnic name groups. Such differences may enable the development of ethnicity specific 
feature weights to improve prediction for specific ethic name categories. These findings are observed for 
three labeled data with a natural distribution of problem sizes as well as one in which all ethnic name 
groups are controlled for the same sizes of ambiguous names. This study is expected to motive scholars to 
group author names based on ethnicity prior to disambiguation.     

Keywords: supervised machine learning; author name disambiguation; feature engineering, name 
ethnicity; data partition 

 

Introduction and Background 

A big challenge in managing digital libraries is that author names in bibliographic data are ambiguous 
because many authors have the same names (homonyms) or variant names are recorded for the same 
authors (synonyms). One study estimates that about two-thirds of author names in PubMed, the largest 
biomedicine digital library, are vulnerable to either or both of these two ambiguity types (Torvik & 
Smalheiser, 2009). Research findings obtained by mining bibliographic data can be distorted by merged 
and/or split author identities due to incorrect disambiguation (Fegley & Torvik, 2013; J. Kim & Diesner, 
2015, 2016; Schulz, 2016). In addition, digital library users query author names most frequently (Islamaj 
Dogan, Murray, Névéol, & Lu, 2009). This means that the users will receive inaccurate information about 
research production, citation, and collaboration for authors if author name ambiguity is not properly 
resolved (Harzing, 2015; Strotmann & Zhao, 2012).  

To address the challenge, researchers have proposed a variety of author name disambiguation (AND, 
hereafter) methods. Some scholars have used heuristics such as string-based matching (e.g., names that 
have the same full surname and forename initials are assumed to represent the same author), which is the 
most widely used approach in bibliometrics (Milojević, 2013). Others have developed rule-based 
programming and supervised/unsupervised machine learning techniques, as systemically reviewed in 
several papers (Ferreira, Gonçalves, & Laender, 2012; Hussain & Asghar, 2017; Sanyal, Bhowmick, & 
Das, 2019; Smalheiser & Torvik, 2009). In industry, several bibliographic data providers such as DBLP, 
Scopus, and Web of Science have disambiguated author names to improve their service quality 
(Kawashima & Tomizawa, 2015; J. Kim, 2018; Ley, 2009; Zhao, Rollins, Bai, & Rosen, 2017), while 
others still rely on the name string matching to output author-related search results. 

Despite the differences in methods and datasets, a few AND studies have observed that some ethnic name 
groups (ENG, hereafter) (e.g., Chinese names) are more difficult to disambiguate than others (Deville et 



al., 2014; J. Kim & Diesner, 2016; Strotmann & Zhao, 2012; Torvik & Smalheiser, 2009; J. Wu & Ding, 
2013). This implies that author names may be better disambiguated if their associated ethnicities are 
considered as inputs in disambiguation models. But this possibility has been little explored. First, the 
observations made in several studies that certain ethnic names are harder to disambiguate are based on 
post-hoc evaluations of AND results. In other words, many of those studies did not integrate ethnic name 
partitions during machine learning. A very small number of studies have divided names into subgroups in 
their disambiguation model building (Chin et al., 2013; Louppe, Al-Natsheh, Susik, & Maguire, 2016) 
and evaluation process (Lerchenmueller & Sorenson, 2016). But their ethnic name categories are limited 
in number (e.g., dichotomy of Chinese vs non-Chinese; Caucasian, Asian, and Hispanic) or mixed up 
with racial distinctions based on the U.S. Social Security information (e.g., White, Black, Hispanic, 
Asian, etc.). Such racial classifications can be inappropriate for bibliographic data in which author names 
come from diverse regions around the world. In addition, those studies have typically used a single 
labeled data source, which makes it hard to expand and generalize their findings to other AND scenarios. 

This study aims to empirically evaluate the effect ethnic name partitioning has on AND. In this study, 
author name disambiguation is a task to assign either ‘match’ or ‘nonmatch’ label to a pair of author name 
instances. For this, specifically, name instances are grouped into a block that share the same first 
forename initial and full surname and pairwisely compared with the block for their similarities over a set 
of features (e.g., coauthor name) to produce similarity scores. Machine learning algorithms combine the 
scores to learn weights of each feature to decide if a given pair of instances to refer to the same author or 
not. Although our work is motivated by the studies reviewed above and follows their common data pre-
processing, blocking and machine learning steps, this paper differs from them in three important ways. 
First, this study evaluates AND performance by four different machine learning algorithms applied to 
four different labeled datasets before and after inclusion of a standard ethnic name group partition. Here, a 
name instance is assigned to an ethnic name group based on a name ethnicity classification system, 
Ethnea. Second, unlike traditional labeled data in which a specific ENG (i.e., Chinese) dominates, this 
study disambiguates new labeled data in which all ENGs are controlled to have the same numbers of 
instances, to demonstrate that performance changes induced by ethnic name partitioning may not be 
solely due to the well-known relationship between the number of cases and their ambiguity (more names, 
more ambiguity). Third, this study shows that different combinations of features (e.g., coauthor name and 
title words) appear to be related to AND performance for different ENGs suggesting future directions to 
further improve AND performance with ambiguous ethnic group names. The findings of this study can 
provide practical insights to researchers and practitioners who handle authority control in digital libraries. 
In the following sections, details on labeled data and setups for machine learning are described. 

Method 

Labeled Data and Pre-Processing 

To measure the effect of ethnic name partition on machine learning for AND, this study disambiguates 
names in four labeled datasets – KISTI, AMINER, GESIS, and UM-IRIS. The first three datasets have 
been used in many AND studies to train and test machine learning algorithms (Cota, Ferreira, 
Nascimento, Gonçalves, & Laender, 2010; Ferreira, Veloso, Gonçalves, & Laender, 2014; Hussain & 
Asghar, 2018; J. Kim & Kim, 2018, In print; Momeni & Mayr, 2016; Alan Filipe Santana, Gonçalves, 
Laender, & Ferreira, 2017; Shin, Kim, Choi, & Kim, 2014; H. Wu, Li, Pei, & He, 2014; Zhu et al., 2018). 



The last one is added to investigate how the ethnic name partition affects AND under the condition in 
which all ENGs are constrained to have the same numberss of ambigous name instances1. 

KISTI: Scientists at the Korea Institute of Science & Technology Information (KISTI) and Kyungsung 
University in Korea constructed this labeled dataset. It is made up of 41,673 author name instances that 
belong to 6,921 unique authors (Kang, Kim, Lee, Jung, & You, 2011)2. 

AMINER: Researchers in China and U.S. collaborated to create this labeled data to build and evaluate 
AND models for a computer science digital library, AMiner (Tang et al., 2008; X. Wang, Tang, Cheng, & 
Yu, 2011)3. It consists of 7,528 author name instances that refer to 1,546 unique authors.  

GESIS: Scholars at the Leibniz Institute for the Social Sciences (GESIS) in Germany produced this 
labeled data. It contains author name instances of 5,408 unique authors (Momeni & Mayr, 2016) 4. This 
study reuses the ‘Evaluation Set’ (29,965 author name instances of 2,580 unique authors) but with a few 
enhancements (J. Kim & Kim, 2020). Each author name instance is converted into the ‘surname, 
forename’ format and, through linking GESIS to its base DBLP data, is associated with the title of the 
paper in which it appears and the name of the conference or journal where the paper is published.  

UM-IRIS: This dataset was generated by the researchers at the University of Michigan Institute for 
Research on Innovation & Science (UM-IRIS) and the University of Illinois through matching selected 
name instances in publication records to an authority database, ORCID (Kim & Owen-Smith, in print). 
First, author full names (e.g., ‘Brown, Michael’) that appear 50 times or more in MEDLINE-indexed 
publications published between 2000 and 2019 were listed5. Then, all instances of each selected full name 
(e.g., 158 instances of ‘Brown, Michael’ in MEDLINE) and their associated publication metadata were 
compared to 6 million researcher profiles in ORCID6. If an instance had a single match in the publication 
list of an ORCID researcher profile (matching on full name, paper title, and publication venue), the 
matched researcher’s ORCID id was assigned as an author label to the instance. Next, among the ORCID 
id-linked instances, those whose full names are associated with 5 or more ORCID ids (e.g., 6 unique 
ORCID researchers share the name ‘Brown, Michael’ which appear 158 times in MEDLINE) were 
randomly selected to produce 1,000 name instances for each of six ENGs. The resulting data contain 
6,000 instances of 822 authors.     

Four features – author name, coauthor name(s), paper title, and publication venue - are used as machine 
learning features because they have been widely used in algorithmic AND studies (Schulz, 2016; Song, 
Kim, & Kim, 2015) and are commonly available in the four labeled datasets. The string of each feature is 
stripped of non-alphabetical characters, converted into ASCII format, and lowercased. For title words, 
common English words like ‘the’ and ‘to’ are removed (i.e., stop-word listed) using the dictionary in 
Stanford NLP7 and stemmed (e.g., ‘solution’ → ‘solut’) using the Porter’s algorithm8. Name instances in 
KISTI are converted into the full surname and first forename initial format (‘Wang, Wei’ → ‘Wang, W’)     
to make them more ambiguous (see J. Kim & Kim, 2020). 

                                                            
1 This new labeled dataset was created following the idea of a reviewer who suggested that the impact of ethnic 
name partition on AND may be confounded by the size differences of ambiguous names.  
2 http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/DBLP.tar.gz/at_download/file 
3 http://arnetminer.org/lab-datasets/disambiguation/rich-author-disambiguation-data.zip 
4 http://dx.doi.org/10.7802/1234 
5 https://www.nlm.nih.gov/bsd/medline.html 
6 https://orcid.org/ 
7 https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt 
8 https://tartarus.org/martin/PorterStemmer/ 



Ethnic Name Group (ENG) Tagging 

This study assigns an ENG tag to a name instance in each labeled dataset using the author name ethnicity 
classification database, Ethnea, developed by Torvik and Agarwal (2016)9. Ethnea is a collection of more 
than 9 million author name instances that are tagged one of 26 ENG classes based on the name’s 
association with national-level geo-locations10. For example, “Wang, Wei” is classified as ‘Chinese’ as it 
is most frequently associated with organizations in China. However, Ethnea makes no distinctions based 
on any anthropological, cultural, or linguistic characteristics of authors. Instead it relies entirely on 
observations of names and geo-locations of their frequently associated institutions so an author named 
‘Wang, Wei’ who was born in the U.S. and has never visited China would still be assigned a ‘Chinese 
name’ tag. We link all four labelled datasets to Ethnea and, if a matched name is found, assign that 
name’s ENG tag to all its observed instances. If a queried name does not have a match in Ethnea, we 
search again using only the surname and assign the modal Ethnea ENG tag associated with it to all its 
instances. Table 1 summarizes the frequencies and ratios of ENG tags assigned by Ethnea to author name 
instances in each labeled dataset. 

Table 1 shows the list of ENGs in each labeled data. Small-sized ENGs are excluded from analysis 
because most name instances in those ENGs tend to belong to a single author while a few instances 
referring to other author(s). When randomly split into training and test subsets for machine learning, these 
instances do not produce negative pairs at all. 

