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Summary

Randomized clinical trials with outcomemeasured longitudinally are frequently ana-
lyzed using either random effect models or generalized estimating equations. Both
approaches assume that the dropout mechanism ismissing at random (MAR) ormiss-
ing completely at random (MCAR).We propose a Bayesian pattern-mixture model to
incorporate missingness mechanisms that might be missing not at random (MNAR),
where the distribution of the outcome measure at the follow-up time tk, conditional
on the prior history, differs across the patterns of missing data. We then perform sen-
sitivity analysis on estimates of the parameters of interest. The sensitivity parameters
relate the distribution of the outcome of interest between subjects from a missing-
data pattern at time tk with that of the observed subjects at time tk. The large number
of the sensitivity parameters is reduced by treating them as random with a prior dis-
tribution having some pre-specified mean and variance, which are varied to explore
the sensitivity of inferences. The missing at random (MAR) mechanism is a special
case of the proposed model, allowing a sensitivity analysis of deviations fromMAR.
The proposed approach is applied to data from the Trial of Preventing Hypertension.
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1 INTRODUCTION

Missing data are a common problem in statistical modeling of longitudinal studies where subjects drop out prematurely before

study completion. A wide range of statistical models for analyzing outcomes with missing data is available, with their perfor-

mance depending on validity of their underlying assumptions. Approaches include pattern-mixture models (PMM),1,2 selection

models (SM),3,4,5 and shared-parameter models6,7

In longitudinal studies, the dropout mechanism is missing not at random (MNAR) if the probability of dropping out at

time t depends on yt and/or yt+1,⋯ , yK . When the probability of dropping out at time t depends on future unobserved values

yt+1,⋯ , yK , the dropout mechanism is future dependent MNAR.8 When the number of follow-up visits increases, modeling

missingness mechanism becomes high dimensional and challenging regardless of the approach used. To deal with high dimen-

sionality, Roy and Daniels9 use a latent class PMM, Zhang et al10 use a factor-model imputation, Wang et al11 use a Bayesian

shrinkage model, Scharfstein et al12 used a SM with a low-dimensional parameterization for the dropout mechanism.

The choice of approach is usually based on the analysis objectives, how best to formulate and incorporate assumptions about

the missingness mechanism, the robustness of each model, the availability of programs to fit the model, and the flexibility and

interpretability of the sensitivity analysis. The SM estimates the marginal parameter of interest directly, whereas PPM estimate

separate parameters for each missing-data pattern, then derive marginal parameters by weighting across missing-data patterns,13

or alternatively by applying PMM with multiple imputation.14 For cross-sectional data there is a relationship between the SM

and PMM approaches,15 which can make the use of each model interchangeable. However, for longitudinal data an explicit

connection between SM and PMM is often complicated, especially for future dependent MNARwith a large number of missing-

data patterns. Developing methods in this setting is challenging and an active area of research. For recent work see Wang and

Daniels16 who use PMM; Scharfstein et al12 who use SM, and Linero and Daniels17 who use Bayesian models. Regardless of

the model, assumptions that are non-verifiable from the observed data are needed to identify some of the parameters in the joint

distribution, and assessing these assumptions requires a sensitivity analysis.18,19 ANational Research Council report on missing

data in clinical trials20 includes the following recommendation (# 15) in dealing with missing data in clinical trials: "Sensitivity

analysis should be part of the primary reporting of clinical trials. Examining sensitivity to the assumptions about the missing

data mechanism should be a mandatory component of reporting".

0Abbreviations:MAR, missing at random, MCAR, missing completely at random, MNAR, missing not at random, TROPHY, trial of preventing hypertension.
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1.1 TROPHY trial

Our work was motivated by the Trial Of Preventing Hypertension (TROPHY)21,22 an investigator-initiated study to examine

whether early treatment of prehypertension might prevent or delay the development of hypertension. TROPHY’s primary objec-

tive was to determine whether for patients with prehypertension, two years of treatment with candesartan would reduce the

systolic and diastolic blood pressure and subsequently the incidence of hypertension for up to two years after active treatment

was discontinued. The study consisted first of a two-year double-blind, placebo-controlled phase; followed by a two-year phase

in which all study patients received a placebo. Subjects were examined every three months, as well as one month after the

beginning of each phase. The development of hypertension was chosen as the primary study event. After an event occurred,

antihypertension treatment with metoprolol, hydrochlorothiazide, and some other medications was offered at no cost.

After the TROPHY trial and other studies, the American College of Cardiology and the American Heart Association

(ACC/AHA) provided in 2017 a coherent and clinically relevant guideline23 to health care providers for the prevention, detec-

tion, evaluation, and management of high blood pressure. Under the new guidelines, what was defined as prehypertension in

TROPHY study (systolic blood pressure of 130-139 mmHg and diastolic pressure of 89 mmHg or lower, and systolic pressure

of 139 mm Hg or lower and diastolic pressure of 85 to 89 mm Hg), is now considered Stage 1 hypertension. Important issues

related to these new diagnostic thresholds, intensified treatment goals, and their implications for clinical practice are discussed

by Byrd and Brooks.24 Given the new guidelines, in this paper we focus on making inferences on the effect of candesartan dur-

ing the active treatment period (baseline to 24 months) in controlling the diastolic blood pressure (DBP) from the high range of

85-90 of Stage 1 hypertension to the new recommended value of below 80, and the methodological challenges that are related to

increasing missing or censored data. Specifically, DBP data are considered (1) missing if subjects dropped out before developing

hypertension; and (2) censored when subjects developed hypertension and following the protocol other more aggressive phar-

macological treatment of blood pressure was initiated; in that case the follow-up DBP data are affected and cannot be used for

estimating the candesartan effect. The counterfactual question is: what would the values of blood pressure be in each treatment

group if we had not intervened with other drugs after development of hypertension? In addition, some subjects occasionally

missed scheduled visits and had intermittent missing data; we consider them to be missing at random (MAR).

1.2 Modeling missing data

We propose newmodels to address the problem related to missing data in TROPHY study; suchmodels, however, can be used for

analyses of other similar longitudinal studies with dropouts. A range of models for imputing missing values is available. For

example, missing values are imputation using a MARmodel and then to allow for MNAR a � value (i.e. �-adjustment) is

added, which captures themean difference � betweenMNAR andMARmodels.25 Rather thanmodeling themean,Wang
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and Feng26 and Tang et al27 use quantile based imputation for imputing missing values. However, in longitudinal studies

the dropouts can differ from observed subjects not only with respect tomeans or quantiles, but also with respect to within-

subject autocorrelations. Specific to the TROPHY study, well known risks on cardiovascular events are high blood pressure

and the visit-to-visit variability (VVV) in blood pressure, where higher VVV is associated with higher risk of cardiovascular

events or deaths.28 The visit-to-visit variability is effected by the variance at each visit and the strength of the visit-to-visit

association.29 Thus, if the dropout mechanism depends on the risk of cardiovascular events we propose a sensitivity analysis

that simultaneously captures differences in mean, variance, and visit-to-visit associations, by varying parameters summarizing

each of these features.

In randomized clinical trials, the target population is often an at-risk or affected population, where the distribution f (y1) of

the primary outcome Y1 at baseline is restricted. In the TROPHY study, the distribution for Y1 is truncated and not normal,

requiring methods that are robust to any distributional assumption about f (y1) or the multivariate distribution of Y .

We propose here a Bayesian pattern-mixture model forMNAR data that is flexible for modeling future dependent missingness,

is distribution-free for f (y1), and can accommodate a large number of measurements over time. We introduce sensitivity param-

eters that capture differences in means, variances, and visit-to-visit associations between dropouts and observed subjects. We

develop and implement a Bayesian algorithm in JAGS (Just Another Gibbs Sampler: https://sourceforge.net/projects/mcmc-jags)

for fitting the model and performing sensitivity analyses.

The number of unidentified parameters in the proposed model is substantial, and increases rapidly at the order of O(K3),

whereK is the number of the dropout patterns. To deal with this problem, we use a Bayesian approach similar to Kaciroti et al,30

where the number of sensitivity parameters is reduced by considering them to be randomly chosen from a prior distribution.

