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36 ABSTRACT

37 Ecological forecasts are quantitative tools that can guide ecosystem management. The co-

38 emergence of extensive environmental monitoring and quantitative frameworks allows for 

39 widespread development and continued improvement of ecological forecasting systems. We use 

40 a relatively simple estuarine hypoxia model to demonstrate advances in addressing some of the 

41 most critical challenges and opportunities of contemporary ecological forecasting, including 

42 predictive accuracy, uncertainty characterization, and management relevance. We explore the 

43 impacts of different combinations of forecast metrics, drivers, and driver time windows on 

44 predictive performance. We also incorporate multiple sets of state-variable observations from 

45 different sources and separately quantify model prediction error and measurement uncertainty 

46 through a flexible Bayesian hierarchical framework. Results illustrate the benefits of 1) adopting 

47 forecast metrics and drivers that strike an optimal balance between predictability and relevance 

48 to management, 2) incorporating multiple data sources in the calibration dataset to separate and 

49 propagate different sources of uncertainty, and 3) using the model in scenario mode to 

50 probabilistically evaluate the effects of alternative management decisions on future ecosystem 

51 state. In the Chesapeake Bay, the subject of this case study, we find that average summer or total 
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52 annual hypoxia metrics are more predictable than monthly metrics and that measurement error 

53 represents an important source of uncertainty. Application of the model in scenario mode 

54 suggests that absent watershed management actions over the past decades, long-term average 

55 hypoxia would have increased by 7% compared to 1985. Conversely, the model projects that if 

56 management goals currently in place to restore the Bay are met, long-term average hypoxia 

57 would eventually decrease by 32% with respect to the mid-1980s.  

58

59

60 KEY WORDS: Bayesian, Chesapeake Bay, Forecasts, Hypoxia

61

62 INTRODUCTION

63 Stakeholders, resource managers, and policy makers need to base their decisions on the best 

64 available knowledge of how natural resources are expected to respond to environmental and 

65 anthropogenic change. Making accurate and reliable quantitative ecological predictions is one of 

66 the key challenges faced by contemporary applied ecology (Carpenter 2002; Evans et al. 2013; 

67 Moquet et al. 2015). In response to this need, a growing number of efforts have advanced 

68 ecological forecasting (Coreau et al. 2009; Luo et al. 2011; Payne et al. 2017; Ross et al. 2020). 

69 Previously defined as “the process of predicting the state of ecosystems, ecosystem services, and 

70 natural capital, with fully specified uncertainties” (Clark et al. 2001), ecological forecasts seek to 

71 not only strengthen linkages between management questions and relevant research, but also to 

72 advance scientific knowledge of mechanisms underlying ecosystem dynamics (Testa et al. 

73 2017a; Dietze et al. 2018). 

74 While forecasts of atmospheric conditions have long been a feature of climate science and 

75 operational weather forecasting, ecological forecasts have been less frequently applied given the 

76 challenges of modeling ecological systems and limitations of adequate data (e.g., Petchey et al. 

77 2015). Nonetheless, the potential for ecological forecasts to guide and improve management 

78 decisions has sparked interest beyond academic settings, with several government agencies 

79 investing resources and supporting initiatives to explore its development and application. The 

80 United States National Oceanographic and Atmospheric Administration (NOAA) has a long 
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81 history of both experimental and operational forecasts in areas such as harmful algal blooms, 

82 hypoxia, fisheries, and pathogens (Valette-Silver and Scavia 2003; NOAA 2020), and other US 

83 agencies have sponsored similar efforts (Bradford et al. 2020; NASA 2020). A recently launched 

84 Ecological Forecasting Initiative represents the first broad effort to bring all these experiences 

85 together and foster the development of an interdisciplinary forecasting community (EFI 2020).

86 Despite growing interest and an increasing number of applications, there is currently no broad 

87 consensus on the ultimate predictability of ecological systems and the ability of models to 

88 generate reliable predictions to inform policy (Beckage et al. 2011; Schindler and Hillborn 

89 2015). This may be partly because most ecological forecasting efforts are relatively recent and 

90 lack sufficiently long track records that build confidence. In addition, rigorous out-of-sample 

91 forecast skill assessment is not always performed (Johnson-Bice et al. 2020) either because 

92 forecasts are made over time frames (decades to centuries) that prevent timely comparisons with 

93 observed data (Dietze et al. 2018) or because protocols are not in place for regular forecast 

94 validation with new observations (White et al. 2019). Finally, although modeling approaches that 

95 quantify multiple sources of uncertainty are becoming increasingly common (Harwood and 

96 Stokes 2003; Clark 2005; Gimenez et al. 2014; Salon et al. 2019; Scavia et al. 2020c), a rigorous 

97 treatment of uncertainty is often missing (Dietze et al. 2018). This may result in overly confident 

98 forecasts that do not capture the full range of possible outcomes, thereby potentially leading to 

99 inadequate preparedness and loss of trust in models when observations fall outside of 

100 (underestimated) uncertainty bounds (Pappenberger and Beven 2006; Raftery 2016). 