Table 1: Summary of Ethnic Name Group (ENG) Frequencies in Labeled Data 

Labeled Data (No. of Instances) 
KISTI (41,605) AMINER (7,528) GESIS (29,965) UM-IRIS (6,000) 

ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) 
CHINESE 50.1 CHINESE 64.2 CHINESE 56.2 CHINESE 16.67 
ENGLISH 15.6 ENGLISH 17.0 GERMAN 14.8 ENGLISH 16.67 
INDIAN 9.5 INDIAN 6.3 ENGLISH 7.0 GERMAN 16.67 

KOREAN 8.0 GERMAN 5.6 INDIAN 4.3 HISPANIC 16.67 
GERMAN 3.3 HISPANIC 3.1 HISPANIC 3.6 INDIAN 16.67 
ISRAELI 2.2 Sum 96.2 KOREAN 3.5 KOREAN 16.67 
ITALIAN 2.0 Excluded ENGs (3.8%): 

JAPANESE, NORDIC, 
KOREAN, ARAB  

JAPANESE 2.8 Sum 100.00 
HISPANIC 1.7 ITALIAN 1.7 Excluded ENGs (0%):  

None JAPANESE 1.1 ARAB 1.6 
DUTCH 1.0 FRENCH 1.3 
ARAB 0.9 Sum 96.8 

FRENCH 0.9 Excluded ENGs (3.2%):  
NORDIC, HUNGARIAN, 
DUTCH, VIETNAMESE, 
SLAV, ROMANIAN, 
GREEK, ISRAELI, 
TURKISH, 
INDONESIAN  

Sum 96.3 
Excluded ENGs (3.7%) : 
NORDIC, SLAV, GREEK, 
ROMANIAN, 
VIETNAMESE, NULL, 
AFRICAN, TURKISH, 
HUNGARIAN,  

                                                            
9 https://databank.illinois.edu/datasets/IDB-9087546 
10 26 ethnicities include: African, Arab, Baltic, Caribbean, Chinese, Dutch, English, French, German, Greek, 
Hispanic, Hungarian, Indian, Indonesian, Israeli, Italian, Japanese, Korean, Mongolian, Nordic, Polynesian, 
Romanian, Slav, Thai, Turkish, and Vietnamese. In Ethnea, some name instances are assigned two ethnicities (e.g., 
“Jane Kim” → Korean-English) if the surname and forename of an author name are associated frequently with 
different ethnicities.   



 

Chinese names represent the majority of ENGs in three labeled data. This is because these labeled data 
were created from computer science papers where Chinese researchers are particularly large contributors. 
In addition, as the three datasets were designed to collate challenging names to disambiguate, Chinese 
names that tend to be more ambiguous than other ENGs were over-sampled (Müller, Reitz, & Roy, 2017). 
In contrast, 6,000 instances in UM-IRIS are evenly distributed over six ENGs. For validation and reuse, 
these labeled data with ENG tags are publicly available11. Note that the original KISTI contains 41,673 
name instances, whereas the ENG-tagged KISTI has 41,605 instances. Such discrepancy occurs because 
this paper uses the revised version of KISTI that corrects record errors and duplicates in the original data 
(J. Kim, 2018). 

Machine Learning Process 

Machine learning methods for AND can be divided into two groups: author assignment and author 
grouping (Ferreira et al., 2012). While the former aims to assign an author name instance to one of pre-
disambiguated author name clusters, the latter aims to group all and only instances that belong to the same 
authors. This study takes the latter approach in evaluating the effect of ENG on AND. Specifically, author 
name instances in each labeled dataset are pairwise compared to assess whether a given instance pair of 
plausibly represents the same author (a match) or not (a nonmatch). Although some scholars take a further 
step to cluster pairwise comparisons (e.g., J. Kim & Kim, 2018; Levin, Krawczyk, Bethard, & Jurafsky, 
2012; Louppe et al., 2016; Alan Filipe Santana et al., 2017), this study only evaluates disambiguation 
performance at a pair level (i.e., classification), following the practice of previous AND studies (e.g., 
Han, Giles, Zha, Li, & Tsioutsiouliklis, 2004; Song et al., 2015; Treeratpituk & Giles, 2009; 
Vishnyakova, Rodriguez-Esteban, Ozol, & Rinaldi, 2016). 

As the first machine learning step, author name instances in each labeled dataset are randomly divided 
into training (50%) and test (50%) subsets. Then, instances in each subset are put into blocks in which all 
member instances share the same full surname and first forename initial (e.g., ‘Wang, W’). Only instances 
in the same block are compared for disambiguation. This blocking is typical in AND studies because it 
reduces computational complexity with only slight performance degradation (K. Kim, Sefid, & Giles, 
2017; Torvik & Smalheiser, 2009). Next, instance pairs in the same block are compared to establish their 
similarity over four other data features: author name, coauthor name(s), paper title, and publication venue. 
To quantify how much a pair is similar over a feature, this study calculates the cosine similarity of Term 
(n-gram) Frequency for each feature (Han, Zha, & Giles, 2005; J. Kim & Kim, In print; Levin et al., 2012; 
Louppe et al., 2016; A. F. Santana, Gonçalves, Laender, & Ferreira, 2015; Treeratpituk & Giles, 2009). 
Specifically, the string of a feature is converted into an array of 2~4-grams (e.g., author name ‘Wang, 
Wei’ → ‘wa|an|ng|gw|we|ei|wan|ang|ngw|gwe|wei|wang|angw|ngwe|gwei’). After the conversion, two n-
gram arrays of an instance pair are compared to produce a cosine similarity score for the feature.  

Besides the four basic features, ENGs are used as a feature set for ENG-aware disambiguation. For this, 
especially, an instance pair’s ENG is encoded into a binary value (i.e., one-hot encoding) for a pre-
defined set of ENGs12. For example, in AMINER, a pair of name instances (‘Wang, Wei’ and ‘Wang, 
W.’) is assigned either ‘Yes’ or ‘No’ for each of five ethnicities – Chinese (‘Yes’), English (‘No’), Indian 

                                                            
11 Download link TBA 
12 As only instances in the same block in which they share at least the same full name and first forename initial are 
compared, all the pairs in the block have the same ethnicity tag. 



(‘No’), German (‘No’), and Hispanic (‘No’) – as shown in Table 1. Table 2 shows examples of the cosine 
similarity scores calculated over four features and ENG encoding results for instance pairs.  

Table 2: A Mock-Up Example of Cosine Similarity Scores for Instance Pairs over Four Features and ENG Encoding 

Pairs 
Feature 

Label Author 
Name 

Coauthor 
Name 

Paper 
Title 

Pub. 
Venue 

ENG 1 ENG 2 ENG 3 … 

Pair 1 0.97 0.89 0.67 0.12 Yes No No … Match 
Pair 2 1.00 0.24 0.46 0.00 No Yes No … Nonmatch 
Pair 3 0.65 0.07 0.00 0.80 No No Yes … Nonmatch 
Pair 4 0.58 0.08 0.00 0.00 Yes No No … Nonmatch 

 

We focus on four algorithms – Gradient Boosting, Logistic Regression, Naïve Bayes, and Random Forest 
– for supervised machine learning that have been widely used as baselines or best performing methods in 
AND studies (e.g., Han et al., 2004; J. Kim & Kim, In print; K. Kim, Sefid, Weinberg, & Giles, 2018; 
Louppe et al., 2016; Song et al., 2015; Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009; 
Vishnyakova et al., 2016; J. Wang et al., 2012). In the first scenario, they are trained on the list of 
similarity scores and labels, as shown in Table 2 to learn relative weights for features and an absolute 
weight or threshold for instance pairs to be disambiguated without considering ENGs (→ ENG-ignorant 
learning). In the second scenario, the same algorithms are trained on the list of similarity scores, ENGs, 
and labels (→ ENG-aware disambiguation). Here, the ethnic name partition adds more features 
(dimensions) to each instance pair’s feature set, allowing algorithms to combine the similarities of the 
expanded features. The machine learning procedure is implemented using the python Scikit-learn 
package. For Gradient Boosting, 500 estimators are used with max depth=9 and learning rate = 0.125. For 
Logistic Regression, L2 Regularization with class weight = 1 is used. Gaussian Naïve Bayes with 
maximum likelihood estimator is used for Naïve Bayes. For Random Forest, 500 trees are used after a 
grid search. 

Trained algorithmic models are applied to the instance pairs in test subsets in which the cosine similarity 
is calculated for the four basic features and, in the second scenario, ethnicities are encoded in the same 
fashion but explicitly include ENG information. As in Table 2, an algorithmic model receives a set of 
feature similarity scores and, if ENG-aware disambiguation is conducted, a list of encoded ENGs for an 
instance pair to output a binary classification decision (match or nonmatch). Once trained, each algorithm 
produces a single score that predicts the probability of an instance pair being negative (nonmatch). If the 
predicted probability is above a certain threshold (> 0.5), the pair is decided to be a nonmatch, whereas if 
below the threshold, a match.   

Performance Evaluation 

We evaluate each algorithm’s classification results on reserved test subsets of each labeled dataset by 
calculating precision and recall for positive (P; match) and negative (N; nonmatch) pairs respectively. In 
addition, we calculate the F1 score as a harmonic mean of precision and recall. 

Specifically, precision for positive pairs (Prec-Pos) measures how many predicted match pairs are correct 
ones (true positives; TP) over the total number of predicted match pairs that may contain correct match 
pairs (true positives; TP) and incorrect match pairs (false positives; FP). In contrast, recall for positive 
pairs (Rec-Pos) measures the ratio of correct match pairs (true positives; TP) over the total number of true 
match pairs that may be predicted correctly as match pairs (true positives; TP) or incorrectly as nonmatch 
pairs (false negatives; FN). 



 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)      (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ =
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)     (2) 

𝐹𝐹1 𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠        (3) 

 

Likewise, precision for negative pairs (Prec-Neg) measures how many predicted nonmatch pairs are 
correct ones (true negatives; TN) over the total number of predicted nonmatch pairs that may contain 
correct nonmatch pairs (true negatives; TN) and incorrect nonmatch pairs (false negatives; FN). In 
contrast, recall for negative pairs (Rec-Neg) measures the ratio of correct nonmatch pairs (true negatives; 
TN) over the total number of true nonmatch pairs that may be predicted correctly as nonmatch pairs (true 
negatives; TN) or incorrectly as match pairs (false positives; FP). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)      (4) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ  =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)    (5) 

𝐹𝐹1 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁       (6) 

The metrics are calculated on the entire set of test results for each labeled dataset. We separately calculate 
performance measures for difference ENGs rather than averaging them across multiple ethnicity groups.  

Results 

Cross-Data Performance Evaluation 

Figure 1 shows disambiguation results on KISTI, reporting precision and recall before and after ENG-
aware disambiguation by four algorithms – Gradient Boosting (GB), Logistic Regression (LR), Naïve 
Bayes (NB), and Random Forest (RF). Figure 1a shows that when ENGs are included as features, the 
algorithms tend to produce better precision in the prediction of positive (match) pairs than when they are 
not considered. This is shown by black bars (‘After’) being higher than stripped bars (‘Before’) in Figure 
1a. This observation indicates that ethnic name partitioning helps algorithms increase the ratio of TP 
among predicted positive pairs (= TP + FP). This can be confirmed by checking the numbers of true and 
false positive pairs in Table 3. For example, when trained only on the four basic (non-ENG) features, LR 
predicts that 76,201 (= TP + FP = 55,998 + 20,203) pairs refer to the same authors (match) and 73.49% of 
the predictions are right (= TP/(TP + FP)). After trained on the same but ENG-tagged data, however, it 
predicts 170,432 pairs to be match sets, increasing its prediction accuracy this time to 77.08%.    



