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32 Abstract

33 Pharmacogenetics (PGx) association studies are used to discover, replicate, and validate the association 

34 between an inherited genotype and a treatment outcome. The objective of this tutorial is to provide 

35 trainees and novice PGx researchers with an overview of the major decisions that need to be made 

36 when designing and conducting a PGx association study. The first critical decision is to determine 

37 whether the objective of the study is discovery, replication, or validation. Next, the researcher must 

38 identify a patient cohort that has all of the data necessary to conduct the intended analysis. Then, the 

39 investigator must select and define the treatment outcome, or phenotype, that will be analyzed. Next, 

40 the investigator must determine what genotyping approach and genetic data will be included in the 

41 analysis. Finally, the association between the genotype and phenotype is tested using some statistical 

42 analysis methodology. This tutorial is divided into 5 sections, each section describes commonly used 

43 approaches and provides suggestions and resources for designing and conducting a PGx association 

44 study. Successful PGx association studies are necessary to discover and validate associations between 

45 inherited genetic variation and treatment outcomes, which enable clinical translation to improve 

46 efficacy and reduce toxicity of treatment. 

47

48

49 Introduction to Pharmacogenetics

50 The field of pharmacogenetics (PGx) investigates the influence of inherited variants in the patient’s 

51 germline genome with pharmacotherapeutic outcomes. PGx studies are conducted along the 

52 translational research spectrum, from initial discovery of an association between a genetic variant and 

53 an outcome to implementation studies determining how best to integrate PGx testing into clinical care. 

54 The initial steps of discovering and validating the association between a genotype and outcome, which 

55 we will refer to as PGx association studies. These studies are commonly conducted by individuals 

56 without formal training in PGx methods, who would benefit from basic guidelines describing the general 

57 principles of PGx association studies. 

58 The objective of this tutorial is to introduce trainees and novice investigators to the general process of 

59 PGx association studies. This process is divided into the five main considerations when designing a PGx 
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60 association study; study objective, patient cohort, phenotype, genotype, and statistical testing (Figure 

61 1). We describe and provide helpful recommendations for each of these five major steps. Although we 

62 introduce some basic concepts in clinical study design that are not specific to PGx, individuals who are 

63 unfamiliar with these fundamental topics should first consult an introductory review.1 This tutorial is 

64 intended for individuals with an understanding of basic clinical research who are relatively new to PGx; it 

65 is not intended to provide a comprehensive review of all strategies for PGx association studies and 

66 topics that are most relevant to advanced PGx researchers may not be discussed or mentioned only 

67 briefly. 

68 1. Study Objective 

69 The first determination that needs to be made for any research study, including a PGx analysis, is the 

70 study objective. As mentioned earlier, PGx studies span the translational research spectrum from 

71 discovery through implementation. PGx research begins with the discovery of a putative association 

72 between an inherited genetic variant (genotype) and a clinical outcome (phenotype), which should then 

73 be replicated and validated in independent patient cohorts. Confirmation of a PGx association is 

74 referred to as “clinical validity,”2 which is necessary but not sufficient for translating PGx into clinical 

75 practice. Clinical translation usually requires demonstration of “clinical utility,” meaning that genetics-

76 informed treatment improves clinical outcomes. Clinical utility is typically demonstrated in prospective 

77 clinical trials comparing genotype-directed care with standard of care treatment. Clinical translation and 

78 implementation will not be discussed in this tutorial but have been reviewed elsewhere.3, 4 

79 This tutorial will focus on PGx analyses to discover, replicate, or validate associations. It is necessary to 

80 determine which of these is your study objective to guide selection of an appropriate cohort, 

81 phenotype, genotype, and statistical analysis, as discussed within each section of this tutorial. The 

82 objective of a PGx discovery study is to identify a novel PGx association for future replication and 

83 validation. For that reason, discovery studies seek to maximize the likelihood of detecting associations. 

84 To achieve this goal, discovery studies often test many potential genetic associations with liberal 

85 statistical procedures, leading to many discovery-phase associations that are possibly false positives.5-7 It 

86 is rarely, if ever, appropriate to take a discovery-phase association and attempt to translate it into 

87 clinical practice. Instead, discovery-phase PGx associations must be successfully replicated with similar 

88 direction of effect in several independent patient cohorts. These replication studies also often test 

89 several previously discovered associations without strict statistical analysis procedures. The objective of 

90 replication studies is to determine whether the PGx discoveries can be replicated (i.e., are they likely to 
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91 be true associations) and how robust the association is when tested in slightly different cohorts with 

92 slightly different phenotypes. The final phase is validation of the association between the genotype and 

93 phenotype. Validation can be accomplished through consistent, successful replication in multiple 

94 independent cohorts or via a single well-conducted validation study using a single, pre-specified genetic 

95 predictor, phenotype definition, and statistical analysis plan. Upon clinical validation, a PGx association 

96 is likely ready for prospective testing to demonstrate clinical utility and justify clinical implementation. 

97 2. Patient Cohort

98 Ethics and Regulatory Oversight

99 Conducting PGx association studies requires access to genetic and clinical data, which may involve 

100 collection and analysis of DNA and personal health information.8 Data and sample collection and 

101 analyses must be performed following the general ethical principles for human subjects research, as 

102 described in the Declaration of Helsinki.9 These principles require that human subjects are aware of and 

103 consent to experiments in which they are a participant and require experimenters to take necessary 

104 precautions to protect participants’ safety and confidentiality. Although PGx association studies have 

105 limited direct risks for participants, the permanence of genetic information and possibility that it can be 

106 used to predict medical outcomes leaves it vulnerable to being used for discriminatory purposes. In the 

107 United States, regulations such as the Genetic Information Nondiscrimination Act have limited the 

108 potential negative impact of collecting patients’ genetic data.10 However, care should always be taken to 

109 protect patient samples and information, such as anonymization or de-identification.11  

110 Prior to collecting any samples or data for a PGx analysis, it is critical that the study be reviewed by an 

111 Institutional Review Board (IRB) and/or Ethics Board. These committees evaluate the soundness, 

112 relevance, and appropriateness of the scientific question, study design, and procedures to obtain, 

113 collect, store, and analyze patient information. The necessary approval will depend on the institution 