101 Models of oxygen dynamics date back a century or more (e.g., Streeter and Phelps 1925) and 

102 forecasts of hypoxia extent are perhaps one of the most established and mature examples of 

103 routine and operational ecological forecasts. Such forecasts for the Gulf of Mexico date back 

104 almost two decades (Scavia et al. 2003, 2017), followed in more recent years by similar efforts in 

105 other systems, such as the Chesapeake Bay (Scavia et al. 2006; Testa et al. 2017a; VIMS 2020b; 

106 Bever et al. 2021), Lake Erie (NOAA GLERL 2020), and the Neuse River Estuary (Katin et al. 

107 2019; North Carolina Sea Grant 2020). Among these, the Chesapeake Bay has a 14-year 

108 transparent record of ecological forecast performance based on regular comparisons of 

109 predictions with out-of-sample observations (e.g., Scavia and Bertani 2020) and model validation 

110 (Evans and Scavia 2011). Since 2007, a statistical model that incorporates simple biophysical 

111 processes has been used to forecast mid-summer hypoxic volume (HV) in the Chesapeake Bay as 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

112 a function of total nitrogen (TN) loads from the largest tributary to the Bay (Susquehanna River) 

113 (Scavia et al. 2006). Each year, the model`s forecast is assessed at the end of the season by 

114 comparing it to hypoxia observations made by monitoring agencies (Maryland DNR 2020; 

115 Scavia and Bertani 2020). Informed by this continuous validation and assessment process, the 

116 model has been revised over the years with a focus on improving performance and uncertainty 

117 characterization (Stow and Scavia 2009; Liu et al. 2011). Testa et al. (2017a) showed that these 

118 forecasts contributed substantially to public awareness and support for management actions in 

119 the Chesapeake Bay, in addition to helping advance fundamental understanding of ecological 

120 processes driving oxygen depletion in estuarine settings.

121 In this work, we build on the Chesapeake Bay hypoxia case study and present an enhanced 

122 version of the forecasting model that addresses some of the most critical challenges, 

123 opportunities, and best practices of contemporary ecological forecasting. These include 

124 identifying predictors and metrics of ecosystem state that improve model performance and 

125 management relevance, explicitly accounting for and propagating multiple sources of 

126 uncertainty, evaluating forecasting performance through hindcasting, and applying the model to 

127 answer management questions (Dietze et al. 2018; Harris et al. 2018; White et al. 2019; Carey et 

128 al. 2021). Guided by recent appreciation for the spatial distribution of nutrient sources that affect 

129 the Bay`s water quality, how loads have changed over time, and the complex intra-annual 

130 variability in hypoxia, we explore how model performance changes when different combinations 

131 of HV metrics, TN load sources, and TN load time windows are used as calibration inputs. We 

132 also take advantage of the model’s flexible Bayesian framework to better characterize 

133 uncertainty by including multiple data sources (i.e., multiple sets of HV estimates) during 

134 calibration through a hierarchical approach that separates model prediction error and HV 

135 measurement error. Finally, we validate the model through hindcasting and showcase the use of 

136 the model for scenarios by predicting hypoxic conditions (with associated probability 

137 distributions) under alternative nutrient management scenarios routinely evaluated by the 

138 Chesapeake Bay Program (CBP), the Partnership that leads restoration efforts in the Bay.  

139

140 METHODS

141 Historical context and management background
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142 Like many coastal ecosystems worldwide, water quality of the Chesapeake Bay, the largest 

143 estuary in the continental US, declined as a result of human activity over at least the last century 

144 (Kemp et al. 2005). Loss of submerged aquatic vegetation (Kemp et al. 2005), altered benthic 

145 macroinvertebrate production (Sturdivant et al. 2013), and extensive hypoxia (e.g., Hagy et al. 

146 2004) are among the water quality impairments caused by elevated nutrient inputs, land use 

147 changes, and resource extraction. Extensive efforts have been in place to reduce nitrogen (N), 

148 phosphorus (P), and sediment (S) inputs since the 1980s, with the goal of improving water 

149 quality and reducing hypoxia (Linker et al. 2013; Shenk and Linker 2013). The United States 

150 Environmental Protection Agency (US EPA), working together with federal, state, local, and 

151 non-governmental partners, established a Total Maximum Daily Load (TMDL) in 2010 for N, P, 

152 and S (US EPA 2010). To meet the TMDL load reduction targets, state and local governments 

153 are responsible for developing Watershed Implementation Plans (WIPs) that describe needed 

154 management practices. Coincident with these efforts, which have also included point source 

155 decreases (Ator et al. 2020) and reductions in atmospheric nitrogen deposition (Eshleman et al. 