 

Figure 1: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on KISTI 

 

Table 3: Numbers of Correctly or Incorrectly Predicted Pairs for Positive and Negative Pairs by Four Algorithms on KISTI Test Data 

Algorithm ENGs 
Considered 

No. of Pairs 
(P: Positive) 

(N: Negative) 
TP FN  FP  TN 

LR 
Before 

483,029 
(P: 189,375) 
(N: 293,654) 

 

55,998 133,377 20,203 273,451 
After 131,364 58,011 39,068 254,586 

NB 
Before 50,782 138,593 14,267 279,387 
After 71,020 118,355 8,775 284,879 

RF 
Before 82,727 106,648 57,532 236,122 
After 128,105 61,270 40,479 253,175 

GB 
Before 75,195 114,180 24,725 268,929 
After 136,859 52,516 39,888 253,766 

 

Ethnic name partitioning also reduces the number of falsely predicted nonmatch cases (FN), increasing 
recall in Figure 1b. Performance gains by ENG-aware disambiguation are more pronounced for recall 
than for precision, as evidenced by larger differences between ‘Before’ and ‘After’ bars for recall (Figure 
1b) than those for precision (Figure 1a). In other words, ENG aware disambiguation across four common 
algorithms appears to reduce false negative predictions more than true positive predictions, potentially 
providing better performance for applications (such as network analysis) that are particularly sensitive to 
biases due to erroneous “lumping” of name instances that actually refer to different individuals. The 
improvements in precision and recall together increase the F1 scores by ENG-aware disambiguation 
(Figure 1c).   

ENG-aware disambiguation also does a better job of accurately predicting non-match (negative pair) 
cases. The ‘After’ bars are taller than those of ‘Before’ in Figure 1d. Unlike the positive pair prediction in 
which ENG-aware disambiguation works in favor of both precision and recall by all algorithms, however, 
the performance gains in precision for negative pairs come with slightly decreased recall by GB and LR 



in Figure 1e. This means that while disambiguation models by GB and LR trained on ENG-added features 
are good at increasing the numbers of true nonmatch pairs among predicted nonmatch pairs (= TN +FN), 
they incorrectly predict that true nonmatch pairs match (FP predictions) more frequently than when they 
are trained on the four basic features alone. Reduced recall for negative pair prediction is, however, offset 
by increased precision, leading to the F1 scores by ENG-aware disambiguation being better than those by 
ENG-blind one in Figure 1f. Meanwhile, NB and RF still obtain improvements in both precision and 
recall as well as F1. 

Algorithmic performances are also enhanced by ENG-aware disambiguation on AMINER, GESIS, and 
UM-IRIS. Figure 2 ~ 4 report that the algorithms trained on ENG-tagged data perform better than those 
trained only on the basic features across almost all metrics for both positive and negative pairs. NB 
models prove the exception, producing worse results in recall for positive pairs and in precision for 
negative pairs after ethnic name partition. However, this degraded performance is offset by increased 
precision for positive pairs and increased recall for negative pairs, respectively, so the overall 
performance metric (F1), which equally weights precision and recall, indicates an overall improvement 
due to the inclusion of ENG features. 

 

 

Figure 2: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on AMINER 

 



 

Figure 3: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on GESIS 

 

Figure 4: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on UM-IRIS 

 

Performance Evaluation per ENG 

ENG-aware disambiguation produces substantial improvements in both precision and recall for predicting 
match and nonmatch instance pairs in different labeled datasets. But are those improvements uniform 
across different ENGs? If not, a more nuanced approach to model evaluation may be necessary. To 
answer this question, we compare performance changes due to ENG-aware disambiguation within ENG 
groups. For this, precision, recall, and F1 scores for positive and negative pairs predicted by four 
algorithms are calculated separately for instance pairs that belong to the same ENG in each of four 
labeled data: 4 algorithms × 4 data = 16 evaluations. Presenting all the results at the same time would 
consume too much space in this paper. So, we present random forest (RF) predictions on the GESIS 



dataset as an illustration for the purposes of this discussion. Reports of other algorithms and data are 
presented in a supplementary document attached to this paper. 

Figure 5 shows the by ENG performance metrics for the RF algorithm trained on GESIS with and without 
ENG-aware disambiguation. The ENG-aware disambiguation leads to better precision (positive pairs; 
Figure 5A) and recall (negative pairs; Figure 5E) for Chinese names but worse precision (positive pairs) 
and recall (negative pairs) for other ethnicities. In contrast, name disambiguation for Chinese names 
results in lower recall (positive pairs; Figure 4B) and precision (negative pairs; Figure 4D) than those for 
other ENGs. Similar patterns are observed for other algorithms tested on GESIS (see Figure S5~S8 in 
Supplementary Material). This suggests that the effect of ENG-aware disambiguation occurs in different 
ways for different ENGs. Thus, its application can be beneficial in some instances but detrimental in 
others.  Variations in the effects of ENG-aware disambiguation on precision and recall for positive and 
negative pair prediction across ethnicity groups suggest that care must be taken to design disambiguation 
strategies that fit particular analytic or empirical needs. 

 

 

Figure 5: Disambiguation Performances per ENG ‘Before’ Versus ‘After’ ENG-Aware Disambiguation by Random Forest on GESIS 

These observations can be explained as follows. ENGs have different distributions of similarity scores 
over the four basic (non-ethnicity) features we use. Figure 6 presents the feature similarity score 
distributions per ENG for positive (left) and negative (right) pairs in the GESIS test data. Training and 



test subsets show similar distributions in each labeled dataset. For visual simplicity, a score is rounded up 
into nearest bins with intervals of 0.1 on x-axis and the ratios of the numbers of scores in the same bin 
over all scores are plotted on y-axis. A solid red line represents the distribution of all instance pairs 
regardless of ENG.  

In Figure 6, each ENG has different distributions of, for example, ‘COAUTHOR’ similarity scores for both 
positive and negative pairs (Figure 6C and 6D). So, the four algorithms come to use different ‘coauthor’ 
similarity score distributions in ENG-aware disambiguation. Such heterogeneous distributions also occur 
for other features but with different variations of differences. For example, ‘VENUE’ distributions in 
Figure 6G and 6H differ less across ENGs than do ‘COAUTHOR’ distributions. Because ENG-aware 
disambiguation allows training and testing on different feature similarity score distributions for each 
ENG, the algorithms combine features using different weightings for each ethnicity, producing different 
predictions for name pairs with the same feature similarity scores but different ENG tags. In other words, 
this method takes into account the likelihood that researchers in different ENGs organize their scientific 
work differently, favoring distinct co-authorship and publication venue patterns. This also occurs in 
disambiguation of other labeled data, whose feature similarity score distributions are reported in Figure 
S17 ~ S20 in Supplementary Material. 



 

Figure 6: Feature Similarity Score Distributions per ENG for Positive and Negative Pairs in GESIS Test Data 

 



Figure 5 also shows that some ENGs manifest substantial improvements in recall for positive pairs 
(Figure 5B) but degraded recall for negative pairs (Figure 5E). This might be explained in two ways. In 
our ‘before’ (ENG-unaware) case, algorithms combine features to produce per-feature weights for 
positive pairs based on feature similarity scores aggregated across multiple ENGs that can have very 
different feature distributions. Such aggregated distributions cannot effectively capture the single match 
patterns specific to each ENG, which seem to lead models to falsely predict positive pairs as negative 
ones (FN), reducing the recall for positive pairs. Conversely, increased recall for positive pairs after ENG-
aware disambiguation means that the algorithms trained and tested on ENG-tagged data successfully 
produce per-feature weights optimized to each ENG, thus making better predictions that push up the 
recall scores for many ENGs. 

Second, decreased negative pair recall after ENG-aware disambiguation means that the algorithms trained 
and tested on ENG-tagged data fail to produce proper per-feature weights for accurately predicting 
nonmatch for known negative pairs. When the algorithms are trained only on the four basic (non-
ethnicity) features, they do a better job of predicting nonmatch pairs based on aggregated feature 
similarity distributions that are invariant across particular ENGs. In other words, feature distributions 
aggregated across ENGs appear to be more effective for predicting negative case pairs while ENG-aware 
disambiguation techniques more accurately capture positive pairs.  

These observations imply that disambiguation models for positive pair prediction would be improved by 
ENG-aware procedures, while nonmatch patterns for negative pair prediction can aggregate across ENGs 
(J. Kim & Kim, 2018). Table 4 shows that in the GESIS training data, each ENG has different sizes of 
positive and negative (pairwise) pairs. CHINESE name instances produce the largest numbers of positive 
(≈ 146K) and negative pairs (≈ 551K), while ITALIAN name instances generate around a few thousand 
positive and a few hundred negative pairs. In other training data, CHINESE pairs constitute substantially 
large proportions (KISTI: 71.28 % and AMINER: 91.26 %) or over one-third (UM-IRIS: 37.54 %) of all 
negative pairs, while other ENG pairs make up small or less-than-expected (approximately 17% per ENG 
in UM-IRIS) proportions. In contrast, the numbers of positive pairs are less concentrated (GESIS, KISTI, 
and AMINER) or more evenly distributed (UM-IRIS) for positive pairs than those for negative pairs.  

 Table 4: Distributions of Positive and Negative Name Instance Pairs per ENG in GESIS Training Data 

ENG Positive 
Pairs Ratios Negative 

Pairs Ratios 

ARAB 1,559 0.66 1,203 0.21 
CHINESE 145,969 62.22 551,150 93.96 
ENGLISH 16,020 6.83 2,147 0.37 
FRENCH 1,948 0.83 3,118 0.53 
GERMAN 37,373 15.93 13,092 2.23 
HISPANIC 5,887 2.51 1,907 0.33 

INDIAN 6,708 2.86 2,654 0.45 
ITALIAN 3,489 1.49 686 0.12 

JAPANESE 8,853 3.77 2,608 0.44 
KOREAN 6,792 2.90 7,994 1.36 

Total 234,598 100 586,559 100 
 

 



Table 5: Distributions of Positive and Negative Name Instance Pairs per ENG in KISTI Training Data 

ENG Positive 
Pairs Ratios Negative 

Pairs Ratios 

ARAB 6,015 3.21 37 0.01 
CHINESE 53,519 28.55 209,807 71.28 

DUTCH 5,448 2.91 84 0.03 
ENGLISH 45,054 24.04 25,137 8.54 
FRENCH 2,686 1.43 625 0.21 
GERMAN 11,065 5.90 4,114 1.40 
HISPANIC 3,729 1.99 1,680 0.57 

INDIAN 33,742 18.00 19,043 6.47 
ISRAELI 9,699 5.17 460 0.16 
ITALIAN 9,598 5.12 283 0.10 

JAPANESE 1,588 0.85 580 0.20 
KOREAN 5,284 2.82 32,474 11.03 

Total 187,427 100 294,324 100 
 

Table 6: Distributions of Positive and Negative Name Instance Pairs per ENG in AMINER Training Data 

ENG Positive 
Pairs 

Ratio 
(%) 

Negative 
Pairs 

Ratio 
(%) 

CHINESE 38,958 61.88 76,781 91.26 

ENGLISH 13,758 21.85 2,414 2.87 

GERMAN 2,603 4.13 748 0.89 

HISPANIC 1,933 3.07 380 0.45 

INDIAN 5,701 9.06 3,815 4.53 

Total 62,953 100 84,138 100 

 

Table 7: Distributions of Positive and Negative Name Instance Pairs per ENG in UM-IRIS Training Data 

ENG Positive 
Pairs 

Ratio 
(%) 

Negative 
Pairs 

Ratio 
(%) 

CHINESE 1,517 10.60 7,261 37.54 
ENGLISH 2,185 15.26 459 2.37 
GERMAN 3,673 25.66 1,917 9.91 
HISPANIC 2,416 16.88 970 5.01 

INDIAN 2,080 14.53 3,803 19.66 
KOREAN 2,445 17.08 4,933 25.50 

Total 14,316 100 19,343 100 
 

As noted above for Figure 5 and observed in other labeled data (see Figure S1 ~ S16 in Supplementary 
Material), the algorithms work better in finding more true negative pairs even for non-CHINESE name 
pairs when they are trained on data in which ethnic name partitioning is not performed (‘BEFORE’) and, 



thus, negative pairs are dominated by CHINESE ones as shown in Table 4~6. This implies that the 
nonmatch patterns in CHINESE name pairs are applicable to predicting nonmatch pairs for other ENGs. 
In contrast, during ENG-aware disambiguation, the algorithms come to rely on the small-size negative 
pairs that may skew or distort true nonmatch patterns for some ENGs. This seems to result in the 
decreased recall in predicting negative pairs (i.e., many true negatives classified as false positives, which 
reduces precision for positive pair prediction), while increasing slightly precision in predicting negative 
pairs. 

