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Spike-timing-dependent plasticity learning algorithm in a neurological network  

In a neural network, the matrix of synaptic weights (conductances), �, is modified in parallel 

based on synaptic spike-timing-dependent plasticity[1] (STDP), which can be expressed as �̇ =

� � ⨂ � (Equation 2), where � denotes voltage pulses in the presynaptic neurons, and � is a 

function of � that represents voltage pulses in the postsynaptic neurons,   
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, where �� 

denotes the moment �� when a voltage pulse is triggered from the nth postsynaptic “neuron”, 

� > 0 for STDP, and � < 0 for anti-STDP.    

Modeling and analysis of self-programming processes 

The goal of the self-programming process is to modify the system state, �, toward the desired 

system state, ��, and minimize the objective function  � =
�

�
(� − ��)�. When � = ��, � = 0, 

� = 0, and �̇ = � � ⨂ � = 0 (Equation 2), � reaches an equilibrium value �� = ��� min
�

�. 
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��
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��

�
. Although � and ��  were not directly measured experimentally, 



     

 

the relative deviation of � from ��  can be derived from � and � signals recorded in the SNIC 

experiments,   
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In the human experiments, � and � signals were recorded, � was derived from � based on 

Equation S1, and the effective ∆� was also derived from Equation S2.     

In the self-programming process, the change of � leads to the change of output signals 

�, which modifies the objective function �. Without loss of generality, the objective function 

� can be expressed as,[2] 
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�

�
��/� ∘ ∆�� + �[∆��]            (S3) 

 

where ��/� ∘ ∆�� denotes the Hadamard product between ��/� and ∆�� with ��/� ∈ ℝ�×� 

and ��/� ≥ 0 , and �[∆��]  contains higher order terms of ∆��  with � ≥ 3 . When ∆� 

approaches zero, �[∆��] can be omitted, and the average � over a self-programming period,  

〈�〉 ≈
�

�
〈��/� ∘ ∆��〉 =

�

�
��/�〈∆�〉� +

�

�
��/�〈∆�� 〉� =

�

�
��/�〈∆�〉� + ���, which was best-

fitted by the experimental data of 〈�〉 and ∆� to extrapolate ��/� and ���, and displayed in 

Figure 3 and 4.  

In the self-programming process, � is modified by following Equation 2, �̇ = � � ⨂ �. 

By substituting �  in Equation 2 by � = � ∗ ��  Equation 4,  �̇ = � (�� ∗ �) ⨂ � . In neuron 

circuits, � is a monotonically increasing nonlinear function of �, and � = � � Equation 1, thus 

� = �(�) = ��(��) . By substituting �  in �̇  by �(��) , �̇ = �[�� ∗ �(��)] ⨂ � , and the 

modification rate of ∆� over a self-programming period[2], 



     

 

 

                                      ∆�̇ = −� ∘ ∆� + ��                            (S4) 

 

where � ∘ ∆� denotes the Hadamard product between � and ∆� with � ∈ ℝ�×� and � ≥ 0, 

and �� contains the higher order terms of ∆��  with � ≥ 2 and ��̇ . ∆� can be extrapolated 

based on Equation S2, and � can be derived by best-fitting ∆� and ∆�̇ to Equation S4. The 

derived �  are shown versus 〈∆�̇〉  at the initial self-programming state in Figure 4a. The 

solution of Equation S4 gives,  

 

                       ∆� = ∆�(0)���� + �� ∗ ����                (S5) 

 

 where �� ∗ ���� represent the convolution between �� and ���� . When �� ≫ 1, 〈∆�〉 ≈ 0, 

and 〈�〉 ≈ 〈�� 〉, thus � represents the speed to modify � toward �� . 

In the self-programming process, the change of � leads to the change of the objective 

function �. Based on Equation S3, the change rate of average objective function 〈�̇〉 = ��/� ∘
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contains higher order terms of ∆�� with � ≥ 3, and 
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��
�

∆�
 due to environmental perturbations. 

When ��  satisfies �� < �〈�〉 , then 〈�̇〉 < 0 , 〈�〉  represents a Lyapunov function and is 

asymptotically decreased, � is modified toward �� , and ∆� toward zero. When 〈�〉 is reduced 

to make �〈�〉 = ��, 〈�̇〉 = 0, 〈�〉 reaches a dynamic equilibrium value ��� = ��/�. When 

〈∆�〉  approaches zero, � (∆��)  can be omitted, 〈�〉 ≈
�

�
〈��/� ∘ ∆��〉 =

�

�
��/�〈∆�〉� +



     

 

�

�
��/�〈∆�� 〉� =

�

�
��/�〈∆�� 〉� = ��� . ���  increases with increasing 〈∆�� �〉 due to the random 

perturbation from environment and the fluctuation of � during the self-programming process, 

as shown in Figure 4b. When 〈∆�〉 descends to zero, 〈�〉 ≈
�

�
��/�〈∆�� 〉� = ���, as shown in 

Figure 3 and 4.       