This prior distribution links all these parameters together around an average missingness mechanism (mean parameter), while

accommodating possible differences among them by introducing random variation (variance parameter); the mean and variance

then become the parameters for sensitivity analysis. The sensitivity parameters are easy to understand; they relate the distribution

of the observed data at time t to that of the missing data at time t across different missing-data patterns. The parameterization

and the associated prior distribution provide for modeling different types of MAR and MNAR missing data. The model also

enables a sensitivity analysis for MNAR departures from MAR.31

In Section 2 we outline the general model when the missingness mechanism is MAR and expand this in Section 3 to missing

data that are MNAR. In Section 4 we describe the Bayesian approach used to fit the proposed model. In Section 5 we apply the

proposed model to TROPHY data. Section 6 provide results of simulation studies. Conclusions are given in Section 7.
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2 BAYESIAN MODEL UNDER MAR

Let Y = (Y1, Y2,… , YK )′ be a vector ofK repeated measures, where Y1 denotes the baseline (pre-randomization) value measured

at time t1 = 0, and Yk denotes the outcome at visit k measured at follow-up time tk, k = 2,… , K . Let R denote the dropout

pattern, where R = r indicates the last visit (r) a subject was observed, with R = K being the complete data pattern. Let Z be

a treatment indicator Z = z for z = 0, 1. We are interested in estimating the expected mean for a subject i in group z at each

visit k:

E(Yik|Z = z) = �zk,

and testing for group differences in the outcome Y during the whole study period from k = 1 to K . In presence of dropouts,

we propose a Bayesian pattern-mixture model that incorporates different assumptions about the missingness mechanism into

the final analysis. These assumptions are based on quantifying the differences between dropout subjects and observed subjects,

and allow sensitivity analysis using the MAR assumption as a reference. We assume that the mean for subjects in group z

at visit k ≥ 2 from pattern R = r, depends on previous responses Y zk−1 = (Yz1,… Yzk−1) and relevant baseline covariates

X = (X1, X2,… , Xp). Controlling for covariates X, makes the MAR assumption more likely, improves the normality of the

residuals and reduces their variance, consequently resulting in a better imputation model. We assume the following distribution

for pattern R = r:

f (Yzk|X, Y zk−1, R = r) = N(�
(r)
zk|k− , �

2(r)
zk|k−), (1)

where E(Yzk|X, Y zk−1, R = r) = �(r)zk|k− and V ar(Yzk|X, Y zk−1, R = r) = �2(r)zk|k− are the conditional mean and the conditional

variance among subjects in group z, pattern R = r, for k ≥ 2.

The means and variances in (1) are not all identified as there are no data to estimate �(r)izk|k− and �2(r)zk|k− for k ≥ 2, r < k.

To identify the model, we relate the distribution of the missing data at visit k to that of the observed data at visit k condi-

tioned on baseline covariates and the previous responses. Following the available-case missing value (ACMV) constraint,32 the

missingness mechanism is MAR if and only if for ∀ k ≥ 2, r < k, and ∀ z the following is true:

f (Yzk|X, Y zk−1, R = r) = f (Yzk|X, Y zk−1, R ≥ k), (2)

here (R ≥ k) corresponds to the observed data at visit k. We assume the following distribution of the observed data at visit

k ≥ 2 for R ≥ k

f (Yzk|X, Y zk−1, R ≥ k) = N(�(≥k)zk|k− , �
2(≥k)
k|k−). (3)
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Here �(≥k)zk|k− and �
2(≥r)
zk|k− are the mean and the variance of the observed data for Yzk, conditioned on X and Y zk−1 among subjects

in patterns R ≥ k ≥ 2. The conditional mean �(≥k)zk|k− can be any parametric function of X and previous responses; here it is

assumed to be linear:

�(≥k)zk|k− = �
(≥k)
0zk +

k−1
∑

l=1
�(≥k)lzk (yzk−l − y

(≥k)
zk−l) + �

(≥k)
zk (x − x)T ,

where the intercept �(≥k)0zk represents the expected value of Y (≥k)zk|k− for an average subject with previous BP and covariates values

equal to y(≥k)z1 , y(≥k)z2 ,… , y(≥k)zk−1 and x. �(≥k)lzk is the l−tℎ order autoregression coefficient, and �(≥k)zk = (�(≥k)1zk ,⋯ , �(≥k)pzk ) are the

regression parameters for X = (X1,⋯ , Xp).

From (1), (2), and (3) the missingness mechanism is MAR if and only if �(r)zk|k− = �
(≥k)
zk|k− and �

2(r)
zk|k− = �

2(≥r)
zk|k− for k ≥ 2, r < k,

and ∀z. Consequently, under a MAR assumption following Molenberghs et al32 we have:

f (Yzk|X, Y zk−1) = N(�
(≥k)
zk|k− , �

2(≥k)
zk|k− ),

and �(≥k)zk|k− = �(≥k)0zk +
∑k−1
l=1 �

(≥k)
lzk (yzk−l − y

(≥k)
zk−l) + �

(≥k)
zk (x − x)T for k = 2, 3,… , K . Note that there is no assumption about the

distribution of baseline measure Y1 or on the multivariate distribution of Y .

Some subjects occasionally missed scheduled visits and had intermittent missing data. Let Iik be the intermittent missing

indicator, which is equal to 1 if subject i has an intermittent missing value at visit k and 0 otherwise when (Rik ≥ k) (i.e. subjects

i has not dropped out by visit k). We assume that any intermittent missing value is MAR within the observed pattern (Rik ≥ k),

or:

f (Yizk|Y izk−1, Rik ≥ k, Iik = 1) = f (Yik|Y ik−1, Rik ≥ k, Iik = 0).

The implementation under the Bayesian approach is straight forward, where the subject i with missing intermittent value at visit

k is imputed using a draw from f (Yik|Y ik−1, Rik ≥ k) (the observed data model), and values after dropout or censoring imputed

treating the imputed intermittent values like observed values.

3 EXPANDED MODEL FOR MNARMECHANISMS

Under a MNAR missingness mechanism we assume a sequential pattern-mixture model with normal distributions (2) for the

observed data and (3) for the missing data. The models are unidentified as there are no data to estimate �(r)zk|k− and �2(r)zk|k− for

k ≥ 2, r < k, and z = 0, 1. For monotone missing data, the ACMV restriction is equivalent to MAR. Here we extend the ACMV

approach to identify the PMM when missing data are MNAR, and provide for a sensitivity analysis around MAR. For MNAR

the identifying constraints relate the distribution of the missing data to that of the observed data. Because there are no data to

estimate the identifying constraints, it is useful to have intuitive and easy-to-interpret parameters, which can then be evaluated
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using a sensitivity analysis. We propose identifying constraints for the parameters of the missing-data patterns by relating them

to the parameters of the observed data as follows:

�(r)zk|k− = �
(r)
0zk +

k−1
∑

l=1
�(r)lzk(yzk−l − y

(≥k)
zk−l) + �

(r)
zk (x − x)

T , (4)

where

�(r)0zk = �
(≥k)
0zk + �̃

(r)
zk

�(r)lzk = �
(≥k)
lzk (1 + �̃

(r)
lzk)

�2(r)zk|k− =  ̃
(r)
zk �

2(≥k)
zk|k−

∀ k ≥ 2, r < k, and z = 0, 1. We assume here that �(r)zk = �(≥k)zk = �zk, but similar constraints to the one used for �(r)lzk can be

introduced as needed.

Here �̃(r)zk, �̃
(r)
lzk, and  ̃

(r)
zk are the sensitivity parameters used to identify the model. The �̃(r)zk measures the difference between

location parameters �(r)zk|k− and �
(≥k)
zk|k− at visit k for group z. That is, �̃

(r)
zk is the expected difference at visit k between an ”average”

subject in observed pattern (≥ k) and a similar subject from a missing pattern r for group z. ”Average” is defined as a subject

whose previous BP and covariates values are equal to y(≥k)z1 , y(≥k)z2 ,… , y(≥k)zk−1 and xz; �̃
(r)
lzk represents the relative difference in lag-l

associations between subjects in missing pattern r at visit k with subjects from the observed data at visit k for group z; and  ̃ (r)zk

represents the ratio of residual variances for the missing data in pattern r at visit k with the observed data at visit k, for group z

condition on the previous measures.

