2021 International Symposium on
Transportation Data and Modelling

by
Yafeng Yin1,2
Tian Mi1

1Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor
2Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor
DISCLAIMER

Funding for this research was provided by the Center for Connected and Automated Transportation under Grant No. 69A3551747105 of the U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology (OST-R), University Transportation Centers Program. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

Suggested APA Format Citation:

Yin, Yafeng & Mi, Tian, (2021), "2021 International Symposium on Transportation Data and Modelling". CCAT Project No. 21, Center for Connected and Automated Transportation, University of Michigan.

DOI: 10.7302/1709

Contacts

For more information:

PI Name: Yafeng Yin
Department of Civil and Environmental Engineering
University of Michigan, Ann Arbor
Phone: (734) 764-8249
Email: yafeng@umich.edu

CCAT
University of Michigan Transportation Research Institute
2901 Baxter Road
Ann Arbor, MI 48152
uumtri-ccat@umich.edu
(734) 763-2498
Technical Report Documentation Page

<table>
<thead>
<tr>
<th>1. Report No.</th>
<th>CCAT Project No. 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td>Leave blank – not used</td>
</tr>
<tr>
<td>3. Recipient’s Catalog No.</td>
<td>Leave blank - not used</td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>2021 International Symposium on Transportation Data and Modelling</td>
</tr>
<tr>
<td>DOI:</td>
<td>10.7302/1709</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>July 9, 2021</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td>Enter any/all unique numbers assigned to the performing organization, if applicable.</td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Yafeng Yin, Ph.D., https://orcid.org/0000-0003-3117-5463</td>
</tr>
<tr>
<td></td>
<td>Tian Mi, Ph.D., https://orcid.org/0000-0002-3780-3216</td>
</tr>
<tr>
<td>8. Performing Organization Report No.</td>
<td>Enter any/all unique alphanumeric report numbers assigned by the performing organization, if applicable.</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Center for Connected and Automated Transportation</td>
</tr>
<tr>
<td></td>
<td>University of Michigan Transportation Research Institute</td>
</tr>
<tr>
<td></td>
<td>2901 Baxter Road</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, MI 48109</td>
</tr>
<tr>
<td></td>
<td>University of Michigan</td>
</tr>
<tr>
<td></td>
<td>2350 Hayward</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, MI 48109</td>
</tr>
<tr>
<td>10. Work Unit No.</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>Contract No. 69A3551747105</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>Office of the Assistant Secretary for Research and Technology</td>
</tr>
<tr>
<td></td>
<td>1200 New Jersey Avenue, SE</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20590</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University Transportation Centers (UTC) program.</td>
</tr>
<tr>
<td>16. Abstract</td>
<td>This project partially sponsored the organization of the 2021 International Symposium on Transportation Data and Modeling (ISTDM 2021), which aims to gather transportation researchers and practitioners across the globe for exploring the frontiers of big data, modeling and simulation to advance transportation research to support the connected, cooperative and automated mobility. Due to the COVID-19 pandemic, the conference was held virtually June 21-24, 2021. Its program consisted of 8 keynote talks, and 104 regular or lightning talks. It attracted more than 1,100 registrations, and the accumulated number of attendees was more than 2960.</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Data, Modelling and Simulation, Emerging Mobility</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>No restrictions.</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>23</td>
</tr>
<tr>
<td>22. Price</td>
<td>Leave blank – not used</td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
Contents

1 Introduction 2
 1.1 Topics .. 2
 1.2 Important Dates ... 3
 1.3 Keynote Speakers .. 3
 1.4 Organizing Committee ... 3
 1.5 Local Organizing Committee ... 4
 1.6 ISTD M Steering Committee .. 4
 1.7 International Scientific Committee .. 5
 1.8 Other Information ... 6

2 Registration Information 7
 2.1 Author Registration .. 7
 2.2 Public Registration .. 7
 2.3 Registration Numbers ... 7

3 Conference Program 8
 3.1 Keynote Sessions ... 8

4 Impacts 11
 4.1 Attendance Information .. 11
 4.2 Country/Region Information ... 12
 4.3 Output ... 12

5 Appendix: Program 18
Chapter 1

Introduction

This project partially sponsored the organization of the 2021 International Symposium on Transportation Data and Modeling (ISTDM 2021), which aims to gather transportation researchers and practitioners across the globe for exploring the frontiers of big data, modeling and simulation to advance transportation research to support the connected, cooperative and automated mobility. With a greater focus on emerging technologies, ISTDM 2021 rebrands the two long-standing transportation symposia: International Symposium of Transport Simulation (ISTS), and the International Workshop on Traffic Data Collection and its Standardization (IWTDCS).

