
Received: 18 October 2020 Revised: 5 April 2021 Accepted: 10 May 2021

DOI: 10.1002/sim.9083

R E S E A R C H A R T I C L E

Bayesian sensitivity analyses for longitudinal data with
dropouts that are potentially missing not at random:
A high dimensional pattern-mixture model

Niko A. Kaciroti1,2 Roderick J.A. Little1

1Department of Biostatistics, School of
Public Health, University of Michigan,
Ann Arbor, Michigan, USA
2Department of Pediatrics, Medical
School, University of Michigan, Ann
Arbor, Michigan, USA

Correspondence
Niko A. Kaciroti, Department of
Biostatistics, School of Public Health,
University of Michigan, Ann Arbor, MI.
Email: nicola@umich.edu

Abstract
Randomized clinical trials with outcome measured longitudinally are frequently
analyzed using either random effect models or generalized estimating equations.
Both approaches assume that the dropout mechanism is missing at random
(MAR) or missing completely at random (MCAR). We propose a Bayesian
pattern-mixture model to incorporate missingness mechanisms that might be
missing not at random (MNAR), where the distribution of the outcome mea-
sure at the follow-up time tk, conditional on the prior history, differs across the
patterns of missing data. We then perform sensitivity analysis on estimates of
the parameters of interest. The sensitivity parameters relate the distribution of
the outcome of interest between subjects from a missing-data pattern at time tk

with that of the observed subjects at time tk. The large number of the sensitiv-
ity parameters is reduced by treating them as random with a prior distribution
having some pre-specified mean and variance, which are varied to explore the
sensitivity of inferences. The missing at random (MAR) mechanism is a special
case of the proposed model, allowing a sensitivity analysis of deviations from
MAR. The proposed approach is applied to data from the Trial of Preventing
Hypertension.

K E Y W O R D S

clinical trials, hypertension, missing data, MNAR future dependent, tipping point analysis,
TROPHY trial

1 INTRODUCTION

Missing data are a common problem in statistical modeling of longitudinal studies where subjects drop out prematurely
before study completion. A wide range of statistical models for analyzing outcomes with missing data is available, with
their performance depending on validity of their underlying assumptions. Approaches include pattern-mixture models
(PMM),1,2 selection models (SM),3-5 and shared-parameter models6,7

In longitudinal studies, the dropout mechanism is missing not at random (MNAR) if the probability of dropping out
at time t depends on yt and/or yt+1, … , yK . When the probability of dropping out at time t depends on future unobserved
values yt+1, … , yK , the dropout mechanism is future dependent MNAR.8 When the number of follow-up visits increases,
modeling missingness mechanism becomes high dimensional and challenging regardless of the approach used. To deal
Abbreviations: MAR, missing at random, MCAR, missing completely at random, MNAR, missing not at random, TROPHY, trial of preventing

hypertension.
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with high dimensionality, Roy and Daniels9 use a latent class PMM, Zhang et al10 use a factor-model imputation, Wang
et al11 use a Bayesian shrinkage model, Scharfstein et al12 used a SM with a low-dimensional parameterization for the
dropout mechanism.

The choice of approach is usually based on the analysis objectives, how best to formulate and incorporate assumptions
about the missingness mechanism, the robustness of each model, the availability of programs to fit the model, and the
flexibility and interpretability of the sensitivity analysis. The SM estimates the marginal parameter of interest directly,
whereas PPM estimate separate parameters for each missing-data pattern, then derive marginal parameters by weighting
across missing-data patterns,13 or alternatively by applying PMM with multiple imputation.14 For cross-sectional data
there is a relationship between the SM and PMM approaches,15 which can make the use of each model interchangeable.
However, for longitudinal data an explicit connection between SM and PMM is often complicated, especially for future
dependent MNAR with a large number of missing-data patterns. Developing methods in this setting is challenging and
an active area of research. For recent work see Wang and Daniels16 who use PMM; Scharfstein et al12 who use SM, and
Linero and Daniels17 who use Bayesian models. Regardless of the model, assumptions that are non-verifiable from the
observed data are needed to identify some of the parameters in the joint distribution, and assessing these assumptions
requires a sensitivity analysis.18,19 A National Research Council report on missing data in clinical trials20 includes the
following recommendation (# 15) in dealing with missing data in clinical trials: "Sensitivity analysis should be part of the
primary reporting of clinical trials. Examining sensitivity to the assumptions about the missing data mechanism should be a
mandatory component of reporting".

1.1 TROPHY trial

Our work was motivated by the Trial Of Preventing Hypertension (TROPHY)21,22 an investigator-initiated study to exam-
ine whether early treatment of prehypertension might prevent or delay the development of hypertension. TROPHY’s
primary objective was to determine whether for patients with prehypertension, two years of treatment with candesartan
would reduce the systolic and diastolic blood pressure and subsequently the incidence of hypertension for up to two years
after active treatment was discontinued. The study consisted first of a two-year double-blind, placebo-controlled phase;
followed by a two-year phase in which all study patients received a placebo. Subjects were examined every three months,
as well as one month after the beginning of each phase. The development of hypertension was chosen as the primary
study event. After an event occurred, antihypertension treatment with metoprolol, hydrochlorothiazide, and some other
medications was offered at no cost.

After the TROPHY trial and other studies, the American College of Cardiology and the American Heart Association
(ACC/AHA) provided in 2017 a coherent and clinically relevant guideline23 to health care providers for the prevention,
detection, evaluation, and management of high blood pressure. Under the new guidelines, what was defined as prehy-
pertension in TROPHY study (systolic blood pressure of 130-139 mm Hg and diastolic pressure of 89 mm Hg or lower,
and systolic pressure of 139 mm Hg or lower and diastolic pressure of 85 to 89 mm Hg), is now considered Stage 1 hyper-
tension. Important issues related to these new diagnostic thresholds, intensified treatment goals, and their implications
for clinical practice are discussed by Byrd and Brooks.24 Given the new guidelines, in this paper we focus on making
inferences on the effect of candesartan during the active treatment period (baseline to 24 months) in controlling the dias-
tolic blood pressure (DBP) from the high range of 85-90 of Stage 1 hypertension to the new recommended value of below
80, and the methodological challenges that are related to increasing missing or censored data. Specifically, DBP data are
considered (1) missing if subjects dropped out before developing hypertension; and (2) censored when subjects devel-
oped hypertension and following the protocol other more aggressive pharmacological treatment of blood pressure was
initiated; in that case the follow-up DBP data are affected and cannot be used for estimating the candesartan effect. The
counterfactual question is: what would the values of blood pressure be in each treatment group if we had not intervened
with other drugs after development of hypertension? In addition, some subjects occasionally missed scheduled visits and
had intermittent missing data; we consider them to be missing at random (MAR).

1.2 Modeling missing data

We propose new models to address the problem related to missing data in TROPHY study; such models, how-
ever, can be used for analyses of other similar longitudinal studies with dropouts. A range of models for imputing
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missing values is available. For example, missing values are imputation using a MAR model and then to allow
for MNAR a 𝛿 value (ie, 𝛿-adjustment) is added, which captures the mean difference 𝛿 between MNAR and MAR
models.25 Rather than modeling the mean, Wang and Feng26 and Tang et al27 use quantile based imputation for imput-
ing missing values. However, in longitudinal studies the dropouts can differ from observed subjects not only with
respect to means or quantiles, but also with respect to within-subject autocorrelations. Specific to the TROPHY study,
well known risks on cardiovascular events are high blood pressure and the visit-to-visit variability (VVV) in blood
pressure, where higher VVV is associated with higher risk of cardiovascular events or deaths.28 The visit-to-visit vari-
ability is effected by the variance at each visit and the strength of the visit-to-visit association.29 Thus, if the dropout
mechanism depends on the risk of cardiovascular events we propose a sensitivity analysis that simultaneously cap-
tures differences in mean, variance, and visit-to-visit associations, by varying parameters summarizing each of these
features.

In randomized clinical trials, the target population is often an at-risk or affected population, where the distribution
f (y1) of the primary outcome Y1 at baseline is restricted. In the TROPHY study, the distribution for Y1 is truncated and not
normal, requiring methods that are robust to any distributional assumption about f (y1) or the multivariate distribution
of Y .

We propose here a Bayesian pattern-mixture model for MNAR data that is flexible for modeling future depen-
dent missingness, is distribution-free for f (y1), and can accommodate a large number of measurements over
time. We introduce sensitivity parameters that capture differences in means, variances, and visit-to-visit associa-
tions between dropouts and observed subjects. We develop and implement a Bayesian algorithm in JAGS (Just
Another Gibbs Sampler: https://sourceforge.net/projects/mcmc-jags) for fitting the model and performing sensitivity
analyses.