The proposed PMM is a high dimensional when the number of follow-upmeasures is large. To reduce the number of sensitivity

parameters one could fix them to a common value, i.e. �̃(r)zk = lz, �̃
(r)
lzk = dz, and  ̃

(r)
zk = az. We propose here a more general

approach, by assuming them to have a common mean, but allowing for uncertainty around the mean as follows:

�̃(r)zk ∼ N(lz, c
2l2z)

�̃(r)lzk ∼ N(dz, c
2d2z )

 ̃ (r)zk ∼ Log −Normal(az, c
2a2z)

The sensitivity parameters are now reduced to ! = (c, l0, l1, d0, d1, a0, a1), where az > 0 and c is the coefficient of variation.

With this approach we can quantify the differences between the missing subjects vs. observed subjects by providing an average

value ± some range, with the deterministic constrain being a special case when c = 0.
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4 FITTING THE MODEL

The parameters of interest are the marginal growth curves �z = (�z1, �z2,⋯ , �zK )′ for each group z as if no subject was missing

or treated with other medications after they developed hypertension. We use a fully Bayesian approach to impute draws of the

missing data, then derive inference on the marginal parameters using Bayesian bootstrapping33 on the whole (observed and

drawn) data. The missing data are drawn based on the joint posterior distribution [�̃, �̃,  ̃ , �, �,Σ, Y (Miss)
|Data, l, d, a, c]. Here,

Data = (z, x, y1, y
(≥2)
2 , y(≥3)3 ,⋯ , y(≥K)K ); � = {(�1zk, �2zk⋯ , �pzk)|k = 2,⋯ , K, z ∈ Z} and � = {�(≥k)lzk , |l = 0,⋯ , k − 1, k =

2,⋯ , K, z ∈ Z} are the set of � and � parameters for the observed data; Σ = {�2(≥k)zk|k− |k = 2,⋯ , K, z ∈ Z} is the set of

�2(≥k)zk|k− parameters for the observed data; Y (Miss) = (y(1)2 , y
(1)
3 , y

(2)
3 ,⋯ , y(1)K ,⋯ , y(K−1)K ) are the missing data; �̃ = {�̃(r)zk|k ≥ 2, r =

1,⋯ , k− 1, z ∈ Z}; �̃ = {�̃(r)lzk|k ≥ 2, l = 1,⋯ , k− 1, r = 1,⋯ , k− 1, z ∈ Z}; and  ̃ = { ̃ (r)zk |k ≥ 2, r = 1,⋯ , k− 1, z ∈ Z}.

The joint posterior distribution can be decomposed as a product of three distributions:

[�̃, �̃,  ̃ , �, �,Σ, Y (Miss)
|Data, l, d, a, c] = [�̃, �̃,  ̃|Data, l, d, a, c]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1

[�, �,Σ|�̃, �̃,  ̃ , Data, l, d, a, c]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

[Y (Miss)
|�̃, �̃,  ̃ , �, �,Σ, Data, l, d, a, c]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
3

Then, imputations from the joint distribution are drawn sequentially from distribution 1, 2, and 3 as follows.

4.1 Draw from [�̃, �̃,  ̃|Data, l, d, a, c]

In a PMM setting the data provide no evidence for sensitivity parameters,13 or:

[�̃, �̃,  ̃|Data, l, d, a, c] = [�̃|l, c][�̃|d, c][ ̃|a, c].

Thus, �̃(r)zk, �̃
(r)
zk ,  ̃

(r)
zk for group z are drawn from

�̃(r)zk ∼ (lz, c2l2z)

�̃(r)lzk ∼ (dz, c2d2z )

 ̃ (r)zk ∼ Log −Normal(az, c
2a2z).
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4.2 Draw from [�, �,Σ|�̃, �̃,  ̃ , Data, l, d, a, c]

Within the PMM the fit of the model to the observed data is identical for all choices of sensitivity parameters and does not

depend on the missing data,13 that is:

[�, �,Σ|�̃, �̃,  ̃ , Y (Miss), Data, l, d, a, c] = [�, �,Σ|Data].

Here,

[�, �,Σ|Data] =
K
∏

k=2
f (y(≥k)k |z, x, y(≥k)1 ,… , y(≥k)k−1 , �, �,Σ)f (y

(≥1)
1 |x, z)[�, �][Σ],

where

f (y(≥k)k |z, x, y(≥k)1 ,… , y(≥k)k−1 , �, �,Σ) = N(�
(≥k)
zk|k− , �

2(≥k)
zk|k− ).

Thus the observed data model is fitted based on a set of linear regression models where �(≥k)zk|k− = �(≥k)0zk +
∑k−1
l=1 �

(≥k)
lzk (yk−l −

y(≥k)k−l ) + �zk(x − x) for k = 2, 3,… , K with noninformative prior distributions for �, �, and Σ.

4.3 Draw from [Y (Miss)
|�̃, �̃,  ̃ , �, �,Σ, Data, l, d, a, c]

This is the imputation step, where the missing values are drawn from their posterior distribution. Let y(r)k be missing value at

visit k for a subject from group z in missing pattern r, k = 2,⋯ , K and 2 ≤ r < k. Then,

f (y(r)k |z, x, y
k−1
, �, �,Σ, �̃, �̃,  ̃) = N(�(r)zk|k− , �

2(r)
zk|k−),

where following (4):

�(r)zk|k− = (�
(≥r)
0zk + �̃

(r)
zk) +

k−1
∑

l=1
�(≥r)lzk (1 + �̃

(r)
lzk)(yk−l − y

(≥k)
k−l ) + �zk(x − x)

and

�2(r)zk|k− =  ̃
(r)
zk �

2(≥k)
zk|k− .

Within this step, the draws of y(r) = (y(r)r+1,⋯ , y(r)K ) are sequential: specifically, y(r)r+1 is drawn first, and next y(r)r+2 up to y(r)K ,

conditioned on the previous draws and the observed data.

In addition, any subject with an intermittent missing value, which is assumed MAR, is included in the observed data model

and the intermittent missing value is automatically imputed as a drawn based on the observed data model.
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4.4 Draws of marginal parameters �z = (�z0, �z1,⋯ , �zK)′

The parameter of interest are the marginal parameters �z = (�z0, �z1,⋯ , �zK )′, where E(Yzk|Z = z) = �zk for each treatment

group z. Once the missing data are drawn, we can simulate draws of �z from the completed data (observed and drawn/imputed).

This can be viewed as a multiple imputation and has been proposed in Demirtas and Schafer.34 The likelihood function for �z is

a mixture of distributions accross all missing patterns and a direct draw for �z is not feasible. We use Bayesian bootstrapping to

draw inference on �z based on the full data set. The Bayesian bootstrapping reweights the completed data Y = (Y1, Y2,⋯ , YK )′

into a new bootstrap data set . Each observation yi ∈ , i = 1, 2,⋯ , N is weighted by wi = u(i+1) − u(i), where u(i) is the

i − tℎ ordered statistics for ui ∼ U [0, 1], i = 2,⋯ , N and u(1) = 0, u(N+1) = 1. The distribution of �z = (�z0, �z1,⋯ , �zK )′

from many such data sets  is then a simulation pproximation of the posterior distributions on �z.33

4.5 Sensitivity analysis

We vary lz, dz, az, and c in a sensitivity analysis. For example, when the missing data are MAR, then all �̃(r)zk = �̃(r)lzk = 0,

and  ̃ (r)zk = 1, or lz = dz = c = 0 and az=1. Alternatively, when the missing data are MNAR, then not all �̃(r)zk’s, �̃
(r)
lzk’s equal

to 0 and  ̃ (r)zk ’s equal to 1. Thus lz, dz, and az can measure deviations from MAR. Trying values of sensitivity parameters in

a neighborhood of the MAR (lz, dz ≈ 0, az ≈ 1, and small c), can often provide reassuring information about whether the

inferences are robust to moderately non-ignorable missingness mechanisms. Tipping point sensitivity analyses to find values lz,

dz, az, and c, for which group comparisons are borderline significant (i.e p-value=0.05), are also useful, to assess how far from