Despite the aforementioned conflicting changes in precision and recall per ENG, the overall performance 
by the four algorithms on the whole test set are shown in Figure 1~4 to substantially increase across the 
four labeled data after ethnic name partitioning is included in machine learning. One reason would be that 
performance gains outweigh losses at each ENG level overall. Another reason would be that especially 
for KISTI, AMINER, and GESIS, the improved performances in disambiguating CHINESE that 
constitute the majority of name instances may affect the overall evaluation results. As shown by the case 
of UM-IRIS in which ENG sizes are controlled to be equal, however, the overall performance 
improvements can be observed for all the ENGs by ENG-aware disambiguation. As such, this study 
illustrates that the ethnic name partition can be truly effective in improving disambiguation performances. 

Discussion 

These results suggest that AND tasks may produce better results by using ethnic name partition in 
machine learning. Considering that adding more features can improve generally machine learning 
performances, the enhanced disambiguation performances by ENG partitioning might not be a surprise. 
With that said, the real contribution of this study would be that it demonstrates many machine learning 
based disambiguation models have a potential to be improved by introducing ethnic name grouping into 
ambiguous data without additional collection of feature information. 

To fully realize this potential, however, a few issues need to be addressed. First, ENG tagging can be a 
non-trivial task that requires an intricate algorithmic technique itself. Thanks to the ENG classification 
system developed and publicly shared by Torvik and Agarwal (2016), this study could assign ENGs to the 
names in four labeled data. Although Ethnea was constructed based on more than 9 million author name 
instances in PubMed, the world largest biomedicine library, it is unknown how well it can help us tag 
ENGs to names in other fields. Ideally, Ethnea may be updated regularly to reflect new author names 
entering bibliographic data in various fields. Practically, further research may be focused on finding out a 
set of ENGs that are most influential in improving disambiguation results and thus simplifying ENG 
tagging for author name disambiguation (e.g., CHINESE vs Non-CHINESE).  

Second, the findings of this study were based on three labeled data (KISTI, AMINER, and GESIS) in 
which CHINESE names are dominant and the overall performance improvements were heavily affected 
by those for CHINESE name instances. To overcome such an imbalance of instance distribution in 
labeled data, a new labeled data (UM-IRIS) were created in a way that six ENGs have the same amount of 
ambiguous name instances. Disambiguation results from the new labeled data were in line with those 
from other three labeled data. In addition, all ENGs including CHINESE were able to obtain gains in 
disambiguation performances. But all these findings were obtained from small-sized labeled data, whether 
they are biased or controlled for ENG sizes. So, it is still unknown whether such improvements are 
achievable in author name disambiguation for large-scale bibliographic data in which ENG composition 
may be quite different from those in the labeled data used in this paper.  

Another issue would be that there can be other features than the four used in this study that can lead 
ethnic name partition to different AND performances. For example, English authors may appear in 



publication records that are more complete in affiliation information and use more diverse title terms. 
Meanwhile, Chinese authors may tend to work with coauthors who have similar names in same 
institutions. Various features need to be explored to study further the impact of ethnic name partition on 
AND.   

Fourth, ENG-aware disambiguation may be beneficial for positive pair prediction but not so much for 
negative pair prediction. This was illustrated in Figure 5 above and Figure S1 ~ S16 in Supplementary 
Material by the dramatically decreased recall in negative pair predictions for many ENGs. It was 
contrasted with the substantial increase of precision in positive pair prediction for those ENGs. This study 
speculates that by ethnic name partitioning, classifiers become stricter for CHINESE pairs while relaxed 
for other ENG pairs. In other words, a pairs of CHINESE instances that would be classified as ‘match’ 
before partitioning are classified as ‘nonmatch’ after partitioning (PREC-POS↑; REC-POS↓), while 
‘nonmatch’ pairs of other ENG instances as matched ones (PREC-POS↓; REC-POS↑). This might be 
because while some CHINESE pairs sharing coauthor names, venue names, or title words refer to 
different authors, other ethnic names sharing the features are more likely to represent the same authors 
(see Figure 6 B, D, F, and H in which Chinese name pair share is denoted in square). During training, such 
different similarity patterns are mixed up before partitioning but distinguished after it. Another conjecture 
is that due to the relaxed classification after partitioning, true negative pairs of other-than-CHINESE 
ENGs are falsely classified as false positive pairs (PREC-POS↓; REC-NEG↓). As the sizes of negative 
pairs in most non-CHINESE ENGs are smaller than positive pairs (see Table 4~7), misclassified negative 
pairs have larger impacts on REC-NEG than on PREC-POS across the ENGs. But these conjectures are 
based on the observations on labeled data in which Chinese name instances are prevalent. Using an 
additional labeled data with controlled ENG sizes, however, the conjecture has been confirmed. But only 
six ENGs in a small dataset were considered for analysis. More ENGs need to be investigated to check if 
this conjecture holds good under the different combinations of ENGs. 

Conclusion and Discussion 

This study evaluated the effects ethnic name partitioning has on author name disambiguation (AND) 
using machine learning methods. For this, author name instances in four labeled datasets were 
disambiguated under two scenarios. First, similarity scores of instance pairs over four basic features – 
author name, coauthor names, paper title, and publication venue – were used to train and test 
disambiguation algorithms. Second, in addition to the basic features, ethnic name group (ENGs) were 
tagged to name instances to allow algorithms to build models that are optimized to each ENG. 
Comparisons of disambiguation performances before and after ENG-aware disambiguation showed that 
using ethnic name partition can substantially improve algorithmic performances. Such performance 
improvements occurred across all ENGs, although performance gains and losses at each ENG level were 
observed in different ways depending on the types of measures – precision or recall – and target 
classifications – positive (match) or negative (nonmatch) pairs.  

As detailed in the discussion above, ethnic name partition requires further research for us to understand 
better its impact on author name disambiguation and apply it to disambiguation tasks for digital libraries 
that are struggling with authority control over fast-growing ambiguous author names. This study is 
expected to motivate scholars and practitioners to study toward that direction by demonstrating the 
potential of ENG-aware disambiguation in improving disambiguation performances. 
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Abstract 

In several author name disambiguation studies, some ethnic name groups such as East Asian names are 
reported to be more difficult to disambiguate than others. This implies that disambiguation approaches 
might be improved if ethnic name groups are distinguished before disambiguation. We explore the 
potential of ethnic name partitioning by comparing performance of four machine learning algorithms 
trained and tested on the entire data or specifically on individual name groups. Results show that 
ethnicity-based name partitioning can substantially improve disambiguation performance because the 
individual models are better suited for their respective name group. The improvements occur across all 
ethnic name groups with different magnitudes. Performance gains in predicting matched name pairs 
outweigh losses in predicting nonmatched pairs. Feature (e.g., coauthor name) similarities of name pairs 
vary across ethnic name groups. Such differences may enable the development of ethnicity specific 
feature weights to improve prediction for specific ethic name categories. These findings are observed for 
three labeled data with a natural distribution of problem sizes as well as one in which all ethnic name 
groups are controlled for the same sizes of ambiguous names. This study is expected to motive scholars to 
group author names based on ethnicity prior to disambiguation.     

Keywords: supervised machine learning; author name disambiguation; feature engineering, name 
ethnicity; data partition 

 

Introduction and Background 

A big challenge in managing digital libraries is that author names in bibliographic data are ambiguous 
because many authors have the same names (homonyms) or variant names are recorded for the same 
authors (synonyms). One study estimates that about two-thirds of author names in PubMed, the largest 
biomedicine digital library, are vulnerable to either or both of these two ambiguity types (Torvik & 
Smalheiser, 2009). Research findings obtained by mining bibliographic data can be distorted by merged 
and/or split author identities due to incorrect disambiguation (Fegley & Torvik, 2013; J. Kim & Diesner, 
2015, 2016; Schulz, 2016). In addition, digital library users query author names most frequently (Islamaj 
Dogan, Murray, Névéol, & Lu, 2009). This means that the users will receive inaccurate information about 
research production, citation, and collaboration for authors if author name ambiguity is not properly 
resolved (Harzing, 2015; Strotmann & Zhao, 2012).  

To address the challenge, researchers have proposed a variety of author name disambiguation (AND, 
hereafter) methods. Some scholars have used heuristics such as string-based matching (e.g., names that 
have the same full surname and forename initials are assumed to represent the same author), which is the 
most widely used approach in bibliometrics (Milojević, 2013). Others have developed rule-based 
programming and supervised/unsupervised machine learning techniques, as systemically reviewed in 
several papers (Ferreira, Gonçalves, & Laender, 2012; Hussain & Asghar, 2017; Sanyal, Bhowmick, & 
Das, 2019; Smalheiser & Torvik, 2009). In industry, several bibliographic data providers such as DBLP, 
Scopus, and Web of Science have disambiguated author names to improve their service quality 
(Kawashima & Tomizawa, 2015; J. Kim, 2018; Ley, 2009; Zhao, Rollins, Bai, & Rosen, 2017), while 
others still rely on the name string matching to output author-related search results. 

Despite the differences in methods and datasets, a few AND studies have observed that some ethnic name 
groups (ENG, hereafter) (e.g., Chinese names) are more difficult to disambiguate than others (Deville et 



al., 2014; J. Kim & Diesner, 2016; Strotmann & Zhao, 2012; Torvik & Smalheiser, 2009; J. Wu & Ding, 
2013). This implies that author names may be better disambiguated if their associated ethnicities are 
considered as inputs in disambiguation models. But this possibility has been little explored. First, the 
observations made in several studies that certain ethnic names are harder to disambiguate are based on 
post-hoc evaluations of AND results. In other words, many of those studies did not integrate ethnic name 
partitions during machine learning. A very small number of studies have divided names into subgroups in 
their disambiguation model building (Chin et al., 2013; Louppe, Al-Natsheh, Susik, & Maguire, 2016) 
and evaluation process (Lerchenmueller & Sorenson, 2016). But their ethnic name categories are limited 
in number (e.g., dichotomy of Chinese vs non-Chinese; Caucasian, Asian, and Hispanic) or mixed up 
with racial distinctions based on the U.S. Social Security information (e.g., White, Black, Hispanic, 
Asian, etc.). Such racial classifications can be inappropriate for bibliographic data in which author names 
come from diverse regions around the world. In addition, those studies have typically used a single 
labeled data source, which makes it hard to expand and generalize their findings to other AND scenarios. 

