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Abstract

The advancement in Machine Learning and Artificial Intelligence is promoting
the testing and deployment of AVs on public roads. The California Department of
Motor Vehicles (CA DMV) has launched the Autonomous Vehicle Tester Program,
which collects and releases reports related to Autonomous Vehicle Disengagement
(AVD) from autonomous driving. Understanding the causes of AVD is critical to
improve the safety and stability of the AV system, and provide guidance for AV
testing and deployment. In this work, a scalable end-to-end pipeline is constructed
to collect, process, model, and analyze the disengagement reports released from
2014 to 2020 using natural language processing deep transfer learning. The analy-
sis of disengagement data using taxonomy, visualization and statistical tests reveals
trends of AV testing, categorized cause frequency, and significant relationships be-
tween causes and effects of AVD. We found that (1) manufacturers tested AVs
intensively during the Spring and/or Winter. (2) test drivers initiated more than
80% of the disengagement while more than 75% of the disengagement were led by
the errors in perception, localization & mapping, planning and control of the AV
system itself (3)there was a significant relationship between the initiator of AVD
and the cause category. This study serves as a successful practice of deep trans-
fer learning using pre-trained models and generates a consolidated disengagement
database allowing further investigation for other researchers.

1 Introduction

The advancement of Machine Learning and Artificial Intelligence and artificial intelligence
is bringing Autonomous Vehicles (AVs) closer to the roads with potential benefits to save
people’s lives, improve efficiency, reduce energy consumption, and so on. According to
the definition from the Society of Automotive Engineers (SAE) [1], there are six levels
of diving automation from Level 0 (No Driving Automation) to Level 5 (Full Driving
Automation). While manufacturers are making the effort to deliver Level 5 AVs in
the future, most AVs driving or testing on the public roads nowadays are SAE Level 2
(partial automation), Level 3 (conditional automation), and Level 4 (high automation



in geofenced areas) vehicles. Level 2 automation requires human drivers to stay alert
and intervene whenever necessary and Level 3 automation requires drivers to take over
control whenever requested [2–6].

The takeover control transition from the AV to the human driver is known as the
Autonomous Vehicle Disengagement (AVD). Formally, the California Department of Mo-
tor Vehicles (CA DMV) defines AVD as “a deactivation of the autonomous mode when
a failure of the autonomous technology is detected or when the safe operation of the
vehicle requires that the autonomous vehicle test driver disengage the autonomous mode
and take immediate manual control of the vehicle [7].” Understanding the causes and
effects of AVD is essential to evaluate the safety and stability of current AVs testing on
the roads and to provide guidelines on the regulations for AV testing and deployment.

In September 2014, the CV DMV initiated the Autonomous Vehicle Tester Program
which allows permit-holding manufacturers to test AVs with a human driver in the driver
seat on public infrastructure [8]. The program also requires permit holders to track
and submit disengagement reports when “their vehicles need to disengage from the au-
tonomous mode during tests” and collision reports for “every collision involving one of
their vehicles” [8]. Since the establishment of the program, the CA DMV has been re-
leasing disengagement reports and collision reports to the public on a yearly basis. These
reports consisting of thorough and specific raw data are ideal data sources for investigat-
ing AVD.

By making use of the CA DMV disengagement reports, this thesis research makes
the following contributions: First, in order to analyze the cause-and-effect relationships
of AVD utilizing the disengagement reports and collision reports from 2014 to 2020, we
built a scalable end-to-end data pipeline, which can process and analyze historical data as
well as new incoming reports with satisfactory performance. During the development of
the data pipeline, a comprehensive and consolidated database was generated. Second, in
order to achieve the optimal performance with the limited amount of data collected, we
proposed an ELECTRA-based natural language processing (NLP) deep learning model
that was first pre-trained on a large scale natural language corpus (e.g., Wikepedia,
Google News), then fine-tuned on a task-specific dataset (SemEval-2010 Task 8 [9]) ex-
tended by Li et al. [10] to include embedded causality [11], and finally post-trained on
the CA DMV dataset. Third, we developed a taxonomy of the causes and effects of AVD
with a focus on how AV system worked and interacted with other factors.

2 Related Work

According to the disengagement reports released by CA DMV, the initiator of disengage-
ment can either be the AV System when it fails to execute due to technical issues and
thus requests the human driver to take over control, or the test drivers when they feel
uncomfortable with or do not trust the AV system and thus take over control proac-
tively. Researchers have conducted studies on both system-initiated and driver-initiated
takeovers.