114 and study design. PGx association studies are often classified as having no more than minimal risk to 

115 patients and may be approved by expedited review. Alternatively, IRB approval may not be necessary if 

116 it is determined that the study satisfies criteria for an exemption to human subject’s research. This is 

117 often the case when using linked genetic and health information that was previously collected within an 

118 IRB-approved research study,12 which satisfies the criteria for secondary use of existing data and 

119 samples.13 
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120 Retrospective and Prospective Cohorts

121 PGx association studies can be conducted using patient data that were initially collected retrospectively 

122 or prospectively. In a retrospectively collected cohort, the patients have already received treatment and 

123 the outcome of interest has already occurred at the time the study is initiated.14. Data are typically 

124 abstracted from the patients’ medical record or an existing database, which is much less time consuming 

125 and costly than prospective data collection. However, this real-world data is likely collected for a 

126 purpose other than clinical research, and there may be a lot of important data that is missing, 

127 sporadically collected, or inaccurate.15 Collecting unstructured data from abstracting clinical notes from 

128 the electronic medical record is particularly challenging and time consuming, but is often the only 

129 feasible strategy to collect the necessary data. Thus, it is typically necessary to perform data pre-

130 processing, in addition to manually cleaning the data, to ensure that only relevant and informative 

131 patients are included in the analysis and outcomes are accurately characterized, as described in later 

132 sections of this tutorial.

133 In prospective cohorts the outcome has not occurred at the time the study is initiated and data are 

134 collected in real time.14 Advantages of this strategy include the ability to dictate which patients, 

135 treatments, outcomes, and other clinical data are collected. However, prospective data collection is 

136 much more time and resource intensive, particularly for infrequent conditions or outcomes. Prospective 

137 cohorts can be collected within interventional clinical trials or observational studies, which are 

138 differentiated based on whether the protocol dictates the patient’s treatment or not, respectively.16 

139 Clinical trials often enroll relatively large cohorts of homogeneous patients receiving strictly defined 

140 treatments from whom outcomes are systematically collected, making these ideal for PGx association 

141 testing.17 Observational studies include registries that are linked to available genetic samples or data 

142 collected at the institutional12 or national18 level, providing large patient cohorts that are relatively 

143 heterogenous in terms of disease and treatment. Large registries are also well suited for PGx discovery 

144 or testing whether previously discovered associations are sufficiently robust to be replicated in cohorts 

145 of patients that are not as strictly defined and characterized. 

146 Inclusion and Exclusion Criteria

147 The next important consideration is to determine which potential patients should be included in your 

148 analysis.19 To be considered for inclusion in a PGx association study, a patient usually must have been 

149 exposed to the drug of interest, assessed for the outcome of interest, and have provided a biospecimen 

150 for genetic analysis. It is sometimes advisable to exclude patients who were treated with an insufficient 
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151 number of doses, either due to discontinuation or lack of adherence,20 but determination of an 

152 appropriate threshold will require clinical judgement. The second critical inclusion criterion is 

153 assessment of the outcome of interest, or phenotype. Phenotype collection and definition are discussed 

154 at length in the Phenotype section of this tutorial. An important point is that patients should be 

155 excluded if they were lost to follow up before the outcome of interest could have occurred or if, for any 

156 other reason, the available data does not allow you to determine whether or not the patient 

157 experienced the outcome.21 If the outcome is unclear for an individual patient, it is typically better to 

158 exclude them from the analysis than to include risk misclassifying them in the analysis. The final 

159 necessary inclusion criterion is the availability of a DNA sample for genetic analysis or existing genetic 

160 data. Germline DNA is typically isolated from the white blood cells (buffy coat layer of processed 

161 peripheral blood). However, DNA can be extracted from many other biospecimens that could have been 

162 collected for any number of clinical or research purposes.22 Prospective studies often collect peripheral 

163 blood at study entry for future PGx analysis. Retrospective studies are sometimes conducted using 

164 available samples, genetic data from biobanks, or from a patient’s medical record. An alternative 

165 approach is to contact potential participants and collect a blood or saliva sample for genetic analysis; 

166 however, this approach can be resource intensive. 

167 Besides these critical inclusion criteria, there are certain variables that should be collected to enable 

168 exclusion of potential participants from the PGx analysis. These are often based on clinical knowledge, 

169 such as excluding patients receiving concomitant medications that may modify the effect of genetics on 

170 treatment or excluding patients with comorbid conditions that may modify the effect of treatment on 

171 the outcome. Depending on the number of patients who have this confounding variable, it may be 

172 possible to adjust for the variable within the PGx analysis instead of excluding the patient.23 For that 

173 reason, and when in doubt, we recommend including the patient and the variable within the data 

174 collection and discussing with the study team, including clinical and biostatistical experts, whether to 

175 adjust for the variable or exclude the patients. 

176 3. Phenotypes

177 Introduction 

178 Phenotype is a general term encompassing pharmacological treatment outcomes, such as treatment 

179 efficacy or toxicity, or pharmacological characteristics underlying those clinical effects, such as systemic 

180 drug concentration. In PGx, phenotype is also used to describe the activity of enzymes and transporters 

181 of a patient, as described in the Genetics Section. In this tutorial, phenotype refers to any treatment-
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182 related endpoint that is used as a dependent variable in a PGx association study. Phenotype selection 

183 and definition is perhaps the most important and challenging decision in PGx association studies. This 

184 section will describe the sources and types of data that can be used as a phenotype, discuss the types of 

185 phenotypes that can be used as dependent variables, and provide some recommendations for selecting 

186 and defining a phenotype for a PGx association study. 