1.1 Topics

ISTDM 2021 covers the following topics:

A. Data
 - Business analytics
 * Machine learning applications
 * Innovative data collection and processing
 * Data fusion
 - Data management and quality
 - Data-informed decision making

B. Modelling AND Simulation
 - Demand modeling
 - Travel behaviors
 - Transportation network modeling
 - Traffic flow theory and operations
 - Traffic safety
 - Pedestrian modelling and simulation
 - Urban logistics/freight transportation
 - Environmental impacts and air quality

C. Emerging Mobility Trends
 - Connected vehicles
 - Vehicle infrastructure integration
 - Implication of automated vehicles
– Operations with mixed traffic
– Electrification
– Shared mobility
– Emerging mobility services

1.2 Important Dates

ISTDM 2021 was organized as per the following timeline:

- October 1, 2020 Abstract Submission START
- December 1, 2020 Abstract Submission DUE
- February 15, 2021 Notification of Acceptance
- May 1, 2021 Registration Opens to the public
- June 21-24, 2021 Conference

1.3 Keynote Speakers

- Dr. Kay Axhausen, Professor, ETH Zürich
- Dr. Alexandre Bayen, Professor, University of California, Berkeley
- Dr. Chandra Bhat, Professor, University of Texas, Austin
- Dr. Nikolas Geroliminis, Associate Professor, École Polytechnique Fédérale de Lausanne
- Dr. Fengmin Gong, Vice President, InfoSec Strategy at Didi Chuxing and Head of DiDi Labs
- Dr. Henry Liu, Professor, University of Michigan
- Dr. Hani Mahmassani, Professor, Northwestern University
- Dr. Hai Yang, Chair Professor, Hong Kong University of Science and Technology

1.4 Organizing Committee

- Dr. Yafeng Yin, Chair of Organizing Committee, Professor, Department of Civil and Environmental Engineering, University of Michigan
- Dr. Neda Masoud, Co-chair of Organizing Committee, Assistant Professor, Department of Civil and Environmental Engineering, University of Michigan
- Dr. Xiaopeng (Shaw) Li, Associate professor, Civil and Environmental Engineering, University of South Florida
- Dr. Qi Luo, Assistant Professor, Industrial Engineering, Clemson University
- Dr. Gábor Orosz, Associate Professor, Department of Mechanical Engineering, University of Michigan
- Dr. Carolina Osorio, Associate Professor, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Dr. Zhen (Sean) Qian, Associate Professor, Department of Civil and Environmental Engineering, Carnegie Mellon University
• Dr. Samitha Samaranayake, Assistant Professor, Department of Civil and Environmental Engineering, Cornell University
• Dr. Ali Shirazi, Assistant Professor, Department of Civil and Environmental Engineering, University of Maine
• Dr. Ziqi Song, Assistant Professor, Department of Civil and Environmental Engineering, Utah State University
• Dr. Zhentian Xu, Assistant Professor, Department of Civil and Environmental Engineering, George Washington University
• Dr. Ali Zockaie, Assistant Professor, Department of Civil and Environmental Engineering, Michigan State University