However, previous studies focused on the exploration of the disengagement using
traditional statistical and machine learning models. Favarò et al. [12] analyzed the
contributory factors, disengagement frequencies of AVD with taxonomy and statistical
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visualization and provided a comprehensive overview of the disengagement dataset and
trends of reporting, which highlighted the limitations of the current regulation. Boggs et
al. [13] used logistic regression and taxonomy to identify and quantify who, what, when,
where and why (5 Ws) of AVD, and they found the disengagement initiator was linked
to contributing factors derived from 5 Ws. Wang et al. [14] used multiple statistical
modeling approaches and classification tree to quantitatively investigate the underlying
causes of AVD, and found that lacking a certain number of sensors significantly induced
AVD. Alambeigi et al. [15] used probabilistic topic modeling to examine the open-ended
crash narratives and identified themes for further analysis. Their findings emphasized
the safety concerns with transitions of AV system to human control.

In the past years, studies also have been conducted to investigate driver behaviors
related to AVD, and their findings could help better understand the human factors con-
tributing to AVD. Vindhya et al. [16] used cluster analysis and multinomial logistic
regression to build a statistical model, in which perceptual cues were utilized to capture
collision-avoidance behaviors. The results showed the mode and timing of an alert from
the vehicle system did not influence the driver’s behavior. Their driver model could help
guide the design of more sophisticated vehicle automation systems. Markkula et al. [17]
created simulation-ready human behavior models to reproduce qualitative patterns of
important scenarios like “an AV handing over control to a human driver in a critical
rear-end situation”. With computer simulations, their models allowed optimization of
AV impacts on safety.

In addition to the above-mentioned studies, Banerjee et al. [18] applied the data
pipeline method to process and analyze data from the system’s perspective with over a
million miles of domain data. They found that the AVs’ machine-learning-based system
for perception, decision, and control were the primary causes of AVD, and human oper-
ators of AVs had to stay as alert as drivers of non-AVs. However, they did not utilize
the complete disengagement reports released by CA DMV and further reserach is needed.
What’s more, their data pipeline was not scalable and could not be applied to analyze
new incoming disengagement reports to benefit future analysis.

Considering all the advantages and limitations of previous studies, this study created
a scalable end-to-end pipeline using NLP deep transfer learning and built a taxonomy of
causes of AVD with the most thorough data to date from CA DMV.

3 Methodology

A scalable end-to-end pipeline (Fig. 1) was constructed to collect, process, model, and
analyze the disengagement reports with high efficiency and accuracy. The pipeline con-
sisted of four stages. At stage one, it collected multi-format disengagement reports from
the CA DMV disengagement database and classified them into corresponding years. At
stage two, it used Optical Character Recognition (OCR) to extract information from
the PDF format reports and exported to CSV files. Then those CSV files were filtered,
cleaned, parsed, and finally labeled by human workers. At stage three, it applied NLP
deep transfer learning to train and evaluate pre-trained models and the best model was
used for prediction on incoming disengagement reports. At stage four, it analyzed the
disengagement database by creating a taxonomy, summarizing results in visualization,
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Figure 1: Overview of the data pipeline from stage 1 to stage 4

and statistics. The pipeline also generated a consolidated database which can be utilized
by other researchers interested in this topic.

3.1 Data Collection

The raw disengagement data were retrieved from the CA DMV’s disengagement database,
which included the disengagement reports collected from manufacturers participating in
the Autonomous Vehicle Tester Program on a yearly basis. For this study, the disengage-
ment reports released from 2014 to 2020 were used as the initial data for processing and
modeling in this thesis. However, the proposed method can be updated easily with new
data.