187 Sources and Types of Data

188 Within clinical care and research, data are collected in a variety of ways, including objective 

189 measurement and subjective assessment. Objective measurements include counts, volumes, masses, 

190 concentrations, and durations. Treatment outcomes that are not amenable to measurement fall under 

191 subjective assessment and can be assessed by a clinician or the patient.24 Clinician assessment, either 

192 based on clinic notes or documentation within clinical studies, has historically been the primary source 

193 of phenotypic data for PGx studies.25 However, collection of treatment outcomes via patient assessment 

194 is increasingly being integrated into clinical care, particularly for subjective toxicities.26 

195 These data sources provide a variety of data types, each with their own benefits and drawbacks (Table 

196 1). Measurements collected as continuous data can be highly precise and are often most sensitive to the 

197 genetic effect, and therefore increase the likelihood of detecting a PGx association.27 For those reasons, 

198 continuous data are often used in discovery-phase PGx research. However, changes in continuous 

199 measurements are often not clinically meaningful, so continuous data are commonly translated into 

200 ordinal (i.e., improved, no change, worsened) or dichotomous (i.e., change <X% vs. ≥X%) data prior to 

201 analysis. Clinician and patient assessments are commonly collected as ordinal (i.e., none, mild, 

202 moderate, or severe) data, but can also be translated into dichotomous data to enhance clinical 

203 relevance, particularly in validation studies. Finally, for endpoints that are highly dependent on 

204 cumulative time or dose, using the time- or dose-at-occurrence as the phenotype will enhance the 

205 likelihood of identifying a genetic association,28, 29 though these cumulative risk models can be 

206 somewhat more challenging to translate into clinical practice and may be more relevant to advanced 

207 researchers.  

208 As previously described in the Cohort section, phenotypes for PGx association studies are often based 

209 on existing data that may have limited availability and accuracy.15  When accruing a prospective cohort 

210 that will be used for PGx analyses, it is critically important to collect accurate phenotypic data, ideally 

211 using standardized assessments at pre-specified time points.30 Regardless of the data source, 
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212 abstraction and cleaning of phenotypic data should be conducted while blinded to the genotype data to 

213 prevent bias.31

214 Types of Phenotypes 

215 Similar to the types of data, there tends to be a balance between phenotypes that are more sensitive 

216 and analytically powerful and others that are more clinically relevant. Highly sensitive phenotypes that 

217 are less clinically relevant include surrogate outcomes or quantitative intermediate phenotypes, 

218 referred to as endophenotypes. Endophenotypes are often more strongly associated with genetic 

219 characteristics since the effect of environmental factors and the number of genes involved is relatively 

220 limited.32 It is therefore sometimes easier to demonstrate the direct genetic effect on an 

221 endophenotype. This can be done in smaller discovery-phase studies, followed by determining if 

222 genetics are associated with downstream, clinically relevant treatment outcomes in larger validation 

223 studies (Figure 2). Alternatively, PGx associations with clinical outcomes are often reported first, and 

224 endophenotypes can be used to validate the mechanism through which the PGx association is acting. 

225 Pharmacokinetics (PK) is the quintessential PGx endophenotype because it is highly sensitive to genetic 

226 variability, specifically in drug metabolizing enzymes and transporters.33 For drugs with established 

227 therapeutic target concentrations, such as tacrolimus,34 PK can be a clinically relevant surrogate 

228 outcome, but for other drugs it is not. Nearly any PK metric can be used as the phenotype in a PGx 

229 study, including concentration at a single, clinically relevant timepoint such as a concentration maximum 

230 (Cmax), minimum (Cmin), or steady-state average (Css,avg). Collection of serial blood samples allows 

231 estimation of the full exposure profile by area under the curve (AUC) or clearance (CL), which are 

232 particularly relevant for PGx analyses of enzyme and/or transporter activity.35 Another PK 

233 endophenotype that is sometimes used as an indicator of enzymatic activity is the metabolic ratio, 

234 which is the ratio of the concentration of the metabolite to the parent compound.36 

235 Pharmacodynamic (PD) endophenotypes can also be used within PGx discovery studies.37 PD 

236 endophenotypes include changes in the measurement of a biochemical or physiological marker that are 

237 sensitive indicators of treatment response. Changes in International Normalized Ratio (INR) during 

238 warfarin treatment38 is an example of an efficacy PD biomarker, whereas changes in liver function tests39 

239 to indicate hepatotoxicity is an example of a toxicity PD biomarker. If available, a measurement taken 

240 immediately prior to treatment should be used to isolate changes that are attributable to treatment 

241 response. 
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242 Analyses of PK or PD endophenotypes are useful to establish the direct effect of the genetic variant, but 

243 it is typically necessary to confirm the effect on the downstream clinical outcome to justify clinical 

244 translation. Relevant clinical outcomes include occurrences of toxicity, particularly severe toxicities that 

245 cause permanent morbidity or mortality. On the efficacy side, reductions in disease-related events, such 

246 as exacerbations or hospitalizations (or length of stay) and improvements in survival, are clinically 

247 relevant outcomes. PGx predictors of these meaningful treatment outcomes are likely to be clinically 

248 useful, though it can be very challenging to validate a PGx association since these outcomes are often 

249 multi-factorial.40 

250 Clinical Outcome Selection and Phenotype Definition 

251 Although any outcome can be used as a phenotype, PGx studies are most likely to yield clinically 

252 relevant findings if the phenotype is strongly determined by a single or small set of genes. Clinical 

253 outcomes that are strongly PK-dependent are excellent phenotypes because of our relatively robust 

254 understanding of the substantial genetic effect on PK.33 This includes drugs with a narrow therapeutic 

255 window and those that require therapeutic drug monitoring. There has also been substantial success 

256 identifying useful PGx associations for pro-drugs, which require metabolic activation.41 Alternatively, 

257 clinical outcomes that are completely independent of PK, such as drug-induced hypersensitivity,42 can be 

258 highly dependent on a single genetic variant or gene, leading to profound PGx associations.43 Other 

259 indications that a clinical outcome may have an inherited genetic determinant include those that are 

260 non-normally distributed in the population,42 have large differences in occurrence across 

261 races/ethnicities,44 and treatment outcomes that are similar to an inherited condition.45  Conversely, 

262 multi-factorial clinical outcomes that are partially determined by PK and non-PK factors are more 

263 challenging for use as phenotypes for PGx discovery and translation, though there are some successful 

264 examples, such as combining CYP2C9 and VKORC1 to explain variability in warfarin efficacy.46 

265 After selecting a clinical outcome that is potentially genetically determined, the phenotype must be 

266 explicitly defined. The phenotype selection and definition should be guided by the putative mechanistic 

267 model connecting genetics to the clinical outcome and the objective of the PGx study (Figure 2). One 

268 potentially useful strategy is to conduct analyses in order of the putative model to confirm each step of 

269 the mechanistic pathway. For example, demonstrating that genotype affects PK, and that PK determines 

270 the clinical outcome, strongly suggests that genotype will predict the clinical outcome in a sufficiently 

271 large validation study.47 However, if PK does not affect the clinical outcome, then genetic predictors of 

272 PK are unlikely to be clinically useful.40  In addition to considering the mechanistic pathway, phenotype 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

273 selection and definition should be consistent with the study objective. Discovery-phase studies may 

274 want to use the most sensitive, mechanistically proximal phenotype available, which is often a PK or PD 

275 endophenotype. Phenotypes could then get progressively more clinically relevant as the objective 

276 moves to replication. Finally, validation studies should select a single, a priori defined, clinically relevant 

277 endpoint to confirm the genetic association,48 in preparation for prospective studies and clinical 

278 translation. 