MAR the missingness mechanism must be for treatment differences to lose the statistical significance.35,36

4.6 Implementation using JAGS

We used run.jags and rjags packages in RStudio to fit the model. The following noninformative prior distributions were used

for the parameters of the observed data model: �pzk, �
(≥k)
lzk ∼ N(0, 10, 000), and �(≥k)zk|k− ∼ U (0, 20). We run 1,000 iterations

for adapting phase with another 4,000 burn in iterations. The final inferences were based on 10,000 additional iterations. Two

chains, each using different initial values, were used to calculate the Deviance Information Criteria (DIC) using run.jags. The

3rd-order autoregression model A(3) was used for imputation as higher order autoregression models increased the DIC. The

MCMC simulations had good mixing with lag-10 autocorrelations all around zero. The MCMC convergence was monitored

using the Gelman-Rubin convergence diagnostic,37 where all potential scale reduction factor were around 1. The ratios of Monte

Carlo standard errors of each parameter to the posterior standard deviations were very smallMCSE∕SD < 1%, indicating that

the Markov chain has stabilized and the mean estimates do not vary much over time. Because the Markov chain for our model

converged without difficulty, we used one single chain for running simulation studies to reduce the computational time.
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5 APPLICATION

5.1 The TROPHY data

In this section we apply the method described in Section 3 to the data from the TROPHY study. The study population consisted

of 772 patients randomly assigned to candesartan (391) or placebo (381). Among the 772 participants 109 (54 in placebo)

dropped out before developing hypertension. Also, 136 (120 in placebo) subjects developed hypertension and their DBP were

censored, after other BP medications were initiated. Thus, 245 subjects had a missing or censored DBP (174 in the placebo

group). Sometimes a subject missed a schedule visit but came back later. The fraction of intermitent missing values was very

low, and such missingness were expect to be unrelated to BP and hence MAR– i.e. a subject missed a visit due to schedule

conflicts or other reasons not related to BP, but came back for future visits. Figure 1 shows the rates of missing data, which

are higher for subjects in the placebo group.

The effect of candesartan – compared to placebo – in reducing DBP is estimated both over the 24 months period, as well as

at 24 months.

FIGURE1Missing data pattern for each group.
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5.2 Sensitivity analysis

Sensitivity analyses to assess the deviations from MAR (lz = 0, dz = 0, az = 1, c = 0) are performed to assess the effect of the

missing data on the final results. We consider dz = 0, 0.3,−0.3 and az = 1, 1.3, 0.7, which reflect no difference, 30% increase, or

30% decrease in the lag-associations and residual variance respectively, between subjects from a missing pattern versus subjects

from the observed data pattern. We vary lz at -2, 2, and 0, which reflect a medium Cohen’s effect size of −0.5SD and 0.5SD

(baseline SD = 4.06), or no difference between subjects from a missing pattern versus subjects from the observed data pattern.

A value of lz > 0 indicates that, on average, subjects in a missing pattern have higher DBP than the observed subjects – and the

opposite would be true for lz < 1. We set c = .3, which provides a range for �̃(r)zk with a 95%CI of l(r)z (1 ± .59).

In addition, sensitivity analyses based on assumptions that make the treatment effect borderline significant, lz = lz, dz = dz,

and az = az are also included. We focus on lz as the tipping-point parameter, because it has the highest impact in the sensitivity

analysis. We set dz = −0.3, 0, .3 and az = 1, and find lz indicating how much the missing data must differ from the observed

data for the significance level to change. All analyses are controlled for baseline systolic blood pressure, age, and sex. The results

of sensitivity analyses for DBP at 24 months are shown in Tables 1, 2, and 3. Similarly, we can estimate the DBP at each visit.

We emphasize values l0 < 0 and l1 > 0 for the sensitivity parameters, which favor the Placebo group, to assess robustness of

the effect of candesartan to unfavorable scenarios about the missing data.

Figure 2 shows the curves of DBP of the two groups for different values for l0 and l1, and c = .3, d = 0, and a = 1. The

sensitivity analysis shows how the effect of candesartan over time varies by the assumptions made about the missing data. The

impact of the assumed missing-data mechanism on the DBP curves increases over time, reflecting the fact that the number of

the missing values that contribute to estimation of the DBP curves increases over time. The bold lines correspond to MAR,

(l = d = c = 0, a = 1), and are the same as the estimates derived under standard MAR multiple imputation in SAS.

The average value of DBP at 24 months ranges from 79.7 to 87.9 for the placebo group and from 77.8 to 83.2 for the can-

desartan group for different missingness mechanisms. The average DBP over time is lower in the candesartan group for all the

assumed scenarios in Tables 1, 2, and 3. The DBP at 24 months is also lower for the candesartan group under all assumed sce-

narios; but findings become borderline or non-significant for missingness mechanisms that increasingly favor the placebo group.

For example, consider the scenario where l0 = −4.1 and l1 = 0 (for c = 0.3, d = 0.3, a = 1), the subjects from a missing pattern

have on average 4.1 mmHg (> 1SD) lower DBP than the observed subjects in the placebo group, but have the same average

DBP as the observed subjects in the candesartan group; the resulting effect of candesartan at 24 month group difference in DBP

is just significant, p = 0.05. For the scenario where l0 = 0 and l1 = 13.3 (for c = 0.3, d = −0.3, a = 1), the subjects from a

missing pattern have on average 13.3 mmHg (> 3SD) higher DBP than the observed subjects, in the candesartan group, but

the same average DBP as observed subjects in the placebo group; the resulting effect of candesartan is borderline significant

at 24 months, p=0.05. The results of sensitivity analysis are also impacted by the magnitude of d, with the estimate of DBP at
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FIGURE 2 Diastolic blood pressure curves over the 24 months period for the two groups and their differences, for a range of
values of sensitivity parameters.

24 months being lower when d = −0.3 (i.e. 30% lower visit-to-visit associations among subjects in a missing pattern versus

observed subjects), and higher when d = 0.3. The a parameter does not impact the point estimates, but it has an impact on the

estimate of the posterior variance, being higher when a > 1 and lower when a < 1. Under MAR the DBP at 24 months was 5.7

mmHg (95% credible interval [-7.1;-4.4]) lower in the candesartan group, at 78.6 mmHg, compared to the placebo group, 84.3
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mmHg. Furthermore, the average DBP at 24-months in candesartan group was in the recommended healthy range of less than

80 mm Hg for all sensitivity analysis, except for one extreme scenario.

Finally, to assess the effects of pertubations of the sensitivity parameters around MAR on the inference about the

treatment effect we introduce a sensitivity index (SI) statistics defined as:

SI(!) =
ΔMNAR(!) − ΔMAR(!0)

ΔMAR(!0)
× 100%.

SI(!) captures the relative difference on the treatment effect ΔMNAR(!) estimated under a specific MNAR mecha-

nism indexed by ! = (c, l0, l1, d0, d1, a0, a1) compared to the treatment effect ΔMAR(!0) estimated under the MAR

!0 = (0, 0, 0, 0, 0, 1, 1). We vary the set of sensitivity parameters (l0, l1), (d0, d1), and (a0, a1) from!0 one at a time to assess

the impact of each set; the coefficient of variation is set at c = 0.3. The summary of the posterior distribution of SI(!)

for alternative perturbations of (l0, l1), (d0, d1), and (a0, a1) is shown in Figure 3.

The sensitivity parameters that have the stronger impact on the magnitude of the treatment effect Δ are (l0, l1) and

(d0, d1), whereas (a0, a1) have no impact on the point estimate. As expected, the more the sensitivity parameters deviate

from !0, the bigger the change on the estimate of treatment effect compared to the estimate under MAR. In addition, the

parameters corresponding to the placebo group l0 and d0 have a bigger impact compared to l1 and d1 respectivaly, due

to the fraction of the missing data being higher in the placebo group compared to the treatment group. Thus, even if the

missingess mechanism is similar between two groups (i.e. l0 = l1 = 2, or d0 = d1 = 0.3 ) the estimate on the treatment

effect would still be different from the estimate under a MAR, and vary for different values of l or d parameters. For

example, compared to the estimate under MAR, the treatment effect when l0 = l1 = −2 is reduced by 19.5% but increase

by 19.7% when l0 = l1 = 2.