The number of unidentified parameters in the proposed model is substantial, and increases rapidly at the order of
O(K3), where K is the number of the dropout patterns. To deal with this problem, we use a Bayesian approach similar
to Kaciroti et al,30 where the number of sensitivity parameters is reduced by considering them to be randomly cho-
sen from a prior distribution. This prior distribution links all these parameters together around an average missingness
mechanism (mean parameter), while accommodating possible differences among them by introducing random variation
(variance parameter); the mean and variance then become the parameters for sensitivity analysis. The sensitivity param-
eters are easy to understand; they relate the distribution of the observed data at time t to that of the missing data at time
t across different missing-data patterns. The parameterization and the associated prior distribution provide for model-
ing different types of MAR and MNAR missing data. The model also enables a sensitivity analysis for MNAR departures
from MAR.31

In Section 2 we outline the general model when the missingness mechanism is MAR and expand this in Section 3 to
missing data that are MNAR. In Section 4 we describe the Bayesian approach used to fit the proposed model. In Section 5
we apply the proposed model to TROPHY data. Section 6 provide results of simulation studies. Conclusions are given in
Section 7.

2 BAYESIAN MODEL UNDER MAR

Let Y = (Y1,Y2, … ,YK)′ be a vector of K repeated measures, where Y1 denotes the baseline (pre-randomization) value
measured at time t1 = 0, and Yk denotes the outcome at visit k measured at follow-up time tk, k = 2, … ,K. Let R denote
the dropout pattern, where R = r indicates the last visit (r) a subject was observed, with R = K being the complete data
pattern. Let Z be a treatment indicator Z = z for z = 0, 1. We are interested in estimating the expected mean for a subject
i in group z at each visit k:

E(Yik|Z = z) = 𝜇zk,

and testing for group differences in the outcome Y during the whole study period from k = 1 to K. In presence of dropouts,
we propose a Bayesian pattern-mixture model that incorporates different assumptions about the missingness mechanism
into the final analysis. These assumptions are based on quantifying the differences between dropout subjects and observed
subjects, and allow sensitivity analysis using the MAR assumption as a reference. We assume that the mean for subjects
in group z at visit k ≥ 2 from pattern R = r, depends on previous responses Y zk−1 = (Yz1, … Yzk−1) and relevant base-
line covariates X = (X1,X2, … ,Xp). Controlling for covariates X , makes the MAR assumption more likely, improves the

https://sourceforge.net/projects/mcmc-jags
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normality of the residuals and reduces their variance, consequently resulting in a better imputation model. We assume
the following distribution for pattern R = r:

f (Yzk|X ,Y zk−1,R = r) = N(𝜇(r)
zk|k− , 𝜎

2(r)
zk|k−), (1)

where E(Yzk|X ,Y zk−1,R = r) = 𝜇
(r)
zk|k− and Var(Yzk|X ,Y zk−1,R = r) = 𝜎2(r)

zk|k− are the conditional mean and the conditional
variance among subjects in group z, pattern R = r, for k ≥ 2.

The means and variances in (1) are not all identified as there are no data to estimate𝜇(r)
izk|k− and 𝜎2(r)

zk|k− for k ≥ 2, r < k. To
identify the model, we relate the distribution of the missing data at visit k to that of the observed data at visit k conditioned
on baseline covariates and the previous responses. Following the available-case missing value (ACMV) constraint,32 the
missingness mechanism is MAR if and only if for ∀ k ≥ 2, r < k, and ∀ z the following is true:

f (Yzk|X ,Y zk−1,R = r) = f (Yzk|X ,Y zk−1,R ≥ k), (2)

here (R ≥ k) corresponds to the observed data at visit k. We assume the following distribution of the observed data at visit
k ≥ 2 for R ≥ k

f (Yzk|X ,Y zk−1,R ≥ k) = N(𝜇(≥k)
zk|k− , 𝜎

2(≥k)
k|k−). (3)

Here 𝜇(≥k)
zk|k− and 𝜎2(≥r)

zk|k− are the mean and the variance of the observed data for Yzk, conditioned on X and Y zk−1 among
subjects in patterns R ≥ k ≥ 2. The conditional mean 𝜇(≥k)

zk|k− can be any parametric function of X and previous responses;
here it is assumed to be linear:

𝜇
(≥k)
zk|k− = 𝛽

(≥k)
0zk +

k−1∑
l=1
𝛽
(≥k)
lzk (yzk−l − y(≥k)

zk−l) + 𝛼
(≥k)
zk (x − x)T ,

where the intercept 𝛽(≥k)
0zk represents the expected value of Y (≥k)

zk|k− for an average subject with previous BP and covariates

values equal to y(≥k)
z1 , y(≥k)

z2 , … , y(≥k)
zk−1 and x. 𝛽(≥k)

lzk is the lth order autoregression coefficient, and 𝛼(≥k)
zk = (𝛼(≥k)

1zk , … , 𝛼
(≥k)
pzk )

are the regression parameters for X = (X1, … ,Xp).
From (1), (2), and (3) the missingness mechanism is MAR if and only if 𝜇(r)

zk|k− = 𝜇
(≥k)
zk|k− and 𝜎2(r)

zk|k− = 𝜎2(≥r)

zk|k− for k ≥ 2,
r < k, and ∀z. Consequently, under a MAR assumption following Molenberghs et al32 we have:

f (Yzk|X ,Y zk−1) = N(𝜇(≥k)
zk|k− , 𝜎

2(≥k)
zk|k− ),

and 𝜇(≥k)
zk|k− = 𝛽

(≥k)
0zk +

∑k−1
l=1 𝛽

(≥k)
lzk (yzk−l − y(≥k)

zk−l) + 𝛼
(≥k)
zk (x − x)T for k = 2, 3, … ,K. Note that there is no assumption about the

distribution of baseline measure Y1 or on the multivariate distribution of Y .
Some subjects occasionally missed scheduled visits and had intermittent missing data. Let Iik be the intermittent

missing indicator, which is equal to 1 if subject i has an intermittent missing value at visit k and 0 otherwise when Rik ≥ k
(ie, subjects i has not dropped out by visit k). We assume that any intermittent missing value is MAR within the observed
pattern (Rik ≥ k), or:

f (Yizk|Y izk−1,Rik ≥ k, Iik = 1) = f (Yik|Y ik−1,Rik ≥ k, Iik = 0).

The implementation under the Bayesian approach is straight forward, where the subject i with missing intermittent
value at visit k is imputed using a draw from f (Yik|Y ik−1,Rik ≥ k) (the observed data model), and values after dropout or
censoring imputed treating the imputed intermittent values like observed values.

3 EXPANDED MODEL FOR MNAR MECHANISMS

Under a MNAR missingness mechanism we assume a sequential pattern-mixture model with normal distributions (2)
for the observed data and (3) for the missing data. The models are unidentified as there are no data to estimate 𝜇(r)

zk|k−
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and 𝜎2(r)
zk|k− for k ≥ 2, r < k, and z = 0, 1. For monotone missing data, the ACMV restriction is equivalent to MAR. Here

we extend the ACMV approach to identify the PMM when missing data are MNAR, and provide for a sensitivity analysis
around MAR. For MNAR the identifying constraints relate the distribution of the missing data to that of the observed data.
Because there are no data to estimate the identifying constraints, it is useful to have intuitive and easy-to-interpret param-
eters, which can then be evaluated using a sensitivity analysis. We propose identifying constraints for the parameters of
the missing-data patterns by relating them to the parameters of the observed data as follows:

𝜇
(r)
zk|k− = 𝛽

(r)
0zk +

k−1∑
l=1
𝛽
(r)
lzk(yzk−l − y(≥k)

zk−l) + 𝛼
(r)
zk (x − x)T , (4)

where

𝛽
(r)
0zk = 𝛽

(≥k)
0zk + �̃�(r)zk

𝛽
(r)
lzk = 𝛽

(≥k)
lzk (1 + 𝛿(r)lzk)

𝜎2(r)
zk|k− = �̃�

(r)
zk𝜎

2(≥k)

zk|k−

∀ k ≥ 2, r < k, and z = 0, 1. We assume here that 𝛼(r)zk = 𝛼
(≥k)
zk = 𝛼zk, but similar constraints to the one used for 𝛽(r)lzk can be

introduced as needed.
Here �̃�(r)zk , 𝛿(r)lzk, and �̃� (r)

zk are the sensitivity parameters used to identify the model. The �̃�(r)zk measures the difference
between location parameters 𝜇(r)

zk|k− and 𝜇(≥k)
zk|k− at visit k for group z. That is, �̃�(r)zk is the expected difference at visit k between

an ”average” subject in observed pattern (≥ k) and a similar subject from a missing pattern r for group z. “Average” is
defined as a subject whose previous BP and covariates values are equal to y(≥k)

z1 , y(≥k)
z2 , … , y(≥k)

zk−1 and xz; 𝛿(r)lzk represents the
relative difference in lag-l associations between subjects in missing pattern r at visit k with subjects from the observed
data at visit k for group z; and �̃� (r)

zk represents the ratio of residual variances for the missing data in pattern r at visit k with
the observed data at visit k, for group z condition on the previous measures.