156 2013; Da et al. 2018), water clarity and dissolved oxygen (DO) concentrations have improved 

157 some (Zhang et al. 2018) and submerged aquatic vegetation has expanded in some regions 

158 (Gurbisz and Kemp 2014; Lefcheck et al. 2018). However, progress has been slow (Boesch 

159 2006) and currently less than half of the Bay area meets all water quality goals (Zhang et al. 

160 2018).

161 One of the primary TMDL goals is raising DO concentrations to levels suitable for upper trophic 

162 levels (e.g., invertebrates, finfish). Low oxygen concentrations have contributed to decreased fish 

163 habitat, catch per unit effort (Buchheister et al. 2013), and blue crab harvests (Mistiaen et al. 

164 2003), as well as reductions in production of benthic macroinvertebrates (Sturdivant et al. 2014) 

165 that serve as forage for many demersal fish. Although there is some evidence for recent 

166 improvements in DO in certain periods or when considering specific metrics (Murphy et al. 

167 2011; Zhang et al. 2018), the overall annual volume of water with oxygen less than 2 mg/L (~63 

168 mM) has changed little over the past 3-4 decades (Testa et al. 2018; Bever et al. 2018). 

169 In support of nutrient control efforts, the CBP uses complex airshed, watershed, and water 

170 quality models (US EPA 2010) to determine oxygen concentration targets (Irby and Friedrichs 

171 2019), but other predictive models have been used to both forecast and study oxygen dynamics 
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172 (e.g., Testa et al. 2014; Irby et al. 2016, 2018; Da et al. 2018; Du et al. 2018; Moriarty et al. 

173 2020), including the model presented here (Scavia et al. 2006). 

174

175 Model overview

176 The model used here is an adaptation of the Streeter-Phelps model that simulates DO depletion 

177 in rivers downstream from a point source of organic matter (Streeter and Phelps 1925). It has 

178 been applied extensively to rivers and estuaries (Chapra 1997), as well as to the northern Gulf of 

179 Mexico (Scavia et al. 2003, 2004, 2006, 2017, 2020b) and the Chesapeake Bay (Scavia et al. 

180 2006, 2019; Liu et al. 2011; Evans and Scavia 2011). 

181 The model simulates subpycnocline DO concentration profiles along the mainstem of the 

182 Chesapeake Bay via subpycnocline net advection, organic matter decomposition and oxygen 

183 consumption, and oxygen flux from the surface layer.  Assuming a correspondence between the 

184 measured extent of summer hypoxia and that which would be achieved at steady state, the steady 

185 state solution to the model is: 

186 Eq. 1
d r r

x x x
k k k

d u
s i

r d

k BOD F
DO DO e e D e

k k
           

187 where DO = dissolved oxygen (mg/L), DOs = oxygen saturation (mg/L), kd = organic matter 

188 decay coefficient (1/day), kr = reaeration coefficient (1/day), BODu = initial organic matter 

189 (mg/L), x = upstream distance (km), F = fraction of organic matter sinking below the pycnocline 

190 (unitless), Di = initial oxygen deficit (mg/L), and ν = net advection (km/day). Because the 

191 reaeration coefficient kr is known to vary with distance down estuary x, the model calculates kr = 

192 bxK, where bx takes on different values over the length of the estuary that approximate the known 

193 spatial variation in kr (Scavia et al. 2006; Evans and Scavia 2011) and K is a unitless scaling 

194 parameter estimated by the model. While ν represents river advection in the original Streeter-

195 Phelps formulation, here it is a parameterization of the combined effects of horizontal transport 

196 and all ecological processes resulting in subsequent settling of organic matter from the surface. 

197 Therefore, it is a bulk parameter with no simple physical analog.  

198 Nitrogen load is a surrogate for organic matter deposited below the pycnocline at the model 

199 origin (220 km down Bay from the Susquehanna River mouth), with model distance following 
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200 the up-estuary flow of bottom water. Specifically, nitrogen load is converted to organic carbon 

201 (C) via the Redfield C:N ratio (106:16 or 5.67 g C⁄ g N), and then converted to BODu via the 

202 respiration ratio O2:C (0.9, or 2.4 g O2 ⁄ g C) (Scavia et al. 2006). In the original model, organic 

203 matter loading was assumed proportional to Jan-May Susquehanna River TN load; in this study 

204 additional load sources and time windows were tested (see below). 