1.5 Local Organizing Committee
• Dr. Yafeng Yin, Chair of Organizing Committee, Professor, Department of Civil and Environmental Engineering, University of Michigan
• Dr. Neda Masoud, Co-chair of Organizing Committee, Assistant Professor, Department of Civil and Environmental Engineering, University of Michigan
• Dr. Gábor Orosz, Associate Professor, Department of Mechanical Engineering, University of Michigan
• Dr. Tian Mi, Postdoctoral Research Fellow, Department of Civil and Environmental Engineering, University of Michigan
• Dr. Sina Bahrami, Postdoctoral Research Fellow, Department of Civil and Environmental Engineering, University of Michigan
• Dr. Xiaotong Sun, Postdoctoral Research Fellow, Department of Civil and Environmental Engineering, University of Michigan
• Guoyang Qin, PhD Candidate, Department of Traffic Engineering, Tongji University

1.6 ISTDM Steering Committee
• Dr. Jaume Barceló, Professor, Department of Statistics and Operations Research, Universitat Politècnica de Catalunya
• Dr. Edward Chung, Professor, Department of Electrical Engineering, Hong Kong Polytechnic University
• Dr. Nour-Eddin El Faouzi, Professor, School of Civil Engineering and Sustainable Development, University of Lyon
• Dr. Masao Kuwahara, Professor, Graduate School of Information Sciences, Tohoku University
• Dr. Hani Mahmassani, Professor, Department of Civil and Environmental Engineering, Northwestern University
• Dr. Majid Sarvi, Professor, Department of Infrastructure Engineering, The University of Melbourne
• Dr. Alexander Skabardonis, Professor, Department of Civil and Environmental Engineering, University of California, Berkeley
• Dr. Yafeng Yin, Professor, Department of Civil and Environmental Engineering, University of Michigan
1.7 International Scientific Committee

- Dr. Yasuo Asakura (Tokyo Institute of Technology, Japan)
- Dr. Kay Axhausen (ETH Zürich, Switzerland)
- Dr. Jaume Barceló (Technical University of Catalonia, Spain)
- Dr. Alexandre Bayen (University of California, Berkeley, United States)
- Dr. Michael Bell (University of Sydney, Australia)
- Dr. Chandra Bhat (University of Texas, Austin, United States)
- Dr. Stephen Boyles (University of Texas, Austin, United States)
- Dr. Joseph Chow (New York University, United States)
- Dr. Edward Chung (Hong Kong Polytechnic University, Hong Kong)
- Dr. Nour-Eddin El Faouzi (ENTPE, France)
- Dr. Ziyou Gao (Beijing Jiaotong University, China)
- Dr. Nikolas Geroliminis (EPFL, Switzerland)
- Dr. Haijun Huang (Beihang University, China)
- Dr. Wenlong Jin (University of California, Irvine, United States)
- Dr. Masao Kuwahara (Tohoku University, Japan)
- Dr. William Lam (Hong Kong Polytechnic University, Hong Kong)
- Dr. Jorge Laval (Georgia Institute of Technology, United States)
- Dr. Seunghae Lee (University of Seoul, South Korea)
- Dr. Henry Liu (University of Michigan, United States)
- Dr. Ronghui Liu (University of Leeds, United Kingdom)
- Dr. Hong Lo (Hong Kong University of Science and Technology, Hong Kong)
- Dr. Hani Mahmassani (Northwestern University, United States)
- Dr. Eric J. Miller (University of Toronto, Canada)
- Dr. Yu (Marco) Nie (Northwestern University, United States)
- Dr. Yanfeng Ouyang (University of Illinois at Urbana–Champaign, United States)
- Dr. Kaan Özbay (New York University, United States)
- Dr. Markos Papageorgiou (Technology University of Crete, Greece)
- Dr. Srinivas Peeta (Georgia Institute of Technology, United States)
- Dr. Bin Ran (University of Wisconsin, United States)
- Dr. Stephen Ritchie (University of California, Irvine, United States)
- Dr. Majid Sarvi (University of Melbourne, Australia)
- Dr. James Sayer (University of Michigan Transportation Research Institute, United States)
• Dr. Amer Shalaby (University of Toronto, Canada)
• Dr. Yasuhiro Shiomi (Ritsumeikan University, Japan)
• Dr. Alexander Skabardonis (University of California, Berkeley, United States)
• Dr. Agachai Sumalee (Hong Kong Polytechnic University, Hong Kong)
• Dr. Lijun Sun (McGill University, Canada)
• Dr. S. Travis Waller (University of New South Wales, Australia)
• Dr. Yinhai Wang (University of Washington, United States)
• Dr. S.C. Wong (University of Hong Kong, Hong Kong)
• Dr. Hai Yang (Hong Kong University of Science and Technology, Hong Kong)
• Dr. Toshio Yoshii (Ehime University, Japan)
• Dr. Lei Zhang (University of Maryland, United States)

