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Multidimensional item response theory (MIRT) is widely used in assessment and

evaluation of educational and psychological tests. It models the individual response

patterns by specifying a functional relationship between individuals’ multiple latent traits

and their responses to test items.Onemajor challenge in parameter estimation inMIRT is

that the likelihood involves intractable multidimensional integrals due to the latent

variable structure. Various methods have been proposed that involve either direct

numerical approximations to the integrals or Monte Carlo simulations. However, these

methods are known to be computationally demanding in high dimensions and rely on

sampling data points from a posterior distribution. We propose a new Gaussian

variational expectation--maximization (GVEM) algorithm which adopts variational

inference to approximate the intractable marginal likelihood by a computationally

feasible lower bound. In addition, the proposed algorithm can be applied to assess the

dimensionality of the latent traits in an exploratory analysis. Simulation studies are

conducted to demonstrate the computational efficiency and estimation precision of the

new GVEM algorithm compared to the popular alternative Metropolis–Hastings
Robbins–Monro algorithm. In addition, theoretical results are presented to establish

the consistency of the estimator from the new GVEM algorithm.

1. Introduction

The increasing availability of rich educational survey data and the need to assess

competencies in education pose great challenges to existing techniques used to handle

and analyse the data, in particular when the data are collected from heterogeneous
populations.Different forms ofmultilevel,multidimensional item response theory (MIRT)

models have been proposed in recent decades to extract meaningful information from

complex education data. The advancement of computational and statistical techniques,

such as the adaptive Gaussian quadrature methods, the Metropolis–Hastings Robbins–-
Monro (MHRM) algorithm, the stochastic expectation–maximization algorithm, and the

fully Bayesian estimation methods, also help promote the use of MIRT models. However,

even with these state-of-the-art algorithms, computation can still be time-consuming,

especially when the number of factors is large. The main aim of this paper is to propose a
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new Gaussian variational expectation–maximization (GVEM) algorithm for high-dimen-

sional MIRT models.

As summarized in Reckase (2009), MIRT models contain two or more parameters to

describe the interaction between latent traits and responses to test items. In this paper we
focus on the logistic model with dichotomous responses. Specifically, for the multidi-

mensional two-parameter logistic (M2PL) model, there are N individuals who respond

independently to J itemswithbinary responsevariablesYi,j, for i = 1, . . .,N and j = 1, . . ., J.
Then the item response function of the ith individual to the jth item is modelled by

PðY ij ¼ 1jθiÞ¼
exp αT

j θi�bj

� �
1þexp αT

j θi�bj

� � , (1)

where α j denotes a K-dimensional vector of item discrimination parameters for the jth
item and bj specifies the corresponding difficulty level with item difficulty parameter as

bj=kα j k2. θ i denotes the K-dimensional vector of latent ability for student i.

For themultidimensional three-parameter logistic (M3PL)model, there is an additional

parameter cj, which denotes the guessing probability of the jth test item. The item

response function is expressed as

P Y ij¼ 1jθi
� �¼ cjþ 1� cj

� � exp αT
j θi�bj

� �
1þexp αT

j θi�bj

� � : (2)

For both the M2PL and M3PL models, we denote all model parameters by Mp. Then,

given the typical local independence assumption in IRT, themarginal log-likelihood ofMp

given the responses Y is

lðMp;Y Þ¼ ∑
N

i¼1

logPðY ijMpÞ¼ ∑
N

i¼1

log

Z YJ
j¼1

P Y ijjθi,Mp

� �
ϕðθiÞdθi: (3)

where Yi = (Yij, j = 1, . . ., J) is the ith subject’s response vector and J is the total number

of items in the test. ϕ denotes the K-dimensional Gaussian distribution of θ with mean 0

and covariance Σθ. The maximum likelihood estimators of the model parameters are then

obtained frommaximizing the log-likelihood function. However, due to the latent variable
structure, maximizing the log-likelihood function involves K dimensional integrals that

are usually intractable. Direct numerical approximations to the integrals have been

proposed in the literature, such as the Gauss–Hermite quadrature (Bock & Aitkin, 1981)

and the Laplace approximation (Lindstrom & Bates, 1988; Tierney & Kadane, 1986;

Wolfinger&O’connell, 1993). However, theGauss–Hermite quadrature approximation is

known to become computationally demanding in the high-dimensional setting, which

happens in MIRT especially when the dimension of latent traits increases. The Laplace

approximation, though computationally efficient, could become less accurate when the
dimension increases or when the likelihood function has a skewed shape. Other

numerical approximation methods based on Monte Carlo simulation have also been

developed in the literature, such as the Monte Carlo expectation–maximization

(McCulloch, 1997), stochastic expectation–maximization (von Davier & Sinharay,

2010), and MHRM algorithms (Cai, 2010a, 2010b). These methods usually depend on

sampling data points from a posterior distribution and would be computationally
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intensive. Recently, Zhang, Chen, and Liu (2020) improved proposed using the stochastic

EM (StEM) algorithm (Celeux&Diebolt, 1985) for item factor analysis, where an adaptive-

rejection-basedGibbs sampler is still needed for the stochastic E-step. Moreover, Chen, Li,

and Zhang (2019) studied joint maximum likelihood (JML) estimation by treating the
latent abilities as fixed effect parameters instead of random variables as in Equation (3).

In this paper we propose a computationally efficient method that is based on the

variational approximation to the log-likelihood. Variational approximation methods are

mainstreammethodology in computer science and statistical learning, and they have been

applied to diverse areas including speech recognition, genetic linkage analysis, and

document retrieval (Blei & Jordan, 2004; Titterington, 2004). Recently, there has been an

emerging interest in developing and applying variational methods in statistics (Blei,

Kucukelbir, & McAuliffe, 2017; Ormerod & Wand, 2010). In particular, Gaussian
variational approximationmethodswere developed for standard generalized linearmixed

effects models (GLMMs) with nested random effects (Hall, Ormerod, & Wand, 2011;

Ormerod & Wand, 2012). However, variational methods have only slowly gained

recognition in psychometrics and educational measurement, with the pioneer papers by

Rijmen and Jeon (2013) as well as Jeon et al. (2017).

In essence, variational approximations refer to a family of deterministic techniques for

making approximate inference for parameters in complex statistical models (Ormerod &

Wand, 2010). The key is to approximate the intractable integrals (e.g., Equation (3))with a
computationally feasible form, known as the variational lower bound, for the original

marginal likelihood. In psychometrics, Rijmen and Jeon (2013) first developed a

variational algorithm for a high-dimensional IRT model, but their algorithm was limited

to only discrete latent variables. Recently, Jeon et al. (2017) proposed a variational

maximization–maximization (VMM) algorithm for maximum likelihood estimation of

GLMMs with crossed random effects. They showed that VMM outperformed Laplace

approximationwith small sample size. However, their study is limited in several respects.

First, they only considered the Rasch model. Although extending their algorithm to the
2PLmodelmay be straightforward, its generalization to 3PL is unknown because 3PL does

not belong to theGLMM family. Second, the key component in their algorithm is themean-

field approximation (Parisi, 1988) that assumes independence of the latent variables given

observed data. Even though it seems acceptable to assume independence of each random

item effect, this independence assumption can no longer apply to theMIRTmodels when

different dimensions are assumed to be correlated. Third, in their first maximization step,

the closed-form solution still contains a two-dimensional integration where adaptive

quadrature is used; in the second maximization step, a Newton–Raphson algorithm is
used. Therefore, both steps involve iterations, which may slow down the algorithm.

Instead, our proposed GVEM algorithm has closed-form solutions for all parameters in

both the E- and M-steps, and it can deal with high-dimensional MIRT models when the

multiple latent traits are correlated. Moreover, the GVEM algorithm is established for both

the M2PL and M3PL models. Consistency theory of the estimators from our proposed

algorithm is established, and the performance of the algorithm is thoroughly evaluated via

simulation studies.

The rest of this paper is organized as follows. Section 2 introduces the general
framework of theGaussian variationalmethod and derivation of the EM algorithm inMIRT

models. Section 3 presents the GVEM algorithm for M2PLwith the use of local variational

approximation and presents the theoretical properties of the proposed algorithm.

Section 4 extends the GVEM algorithm to M3PL and also presents the stochastically

optimized algorithm to further improve its computational efficiency. Sections 5 and 6
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illustrate the performance of the proposed GVEMmethod with simulation studies and on

real data, respectively. Section 7 discusses future steps and concludes. The Online

Supplementary Material includes the detailed mathematical derivations of the EM steps

and the proofs of the theorem and proposition.