5.3 Summary of Results

In summary, the differences in the DBP between two groups over the entire study are robust to different missingness scenarios.

The difference in the variance parameters between subjects from a missing patterns and observed subjects (measured by a)

does not have an impact on the estimate of the mean DBP, but it effects the corresponding standard error and the 95% credible

interval. As expected, when subjects from a missing pattern have lower SD than the observed subjects (i.e. a = 0.7) the overall

standard error is lower and vice versa. The difference on the strength of lag-l autoregression coefficient between the subjects

from a missing pattern and observed subjects (measured by d) does have an impact on the DBP at 24 months. In TROPHY,

if the lag-l coefficient is lower or d < 0, the overall DBP estimates at 24 months are lower compare to when d > 0, other

sensitivity parameters being the same. Thus, the group differences at 24 months are sensitive to the dropout mechanism, varying

from −1.3 to −9.7 mmHg for the scenarios shown in Tables 1, 2, and 3. Under MAR, a two-year treatment with candesartan
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ΔMNAR(!) − ΔMAR(!0)
ΔMAR(!0)

× 100%

FIGURE 3 Relative % change on treatment effect Δ for alternative perturbations of the sensitivity parameters ! =
(c, l0, l1, d0, d1, a0, a1) around the MAR !0 = (0, 0, 0, 0, 0, 1, 1) .

reduces the DBP at 24 months by 5.7 mmHg. In addition, the effect of candesartan treatment is robust around a region of the

MAR mechanism. It would take large differences on the DBP value between dropout and observed subjects favoring placebo

for the effect of treatment to become borderline significant.

6 SIMULATION STUDIES

In this section, we describe simulation studies to assess the performance of our proposed Bayesian model under a variety of

missingness mechanisms and also compare it to �-adjusted multiple imputation (MI) method.25 One thousand data sets were
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simulated using similar design as in the TROPHY study. Specifically, for each treatment group the data for the observed patterns

were generated using distributions similar to the observed data in the TROPHY study. First, n=391 observations for the treatment

group and n=381 for the control group where the generated from a normal distribution with values truncated to be lower than 91,

which was the maximum baseline DBP value in TROPHY. Then the Y2, Y3, ...… , YK were generated sequentially for each group

using Y2|Y1 ∼ N(�2|1, �22|1) and Yk|Yk−1, Yk−2 ∼ N(�k|k− , �2k|k−) for k = 2,… ...K , where the mean and variance parameters

were set at the corresponding estimated value from the TROPHY data. To limit computations no covariates were included and

we set k = 1, 2,… , 5, where Y1 corresponds to baseline data, and Y2, Y3, Y4, and Y5 correspond to 6, 12, 18, and 24-months

follow-ups. The dropout indicators at time k = 2, 3, 4, and 5 for each group were generated using Dk ∼ Bernoulli(pk) where pk

was derived based on logit(p2) = 
02 + 
12 ∗ Y1 and logit(pk|Dk−1 = 0) = 
0k + 
1k ∗ Yk−1 + 
2k ∗ Yk−2 for k = 3, 4, and 5

with 
 parameters estimated using TROPHY data. The data with Dk = 1 were considered as dropouts at visit k. Next, we

generate missing values for dropouts using f (Yzk|Y zk−1, R = r) = N(�(r)zk|k− , �
2(r)
zk|k−), for k > r where �(r)zk|k− and �

2(r)
zk|k− are

determined following (4) and the sensitivity parameters. The full generated data (as if there were no dropouts) were used

to estimate parameters of interest, which were used as the benchmark for evaluating the performance of our Bayesian

model and the �-adjusted method.

For each simulated data set we derive the parameter estimates based on the proposed Bayesian model and �-adjusted MI

method. The �-adjusted imputation was implemented using PROC MI in SAS for each group and each missing pattern with

MNAR option. The algorithm described in Ratitch et al25 was used, where missing values were multiply-imputed sequentially

for each Yt based on previous Y t−1 (observed and imputed) using a MAR model with a � shift value added at each imputed

data. The final estimates were derived based on 25 imputed data set using PROC MIANALYZE. In addition, we also estimated

same parameters using the full data (including the dropouts). The estimates based on our model and the �-adjusted MI were

compared with the estimates of the full data across all 1000 simulated data set, and the bias, standard error and the nominal 95%

coverage rate were calculated. The results for a range of sensitivity parameters are shown in Table 4 for MAR and Tables 5-9

for MNAR. In Table 4 we show the estimates using our Bayesian approach, �-adjusted MI (with 25 imputed data set and � = 0),

and based on the full generated data as if there were no dropouts. The point estimates at each visit are the same among three

methods, the standard error from the 1000 simulations (SESim) based on our Bayesian model and �-adjusted MI are similar,

but lower than the standard error based on the full data, reflecting increased information from the missing data. The average

standard error (SE) for our Bayesian method are closer to corresponding SESim when compared to the �-adjusted MI method,

showing a better performance of our Bayesian method in estimating the standard error.

In Tables 5-8 we show point estimate, bias and 95% coverage at the last visit under alternative MNAR missingness

mechanisms (varying the sensitivity parameters l0, l1, d0, d1, a0, a1, and c = .3). In Table 5 we set d0 = d1 = 0, in

Table 6 d0 = d1 = 0.3, and Table 7 d0 = d1 = −0.3, then within each table (l0, l1) and (a0, a1) are varied. In Table 8 we
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evaluate the performance of each method by varying only (d0, d1) parameters and setting l0 = l1 = 0 and a0 = a1 = 1.

When d0 = d1 = 0 the results based on our approach are similar to those based on the �-adjusted MI. The nominal 95%

coverages in Tables 4 and 5 are close to 95% ranging from 93.4%to 97.8%. However, when the d0 and d1 are different

from zero, the results based on our proposed model have lower bias and better 95% coverage than the �-adjusted MI.

When there are differences (d ≠ 0) in the lag-associations between dropouts and observed subjects the �-adjusted MI

performed poorly, with nominal 95% coverage as low as 78.6% (Tables 6-8). The simulation results confirm the findings

from the sensitivity analysis in TROPHY data that the inferences are effected from l, d, and a parameters, where l and

d have an impact on the point estimate and a having an impact on the standard error but not on the point estimate.

Finally, our model assumes that the distribution f (Yzk|Y zk−1, R = r) is normal. For the observed data patterns (r ≥ k)

this assumption is testable based on the available data, however for the missing-data patterns (r < k) the normality

assumption is not testable based on the available data. To assess the robustness to minor pertubation from the normal

distribution on the missing data, we perfom simulations where the missing data are generated based on a truncated

t − distribution with four degrees of freedom, truncated between 60 and 120. Table 9 shows the simulations results for

same scenarios as in Table 8, but when the true distribution of the missing values is the truncated t − distribution. The

results based on the Bayesian model in Tables 8 and 9 are similar, indicating robustness to minor perbutations from the

normality assumption in the missing patterns. The �-adjustment MI also showed good robustness, though there was a

small decrease in the coverage probability.

7 CONCLUDING REMARKS

We have presented a Bayesian pattern-mixture model for longitudinal data with potentially future-dependent MNAR dropout.

The identifying parameters, �̃(r)k , �̃(r)lk , and  ̃
(r)
k , are defined for each group as follows: �̃(r)k represents the absolute difference on

the conditional mean (conditioned on the previous visits 1, 2,⋯ , k−1 at the average value y(≥k)1 , y(≥k)2 ,… , y(≥k)k−1 and covariates at

average value x), between subjects from missing-data pattern r at visit k with the observed subjects at visit k; �̃(r)lk represents the

relative difference on the lag-l autoregressive coefficient between the subjects from missing-data in pattern r at visit k with the

observed subjects at visit k;  (r)k represents the ratio of variances between the subjects from missing-data pattern r at visit kwith

observed subjects at visit k, conditioned on the previous visits 1, 2,⋯ , k− 1 and covariates. Sensitivity analyses are performed

using different prior distributions for �̃(r)k , �̃(r)k , and  ̃ (r)k . Even though the distributions of �̃(r)k , �̃(r)lk , and  ̃
(r)
k are unknown, it is

possible for a subject matter expert to give a range and then explore the sensitivity of statistical inferences over that a range.
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The new parameterization is based on the PMM framework and does not use an explicit model for missing data, which is hard

to correctly specify when the number of missing-data patterns is large. As the number of follow-up visits increases, so does the

number of the sensitivity parameters; We reduced the dimensionality of the sensitivity space by modeling �̃(r)k , �̃(r)lk as normal and

 ̃ (r)k as log-normal, reducing the set of the sensitivity parameters to the means and coefficients of variation of these distributions.