The proposed PMM is a high dimensional when the number of follow-up measures is large. To reduce the number of
sensitivity parameters one could fix them to a common value, that is, �̃�(r)zk = lz, 𝛿(r)lzk = dz, and �̃� (r)

zk = az. We propose here
a more general approach, by assuming them to have a common mean, but allowing for uncertainty around the mean as
follows:

�̃�
(r)
zk ∼ N(lz, c2l2

z)

𝛿
(r)
lzk ∼ N(dz, c2d2

z)

�̃�
(r)
zk ∼ Log − Normal(az, c2a2

z)

The sensitivity parameters are now reduced to 𝜔 = (c, l0, l1, d0, d1, a0, a1), where az > 0 and c is the coefficient
of variation. With this approach we can quantify the differences between the missing subjects vs. observed
subjects by providing an average value ± some range, with the deterministic constrain being a special case
when c = 0.

4 FITTING THE MODEL

The parameters of interest are the marginal growth curves 𝜇z = (𝜇z1, 𝜇z2, … , 𝜇zK)′ for each group z as if no
subject was missing or treated with other medications after they developed hypertension. We use a fully
Bayesian approach to impute draws of the missing data, then derive inference on the marginal parameters
using Bayesian bootstrapping33 on the whole (observed and drawn) data. The missing data are drawn based on
the joint posterior distribution [�̃�, 𝛿, �̃� , 𝛼, 𝛽,Σ,Y (Miss)|Data, l, d, a, c]. Here, Data = (z, x, y1, y(≥2)

2 , y(≥3)
3 , … , y(≥K)

K ); 𝛼 =
{(𝛼1zk, 𝛼2zk … , 𝛼pzk)|k = 2, … ,K, z ∈ Z} and 𝛽 = {𝛽(≥k)

lzk , |l = 0, … , k − 1, k = 2, … ,K, z ∈ Z} are the set of 𝛼 and 𝛽

parameters for the observed data; Σ = {𝜎2(≥k)
zk|k− |k = 2, … ,K, z ∈ Z} is the set of 𝜎2(≥k)

zk|k− parameters for the observed data;

Y (Miss) = (y(1)2 , y
(1)
3 , y

(2)
3 , … , y(1)K , … , y(K−1)

K ) are the missing data; �̃� = {�̃�(r)zk |k ≥ 2, r = 1, … , k − 1, z ∈ Z}; 𝛿 = {𝛿(r)lzk|k ≥
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2, l = 1, … , k − 1, r = 1, … , k − 1, z ∈ Z}; and �̃� = {�̃� (r)
zk |k ≥ 2, r = 1, … , k − 1, z ∈ Z}. The joint posterior distribution

can be decomposed as a product of three distributions:

[�̃�, 𝛿, �̃� , 𝛼, 𝛽,Σ,Y (Miss)|Data, l, d, a, c] = [�̃�, 𝛿, �̃�|Data, l, d, a, c]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

[𝛼, 𝛽,Σ|�̃�, 𝛿, �̃� ,Data, l, d, a, c]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

[Y (Miss)|�̃�, 𝛿, �̃� , 𝛼, 𝛽,Σ,Data, l, d, a, c]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3

Then, imputations from the joint distribution are drawn sequentially from distribution 1, 2, and 3 as follows.

4.1 Draw from [�̃�, 𝜹, �̃�|Data, l,d,a, c]

In a PMM setting the data provide no evidence for sensitivity parameters,13 or:

[�̃�, 𝛿, �̃�|Data, l, d, a, c] = [�̃�|l, c][𝛿|d, c][�̃�|a, c].

Thus, �̃�(r)zk , 𝛿(r)zk , �̃� (r)
zk for group z are drawn from

�̃�
(r)
zk ∼  (lz, c2l2

z)

𝛿
(r)
lzk ∼  (dz, c2d2

z)

�̃�
(r)
zk ∼ Log − Normal(az, c2a2

z).

4.2 Draw from [𝜶, 𝜷,𝚺|�̃�, 𝜹, �̃� ,Data, l,d,a, c]

Within the PMM the fit of the model to the observed data is identical for all choices of sensitivity parameters and does
not depend on the missing data,13 that is:

[𝛼, 𝛽,Σ|�̃�, 𝛿, �̃� ,Y (Miss),Data, l, d, a, c] = [𝛼, 𝛽,Σ|Data].

Here,

[𝛼, 𝛽,Σ|Data] =
K∏

k=2
f (y(≥k)

k |z, x, y(≥k)
1 , … , y(≥k)

k−1 , 𝛼, 𝛽,Σ)f (y
(≥1)
1 |x, z)[𝛼, 𝛽][Σ],

where
f (y(≥k)

k |z, x, y(≥k)
1 , … , y(≥k)

k−1 , 𝛼, 𝛽,Σ) = N(𝜇(≥k)
zk|k− , 𝜎

2(≥k)
zk|k− ).

Thus the observed data model is fitted based on a set of linear regression models where 𝜇(≥k)
zk|k− = 𝛽

(≥k)
0zk +

∑k−1
l=1 𝛽

(≥k)
lzk (yk−l

− y(≥k)
k−l ) + 𝛼zk(x − x) for k = 2, 3, … ,K with noninformative prior distributions for 𝛼, 𝛽, and Σ.

4.3 Draw from [Y (Miss)|�̃�, 𝜹, �̃� , 𝜶, 𝜷,𝚺,Data, l,d,a, c]

This is the imputation step, where the missing values are drawn from their posterior distribution. Let y(r)k be missing value
at visit k for a subject from group z in missing pattern r, k = 2, … ,K and 2 ≤ r < k. Then,

f (y(r)k |z, x, y
k−1
, 𝛼, 𝛽,Σ, �̃�, 𝛿, �̃�) = N(𝜇(r)

zk|k− , 𝜎
2(r)
zk|k−),
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where following (4):

𝜇
(r)
zk|k− = (𝛽(≥r)

0zk + �̃�(r)zk ) +
k−1∑
l=1
𝛽
(≥r)
lzk (1 + 𝛿(r)lzk)(yk−l − y(≥k)

k−l ) + 𝛼zk(x − x)

and

𝜎
2(r)
zk|k− = �̃�

(r)
zk𝜎

2(≥k)
zk|k− .

Within this step, the draws of y(r) = (y(r)r+1, … , y(r)K ) are sequential: specifically, y(r)r+1 is drawn first, and next y(r)r+2 up to y(r)k ,
conditioned on the previous draws and the observed data.

In addition, any subject with an intermittent missing value, which is assumed MAR, is included in the observed
data model and the intermittent missing value is automatically imputed as a drawn based on the observed data
model.

4.4 Draws of marginal parameters 𝝁z = (𝝁z0, 𝝁z1, … , 𝝁zK)′

The parameter of interest are the marginal parameters 𝜇z = (𝜇z0, 𝜇z1, … , 𝜇zK)′, where E(Yzk|Z = z) = 𝜇zk for each treat-
ment group z. Once the missing data are drawn, we can simulate draws of 𝜇z from the completed data (observed and
drawn/imputed). This can be viewed as a multiple imputation and has been proposed in Demirtas and Schafer.34 The like-
lihood function for 𝜇z is a mixture of distributions accross all missing patterns and a direct draw for 𝜇z is not feasible. We
use Bayesian bootstrapping to draw inference on 𝜇z based on the full data set. The Bayesian bootstrapping reweights the
completed data Y = (Y1,Y2, … ,YK)′ into a new bootstrap data set . Each observation yi ∈ , i = 1, 2, … ,N is weighted
by wi = u(i+1) − u(i), where u(i) is the ith ordered statistics for ui ∼ U[0, 1], i = 2, … ,N and u(1) = 0, u(N+1) = 1. The dis-
tribution of 𝜇z = (𝜇z0, 𝜇z1, … , 𝜇zK)′ from many such data sets  is then a simulation approximation of the posterior
distributions on 𝜇z.33