279 4. Genotypes

280 PGx Nomenclature 

281 Understanding the concepts and nomenclature of genetics is vital for PGx investigators. An allele is the 

282 genetic base at a given locus, which can be either the more common wild type allele or a less common 

283 variant allele. In most cases, humans inherit one allele from each parent and the combination of those 

284 two alleles is referred to as their diplotype (Figure 3). Allele frequency is the proportion of that allele in 

285 the population and is often described in terms of the frequency of the less common allele, or “minor 

286 allele frequency (MAF).” Common variants with MAF greater than 5% (or 1%) in the population are 

287 referred to as a single nucleotide polymorphisms (SNPs) or single nucleotide variants (SNVs). Many 

288 millions of SNPs are cataloged in the NCBI dbSNP Database (https://www.ncbi.nlm.nih.gov/snp/),49 

289 which includes helpful information such as the SNPs genomic position and MAF in different ethnic 

290 groups (Table 2). 

291 Alleles are not independently inherited, instead alleles that are nearby are often co-inherited and are 

292 said to be in Linkage Disequilibrium (LD).50 LD exists between nearby SNPs that are inherited in blocks 

293 ranging from a few to several hundred kilobases, creating haplotypes of co-occuring SNPs. In addition to 

294 SNPs and haplotypes, genetic variations can exist as insertions or deletions of one or more bases, as well 

295 as copy number variations (CNVs), where large portions of the genome, including entire genes, are 

296 duplicated or deleted. 

297 Candidate Gene/SNP Studies

298 Candidate Gene Selection 

299 Conventionally, “pharmacogenetics” refers to the investigation of single gene/SNP association with a 

300 drug response phenotype, whereas “pharmacogenomics” refers to a genome-wide investigation, 

301 described later in this section.51 The terms are used interchangeably and our use of PGx refers to either. 

302 In the candidate gene strategy, researchers evaluate variants within genes with plausible or known 
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303 biological mechanisms related to the drug or outcome. Most candidate gene/SNP studies have 

304 conventionally focused on genes that are involved in drug PK, especially the enzymes and transporters 

305 involved in drug metabolism and disposition. Another common candidate gene is the drug target, which 

306 may affect drug response. For instance, CYP2C9 and VKORC1 are well-known candidate genes impacting 

307 warfarin dosing, as CYP2C9 metabolizes warfarin and VKORC1 is the drug target (Figure 3).46 

308 Recurrent variants with potential functional consequence in pharmacogenes are assigned * alleles 

309 (pronounced “star alleles”). *1 is usually reserved for the more common wild type allele (i.e., CYP2D6*1) 

310 and is assigned by default when none of the tested variants are detected. Numerical * allele 

311 designations (i.e., CYP2D6*4) can be defined by a variety of genetic variations including a SNP, 

312 haplotype, or a complete gene deletion (e.g., CYP2D6*5). To ensure consistency, standardized 

313 terminology has been developed to describe the activity of alleles and a patient’s predicted activity 

314 phenotype for drug-metabolizing enzymes and transporters (Table 3). For some genes, an activity value 

315 is assigned to each allele, ranging from 0-1, and the overall activity is assigned by adding the two allele 

316 values and translating that sum into a phenotype (i.e., poor (PM), intermediate (IM), normal (NM), rapid 

317 (RM), or ultrarapid (UM) metabolizer). These drug metabolizer and transport activity phenotypes are 

318 distinct from, and not to be confused with, the phenotype that is the endpoint or dependent variable in 

319 the PGx analysis, discussed previously in the Phenotype section. Of note, this phenotype terminology 

320 was not always used and some publications use alternative terms such as Extensive Metabolizer (EM), 

321 which was replaced by the more intuitive Normal Metabolizer (NM).

322 It is critical that the process for translating a patient’s raw genotype calls to activity phenotypes follows 

323 the current best practices, to ensure the validity and interpretability of the study findings. This process is 

324 different for each gene and evolves as our understanding of genetics expands, so researchers should 

325 review curated information such as that from Clinical Pharmacogenetics Implementation Consortium 

326 (CPIC) or PharmGKB (Table 2) when translating genotypes into phenotypes.52, 53 More advanced 

327 investigators may want to use translation software to automate the translation from genotype to 

328 phenoytpe.54 . Ultimately, investigators must decide whether to analyze the PGx association for a single 

329 SNP, the combination of variants comprising a predicted activity phenotype, or conduct more extensive 

330 genotyping or sequencing to analyze many or all variants within the gene of interest. 

331 Candidate Gene Genotyping

332 Whenever possible, PGx studies should use high-quality germline DNA that can be easily isolated from 

333 whole blood and many healthy tissue types. In some instances, banked samples have been used to 
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334 isolate DNA that may have been modified due to disease or sample processing and storage, and this 

335 could introduce artifacts that interfere with genotyping accuracy.55, 56 

336 There are some specific instances in which blood genotype does not reflect the activity in the tissue of 

337 interest. Patients who have had bone marrow transplants will have blood cells from the donor, so the 

338 genotypes will not be representative of the subject’s other tissues. If patients with bone marrow 

339 transplants are included in the study, the germline DNA sample needs to have been collected prior to 

340 transplant. Relatedly, patients who have had liver transplants likely have different drug metabolizing 

341 enzyme phenotypes than that indicated by blood genotyping. If liver transplant patients are included in 

342 studies, donor DNA should be genotyped in addition to the recipient’s DNA. Novice investigators should 

343 be particularly careful when conducting studies within transplant patients. 