The self-programming process of a SNIC and neurobiological network is summarized 

in the following theorem,[2]  

Theorem 1. When a SNIC or neurobiological network (i) concurrently executes the 

signal processing algorithm � = � � (Equation 1), and the correlative learning algorithm �̇ =

� � ⨂ �, (Equation 2) with � = � ∗ ��  (Equation S1); (ii) when � = �� , � = �� , � = 0, then 

�̇ = 0, and ��   represents the equilibrium value of �; (iii) when � = �� , the objective function 

� =
�

�
(� − ��)� = 0; when � ≠ �� , � ≠ ��, and � > 0, then in the self-programming process, 

〈�̇〉 = −�〈�〉 + �� (Equation 3) with � > 0; (iv) When �� satisfies �� < �〈�〉, then 〈�̇〉 < 0, 

〈�〉 represents a Lyapunov function, and is asymptotically decreased, leading � to be modified 

toward ��  in the self-programming process; (v) when �� = �〈�〉 , 〈�̇〉 = 0 , 〈�〉  reaches its 

dynamic equilibrium value ��� = ��/�. 

 

An integrate-and-fire “neuron” circuit  

We designed and fabricated an integrate-and-fire circuit with the basic functions 

according to the Hodgkin–Huxley neuron model[3].  The “neuron” circuit is shown in Figure 

S6a.  The collective current, �, from multiple synstors flows through a diode toward a capacitor 

���, increasing the voltage, ��, on the capacitor.  A negative voltage, ��, is applied to induce a 

leakage current, ��, flowing through the resistor, ��, to filter the thermodynamic and signal 

noises in the circuits.  �� is proportional to the integration of � − �� with respect to time. When 

�� reaches a threshold value, a Schmitt trigger composed of transistors M1-M6 is switched back 

and forth to generate an output pulse from the output channel, ��. The output pulse resets �� 



     

 

back to zero by switching transistors M7, M8, and M9, and the capacitor ���  restarts the 

integration of the current.  A “neuron” circuit with ��� = 9.4 nF, �� = 50 �Ω, �� = −0.15 �, 

and ���� = 0.25 �Ω was tested by applying a series of 10 ns-wide input pulses to inject a 

current � to ���. The firing rates of output voltage pulses triggered from an output neuron circuit, 

��, are plotted versus the firing rates of input voltage pulses applied on a synstor, ��, in Figure 

S6b. �� can be expressed as,  

 

    �� =
��

��� 

������(����) =
��

��� 

������(����������)                   (S6)  

 

where the maximal saturation value of ��, ��
��� = 6.01 ���, � denotes the current flowing into 

the integrate-and-fire neuron circuit with � = �������, � denotes the synstor conductance, the 

magnitude of input voltage pulses �� = 1.75 �, the duration of input voltage pulses �� = 10 ns, 

the leakage current from the integrate-and-fire neuron circuit, �� = 0.44 ��, and the fitting 

parameter �� = 7.81 /��, when the synstor is modified to its high conductance with � =

10 ��, or low conductance with � = 0.1 ��. 

 

  



     

 

 

 

Figure S1.  a) A 50 nm thick and 10 µm long Al reference electrode (gray) is deposited onto 

the 100 nm thick SiO2 layer (yellow) of an Si/SiO2 wafer by electron beam (e-beam) 

evaporation, and patterned by photolithography and wet chemical etching. b) A 22 nm thick 

HfO2 dielectric barrier layer (clear blue) and a 2 nm thick TiO2 charge storage layer (magenta) 

are deposited by atomic layer deposition (ALD). c) The TiO2 charge storage layer is patterned 

by photolithography and reactive ion etching (RIE) with a 10 µm long pattern aligned to the Al 

reference electrode. d) A 6.5 nm thick HfO2 barrier layer is deposited by ALD, encapsulating 

the TiO2 charge storage layer. e) A randomly oriented semiconducting single-walled carbon 

nanotube (CNT) network channel (orange) is deposited by wet immersion coating from an 

aqueous solution of 99.9% pure semiconducting CNTs. f) 50 nm thick Al input and feedback 

electrodes (gray) are deposited by e-beam evaporation, and patterned by photolithography. g) 

A 200 nm thick passivation layer of parylene-C (clear green) is deposited by thermal 

evaporation. An encapsulation and patterning layer of SU-8 photoresist (red) is deposited by 

spin-coating, patterned by photolithography, and used as an etch mask to etch the parylene-C 

and CNT layers with RIE to form a 20 µm long CNT channel. h) A top-view of a 2 × 2 crossbar 

synstor circuit with the labeled locations of the CNT channel covered by the parylene-C (PLC) 

passivation and SU-8 photoresist layers (red), the input, output, and reference electrodes (gray). 