4.5 Sensitivity analysis

We vary lz, dz, az, and c in a sensitivity analysis. For example, when the missing data are MAR, then all �̃�(r)zk = 𝛿
(r)
lzk = 0,

and �̃� (r)
zk = 1, or lz = dz = c = 0 and az = 1. Alternatively, when the missing data are MNAR, then not all �̃�(r)zk ’s, 𝛿(r)lzk’s equal

to 0 and �̃� (r)
zk ’s equal to 1. Thus lz, dz, and az can measure deviations from MAR. Trying values of sensitivity param-

eters in a neighborhood of the MAR (lz, dz ≈ 0, az ≈ 1, and small c), can often provide reassuring information about
whether the inferences are robust to moderately non-ignorable missingness mechanisms. Tipping point sensitivity anal-
yses to find values lz, dz, az, and c, for which group comparisons are borderline significant (ie, P-value=.05), are also
useful, to assess how far from MAR the missingness mechanism must be for treatment differences to lose the statistical
significance.35,36

4.6 Implementation using JAGS

We used run.jags and rjags packages in RStudio to fit the model. The following noninformative prior distributions
were used for the parameters of the observed data model: 𝛼pzk, 𝛽(≥k)

lzk ∼ N(0, 10000), and 𝜎
(≥k)
zk|k− ∼ U(0, 20). We run

1000 iterations for adapting phase with another 4000 burn in iterations. The final inferences were based on 10
000 additional iterations. Two chains, each using different initial values, were used to calculate the Deviance Infor-
mation Criteria (DIC) using run.jags. The 3rd-order autoregression model A(3) was used for imputation as higher
order autoregression models increased the DIC. The MCMC simulations had good mixing with lag-10 autocorrela-
tions all around zero. The MCMC convergence was monitored using the Gelman-Rubin convergence diagnostic,37

where all potential scale reduction factor were around 1. The ratios of Monte Carlo standard errors of each param-
eter to the posterior standard deviations were very small MCSE∕SD < 1%, indicating that the Markov chain has
stabilized and the mean estimates do not vary much over time. Because the Markov chain for our model con-
verged without difficulty, we used one single chain for running simulation studies to reduce the computational
time.
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F I G U R E 1 Missing data pattern for each group

5 APPLICATION

5.1 The TROPHY data

In this section we apply the method described in Section 3 to the data from the TROPHY study. The study population
consisted of 772 patients randomly assigned to candesartan (391) or placebo (381). Among the 772 participants 109 (54
in placebo) dropped out before developing hypertension. Also, 136 (120 in placebo) subjects developed hypertension and
their DBP were censored, after other BP medications were initiated. Thus, 245 subjects had a missing or censored DBP
(174 in the placebo group). Sometimes a subject missed a schedule visit but came back later. The fraction of intermittent
missing values was very low, and such missingness were expect to be unrelated to BP and hence MAR—that is, a subject
missed a visit due to schedule conflicts or other reasons not related to BP, but came back for future visits. Figure 1 shows
the rates of missing data, which are higher for subjects in the placebo group.

The effect of candesartan—compared to placebo—in reducing DBP is estimated both over the 24 months period, as
well as at 24 months.

5.2 Sensitivity analysis

Sensitivity analyses to assess the deviations from MAR (lz = 0, dz = 0, az = 1, c = 0) are performed to assess the effect of
the missing data on the final results. We consider dz = 0, 0.3,−0.3 and az = 1, 1.3, 0.7, which reflect no difference, 30%
increase, or 30% decrease in the lag-associations and residual variance respectively, between subjects from a missing
pattern versus subjects from the observed data pattern. We vary lz at −2, 2, and 0, which reflect a medium Cohen’s effect
size of −0.5SD and 0.5SD (baseline SD = 4.06), or no difference between subjects from a missing pattern versus subjects
from the observed data pattern. A value of lz > 0 indicates that, on average, subjects in a missing pattern have higher DBP
than the observed subjects—and the opposite would be true for lz < 1. We set c = .3, which provides a range for �̃�(r)zk with
a 95%CI of l(r)z (1 ± .59).

In addition, sensitivity analyses based on assumptions that make the treatment effect borderline significant, lz = lz,
dz = dz, and az = az are also included. We focus on lz as the tipping-point parameter, because it has the highest impact
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T A B L E 1 Sensitivity analysis under
alternative dropout mechanisms with
d0 = d1 = 0

Sensitivity parameters (c=0.3) Placebo Candesartan Difference (𝚫)

l0 = l1 = 0

a0 = a1 = 1 (MAR) 84.3 (.54) 78.6 (.42) −5.7 (−7.1,−4.4)

a0 = a1 = 1.3 84.3 (.56) 78.6 (.43) −5.7 (−7.1,−4.3)

a0 = a1 = 0.7 84.3 (.51) 78.6 (.39) −5.7 (−7.0,−4.5)

l0 = 0, l1 = 2

a0 = a1 = 1 84.3 (.54) 79.3 (.44) −5.0 (−6.4,−3.7)

a0 = a1 = 1.3 84 .3 (.56) 79.3 (.45) −5.0 (−6.5,−3.6)

a0 = a1 = 0.7 84.3 (.51) 79.3 (.43) −5.0 (−6.4,−3.7)

l0 =−2, l1 = 0

a0 = a1 = 1 82.5 (.51) 78.6 (.42) −3.9 (−5.2,−2.7)

a0 = a1 = 1.3 82.5 (.54) 78.6 (.44) −3.9 (−5.3,−2.6)

a0 = a1 = 0.7 82.5 (.47) 78.6 (.40) −3.9 (−5.1,−2.7)

l0 =−2, l1 = 2

a0 = a1 = 1 82.5 (.52) 79.3 (.44) −3.2 (−4.5,−1.9)

a0 = a1 = 1.3 82.5 (.53) 79.3 (.46) −3.2 (−4.5,−1.9)

a0 = a1 = 0.7 82.5 (.47) 79.3 (.43) −3.2 (−4.4,−1.9)

l0 = −2, l1 =−2

a0 = a1 = 1 82.5 (.51) 77.9 (.41) −4.6 (−5.9,−3.3)

a0 = a1 = 1.3 82.5 (.54) 77.9 (.43) −4.6 (−6.0,−3.2)

a0 = a1 = 0.7 82.5 (.48) 77.9 (.40) −4.6 (−5.8,−3.4)

l0 = 2, l1 =−2

a0 = a1 = 1 86.1 (.62) 77.9 (.41) −8.2 (−9.7,−6.8)

a0 = a1 = 1.3 86.1 (.64) 77.9 (.43) −8.2 (−9.7,−6.7)

a0 = a1 = 0.7 86.1 (.60) 77.9 (.39) −8.2 (−9.7,−6.9)

l0 = 2, l1 = 2

a0 = a1 = 1 86.1 (.62) 79.3 (.44) −6.9 (−8.4,−5.4)

a0 = a1 = 1.3 86.1 (.64) 79.3 (.46) −6.8 (−8.4,−5.3)

a0 = a1 = 0.7 86.1 (.59) 79.3 (.43) −6.8 (−8.3,−5.4)

l0 = −4.7, l1 = 0

a0 = a1 = 1 80.1 (.60) 78.6 (.42) −1.5 (−2.9,0.0)a

a0 = a1 = 1.3 80.1 (.61) 78.6 (.43) −1.5 (−2.9,0.0)

a0 = a1 = 0.7 80.1 (.57) 78.6 (.40) −1.5 (−2.9,−0.1)

l0 = 0, l1 = 11.5

a0 = a1 = 1 84.3 (.53) 82.5 (.73) −1.8 (−3.7,0.0)a

a0 = a1 = 1.3 84.3 (.56) 82.5 (.77) −1.8 (−3.7,0.0)

a0 = a1 = 0.7 84.3 (.51) 82.5 (.74) −1.8 (−3.6,0.1)

l0 =−3.46, l1 = 3.46

a0 = a1 = 1 81.2 (.54) 79.8 (.48) −1.4 (−2.8,0.0)a

a0 = a1 = 1.3 81.2 (.56) 79.8 (.49) −1.4 (−2.9,0.1)

a0 = a1 = 0.7 81.2 (.51) 79.8 (.46) −1.4 (−2.8,0.0)

aBordeline significant: P-value = .05.
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Sensitivity parameters (c=0.3) Placebo Candesartan Difference (𝚫)

l0 = l1 = 0

a0 = a1 = 1 (MAR) 85.5 (.69) 79.1 (.47) −6.4 (−8.1,−4.8)

a0 = a1 = 1.3 85.5 (.72) 79.1 (.49) −6.4 (−8.2,−4.8)

a0 = a1 = 0.7 85.5 (.66) 79.1 (.45) −6.4 (−8.1,−4.9)