344 A comprehensive review of the many available technologies for genotyping is beyond the scope of this 

345 tutorial.57 The primary consideration when selecting a genotyping technology is the number of variants 

346 to genotype. Candidate SNP studies often use single SNP, low throughput genotyping techniques such as 

347 TaqMan® or Pyrosequencing. Studies that investigate a group of candidate genes will frequently use 

348 genotyping chips or panels. Options include creating a customized panel with the investigator’s 

349 candidate genes/SNPs (e.g., Assays-by-SEQUENOM [SEQUENOM, San Diego, CA]) or utilizing an existing 

350 multi-gene panel. One common approach when conducting a PGx analysis of drug PK is to use a targeted 

351 panel array of relevant pharmacogenes such as the DMET™ [Drug Metabolism Enzymes and 

352 Transporters], (Affymetrix, Santa Clara, CA),58 PharmacoScan™ (Thermo Fisher Scientific, Waltham, MA), 

353 and VeriDose® Core Panel (Agena Bioscience, San Diego, CA).59 These off-the-shelf arrays can be highly 

354 efficient, though researchers should be careful to select a panel that has adequate coverage of the 

355 genes relevant to their drug of interest and variants that are common in the ethnic groups represented 

356 within their patient cohort.4 

357 Genome Wide Association Studies and Sequencing

358 An alternative to a candidate gene/SNP approach, typically reserved for more advanced PGx 

359 researchers, is to conduct a genome-wide association study (GWAS) (Table 4). Genome-wide panels 

360 genotype hundreds of thousands of SNPs throughout the genome for simultaneous association testing 

361 with treatment outcomes.60, 61 There has been a rapid increase in GWAS for identifying genetic 

362 determinants of a variety of treatment outcomes including efficacy, toxicity, metabolism, and drug-

363 target interactions.51, 60, 62 GWAS leverages the co-inheritance of SNPs in LD,63 which enables a single SNP 

364 to be used as a marker or “tag” for other SNPs in that haplotype block. By directly genotyping tagSNPs, 
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365 investigators can identify genomic regions that harbor causative variants (Figure 3). A bioinformatics 

366 process known as imputation uses LD to infer the genotypes of SNPs in that region to assist in identifying 

367 the likely causative variants.64-68 Due to differences in LD between ethnic groups, and the predominance 

368 of European American ethnicity in genetics reference panels, imputation is less precise for non-

369 European study participants.

370 GWAS can identify PGx associations for variants and genes that would not have been selected as 

371 candidates, which can lead to an improved understanding of the underlying biology of the outcome 

372 and/or pharmacology of the drug (e.g. a liver transporter affecting the clearance of a drug that is 

373 primarily renally-eliminated).69 However, due to the huge number of association tests conducted, GWAS 

374 studies require significant statistical correction for multiple comparisons, necessitating much larger 

375 sample sizes to achieve adequately powered analyses, as described in the statistical methods section. 

376 With continued technological progress, next generation sequencing technologies have resulted in the 

377 development of panels for sequencing target genes, the exons of all genes in the genome (whole 

378 exome), or whole genomes. Sequencing approaches result in each nucleotide of the genome being 

379 sequenced and, therefore, detect every variant in the sequenced region. The cost of sequencing and 

380 complexity of data analysis have been barriers to using sequencing to replace GWAS. Further details and 

381 discussion of GWAS and sequencing are beyond the scope of this manuscript, but sequencing may be a 

382 useful tool for discovery of rare variants with large effects and for follow-up of findings from GWAS.70 

383 Translating sequencing data to * allele nomenclature is a challenge, particularly given the complexity of 

384 properly phasing alleles into haplotypes, but there are tools available to assist advanced PGx researchers 

385 with this task.54, 71

386 Genetic Models 

387 Often, the final step in defining the genetic data for PGx analysis is to select a genetic model based on 

388 the expected mode of inheritance (i.e., dominant, recessive, or additive). The patient’s diplotype is 

389 expressed by a combination of two alleles A (major) and a (minor), with possible diplotypes AA (major 

390 allele homozygote, i.e., wild type), Aa (heterozygote) and aa (minor allele homozygote). A dominant 

391 model would test whether carrying at least one minor (a) allele is associated with the phenotype (i.e., 

392 AA vs. (Aa+aa)) whereas a recessive model tests whether the phenotype is associated with carrying two 

393 minor alleles (i.e., (AA+Aa) vs. aa). Perhaps the most commonly used genetic model is the additive, or 

394 gene-dose, model, which assumes a linear increase in the phenotype with each additional minor a allele 

395 (i.e., AA > Aa > aa or AA < Aa < aa). For candidate gene/SNP studies, wherein extensive knowledge of the 
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396 gene or SNP and its inheritance is known, researchers may be able to make an informed selection of the 

397 appropriate genetic model. On the other hand, studies without this existing knowledge or those testing 

398 many SNPs simultaneously typically assume an additive genetic model as it is flexible and has the most 

399 power to detect associations, as discussed in the next section.72-74 

400 5. Quality Control and Statistical Analysis

401 Quality Control

402 As genotyping technologies have improved, the analytical validity of genotype calls (i.e., the accuracy of 

403 genotype results) has also improved. Nevertheless, inaccurate genotyping can occur due to assay issues 

404 or technical error. In this section, we review several standard approaches to ensuring the quality of 

405 genotype data for a PGx study. These approaches are not comprehensive and a plan to ensure 

406 genotyping quality control should be developed based on study-specific considerations.

407 SNP and Sample Call Rate

408 One of the simplest quality checks for genotype data are using the proportion of SNPs or samples that 

409 were successfully genotyped, referred to as “call rate”. Studies often remove poor performing SNPs or 

410 samples based on inadequate call rates.23, 75 The removal is based on the assumption that assays or 

411 samples with missing genotype calls are also likely to have incorrect genotype calls. The SNP call rate is 

412 the number of samples successfully genotyped divided by the total number of samples for which 

413 genotyping was attempted. There is no universal SNP call rate cutoff, but studies commonly use a cutoff 

414 of 95%-99%, below which, SNPs are removed from the analysis. Similarly, the sample call rate is the 

415 number of SNPs successfully genotyped in that sample divided by the total number of SNPs for which 

416 genotyping was attempted. Removing low quality SNPs and samples based on call rates improves the 

417 genotype data quality and minimizes the potential effect of genotyping errors on the study results. 