This study aims to empirically evaluate the effect ethnic name partitioning has on AND. In this study, 
author name disambiguation is a task to assign either ‘match’ or ‘nonmatch’ label to a pair of author name 
instances. For this, specifically, name instances are grouped into a block that share the same first 
forename initial and full surname and pairwisely compared with the block for their similarities over a set 
of features (e.g., coauthor name) to produce similarity scores. Machine learning algorithms combine the 
scores to learn weights of each feature to decide if a given pair of instances to refer to the same author or 
not. Although our work is motivated by the studies reviewed above and follows their common data pre-
processing, blocking and machine learning steps, this paper differs from them in three important ways. 
First, this study evaluates AND performance by four different machine learning algorithms applied to 
four different labeled datasets before and after inclusion of a standard ethnic name group partition. Here, a 
name instance is assigned to an ethnic name group based on a name ethnicity classification system, 
Ethnea. Second, unlike traditional labeled data in which a specific ENG (i.e., Chinese) dominates, this 
study disambiguates new labeled data in which all ENGs are controlled to have the same numbers of 
instances, to demonstrate that performance changes induced by ethnic name partitioning may not be 
solely due to the well-known relationship between the number of cases and their ambiguity (more names, 
more ambiguity). Third, this study shows that different combinations of features (e.g., coauthor name and 
title words) appear to be related to AND performance for different ENGs suggesting future directions to 
further improve AND performance with ambiguous ethnic group names. The findings of this study can 
provide practical insights to researchers and practitioners who handle authority control in digital libraries. 
In the following sections, details on labeled data and setups for machine learning are described. 

Method 

Labeled Data and Pre-Processing 

To measure the effect of ethnic name partition on machine learning for AND, this study disambiguates 
names in four labeled datasets – KISTI, AMINER, GESIS, and UM-IRIS. The first three datasets have 
been used in many AND studies to train and test machine learning algorithms (Cota, Ferreira, 
Nascimento, Gonçalves, & Laender, 2010; Ferreira, Veloso, Gonçalves, & Laender, 2014; Hussain & 
Asghar, 2018; J. Kim & Kim, 2018, In print; Momeni & Mayr, 2016; Alan Filipe Santana, Gonçalves, 
Laender, & Ferreira, 2017; Shin, Kim, Choi, & Kim, 2014; H. Wu, Li, Pei, & He, 2014; Zhu et al., 2018). 



The last one is added to investigate how the ethnic name partition affects AND under the condition in 
which all ENGs are constrained to have the same numberss of ambigous name instances1. 

KISTI: Scientists at the Korea Institute of Science & Technology Information (KISTI) and Kyungsung 
University in Korea constructed this labeled dataset. It is made up of 41,673 author name instances that 
belong to 6,921 unique authors (Kang, Kim, Lee, Jung, & You, 2011)2. 

AMINER: Researchers in China and U.S. collaborated to create this labeled data to build and evaluate 
AND models for a computer science digital library, AMiner (Tang et al., 2008; X. Wang, Tang, Cheng, & 
Yu, 2011)3. It consists of 7,528 author name instances that refer to 1,546 unique authors.  

GESIS: Scholars at the Leibniz Institute for the Social Sciences (GESIS) in Germany produced this 
labeled data. It contains author name instances of 5,408 unique authors (Momeni & Mayr, 2016) 4. This 
study reuses the ‘Evaluation Set’ (29,965 author name instances of 2,580 unique authors) but with a few 
enhancements (J. Kim & Kim, 2020). Each author name instance is converted into the ‘surname, 
forename’ format and, through linking GESIS to its base DBLP data, is associated with the title of the 
paper in which it appears and the name of the conference or journal where the paper is published.  

UM-IRIS: This dataset was generated by the researchers at the University of Michigan Institute for 
Research on Innovation & Science (UM-IRIS) and the University of Illinois through matching selected 
name instances in publication records to an authority database, ORCID (Kim & Owen-Smith, in print). 
First, author full names (e.g., ‘Brown, Michael’) that appear 50 times or more in MEDLINE-indexed 
publications published between 2000 and 2019 were listed5. Then, all instances of each selected full name 
(e.g., 158 instances of ‘Brown, Michael’ in MEDLINE) and their associated publication metadata were 
compared to 6 million researcher profiles in ORCID6. If an instance had a single match in the publication 
list of an ORCID researcher profile (matching on full name, paper title, and publication venue), the 
matched researcher’s ORCID id was assigned as an author label to the instance. Next, among the ORCID 
id-linked instances, those whose full names are associated with 5 or more ORCID ids (e.g., 6 unique 
ORCID researchers share the name ‘Brown, Michael’ which appear 158 times in MEDLINE) were 
randomly selected to produce 1,000 name instances for each of six ENGs. The resulting data contain 
6,000 instances of 822 authors.     

Four features – author name, coauthor name(s), paper title, and publication venue - are used as machine 
learning features because they have been widely used in algorithmic AND studies (Schulz, 2016; Song, 
Kim, & Kim, 2015) and are commonly available in the four labeled datasets. The string of each feature is 
stripped of non-alphabetical characters, converted into ASCII format, and lowercased. For title words, 
common English words like ‘the’ and ‘to’ are removed (i.e., stop-word listed) using the dictionary in 
Stanford NLP7 and stemmed (e.g., ‘solution’ → ‘solut’) using the Porter’s algorithm8. Name instances in 
KISTI are converted into the full surname and first forename initial format (‘Wang, Wei’ → ‘Wang, W’)     
to make them more ambiguous (see J. Kim & Kim, 2020). 

                                                            
1 This new labeled dataset was created following the idea of a reviewer who suggested that the impact of ethnic 
name partition on AND may be confounded by the size differences of ambiguous names.  
2 http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/DBLP.tar.gz/at_download/file 
3 http://arnetminer.org/lab-datasets/disambiguation/rich-author-disambiguation-data.zip 
4 http://dx.doi.org/10.7802/1234 
5 https://www.nlm.nih.gov/bsd/medline.html 
6 https://orcid.org/ 
7 https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt 
8 https://tartarus.org/martin/PorterStemmer/ 



Ethnic Name Group (ENG) Tagging 

This study assigns an ENG tag to a name instance in each labeled dataset using the author name ethnicity 
classification database, Ethnea, developed by Torvik and Agarwal (2016)9. Ethnea is a collection of more 
than 9 million author name instances that are tagged one of 26 ENG classes based on the name’s 
association with national-level geo-locations10. For example, “Wang, Wei” is classified as ‘Chinese’ as it 
is most frequently associated with organizations in China. However, Ethnea makes no distinctions based 
on any anthropological, cultural, or linguistic characteristics of authors. Instead it relies entirely on 
observations of names and geo-locations of their frequently associated institutions so an author named 
‘Wang, Wei’ who was born in the U.S. and has never visited China would still be assigned a ‘Chinese 
name’ tag. We link all four labelled datasets to Ethnea and, if a matched name is found, assign that 
name’s ENG tag to all its observed instances. If a queried name does not have a match in Ethnea, we 
search again using only the surname and assign the modal Ethnea ENG tag associated with it to all its 
instances. Table 1 summarizes the frequencies and ratios of ENG tags assigned by Ethnea to author name 
instances in each labeled dataset. 

Table 1 shows the list of ENGs in each labeled data. Small-sized ENGs are excluded from analysis 
because most name instances in those ENGs tend to belong to a single author while a few instances 
referring to other author(s). When randomly split into training and test subsets for machine learning, these 
instances do not produce negative pairs at all. 

Table 1: Summary of Ethnic Name Group (ENG) Frequencies in Labeled Data 

Labeled Data (No. of Instances) 
KISTI (41,605) AMINER (7,528) GESIS (29,965) UM-IRIS (6,000) 

ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) 
CHINESE 50.1 CHINESE 64.2 CHINESE 56.2 CHINESE 16.67 
ENGLISH 15.6 ENGLISH 17.0 GERMAN 14.8 ENGLISH 16.67 
INDIAN 9.5 INDIAN 6.3 ENGLISH 7.0 GERMAN 16.67 

KOREAN 8.0 GERMAN 5.6 INDIAN 4.3 HISPANIC 16.67 
GERMAN 3.3 HISPANIC 3.1 HISPANIC 3.6 INDIAN 16.67 
ISRAELI 2.2 Sum 96.2 KOREAN 3.5 KOREAN 16.67 
ITALIAN 2.0 Excluded ENGs (3.8%): 

JAPANESE, NORDIC, 
KOREAN, ARAB  

JAPANESE 2.8 Sum 100.00 
HISPANIC 1.7 ITALIAN 1.7 Excluded ENGs (0%):  

None JAPANESE 1.1 ARAB 1.6 
DUTCH 1.0 FRENCH 1.3 
ARAB 0.9 Sum 96.8 

FRENCH 0.9 Excluded ENGs (3.2%):  
NORDIC, HUNGARIAN, 
DUTCH, VIETNAMESE, 
SLAV, ROMANIAN, 
GREEK, ISRAELI, 
TURKISH, 
INDONESIAN  

Sum 96.3 
Excluded ENGs (3.7%) : 
NORDIC, SLAV, GREEK, 
ROMANIAN, 
VIETNAMESE, NULL, 
AFRICAN, TURKISH, 
HUNGARIAN,  

                                                            
9 https://databank.illinois.edu/datasets/IDB-9087546 
10 26 ethnicities include: African, Arab, Baltic, Caribbean, Chinese, Dutch, English, French, German, Greek, 
Hispanic, Hungarian, Indian, Indonesian, Israeli, Italian, Japanese, Korean, Mongolian, Nordic, Polynesian, 
Romanian, Slav, Thai, Turkish, and Vietnamese. In Ethnea, some name instances are assigned two ethnicities (e.g., 
“Jane Kim” → Korean-English) if the surname and forename of an author name are associated frequently with 
different ethnicities.   



 

Chinese names represent the majority of ENGs in three labeled data. This is because these labeled data 
were created from computer science papers where Chinese researchers are particularly large contributors. 
In addition, as the three datasets were designed to collate challenging names to disambiguate, Chinese 
names that tend to be more ambiguous than other ENGs were over-sampled (Müller, Reitz, & Roy, 2017). 
In contrast, 6,000 instances in UM-IRIS are evenly distributed over six ENGs. For validation and reuse, 
these labeled data with ENG tags are publicly available11. Note that the original KISTI contains 41,673 
name instances, whereas the ENG-tagged KISTI has 41,605 instances. Such discrepancy occurs because 
this paper uses the revised version of KISTI that corrects record errors and duplicates in the original data 
(J. Kim, 2018). 