l0 = 0, l1 = 2

a0 = a1 = 1 85.5 (.70) 79.9 (.52) −5.6 (−7.3,−3.9)

a0 = a1 = 1.3 85.5 (.71) 79.9 (.54) −5.6 (−7.4,−3.8)

a0 = a1 = 0.7 85.5 (.68) 79.9 (.50) −5.6 (−7.2,−3.9)

l0 = −2, l1 = 0

a0 = a1 = 1 83.2 (.63) 79.1 (.47) −4.1 (−5.6,−2.6)

a0 = a1 = 1.3 83.2 (.65) 79.1 (.49) −4.1 (−5.7,−2.5)

a0 = a1 = 0.7 83.2 (.59) 79.1 (.45) −4.1 (−5.5,−2.7)

l0 = −2, l1 = 2

a0 = a1 = 1 83.2 (.62) 79.9 (.52) −3.2 (−4.8,−1.6)

a0 = a1 = 1.3 83.2 (.65) 79.9 (.53) −3.2 (−4.9,−1.6)

a0 = a1 = 0.7 83.2 (.59) 79.9 (.51) −3.2 (−4.7,−1.7)

l0 = −2, l1 = −2

a0 = a1 = 1 83.2 (.62) 78.2 (.45) −5.0 (−6.5,−3.5)

a0 = a1 = 1.3 83.2 (.65) 78.2 (.47) −5.0 (−6.6,−3.4)

a0 = a1 = 0.7 83.2 (.59) 78. (.43) −5.0 (−6.4,−3.6)

l0 = 2, l1 = −2

a0 = a1 = 1 87.9 (.86) 78.2 (.45) −9.7 (−11.7,−7.8)

a0 = a1 = 1.3 87.9 (.89) 78.2 (.47) −9.7 (−11.7,−7.7)

a0 = a1 = 0.7 87.9 (.84) 78.2 (.43) −9.7 (−11.5,−7.9)

l0 = 2, l1 = 2

a0 = a1 = 1 87.9 (.86) 79.9 (.52) −7.9 (−9.9,−6.0)

a0 = a1 = 1.3 87.9 (.88) 80.0 (.54) −7.9 (−10,−5.9)

a0 = a1 = 0.7 87.9 (.83) 79.9 (.51) −7.9 (−9.8,−6.0)

l0 = −4.1, l1 = 0

a0 = a1 = 1 80.7 (.68) 79.1 (.47) −1.6 (−3.3,0.0)a

a0 = a1 = 1.3 80.7 (.70) 79.1 (.49) −1.6 (−3.3,0.1)

a0 = a1 = 0.7 80.7 (.65) 79.1 (.45) −1.6 (−3.2,−0.1)

l0 = 0, l1 = 9.5

a0 = a1 = 1 85.5 (.69) 83.2 (.87) −2.2 (−4.4,0.0)a

a0 = a1 = 1.3 85.5 (.73) 83.2 (.88) −2.2 (−4.4,0.1)

a0 = a1 = 0.7 85.5 (.66) 83.2 (.86) −2.2 (−4.3,−0.1)

l0 = −3, l1 = 3

a0 = a1 = 1 82.0 (.63) 80.4 (.56) −1.6 (−3.3,0.0)a

a0 = a1 = 1.3 82.0 (.66) 80.4 (.57) −1.6 (−3.4,0.1)

a0 = a1 = 0.7 82.0 (.60) 80.4 (.55) −1.6 (−3.2,0.0)

aBordeline significant: P-value = .05.

T A B L E 2 Sensitivity analysis
under alternative dropout
mechanisms with d0 = d1 = 0.3
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T A B L E 3 Sensitivity analysis
under alternative dropout
mechanisms with d0 = d1 = −0.3

Sensitivity parameters (c=0.3) Placebo Candesartan Difference (𝚫)

l0 = l1 = 0

a0 = a1 = 1 (MAR) 83.6 (.46) 78.3 (.40) −5.2 (−6.3,−4.0)

a0 = a1 = 1.3 83.6 (.49) 78.3 (.41) −5.2 (−6.5,−4.0)

a0 = a1 = 0.7 83.6 (.43) 78.3 (.39) −5.2 (−6.4,−4.1)

l0 = 0, l1 = 2

a0 = a1 = 1 83.6 (.47) 78.9 (.41) −4.7 (−5.9,−3.5)

a0 = a1 = 1.3 83.6 (.49) 78.9 (.43) −4.7 (−6.0,−3.4)

a0 = a1 = 0.7 83.6 (.44) 78.9 (.40) −4.7 (−5.9,−3.5)

l0 = −2, l1 = 0

a0 = a1 = 1 82.1 (.46) 78.3 (.40) −3.8 (−5.0,−2.6)

a0 = a1 = 1.3 82.1 (.49) 78.3 (.41) −3.8 (−5.1,−2.6)

a0 = a1 = 0.7 82.1 (.44) 78.3 (.39) −3.8 (−4.9,−2.6)

l0 = −2, l1 = 2

a0 = a1 = 1 82.1 (.46) 78.9 (.41) −3.3 (−4.5,−2.0)

a0 = a1 = 1.3 82.1 (.49) 78.9 (.43) −3.3 (−4.5,−2.0)

a0 = a1 = 0.7 82.1 (.44) 78.9 (.40) −3.3 (−4.4,−2.1)

l0 = −2, l1 = −2

a0 = a1 = 1 82.1 (.46) 77.8 (.40) −4.4 (−5.6,−3.1)

a0 = a1 = 1.3 82.1 (.49) 77.8 (.41) −4.4 (−5.6,−3.1)

a0 = a1 = 0.7 82.1 (.44) 77.8 (.38) −4.4 (−5.5,−3.2)

l0 = 2, l1 = −2

a0 = a1 = 1 85.0 (.51) 77.8 (.40) −7.2 (−8.5,−6.0)

a0 = a1 = 1.3 85.0 (.54) 77.8 (.41) −7.2 (−8.5,−5.9)

a0 = a1 = 0.7 85.0 (.49) 77.8 (.39) −7.2 (−8.4,−6.0)

l0 = 2, l1 = 2

a0 = a1 = 1 85.1 (.51) 78.9 (.42) −6.1 (−7.4,−4.8)

a0 = a1 = 1.3 85.0 (.54) 78.9 (.43) −6.1 (−7.5,−4.8)

a0 = a1 = 0.7 85.0 (.49) 78.9 (.40) −6.1 (−7.4,−4.9)

l0 = −5.4, l1 = 0

a0 = a1 = 1 79.7 (.56) 78.3 (.40) −1.4 (−2.7,0.0)a

a0 = a1 = 1.3 79.7 (.59) 78.3 (.41) −1.4 (−2.8,0.0)

a0 = a1 = 0.7 79.7 (.54) 78.3 (.38) −1.4 (−2.7,−0.1)

l0 = 0, l1 = 13.3

a0 = a1 = 1 83.6 (.47) 82.0 (.68) −1.6 (−3.2,0.0)a

a0 = a1 = 1.3 83.6 (.49) 82.0 (.69) −1.6 (−3.2,0.1)

a0 = a1 = 0.7 83.6 (.44) 82.0 (.67) −1.6 (−3.1,0.0)

l0 = −3.96, l1 = 3.96

a0 = a1 = 1 80.7 (.51) 79.4 (.44) −1.3 (−2.6,0.0)a

a0 = a1 = 1.3 80.7 (.54) 79.4 (.45) −1.3 (−2.7,0.1)

a0 = a1 = 0.7 80.7 (.49) 79.4 (.42) −1.3 (−2.5,0.0)

aBordeline significant: P-value = .05.
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F I G U R E 2 Diastolic blood
pressure curves over the 24 months
period for the two groups and their
differences, for a range of values of
sensitivity parameters

in the sensitivity analysis. We set dz = −0.3, 0, .3 and az = 1, and find lz indicating how much the missing data must
differ from the observed data for the significance level to change. All analyses are controlled for baseline systolic blood
pressure, age, and sex. The results of sensitivity analyses for DBP at 24 months are shown in Tables 1, 2, and 3. Simi-
larly, we can estimate the DBP at each visit. We emphasize values l0 < 0 and l1 > 0 for the sensitivity parameters, which
favor the Placebo group, to assess robustness of the effect of candesartan to unfavorable scenarios about the missing
data.

Figure 2 shows the curves of DBP of the two groups for different values for l0 and l1, and c = .3, d = 0, and a = 1.
The sensitivity analysis shows how the effect of candesartan over time varies by the assumptions made about the missing
data. The impact of the assumed missing-data mechanism on the DBP curves increases over time, reflecting the fact that
the number of the missing values that contribute to estimation of the DBP curves increases over time. The bold lines
correspond to MAR, (l = d = c = 0, a = 1), and are the same as the estimates derived under standard MAR multiple
imputation in SAS.