Our proposed parameterization creates a flexible class of MNAR missing-data mechanisms that allows for differences between

dropouts and observed subjects in the mean, variance, and visit-to-visit association, and it contains MAR as a special case.

Sensitivity analysis can be performed around a region corresponding to MAR for a range of values specified by a subject matter

expert, as well as providing tipping point sensitivity analysis.
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TABLE 1 Sensitivity analysis under alternative dropout mechanisms with d0 = d1 = 0.

Sensitivity Parameters (c=0.3) Placebo Candesartan Difference (Δ)

l0 = l1 = 0
a0 = a1 = 1 (MAR) 84.3(.54) 78.6(.42) -5.7(-7.1,-4.4)
a0 = a1 = 1.3 84.3(.56) 78.6(.43) -5.7(-7.1,-4.3)
a0 = a1 = 0.7 84.3(.51) 78.6(.39) -5.7(-7.0,-4.5)

l0 = 0, l1 = 2
a0 = a1 = 1 84.3(.54) 79.3(.44) -5.0(-6.4,-3.7)
a0 = a1 = 1.3 84.3(.56) 79.3(.45) -5.0(-6.5,-3.6)
a0 = a1 = 0.7 84.3(.51) 79.3(.43) -5.0(-6.4,-3.7)

l0 = −2, l1 = 0
a0 = a1 = 1 82.5(.51) 78.6(.42) -3.9(-5.2,-2.7)
a0 = a1 = 1.3 82.5(.54) 78.6(.44) -3.9(-5.3,-2.6)
a0 = a1 = 0.7 82.5(.47) 78.6(.40) -3.9(-5.1,-2.7)

l0 = −2, l1 = 2
a0 = a1 = 1 82.5(.52) 79.3(.44) -3.2(-4.5,-1.9)
a0 = a1 = 1.3 82.5(.53) 79.3(.46) -3.2(-4.5,-1.9)
a0 = a1 = 0.7 82.5(.47) 79.3(.43) -3.2(-4.4,-1.9)

l0 = −2, l1 = −2
a0 = a1 = 1 82.5(.51) 77.9(.41) -4.6(-5.9,-3.3)
a0 = a1 = 1.3 82.5(.54) 77.9(.43) -4.6(-6.0,-3.2)
a0 = a1 = 0.7 82.5(.48) 77.9(.40) -4.6(-5.8,-3.4)

l0 = 2, l1 = −2
a0 = a1 = 1 86.1(.62) 77.9(.41) -8.2(-9.7,-6.8)
a0 = a1 = 1.3 86.1(.64) 77.9(.43) -8.2(-9.7,-6.7)
a0 = a1 = 0.7 86.1(.60) 77.9(.39) -8.2(-9.7,-6.9)

l0 = 2, l1 = 2
a0 = a1 = 1 86.1(.62) 79.3(.44) -6.9(-8.4,-5.4)
a0 = a1 = 1.3 86.1(.64) 79.3(.46) -6.8(-8.4,-5.3)
a0 = a1 = 0.7 86.1(.59) 79.3(.43) -6.8(-8.3,-5.4)

l0 = −4.7, l1 = 0
a0 = a1 = 1 80.1(.60) 78.6(.42) -1.5(-2.9,0.0)∗
a0 = a1 = 1.3 80.1(.61) 78.6(.43) -1.5(-2.9,0.0)
a0 = a1 = 0.7 80.1(.57) 78.6(.40) -1.5(-2.9,-0.1)

l0 = 0, l1 = 11.5
a0 = a1 = 1 84.3(.53) 82.5(.73) -1.8(-3.7,0.0)∗
a0 = a1 = 1.3 84.3(.56) 82.5(.77) -1.8(-3.7,0.0)
a0 = a1 = 0.7 84.3(.51) 82.5(.74) -1.8(-3.6,0.1)

l0 = −3.46, l1 = 3.46
a0 = a1 = 1 81.2(.54) 79.8(.48) -1.4(-2.8,0.0)∗
a0 = a1 = 1.3 81.2(.56) 79.8(.49) -1.4(-2.9,0.1)
a0 = a1 = 0.7 81.2(.51) 79.8(.46) -1.4(-2.8,0.0)

∗Bordeline significant: p − value = 0.05.
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TABLE 2 Sensitivity analysis under alternative dropout mechanisms with d0 = d1 = 0.3.

Sensitivity Parameters (c=0.3) Placebo Candesartan Difference (Δ)

l0 = l1 = 0
a0 = a1 = 1 (MAR) 85.5(.69) 79.1(.47) -6.4(-8.1,-4.8)
a0 = a1 = 1.3 85.5(.72) 79.1(.49) -6.4(-8.2,-4.8)
a0 = a1 = 0.7 85.5(.66) 79.1(.45) -6.4(-8.1,-4.9)

l0 = 0, l1 = 2
a0 = a1 = 1 85.5(.70) 79.9(.52) -5.6(-7.3,-3.9)
a0 = a1 = 1.3 85.5(.71) 79.9(.54) -5.6(-7.4,-3.8)
a0 = a1 = 0.7 85.5(.68) 79.9(.50) -5.6(-7.2,-3.9)

l0 = −2, l1 = 0
a0 = a1 = 1 83.2(.63) 79.1(.47) -4.1(-5.6,-2.6)
a0 = a1 = 1.3 83.2(.65) 79.1(.49) -4.1(-5.7,-2.5)
a0 = a1 = 0.7 83.2(.59) 79.1(.45) -4.1(-5.5,-2.7)

l0 = −2, l1 = 2
a0 = a1 = 1 83.2(.62) 79.9(.52) -3.2(-4.8,-1.6)
a0 = a1 = 1.3 83.2(.65) 79.9(.53) -3.2(-4.9,-1.6)
a0 = a1 = 0.7 83.2(.59) 79.9(.51) -3.2(-4.7,-1.7)

l0 = −2, l1 = −2
a0 = a1 = 1 83.2(.62) 78.2(.45) -5.0(-6.5,-3.5)
a0 = a1 = 1.3 83.2(.65) 78.2(.47) -5.0(-6.6,-3.4)
a0 = a1 = 0.7 83.2(.59) 78.(.43) -5.0(-6.4,-3.6)

l0 = 2, l1 = −2
a0 = a1 = 1 87.9(.86) 78.2(.45) -9.7(-11.7,-7.8)
a0 = a1 = 1.3 87.9(.89) 78.2(.47) -9.7(-11.7,-7.7)
a0 = a1 = 0.7 87.9(.84) 78.2(.43) -9.7(-11.5,-7.9)

l0 = 2, l1 = 2
a0 = a1 = 1 87.9(.86) 79.9(.52) -7.9(-9.9,-6.0)
a0 = a1 = 1.3 87.9(.88) 80.0(.54) -7.9(-10,-5.9)
a0 = a1 = 0.7 87.9(.83) 79.9(.51) -7.9(-9.8,-6.0)

l0 = −4.1, l1 = 0
a0 = a1 = 1 80.7(.68) 79.1(.47) -1.6(-3.3,0.0)∗
a0 = a1 = 1.3 80.7(.70) 79.1(.49) -1.6(-3.3,0.1)
a0 = a1 = 0.7 80.7(.65) 79.1(.45) -1.6(-3.2,-0.1)

l0 = 0, l1 = 9.5
a0 = a1 = 1 85.5(.69) 83.2(.87) -2.2(-4.4,0.0)∗
a0 = a1 = 1.3 85.5(.73) 83.2(.88) -2.2(-4.4,0.1)
a0 = a1 = 0.7 85.5(.66) 83.2(.86) -2.2(-4.3,-0.1)

l0 = −3, l1 = 3
a0 = a1 = 1 82.0(.63) 80.4(.56) -1.6(-3.3,0.0)∗
a0 = a1 = 1.3 82.0(.66) 80.4(.57) -1.6(-3.4,0.1)
a0 = a1 = 0.7 82.0(.60) 80.4(.55) -1.6(-3.2,0.0)

∗Bordeline significant: p − value = 0.05.
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TABLE 3 Sensitivity analysis under alternative dropout mechanisms with d0 = d1 = −0.3.