1.8 Other Information

• Website: https://limos.engin.umich.edu/istdm2021
Chapter 2

Registration Information

2.1 Author Registration

Due to the Covid-19 pandemic, the 2021 International Symposium on Transportation Data and Modelling (ISTDM) was held virtually on Zoom during June 21-24, 2021.

To finalize the program, the authors were required to make a formal registration. The registration was free for all authors. The registration started on March 5, 2021, and ended on April 10, 2021. Every submission must have at least the presenter registered before the deadline, otherwise the submission would not be included in the final program.

2.2 Public Registration

The public registration started on May 1, 2021. The registration was free for all attendees.

2.3 Registration Numbers

By 8 am of June 21, 2021 (EDT), 1,100 attendees coming from 456 cities in 58 countries/regions registered to the conference.
Chapter 3

Conference Program

The conference lasted for four days. There were 8 invited talks and 104 regular and lightning talks in total. The program was designed to facilitate attendees from different time zones, and events took place in the morning (9:00 am - 12:30 pm EST). Each day started a keynote session (50 minutes), followed by 6 parallel sessions (80 minutes, including 4 regular sessions and 2 lightning sessions), and then ended by another keynote session (50 minutes).

The details of the presentations in the keynote sessions are listed below, and the program is attached in the Appendix.

3.1 Keynote Sessions

- Keynote Session 1
 - Title: Smart Mobility Management in the Era of Smart Transportation
 - Speaker: Hai Yang
 - Abstract: The current revolutions of sharing, automation and electrification are reshaping the way we travel, with broad implications for future mobility management. While much uncertainty remains about how these disruptive technologies would exactly impact demand for future mobility and enhancement of transportation supply, it is clear that Innovative demand management is equally important as smart supply technology development in solving worsening traffic problems in big cities. In this talk, I will discuss the opportunities and challenges of smart mobility management in the era of smart transportation. Innovative ways of travel demand management are described, including tradable travel credit scheme for road congestion mitigation, revenue-preserving and Pareto-improving strategies for peak-hour transit demand management congestion, and a novel reward scheme integrated with surge pricing in a ride-sourcing market.

- Keynote Session 2
 - Title: Operational Strategies for Urban Air Mobility and 4D System Fundamental Diagrams
 - Speaker: Hani Mahmassani
 - Abstract: We take urban mobility to the next level by considering shared mobility services offered through automated electric vertical take-off and landing (eVTOL) vehicles (“flying taxis”), enabled by new generation of eVTOL aircraft. We present various concepts for service operations at urban/regional levels, along with algorithms adapted for the real-time operation of shared air mobility fleets. We also examine the congestability of urban air space through a microscopic simulation and illustrate the emergence of system fundamental diagram (for properly defined averages taken over four-dimensional space) comparable in shape to urban road traffic networks.
• Keynote Session 3
 – Title: On the Inefficiency and Management of Ride-Sourcing Services towards Urban Congestion
 – Speaker: Nikolas Geroliminis
 – Abstract: Human mobility in congested city centers is a complex dynamical system with high density of population, many transport modes to compete for limited available space and many operators that try to efficiently manage different parts of this system. New emerging modes of transportation, such as ride-hailing and on-demand services create additional opportunities, but also more complexity. Little is known about to what degree its operations can interfere in traffic conditions, while replacing other transportation modes, or when a large number of idle vehicles is cruising for passengers. We experimentally analyze the efficiency of TNCs using taxi trip data from a Chinese megacity and an agent-based simulation with a trip-based MFD model for determining the speed. We investigate the effect of expanding fleet sizes for TNCs, passengers’ inclination towards sharing rides, and strategies to alleviate urban congestion. We observe that, although a larger fleet size reduces waiting time, it also intensifies congestion, which, in turn, prolongs the total travel time. Such congestion effect is so significant that it is nearly insensitive to passengers’ willingness to share and flexible supply. Finally, parking management strategies can prevent idle vehicles from cruising without assigned passengers, mitigating the negative impacts of ride-sourcing over congestion, and improving the service quality. We are also developing different type of control strategies, such as relocation of empty vehicles, parking management and pricing incentives to alleviate the negative effects.