Machine Learning Process 

Machine learning methods for AND can be divided into two groups: author assignment and author 
grouping (Ferreira et al., 2012). While the former aims to assign an author name instance to one of pre-
disambiguated author name clusters, the latter aims to group all and only instances that belong to the same 
authors. This study takes the latter approach in evaluating the effect of ENG on AND. Specifically, author 
name instances in each labeled dataset are pairwise compared to assess whether a given instance pair of 
plausibly represents the same author (a match) or not (a nonmatch). Although some scholars take a further 
step to cluster pairwise comparisons (e.g., J. Kim & Kim, 2018; Levin, Krawczyk, Bethard, & Jurafsky, 
2012; Louppe et al., 2016; Alan Filipe Santana et al., 2017), this study only evaluates disambiguation 
performance at a pair level (i.e., classification), following the practice of previous AND studies (e.g., 
Han, Giles, Zha, Li, & Tsioutsiouliklis, 2004; Song et al., 2015; Treeratpituk & Giles, 2009; 
Vishnyakova, Rodriguez-Esteban, Ozol, & Rinaldi, 2016). 

As the first machine learning step, author name instances in each labeled dataset are randomly divided 
into training (50%) and test (50%) subsets. Then, instances in each subset are put into blocks in which all 
member instances share the same full surname and first forename initial (e.g., ‘Wang, W’). Only instances 
in the same block are compared for disambiguation. This blocking is typical in AND studies because it 
reduces computational complexity with only slight performance degradation (K. Kim, Sefid, & Giles, 
2017; Torvik & Smalheiser, 2009). Next, instance pairs in the same block are compared to establish their 
similarity over four other data features: author name, coauthor name(s), paper title, and publication venue. 
To quantify how much a pair is similar over a feature, this study calculates the cosine similarity of Term 
(n-gram) Frequency for each feature (Han, Zha, & Giles, 2005; J. Kim & Kim, In print; Levin et al., 2012; 
Louppe et al., 2016; A. F. Santana, Gonçalves, Laender, & Ferreira, 2015; Treeratpituk & Giles, 2009). 
Specifically, the string of a feature is converted into an array of 2~4-grams (e.g., author name ‘Wang, 
Wei’ → ‘wa|an|ng|gw|we|ei|wan|ang|ngw|gwe|wei|wang|angw|ngwe|gwei’). After the conversion, two n-
gram arrays of an instance pair are compared to produce a cosine similarity score for the feature.  

Besides the four basic features, ENGs are used as a feature set for ENG-aware disambiguation. For this, 
especially, an instance pair’s ENG is encoded into a binary value (i.e., one-hot encoding) for a pre-
defined set of ENGs12. For example, in AMINER, a pair of name instances (‘Wang, Wei’ and ‘Wang, 
W.’) is assigned either ‘Yes’ or ‘No’ for each of five ethnicities – Chinese (‘Yes’), English (‘No’), Indian 

                                                            
11 Download link TBA 
12 As only instances in the same block in which they share at least the same full name and first forename initial are 
compared, all the pairs in the block have the same ethnicity tag. 



(‘No’), German (‘No’), and Hispanic (‘No’) – as shown in Table 1. Table 2 shows examples of the cosine 
similarity scores calculated over four features and ENG encoding results for instance pairs.  

Table 2: A Mock-Up Example of Cosine Similarity Scores for Instance Pairs over Four Features and ENG Encoding 

Pairs 
Feature 

Label Author 
Name 

Coauthor 
Name 

Paper 
Title 

Pub. 
Venue 

ENG 1 ENG 2 ENG 3 … 

Pair 1 0.97 0.89 0.67 0.12 Yes No No … Match 
Pair 2 1.00 0.24 0.46 0.00 No Yes No … Nonmatch 
Pair 3 0.65 0.07 0.00 0.80 No No Yes … Nonmatch 
Pair 4 0.58 0.08 0.00 0.00 Yes No No … Nonmatch 

 

We focus on four algorithms – Gradient Boosting, Logistic Regression, Naïve Bayes, and Random Forest 
– for supervised machine learning that have been widely used as baselines or best performing methods in 
AND studies (e.g., Han et al., 2004; J. Kim & Kim, In print; K. Kim, Sefid, Weinberg, & Giles, 2018; 
Louppe et al., 2016; Song et al., 2015; Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009; 
Vishnyakova et al., 2016; J. Wang et al., 2012). In the first scenario, they are trained on the list of 
similarity scores and labels, as shown in Table 2 to learn relative weights for features and an absolute 
weight or threshold for instance pairs to be disambiguated without considering ENGs (→ ENG-ignorant 
learning). In the second scenario, the same algorithms are trained on the list of similarity scores, ENGs, 
and labels (→ ENG-aware disambiguation). Here, the ethnic name partition adds more features 
(dimensions) to each instance pair’s feature set, allowing algorithms to combine the similarities of the 
expanded features. The machine learning procedure is implemented using the python Scikit-learn 
package. For Gradient Boosting, 500 estimators are used with max depth=9 and learning rate = 0.125. For 
Logistic Regression, L2 Regularization with class weight = 1 is used. Gaussian Naïve Bayes with 
maximum likelihood estimator is used for Naïve Bayes. For Random Forest, 500 trees are used after a 
grid search. 

Trained algorithmic models are applied to the instance pairs in test subsets in which the cosine similarity 
is calculated for the four basic features and, in the second scenario, ethnicities are encoded in the same 
fashion but explicitly include ENG information. As in Table 2, an algorithmic model receives a set of 
feature similarity scores and, if ENG-aware disambiguation is conducted, a list of encoded ENGs for an 
instance pair to output a binary classification decision (match or nonmatch). Once trained, each algorithm 
produces a single score that predicts the probability of an instance pair being negative (nonmatch). If the 
predicted probability is above a certain threshold (> 0.5), the pair is decided to be a nonmatch, whereas if 
below the threshold, a match.   

Performance Evaluation 

We evaluate each algorithm’s classification results on reserved test subsets of each labeled dataset by 
calculating precision and recall for positive (P; match) and negative (N; nonmatch) pairs respectively. In 
addition, we calculate the F1 score as a harmonic mean of precision and recall. 

Specifically, precision for positive pairs (Prec-Pos) measures how many predicted match pairs are correct 
ones (true positives; TP) over the total number of predicted match pairs that may contain correct match 
pairs (true positives; TP) and incorrect match pairs (false positives; FP). In contrast, recall for positive 
pairs (Rec-Pos) measures the ratio of correct match pairs (true positives; TP) over the total number of true 
match pairs that may be predicted correctly as match pairs (true positives; TP) or incorrectly as nonmatch 
pairs (false negatives; FN). 



 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)      (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃ℎ =
𝑇𝑇𝑃𝑃

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)     (2) 

𝐹𝐹1 𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠        (3) 

 

Likewise, precision for negative pairs (Prec-Neg) measures how many predicted nonmatch pairs are 
correct ones (true negatives; TN) over the total number of predicted nonmatch pairs that may contain 
correct nonmatch pairs (true negatives; TN) and incorrect nonmatch pairs (false negatives; FN). In 
contrast, recall for negative pairs (Rec-Neg) measures the ratio of correct nonmatch pairs (true negatives; 
TN) over the total number of true nonmatch pairs that may be predicted correctly as nonmatch pairs (true 
negatives; TN) or incorrectly as match pairs (false positives; FP). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)      (4) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝐶𝐶𝐶𝐶 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 (𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝐶𝐶𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑠𝑠𝑜𝑜 𝑇𝑇𝑃𝑃𝑁𝑁𝑃𝑃 𝑁𝑁𝑠𝑠𝑠𝑠𝑁𝑁𝑀𝑀𝑃𝑃𝑃𝑃ℎ  =  
𝑇𝑇𝑁𝑁

(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)    (5) 

𝐹𝐹1 𝑁𝑁𝑃𝑃𝑁𝑁𝑀𝑀𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑁𝑁       (6) 

The metrics are calculated on the entire set of test results for each labeled dataset. We separately calculate 
performance measures for difference ENGs rather than averaging them across multiple ethnicity groups.  

Results 

Cross-Data Performance Evaluation 

Figure 1 shows disambiguation results on KISTI, reporting precision and recall before and after ENG-
aware disambiguation by four algorithms – Gradient Boosting (GB), Logistic Regression (LR), Naïve 
Bayes (NB), and Random Forest (RF). Figure 1a shows that when ENGs are included as features, the 
algorithms tend to produce better precision in the prediction of positive (match) pairs than when they are 
not considered. This is shown by black bars (‘After’) being higher than stripped bars (‘Before’) in Figure 
1a. This observation indicates that ethnic name partitioning helps algorithms increase the ratio of TP 
among predicted positive pairs (= TP + FP). This can be confirmed by checking the numbers of true and 
false positive pairs in Table 3. For example, when trained only on the four basic (non-ENG) features, LR 
predicts that 76,201 (= TP + FP = 55,998 + 20,203) pairs refer to the same authors (match) and 73.49% of 
the predictions are right (= TP/(TP + FP)). After trained on the same but ENG-tagged data, however, it 
predicts 170,432 pairs to be match sets, increasing its prediction accuracy this time to 77.08%.    



 

Figure 1: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on KISTI 

 

Table 3: Numbers of Correctly or Incorrectly Predicted Pairs for Positive and Negative Pairs by Four Algorithms on KISTI Test Data 

Algorithm ENGs 
Considered 

No. of Pairs 
(P: Positive) 

(N: Negative) 
TP FN  FP  TN 

LR 
Before 

483,029 
(P: 189,375) 
(N: 293,654) 

 

55,998 133,377 20,203 273,451 
After 131,364 58,011 39,068 254,586 

NB 
Before 50,782 138,593 14,267 279,387 
After 71,020 118,355 8,775 284,879 

RF 
Before 82,727 106,648 57,532 236,122 
After 128,105 61,270 40,479 253,175 

GB 
Before 75,195 114,180 24,725 268,929 
After 136,859 52,516 39,888 253,766 

 

Ethnic name partitioning also reduces the number of falsely predicted nonmatch cases (FN), increasing 
recall in Figure 1b. Performance gains by ENG-aware disambiguation are more pronounced for recall 
than for precision, as evidenced by larger differences between ‘Before’ and ‘After’ bars for recall (Figure 
1b) than those for precision (Figure 1a). In other words, ENG aware disambiguation across four common 
algorithms appears to reduce false negative predictions more than true positive predictions, potentially 
providing better performance for applications (such as network analysis) that are particularly sensitive to 
biases due to erroneous “lumping” of name instances that actually refer to different individuals. The 
improvements in precision and recall together increase the F1 scores by ENG-aware disambiguation 
(Figure 1c).   

ENG-aware disambiguation also does a better job of accurately predicting non-match (negative pair) 
cases. The ‘After’ bars are taller than those of ‘Before’ in Figure 1d. Unlike the positive pair prediction in 
which ENG-aware disambiguation works in favor of both precision and recall by all algorithms, however, 
the performance gains in precision for negative pairs come with slightly decreased recall by GB and LR 



in Figure 1e. This means that while disambiguation models by GB and LR trained on ENG-added features 
are good at increasing the numbers of true nonmatch pairs among predicted nonmatch pairs (= TN +FN), 
they incorrectly predict that true nonmatch pairs match (FP predictions) more frequently than when they 
are trained on the four basic features alone. Reduced recall for negative pair prediction is, however, offset 
by increased precision, leading to the F1 scores by ENG-aware disambiguation being better than those by 
ENG-blind one in Figure 1f. Meanwhile, NB and RF still obtain improvements in both precision and 
recall as well as F1. 