2. Gaussian variational EM

Henceforth, for the MIRT models in Equations (1) and (2), we denote the model

parameters by A¼fα j, j¼ 1, . . .,Jg, B ¼ bj, j¼ 1, . . .,J
� �

, and C ¼ cj, j¼ 1, . . .,J
� �

. As

defined in Section 1,we use the notationMp = {A,B,C} in the 3PLmodel andMp = {A,B}
in the 2PL model for simplicity. Latent traits θ from different dimensions are correlated,

resulting in aK × K covariancematrix Σθ. To fix the origin and units of measurement, it is

conventional to fix the mean and variance of all θ’s to be 0 and 1, respectively. To remove

rotational indeterminacy in the exploratory analysis, (i.e., to ensure model identifiability)

researchers often assume Σθ = IK and A contains a K-dimensional triangular matrix of

zeros (Reckase, 2009). On the other hand, in the confirmatory analysis, the zero structure

of the loading matrix A is completely or partially specified while the remaining non-zero

elements are left unknown. In this case, the correlation of latent traits θ is of interest and
we need to estimate the covariance matrix Σθ. In this paper we consider a general setting

for Σθ that works for both exploratory and confirmatory analyses.

The idea of variational approximation is to approximate the intractable marginal

likelihood function, which involves integration over the latent random variables, by a

computationally feasible lower bound. We follow the approach of variational inference

(Bishop, 2006) to derive this lower bound.

The marginal log-likelihood of responses Y is

l Mp;Y
� �¼ ∑

N

i¼1

logPðY ijMpÞ¼ ∑
N

i¼1

log

Z YJ
j¼1

P Y ijjθi,Mp

� �
ϕðθiÞdθi,

where ϕ denotes a K-dimensional Gaussian distribution of θwith mean 0 and covariance
Σθ. Note that the log-likelihood function l Mp;Y

� �
can be equivalently rewritten as

l Mp;Y
� �¼ ∑

N

i¼1

Z
θi

logP Y ijMp

� ��qiðθiÞdθi,

for any arbitrary probability density function qi satisfying
R
θi
qiðθiÞdθi = 1. Since

PðY ijMpÞ¼PðY i,θijMpÞ=PðθijY i,MpÞ, then we can further write

l Mp;Y
� � ¼ ∑

N

i¼1

R
θi

log
P Y i,θijMp

� �
P θijY i,Mp

� ��qiðθiÞdθi

¼ ∑
N

i¼1

R
θi

log
P Y i,θijMp

� �
qiðθiÞ

P θijY i,Mp

� �
qiðθiÞ

�qiðθiÞdθi

¼ ∑
N

i¼1

R
θi

log
P Y i,θijMp

� �
qiðθiÞ

�qiðθiÞdθiþKLfqiðθiÞjjPðθijY i,MpÞg

where KLfqiðθiÞjjPðθijY i,MpÞg¼
R
θi
log

qiðθiÞ
P θi jY i ,Mpð Þ�qiðθiÞdθi is the Kullback–Leibler

(KL) distance between the distributions qiðθiÞ and P θijY i,Mp

� �
. The KL distance
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KLfqiðθiÞjjPðθijY i,MpÞg≥0, where the equality holds if and only if

qiðθiÞ¼P θijY i,Mp

� �
. Therefore, we have a lower bound of the marginal likelihood

given by

l Mp;Y
� �

≥ ∑
N

i¼1

R
θi

log
P Y i,θijMp

� �
qiðθiÞ

�qiðθiÞdθi

¼ ∑
N

i¼1

R
θi

logP Y i,θijMp

� ��qiðθiÞdθi� ∑
N

i¼1

R
θi

logqiðθiÞ�qiðθiÞdθi
(4)

and equality holds when qiðθiÞ¼P θijY i,Mp

� �
for i = 1,. . .,N.

The follow-up question is how to design the candidate distribution function qiðθiÞ
that gives the best approximation of the marginal likelihood. From the above argument,

the best choice is the unknown posterior distribution function P θijY i,Mp

� �
. Although

this choice of qiðθiÞ is intractable, it provides a guideline for choosing qiðθiÞ in the

sense that a good choice of qiðθiÞ must approximate P θijY i,Mp

� �
well. The well-

known EM algorithm follows this idea and can be interpreted as a maximization–max-
imization (MM) algorithm (Hunter & Lange, 2004) based on the above decomposition.

In particular, the E-step chooses a distribution qi that minimizes the KL distance

function, which corresponds to the estimated posterior distribution P θijY i,M̂p

� �
with

M̂p from the previous step estimates. The E-step then evaluates the expectation with

respect to the qi’s, namely,

∑
N

i¼1

Z
θi

logP Y i,θijMp

� ��qiðθiÞdθi, (5)

which is equal to the lower bound in (4), except the additional constant term

�∑N

i¼1

R
θi
logqiðθiÞ�qiðθiÞdθi that does not depend on model parameters Mp. In the M-

step, we maximize the above expectation term to estimate model parameters and this is

equivalent to maximizing the lower bound in (4).

However, one challenge in the EM algorithm is to evaluate the expectation in (5) with

respect to theposterior distribution of θi. In theMIRTmodel it is known that the integral in

(5) does not have an explicit form, and in the literature numerical approximationmethods
are often used, such as Gauss–Hermite approximation, Monte Carlo expectation–max-

imization (McCulloch, 1997), and stochastic expectation–maximization (von Davier &

Sinharay, 2010).

To avoid directly evaluating the posterior distribution of θi, the variational

inference method uses alternative choices of the qiðθiÞ’s to approximate the marginal

likelihood function. The choices of qiðθiÞ not only approximate the posterior

P θijY i,Mp

� �
well, but also are easy to compute and usually give closed-form

evaluations in the algorithm. In particular, from the MIRT literature, we know that as
the number of items J becomes reasonably large, the posterior distribution

P θijY i,Mp

� �
can be well approximated by a Gaussian distribution (Bishop, 2006).

Motivated by this observation, we use the Gaussian approximation procedure that

chooses qiðθiÞ from a family of Gaussian distributions such that the KL distance

between qiðθiÞ and P θijY i,Mp

� �
is minimized. The estimation is then taken as a two-

step iterative procedure. In the variational E-step, we choose qiðθiÞ by minimizing the
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KL distance between qiðθiÞ and P θijY i,Mp

� �
and evaluate the expectation of the

likelihood function with respect qiðθiÞ, which is (5). In the M-step we update the

unknown model parameters by maximizing the above expectation. The algorithm

repeats the two steps until convergence. In the following sections we present the
detailed algorithm steps for the M2PL and M3PL models.

3. GVEM for the M2PL model

In this section we present the GVEM algorithm for the M2PL model. Without loss of

generality, we first focus on the ith subject’s likelihood function due to the independence
of different subjects’ responses. The joint distribution function of θi and Yi is.

logPðY i,θijA,BÞ ¼ logP Y ijθi,A,Bð Þþ logϕðθiÞ

¼ ∑
J

j¼1

Y ijlog
exp αTj θi�bj

� �
1þexp αTj θi�bj

� �þð1�Y ijÞlog 1

1þexp αTj θi�bj

� �
8<
:

9=
;þ logϕðθiÞ

¼ ∑
J

J¼1

Y ij αTj θi�bj

� �
þ log

1

1þexp αTj θi�bj

� �
8<
:

9=
;þ logϕðθiÞ:

The difficulty of handling themarginal distribution ofYimostly comes from the logistic

sigmoid function, which results in the integration over θi not being in closed form in the E-

step (i.e., expression (5)).

To avoid dealing with an intractable likelihood in E-step, we use a local variational

method initially proposed in the machine learning literature (Bishop, 2006; Jordan
et al., 1999), which finds bounds on functions over individual variables or groups of

variables within a model instead of the full posterior distribution over all random

variables. For notational simplicity, we henceforth denote xi,j ¼ bj�αT
i θi. Because of

the concavity of the logistic sigmoid function logð1=ð1þe�xi,jÞÞ, by the local variational

method, we have the following variational lower bound on the logistic sigmoid

function:

exi,j

1þexi,j
¼ max

ξi,j

eξi,j

ð1þeξi,jÞexp
ðxi,j� ξi,jÞ

2
�ηðξi,jÞ x2i,j� ξ2i,j

� �� 	

≥
eξi,j

1þeξi,j
exp

ðxi,j� ξi,jÞ
2

� ηðξi,jÞ x2i,j� ξ2i,j

� �� 	
,

(6)

where ξi,j is a variational parameter that is introduced to approximate the objective

function exi,j=ð1þexi,jÞ, and ηðξi,jÞ¼ ð2ξi,jÞ�1½eξi,j=ð1þeξi,jÞ�1=2�: We then aim to

estimate the parameter ξi,j that achieves the equality in (6). By introducing an

additional variational parameter ξi,j, we successfully avoid the problem of estimating

the intractable integral in the E-step. The values of ξi,j will be iteratively updated in the

M-step.

Using the lower bound on the logistic sigmoid function, we obtain a closed-form lower
bound for logPðY i,θijA,BÞ,

Gaussian Variational Estimation for MIRT 57



logPðY i,θijA,BÞ ≥ ∑
J

j¼1

log
eξi,j

1þeξi,j
� �þ ∑

J

j¼1

Y ij αTj θi�bj

� �
þ ∑

J

j¼1

bj�αTj θi� ξi,j
� �

2

� ∑
J

j¼1

ηðξi,jÞ bj�αTj θi
� �2

� ξ2i,j

� 	
þ logϕðθiÞ

¼: lðY i,θi,ξijA,BÞ,

where ξi ¼ðξi,j, j¼ 1, . . .,JÞT.
The key step is to find the optimal variational distribution qiðθiÞ, whichwe describe in

detail in the next section.