• Keynote Session 4
 – Title: Lagrangian Control at Large and Local Scales in Mixed Autonomy Traffic Flow
 – Speaker: Alexandre Bayen
 – Abstract: This talk investigates Lagrangian (mobile) control of traffic flow at local scale (vehicular level). The question of how self-driving vehicles will change traffic flow patterns is investigated. We describe approaches based on deep reinforcement learning presented in the context of enabling mixed-autonomy mobility. The talk explores the gradual and complex integration of automated vehicles into the existing traffic system. We present the potential impact of a small fraction of automated vehicles on low-level traffic flow dynamics, using novel techniques in model-free deep reinforcement learning, in which the automated vehicles act as mobile (Lagrangian) controllers to traffic flow. Illustrative examples will be presented in the context of a new open-source computational platform called FLOW, which integrates state of the art microsimulation tools with deep-RL libraries on AWS EC2. Interesting behavior of mixed autonomy traffic will be revealed in the context of emergent behavior of traffic: https://flow-project.github.io/

• Keynote Session 5
 – Title: Intelligent Driving Intelligence Test for Autonomous Vehicles with Naturalistic and Adversarial Driving Environment
 – Speaker: Henry Liu
 – Abstract: Driving intelligence tests are critical to the development and deployment of autonomous vehicles. The prevailing approach tests autonomous vehicles in life-like simulations of the naturalistic driving environment. However, due to the high dimensionality of the environment and the rareness of safety-critical events, hundreds of millions of miles would be required to demonstrate the safety performance of autonomous vehicles, which is severely inefficient. We discover that sparse but adversarial adjustments to the naturalistic driving environment, resulting in the naturalistic and adversarial driving environment, can
significantly reduce the required test miles without loss of evaluation unbiasedness. By training the background vehicles to learn when to execute what adversarial maneuver, the proposed environment becomes an intelligent environment for driving intelligence testing. We demonstrate the effectiveness of the proposed environment in a highway-driving simulation. Comparing with the naturalistic driving environment, the proposed environment can accelerate the evaluation process by multiple orders of magnitude.

- **Keynote Session 6**
 - Title: Better Journeys For All Through Impact, Innovation & Responsibility
 - Speaker: Fengmin Gong
 - Abstract: Data science and AI are at the core of the "fourth industrial resolution". While the science and technology community are diligently pushing the frontier for the benefits of humanity, some fear the negative impact of the same. The crust of the matter is that, Data science and AI are powerful tools with huge potential, HOW we harness this power is the most critical factor to success or disaster. In this talk, I will share three main guiding principles — impact, innovation, and responsibility, which should help us to do the right things the right way in applying AI. DiDi has been at the forefront in transforming transportation through AI. To illustrate these principles, I will use some examples in reinforcement learning for optimization, NLP for safe rides, and use-case driven simulation for AV.

- **Keynote Session 7**
 - Title: Thinking about the Long-Term Impacts of the Pandemic
 - Speaker: Kay Axhausen
 - Abstract: The pandemic has accelerated a number of trends with a big impact on the transport system: working from home and e-commerce. The presentation will outline the behavioural changes observed in the last year using a substantial Swiss GPS tracking panel. Based on these changes it will discuss, if these are enough to address the dilemma of transport planning between accessibility improvements and induced demand, especially given our duty to reduce GHG emissions.