The average value of DBP at 24 months ranges from 79.7 to 87.9 for the placebo group and from 77.8 to 83.2 for
the candesartan group for different missingness mechanisms. The average DBP over time is lower in the candesartan
group for all the assumed scenarios in Tables 1, 2, and 3. The DBP at 24 months is also lower for the candesartan
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group under all assumed scenarios; but findings become borderline or non-significant for missingness mechanisms
that increasingly favor the placebo group. For example, consider the scenario where l0 = −4.1 and l1 = 0 (for c = 0.3,
d = 0.3, a = 1), the subjects from a missing pattern have on average 4.1 mm Hg (>1SD) lower DBP than the observed
subjects in the placebo group, but have the same average DBP as the observed subjects in the candesartan group;
the resulting effect of candesartan at 24 month group difference in DBP is just significant, P = .05. For the scenario
where l0 = 0 and l1 = 13.3 (for c = 0.3, d = −0.3, a = 1), the subjects from a missing pattern have on average 13.3
mm Hg (>3SD) higher DBP than the observed subjects, in the candesartan group, but the same average DBP as
observed subjects in the placebo group; the resulting effect of candesartan is borderline significant at 24 months, P
= .05. The results of sensitivity analysis are also impacted by the magnitude of d, with the estimate of DBP at 24
months being lower when d = −0.3 (ie, 30% lower visit-to-visit associations among subjects in a missing pattern ver-
sus observed subjects), and higher when d = 0.3. The a parameter does not impact the point estimates, but it has an
impact on the estimate of the posterior variance, being higher when a > 1 and lower when a < 1. Under MAR the
DBP at 24 months was 5.7 mm Hg (95% credible interval [−7.1;−4.4]) lower in the candesartan group, at 78.6 mm
Hg, compared to the placebo group, 84.3 mm Hg. Furthermore, the average DBP at 24-months in candesartan group
was in the recommended healthy range of less than 80 mm Hg for all sensitivity analysis, except for one extreme
scenario.

Finally, to assess the effects of perturbations of the sensitivity parameters around MAR on the inference about the
treatment effect we introduce a sensitivity index (SI) statistics defined as:

SI(𝜔) = ΔMNAR(𝜔) − ΔMAR(𝜔0)
ΔMAR(𝜔0)

× 100%.

SI(𝜔) captures the relative difference on the treatment effect ΔMNAR(𝜔) estimated under a specific MNAR mecha-
nism indexed by 𝜔 = (c, l0, l1, d0, d1, a0, a1) compared to the treatment effect ΔMAR(𝜔0) estimated under the MAR 𝜔0 =
(0, 0, 0, 0, 0, 1, 1). We vary the set of sensitivity parameters (l0, l1), (d0, d1), and (a0, a1) from 𝜔0 one at a time to assess the
impact of each set; the coefficient of variation is set at c = 0.3. The summary of the posterior distribution of SI(𝜔) for
alternative perturbations of (l0, l1), (d0, d1), and (a0, a1) is shown in Figure 3.

The sensitivity parameters that have the stronger impact on the magnitude of the treatment effect Δ are (l0, l1) and
(d0, d1), whereas (a0, a1) have no impact on the point estimate. As expected, the more the sensitivity parameters deviate
from 𝜔0, the bigger the change on the estimate of treatment effect compared to the estimate under MAR. In addition, the
parameters corresponding to the placebo group l0 and d0 have a bigger impact compared to l1 and d1 respectively, due
to the fraction of the missing data being higher in the placebo group compared to the treatment group. Thus, even if the
missingness mechanism is similar between two groups (ie, l0 = l1 = 2, or d0 = d1 = 0.3 ) the estimate on the treatment
effect would still be different from the estimate under a MAR, and vary for different values of l or d parameters. For
example, compared to the estimate under MAR, the treatment effect when l0 = l1 = −2 is reduced by 19.5% but increase
by 19.7% when l0 = l1 = 2.

5.3 Summary of results

In summary, the differences in the DBP between two groups over the entire study are robust to different missingness
scenarios. The difference in the variance parameters between subjects from a missing patterns and observed subjects
(measured by a) does not have an impact on the estimate of the mean DBP, but it effects the corresponding standard
error and the 95% credible interval. As expected, when subjects from a missing pattern have lower SD than the observed
subjects (ie, a = 0.7) the overall standard error is lower and vice versa. The difference on the strength of lag-l autore-
gression coefficient between the subjects from a missing pattern and observed subjects (measured by d) does have an
impact on the DBP at 24 months. In TROPHY, if the lag-l coefficient is lower or d < 0, the overall DBP estimates at 24
months are lower compare to when d > 0, other sensitivity parameters being the same. Thus, the group differences at 24
months are sensitive to the dropout mechanism, varying from −1.3 to −9.7 mm Hg for the scenarios shown in Tables 1, 2,
and 3. Under MAR, a two-year treatment with candesartan reduces the DBP at 24 months by 5.7 mm Hg. In addition,
the effect of candesartan treatment is robust around a region of the MAR mechanism. It would take large differences on
the DBP value between dropout and observed subjects favoring placebo for the effect of treatment to become borderline
significant.
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F I G U R E 3 Relative % change on treatment effect Δ for alternative perturbations of the sensitivity parameters
𝜔 = (c, l0, l1, d0, d1, a0, a1) around the MAR 𝜔0 = (0, 0, 0, 0, 0, 1, 1)

6 SIMULATION STUDIES

In this section, we describe simulation studies to assess the performance of our proposed Bayesian model under a
variety of missingness mechanisms and also compare it to 𝛿-adjusted multiple imputation (MI) method.25 One thou-
sand data sets were simulated using similar design as in the TROPHY study. Specifically, for each treatment group the
data for the observed patterns were generated using distributions similar to the observed data in the TROPHY study.
First, n=391 observations for the treatment group and n=381 for the control group where the generated from a nor-
mal distribution with values truncated to be lower than 91, which was the maximum baseline DBP value in TROPHY.
Then the Y2,Y3, … … ,YK were generated sequentially for each group using Y2|Y1 ∼ N(𝜇2|1, 𝜎2

2|1) and Yk|Yk−1,Yk−2 ∼
N(𝜇k|k− , 𝜎2

k|k−) for k = 2, … …K, where the mean and variance parameters were set at the corresponding estimated
value from the TROPHY data. To limit computations no covariates were included and we set k = 1, 2, … , 5, where Y1
corresponds to baseline data, and Y2, Y3, Y4, and Y5 correspond to 6, 12, 18, and 24-months follow-ups. The dropout indi-
cators at time k = 2, 3, 4, and 5 for each group were generated using Dk ∼ Bernoulli(pk) where pk was derived based on
logit(p2) = 𝛾02 + 𝛾12 ∗ Y1 and logit(pk|Dk−1 = 0) = 𝛾0k + 𝛾1k ∗ Yk−1 + 𝛾2k ∗ Yk−2 for k = 3, 4, and 5 with 𝛾 parameters esti-
mated using TROPHY data. The data with Dk = 1 were considered as dropouts at visit k. Next, we generate missing values
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T A B L E 4 Simulation studies under
MAR

Estimate(SESim)[SE]

Method Control Treatment Difference (𝚫)

Baseline

Full Data 84.850(.219)[.213] 84.845(.213)[.210] −0.005(.304)[.298]

𝛿-adjusted MI 84.850(.219)[.213] 84.845(.213)[.210] −0.005(.304)[.298]

Bayesian 84.849(.218)[.213] 84.845(.213)[.209] −0.004(.304)[.298]

Follow-up 1

Full Data 83.229(.399)[.397] 78.598(.364)[.359] −4.631(.551)[.546]

𝛿-adjusted MI 83.233(.415)[.411] 78.597(.373)[.365] −4.636(.568)[.558]

Bayesian 83.233(.414)[.410] 78.598(.374)[.364] −4.635(.567)[.548]

Follow-up 2

Full Data 83.526(.365)[.358] 78.683(.362)[.361] −4.842(.519)[.513]

𝛿-adjusted MI 83.525(.404)[.397] 78.681(.374)[.374] −4.843(.553)[.547]

Bayesian 83.523(.404)[.400] 78.681(.372)[.373] −4.842(.551)[.546]

Follow-up 3

Full Data 82.882(.388)[.390] 78.051(.356)[.361] −4.831(.526)[.531]

𝛿-adjusted MI 82.888(.482)[.471] 78.050(.378)[.382] −4.838(.609)[.605]

Bayesian 82.890(.475)[.494] 78.051(.377)[.382] −4.839(.604)[.625]

Follow-up 4

Full Data 82.884(.346)[.351] 78.456(.371)[.373] −4.427(.493)[.499]

𝛿-adjusted MI 82.897(.491)[.450] 78.460(.409)[.411] −4.437(.619)[.593]

Bayesian 82.896(.484)[.493] 78.461(.406)[.415] −4.434(.613)[.645]

for dropouts using f (Yzk|Y zk−1,R = r) = N(𝜇(r)
zk|k− , 𝜎

2(r)
zk|k−), for k > r where 𝜇(r)

zk|k− and 𝜎2(r)
zk|k− are determined following (4)

and the sensitivity parameters. The full generated data (as if there were no dropouts) were used to estimate parameters
of interest, which were used as the benchmark for evaluating the performance of our Bayesian model and the 𝛿-adjusted
method.