3.1. Algorithm details

3.1.1. Choice of qi
Conditional on themodel parameters A,B and the variational parameters ξi,j for i = 1, . . .,
N and j = 1, . . ., J, by the variational inference theory, it can be shown that the variational

distributions qiðθiÞ, i = 1, . . ., N, that minimize the KL divergence with the posterior
distributions P θijA,Bð Þ, i = 1, . . ., N, take the form

logqiðθiÞ/ ∑
J

j¼1

Y ij�1

2


 �
αT
j θi� ∑

J

j¼1

η ξi,j
� �

bj�αT
j θi

� �2
�θTi ∑

�1
θ θi
2

:

The standard nonlinear optimization technique is exploited to show that

qiðθiÞ∼Nðθijμi,ΣiÞ minimizes the KL divergence among all normal distributions where

the mean and the covariance are

μi ¼Σi� ∑
J

j¼1

2η ξi,j
� �

bjþY ij�1

2

� 	
αTj , (7)

Σ�1
i ¼Σ�1

θ þ2 ∑
J

j¼1

ηðξi,jÞα jα
T
j (8)

With the variational densities qiðθiÞ, we aim to estimate model parameters ξi, αj and bj
by maximizing the lower bound of the marginal likelihood. Suppose we have ξi from a

previous step’s estimation or the initial values, denoted by ξ tð Þ
i . Similarly, define

A tð Þ ¼ fα tð Þ
j , j¼ 1, . . .,Jg, BðtÞ ¼ b

ðtÞ
j , j¼ 1, . . .,J

n o
, ΣðtÞ

θ , μðtÞi and ΣðtÞ
t . The EM iteration is

presented below

3.1.2. E-step

In the E-step, we evaluate the closed-form lower bound of the expected log-likelihood

with respect to the variational distributions qi. With iteratively updated varia-

tional parameters μðtÞi and ΣðtÞ
t , we easily evaluate the tth iteration’s lower bound of the
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expected log-likelihood. Denote the tth iteration’s variational density by

q
ðtÞ
i ðθiÞ¼ qiðθijξðtÞi ,AðtÞ,BðtÞ,ΣðtÞÞ. Then, the tth iteration’s lower bound can be derived as

EðtÞðA,B,ξÞ :¼ ∑
N

i¼1

R
θi

l Y i,θiξijA, Bð Þ�q
ðtÞ
i ðθiÞdθi

¼ ∑
N

i¼1

∑
J

j¼1

log
e
ξðtÞ
i,j

1þe
ξðtÞ
i,j

þ 1

2
�Y ij


 �
b
ðtÞ
j þ Y ij�1

2


 �
αðtÞT
j μðtÞi

 

�1

2
ξðtÞi,j �η ξðtÞi,j

� �
b
ðtÞ2
j �2b

ðtÞ
j αðtÞTj μðtÞi þαðtÞTj ΣðtÞ

i þ μðtÞi
� �

μðtÞi
� �T� 

αðtÞ
j � ξðtÞ2i,j

� 	
�

þN

2
log ΣðtÞ

θ

� ��1
����

����� ∑
N

i¼1

1

2
Tr ΣðtÞ

θ

� ��1

ΣðtÞ
i þ μðtÞi

� �
μðtÞi
� �T� 
 �

:

3.1.3. M-step

In M-step, we maximize the estimated lower bound to update the model parameters
ðA, B, ξ, ΣθÞ. This is achieved by simply setting the derivative of the lower bound with

respect to ðA, B, ξ, ΣθÞ to zero. As a result, it can be shown that each update of the model

parameters is done in closed form, which makes the proposed GVEM algorithm

computationally efficient. In the updating step the most recently updated copies of the

parameters are used for each iterative update:

α j ¼ 1

2
∑
N

i¼1

ηðξi,jÞΣiþηðξi,jÞμiμTi
� �1

∑
N

i¼1

Y ij�1

2
þ2bjηðξi,jÞ


 �
μTi

� 
, (9)

bj ¼
∑
N

i¼1

1
2
�Y ij

� �þ2η ξi,j
� �

αT
j μi

h i
∑N

i¼12η ξi,j
� � , (10)

ξ2i,j ¼ b2j �2bjα
T
j μiþαT

j ½Σiþμiμ
T
i �α j: (11)

For the covariance matrix Σθ, in the exploratory analysis, we can keep Σθ = IK during

theGVEM estimation and then later performproper rotation; in the confirmatory analysis,

we update Σθ by

Σθ ¼ 1

N
∑
N

i¼1

Σiþμiμ
T
i

� �
(12)

Note that if the Σθ is assumed to be the correlation matrix with unit diagonal, then we

need to standardize the estimated Σθ to get the correlation matrix. Detailed derivations

regarding the above EM steps are given in the Online Supplementary Material.
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In light of the above exposition, the GVEM algorithm for M2PL can be summarized as

follows.

Algorithm 1 GV-EM algorithm

1: Initialize M
ð0Þ
p ¼ A0,B0f g,ξð0Þ.

2: repeat
3: E-step: For step t ≥ 1, update μðtÞi and ΣðtÞ

i according to closed-form equations (7) and (8).

4: M-step: Further updateM
ðtÞ
p and ξðtÞ iteratively according to closed-form equations (9), (10), and

(11). Fix ΣðtÞ
θ ¼ IK in the exploratory analysis or update ΣðtÞ

θ according to (12) in the confirmatory

analysis.

5: until convergence

Remark 1. The algorithm complexity increaseswith the sample size N,whichmakes the
algorithm computationally inefficient for large data sets. Thus, we can stochastically

optimize the EM algorithm by subsampling the data to form noisy estimates of the

variational lower bound andmodel parameters. See Section 4.2 for a detailed explanation

of the stochastic GVEM.

Remark 2. Under the IRT framework, test dimensionality is one of the major issues

explored in order to validate the design of a test and help practitioners with test
development. As a by-product of the algorithm, we can empirically estimate the number of

latent dimensions fromdata. Specifically, theAkaike informationcriterion (AIC)orBayesian

information criterion (BIC) can be used to compare the model fit with varying number of

dimensions. Because we approximate the true log-likelihood by its lower bound in GVEM,

the information criteria also need to be modified by replacing the true log-likelihood with

the variational lower bound, resulting in the following modified AIC and BIC:

AIC∗ ¼ 2 kA k0þkB k0þkΣθ k0ð Þ�2E Â, B̂, ξ̂
� �

,

BIC∗ ¼ lnðNÞ kA k0þkB k0þkΣθ k0ð Þ�2E Â, B̂, ξ̂
� �

,

where E Â, B̂, ξ̂
� �

is the estimated variational lower bound and Â, B̂, ξ̂ are the final

estimates from the GVEM estimation procedure. kA k0 denotes the zero norm of the

matrix A, which is simply the number of non-zero entries of A. The advantage of using

GVEM to estimate test dimensionality is that it is computationally more efficient,

especially with high-dimensional data and more complex models. This procedure can be

easily applied in both the 2PL and the 3PL models. See Section 5 for more discussion.

3.2. Theoretical properties

In this section we establish theoretical bounds on the estimation of themodel parameters

in the high-dimensional setting where bothN and J go to infinity. The dimension of latent

traits, K, is assumed known for this analysis and thus fixed. As defined in Section 2,
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A¼ ½αjk�J�K
denotes a matrix of factor loadings. Additionally, let Θ¼ ½θij�N�K

denote a

matrix of random variables following qiðθiÞ and let Θ̂¼ ½θ̂ij�N�K
denote a matrix of

estimated latent abilities from data. Define Eθ̂∼ q̂
to be the expectation with respect to the

estimated variational densities fq̂iðθ̂iÞ∼N μ̂i, Σ̂i

� �
: i¼ 1, . . .,Ng from data. Lastly, a

superscript * denote a true parameter. For example, θ∗i denotes the ith person’s true

latent ability, which is a deterministic realization from its population distribution. We

assume that the true parameters Θ∗ and A∗ satisfy the following condition.
ðA1Þ:k θ∗i k2≤C and kα∗

j k2≤C for all i, j for some positive constant C.

The following theorem derives the bound on the expected Frobenius norm of the

error, k Θ̂ÂT�Θ∗ðA∗ÞT kF , where kM kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i,jM

2
ij

q
denotes the Frobenius norm of a

matrix M.

Theorem 1. Suppose that condition (A1) is satisfied for the true parameters Θ∗ and A∗.

With optimally estimated variational densities q̂i from data and estimated parameter
matrix Â that maximizes the variational lower bound, there exist absolute constants C1

and C2 such that

1

NJ
Eθ̂∼ q̂ k Θ̂ÂT�Θ∗ðA∗ÞT kF

h i
≤C2Ce

C

ffiffiffiffiffiffiffiffiffiffiffi
JþN

JN

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ log Nþ Jð Þ

Nþ J

s

is satisfied with probability 1 – C1/(N + J).