418 Hardy Weinberg Equilibrium

419 Hardy Weinberg Equilibrium (HWE) is a mathematical expression of the expected distribution of alleles 

420 and genotypes in a population under certain conditions, such as a lack of natural selection and lack of 

421 genetic drift. Similar to its use in population genetics, investigators can use this equation to test for 

422 evidence of genotyping error.23, 75 If genotypes for a SNP do not follow the expected HWE distribution, a 

423 possible explanation is that the SNPs have been genotyped incorrectly. HWE testing can identify excess 

424 heterozygosity, a term used for when there is an excess number of individuals with the Aa genotype. 

425 This can result from a SNP assay that cannot effectively distinguish between alleles (i.e., A vs. a) or from 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

426 inadvertent mixture of two different DNA samples. HWE can be tested by comparing the actual 

427 distribution of alleles with the distribution expected based on the known MAF, or the actual MAF within 

428 the sample, using chi square or Fisher’s exact test. The p-value threshold below which HWE deviation is 

429 considered unacceptable is often corrected for multiple comparisons. SNPs observed to be below the 

430 threshold are removed from the final analysis under the assumption that genotyping error was 

431 observed. However, another common explanation for HWE departure is racial admixture, since 

432 genotype frequencies can vary substantially based on ancestry.76 Therefore, in diverse cohorts, HWE 

433 should be tested within each racial/ethnic group. Another important consideration for HWE testing is 

434 that patients with a specific disease may be enriched for certain SNPs, causing departure from HWE. 

435 Removal of these SNPs may actually remove the SNPs with the most relevant effects on the phenotype 

436 of interest. The test for HWE in case control studies is often conducted in controls alone rather than in 

437 the whole population, based on the assumption that enrichment for SNPs is less likely to occur in the 

438 control population. In any event, testing for HWE can be an effective tool to ensure genotyping quality, 

439 but should be thoughtfully applied to studies with particular consideration for cohort selection.

440 Considerations for Statistical Analysis

441 As with any biomedical study, statistical approaches for PGx association testing will be guided by the 

442 study design with particular consideration for the nature of the phenotypic data (i.e., continuous, 

443 ordinal, or dichotomous, normal or non-normal distribution; paired versus un-paired) and whether there 

444 is a need to account for confounding variables (Figure 4). Although a comprehensive review of statistical 

445 approaches is beyond the scope of this tutorial, this section focuses on statistical considerations that are 

446 particularly relevant to PGx association testing, with a major focus on minimization of false positive and 

447 negative findings, as appropriate for the study objective.

448 Multiple Comparisons Adjustment

449 PGx studies often include more than one SNP of interest, which increases the likelihood of a false 

450 positive result due to multiple comparisons.23 Assuming a standard alpha (α) =0.05 (i.e., p<0.05), on 

451 average one out of every twenty tested associations will be statistically significant by chance alone. False 

452 positive results can be minimized by using a more stringent alpha. The most common correction for 

453 multiple comparisons is the Bonferroni correction, which divides the alpha by the number of 

454 independent association tests conducted. This becomes particularly important in studies with large 

455 numbers of SNPs, such as GWAS.23, 75 A GWAS including a million SNPs would on average detect 50,000 

456 significant SNP associations by chance using α=0.05. Regardless of the number of SNPs in the GWAS, 
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457 genome-wide significance is typically set at α=5x10-8 (alpha=0.05/1,000,000),77 as illustrated by the 

458 horizontal line in the standard visualization of GWAS results using a Manhattan Plot in Figure 4. This 

459 threshold may be overly conservative, since SNPs are in LD and their associations are not completely 

460 independent, and alternative thresholds could be considered prior to analysis.78, 79 One commonly used 

461 less-conservative alternative approach is the False Discovery Rate (FDR) adjustment.80

462 Testing associations for one SNP with multiple phenotypes, or with one phenotype using multiple 

463 genetic models (i.e., dominant, recessive, and additive), also increases the number of association tests 

464 and risk of false positives if proper statistical correction is not applied. As the number of association 

465 tests increases, the corrected α decreases and statistical significance becomes more difficult to achieve, 

466 increasing risk of false negatives. For this reason, it is advised to limit the number of association tests 

467 conducted. As in other scientific fields, researchers will often specify a primary hypothesis that includes 

468 a single genotype and phenotype of primary interest and conduct that analysis with an uncorrected 

469 α=0.05. All other analyses are then considered exploratory, also conducted using an uncorrected α=0.05, 

470 and reported as hypothesis-generating. 

471 Statistical Power

472 Power is the ability of the study to observe a true PGx association, thus avoiding false negatives. As 

473 discussed above, multiple comparisons correction decreases α and makes significance more difficult to 

474 achieve, thus reducing study power and increasing false negative risk. Analytical power is determined 

475 during study design and influenced by the statistical test, sample size, phenotype variability, and the 

476 magnitude of genetic effect on the phenotype.81 Power increases with larger cohorts and with more 

477 patients within each genotype group. As such, association tests get more powerful as the SNP MAF 

478 increases, meaning that studies of rare SNPs are often underpowered, even with large cohorts. Publicly 

479 available MAF estimates82 can be used to conduct power determinations prior to initiating a project. 