The format requirement of the disengagement reports has changed over time as shown
in Table 1, which also reflected the hard work done by the CA DMV to regulate the tester
program. From 2014 to 2017, the CA DMV put forward general requirements for the
disengagement reports, based on which different manufacturers developed their own for-
mats for disengagement reports as long as they included the number of miles for the
autonomous distance and the number of incidents for the AVD. Some manufactures, like
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GM Cruise, only recorded date, time, and causal factors, while others, such as Nissan,
recorded date, time, testing conditions, locations, weather/road conditions, elapsed time
and type. Inconsistent formats led to inconsistent data fields, which made it difficult to
compare the performances of AVs across manufacturers and to identify factors important
to AVD. The CA DMV realised the lack of consistent formats, and in 2018 it introduced
a revised template used for the annual report of autonomous vehicle disengagement. The
standardized annual report template ensured the integrity of the disengagement data.
However, it was still difficult to analyze disengagement data at scale since extracting in-
formation from reports in the PDF format was time-consuming. Thus, later in 2019, the
CA DMV designed a spreadsheet to help manufacturers to put together all the disengage-
ment logs. Once the CA DMV had collected the spreadsheets from the manufacturers, it
combined all the records together and released two final CSV files - Autonomous Vehicle
Disengagement Reports and Autonomous Mileage Reports, which were easy to process
and distribute to the public. For each record, the final Autonomous Vehicle Disengage-
ment Reports contained 9 fields.

With the disengagement reports in the last 7 years (2014 - 2020) collected and in-
spected, manufacturer, date, initiator, location and description were selected as the fields
for the consolidated disengagement database and were used for further analysis. Ta-
ble 2 shows the sample data and format in the database. N/A was introduced as the
placeholder for missing values to ensure the integrity of the database.

Table 1: How format of disengagement reports changed over time

Years Formats

2014, 2015, 2016, 2017 Manufacturers had their own formats

2018 The CA DMV introduced standard PDF template for annual reports

2018, 2019, 2020 The CA DMV released consolidated CSV files for disengagement
reports

Table 2: Sample data and format for collected reports

Manufacturer Date Initiator Location Description

EasyMile 11/30/2020 AV System Street A collision hazard in the environment
ahead was detected by the software,
which triggered an Estop

Apple 06/19/2019 AV System Street Motion planning timed out

Uber 03/01/2018 Test Driver Street Precautionary Takeover or Operator
Discretion

Waymo 09/01/2017 N/A Highway Disengage for a software discrepancy

Tesla 10/15/2016 AV System Freeway Follower Output Invalid

Volkswagen 06/12/2015 N/A N/A Planner not ready

3.2 Data Processing

The collected data with various formats required further data processing. On the one
hand, OCR was used to recognize the text from the PDF files. On the other hand,
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human insight was required to better understand the casual-effect relationships and cause
categories, which was aggregated to generate the ground-truth training data for modeling
cause-and-effect relationships.

3.2.1 OCR

An OCR pipeline (Fig. 2) based on OpenCV [19], Tesseract [20] and PyImageSearch
[21] was built to extract texts from the PDF files, complie them, and export them to
CSV files. As the PDF files submitted by various manufacturers were scanned, they were
subject to random scaling, rotation, and skew. To fix this problem, a standard template
was used as the reference to adjust other scanned disengagement reports to generate the
de-skewed versions of images. The bounding boxes were then identified and the text
within them were extracted. Next, raw texts were cleaned, filtered, and finally exported
as CSV files.

Figure 2: Overview of the OCR pipeline

With the OCR pipeline, PDF format disengagement reports from 2014 to 2018 were
successfully converted into CSV files, which were combined with CSV files released by
CA DMV from 2018 (see Table 1 as part of the reports in 2018 were in CSV format) to
2020 to reach a consistent format.

3.2.2 Human Insight

Two types of human insights were required for this study: cause-and-effect relationship
labeling and cause categorization. The former was used to identify the causes from
the disengagement reports for training the NLP deep learning models and the latter
contributed to classifying the causes into proper categories.

For cause-and-effect relationships, both simple causality and embedded causality were
considered in this thesis. Following the standard cause-and-effect tagging format, the
Inside, Outside, Beginning (IOB) notation was used to label the tokens. To be more
specific, suffix C - Cause, E - Effect and CE - Embedded Cause were added to the
IOB notations. For example, B-C represents the beginning of a cause token while I-E
represents the interior of an effect token. Based on human insights, each word in the
description of disengagement was tagged with labels and categories and an example is
shown in Table 3.

For the cause category, 3 main categories (AV System, Human Factors, Environmental
Factors Others) and 9 subcategories (Perception, Localization & Mapping, Planning,
Control, System General, AV Driver, Other Driver & Vehicle, Environment, Other) were
derived from the conceptual organization highlighting trust development produced by
Schaefer et al. [22], the AV hierarchical control structure drawn by Banerjee et al. [18],
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and the taxonomy developed by Boggs et al. [13]. Each cause was placed into the most
appropriate category by three workers through ground truth aggregation.