The proof of Theorem 1 can be found in the Online Supplementary Material.

Remark 3. Theorem 1 states that the expected estimation error measured by Frobenius

norm goes to 0 as both N !∞ and J!∞. The proof of Theorem 1 follows a similar

argument due to Davenport et al. (2014) and Theorem 1 in Chen et al. (2019). However,
the previous work by Chen et al. (2019) treats θi as fixed effects while this work follows

the conventional MIRT model setting with θi random effects and following a normal

population distribution.

Remark 4. The Gaussian family is reasonable as the candidate choice of q according to

Laplace approximation of the posterior distribution PðθijY iÞ. The Laplace approximation

of PðθijY iÞ is a normal distributionwith themaximum likelihood estimator θ̂i asmean and
the inverse of the observed Fisher information I�1ðθ̂iÞ as variance. Denote the true

parameter by θ∗i . By the Bernstein–von Mises theorem, since the P Y ijθið Þ, i = 1, . . ., N,
have the same support and θi ! logP Y ijθið Þ is twice continuously differentiable, it follows

that θ̂i ! θ∗i almost surely and the Laplace approximated distribution Nðθ̂i, I�1ðθ̂iÞÞ
converges in distribution to the true limiting normal distributionNðθ∗i ,I�1ðθ∗i ÞÞ as J!∞.

This supports our choice of variational density qi as a multivariate Gaussian distribution

provides an asymptotically good approximation for the true posterior distribution of θ.

Remark 5. Compared with the existing stochastic estimation algorithms, such as the

MHRM algorithm and the StEM algorithm, the proposed estimation method has the

advantage that each of the estimation iterations has simple closed-form update and it does
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not involve stochastic sampling from some intermediate posterior distributions as in the

current stochastic estimation algorithms. As discussed in Remark 3.2, even though

variational distributions are used to approximate the posterior distributions in our

method, the normal approximation is asymptotically valid. Simulation studies in Section 5
further illustrate this. Moreover, the above variational EM development can be easily

generalized to the M3PL model and can also be naturally combined with the idea of the

StEM, as illustrated in the next section.

4. GVEM for the M3PL model

Derivation of the variational lower bound is trickier got the M3PL function since the

cancellation of log and exponential functions, which was essential in simplifying the

variational lower bound in M2PL, is impossible due to the addition of a guessing

parameter. To solve this problem, we introduce another latent variable, Zij, which is an

indicator function of whether the ith individual answered the jth item based on their

latent abilities or guessed it correctly (vanDavier, 2009).We defineZij = 1 if ith individual

solved item j based on his or her latent ability, and Zij = 0 if he or she guessed item j

correctly. Notice here that for the case of Zij = 1, Yij can be either 0 or 1. However, when
Zij = 0, Yij has to be 1 by the definition of Zij. Hence, { Yij = 0, Zij = 0} cannot occur.

Proposition 1. Given the two latent variables θ i and Zij, P Y ijjθi
� �

under the following

hierarchical model is equivalent to equation (2) of the 3PL model:

Zij ∼Bernoulli 1� cj
� �

,

Y ijjθi,Zij ¼ 1∼Bernoulli
exp αT

j θi�bj

� �
1þexp αT

j θi�bj

� �
2
4

3
5

0
@

1
A,

Y ijjθi,Zij ¼ 0∼Bernoulli I Y ij ¼ 1
� �� �

:

The distribution of observation Yij given latent variables θi and Zij is then

PðY ijjZij,θiÞ¼
exp αT

j θi�bj

� �
1þexp αT

j θi�bj

� �
2
4

3
5
Y ij

1

1þexp αT
j θi�bj

� �
2
4

3
5
1�Y ij

8><
>:

9>=
>;

Zij

IðY ij ¼ 1Þ1�Zij :

Without loss of generality we first focus on the ith subject’s likelihood function due to
the independence of different subjects. Denote Z i = {Zi1, Zi2, . . ., ZiJ} and its distribution

by pðZ iÞ¼
QJ

j¼1pðZijÞ. Then the complete data likelihood of the ith subject is
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logPðY i,θi,Z ijA,B,CÞ
¼ logP Y ijθi,Z i,A,B,Cð Þþ logϕðθiÞþ logpðZ iÞ

¼ ∑
J

j¼1

Y ijZijlog
exp αTj θi�bj

� �
1þexp αTj θi�bj

� �
2
4

3
5þ 1�Y ij

� �
Zijlog

1

1þexp αTj θi�bj

� �
2
4

3
5

8<
:

9=
;

þ ∑
J

j¼1

ð1�ZijÞlogIðY ij ¼ 1Þ� �þ logϕðθiÞþ logpðZ iÞ

¼ ∑
J

j¼1

Y ijZij αTj θi�bj

� �
þZijlog

1

1þexp αTj θi�bj

� �þð1�ZijÞlogIðY ij ¼ 1Þ
8<
:

9=
;

þlogϕðθiÞþ logpðZiÞ:

Following the result from Proposition 1, the hierarchical formulation of the 3PLmodel

with the new latent variable Zij could be used to derive the GVEM algorithm for the 3PL

model. See the Online Supplementary Material for the proof of Proposition 1. A similar

data augmentation scheme was proposed in Albert (1992) in the Bayesian framework.

In this section we derive the optimal choices of the variational densities for the latent

variablesZ ij and θi. The approach is similar to that of the2PLmodel. For any arbitrary density
functions qi and rij of the latent variables θi and Z ij, the following equation always holds:

logPðY ijA,B,CÞ¼
Z
θi

∑
Zi

logPðY ijA,B,CÞ�qiðθiÞriðZ iÞdθi:

where riðZ iÞ¼
QJ

j¼1rijðZiÞ.
Note that PðY ijA,B,CÞ¼PðY i,θi,Z ijA,B,CÞ=Pðθi,Z ijY i,A,B,CÞ. We can write

logPðY ijA,B,CÞ ¼ R
θi

∑
Zi

log
PðY i,θi,Z ijA,B,CÞ
Pðθi,Z ijY i,A,B,CÞ�qiðθiÞriðZ iÞdθi

¼ R
θi

∑
Zi

log
PðY i,θi,Z ijA,B,CÞ

qiðθiÞriðZ iÞ �qiðθiÞriðZ iÞdθi

þKLfqiðθiÞriðZ iÞjjPðθi,Z ijY i,A,B,CÞg:

Since the KL distance is non-negative by definition, we get a lower bound on the

marginal likelihood similarly as in the 2PL model:

logPðY ijA,B,CÞ¼
Z
θi

∑
Z i

logPðY i,θi,Z ijA,B,CÞ�qiðθiÞriðZ iÞdθi (13)

�
Z
θi

∑
Z i

logðqiðθiÞriðZ iÞÞ�qiðθiÞriðZ iÞdθi (14)

Since the second line of inequality (14) does not depend on parameters A,B and C, we

focus on the first line for the derivation of the lower bound. Again, the ith subject’s

likelihood function is
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logPðY i,θi,Z ijA,B,CÞ

¼ ∑
J

j¼1

Y ijZij αTj θi�bj

� �
þZijlog

1

1þexp αTj θi�bj

� �þð1�ZijÞlogIðY ij ¼ 1Þ
8<
:

9=
;

þlogϕðθiÞþ logpðZ iÞ:

Using the same variational lower bound (6) on the logistic sigmoid function as in the

2PL model, we show that

logPðY i,θi,Z ijA,B,CÞ ≥ ∑
J

j¼1

Zijlog
eξi,j

1þeξi,j
� �þ ∑

J

j¼1

ZijY ijðαTj θi�bjÞ

þ ∑
J

j¼1

1

2
Zij bj�αT

j θi� ξi,j
� �

� ∑
J

j¼1

Zijηðξi,jÞ ðbj�αT
j θiÞ2� ξ2i,j

n o

þ ∑
J

j¼1

fð1�ZijÞlogIðY ij ¼ 1Þgþ logϕðθiÞþ logpðZ iÞ

¼: lðY i,θi,Z i,ξijA,B,CÞ:

Recall that if Yij = 0, then we always have Zij = 1 by the design of our model. In other

words, {Yij, Zij} = {0,0} cannot occur. To accommodate this constraint, we replace Zij by
Z 0
ij ¼ 1�Y ijþZijY ij so that Z 0

ij ¼Zij if Yij = 1 and Z 0
ij ¼ 1 if Yij = 0. This makes sure that

the case of {Yij, Zij} = {0,0} is not included as a possible scenario during the estimation

procedure. By this substitution, we have

lðY i,θi,Z i,ξijA,B,CÞ ¼ ∑
J

j¼1

ð1�Y ijþZijY ijÞlog eξi,j

1þeξi,j

þ ∑
J

j¼1

ð1�Y ijþZijY ijÞY ij αT
j θi�bj

� �
þ ∑

J

j¼1

1

2
1�Y ijþZijY ij

� �
bj�αT

j θi� ξi,j
� �

� ∑
J

j¼1

ð1�Y ijþZijY ijÞηðξi,jÞ ðbj�αT
j θiÞ

2� ξ2i,j

n o

þ ∑
J

j¼1

Y ijð1�ZijÞlogIðY ij ¼ 1Þ� �þ logϕðθiÞþ ∑
J

j¼1

logp Z 0
ij

� �
,

where logpðZ 0
i,jÞ¼ ð1�Y ijþZijY ijÞlogð1� cjÞþY ijð1�ZijÞlogðcjÞ:

With variational distributions qi and ri, we have the following expression for the

variational lower bound of the marginal likelihood, which is an expectation of the joint

distribution with respect to qi and ri:

EðtÞðA,B,C ,ξÞ :¼ ∑
N

i¼1

Z
θi

∑
Z i

lðY i,θi,Z i,ξijA,B,CÞ� r
ðtÞ
i ðZ iÞ

" #
�q

ðtÞ
i ðθiÞdθi: (15)

Appropriate choices of the variational distributions will lead to a closed-form
expression for the lower bound expressed in (15). As in the 2PL model, we choose the
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variational distributions for each latent variable by finding a distribution that best

approximates the posterior distribution of each latent variable.