- **Keynote Session 8**
 - Title: What Can We Learn about Travel and Safety Implications from Partially Automated Vehicle Use?
 - Speaker: Chandra Bhat
 - Abstract: Investigating the potential activity-travel behavior impacts of fully autonomous vehicles (designated as Level 5 automation on the Society of Automotive Engineers or SAE scale) can only be undertaken today through stated preference or SP surveys (that is, asking individuals how they may change their mobility patterns in a hypothetical environment with a Level 5 vehicle). But individuals may not be in a position to provide appropriate responses when thrust into a hypothetical environment that is difficult to conjure up. In this regard, SAE Level 1 features (such as adaptive cruise control or parking assist features) are in most new vehicles today, while many higher-end vehicles today also achieve Level 2 automation (such as vehicles with adaptive cruise control, hands-free lane changing, and self-parking). The availability and use of these vehicles today, albeit with lower levels of automation, can provide important and reliable insights on how travel patterns may change with advancing technology. In this paper, we propose to examine potential mobility changes due to technology features that exist today in vehicles. Importantly, while some earlier studies have examined consumer acceptance of existing vehicle technology, we go beyond consumer acceptance to also examine how individuals with and without automation features in their vehicles differ in their annual vehicle miles of travel (VMT). Potential implications for roadway safety due to VMT changes are also discussed.
Chapter 4

Impacts

4.1 Attendance Information

The number of attendees to each session is shown in Figure 4.1 and Table 4.1.

![Figure 4.1: Numbers of Attendees](image)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keynote 1</td>
<td>258</td>
<td>122</td>
<td>126</td>
<td>94</td>
<td>105</td>
<td>93</td>
<td>51</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keynote 3</td>
<td>191</td>
<td>77</td>
<td>28</td>
<td>64</td>
<td>55</td>
<td>54</td>
<td>67</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keynote 5</td>
<td>142</td>
<td>106</td>
<td>41</td>
<td>74</td>
<td>92</td>
<td>34</td>
<td>76</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keynote 7</td>
<td>137</td>
<td>71</td>
<td>72</td>
<td>57</td>
<td>73</td>
<td>65</td>
<td>58</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Numbers of Attendees
4.2 Country/Region Information

The country/region information of attendees who participated in the 8 Keynote Sessions is shown in Figure 4.2.

Figure 4.2: Countries/Regions of the Attendees in the Keynote Sessions

4.3 Output

Links to all the presentations (including 8 Keynote presentations and 104 Regular/Lightning presentations) are listed as follows:

- Keynote Speech Pages (8)
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-1-hai-yang/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-2-hani-mahmassani/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-3-nikolas-geroliminis/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-4-alexandre-bayen/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-5-henry-liu/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-6-fengmin-gong/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-7-kay-axhausen/
 - https://limos.engin.umich.edu/istdm2021/session/keynote-session-8-chandra-bhat/
• Presentation Pages (104)
 - https://limos.engin.umich.edu/istdm2021/session/m-1-regular-session-behavior-and-demand-eric-miller/
 - https://limos.engin.umich.edu/istdm2021/session/m-3-regular-session-implication-of-automated-vehicles-qida-su/
 - https://limos.engin.umich.edu/istdm2021/session/m-4-regular-session-traffic-control-and-management-michael-levin/
 - https://limos.engin.umich.edu/istdm2021/session/m-4-regular-session-traffic-control-and-management-monika-filipovska/
 - https://limos.engin.umich.edu/istdm2021/session/m-4-regular-session-traffic-control-and-management-qiong-tian/
 - https://limos.engin.umich.edu/istdm2021/session/m-4-regular-session-traffic-control-and-management-toru-seo/
 - https://limos.engin.umich.edu/istdm2021/session/m-6-lightning-session-modeling-simulation-and-optimization-chen-yang/
 - https://limos.engin.umich.edu/istdm2021/session/m-6-lightning-session-modeling-simulation-and-optimization-jie-yang/
Chapter 4. Impacts