     

 

 

 

 

Figure S2. The synstor is composed of Al input and output electrodes (gray), a randomly 

oriented semiconducting single-walled carbon nanotube (CNT) network channel (orange), 

HfO2 dielectric layers (blue-gray), a TiO2 charge storage layer (magenta), and an Al reference 

electrode (gray). A voltage pulse is applied to the input electrode � to induce a current flowing 

through the CNT channel on the output electrode, while the output and reference electrodes are 

grounded. Charge in the TiO2 storage layer modulates the density of holes in the p-type doped 

CNT channel, controlling the channel conductance � and current � flowing across the CNT 

layer on the output electrode. When voltage pulses �  and �  with the same amplitude are 

simultaneously applied to the input and output electrodes with respect to the grounded reference 

electrode, current across the channel � = 0, and electrons hop through the HfO2 dielectric layer 

between the CNT channel and TiO2 charge storage layer, modifying the charge in the TiO2 

layer and channel conductance �. 

 

  



     

 

 

 

 

 

 

Figure S3. Relative changes of a synstor conductance Δ�/�� induced by 50 pairs of various 

5 ��-wide � and � voltage pulses applied on the input and output electrodes of the synstor are 

plotted versus the pulse amplitudes. The Δ�/��  data are fitted by Δ�/�� = ���(����
�) −1 

(magenta line) when � = � > ��
�  with �� = 4.06/�  and ��

� = 1.05 � , and Δ�/�� =

����(����
�) −1 (blue line) when � = � < ��

� with �� = 3.69/� and ��
� = −0.81 �. The � is 

modified by following Equation 2, �̇ = �  � ∙ �. When � = � ≳ 1.0 �, � was decreased (� <

0); when � = � ≲ −0.8 �,  � was increased (� > 0); when −0.8 � ≲ � = � ≲ 1.0 �, �̇ ≈ 0 

(� ≈ 0). |�| increases with the increasing magnitude of |�| and |�|. The synstor conductance 

does not change under �� = 0. 

 

 

 

  



     

 

 

 

 

 

 

Figure S4. Cumulative relative changes of synstor conductance Δ�/�� are displayed versus 

cumulative numbers, �, of 10 ��-wide � and � voltage pulses applied to the input and output 

electrodes of the synstor under the voltage amplitudes of � = � = −1.75 � (red diamonds), 

� = � = 1.75 � (blue squares), � = � = 0 (black), � = 1.75 � and � = 0 (green), � = 0 and 

� = 1.75 �  (purple),  � = 0  and � = −1.75 �  (orange),  � = −1.75 �  and � = 0  (turquoise), 

respectively. The ∆�/�� data are best-fitted by  ∆�(�)/�� = ���� �
�

��
� + 1� with �� = 15.3 

and ��
� = 1.76 × 10� under � = � = −1.75 � (magenta lines), and ∆�(�)/�� = ���� �

�

��
� +

1� with �� = 7.5 and ��
� = 1.7 × 10�  under � = � = 1.75 �  (dark blue lines). The synstor 

conductance increases versus increasing �  under � = � = −1.75 � , decreases versus 

increasing � under � = � = 1.75 �, otherwise, the synstor conductance does not change under 

�� = 0.    

  



     

 

 

 

 

 

 

Figure S5. The firing rates of input pulses to a synstor circuit, ��, are plotted versus |� − ��| by 

following �� =
��

��� 

������(���������)
, where � denotes the experimentally measured lift-force on a 

wing, the targeted value of the lift-force, �� = 0.3 � , the maximal saturation value of �� , 

��
��� = 47.5 �ℎ� , the parameter �� = ��

�  (red), 2��
�  (green), 4��

�  (blue), or 8��
�  (purple)  

with ��
� = 45.5 ��, and the parameter a) � = ��

�, b) � = 2��
�, c) � = 4��

�, and d) � = 8��
� 

with ��
� = 5.5 ���. The minimal objective function � is achieved under �� = 4��

� and � =

2��
� (bold blue line) in b. 

 



     

 

 
 

 

 

 

 

 

 

Figure S6. a) The integrate-and-fire “neuron” circuit consists of a capacitor, ���, a diode, two 

resistors, �� and ����, and nine Si CMOS transistors (M1-M9). b) The firing rates of output 

voltage pulses triggered from an output neuron circuit, ��, are plotted versus the firing rates of 

input voltage pulses applied on a synstor, �� , when the synstor is modified to its high 

conductance with � = 10 �� (red line), or low conductance with � = 0.1 �� (blue line). 

  



     

 

 

 

 

 

 

 

 

Figure S7. The average objective function 〈�〉 =
�

�
〈�� − ���

�
〉 during PID control processes of 

a morphing wing in a wind tunnel with a wind speed � ≈ 29 �/� is shown versus the the 

proportional gain ��, the integral gain ��, and the derivative gain �� of the PID controller. 〈�〉 

approaches its minimal value (green) under the optimal gains with  �� = 10�� �/� ⋅ �, �� =

10�� �/� ⋅ ��, and �� = 10�� �/�. 
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