205 The Bay mainstem is divided into 137 1-km long segments and Eq. 1 is applied to estimate the 

206 steady state subpycnocline DO concentration at each segment j and in each year i (DOij). The 

207 overall length of the model-predicted hypoxic region in each year i (Li) is then calculated by 

208 summing the lengths (lij) of all segments where DOij is less than 2 mg/L (Eqs. 2 and 3) and HV 

209 (Vi) is calculated from Li using an empirical relationship (Eq. 4) derived from Chesapeake Bay 

210 measurements (Scavia et al. 2006): 

211  Eq. 2
137

1i ij ijj
L l w

212 Eq. 3
1,  2

0,  2
ij

ij

ij

DO
w

DO

  
213           Eq. 420.000391  i iV L 
214 Other assumptions include: transport results from advection rather than longitudinal dispersion, 

215 subpycnocline oxygen consumption can be modeled as a first-order process proportional to 

216 organic matter concentration, oxygen flux across the pycnocline can be modeled as a first-order 

217 process proportional to the difference between surface and bottom layer oxygen concentrations, 

218 and subpycnocline organic matter oxygen demand is proportional to TN load. Tests of these 

219 assumptions, as well as calibration to average July subpycnocline oxygen concentration profiles 

220 and HVs from 1950 to 2003, have been described elsewhere (Scavia et al. 2006). Annual 

221 forecasts provided each spring since 2007 were shown to be rather robust (Scavia and Bertani 

222 2020; Testa et al. 2017a).  

223

224 Nitrogen load sources and time frames

225 We assembled TN loads from major tributaries and point sources downstream of the tributary 

226 monitoring stations (Figs. 1 and Appendix S1: Fig. S1) and tested various combinations of load 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

227 sources and time frames as model drivers. Monthly TN loads estimated from 1985-2018 at 

228 stations located near the head of tide of nine major tributaries (Susquehanna, Potomac, James, 

229 Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank) were from the 

230 United States Geological Survey (https://doi.org/10.5066/F7RR1X68). Estimates of TN loads 

231 from point sources located downstream of these tributaries were from the CBP (Chesapeake Bay 

232 Program 2017). Monthly point source loads are based on wastewater facility monthly flow and 

233 constituent concentration data submitted by the jurisdictions to the Integrated Compliance 

234 Information System National Pollutant Discharge Elimination System (ICIS-NPDES) and 

235 subsequently reviewed and quality checked by the CBP. On average, these nine tributaries and 

236 point sources make up approximately 77% of the 1990-2018 average annual TN load (calculated 

237 from https://www.chesapeakeprogress.com/?/clean-water/water-quality). We explored model 

238 performance using each of the following combinations of sources: Susquehanna alone, Potomac 

239 alone, Susquehanna + Potomac, Susquehanna + Potomac + point sources, all nine major 

240 tributaries, all nine major tributaries + point sources. 

241 To evaluate the impact of different loading time frames on model performance, for each of the 

242 load source combinations described above, we calculated loads from the preceding year’s 

243 October and each succeeding month through April (e.g., Oct-Apr, Nov-Apr, Dec-Apr, Jan-Apr, 

244 Feb-Apr, Mar-Apr, Apr), and then similar sequences through May, June, and July. We first 

245 screened candidate load windows by calculating the Pearson's correlation coefficient between 

246 HV metrics and different combinations of TN load windows × TN load sources. Initial 

247 explorations revealed that regardless of the TN load sources considered, load time windows 

248 ending in April or earlier never improved correlations compared to time windows that considered 

249 loads through May or later, so we only included time windows ending in May or later.  In 

250 addition, correlations between HV metrics and TN loads in the Oct-Jul window were generally 

251 comparable to, or worse than, those obtained with Oct-May and Oct-Jun. Because of that, and 

252 considering that hypoxia forecasts are typically released in early June (i.e., before the July loads 

253 can be reliably predicted), we focused model calibration exercises on all possible sequential 

254 combinations of months in the Oct-May and Oct-Jun time windows.  

255

256 Hypoxic volume metrics 
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257 As part of the CBP`s long-term Water Quality Monitoring Program, Virginia and Maryland state 

258 agencies and partners have collected vertical profiles of DO since 1984 and made the data 

259 available through the CBP`s online data server (Chesapeake Bay Program 2020). Roughly 30-60 

260 stations in the mainstem portion of the Bay are sampled semi-monthly in June through August 

261 and monthly throughout the remainder of the year, with vertical profiles collected at about 1-2 m 

262 vertical resolution. These data have been used by numerous groups to estimate the extent of 

263 hypoxia in the Chesapeake Bay (Bever et al. 2013, 2018; Zhou et al. 2014; Hagy et al. 2004; 

264 Murphy et al. 2011).

265 Previous versions of the model were calibrated to average July HV estimated through 

266 interpolation of DO measurements from a subset of the mainstem stations mentioned above by 

267 Hagy et al. (2004) and by Murphy et al. (2011) in more recent years (Scavia et al. 2019). The 

268 month of July was originally selected because that is when HV often reaches its seasonal 

269 maximum. However, retrospective assessments of forecast performance revealed consistent 

270 overprediction of July HV in years characterized by anomalous weather events (Testa et al. 