Algorithmic performances are also enhanced by ENG-aware disambiguation on AMINER, GESIS, and 
UM-IRIS. Figure 2 ~ 4 report that the algorithms trained on ENG-tagged data perform better than those 
trained only on the basic features across almost all metrics for both positive and negative pairs. NB 
models prove the exception, producing worse results in recall for positive pairs and in precision for 
negative pairs after ethnic name partition. However, this degraded performance is offset by increased 
precision for positive pairs and increased recall for negative pairs, respectively, so the overall 
performance metric (F1), which equally weights precision and recall, indicates an overall improvement 
due to the inclusion of ENG features. 

 

 

Figure 2: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on AMINER 

 



 

Figure 3: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on GESIS 

 

Figure 4: Disambiguation Performances ‘Before’ Versus ‘After’ ENG-Aware Disambiguation on UM-IRIS 

 

Performance Evaluation per ENG 

ENG-aware disambiguation produces substantial improvements in both precision and recall for predicting 
match and nonmatch instance pairs in different labeled datasets. But are those improvements uniform 
across different ENGs? If not, a more nuanced approach to model evaluation may be necessary. To 
answer this question, we compare performance changes due to ENG-aware disambiguation within ENG 
groups. For this, precision, recall, and F1 scores for positive and negative pairs predicted by four 
algorithms are calculated separately for instance pairs that belong to the same ENG in each of four 
labeled data: 4 algorithms × 4 data = 16 evaluations. Presenting all the results at the same time would 
consume too much space in this paper. So, we present random forest (RF) predictions on the GESIS 



dataset as an illustration for the purposes of this discussion. Reports of other algorithms and data are 
presented in a supplementary document attached to this paper. 

Figure 5 shows the by ENG performance metrics for the RF algorithm trained on GESIS with and without 
ENG-aware disambiguation. The ENG-aware disambiguation leads to better precision (positive pairs; 
Figure 5A) and recall (negative pairs; Figure 5E) for Chinese names but worse precision (positive pairs) 
and recall (negative pairs) for other ethnicities. In contrast, name disambiguation for Chinese names 
results in lower recall (positive pairs; Figure 4B) and precision (negative pairs; Figure 4D) than those for 
other ENGs. Similar patterns are observed for other algorithms tested on GESIS (see Figure S5~S8 in 
Supplementary Material). This suggests that the effect of ENG-aware disambiguation occurs in different 
ways for different ENGs. Thus, its application can be beneficial in some instances but detrimental in 
others.  Variations in the effects of ENG-aware disambiguation on precision and recall for positive and 
negative pair prediction across ethnicity groups suggest that care must be taken to design disambiguation 
strategies that fit particular analytic or empirical needs. 

 

 

Figure 5: Disambiguation Performances per ENG ‘Before’ Versus ‘After’ ENG-Aware Disambiguation by Random Forest on GESIS 

These observations can be explained as follows. ENGs have different distributions of similarity scores 
over the four basic (non-ethnicity) features we use. Figure 6 presents the feature similarity score 
distributions per ENG for positive (left) and negative (right) pairs in the GESIS test data. Training and 



test subsets show similar distributions in each labeled dataset. For visual simplicity, a score is rounded up 
into nearest bins with intervals of 0.1 on x-axis and the ratios of the numbers of scores in the same bin 
over all scores are plotted on y-axis. A solid red line represents the distribution of all instance pairs 
regardless of ENG.  

In Figure 6, each ENG has different distributions of, for example, ‘COAUTHOR’ similarity scores for both 
positive and negative pairs (Figure 6C and 6D). So, the four algorithms come to use different ‘coauthor’ 
similarity score distributions in ENG-aware disambiguation. Such heterogeneous distributions also occur 
for other features but with different variations of differences. For example, ‘VENUE’ distributions in 
Figure 6G and 6H differ less across ENGs than do ‘COAUTHOR’ distributions. Because ENG-aware 
disambiguation allows training and testing on different feature similarity score distributions for each 
ENG, the algorithms combine features using different weightings for each ethnicity, producing different 
predictions for name pairs with the same feature similarity scores but different ENG tags. In other words, 
this method takes into account the likelihood that researchers in different ENGs organize their scientific 
work differently, favoring distinct co-authorship and publication venue patterns. This also occurs in 
disambiguation of other labeled data, whose feature similarity score distributions are reported in Figure 
S17 ~ S20 in Supplementary Material. 



 

Figure 6: Feature Similarity Score Distributions per ENG for Positive and Negative Pairs in GESIS Test Data 

 



Figure 5 also shows that some ENGs manifest substantial improvements in recall for positive pairs 
(Figure 5B) but degraded recall for negative pairs (Figure 5E). This might be explained in two ways. In 
our ‘before’ (ENG-unaware) case, algorithms combine features to produce per-feature weights for 
positive pairs based on feature similarity scores aggregated across multiple ENGs that can have very 
different feature distributions. Such aggregated distributions cannot effectively capture the single match 
patterns specific to each ENG, which seem to lead models to falsely predict positive pairs as negative 
ones (FN), reducing the recall for positive pairs. Conversely, increased recall for positive pairs after ENG-
aware disambiguation means that the algorithms trained and tested on ENG-tagged data successfully 
produce per-feature weights optimized to each ENG, thus making better predictions that push up the 
recall scores for many ENGs. 

Second, decreased negative pair recall after ENG-aware disambiguation means that the algorithms trained 
and tested on ENG-tagged data fail to produce proper per-feature weights for accurately predicting 
nonmatch for known negative pairs. When the algorithms are trained only on the four basic (non-
ethnicity) features, they do a better job of predicting nonmatch pairs based on aggregated feature 
similarity distributions that are invariant across particular ENGs. In other words, feature distributions 
aggregated across ENGs appear to be more effective for predicting negative case pairs while ENG-aware 
disambiguation techniques more accurately capture positive pairs.  

These observations imply that disambiguation models for positive pair prediction would be improved by 
ENG-aware procedures, while nonmatch patterns for negative pair prediction can aggregate across ENGs 
(J. Kim & Kim, 2018). Table 4 shows that in the GESIS training data, each ENG has different sizes of 
positive and negative (pairwise) pairs. CHINESE name instances produce the largest numbers of positive 
(≈ 146K) and negative pairs (≈ 551K), while ITALIAN name instances generate around a few thousand 
positive and a few hundred negative pairs. In other training data, CHINESE pairs constitute substantially 
large proportions (KISTI: 71.28 % and AMINER: 91.26 %) or over one-third (UM-IRIS: 37.54 %) of all 
negative pairs, while other ENG pairs make up small or less-than-expected (approximately 17% per ENG 
in UM-IRIS) proportions. In contrast, the numbers of positive pairs are less concentrated (GESIS, KISTI, 
and AMINER) or more evenly distributed (UM-IRIS) for positive pairs than those for negative pairs.  

 Table 4: Distributions of Positive and Negative Name Instance Pairs per ENG in GESIS Training Data 

ENG Positive 
Pairs Ratios Negative 

Pairs Ratios 

ARAB 1,559 0.66 1,203 0.21 
CHINESE 145,969 62.22 551,150 93.96 
ENGLISH 16,020 6.83 2,147 0.37 
FRENCH 1,948 0.83 3,118 0.53 
GERMAN 37,373 15.93 13,092 2.23 
HISPANIC 5,887 2.51 1,907 0.33 

INDIAN 6,708 2.86 2,654 0.45 
ITALIAN 3,489 1.49 686 0.12 

JAPANESE 8,853 3.77 2,608 0.44 
KOREAN 6,792 2.90 7,994 1.36 

Total 234,598 100 586,559 100 
 

 



Table 5: Distributions of Positive and Negative Name Instance Pairs per ENG in KISTI Training Data 

ENG Positive 
Pairs Ratios Negative 

Pairs Ratios 

ARAB 6,015 3.21 37 0.01 
CHINESE 53,519 28.55 209,807 71.28 

DUTCH 5,448 2.91 84 0.03 
ENGLISH 45,054 24.04 25,137 8.54 
FRENCH 2,686 1.43 625 0.21 
GERMAN 11,065 5.90 4,114 1.40 
HISPANIC 3,729 1.99 1,680 0.57 

INDIAN 33,742 18.00 19,043 6.47 
ISRAELI 9,699 5.17 460 0.16 
ITALIAN 9,598 5.12 283 0.10 

JAPANESE 1,588 0.85 580 0.20 
KOREAN 5,284 2.82 32,474 11.03 

Total 187,427 100 294,324 100 
 

Table 6: Distributions of Positive and Negative Name Instance Pairs per ENG in AMINER Training Data 

ENG Positive 
Pairs 

Ratio 
(%) 

Negative 
Pairs 

Ratio 
(%) 

CHINESE 38,958 61.88 76,781 91.26 

ENGLISH 13,758 21.85 2,414 2.87 

GERMAN 2,603 4.13 748 0.89 

HISPANIC 1,933 3.07 380 0.45 

INDIAN 5,701 9.06 3,815 4.53 

Total 62,953 100 84,138 100 

 

Table 7: Distributions of Positive and Negative Name Instance Pairs per ENG in UM-IRIS Training Data 

ENG Positive 
Pairs 

Ratio 
(%) 

Negative 
Pairs 

Ratio 
(%) 

CHINESE 1,517 10.60 7,261 37.54 
ENGLISH 2,185 15.26 459 2.37 
GERMAN 3,673 25.66 1,917 9.91 
HISPANIC 2,416 16.88 970 5.01 

INDIAN 2,080 14.53 3,803 19.66 
KOREAN 2,445 17.08 4,933 25.50 

Total 14,316 100 19,343 100 
 

As noted above for Figure 5 and observed in other labeled data (see Figure S1 ~ S16 in Supplementary 
Material), the algorithms work better in finding more true negative pairs even for non-CHINESE name 
pairs when they are trained on data in which ethnic name partitioning is not performed (‘BEFORE’) and, 



thus, negative pairs are dominated by CHINESE ones as shown in Table 4~6. This implies that the 
nonmatch patterns in CHINESE name pairs are applicable to predicting nonmatch pairs for other ENGs. 
In contrast, during ENG-aware disambiguation, the algorithms come to rely on the small-size negative 
pairs that may skew or distort true nonmatch patterns for some ENGs. This seems to result in the 
decreased recall in predicting negative pairs (i.e., many true negatives classified as false positives, which 
reduces precision for positive pair prediction), while increasing slightly precision in predicting negative 
pairs. 

Despite the aforementioned conflicting changes in precision and recall per ENG, the overall performance 
by the four algorithms on the whole test set are shown in Figure 1~4 to substantially increase across the 
four labeled data after ethnic name partitioning is included in machine learning. One reason would be that 
performance gains outweigh losses at each ENG level overall. Another reason would be that especially 
for KISTI, AMINER, and GESIS, the improved performances in disambiguating CHINESE that 
constitute the majority of name instances may affect the overall evaluation results. As shown by the case 
of UM-IRIS in which ENG sizes are controlled to be equal, however, the overall performance 
improvements can be observed for all the ENGs by ENG-aware disambiguation. As such, this study 
illustrates that the ethnic name partition can be truly effective in improving disambiguation performances. 