4.1. Algorithm details

4.1.1. Choice of qi
Let Er denote the expectation with respect to the variational densities of the Zij, that is,
rij(Zij). We can write

Er A,B,C ,ξð Þ :¼ ∑
N

i¼1

∑
Zij

lðY i,θi,Z i,ξijA,B,CÞ� rij Zij

� �

¼ ∑
N

i¼1

½∑
J

j¼1

1�Y ijþEr Zij

� �
Y ij

� �
log

eξi,j

1þeξi,j
� �þ ∑

J

j¼1

1�Y ijþEr Zij

� �
Y ij

� �
Y ij αT

j θi�bj

� �

þ ∑
J

j¼1

1�Y ijþEr Zij

� �
Y ij

� �1
2

bj�αT
j θi� ξi,j

� �

� ∑
J

j¼1

1�Y ijþEr Zij

� �
Y ij

� �
η ξi,j
� �

bj�αT
j θi

� �2
� ξ2i,j

� 	

þ ∑
J

j¼1

Y ij 1�Er Zij

� �� �
logI Y ij ¼ 1

� �� �þ logϕðθiÞþ ∑
J

J¼1

Er logp Z 0
ij

� �h i
�:

Conditional on the model parameters A,B,C and the variational parameters ξi,
i = 1, . . ., N, by the variational inference theory, we can show that the variational

distributions qiðθiÞ, i = 1, . . ., N, that minimize the distances between them and the
posterior distributions take the form

logqiðθiÞ / ∑
J

j¼1

ð1�Y ijþErðZijÞY ijÞ Y ij�1

2


 �
αT
j θi

� ∑
J

j¼1

ð1�Y ijþErðZijÞY ijÞηðξi,jÞ bj�αT
j θi

� �2
�1

2
θTi Σ

�1
θ θi:

The above likelihood function implies that qiðθiÞ∼Nðθijμi,ΣiÞ, where the mean and

covariance are

μi ¼Σi ∑
J

j¼1

2ηðξi,jÞbjþY ij�1

2

� 	
ð1�Y ijþErðZijÞY ijÞαT

j , (16)

Σ�1
i ¼Σ�1

θ þ2 ∑
J

j¼1

ð1�Y ijþErðZijÞY ijÞηðξi,jÞα jα
T
j : (17)
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4.1.2. Choice of rij
We follow similar steps to those for qi. That is,we take the expectation of the lower bound

lðY i,θi,Z i,ξijA,B,CÞ with respect to the variational density of θ i, qi(θ i), and derive the

variational distributions for Zi,j, i = 1, . . ., N, j = 1, . . ., J. The variational distribution
minimizes the distances between them and the posterior distributions of Zi,j given model

parameters A, B, C and the variational parameters ξ i.

Let Eq denote the expectation with respect to the variational densities qi, and let Eqi
denote the expectation with respect to qi. Taking expectation of the lower bound

lðY i,θi,Z i,ξijA,B,CÞ with respect to qi (θ i), we have

Eq A,B,C ,ξð Þ

¼ ∑
N

i¼1

∑
J

j¼1

ð1�Y ijþZijY ijÞlog eξi,j

1þeξi,j

 
þ ∑

J

j¼1

ð1�Y ijþZijY ijÞY ij αT
j Eqi

½θi��bj

� �

þ ∑
J

j¼1

ð1�Y ijþZijY ijÞ1
2

bj�αTj Eqi
½θi�� ξi,j

� �

� ∑
J

j¼1

ð1�Y ijþZijY ijÞηðξi,jÞ Eqi
bj�αT

j θi
� �2� 

� ξ2i,j

� 	

þ∑
J

j¼1

Y ijð1�ZijÞlogIðY ij ¼ 1Þ� �þEqi
½logϕðθiÞ�þ ∑

J

j¼1

logp Z 0
ij

� �!

(18)

This implies that the variational distributions rij(Zi,j) are

logrijðZijÞ /ZijY ij log
eξi,j

ð1þeξi,jÞþY ij αT
j Eqi

½θi��bj

� �
þ1

2
bj�αT

j Eqi
½θi�� ξi,j

� ��

�η ξi,j
� �

Eqi
bj�αT

j θi
� �2� 

� ξ2i,j

� 	
þ logð1� cjÞ� þY ijð1�ZijÞ½logIðY ij ¼ 1Þþ logðcjÞ�:

Thus, rijðZijÞ∼BernoulliðsijÞ, where sij = 1 if Yij = 0 and

s�1
ij ¼ 1þ cj

1� cj

1þeξi,j

eξi,j
exp �Y ij αT

j Eqi
½θi��bj

� �
þ1

2
bj�αT

j Eqi
½θi�� ξi,j

� ��

�ηðξi,jÞ Eqi
bj�αT

j θi
� �2� 

� ξ2i,j

� 	
g (19)

if Yi,j = 1, where Eqi
½θi� ¼ μi andEqi

½ðbj�αT
j θiÞ2� ¼ b2j �2bjαT

j μiþαT
j ½Σiþμiμ

T
i �α j.

With the chosen qi and ri,j, we aim to estimate model parameters ξ, A, B, and C by

maximizing the variational lower bound of the marginal likelihood (i.e., equation (15)).

The EM steps for 3PL model follow the same procedure as in 2PL case.

4.1.3. E-step

In every E-step, we choose the optimal variational distributions qi and rij, which is

equivalent to estimating variational parameters µi, Σi, and sij for every i and j. With
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iteratively updated variational parameters, (i.e., μðtÞi ,ΣðtÞ
i , and s

ðtÞ
ij ) andmost recent updates

of model parameters (i.e.,M
ðtÞ
p ¼ AðtÞ,BðtÞ,C ðtÞ� �

), we derive a closed-form expression for

the variational lower bound at tth step as follows:

EðtÞðA,B,C ,ξÞ

¼ ∑
N

i¼1

∑
J

J¼1

1�Y ijþ s
ðtÞ
ij Y ij

� �
log

e
ξðtÞ
i,j

1þe
ξðtÞ
i,j

þ 1

2
�Y ij


 �
b
ðtÞ
j þ Y ij�1

2


 �
αðtÞT
j μðtÞi

 

�1

2
ξðtÞi,j � η ξðtÞi,j

� �
b
ðtÞ2
j �2b

ðtÞ
j αðtÞTj μðtÞi þ αðtÞ

j

� �T
ΣðtÞ
i þμðtÞi ðμðtÞi ÞT

h i
αðtÞj � ξðtÞ2i,j

� 	�

þ∑
N

i¼1

∑
J

j¼1

Y ij 1� s
ðtÞ
ij

� �
logIðY ij ¼ 1Þ� ∑

N

i¼1

1

2
Tr ðΣðtÞ

θ Þ�1
ΣðtÞ
i þμðtÞi μðtÞi

� �T� 
 �

þN

2
log ðΣθ

ðtÞÞ�1
��� ���þ ∑

N

i¼1

∑
J

j¼1

1�Y ijþ s
ðtÞ
ij Y ij

� �
log 1� c

ðtÞ
j

� �
þY ij 1� s

ðtÞ
ij

� �
log c

ðtÞ
j

� �n o
:

4.1.4. M-step

In this step, we again maximize E(t) (A,B,C,ξ) to update the parameters (A,B,C,ξ). This is
achieved by setting the derivative of E(t) (A,B,C,ξ) with respect to (A,B,C,ξ) to zero. Since

we have a closed-form expression for the lower bound, updates of the model parameters

are also in closed form. A detailed derivation is provided in the Online Supplementary
Material.