Table 3: Sample sentence for IOB label and cause category. (B-E represents the beginning of
an effect, I-E represents the interior of an effect. B-C represents the beginning of a cause, I-C
represents the interior of a cause. 2 means the cause belongs to the planning category)

Words Label Category

driver B-E

disengagement I-E

due O

to O

planning B-C 2 - planning

discrepancy I-C 2 - planning

in O

the O

determination O

of O

autonomous O

vehicle O

speed O

3.2.3 Ground Truth by Human Labeling

In this study, three student workers, who had at least 3 months experience in this field,
provided the human insights on labeling the cause-and-effect relationships and cause cat-
egorization. While different workers provided their insights, it was necessary to aggregate
those insights and to determine the ground truth. The framework CrowdTruth [23] was
used for ground truth aggregation. It not only selected the most reliable labels among
workers but also offered useful metrics, including Worker Quality Score (WQS) and Anno-
tation Quality Score (AQS) to evaluate the performance of workers as well as the quality
of their annotations.

As shown in Table 5 and Table 4, the WQS and AQS of the ground truth aggregation
were higher than 0.9, which provided convincing support for the quality of the human
annotation.

Table 4: Annotation quality score for 8 labels

Label AQS
O 0.9942
B-C 0.9257
I-C 0.9352
B-E 0.9461
I-E 0.9184
B-CE 0.9042
I-CE 0.9331
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Table 5: Worker quality score for 3 workers

Worker Id WQS

0 0.9802

1 0.9751

2 0.9845

3.2.4 Consolidated Database Summary

Apart from OCR and human labeling, the disengagement reports with cause description
less than 5 words were also filtered to reduce the noise existed in the raw data. What’s
more, as discovered by Boggs, et al [24], ”Apple and Uber lack a variation among human-
initiated disengagements” in terms of cause description and those disengagement reports
replicated the same information hundreds of thousands times. Therefore, those records
were excluded as well. With the completion of data processing, a consolidated database
(Fig 3) was generated. It contained information of four entities - report, description,
cause, and word. The four entities were weaved together logically - reports had descrip-
tions, causes existed in descriptions, and causes were made of words. Table 6 lists the
number of filtered disengagement reports of each year submitted by manufacturers in the
database and Table 7 describes the number of unique entities in the database. It was
efficient to filter certain entities and conduct further data analysis by utilizing the query
of the consolidated database.

Figure 3: Overview of entities in the database

Table 6: The number filtered disengagement reports of each year in the consolidated database

Year Count

2014 40

2015 137

2016 317

2017 878

2018 2394

2019 7363

2020 3153
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Table 7: The number of unique entities in the consolidated database

Entity Count

Report 14282

Description 1036

Cause 377

3.3 NLP-based Deep Learning Model

We proposed an NLP deep learning model based on ELECTRA [25] using transfer learn-
ing. First, ELECTRA pre-trained by google on Wikipedia and BooksCorpus consisting
of 3.3 Billion tokens was imported. Second, ELECTRA was fine-tuned on the SemEval-
2010 Task 8 [9]) to gain task-specific knowledge. Third, ELECTRA was post-trained on
the consolidated disengagement dataset created in stage two of the data pipeline to fur-
ther improve the performance of the pre-trained models. In order to compare with other
popular NLP deep learning models, BERT, DistilBERT, and XLENT were also included.
These models were evaluated based on weighted F-1 score which calculated the average
among labels weighted by support to handle label imbalance existed in the training data,
and the cost of computational resources to select the best model. The best model can be
used to extract cause-and-effect relationships and classify causes into different categories
for the future incoming large amount of disengagement reports, which will save the future
manual work.

3.3.1 Transfer Learning

As Torrey and Shavlik [26] noted, ”Transfer learning is the improvement of learning in
a new task through the transfer of knowledge from a related task that has already been
learned”. For example, the knowledge gained while learning to classify Wikipedia texts
can help tackle legal text classification problems. With the help of transfer learning, the
data modeling did not start from scratch, but was built on the knowledge provided by
pre-trained models instead. Fig. 4 describes the transfer learning process used in this
study.