271 2017a). In addition to that, different metrics may capture different aspects of an ecosystem`s 

272 status and metrics other than the seasonal maximum HV may be more relevant to stakeholders 

273 and decision makers depending on the specific ecological management target. For example, 

274 managers interested in assessing spawning habitat availability for a benthic species that tends to 

275 spawn in June would be more interested in average June HV. On the other hand, total annual HV 

276 may be the preferred metric when tracking watershed management progress over time, because it 

277 may be less sensitive to year-specific transient weather events and may better capture the 

278 cumulative effects of changes in nutrient loads over time. One of the goals of our analysis was 

279 thus to assess how model performance changed when different HV metrics were used as 

280 calibration endpoint to 1) identify which metrics may lead to improved forecasting performance 

281 and 2) provide stakeholders and managers with useful information on each metric`s 

282 predictability. 

283 To compare model performance for different combinations of HV metrics, load sources, and load 

284 time frames while maintaining an interpolation method consistent with previous model versions, 

285 we used the updated time series (1985-2018) of HV estimates generated following Murphy et al. 

286 (2011). Murphy et al. (2011) apply two-dimensional (depth-length) ordinary kriging to DO 

287 observations collected during semi-monthly cruises at 21 stations along the main channel of the 
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288 Bay. The interpolated DO profile estimated along the main channel for each cruise is assumed to 

289 remain constant across the mainstem and is extended laterally to estimate cruise-specific HV 

290 based on previously published cross-sectional volumes. 

291 We tested six different HV metrics in the model’s calibration (Figs. 2 and Appendix S1: Fig. S2): 

292 average of the two cruise-specific HVs for each month for June through September (km3), 

293 average summer (defined as June-September) HV (km3), and total annual HV (km3*days). In 

294 cases when only a single cruise was available in a month (typically in September and 

295 sporadically in other months), that cruise`s value was taken as the monthly HV. Total annual HV 

296 was estimated by multiplying each cruise-specific HV by the number of days until the following 

297 cruise and then summing these values over each year (Bever et al. 2013). 

298

299 Hypoxic volume interpolation methods

300 We considered two additional sets of HV estimates to investigate the influence of the 

301 interpolation methods on variability in HV estimates and model predictive uncertainty. We note 

302 that we use the terms “variability” and “model predictive uncertainty” to indicate, respectively, 

303 the range of variation of an outcome (e.g., HV) around its mean and the stochastic error 

304 component that estimates that variation within a model (e.g., the residual error term in a 

305 regression model) (Gelman and Hill 2007; Hofman et al. 2020). The different sets of HV 

306 estimates were generated using different subsets of DO profile stations as well as different 

307 interpolation methods. Zhou et al. (2014) performed universal kriging on cruise-specific DO 

308 profiles from approximately 40 stations located across the mainstem of the Bay. Bever et al. 

309 (2018) used the CBP volumetric inverse distance-squared interpolator (US EPA 2003) with DO 

310 profiles from a subset of 13 stations along the mainstem and in the lower Potomac River. 

311 Differences in cruise-specific HVs across these three methods (hereafter referred to as Murphy, 

312 Zhou, and Bever) are expected as a result of several factors, including differences in the 

313 interpolation approaches and relevant methodological choices (e.g., DO profile stations used), 

314 the bathymetry used in the interpolations, and the spatial extent over which interpolation was 

315 carried out. 

316 Zhou et al. (2014) and Murphy et al. (2011) limited their spatial extent to the mainstem, while 

317 Bever et al. (2018) extended interpolations to the tributaries. To adjust for these differences 
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318 while preserving the individual inter-annual variability, we scaled Murphy and Zhou HVs to 

319 Bever’s using the average long-term ratio of mainstem-only HV to Bay-wide HV simulated by 

320 the CBP Water Quality and Sediment Transport Model (WQSTM). A comparison with long-

321 term ratios of mainstem-only HV to Bay-wide HV calculated using HVs estimated by the CBP 

322 volumetric interpolator over the period 1985-2013 indicated that ratios estimated by the CBP 

323 WQSTM and the CBP interpolator are largely comparable (Appendix S1: Fig. S3). Because 

324 average ratios calculated for individual months and total annual HV did not differ substantially, 

325 we applied the total annual HV ratios to Zhou’s and Murphy’s monthly, average summer, and 

326 total annual HV metrics. 