Discussion 

These results suggest that AND tasks may produce better results by using ethnic name partition in 
machine learning. Considering that adding more features can improve generally machine learning 
performances, the enhanced disambiguation performances by ENG partitioning might not be a surprise. 
With that said, the real contribution of this study would be that it demonstrates many machine learning 
based disambiguation models have a potential to be improved by introducing ethnic name grouping into 
ambiguous data without additional collection of feature information. 

To fully realize this potential, however, a few issues need to be addressed. First, ENG tagging can be a 
non-trivial task that requires an intricate algorithmic technique itself. Thanks to the ENG classification 
system developed and publicly shared by Torvik and Agarwal (2016), this study could assign ENGs to the 
names in four labeled data. Although Ethnea was constructed based on more than 9 million author name 
instances in PubMed, the world largest biomedicine library, it is unknown how well it can help us tag 
ENGs to names in other fields. Ideally, Ethnea may be updated regularly to reflect new author names 
entering bibliographic data in various fields. Practically, further research may be focused on finding out a 
set of ENGs that are most influential in improving disambiguation results and thus simplifying ENG 
tagging for author name disambiguation (e.g., CHINESE vs Non-CHINESE).  

Second, the findings of this study were based on three labeled data (KISTI, AMINER, and GESIS) in 
which CHINESE names are dominant and the overall performance improvements were heavily affected 
by those for CHINESE name instances. To overcome such an imbalance of instance distribution in 
labeled data, a new labeled data (UM-IRIS) were created in a way that six ENGs have the same amount of 
ambiguous name instances. Disambiguation results from the new labeled data were in line with those 
from other three labeled data. In addition, all ENGs including CHINESE were able to obtain gains in 
disambiguation performances. But all these findings were obtained from small-sized labeled data, whether 
they are biased or controlled for ENG sizes. So, it is still unknown whether such improvements are 
achievable in author name disambiguation for large-scale bibliographic data in which ENG composition 
may be quite different from those in the labeled data used in this paper.  

Another issue would be that there can be other features than the four used in this study that can lead 
ethnic name partition to different AND performances. For example, English authors may appear in 



publication records that are more complete in affiliation information and use more diverse title terms. 
Meanwhile, Chinese authors may tend to work with coauthors who have similar names in same 
institutions. Various features need to be explored to study further the impact of ethnic name partition on 
AND.   

Fourth, ENG-aware disambiguation may be beneficial for positive pair prediction but not so much for 
negative pair prediction. This was illustrated in Figure 5 above and Figure S1 ~ S16 in Supplementary 
Material by the dramatically decreased recall in negative pair predictions for many ENGs. It was 
contrasted with the substantial increase of precision in positive pair prediction for those ENGs. This study 
speculates that by ethnic name partitioning, classifiers become stricter for CHINESE pairs while relaxed 
for other ENG pairs. In other words, a pairs of CHINESE instances that would be classified as ‘match’ 
before partitioning are classified as ‘nonmatch’ after partitioning (PREC-POS↑; REC-POS↓), while 
‘nonmatch’ pairs of other ENG instances as matched ones (PREC-POS↓; REC-POS↑). This might be 
because while some CHINESE pairs sharing coauthor names, venue names, or title words refer to 
different authors, other ethnic names sharing the features are more likely to represent the same authors 
(see Figure 6 B, D, F, and H in which Chinese name pair share is denoted in square). During training, such 
different similarity patterns are mixed up before partitioning but distinguished after it. Another conjecture 
is that due to the relaxed classification after partitioning, true negative pairs of other-than-CHINESE 
ENGs are falsely classified as false positive pairs (PREC-POS↓; REC-NEG↓). As the sizes of negative 
pairs in most non-CHINESE ENGs are smaller than positive pairs (see Table 4~7), misclassified negative 
pairs have larger impacts on REC-NEG than on PREC-POS across the ENGs. But these conjectures are 
based on the observations on labeled data in which Chinese name instances are prevalent. Using an 
additional labeled data with controlled ENG sizes, however, the conjecture has been confirmed. But only 
six ENGs in a small dataset were considered for analysis. More ENGs need to be investigated to check if 
this conjecture holds good under the different combinations of ENGs. 

Conclusion and Discussion 

This study evaluated the effects ethnic name partitioning has on author name disambiguation (AND) 
using machine learning methods. For this, author name instances in four labeled datasets were 
disambiguated under two scenarios. First, similarity scores of instance pairs over four basic features – 
author name, coauthor names, paper title, and publication venue – were used to train and test 
disambiguation algorithms. Second, in addition to the basic features, ethnic name group (ENGs) were 
tagged to name instances to allow algorithms to build models that are optimized to each ENG. 
Comparisons of disambiguation performances before and after ENG-aware disambiguation showed that 
using ethnic name partition can substantially improve algorithmic performances. Such performance 
improvements occurred across all ENGs, although performance gains and losses at each ENG level were 
observed in different ways depending on the types of measures – precision or recall – and target 
classifications – positive (match) or negative (nonmatch) pairs.  

As detailed in the discussion above, ethnic name partition requires further research for us to understand 
better its impact on author name disambiguation and apply it to disambiguation tasks for digital libraries 
that are struggling with authority control over fast-growing ambiguous author names. This study is 
expected to motivate scholars and practitioners to study toward that direction by demonstrating the 
potential of ENG-aware disambiguation in improving disambiguation performances. 
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Table 1: Summary of Ethnic Name Group (ENG) Frequencies in Labeled Data 

Labeled Data (No. of Instances) 
KISTI (41,605) AMINER (7,528) GESIS (29,965) UM-IRIS (6,000) 

ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) ENG Ratio (%) 
CHINESE 50.1 CHINESE 64.2 CHINESE 56.2 CHINESE 16.67 
ENGLISH 15.6 ENGLISH 17.0 GERMAN 14.8 ENGLISH 16.67 
INDIAN 9.5 INDIAN 6.3 ENGLISH 7.0 GERMAN 16.67 

KOREAN 8.0 GERMAN 5.6 INDIAN 4.3 HISPANIC 16.67 
GERMAN 3.3 HISPANIC 3.1 HISPANIC 3.6 INDIAN 16.67 
ISRAELI 2.2 Sum 96.2 KOREAN 3.5 KOREAN 16.67 
ITALIAN 2.0 Excluded ENGs (3.8%): 

JAPANESE, NORDIC, 
KOREAN, ARAB  

JAPANESE 2.8 Sum 100.00 
HISPANIC 1.7 ITALIAN 1.7 Excluded ENGs (0%):  

None JAPANESE 1.1 ARAB 1.6 
DUTCH 1.0 FRENCH 1.3 
ARAB 0.9 Sum 96.8 

FRENCH 0.9 Excluded ENGs (3.2%):  
NORDIC, HUNGARIAN, 
DUTCH, VIETNAMESE, 
SLAV, ROMANIAN, 
GREEK, ISRAELI, 
TURKISH, 
INDONESIAN  

Sum 96.3 
Excluded ENGs (3.7%) : 
NORDIC, SLAV, GREEK, 
ROMANIAN, 
VIETNAMESE, NULL, 
AFRICAN, TURKISH, 
HUNGARIAN,  

 

 

Table 2: A Mock-Up Example of Cosine Similarity Scores for Instance Pairs over Four Features and ENG Encoding 

Pairs 
Feature 

Label Author 
Name 

Coauthor 
Name 

Paper 
Title 

Pub. 
Venue 

ENG 1 ENG 2 ENG 3 … 

Pair 1 0.97 0.89 0.67 0.12 Yes No No … Match 
Pair 2 1.00 0.24 0.46 0.00 No Yes No … Nonmatch 
Pair 3 0.65 0.07 0.00 0.80 No No Yes … Nonmatch 
Pair 4 0.58 0.08 0.00 0.00 Yes No No … Nonmatch 

 

Table 3: Numbers of Correctly or Incorrectly Predicted Pairs for Positive and Negative Pairs by Four Algorithms on KISTI Test Data 

Algorithm ENGs 
Considered 

No. of Pairs 
(P: Positive) 

(N: Negative) 
TP FN  FP  TN 

LR 
Before 

483,029 
(P: 189,375) 
(N: 293,654) 

 

55,998 133,377 20,203 273,451 
After 131,364 58,011 39,068 254,586 

NB 
Before 50,782 138,593 14,267 279,387 
After 71,020 118,355 8,775 284,879 

RF 
Before 82,727 106,648 57,532 236,122 
After 128,105 61,270 40,479 253,175 

GB 
Before 75,195 114,180 24,725 268,929 
After 136,859 52,516 39,888 253,766 



 

Table 4: Distributions of Positive and Negative Name Instance Pairs per ENG in GESIS Training Data 

ENG Positive 
Pairs Ratios Negative 

Pairs Ratios 

ARAB 1,559 0.66 1,203 0.21 
CHINESE 145,969 62.22 551,150 93.96 
ENGLISH 16,020 6.83 2,147 0.37 
FRENCH 1,948 0.83 3,118 0.53 
GERMAN 37,373 15.93 13,092 2.23 
HISPANIC 5,887 2.51 1,907 0.33 

INDIAN 6,708 2.86 2,654 0.45 
ITALIAN 3,489 1.49 686 0.12 

JAPANESE 8,853 3.77 2,608 0.44 
KOREAN 6,792 2.90 7,994 1.36 

Total 234,598 100 586,559 100 
 

 

Table 5: Distributions of Positive and Negative Name Instance Pairs per ENG in KISTI Training Data 

ENG Positive 
Pairs Ratios Negative 

Pairs Ratios 

ARAB 6,015 3.21 37 0.01 
CHINESE 53,519 28.55 209,807 71.28 

DUTCH 5,448 2.91 84 0.03 
ENGLISH 45,054 24.04 25,137 8.54 
FRENCH 2,686 1.43 625 0.21 
GERMAN 11,065 5.90 4,114 1.40 
HISPANIC 3,729 1.99 1,680 0.57 

INDIAN 33,742 18.00 19,043 6.47 
ISRAELI 9,699 5.17 460 0.16 
ITALIAN 9,598 5.12 283 0.10 

JAPANESE 1,588 0.85 580 0.20 
KOREAN 5,284 2.82 32,474 11.03 

Total 187,427 100 294,324 100 
 

Table 6: Distributions of Positive and Negative Name Instance Pairs per ENG in AMINER Training Data 

ENG Positive 
Pairs 

Ratio 
(%) 

Negative 
Pairs 

Ratio 
(%) 

CHINESE 38,958 61.88 76,781 91.26 

ENGLISH 13,758 21.85 2,414 2.87 

GERMAN 2,603 4.13 748 0.89 



HISPANIC 1,933 3.07 380 0.45 

INDIAN 5,701 9.06 3,815 4.53 

Total 62,953 100 84,138 100 

 

Table 7: Distributions of Positive and Negative Name Instance Pairs per ENG in UM-IRIS Training Data 

ENG Positive 
Pairs 

Ratio 
(%) 

Negative 
Pairs 

Ratio 
(%) 

CHINESE 1,517 10.60 7,261 37.54 
ENGLISH 2,185 15.26 459 2.37 
GERMAN 3,673 25.66 1,917 9.91 
HISPANIC 2,416 16.88 970 5.01 

INDIAN 2,080 14.53 3,803 19.66 
KOREAN 2,445 17.08 4,933 25.50 

Total 14,316 100 19,343 100 
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