Figure 4: Overview of transfer learning

Pre-trained models are models created previously to solve a similar problem. Those
models usually require a huge amount of computational resources, have millions even
billions of parameters, and are trained on large, general corpus, such as Wikipedia and
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Google News. Pre-trained models offer great general language knowledge, which benefits
the target task. In this study, four pre-trained models (BERT [27], DistilBERT [28],
XLNET [29], ELECTRA [25]) were used as the starting points.

Pre-trained models require further fine-tuning so they can be used for target tasks.
Fine-tuning aims to drop the top layers of the deep learning models, representing the old
problem-specific features and to create new layers to inject domain knowledge specific to
this study, which could improve the performance of pre-trained models. The data from
the consolidated database was used to fine-tune four pre-trianed models in this study.

These four NLP models already possessed general language knowledge from pre-
trained corpus, and task- and domain-specific knowledge provided by human insights
can further improve the performance. First, these four pre-trained NLP models were
fine-tuned using a general causality extraction dataset from the Task 8 [9] in SemEval
2010 to gain task-specific knowledge. Then, they were post-trained [30] in our labeled
CA DMV dataset to gain domain- and task-specific knowledge to further improve the
performance.

3.3.2 Target Task

During the transfer learning process, the target task was defined with two different ap-
proaches to maximize the benefits of transfer learning.

The first approach utilized two same-type pre-trained models with different heads for
different purposes - Model One with a token classification head was fine-tuned for cause-
and-effect relationship extraction and Model Two with a sequence classification head was
fine-tuned for cause category classification. The two models were chained together, so
the extracted causes from Model One were fed into Model Two directly to obtain their
categories. This approach allowed Model One to benefit from post-training but dropped
the sentence context for Model Two.

The second approach only involved one end-to-end model. The tagged labels and
categories were combined (Table 8 shows how the combination works) to satisfy the
requirements of the end-to-end model. Compared with the first approach, the second
approach was more computational efficient and enabled the usage of sentence context for
category prediction.

Table 8: How label and category were combined

Words Label Category Combined Label

driver B-E B-E

disengagement I-E I-E

due O O

to O O

planning B-C 2 - planning B-C-2

discrepancy I-C 2 - planning I-C-2

3.4 Data Analysis

Once the best model was identified for cause-and-effect extraction, the final disengage-
ment database was generated, which can be filtered by year, manufacturer, initiator,
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location, and cause categories. Then the filtered data were further analyzed using tax-
onomy and visualization and statistical analysis. With taxonomy, the AVD causes were
classified into categories and subcategories. The frequency and distribution of causes
in different categories revealed insights, such as ”in which stage, the AV system failed
to execute tasks most frequently” and ”which environmental factors caused AVD most
often”. Various visualization presented more direct and intuitive information. For ex-
ample, word cloud gave impression of those hot words used frequently to describe AVD
while time-series graph showed how the cases of AVD changed over the past 7 years and
demonstrated some patterns which deserved further investigation. On the other hand,
statistical analysis provided more quantitative findings about significant relationships
between variables with statistical tests.

4 Results

4.1 Cause-Effect Extraction

Following the best practice of transfer learning, the four pre-trained models were all fine-
tuned using AdamW [31] as the optimizer with an initial learning rate of 5e−5 and a
learning rate scheduler decreasing the learning rate linearly on 15 epochs. To investigate
the generalization of the models on new data, 5-fold cross validation was applied. The
whole labeled dataset was partitioned evenly into 5 complementary subsets based on the
distribution of labels. Each subset was used for testing once while the rest four subsets
were used for training. In this manner, the whole dataset was fully utilized and the scores
of the models were averaged over subsets to generate the final balanced score.

As Table 9 shows, among the four pre-trained models, ELECTRA achieved the highest
weighted F-1 score with relatively low computation resources. Also, post-training signif-
icantly improved the performance of the best model at the cost of longer training time.
The pre-trained model with fine-tuning and post-training achieved the best performance.

Table 9: Weighted F-1 score and training time for cause-effect extraction

Model Weighted F-1 Training Time

BERT + Fine-tuning 0.76 17:39

XLNET + Fine-tuning 0.78 24:52

DistillBERT + Fine-tuning 0.75 10:30

ELECTRA + Fine-tuning 0.82 17:46

ELECTRA + Post training 0.69 12:36

ELECTRA + Fine-tuning + Post training 0.90 28:14

4.2 End-to-End Token Classification

The training setup for this approach was the same as the first approach. As more specific
labels were used for the end-to-end model, the difficulty and complexity for prediction
increased a lot. But as Table 10 shows, the pre-trained models still achieved relatively
good performance. If Table 9 was compared to Table 10, it is satisfactory to find that the
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weighted F-1 score of ELECTRA model with fine-tuning only dropped from 82% to 75%
while the complexity of token classification task scaled up 8 times from 7 tags (O, B-C,
I-C, B-E, I-E, B-CE, I-CE) to 55 tags (O, B-C-0..., I-C-0..., B-E-0..., I-E-0..., B-CE-0...,
I-CE-0...).