- https://limos.engin.umich.edu/istdm2021/session/t-6-lightning-session-traffic-operations-lukas-vacek/
- https://limos.engin.umich.edu/istdm2021/session/t-6-lightning-session-traffic-operations-md-abu-sayed/
- https://limos.engin.umich.edu/istdm2021/session/t-6-lightning-session-traffic-operations-monika-filipovska/
- https://limos.engin.umich.edu/istdm2021/session/t-6-lightning-session-traffic-operations-rongsheng-chen/
- https://limos.engin.umich.edu/istdm2021/session/t-6-lightning-session-traffic-operations-rui-okuhara/
- https://limos.engin.umich.edu/istdm2021/session/t-6-lightning-session-traffic-operations-zhanguo-song/
- https://limos.engin.umich.edu/istdm2021/session/w-2-regular-session-traffic-operations-ali-zockaie/
- https://limos.engin.umich.edu/istdm2021/session/w-2-regular-session-traffic-operations-daniel-bramich/
- https://limos.engin.umich.edu/istdm2021/session/w-2-regular-session-traffic-operations-david-hale/
- https://limos.engin.umich.edu/istdm2021/session/w-3-regular-session-data-informed-decision-making-matthew-daus/
- https://limos.engin.umich.edu/istdm2021/session/w-4-regular-session-shared-mobility-ester-lorente-2/
- https://limos.engin.umich.edu/istdm2021/session/w-4-regular-session-shared-mobility-jintao-ke/
- https://limos.engin.umich.edu/istdm2021/session/w-4-regular-session-shared-mobility-nicholas-caros/
- https://limos.engin.umich.edu/istdm2021/session/w-4-regular-session-shared-mobility-xiaolin-cai/
Chapter 4. Impacts

- https://limos.engin.umich.edu/istdm2021/session/w-6-lightning-session-modeling-simulation-and-optimization-yi-guo/
- https://limos.engin.umich.edu/istdm2021/session/th-1-regular-session-electrification-xindi-tang/
- https://limos.engin.umich.edu/istdm2021/session/th-3-regular-session-behavior-and-demand-can-li/
- https://limos.engin.umich.edu/istdm2021/session/th-3-regular-session-behavior-and-demand-reza-ansari/
- https://limos.engin.umich.edu/istdm2021/session/th-3-regular-session-behavior-and-demand-shenhao-wang/
- https://limos.engin.umich.edu/istdm2021/session/th-3-regular-session-behavior-and-demand-wenwen-zhang/
- https://limos.engin.umich.edu/istdm2021/session/th-4-regular-session-transportation-network-modeling-daisik-nam/
- https://limos.engin.umich.edu/istdm2021/session/th-4-regular-session-transportation-network-modeling-noriko-kaneko/
- https://limos.engin.umich.edu/istdm2021/session/th-4-regular-session-transportation-network-modeling-timothy-tay/
- https://limos.engin.umich.edu/istdm2021/session/th-4-regular-session-transportation-network-modeling-tingting-xie/
- https://limos.engin.umich.edu/istdm2021/session/th-6-lightning-session-shared-mobility-hao-guo/
- https://limos.engin.umich.edu/istdm2021/session/th-6-lightning-session-shared-mobility-irene-martinez/
- https://limos.engin.umich.edu/istdm2021/session/th-6-lightning-session-shared-mobility-matthew-dean/
- https://limos.engin.umich.edu/istdm2021/session/th-6-lightning-session-shared-mobility-xiaotong-guo/
- https://limos.engin.umich.edu/istdm2021/session/th-6-lightning-session-shared-mobility-yunhai-gong/
Chapter 5. Appendix: Program

DAY 1
ISTDM 2021 CONFERENCE PROGRAM [Going Virtual June 21-24, 2021]
0 June 22, Tuesday

08:00 - 08:30 Breakfast

08:30 - 08:50 Opening Remarks

08:50 - 10:10 Regular Sessions 1-1:30: Management of Shared Mobility (Housing & Planner)

10:10 - 10:40 Break

10:40 - 12:10 Lightning Sessions 1:30 - 4:00: Management of Shared Mobility (Housing & Planner)

12:10 - 13:30 Lunch

DAY 2
ISTDM 2021 CONFERENCE PROGRAM [Going Virtual June 21-24, 2021]
0 June 23, Wednesday

08:00 - 08:30 Breakfast

08:30 - 08:40 Opening Remarks

08:40 - 10:10 Regular Sessions 1-1:30: Management of Shared Mobility (Housing & Planner)

10:10 - 10:40 Break

10:40 - 12:10 Lightning Sessions 1:30 - 4:00: Management of Shared Mobility (Housing & Planner)

12:10 - 13:30 Lunch

There are multiple sessions with presentations, some of which are labeled as "Last updated: June 15, 2021." This indicates that the schedule might have been updated recently.