For ξ and Σθ, the update is the same as in the 2PL model. For other parameters, we

derive the updating rule by taking derivative of the variational lower bound

E (A,B,C,ξ) derived in the E-step. As a result, we have the following updating rule for α
j, bj and cj;

α j ¼ 1

2
∑
N

i¼1

1�Y ijþ sijY ij

� �
ηðξi,jÞ Σiþμiμ

T
i

� �� �1

� ∑
N

i¼1

ð1�Y ijþ sijY ijÞ Y ij�1

2
þ2bjη ξi,j

� �
 �
μTi

� 
,

(20)

bj ¼
∑N

i¼1ð1�Y ijþ sijY ijÞ 1
2
�Y ij

� �þ2ηðξi,jÞαT
j μi

h i
∑N

i¼12 1�Y ijþ sijY ij

� �
ηðξi,jÞ

, (21)

cj ¼ ∑N

i¼1ðY ij� sijY ijÞ
∑N

i¼1ð1�Y ijþ sijY ijÞþ∑N

i¼1ðY ij� sijY ijÞ
¼ 1

N
∑
N

i¼1

Y ijð1� sijÞ: (22)

The Algorithm 2 summarizes the EM steps for GVEM algorithm in M3PL.
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Algorithm 2 GVEM algorithm for M3PL

1: Initialize M
ð0Þ
p ¼ A0,B0,C0f g,ξð0Þ.

2: repeat

3: E-step: For step t ≥ 1, update variational parameters μðtþ1Þ
i , Σðtþ1Þ

i , and s
ðtþ1Þ
ij according to closed-

form equations (16), (17), and (19).

4: M-step: Further updateM
ðtþ1Þ
p iteratively according to closed-form equations (20), (21) and (22).

Update ξðtþ1Þ and Σðtþ1Þ as in M2PL.

5: Untile convergence

Remark 6. The theoretical property of the M3PL is more challenging to derive

rigorously due to the addition of the guessing parameters cj. From Theorem 2 in

Davenport et al. (2014) we can show that the Hellinger distance of error between
estimated probability distributions and the true probability distributions is bounded

above. For this discussion, we define the Hellinger distance for probability distributions

and matrices. The Hellinger distance for two scalars p,q∈ 0,1½ � is defined as

d2
Hðp,qÞ :¼ð ffiffiffi

p
p � ffiffiffi

q
p Þ2þð ffiffiffiffiffiffiffiffiffiffiffi

1�p
p � ffiffiffiffiffiffiffiffiffiffiffi

1�q
p Þ2. Following Davenport et al. (2014), we also

allow the Hellinger distance to act onmatrices by averaging Hellinger distances over their

entries. For matrices P,Q∈ ½0,1�d1�d2 , we define

d2
HðP,QÞ¼

1

d1d2
∑
i, j

d2
HðPij,QijÞ:

Let M = [Mij]N×J be the matrix with entries Mij satisfying

expðMijÞ
1þexpðMijÞ¼ cjþð1� cjÞ

exp αTj θi�bj

� �
1þexp αTj θi�bj

� � :

Let PðY jMÞ be a matrix of probability distributions PðY ijjMijÞ, where Mi,j denotes a

collection of model parameters α ij, bj, cj. Again, M
∗ denotes a matrix of true parameters

and M̂ denotes estimated model parameters. Then by Theorem 2 of Davenport et al.

(2014)

d2
HðPðY jM̂Þ,PðY jM∗ÞÞ≤C2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K Nþ Jð Þ

NJ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nþ Jð Þlog NJð Þ

NJ

s

with probability 1 – C1/N + J for absolute constants C1 and C2. Hence, the Hellinger

distance between the estimated probability distribution and the true probability

distribution goes to 0 as both N !∞ and J!∞. However, the consistency result for

model parameters fα j,bj,cj : j¼ 1, . . .,Jg in M3PL is more challenging to derive and thus

left for the future research.
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4.2. Stochastic optimization of GVEM

In M3PL, the proposed GVEM algorithm may become computationally inefficient as

sample size increases because of the additional variational parameters and model

parameters to estimate compared toM2PL. Especially in the E-step, variational parameters
(i.e., μi,Σi,ξi,j,sij) need to be optimized for every data point i = 1, . . ., N. Thus, the
computational burden increaseswith larger sample sizeN. To improve the computational

efficiency of the GVEM algorithm, we can stochastically optimize the variational

approximation in the E-step (Hoffman et al., 2013). That is, at each iteration of the E-step,

we subsample the data to form a noisy estimate of the variational lower bound and

iteratively update the estimate with a decreasing step size. Then the M-step in Algorithm

4.1 follows using this stochastically estimated variational lower bound. The stochastic

optimization only affects the E-step, thus with minor changes to the original GVEM
algorithm we can stochastically optimize the algorithm for M3PL. The noisy estimates of

the variational lower bound are cheaper to compute as it only requires a small subset of the

data at each iteration. Also, for complicated models like M3PL, following such noisy

estimates can also help the algorithm to escape local optima of complex objective

functions. Specifically, the StEM steps can be summarized as follows.

4.2.1. Stochastic E-step

For step t ≥ 1, choose a subset of data Stwithdesired size. Choose a decreasing step size ɛt .
Update μðtÞi , ΣðtÞ

i , ξðtÞi and s
ðtÞ
ij for data point i∈St only, according to closed-form equations

(16) and (17). Since we only update variational parameters for i∈St , the algorithm is

computationallymore efficient than theGVEMapproachwithout stochastic optimization,

especially when the size of the subset St is chosen to be small.

With updated variational parameters partially for i∈St , calculate a noisy estimate of tth

iteration’s expected variational lower bound Q̂t as follows:

Q̂t ¼ ∑
i∈St

Z
θi

∑
Zi

lðY i,θi,Z i,ξijA,B,CÞ� r
ðtÞ
i ðZ iÞ

" #
�q

ðtÞ
i ðθiÞdθi:

Then we obtain a stochastic approximation of the variational lower bound by a
weighted average of the previous and current steps’ noisy estimates of the lower bound:

1� ɛtð ÞQ̂t�1þ ɛtQ̂t .

4.2.2. M-step

Once the E-step is done, we follow the previous M-step. That is, estimate

Â
ðtÞ
, B̂

ðtÞ
, Ĉ

ðtÞ
and Σ̂ðtÞ

to maximize the stochastic approximation of the variational lower

bound.
Notice that this stochastic optimization idea is different from the stochastic

component in the StEM algorithm (Nielsen, 2000). In the StEM algorithm, random

samples of the unobserved latent variables θ i are drawn from the conditional distribution

of θ i given observed variable Yi, and these random samples are used to approximate the

otherwise intractable expectation in the E-step. In our algorithm, the stochastic

component instead refers to the random subsampling of the observed data

Y ij, i¼ 1, . . .,N
� �

to form a noisy approximation of the variational lower bound

EðA,B,C ,ξÞ in the E-step.
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In theory, if a sequence of step sizes satisfies the conditions such that

∑ɛt ¼∞ and∑ɛ2t<∞, (23)

which results in a sequence of decreasing step sizes, the algorithms provably converge to

an optimum (Robbins & Monro, 1951). Following the approach in Hoffman et al. (2013),

we set the tth step size as ɛt ¼ðtþ τÞ�r, where the forget rater∈ 0:5,1ð � and the delay

τ≥0. The forget rate controls how quickly old information is forgotten and the delay

downweights early iterations to decrease the effect of the earlier noisy estimations. This

step size obviously satisfies conditions (23) Thus the iterative stochastic optimization of

the E-step converges to a local optimum of the variational lower bound. In simulation, we
fix the delay to be 1 and try various forget rates as different values of delay did not play a big

role for ourmodel. Although in theory the stochastic optimization ofGVEMconverges to a

stationary point for any valid forget rate r, the quality and speed of the convergence may

depend on r in practice.

5. Simulations

5.1. Design

A series of simulation studies were conducted to evaluate the performance of the

proposed GVEM algorithm in comparison to the MHRM algorithm implemented in the R

packagemirt (Chalmers, 2012). TheMetropolis–Hastings sampler is used to drawmissing

data (which is θ in MIRT) in the stochastic imputation step of the MHRM algorithm (Cai,
2008, 2010a). In the mirt package, MHcand is a vector of values used to tune the

Metropolis–Hastings sampler, with larger values yielding lower acceptance rate. By

default, these values are determined internally and adjusted on-the-fly, attempting to tune

the acceptance of the draws to be between .1 and .4. In addition, the default number of

Metropolis–Hastings draws at each iteration is 5, which is considered sufficient by Cai

(2010a). Only the exploratory item factor analysis will be presented since it is a

computationally more challenging scenario than the confirmatory analysis. That is, in the

confirmatory analysis, many of the item loading parameters (or discrimination parame-
ters) are constrained to 0 based on the pre-specified item factor loading structure. Hence,

the update equation for α (i.e., equation (9) for the 2PL model and equation (20) for the

3PL model) only needs minimum updates to reflect the constraints specified in the factor

loading structure. In the exploratory analysis,we donot assume any constraint on the item

discrimination parameter A while fix Σθ = IK during the estimation. A post hoc rotation

can then follow to rotate the factors and allow them to be correlated. The best-known

rotation methods available in most commercial software packages are varimax (Kaiser,

1958) in orthogonal rotation and promax (Hendrickson & White, 1964) in oblique
rotation. Other popular methods include the CF-quartimax rotation (Browne, 2001). In

the simulations studies, the promax rotation was used such that the factors were allowed

to be correlated. Both theM2PL andM3PLwere considered in the simulation studies. The

number of dimensions was fixed at three and test length was fixed at 45.