For each simulated data set we derive the parameter estimates based on the proposed Bayesian model and 𝛿-adjusted
MI method. The 𝛿-adjusted imputation was implemented using PROC MI in SAS for each group and each miss-
ing pattern with MNAR option. The algorithm described in Ratitch et al25 was used, where missing values were
multiply-imputed sequentially for each Yt based on previous Y t−1 (observed and imputed) using a MAR model with
a 𝛿 shift value added at each imputed data. The final estimates were derived based on 25 imputed data set using
PROC MIANALYZE. In addition, we also estimated same parameters using the full data (including the dropouts).
The estimates based on our model and the 𝛿-adjusted MI were compared with the estimates of the full data across
all 1000 simulated data set, and the bias, standard error and the nominal 95% coverage rate were calculated. The
results for a range of sensitivity parameters are shown in Table 4 for MAR and Tables 5,6,7,8,9 for MNAR. In Table 4
we show the estimates using our Bayesian approach, 𝛿-adjusted MI (with 25 imputed data set and 𝛿 = 0), and based
on the full generated data as if there were no dropouts. The point estimates at each visit are the same among three
methods, the standard error from the 1000 simulations (SESim) based on our Bayesian model and 𝛿-adjusted MI are
similar, but lower than the standard error based on the full data, reflecting increased information from the missing
data. The average standard error (SE) for our Bayesian method are closer to corresponding SESim when compared
to the 𝛿-adjusted MI method, showing a better performance of our Bayesian method in estimating the standard
error.

In Tables 5,6,7,8 we show point estimate, bias and 95% coverage at the last visit under alternative MNAR missing-
ness mechanisms (varying the sensitivity parameters l0, l1, d0, d1, a0, a1, and c = .3). In Table 5 we set d0 = d1 = 0, in
Table 6 d0 = d1 = 0.3, and Table 7 d0 = d1 = −0.3, then within each table (l0, l1) and (a0, a1) are varied. In Table 8 we
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T A B L E 5 Simulation studies under alternative dropout mechanisms with d0 = d1 = 0

Sensitivity parameters (c=0.3) Estimate(Bias)[Coverage Probability]

(l0, l1) (d0,d1) (a0,a1) Control Treatment Difference (𝚫)

(0,0) (0,0) (1,1)a

Bayesian 82.90(.012)[95.1] 78.46(.005)[95.4] −4.43(−.007)[95.8]

𝛿-adjusted MI 82.90(.014)[93.2] 78.46(.002)[95.6] −4.44(−.012)[93.3]

(0,2) (0,0) (1,1)

Bayesian 82.90(.010)[94.8] 79.02(−.004)[96.2] −3.87(−.014)[96.0]

𝛿-adjusted MI 82.90(.011)[93.0] 79.02(−.003)[95.4] −3.87(−.014)[93.4]

(−2,0) (0,0) (1,1)

Bayesian 81.40(.017)[96.2] 78.46(.003)[95.8] −2.94(−.013)[96.7]

𝛿-adjusted MI 81.40(.020)[94.6] 78.46(.002)[95.0] −2.94(−.018)[95.5]

(−2,2) (0,0) (1,1)

Bayesian 81.40(.016)[96.4] 79.02(−.004)[96.0] −2.37(−.020)[96.4]

𝛿-adjusted MI 81.40(.018)[94.8] 79.02(−.006)[95.9] −2.38(−.024)[94.9]

(−2,2) (0,0) (.7,.7)

Bayesian 81.40(.016)[95.8] 79.03(−.003)[95.1] −2.37(−.019)[95.6]

𝛿-adjusted MI 81.40(.015)[95.0] 79.03(−.002)[95.9] −2.37(−.017)[95.2]

(−2,2) (0,0) (1.3,1.3)

Bayesian 81.40(.017)[97.2] 79.02(−.003)[96.8] −2.37(−.020)[97.0]

𝛿-adjusted MI 81.40(.020)[95.4] 79.02(−.005)[96.0] −2.38(−.025)[95.5]
aData missing at random.

T A B L E 6 Simulation studies under alternative dropout mechanisms with d0 = d1 = 0.3

Sensitivity parameters (c=0.3) Estimate(Bias)[Coverage Probability]

(l0, l1) (d0,d1) (a0,a1) Control Treatment Difference (𝚫)

(0,0) (.3,.3) (1,1)

Bayesian 83.44(.161)[95.3] 78.74(.031)[94.9] −4.69(−.130)[95.1]

𝛿-adjusted MI 82.90(−.430)[81.5] 78.46(−.255)[91.4] −4.44(.176)[92.9]

(0,2) (.3,.3) (1,1)

Bayesian 83.43(.160)[95.0] 79.38(.034)[95.6] −4.06(−.126)[95.0]

𝛿-adjusted MI 82.90(−.434)[80.8] 79.02(−.330)[93.3] −3.88(.105)[93.3]

(−2,0) (.3,.3) (1,1)

Bayesian 81.73(−.016)[97.8] 78.74(.032)[94.6] −2.99(.048)[96.0]

𝛿-adjusted MI 81.40(−.217)[92.3] 78.46(−.254)[91.7] −2.94(−.038)[95.3]

(−2,2) (.3,.3) (1,1)

Gaussian: Bayesian 81.75(.131)[97.1] 79.36(.010)[96.9] −2.39(−.120)[96.8]

𝛿-adjusted MI 81.40(−.220)[92.3] 79.02(−.326)[89.2] −2.37(−.106)[95.3]

Gamma: Bayesian 81.75(.120)[97.4] 79.36(.005)[96.8] −2.39(−.115)[97.3]

𝛿-adjusted MI 81.39(−.237)[91.5] 79.04(−.313)[87.2] −2.35(−.075)[93.3]

(−2,2) (.3,.3) (.7,.7)

Bayesian 81.75(.131)[96.4] 79.36(.010)[95.9] −2.39(−.121)[96.4]

𝛿-adjusted MI 81.40(−.217)[92.5] 79.02(−.326)[88.7] −2.38(−.109)[95.2]

(−2,2) (.3,.3) (1.3,1.3)

Bayesian 81.75(.130)[97.8] 79.36(.011)[97.2] −2.39(−.120)[97.8]

𝛿-adjusted MI 81.40(−.218)[92.7] 79.02(−.324)[89.1] −2.37(−.106)[95.1]
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T A B L E 7 Simulation studies under alternative dropout mechanisms with d0 = d1 = −0.3

Sensitivity parameters (c=0.3) Estimate(Bias)[Coverage Probability]

(l0, l1) (d0,d1) (a0,a1) Control Treatment Difference (𝚫)

(0,0) (−.3,−.3) (1,1)

Bayesian 82.43(−.103)[93.4] 78.22(−.013)[93.9] −4.21(.090)[93.7]

𝛿-adjusted MI 82.90(.366)[83.7] 78.46(.214)[91.9] −4.44(−.152)[92.4]

(0,2) (−.3,−.3) (1,1)

Bayesian 82.43(−.119)[93.5] 78.73(−.043)[94.1] −3.70(.076)[94.2]

𝛿-adjusted MI 82.90(.364)[84.5] 79.02(.263)[90.9] −3.88(−.101)[93.8]

(−2,0) (−.3,−.3) (1,1)

Bayesian 81.13(−.104)[95.2] 78.22(−.012)[94.3] −2.91(.091)[94.6]

𝛿-adjusted MI 81.40(.185)[94.1] 78.46(.217)[91.3] −2.94(.033)[94.9]

(−2,2) (−.3,−.3) (1,1)

Bayesian 81.13(−.091)[94.3] 78.74(−.016)[95.6] −2.38(.075)[96.0]

𝛿-adjusted MI 81.40(.182)[93.9] 79.02(.265)[89.9] −2.37(.083)[95.5]