Sensitivity Parameters (c=0.3) Placebo Candesartan Difference (Δ)

l0 = l1 = 0
a0 = a1 = 1 (MAR) 83.6(.46) 78.3(.40) -5.2(-6.3,-4.0)
a0 = a1 = 1.3 83.6(.49) 78.3(.41) -5.2(-6.5,-4.0)
a0 = a1 = 0.7 83.6(.43) 78.3(.39) -5.2(-6.4,-4.1)

l0 = 0, l1 = 2
a0 = a1 = 1 83.6(.47) 78.9(.41) -4.7(-5.9,-3.5)
a0 = a1 = 1.3 83.6(.49) 78.9(.43) -4.7(-6.0,-3.4)
a0 = a1 = 0.7 83.6(.44) 78.9(.40) -4.7(-5.9,-3.5)

l0 = −2, l1 = 0
a0 = a1 = 1 82.1(.46) 78.3(.40) -3.8(-5.0,-2.6)
a0 = a1 = 1.3 82.1(.49) 78.3(.41) -3.8(-5.1,-2.6)
a0 = a1 = 0.7 82.1(.44) 78.3(.39) -3.8(-4.9,-2.6)

l0 = −2, l1 = 2
a0 = a1 = 1 82.1(.46) 78.9(.41) -3.3(-4.5,-2.0)
a0 = a1 = 1.3 82.1(.49) 78.9(.43) -3.3(-4.5,-2.0)
a0 = a1 = 0.7 82.1(.44) 78.9(.40) -3.3(-4.4,-2.1)

l0 = −2, l1 = −2
a0 = a1 = 1 82.1(.46) 77.8(.40) -4.4(-5.6,-3.1)
a0 = a1 = 1.3 82.1(.49) 77.8(.41) -4.4(-5.6,-3.1)
a0 = a1 = 0.7 82.1(.44) 77.8(.38) -4.4(-5.5,-3.2)

l0 = 2, l1 = −2
a0 = a1 = 1 85.0(.51) 77.8(.40) -7.2(-8.5,-6.0)
a0 = a1 = 1.3 85.0(.54) 77.8(.41) -7.2(-8.5,-5.9)
a0 = a1 = 0.7 85.0(.49) 77.8(.39) -7.2(-8.4,-6.0)

l0 = 2, l1 = 2
a0 = a1 = 1 85.1(.51) 78.9(.42) -6.1(-7.4,-4.8)
a0 = a1 = 1.3 85.0(.54) 78.9(.43) -6.1(-7.5,-4.8)
a0 = a1 = 0.7 85.0(.49) 78.9(.40) -6.1(-7.4,-4.9)

l0 = −5.4, l1 = 0
a0 = a1 = 1 79.7(.56) 78.3(.40) -1.4(-2.7,0.0)∗
a0 = a1 = 1.3 79.7(.59) 78.3(.41) -1.4(-2.8,0.0)
a0 = a1 = 0.7 79.7(.54) 78.3(.38) -1.4(-2.7,-0.1)

l0 = 0, l1 = 13.3
a0 = a1 = 1 83.6(.47) 82.0(.68) -1.6(-3.2,0.0)∗
a0 = a1 = 1.3 83.6(.49) 82.0(.69) -1.6(-3.2,0.1)
a0 = a1 = 0.7 83.6(.44) 82.0(.67) -1.6(-3.1,0.0)

l0 = −3.96, l1 = 3.96
a0 = a1 = 1 80.7(.51) 79.4(.44) -1.3(-2.6,0.0)∗
a0 = a1 = 1.3 80.7(.54) 79.4(.45) -1.3(-2.7,0.1)
a0 = a1 = 0.7 80.7(.49) 79.4(.42) -1.3(-2.5,0.0)

∗Bordeline significant: p − value = 0.05.
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TABLE 4 Simulation studies under MAR.

Estimate(SESim)[SE]

Method Control Treatment Difference (Δ)

Baseline
Full Data 84.850(.219)[.213] 84.845(.213)[.210] -0.005(.304)[.298]
�-adjusted MI 84.850(.219)[.213] 84.845(.213)[.210] -0.005(.304)[.298]
Bayesian 84.849(.218)[.213] 84.845(.213)[.209] -0.004(.304)[.298]

Follow-up 1
Full Data 83.229(.399)[.397] 78.598(.364)[.359] -4.631(.551)[.546]
�-adjusted MI 83.233(.415)[.411] 78.597(.373)[.365] -4.636(.568)[.558]
Bayesian 83.233(.414)[.410] 78.598(.374)[.364] -4.635(.567)[.548]

Follow-up 2
Full Data 83.526(.365)[.358] 78.683(.362)[.361] -4.842(.519)[.513]
�-adjusted MI 83.525(.404)[.397] 78.681(.374)[.374] -4.843(.553)[.547]
Bayesian 83.523(.404)[.400] 78.681(.372)[.373] -4.842(.551)[.546]

Follow-up 3
Full Data 82.882(.388)[.390] 78.051(.356)[.361] -4.831(.526)[.531]
�-adjusted MI 82.888(.482)[.471] 78.050(.378)[.382] -4.838(.609)[.605]
Bayesian 82.890(.475)[.494] 78.051(.377)[.382] -4.839(.604)[.625]

Follow-up 4
Full Data 82.884(.346)[.351] 78.456(.371)[.373] -4.427(.493)[.499]
�-adjusted MI 82.897(.491)[.450] 78.460(.409)[.411] -4.437(.619)[.593]
Bayesian 82.896(.484)[.493] 78.461(.406)[.415] -4.434(.613)[.645]

TABLE 5 Simulation studies under alternative dropout mechanisms with d0 = d1 = 0.

Sensitivity Parameters (c=0.3) Estimate(Bias)[Coverage P robability]

(l0, l1) (d0, d1) (a0, a1) Control Treatment Difference (Δ)

(0,0) (0,0) (1,1)∗

Bayesian 82.90(.012)[95.1] 78.46(.005)[95.4] -4.43(-.007)[95.8]
�-adjusted MI 82.90(.014)[93.2] 78.46(.002)[95.6] -4.44(-.012)[93.3]

(0,2) (0,0) (1,1)
Bayesian 82.90(.010)[94.8] 79.02(-.004)[96.2] -3.87(-.014)[96.0]
�-adjusted MI 82.90(.011)[93.0] 79.02(-.003)[95.4] -3.87(-.014)[93.4]

(-2,0) (0,0) (1,1)
Bayesian 81.40(.017)[96.2] 78.46(.003)[95.8] -2.94(-.013)[96.7]
�-adjusted MI 81.40(.020)[94.6] 78.46(.002)[95.0] -2.94(-.018)[95.5]

(-2,2) (0,0) (1,1)
Bayesian 81.40(.016)[96.4] 79.02(-.004)[96.0] -2.37(-.020)[96.4]
�-adjusted MI 81.40(.018)[94.8] 79.02(-.006)[95.9] -2.38(-.024)[94.9]

(-2,2) (0,0) (.7,.7)
Bayesian 81.40(.016)[95.8] 79.03(-.003)[95.1] -2.37(-.019)[95.6]
�-adjusted MI 81.40(.015)[95.0] 79.03(-.002)[95.9] -2.37(-.017)[95.2]

(-2,2) (0,0) (1.3,1.3)
Bayesian 81.40(.017)[97.2] 79.02(-.003)[96.8] -2.37(-.020)[97.0]
�-adjusted MI 81.40(.020)[95.4] 79.02(-.005)[96.0] -2.38(-.025)[95.5]

∗Data missing at random.
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TABLE 6 Simulation studies under alternative dropout mechanisms with d0 = d1 = 0.3.