327 To quantify uncertainty due to HV estimation error and model prediction error separately, we 

328 used a hierarchical modeling approach to expand the original model formulation and 

329 simultaneously calibrate the model to the three sets of HV estimates (Obenour et al. 2014). The 

330 three individual HV estimates in each year i are modeled as arising from a normal distribution 

331 with mean yi and standard deviation σest (Eq. 5). In this formulation, yi represents the true, 

332 unknown HV in year i and is itself modeled as arising from a normal distribution with mean 

333 equal to the deterministic model prediction in year i as defined in Eqs. 1 and 4 (Vi) and standard 

334 deviation σres (Eq. 6):

335    Eq. 5 2
,  ~ , i j i estvol Normal y 

336      Eq. 6 2 ~ , i i resy Normal V 
337 where voli.j represents the HV estimate from method j (with j=1 for Murphy, j=2 for Bever, and 

338 j=3 for Zhou) in year i and the two stochastic terms σest and σres represent uncertainty deriving 

339 from HV estimation error and model prediction error, respectively.

340

341 Calibration and model skill assessment 

342 The original model (Scavia et al. 2006) was a Monte Carlo implementation that accommodated 

343 potential variation in the bulk parameter ν.  It was subsequently reformulated within a Bayesian 

344 framework (Evans and Scavia 2011; Liu et al. 2011) to account for uncertainty in additional 

345 parameters.  In the present study, the model was calibrated under the range of conditions 
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346 described above using Bayesian fitting conducted with the software WinBUGS version 1.4.3 

347 (Lunn et al. 2000; Gelman and Hill 2007) interfaced with R version 3.5.2 (R Core Team 2018) 

348 through the package R2WinBUGS version 2.1-21 (Sturtz et al. 2005). All model parameters 

349 were kept constant across years. The two parameters quantifying sources of uncertainty (σest and 

350 σres) are represented as precisions in WinBUGS (τest and τres, where τ = 1/σ2) and were assigned 

351 weak priors: τest, τres ~ Gamma(0.001, 0.001), while all other parameters were given the same 

352 priors used in the most recent model applications: K∼Normal(0.6, 0.2)I[0, 1]; F~Normal(0.5, 

353 0.5) I[0, 1]; kd∼Normal(0.11, 0.05)I[0, ]; and ν∼Normal(2.5,  0.77)I[0, ], where the Gamma 

354 distribution is defined by the shape and rate parameters, the Normal distribution is defined by the 

355 mean and standard deviation, and ‘I[]’ denotes censoring to restrict values above 0 (I[0, ]) or 

356 between 0 and 1 (I[0, 1]) (Evans and Scavia 2011; Liu et al. 2011). We ran four Markov Chain 

357 Monte Carlo chains with 5,000 iterations each and checked convergence by ensuring that Ȓ<1.1 

358 for all model parameters. We assessed how model performance changed when using multiple 

359 sets of HV estimates and different combinations of HV metrics, TN load sources, and TN load 

360 time windows using a combination of several metrics: the Nash-Sutcliffe Efficiency (NSE), the 

361 square of the correlation coefficient between observed and predicted values (r2), the root mean 

362 square error (RMSE), the mean absolute error (MAE), and the residual standard error (RSTDE) 

363 (see Appendix S1 for a description of how each metric was calculated). Specifically, we 

364 evaluated all metrics simultaneously and assessed whether all metrics agreed in indicating which 

365 model performed best. By ensuring a high level of agreement among different metrics we aimed 

366 at providing a more comprehensive and robust assessment of the models` performance. When 

367 multiple sets of HV estimates were used in model calibration, all individual HV estimates from 

368 the different sets were used to calculate model performance metrics. 

369 For the models exhibiting the best predictive performance according to the metrics defined 

370 above, we also computed the coverage of the 95% prediction intervals (i.e., the fraction of the 

371 observations that fell within the intervals) and the Continuous Ranked Probability Score (CRPS) 

372 (Matheson and Winkler 1976). The CRPS quantifies the error between the cumulative 

373 distribution function of a model`s prediction and that of the corresponding observed value, 

374 thereby providing an assessment of the calibration and sharpness of the predictive distributions 

375 (Gneiting and Katzfuss 2014). We used the R package scoringRules version 1.0.1 (Jordan et al. 

376 2019) to calculate a CRPS value for each observation and then obtained a mean CRPS value for 
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377 each model by averaging across all observations. We then calculated a CRPS skill score (Eq. 7) 

378 by comparing each model`s CRPS (CRPSmodel) with that of a respective benchmark null model 

379 (CRPSbenchmark) that does not have TN load as the predictor and thereby essentially 

380 corresponds to a constant-only model that predicts HV simply based on the historical long-term 

381 average (Pappenberger et al. 2015; Thomas et al. 2019):

382 Eq. 7  1  model

benchmark

CRPS
CRPS skill score

CRPS
 

383 Because lower CRPS values indicate better performance, with zero corresponding to a perfect 

384 prediction, a CRPS skill score of 1 indicates a perfect prediction, values above zero indicate that 

385 a model is more skillful than its respective benchmark null model, and conversely values below 

386 zero indicate that a model performs worse than the benchmark. 