Additionally, we compared the performance of GVEM to the JML estimator, given that

the JML estimator is also shown to be consistent under the same high-dimensional setting

presented in Theorem 1 and efficient (Chen et al., 2019). The JML estimator was

computed using the default settings in the R packagemirtjml implemented by Chen et al.
(2019). Since Chen et al. (2019) did not study M3PL, here we only compare the

performances for M2PL.
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The manipulated conditions include: multidimensional structure (i.e., between-item

and within-item multidimensionality); correlations among the latent traits; and sample

size. In particular, for the between-item multidimensional structure, there were 15 items

loaded onto each factor; whereas for the within-item multidimensional structure, about
one-third of the items were loaded onto 1, 2, and 3 factors, respectively. In all cases, item

discrimination parameters were simulated from the Unif(1,2) distribution, and the

difficulty parameter bjwas simulated from the standard normal distribution. For theM3PL

model, the true guessing parameters were fixed at 0.2 for all test items. The latent traits θ i

were generated from amultivariate normal distribution,N(0,Σθ), whereΣθ is a covariance

matrix whose diagonal elements were 1 and the off-diagonals were drawn from a uniform

distribution. For the high-correlation condition the correlations were drawn from Unif

(0.5,0.7), and for the low-correlation condition they were drawn from Unif(0.1,0.3). The
sample size was set at either 200 or 500.

The convergence criterion for theGVEMalgorithm is kMp k2 < 0.0001,where kMp k2
refers to the L2 normof allmodel parameters. The number ofMarkov chain samples drawn

in the MHRM algorithm is by default 5,000 in the R packagemirt. Lastly, the JML method

adopts sequential change in log-likelihood as the convergence criterion and the tolerance

of convergence is by default 5 in the R packagemirtjml. One hundred replications were

conducted for each condition. Evaluation criteria include the average bias, root mean

squared error (RMSE), and computation time of both methods. The parameter recovery
for Σθ is calculated by taking differences between each entry of the true Σθ and estimated

Σ̂θ. Both bias and RMSE were obtained for each model parameter across all items within a

condition first and then averaged over 100 replications.

5.2. Results for the M2PL model

Figures 1 and 2 compare the distributions of the bias and RMSE of the model parameters

from the two methods under the four manipulated conditions for the between-item and
within-item M2PL model, respectively. As shown, GVEM generally produces comparable

or more accurate model parameter estimates than MHRM run by the R packagemirt in all

conditions for both between-item and within-item models. With respect to the

manipulated conditions, increasing sample sizes helps reduce the RMSE and bias of the

parameter estimates in both GVEM and MHRM inmirt. Moreover, the RMSE and bias are

generally higher when the correlations among factors are higher. This may be because

higher correlation introducemulticollinearity among factors, making parameter recovery

more difficult (Wang&Nydick, 2015). Last, but not least, the parameter recovery from the
between-item multidimensional model is better than the parameter recovery from the

within-itemmultidimensionalmodel. This is not surprising since the loading structureA is

more complex in the within-item model. Figures 3 and 4 compare the distribution of the

bias and RMSE of the model parameters from GVEM and the JML method under the four

manipulated conditions for the between-item andwithin-itemM2PLmodels, respectively.

Weobserve thatGVEMproducesmuch lowerRMSE andbias than JML estimation under all

conditions for both between-item and within-item models. The performance of the JML

estimator is particularly worse in small-sample and high-correlation settings and under
more complex within-item multidimensionality structure. This could be due to the fact

that the JML estimator assumes the θ i as fixed effects whereas GVEM models them as

random effects with multivariate Gaussian distributions which account for the factor

correlations. This result suggests that our proposed estimation method not only is
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theoretically consistent but also performs better in practice, particularly under these

complex simulation settings with correlated latent factors.

Figure 5 shows the average computation times in seconds for GVEM and MHRM in

mirt over 100 replications. To demonstrate a thorough comparison of the computation
time, additional simulation settings were added for Figure 5; three different sample sizes

(N = 200, 500, and 1,000) and three different test dimensions (K = 3, 4, and 5) were

considered as the simulation settings, resulting in nine conditions in total. Each column

presents the results for the between-item and within-item model, respectively. Overall,

the GVEM algorithm is computationally more efficient than MHRM in both low- and high-
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Figure 1. Parameter recovery of the between-item M2PL models from exploratory factor analysis.
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correlation settings with varying sample sizes. The biggest reduction in computation time

was observed for the between-item model in the low-correlation setting. Unsurprisingly,

computation time increases for both methods when the number of dimensions increases

or when sample sizes increase.

We would like to emphasize that the above observations regarding the MHRM

algorithm are based on the implementation of the algorithm in themirtpackage under the

default setting. Researchers using other packages may get slightly different results. We

also tried other tuning methods in flexMIRT and found that a more careful tuning can
improve the performance of MHRM as inmirt; on the other hand, the estimation results
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Figure 2. Parameter recovery of the within-item M2PL models from exploratory factor analysis.
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can be very sensitive to the tuning, and the optimal tuning of MHRM could vary case by

case, depending on the model setting and the correlation of the latent traits. For instance,

following one reviewer’s kind suggestion, we found that the strategy of combiningmirt’s

default stage 3 setup with flexMIRT’s default stage 1 and 2 setup provides slightly better

estimation results than the proposed GVEM under the high-correlation and between-item

model setting (while still slightly worse under the low-correlation and within-itemmodel

setting); see Figure S1. Based on these observations, we clarify that the simulation study

does not intend to conclude that the proposed GVEM outperforms the MHRM algorithm,
but rather to show that GVEM provides a good alternative estimation method for MIRT,
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Figure 3. Parameter recovery of the between-item M2PL models from exploratory factor analysis

using GVEM and joint maximum likelihood (JML) estimator.
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which does not rely on much tuning. Thoroughly evaluating the optimal tuning of the

MHRM algorithm is an interesting research problem, yet it is beyond the scope of the

current paper, and we leave it to a future study.

5.3. Results for the M3PL model

For the M3PL model, the sample size and forget rate for the stochastically optimized 3PL

algorithmwere chosen based on pilot testing of various sample sizes and forget rates. We
observed that using the whole data set for the initial estimation step helped a lot with

0

1

2

3

4

α1 α2 α3 b Σθ

(a) N = 200, Low Correlations

R
M

S
E

0

1

2

3

4

α1 α2 α3 b Σθ

(b) N = 200, High Correlations

R
M

S
E

0

1

2

3

4

α1 α2 α3 b Σθ

(c) N = 500, Low Correlations

R
M

S
E

0

1

2

3

4

α1 α2 α3 b Σθ

(d) N = 500, High Correlations

R
M

S
E

−1
0
1
2
3

α1 α2 α3 b Σθ

(a) N = 200, Low Correlations

B
ia

s

−1
0
1
2
3

α1 α2 α3 b Σθ

(b) N = 200, High Correlations

B
ia

s

−1
0
1
2
3

α1 α2 α3 b Σθ

(c) N = 500, Low Correlations

B
ia

s

−1
0
1
2
3

α1 α2 α3 b Σθ

(d) N = 500, High Correlations

B
ia

s

Methods GVEM JML

Figure 4. Parameter recovery of the within-item M2PL models from exploratory factor analysis

using GVEM and joint maximum likelihood (JML) estimator.
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estimation precision. Hence the forget rate was fixed at a small value so that the

information from the entire data set in the first iteration was weighted more heavily in

subsequent iterations (i.e., the information from the entire data set is forgotten at a slow

forget rate). After the first iteration, only five data points were sampled at a time, resulting

in a huge reduction in computation time.

Figures 6 and 7 present the distributions of the bias and RMSE of themodel parameters

from the two methods under the four manipulated conditions for the between-item and
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Figure 5. Average computation time for (a) between-itemmodel (first column) and (b)within-item

model (second column) with low correlation (first row) and high correlation (second row).
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within-item M3PL model, respectively. During simulation studies, we observed that the

performance of MHRM was quite unstable and the model did not converge well in M3PL

under all manipulated conditions. Specifically,the model did not converge in about

30–45% of the total experiments in most conditions. In another 15–20% of the

experiments, the model converged but the estimates of the model parameters exploded

to surprisingly high values, which implies instability of the parameter estimation. For the
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Figure 6. Parameter recovery of the between-item M3PL models from exploratory factor analysis.