480 Another determinant of the size of genotype groups is the selected genetic model, described in the prior 

481 section.83 Studies with potential power concerns should avoid recessive genetic models (AA+Aa vs. aa), 

482 unless there is compelling prior knowledge to justify their use, since the homozygous variant (aa) group 

483 is the smallest and these analyses have limited power. In terms of phenotypic variability, power 

484 increases with higher variability of continuous endpoints and with higher event rate of dichotomous 

485 endpoints. Finally, power increases substantially as the magnitude of the effect of the genotype on the 

486 phenotype, which is referred to as the effect size, increases.84, 85 Effect size can be expressed as a 

487 difference between means of a continuous endpoint or differences in event rates of a dichotomous 
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488 endpoint. Detailed instructions for how to conduct a sample size determination is beyond the scope of 

489 this article and should typically be the responsibility of the study biostatistician, though relatively simple 

490 sample size calculators are freely available online.86, 87

491 Population Stratification

492 Admixture of groups with different ethnic background, termed population stratification, was previously 

493 mentioned as a potential cause of HWE departure. Population stratification can also result in false 

494 positive PGx associations due to confounding of the risk of toxicity and uneven genotype distribution 

495 across ethnic groups.23, 75 For example, because individuals from Southeast Asia have a higher rate of 

496 carbamazepine-induced Stevens-Johnson Syndrome (SJS), a GWAS of this phenotype would identify 

497 significant associations for any SNP that is differentially carried in Asians vs. non-Asian patients, 

498 regardless of whether these SNPs actually cause SJS.88 These false associations can be avoided by 

499 conducting analyses within a single race/ethnicity group or adjusting for self-reported race/ethnicity or 

500 genetically-defined ancestry. In GWAS, it is standard practice for advanced researchers to derive 

501 principal components that mathematically describe the racial contribution to genetic variation and 

502 adjust for these components in the statistical analyses to reduce the potential for population 

503 stratification. 

504 Replication and Validation

505 Similar to other branches of science, many reported SNP associations cannot be successfully 

506 reproduced.6, 7 These false positive findings are typically from discovery studies that test many potential 

507 associations without proper statistical correction for multiple comparisons. False positives must be 

508 differentiated from actual, robust associations that may be useful in clinical practice.5 Researchers can 

509 try to assess the robustness of the associations detected in their study by conducting sensitivity 

510 analyses, in which slight changes are made to the patient inclusion/exclusion, genetic model, or 

511 phenotype definition. Genetic association for which these minor adjustments dramatically affect the 

512 effect size and p-value may be false positives or may be insufficiently robust for clinical translation. 

513 While sensitivity analyses can be informative, replication and validation are the optimal methods for 

514 differentiating valid PGx associations from false positives, as described in the Study Objective section.23, 

515 89, 90 Replication and validation of a clinical PGx association is often challenging due to the relative 

516 infrequency of having access to large patient cohorts who have been exposed to a specific drug, meet 

517 study eligibility criteria, and have available phenotypic data. In cases where no such cohort exists, 

518 researchers often turn to cohorts that are as similar as possible, such as cohorts of patients treated with 
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519 a drug in the same class and/or having similar phenotypic data. Another possible approach to collect 

520 data supporting a clinical PGx association is to perform pre-clinical (i.e., in cells, tissues, or animals) 

521 validation experiments or to use publicly available datasets, such as GTEx and Haploreg, to generate 

522 further evidence of a SNP’s influence on gene function and expression.91, 92 While not a formal 

523 replication, results from these datasets can bolster the evidence that the SNP has a causal effect on the 

524 phenotype. 

525 Prediction Accuracy 

526 The accuracy of the genotype to predict the phenotype is a critical determinant of the potential clinical 

527 utility of a PGx association.93 For dichotomous outcomes, multiple statistical tools are available to assess 

528 the predictive power of a PGx variant, including the area under the receiver operating characteristic 

529 (AUROC) curve and the calculation of specificity, sensitivity, positive predictive value (PPV), and negative 

530 predictive value (NPV). Working with the prior example of carbamazepine-induced SJS, HLA-B*15:02 is 

531 predictive of this adverse drug reaction.88 In the Han Chinese population, HLA-B*15:02 testing has 

532 estimated sensitivity=98% and specificity=97%.94 This means that a positive HLA-B*15:02 test detects 

533 98% of individuals that will have carbamazepine-induced SJS and a negative test detects 97% of 

534 individuals that will not have carbamazepine-induced SJS. Similarly, the estimated PPV is 7.7% and the 

535 NPV is 100%, meaning that only 7.7% of those with positive HLA-B*15:02 test will have carbamazepine-

536 induced SJS, but 100% of those with a negative HLA-B*15:02 test will not have carbamazepine-induced 

537 SJS. These results have important implications for the clinical utility of the test. For instance, the low PPV 

538 means that many patients who test positive, and do not receive carbamazepine, would not have 

539 developed SJS if given carbamazepine. However, given the availability of similarly effective alternative 

540 antiepileptic agents, pharmacogenetic-based antiepileptic treatment may still be clinical useful.

541 Conclusion 

542 This tutorial has described critical considerations when performing a PGx association study, starting with 

543 determining the research objective, selecting the cohort, defining a phenotype that is consistent with 

544 the objective, genotyping via candidate or genome-wide approaches, and planning an appropriate 

545 statistical analysis. Thinking through these major decisions when developing a PGx association study will 

546 maximize the chances of success for novice investigators. Although beyond the scope of this tutorial, 

547 comprehensive reporting of the methods and results of PGx association studies in peer-reviewed 

548 manuscripts is critical. We strongly recommend that novice researchers review prior publications 

549 describing best practices for reporting PGx studies,95 including the recently published STROPS 
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550 guidelines.96 PGx association studies can be powerful tools for discovery, replication, or validation of 

551 associations between inherited genetic variation and treatment outcomes, providing the evidence 

552 necessary for future clinical translation to improve efficacy and reduce toxicity of pharmacotherapy. 
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Table 1: Data Types and Attributes for Phenotypes 

Data Type Description Benefits Drawbacks Examples Ideal PGx 

Study Types

Continuous Values Most sensitive to genetic 

variation

Highest analytical power

 Established statistical methods

 Precise estimate of genetic 

effect

 Sensitive to non-genetic effects 

Often multifactorial

 Least clinically useful

Drug concentration

 Change in blood pressure

Discovery 

and 

Replication

Ordinal ≥3 ordered groups  Somewhat sensitive to genetic 

variation

Maintains useful ordering

 Sometimes clinically relevant

 Statistical methods not as well 

established

Not easily clinically translated 

 Severity (none, mild, moderate)

Grade (0, 1, 2, 3)

 Continuous data with ≥2 cut 

points 

Replication

Dichotomous Two groups Most clinically relevant 

Most often used (case/control)