387 Response curves and scenarios

388 Response curves were developed for the two best performing models by generating HV 

389 predictions, with 95% credible and prediction intervals, for a range of TN loads. The response 

390 curves were then used to estimate HVs for a set of alternative management scenarios routinely 

391 evaluated by the CBP:

392 ● 1985 FN and 2018 FN: Obtained by summing flow-normalized loads from all nine 

393 tributaries plus point sources in 1985 and 2018, respectively.  Flow normalization (Hirsch et 

394 al. 2010) removes the influence of year-to-year variability in river flow, thereby providing 

395 an estimate of the amount of change in loads between 1985 and 2018 that may be attributed 

396 to changing nutrient sources, management actions, and other factors.

397 ● 2020 No Action: Obtained by multiplying each tributary`s 1985 flow-normalized load by 

398 the ratio of 2020 No Action/1985 Progress Real Air scenario loads estimated for that 

399 tributary`s sub-watershed by the CBP partnership`s watershed model CAST (Chesapeake 

400 Bay Program 2017). Tributary loads were then summed together with point sources from the 

401 CAST 2020 No Action scenario. The 2020 No Action scenario estimates the long-term 

402 average loads expected given a constant 2020 land use, human and livestock populations, 

403 and cropping systems, but with management practices, point sources, septic loads, and 

404 atmospheric deposition set as if no actions had been taken to control nutrients since 1985. 
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405 The 1985 Progress Real Air scenario estimates the long-term average loads expected from 

406 the watershed at each monitoring station given a constant 1985 land use, management 

407 practices, point sources, septic loads, cropping systems, livestock, and nutrient inputs of 

408 fertilizers, manure, N fixation, and atmospheric deposition. 

409 ● WIP3 Planning Targets: Obtained by multiplying each tributary`s 2018 flow-normalized 

410 load by the ratio of Phase 3 Watershed Implementation Plan (WIP3) Planning Targets/2018 

411 Progress Real Air scenario loads. Tributary loads were then summed together with point 

412 sources from the CAST WIP3 scenario. The WIP3 Planning Targets represent loads 

413 consistent with the Bay’s TMDL (US EPA 2010) that are expected to achieve target water 

414 quality goals.

415 ● WIP3 Actual: In some cases, the WIP3s submitted by the states did not meet the WIP3 

416 Planning Targets.  WIP3 Actual was obtained by multiplying each tributary`s 2018 flow-

417 normalized load by the ratio of the actual WIP3 plans submitted by the states/2018 Progress 

418 Real Air scenario loads estimated by CAST. Tributary loads were then summed together 

419 with point sources from the CAST WIP3 Actual scenario. The WIP3 Actual scenario 

420 estimates the long-term average loads expected if the WIP3s submitted by the states are 

421 completed, using modeled 2025 land use and population conditions. The 2018 Progress Real 

422 Air scenario is defined similarly to the 1985 Progress Real Air scenario defined above. 

423

424 RESULTS

425 Total nitrogen loads and hypoxic volume metrics

426 Annual TN loads are dominated by the Susquehanna and Potomac rivers, followed by point 

427 sources that enter below the monitoring stations (Fig. 1). There was considerable inter-annual 

428 variability driven largely by precipitation. Highest loads occurred in especially wet years (e.g., 

429 2003, 2004, 2011) and lowest loads in drier years (e.g., 1999-2002). Loads were typically highest 

430 in March and April, lowest in July and August, and most variable in September (Appendix S1: 

431 Fig. S1).

432 There was also substantial inter-annual variability in HV. The three interpolation methods 

433 showed relatively coherent patterns for total annual HV, summer average HV, and most of the 
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434 individual months (Figs. 2 and Appendix S1: Fig. S2 and Table S1), with particularly large HV 

435 in 1998, 2003, and 2001, and relatively smaller volumes in 2001, 2002, and 2012. When 

436 averaged across the three sets of estimates, the smallest annual HV occurred in 2002 (557 ± 30 

437 km3*days) and the largest in 2003 (1235 ± 240 km3*days). In most years HV peaked in July and 

438 declined between August and September, although there was substantial inter-annual seasonal 

439 variability and in some years the largest HVs occurred in June or August. The largest monthly 

440 HV was in July 2011. Using the coefficient of variation as an estimate of inter-annual variability, 

441 all three estimates exhibited substantially higher inter-annual variability in monthly HVs 

442 compared to summer average and total annual HV (Appendix S1: Table S1).