ForMHRM, (a) 40, (b) 41, (c) 28, (d) 40 cases of simulation resultswere reported due to convergence

issues. For GVEM, all 100 cases were reported under all conditions.
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MHRMmethod,we excluded these results from the total of 100 experiments and reported

only the values that seemmoremeaningful. On the other hand,we report the results for all

100 experiments for the GVEM method. Specifically, in Figure 6, 40 cases for (a), 41 for

(b), 28 for (c), and 40 for (d) were reported. In Figure 7, 48 cases for (a), 46 for (b), 54 for

(c), and 47 for (d) were reported. Note again that in both figures, we report all 100

experiments for GVEM method because they all converged successfully. Similarly to the
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Figure 7. Parameter recovery of thewithin-itemM3PLmodels from exploratory factor analysis. For

MHRM, (a) 48, (b) 46, (c) 54, (d) 47 cases of simulation results were reported due to convergence

issues. For GVEM, all 100 cases were reported under all conditions.
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simulation studies forM2PL, increasing sample sizes helps reduce theRMSE andbias of the

parameter estimates in both GVEM and MHRM. However, the RMSE for the MHRM

method is quite high, with large variation undermost conditions. Overall, we observe that

for varying sample sizes and correlations between latent traits, GVEM performs better
than MHRM, even after excluding unstable estimation results for MHRM.

Given that the fact that inclusion of guessing parameters poses a challenge to model

estimation is well-documented in literature (e.g., Lord, 1968; Thissen & Wainer, 1982;

Yen, 1987), it is not too surprising to note the large proportion of non-converged

replications fromMHRM.However, the stable performance ofGVEM further reinforces its

promise as a robust alternative method to the current status quo, in particular when a

guessing parameter is included in the model. Also note that GVEM does not need much

tuning for good performance, hence it is more accessible to a broader audience whomay
not have the technical capacity to manually tune certain parameters, as may required by

other algorithms.

One last observation is that, for M3PL or 3PL models in general, marginal maximum a

posteriori estimation (MMAP) is sometimes preferred over the maximum likelihood

approach. That is, prior distributions are specified for constrained estimation of the a and

c parameters to improve estimation stability (Kim, 2006). Therefore, one could also

compare GVEM with MMAP in a future study.

5.4. Estimating the number of dimensions

In this section a separate simulation study was conducted to evaluate whether AIC* and
BIC* could help identify the correct number of factors from data. The simulation design is

the same as illustrated in Section 5.1. The result is presented for different sample sizes and

degrees of correlation between latent traits. A total of 100 independent samples were

generated for each setting, and the proportion of replications in which the correct

number of factors was identified by AIC* and BIC* was recorded.
Tables 1 and 2 present the correct estimation rate of the number of dimensions for the

M2PL andM3PLmodels, respectively. As shown, increasing sample size help increase the

correct estimation rate. In addition, similar to the findings in the previous sections, lower

correlation is more preferable as it usually produced higher correct estimation rates.

There is only one exception, though, for thewithin-itemM3PLmodel, inwhich both AIC*
and BIC* performed better for the higher-correlation scenario regardless of the sample

size. There is no appreciable difference between AIC* and BIC*, except for a few cells in

Table 1. Simulation: correct estimation rate (%) in the M2PL model

Correlation (Σθ) N

Between-item Within-item

AIC* BIC* AIC* BIC*

Small 200 76 92 69 94

500 82 91 76 83

1,000 88 93 79 85

Large 200 59 25 69 58

500 66 41 82 81

1,000 83 52 84 89
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Table 1: AIC* performed better than BIC* for large Σθwith a sample size of 200, whereas

BIC* performed better for small Σθ with a sample size of 200.

6. Real data analysis

In this section theGVEMandMHRMalgorithmswere used to conduct an exploratory item
factor analysis on the National Education Longitudinal Study of 1988 (NELS:88) data. In

this data set, a nationally representative sample of approximately 24,500 students were

tracked via multidimensional cognitive batteries from eighth to 12th grade (the first three

studies) in the years 1988, 1990, and 1992. In this study we focused on the science and

mathematics test data where themultidimensional factorial structure has been previously

investigated (e.g., Kupermintz & Snow, 1997; Nussbaum et al., 1997). For the science

subject, there are 25 items, and four factors emerged from the data collected in 1988:

elementary science (ES), chemistry knowledge (CK), scientific reasoning (SR), and
reasoning with knowledge (RK). For the mathematics subject, there are 40 items in 1988

and two factors emerged, mathematical reasoning (MR) and mathematical knowledge

(MK). We pooled together data from both domains, resulting in 65 items and a complete

sample size ofN = 13,488. Because the factor structurewas analysed using normal theory

factor analysis more than two decades ago, we reanalyse the data using the proposed new

methods. In addition, pooling together both mathematics and science domains results in

potentially high-dimensional data. First, both GVEM and MHRM were conducted

assuming the number of factors was 6. The focus is on the recovery of the correlation
matrix Σθ and its comparison between two methods. Since an exploratory item factor

analysis was conducted, in bothGVEM andMHRMwe assumed thatΣθ = IK duringGVEM

estimation and later performed the same promax rotation to estimate the correlation

matrix Σ̂θ. Second, GVEMwas used to explore the dimension of latent traits from the data.

Table 3 shows the estimated Σθ from both methods assuming the number of factors is

6. The correlations in Σ̂θ from the two algorithms look comparable although most values

from GVEM are slightly smaller than those from MHRM. The negative correlations on the

last row, especially, are similar between two correlationmatrices. Note that Σ̂θ is invariant
to the ordering of the latent traits (i.e., the factor labels are arbitrary), hence it is possible to

reduce the differences between two matrices by further reordering their columns in

Table 3.

To further explore the optimal number of factors from the data, we applied the GVEM

algorithm with the information criteria for dimension selection. Figure 8 presents the

results of latent dimension selection under the M2PL and M3PL models. By fitting the

M2PLmodel to the data, the optimal dimensionality of the latent traits was estimated to be

Table 2. Simulation: correct estimation rate (%) in the M3PL model

Correlation (Σθ) N

Between-item Within-item

AIC* BIC* AIC* BIC*

Small 200 47 47 63 63

500 83 87 93 93

1,000 93 93 84 84

Large 200 40 43 83 83

500 60 60 97 97

1,000 73 73 97 97
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six by both AIC* and BIC*, as shown in Figure 8. This corresponds to the number of latent

traits identified in prior research. However, the dimensionality of the latent traits was

estimated to be five under the M3PL model. This result implies that some of the six latent

traits may be highly correlated under the M3PL model and are merged. Comparing the

information criteria values across both M2PL and M3PL, it appears that AIC* and BIC*
were smallest for the M2PL model with six factors. Hence, our results further validate the

number of latent factors that could be extracted from the NELS:88 data. In addition, it

suggests that the guessing did not play a significant role in students’ performance on the
mathematics and science cognitive test data.

7. Discussions

Variationalmethodswere first introduced in psychometrics byRijmen and Jeon (2013) for

high-dimensional IRT models with discrete latent traits, and later by Jeon et al. (2017) in

Table 3. Real data: comparison of estimated Σ
θ

GVEM MHRM
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Figure 8. Real data: BIC* for both M2PL and M3PL (AIC* shows the same trend).

Gaussian Variational Estimation for MIRT 81



the form of a variational maximization–maximization algorithm for GLMMs with crossed

random effects. Although their findings demonstrate great promise of variationalmethods

as they apply in psychometrics, their methods are not ready for calibrating high-

dimensional MIRT models with correlated latent factors and guessing parameters. In this
paper a new method based on variational approximation is proposed for parameter

estimation in the M2PL and M3PL models. Compared to the existing methods, it has the

advantage of avoiding the calculation of intractable log-likelihood by approximating the

lower bound to the log-likelihood. It also greatly reduces the computation complexity by

deriving closed-formupdates at every EM step.Moreover, the efficiency of the algorithm is

further improved in the stochastic version. Simulation studies demonstrate that the

proposed methods show better performance in terms of parameter recovery and

computation time in both M2PL and M3PL compared to the widely used MHRMmethod.
Theoretical results are provided on the convergence rate, which shows that the

estimation error goes to 0 as both the sample size andnumber of test items go to infinity. As

by-products of theGVEMalgorithm, both AIC* and BIC* could be used to help identify the

optimal number of latent factors from data, as reflected by the simulation results.

Although the current simulation study and data analysis focused on the exploratory

item factor analysis, the GVEM algorithm can also be easily applied to the confirmatory

item factor analysis. In the latter case, the loading matrix A will have structural zeros,

implying that certain items are irrelevant to certain factors. Similarly to the approach inCai
(2010b), these user-defined restrictions can be incorporated in the estimation via linear

constraints. Reflecting in the GVEM algorithm, due to the closed-form solutions in the M-

step, handling the structural zeros basically means multiplying Â by a conformablematrix

of binary entries with 1s indicating that the corresponding element is estimable.

This work does not study the standard errors of the GVEM estimation procedure.

However, one can derive standard errors of the model parameters similarly following the

existing works (Jamshidian & Jennrich, 2000). Relevant future research is needed on

exploring the accuracy and efficiency of the estimation of standard errors in the GVEM
framework. In addition, extending the GVEM framework to polytomous responsemodels

and four-parameter IRTmodels (Meng, Xu, Zhang, & Tao, 2019)would be useful topics of

future research.
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