 Established statistical methods

Most clinically translatable

 Least sensitive for analysis

 Least genetically dependent 

 Yes/No event occurred

 Case/control classification

 Continuous data with 1 cut point

Ordinal data with 1 cut point

Validation

Time- (dose-) 

to event 

Dichotomous, but 

accounts for time (or 

dose)

 Similar benefits as dichotomous 

 Accounts for time or dose

 Censor patients who drop out

 Similar drawbacks as 

dichotomous

 Clinical translation is difficult 

 Survival time

 Cumulative dose at toxicity 

Any
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Table 2: Helpful Resources for PGx Investigators

Resource Web Link Features/Attributes

Pharmacogene Variation 

Consortium

https://www.pharmvar.org/ Catalogue allelic variation of genes 

including the SNP or SNPs in the haplotype 

and their resulting functional activity

Clinical Pharmacogenetics 

Implementation Consortium 

(CPIC)

www.cpicpgx.org Reports variant frequencies in many ethnic 

cohorts. Also provides expert consensus 

recommendations for genotype to 

phenotype translation and publishes  

clinical practice guidelines for validated 

gene/drug pairs that are indexed in 

PubMed

The Pharmacogenomics 

Knowledgebase (PharmGKB)

www.pharmgkb.org Leading worldwide resource for PGx 

knowledge, allowing searches by drug, 

gene, or SNP, ultimately directing the end-

user to freely accessible, evidence-graded 

primary PGx literature

Findbase https://findbase.org/#/ Online resource cataloguing frequencies of 

clinically relevant pharmacogenomic 

biomarkers in various populations

ClinGen https://www.clinicalgenome.org/ Repository for clinically relevant genes and 

variants including pharmacogenomic 

variants 

NCBI dbSNP Database https://www.ncbi.nlm.nih.gov/snp/ Public database of known SNPs including 

genomic position and minor allele 

frequency across cohorts
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Table 3: Standardized Terms for Allelic and Phenotypic Activity97

Table 4: Considerations for Selecting Candidate or Genome-wide Pharmacogenetic Study

Candidate SNP/gene Study Genome-wide association Study

Study Objective Best for replication and validation Best for discovery

Approximate 

Cohort Size

100s 1000s

Number of Genetic 

Variants

1-1000s 1,000,000+

Gene Selection Genes related to plausible 

mechanisms such as enzymes and 

transporters for pharmacokinetic 

associations, or prior associations 

Selection not required (all genes analyzed 

simultaneously)

Variant Selection Known functionally consequential 

variants or prior associations 

tagSNPs that are informative of nearby 

variants within haplotype blocks

Typical Genetic 

Model

Selected based on prior knowledge 

or reported association

Additive 

Visualization of 

Association 

Phenotype stratified by genotype 

using bar, box, or survival plots

P-value of association for each variant 

using Manhattan Plot

Critical advantage Less statistical correction to detect 

associations

Identify associations outside of candidate 

genes, efficiency. 

Activity 

Allele function (all genes)

Drug metabolizing 

enzyme phenotypes

Transporter 

phenotypes

 function Ultrarapid metabolizer  function

 function Rapid metabolizer  function

Normal function Normal metabolizer Normal function

Decreased function te metabolizer Decreased function

Highest

Lowest

No function Poor metabolizer Poor function

Unknown Unknown/uncertain function
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Critical Limitation Only detect associations for 

variants selected as candidates

Requires large cohorts, statistical 

correction, and is costly
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Figure Legends

Figure 1: An overview of important considerations when planning and conducting a pharmacogenetic 

association study. Abbreviations: SNP, single nucleotide polymorphism; PGx, pharmacogenetic(s); 

GWAS, genome-wide association study.

Figure 2: Mechanistic chain of Pharmacogenetics Associations. It may be easiest to identify a 

pharmacogenetic (PGx) effect on a proximal surrogate, such as the effect of pharmacokinetic 

pharmacogenetics (PK PGx) on a PK surrogate of drug concentrations. A similar process can be used to 

test for pharmacodynamic pharmacogenetics (PD PGx) on a PD surrogate of biochemical response. If 

genetics affects one of these surrogate endophenotypes, it can then be tested for an effect on a 

clinically relevant treatment outcome in validation studies in preparation for potential clinical 

translation. 

Figure 3. A, Inheritance pattern of alleles to create haplotypes. A pedigree chart is drawn in the middle 

with metabolizer status indicated inside the shape (NM, normal metabolizer; IM, intermediate 

metabolizer). Each person’s alleles for the CYP2D6 gene are shown under their picture, boxes indicate 

exons, darker boxes indicate coding exons with a variant, X indicates splicing variant. The CYP2D6*4 

allele has a splice site variant and an activity value (AV) of 0. The CYP2D6*10 allele contains two 

variants, in exons 1 and 9, conferring an activity value of 0.25. The mother’s diplotype is *1/*4, with an 

activity value of 1, which corresponds with an intermediate metabolizer phenotype. The father’s 

diplotype is *1/*10, with an activity value of 1.25, which corresponds with an normal metabolizer 

phenotype. The baby’s diplotype is *1/*10, with an activity value of 1, which corresponds with an 

intermediate metabolizer phenotype. The boy’s diplotype is *4/*10, with an activity value of 0.25, which 

corresponds with an intermediate metabolizer phenotype. 

B. Selection of candidate single nucleotide polymorphisms (SNPs) for warfarin dose phenotype and 

illustration of the differences between variants captured from sequencing, genome-wide association 

study (GWAS), and candidate SNP genotyping for functional SNPs.

Figure 4: Examples of visual representations for different types of data acquired during a PGx 

association study. Continuous phenotype data such as for drug clearance is often summarized in box 

plots by patient genotype. Ordinal and dichotomous phenotype data are often represented by 

proportions of patients by genotype in histograms. Time to event data is plotted by genotype in Kaplan-

Meier plots which summarize the proportions of patients at risk for an event at a given time point after 

study enrollment. Genome-wide association study data is generally represented in a Manhattan plot, 
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which plots the chromosomal location of SNP variation along the x axis and the -log(p value) for each 

SNP along the y axis. 
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