(−2,2) (−.3,−.3) (.7,.7)

Bayesian 81.13(−.090)[93.8] 78.74(−.017)[94.7] −2.38(.074)[95.1]

𝛿-adjusted MI 81.40(.185)[94.1] 79.02(.266)[90.7] −2.38(.081)[95.4]

(−2,2) (−.3,−.3) (1.3,1.3)

Bayesian 81.13(−.091)[95.5] 78.74(−.015)[96.6] −2.38(.076)[96.7]

𝛿-adjusted MI 81.40(.185)[94.0] 79.02(.266)[90.4] −2.38(.080)[94.8]

evaluate the performance of each method by varying only (d0, d1) parameters and setting l0 = l1 = 0 and a0 = a1 = 1.
When d0 = d1 = 0 the results based on our approach are similar to those based on the 𝛿-adjusted MI. The nominal
95% coverages in Tables 4 and 5 are close to 95% ranging from 93.4%to 97.8%. However, when the d0 and d1 are
different from zero, the results based on our proposed model have lower bias and better 95% coverage than the 𝛿-adjusted
MI. When there are differences (d ≠ 0) in the lag-associations between dropouts and observed subjects the 𝛿-adjusted
MI performed poorly, with nominal 95% coverage as low as 78.6% (Tables 6,7,8). The simulation results confirm the
findings from the sensitivity analysis in TROPHY data that the inferences are effected from l, d, and a parameters,
where l and d have an impact on the point estimate and a having an impact on the standard error but not on the point
estimate.

Finally, our model assumes that the distribution f (Yzk|Y zk−1,R = r) is normal. For the observed data patterns
(r ≥ k) this assumption is testable based on the available data, however for the missing-data patterns (r < k)
the normality assumption is not testable based on the available data. To assess the robustness to minor per-
turbation from the normal distribution on the missing data, we perfom simulations where the missing data
are generated based on a truncated t − distribution with four degrees of freedom, truncated between 60 and
120. Table 9 shows the simulations results for same scenarios as in Table 8, but when the true distribution
of the missing values is the truncated t − distribution. The results based on the Bayesian model in Tables 8
and 9 are similar, indicating robustness to minor perbutations from the normality assumption in the missing pat-
terns. The 𝛿-adjustment MI also showed good robustness, though there was a small decrease in the coverage
probability.

7 CONCLUDING REMARKS

We have presented a Bayesian pattern-mixture model for longitudinal data with potentially future-dependent MNAR
dropout. The identifying parameters, �̃�(r)k , 𝛿(r)lk , and �̃�

(r)
k , are defined for each group as follows: �̃�(r)k represents the
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T A B L E 8 Simulation studies under alternative dropout mechanisms with l0 = l1 = 0 and a0 = a1 = 1

Sensitivity parameters (c=0.3) Estimate(Bias)[Coverage Probability]

(l0, l1) (d0,d1) (a0,a1) Control Treatment Difference (𝚫)

(0,0) (.3,−.3) (1,1)

Bayesian 83.46(.118)[96.2] 78.24(−.009)[94.6] −5.22(−.127)[96.1]

𝛿-adjusted MI 82.90(−.441)[80.7] 78.46(.214)[92.0] −4.44(.656)[78.6]

(0,0) (.3, 0) (1,1)

Bayesian 83.46(.118)[96.1] 78.46(.005)[95.9] −5.00(−.115)[96.6]

𝛿-adjusted MI 82.90(−.439)[80.4] 78.46(.003)[95.2] −4.44(.442)[86.5]

(0,0) (0,−.3) (1,1)

Bayesian 82.89(.000)[94.9] 78.24(−.009)[94.7] −.4.66(.009)[95.7]

𝛿-adjusted MI 82.90(.007[91.6] 78.46(.217)[91.9] −.4.44(.210)[92.4]

(0,0) (0, .3) (1,1)

Bayesian 82.90(.001)[95.0] 78.73( .018)[96.4] −.4.16(.017)[96.2]

𝛿-adjusted MI 82.90(.009)[92.0] 78.46(−.257)[91.3] −.4.44(−.265)[91.2]

(0,0) (−.3, 0) (1,1)

Bayesian 82.44(−.108)[93.1] 78.46(.003)[96.1] −.3.97(.112)[95.9]

𝛿-adjusted MI 82.90(.356)[84.8] 78.46(.002)[94.6] −.4.44(−.354)[90.6]

(0,0) (−.3,.3) (1,1)

Bayesian 82.43(−.109)[93.2] 78.73(.018)[96.3] −.3.70(.126)[96.2]

𝛿-adjusted MI 82.90(.357)[84.2] 78.46(−.255)[91.8] −.4.44(−.612)[82.3]

T A B L E 9 Simulation studies under alternative dropout mechanisms with l0 = l1 = 0, a0 = a1 = 1 and missing
data following a truncated t − distribution distribution with 4 degrees of freedom

Sensitivity parameters (c=0.3) Estimate(Bias)[Coverage Probability]

(l0, l1) (d0,d1) (a0,a1) Control Treatment Difference (𝚫)

(0,0) (.3,−.3) (1,1)

Bayesian 83.46(.090)[96.3] 78.24(−.059)[94.1] −.5.22(−.149)[95.9]

𝛿-adjusted MI 82.88(−.485)[79.6] 78.47(.176)[92.9] −.4.41(.661)[76.7]

(0,0) (.3, 0) (1,1)

Bayesian 83.46(.091)[96.5] 78.46(−.048)[94.7] −.5.00(−.140)[96.1]

𝛿-adjusted MI 82.89(−.483)[76.0] 78.47(−.037)[95.4] −.4.41(.445)[84.4]

(0,0) (0,−.3) (1,1)

Bayesian 82.90(−.016)[95.1] 78.24(−.059)[94.4] −.4.66(.043)[95.3]

𝛿-adjusted MI 82.89(−.026[91.4] 78.47(.176)[92.8] −.4.41(.202)[91.2]

(0,0) (0, .3) (1,1)

Bayesian 82.90(−.016)[95.4] 78.73(−.036)[95.7] −.4.16(−.021)[95.7]

𝛿-adjusted MI 82.89(−.026)[90.8] 78.47(−.297)[87.7] −.4.41(−.271)[91.4]

(0,0) (−.3, 0) (1,1)

Bayesian 82.43(−.129)[92.6] 78.46(−.048)[95.5] −.3.97(.081)[95.9]

𝛿-adjusted MI 82.89(.322)[85.5] 78.47(−.036)[95.4] −.4.41(−.358)[89.7]

(0,0) (−.3,.3) (1,1)

Bayesian 82.44(−.128)[92.5] 78.73(−.037)[95.8] −.3.70(.092)[96.2]

𝛿-adjusted MI 82.88(.320)[85.6] 78.47(−.297)[88.1] -4.41(−.618)[80.2]
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absolute difference on the conditional mean (conditioned on the previous visits 1, 2, … , k − 1 at the average value
y(≥k)

1 , y(≥k)
2 , … , y(≥k)

k−1 and covariates at average value x), between subjects from missing-data pattern r at visit k with
the observed subjects at visit k; 𝛿(r)lk represents the relative difference on the lag-l autoregressive coefficient between the
subjects from missing-data in pattern r at visit k with the observed subjects at visit k; 𝜓 (r)

k represents the ratio of variances
between the subjects from missing-data pattern r at visit k with observed subjects at visit k, conditioned on the previous
visits 1, 2, … , k − 1 and covariates. Sensitivity analyses are performed using different prior distributions for �̃�(r)k , 𝛿(r)k , and
�̃�

(r)
k . Even though the distributions of �̃�(r)k , 𝛿(r)lk , and �̃� (r)

k are unknown, it is possible for a subject matter expert to give a
range and then explore the sensitivity of statistical inferences over that a range. The new parameterization is based on the
PMM framework and does not use an explicit model for missing data, which is hard to correctly specify when the num-
ber of missing-data patterns is large. As the number of follow-up visits increases, so does the number of the sensitivity
parameters; We reduced the dimensionality of the sensitivity space by modeling �̃�(r)k , 𝛿(r)lk as normal and �̃� (r)

k as log-normal,
reducing the set of the sensitivity parameters to the means and coefficients of variation of these distributions. Our pro-
posed parameterization creates a flexible class of MNAR missing-data mechanisms that allows for differences between
dropouts and observed subjects in the mean, variance, and visit-to-visit association, and it contains MAR as a special case.
Sensitivity analysis can be performed around a region corresponding to MAR for a range of values specified by a subject
matter expert, as well as providing tipping point sensitivity analysis.
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