Sensitivity Parameters (c=0.3) Estimate(Bias)[Coverage P robability]

(l0, l1) (d0, d1) (a0, a1) Control Treatment Difference (Δ)

(0,0) (.3,.3) (1,1)
Bayesian 83.44(.161)[95.3] 78.74(.031)[94.9] -4.69(-.130)[95.1]
�-adjusted MI 82.90(-.430)[81.5] 78.46(-.255)[91.4] -4.44(.176)[92.9]

(0,2) (.3,.3) (1,1)
Bayesian 83.43(.160)[95.0] 79.38(.034)[95.6] -4.06(-.126)[95.0]
�-adjusted MI 82.90(-.434)[80.8] 79.02(-.330)[93.3] -3.88(.105)[93.3]

(-2,0) (.3,.3) (1,1)
Bayesian 81.73(-.016)[97.8] 78.74(.032)[94.6] -2.99(.048)[96.0]
�-adjusted MI 81.40(-.217)[92.3] 78.46(-.254)[91.7] -2.94(-.038)[95.3]

(-2,2) (.3,.3) (1,1)
Gaussian: Bayesian 81.75(.131)[97.1] 79.36(.010)[96.9] -2.39(-.120)[96.8]

�-adjusted MI 81.40(-.220)[92.3] 79.02(-.326)[89.2] -2.37(-.106)[95.3]

Gamma: Bayesian 81.75(.120)[97.4] 79.36(.005)[96.8] -2.39(-.115)[97.3]
�-adjusted MI 81.39(-.237)[91.5] 79.04(-.313)[87.2] -2.35(-.075)[93.3]

(-2,2) (.3,.3) (.7,.7)
Bayesian 81.75(.131)[96.4] 79.36(.010)[95.9] -2.39(-.121)[96.4]
�-adjusted MI 81.40(-.217)[92.5] 79.02(-.326)[88.7] -2.38(-.109)[95.2]

(-2,2) (.3,.3) (1.3,1.3)
Bayesian 81.75(.130)[97.8] 79.36(.011)[97.2] -2.39(-.120)[97.8]
�-adjusted MI 81.40(-.218)[92.7] 79.02(-.324)[89.1] -2.37(-.106)[95.1]

TABLE 7 Simulation studies under alternative dropout mechanisms with d0 = d1 = −0.3.

Sensitivity Parameters (c=0.3) Estimate(Bias)[Coverage P robability]

(l0, l1) (d0, d1) (a0, a1) Control Treatment Difference (Δ)

(0,0) (-.3,-.3) (1,1)
Bayesian 82.43(-.103)[93.4] 78.22(-.013)[93.9] -4.21(.090)[93.7]
�-adjusted MI 82.90(.366)[83.7] 78.46(.214)[91.9] -4.44(-.152)[92.4]

(0,2) (-.3,-.3) (1,1)
Bayesian 82.43(-.119)[93.5] 78.73(-.043)[94.1] -3.70(.076)[94.2]
�-adjusted MI 82.90(.364)[84.5] 79.02(.263)[90.9] -3.88(-.101)[93.8]

(-2,0) (-.3,-.3) (1,1)
Bayesian 81.13(-.104)[95.2] 78.22(-.012)[94.3] -2.91(.091)[94.6]
�-adjusted MI 81.40(.185)[94.1] 78.46(.217)[91.3] -2.94(.033)[94.9]

(-2,2) (-.3,-.3) (1,1)
Bayesian 81.13(-.091)[94.3] 78.74(-.016)[95.6] -2.38(.075)[96.0]
�-adjusted MI 81.40(.182)[93.9] 79.02(.265)[89.9] -2.37(.083)[95.5]

(-2,2) (-.3,-.3) (.7,.7)
Bayesian 81.13(-.090)[93.8] 78.74(-.017)[94.7] -2.38(.074)[95.1]
�-adjusted MI 81.40(.185)[94.1] 79.02(.266)[90.7] -2.38(.081)[95.4]

(-2,2) (-.3,-.3) (1.3,1.3)
Bayesian 81.13(-.091)[95.5] 78.74(-.015)[96.6] -2.38(.076)[96.7]
�-adjusted MI 81.40(.185)[94.0] 79.02(.266)[90.4] -2.38(.080)[94.8]
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TABLE 8 Simulation studies under alternative dropout mechanisms with l0 = l1 = 0 and a0 = a1 = 1.

Sensitivity Parameters (c=0.3) Estimate(Bias)[Coverage P robability]

(l0, l1) (d0, d1) (a0, a1) Control Treatment Difference (Δ)

(0,0) (.3,-.3) (1,1)
Bayesian 83.46(.118)[96.2] 78.24(-.009)[94.6] -5.22(-.127)[96.1]
�-adjusted MI 82.90(-.441)[80.7] 78.46(.214)[92.0] -4.44(.656)[78.6]

(0,0) (.3, 0) (1,1)
Bayesian 83.46(.118)[96.1] 78.46(.005)[95.9] -5.00(-.115)[96.6]
�-adjusted MI 82.90(-.439)[80.4] 78.46(.003)[95.2] -4.44(.442)[86.5]

(0,0) (0,-.3) (1,1)
Bayesian 82.89(.000)[94.9] 78.24(-.009)[94.7] -4.66(.009)[95.7]
�-adjusted MI 82.90(.007[91.6] 78.46(.217)[91.9] -4.44(.210)[92.4]

(0,0) (0, .3) (1,1)
Bayesian 82.90(.001)[95.0] 78.73( .018)[96.4] -4.16(.017)[96.2]
�-adjusted MI 82.90(.009)[92.0] 78.46(-.257)[91.3] -4.44(-.265)[91.2]

(0,0) (-.3, 0) (1,1)
Bayesian 82.44(-.108)[93.1] 78.46(.003)[96.1] -3.97(.112)[95.9]
�-adjusted MI 82.90(.356)[84.8] 78.46(.002)[94.6] -4.44(-.354)[90.6]

(0,0) (-.3,.3) (1,1)
Bayesian 82.43(-.109)[93.2] 78.73(.018)[96.3] -3.70(.126)[96.2]
�-adjusted MI 82.90(.357)[84.2] 78.46(-.255)[91.8] -4.44(-.612)[82.3]

TABLE 9 Simulation studies under alternative dropout mechanisms with l0 = l1 = 0, a0 = a1 = 1 and missing data following
a truncated t − distribution distribution with 4 degrees of freedom.

Sensitivity Parameters (c=0.3) Estimate(Bias)[Coverage P robability]

(l0, l1) (d0, d1) (a0, a1) Control Treatment Difference (Δ)

(0,0) (.3,-.3) (1,1)
Bayesian 83.46(.090)[96.3] 78.24(-.059)[94.1] -5.22(-.149)[95.9]
�-adjusted MI 82.88(-.485)[79.6] 78.47(.176)[92.9] -4.41(.661)[76.7]

(0,0) (.3, 0) (1,1)
Bayesian 83.46(.091)[96.5] 78.46(-.048)[94.7] -5.00(-.140)[96.1]
�-adjusted MI 82.89(-.483)[76.0] 78.47(-.037)[95.4] -4.41(.445)[84.4]

(0,0) (0,-.3) (1,1)
Bayesian 82.90(-.016)[95.1] 78.24(-.059)[94.4] -4.66(.043)[95.3]
�-adjusted MI 82.89(-.026[91.4] 78.47(.176)[92.8] -4.41(.202)[91.2]

(0,0) (0, .3) (1,1)
Bayesian 82.90(-.016)[95.4] 78.73(-.036)[95.7] -4.16(-.021)[95.7]
�-adjusted MI 82.89(-.026)[90.8] 78.47(-.297)[87.7] -4.41(-.271)[91.4]

(0,0) (-.3, 0) (1,1)
Bayesian 82.43(-.129)[92.6] 78.46(-.048)[95.5] -3.97(.081)[95.9]
�-adjusted MI 82.89(.322)[85.5] 78.47(-.036)[95.4] -4.41(-.358)[89.7]

(0,0) (-.3,.3) (1,1)
Bayesian 82.44(-.128)[92.5] 78.73(-.037)[95.8] -3.70(.092)[96.2]
�-adjusted MI 82.88(.320)[85.6] 78.47(-.297)[88.1] -4.41(-.618)[80.2]
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