Visit https://limos.engin.umich.edu/istdm2021/schedule/ for viewing details of keynote speeches, presenters' extended abstract PDFs, and more.

There are a few sessions marked with "Last updated: June 15, 2021." These might be new or updated sections of the schedule.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Closing</td>
<td>Day 1: Keynote Speech: The Role of AI in Transportation and Urban Planning</td>
<td>Mohsen Assafili</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:10</td>
<td>Regular</td>
<td>1) Regular Session: Electrification</td>
<td>Qingfeng Zhao</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:30</td>
<td>Regular</td>
<td>2) Regular Session: Operationalization of Automated Vehicles</td>
<td>Ziqi Song</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:50</td>
<td>Regular</td>
<td>3) Regular Session: Behavior and Demand</td>
<td>Xiaotong Guo</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>10:10</td>
<td>Regular</td>
<td>4) Regular Session: Data and Shared Mobility</td>
<td>Xiaotong Guo</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>10:30</td>
<td>Lightning</td>
<td>1) Lightning Session: Shared Mobility</td>
<td>Qi Luo</td>
<td>University of Michigan</td>
</tr>
</tbody>
</table>

Day 2:

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Closing</td>
<td>Day 2: Keynote Speech: The Impact of AI in Transportation and Urban Planning</td>
<td>Qingfeng Zhao</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:10</td>
<td>Regular</td>
<td>1) Regular Session: Autonomous Electric Taxi Fleets: An Advisor-Based Reinforcement Learning Framework</td>
<td>Haoyun Tang</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:30</td>
<td>Regular</td>
<td>2) Regular Session: Charging Infrastructure Planning & Urban Networks Consideration</td>
<td>Ziqi Song</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:50</td>
<td>Regular</td>
<td>3) Regular Session: Charging Infrastructure Planning & Urban Networks Consideration</td>
<td>Xiaotong Guo</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>10:10</td>
<td>Regular</td>
<td>4) Regular Session: Data and Shared Mobility</td>
<td>Xiaotong Guo</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>10:30</td>
<td>Lightning</td>
<td>1) Lightning Session: Shared Mobility</td>
<td>Qi Luo</td>
<td>University of Michigan</td>
</tr>
</tbody>
</table>

Day 3:

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Closing</td>
<td>Day 3: Keynote Speech: The Role of AI in Transportation and Urban Planning</td>
<td>Mohsen Assafili</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:10</td>
<td>Regular</td>
<td>1) Regular Session: Autonomous Electric Taxi Fleets: An Advisor-Based Reinforcement Learning Framework</td>
<td>Haoyun Tang</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:30</td>
<td>Regular</td>
<td>2) Regular Session: Charging Infrastructure Planning & Urban Networks Consideration</td>
<td>Ziqi Song</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>9:50</td>
<td>Regular</td>
<td>3) Regular Session: Charging Infrastructure Planning & Urban Networks Consideration</td>
<td>Xiaotong Guo</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>10:10</td>
<td>Regular</td>
<td>4) Regular Session: Data and Shared Mobility</td>
<td>Xiaotong Guo</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>10:30</td>
<td>Lightning</td>
<td>1) Lightning Session: Shared Mobility</td>
<td>Qi Luo</td>
<td>University of Michigan</td>
</tr>
</tbody>
</table>

Note: The schedule includes a variety of sessions focusing on different aspects of AI in transportation and urban planning. Each session is labeled with a number indicating its sequence, and the speakers are from various universities and institutions. The schedule also includes lightning sessions for additional presentations on shared mobility topics.