Table 10: Weighted F-1 score and training time for end-to-end token classification

Model Wighted F-1 Training Time

BERT + Fine-tuning 0.72 17:59

XLNET + Fine-tuning 0.74 24:57

DistillBERT + Fine-tuning 0.71 10:37

ELECTRA + Fine-tuning 0.75 18:12

Figure 5: Overview of the taxonomy

4.3 Taxonomy

Schaefer et al. [22] used a meta-analysis method to identify three major factors influenc-
ing the trust development in automation, including human factors, system factors, and
environment factors. This potentially caused the operators to initiate the disengagement
due to a lack of trust [32]. Similarly, we adopted this method to categorize the causes of
the disengagement. Furthermore, the failure of different components - perception, plan-
ning, control [33] in AV system also led to disengagement. Such failures could be caused
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by the environment and the system itself. Thus, a taxonomy (Fig. 5) covering both
human driver trust and AV system failures, and environmental factors was generated.
This taxonomy served as the basis of the categories and subcategories for causes, which
made further analysis more intuitive and efficient. Table 11 shows the number of unique
causes in each category.

Table 11: The number of unique causes in different categories

Cause Category Count

0 - perception 52

1 - localization & mapping 43

2 - planning 52

3 - control 59

4 - AV driver 41

5 - other driver & vehicle 60

6 - environment 33

7 - system general 29

8 - other 8

4.4 Visualization

The pipeline can produce various visualizations to support further analysis, including
but not limited to the word cloud of causes under different categories (Fig. 6), the time
series of disengagement reported by manufacturers in specific time range (Fig. 7), the
multi-series bar chart for causes initiated by the AV system or the human driver, etc.

Figure 6: Sample word cloud for the category
environment

Figure 7: Sample disengagement time series
chart for Toyota in 2020

Fig. 8 demonstrated how cases of reported AVD for top 5 manufacturers changed
over time. From the figure, it was easy to find that Cruise started AV testing very early
but paused at the end of 2018, while other manufacturers continued to test AVs until the
early 2020 when Covid-19 happened. After Covid-19 was gradually under control, they
resumed the tests but had not reached to their full capacity yet. Some patterns can also
be identified from the figure. For instance, those peaks in the chart always happened
in the Winter and/or Spring seasons: (1) Cruise - 2015 Winter, 2016 Spring, (2) Lyft -
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2019 Spring, (3) Mercedes Benz - 2018 Spring, 2019 Spring, 2019 Winter, 2020 Spring,
(4) Nvidia - 2019 Spring, (5) Toyota - 2019 Winter, 2020 Spring. Further researches are
needed to investigate whether it was a coincidence or there were reasons for manufacturers
to test AVs intensively during these two seasons.

Figure 8: Time series chart for top5 manufacturers having the most AVD counts

4.5 Statistical Analysis

The pipeline can also conduct multiple statistical tests to answer questions such as ”Is
there a significant relationship between the initiator and the cause category?” or ”How
did the location of AVD correlated with the cause category?”. Table 12 and Table 13 were
the contingency tables for initiators between the categories and the subcategories. Table
12 showed that for AVD initiated by AV systems and test drivers, most causes came from
the AV system itself. Table 13 provided a more detailed insight suggesting that for AVD
initiated by the AV system, the planning stage was the most unreliable stage in the AV
system, while for AVD initiated by the test driver, the majority were caused by either the
control stage of the AV system or the dissatisfaction felt by human driver. In addition,
Chi-Square tests for independence were conducted on the two contingency tables. There
was a significant relationship between initiator of AVD and main category, χ2 (2, N =
9511) = 571.53, p <0.001. And the frequency of causes in the subcategories differed by
the initiators as well, χ2 (8, N = 9511) = 1726.13, p <0.001.

Table 12: The contingency table for initiator and cause category

Cause Category
Initiator

AV System Test Driver

AV System 1703 5493

Human Factors 1 1871

Environmental Factors and Others 46 397
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Table 13: The contingency table for initiator and sub cause category

Sub Cause Category
Initiator

AV System Test Driver

0 - perception 322 998

1 - localization & mapping 106 221

2 - planning 775 1423

3 - control 71 2291

4 - AV driver 0 1534

5 - other driver & vehicle 1 337

6 - environment 38 185

7 - system general 429 560

8 - other 8 212

5 Discussion

The goal of this study was to create a scalable end-to-end pipeline to analyze past and fu-
ture disengagement reports submitted to CA DMV by manufacturers. The two research
questions of this study were to identify the cause-and-effect relationships from disen-
gagement data and classify causes into categories and subcategories with a taxonomy.
The result suggested that the causes of disengagement were identified and classified into
three main categories, including human factors, AV system, and enviornmental factors
& others, which were further divided into 9 subcategories: Perception, Localization &
Mapping, Planning, Control, System General, AV Driver, Other Driver Vehicle, Environ-
ment, Other. Further analysis on cause categories, cause frequency, and cause initiators
provided valuable insights into current issues existed in the AV system and potential
improvement for manufacturers to improve AV safety.

The findings of this study have important implications for AVD and AV design and
testing. The analysis of disengagement initiators suggests that more than 80% of the
disengagement were initiated by test drivers, who either felt uncomfortable about the ma-
neuver of the AVs or made precautionary takeover because of insufficient trust. Therefore,
additional researches on human trust towards AV and human comfort levels are impor-
tant to further investigate and explain the manual takeover, which will be a solid step to
solve unnecessary disengagement and lay the foundation for the future full automation.
The results of various causes related to the AV system also suggest that discrepancy
happened in perception, localization & mapping, planning and control was the primary
reason that led to the failure of executing certain tasks by the AV system. The majority
of prior studies focusing on exploration of disengagement causes using taxonomy had suc-
cessfully concluded the categories [12], but they didn’t identify the specific causes, such
as ”a wrong speed control command” or ”software module generated a wrong path and
froze” that were valuable to manufacturers in term of improving the AV system design
and testing.

The methods used in this study also have implications for future AVD analysis. As
Bimbraw et al. [34] concluded ”Most cars are expected to be fully autonomous by 2035”,
before that actually happens, AV testing still requires the presence of human operators
which will generate a large amount of disengagement reports. However, majority of
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previous studies heavily relied on the manual work and their findings can not be applied
to incoming disengagement reports seamlessly. The weighted F-1 score of this study
suggested that with transfer learning, pre-trained models with millions of parameters
can be fine-tuned and post-trained to learn the domain knowledge of AVD and the task
knowledge of specific analytical tasks, thus achieving satisfying performance close to
human workers with much less cost and time. Furthermore, because of the scale of
the future disengagement reports, the end-to-end pipeline approach used in this study is
both efficient and necessary for the large-scale analysis of AVD that other researchers may
be interested in. As some fields of the disengagement reports like vehicle identification
number (VIN) and capability of operating without a driver, were not fully utilized in
this study, there is also a need to expand and enrich the features in data analysis for
the pipeline. Other researcher can build their own version of pipelines based on the one
presented in this study while alter the stages and functionalities of pipelines to satisfy
their own needs.

Compared with previous research, this study utilized the most complete disengage-
ment reports from 2014 to 2020. Besides, it followed the best practice of NLP deep trans-
fer learning with a novel post training to achieve better performance. Some limitations
also existed in this study. Even the performance of the best model was good enough, it is
still not as good as human. Also, this study required additional computational resource,
especially GPU to train models and build the pipeline.

So far, only three workers provided insight towards cause-and-effect relationships and
cause categories, which may cause bias. More workers are needed to make the ground
truth labels more reliable. Also it’s beneficial to other researchers interested in the
disengagement database by adding more statistic analysis features and more customizable
functions to the pipeline.

6 Conclusion

This study created a scalable end-to-end pipeline based on NLP deep transfer learning,
which can not only collect, process raw data to generate a consolidated database, but
also extract and analyze the causes in AVD from the CA DMV dataset. The best model
used in the pipeline was the product of best practice of transfer learning followed by
post training. A taxonomy covering both human operator trust, AV system safety, and
environmental factors was introduced to better understand the causes.
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