443

444 Model calibration 

445 Based on general agreement among the performance metrics, the best fits (i.e., highest NSE, 

446 highest r2, lowest RMSE, and lowest MAE) for total annual, summer average, and August HV 

447 were achieved when driven with Jan-Jun loads from all tributaries plus point sources (Table 1; 

448 Fig. 3). The June and July HV best fits were obtained with slightly different TN load sources and 

449 periods (Table 1), but their second-best models were also based on loads from all tributaries and 

450 point sources and were virtually indistinguishable from the best models’ performance. 

451 Interestingly, models calibrated to only Susquehanna loads never ranked among the ten best-

452 performing models for any of the HV metrics considered here. As an example, based on NSE the 

453 best performing models driven by TN loads from only the Susquehanna River explained 28% 

454 and 23% of the inter-annual variability in total annual and average July HV, respectively, 

455 compared to 52% and 29% obtained when using loads from all tributaries and point sources 

456 (Table 1). All models exhibited a CRPS skill score > 0, indicating that all models represented an 

457 improvement in performance compared to the respective null models, and the percentage of 

458 observations that fell within the 95% prediction intervals ranged between 94% and 100% (Table 

459 1).

460 The highest model performances were obtained for average summer and total annual HV (Table 

461 1). The monthly HV models performed better earlier in the season (e.g., June and July) compared 

462 to late summer (e.g., August and September), and the load time frames tested here had no 

463 predictive power for September HV. 
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464 To more rigorously assess the performance of the overall best model (i.e., the one calibrated to 

465 total annual HV and driven by Jan-Jun loads from all tributaries and point sources), we generated 

466 blind forecasts for the years when regular forecasts were made (i.e., starting in 2007). To forecast 

467 each year, we calibrated the model using data up to the preceding year. This provides a more 

468 realistic estimate of how the model would perform when predicting outside of the calibration 

469 dataset. When run in this blind forecast mode, 100% of the left-out, post-2006 observations fell 

470 within the 95% prediction intervals and the CRPS skill score was equal to 0.14, indicating an 

471 improvement in performance compared to a corresponding null model run in blind forecast 

472 mode. Values of NSE indicated that the blind forecast total annual HV model explained 47% of 

473 the variability in HV when considering all years in the 2007-2018 window, and 58% of the 

474 variability in HV when excluding three years characterized by mid-summer disruptive weather 

475 events (2007, 2014, and 2018; Fig. 2). For comparison, when calibrated to only Susquehanna TN 

476 loads, the model explained 23% and 27% of the variability in total annual HV across all years 

477 and “normal” weather years, respectively. 

478

479 Sources of uncertainty 

480 When calibrating the best-performing models (i.e., average summer and total annual HV driven 

481 by Jan-Jun loads from all tributaries plus point sources) to three sets of HV estimates 

482 simultaneously, predictive performance (average summer: NSE = 0.39, r2 = 0.52, RMSE = 1.11, 

483 MAE = 0.89; total annual: NSE = 0.50, r2 = 0.60, RMSE = 136, MAE = 107) was comparable to 

484 that of the models calibrated using the same inputs but one set of HV estimates only (Table 1). 

485 Model prediction error (σest) and HV estimation error (σres) were similar, suggesting that the two 

486 sources of uncertainty are of comparable magnitude (Appendix S1: Table S2). The 95% 

487 prediction intervals accounting for parameter uncertainty, model prediction error, and HV 

488 estimation error contained the corresponding observed values 97% of the times for both models, 

489 and were on average 20% wider than those accounting for only parameter uncertainty and model 

490 prediction error (Fig. 4). The CRPS was equal to 75 km3 (total annual HV) and 0.63 km3 

491 (average summer HV) while the CRPS skill score was equal to 0.26 (average summer HV) and 

492 0.34 (total annual HV), indicating that the models performed better than the corresponding 

493 benchmark null models. Although model residuals did not show a clear trend over time, the ratio 
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494 of total annual or summer average HV over the Jan-Jun TN load exhibited a significant positive 

495 trend using the two sets of HV estimates (Murphy and Bever) with complete records over 1985-

496 2018 (Appendix S1: Fig. S4).

497

498 Response curves and scenarios  

499 Parameters from the best models were used to construct HV-load response curves for summer 

500 average and total annual HV (Fig. 4).  The best-estimate curve indicates that, based on flow-

501 normalized loads, total annual HV declined on average from 930 km3*days (95% credible 

502 interval, or CI: 840-1005 km3*days) to 770 km3*days (95% CI: 640-870 km3*days) between 

503 1985 and 2018 (Fig. 4a and Appendix S1: Table S2). These estimates are not meant to 

504 characterize HV in a specific year, but rather to quantify the change in HV predicted by the 

505 model between two given time periods over the long-term after averaging out the influence of 

506 inter-annual variability in TN loads due primarily to freshwater flow variability. 

507 We also explored load reductions associated with specific management scenarios generated by 

508 the CBP Partnership`s watershed model CAST. The results suggest that had there been no point 

509 or nonpoint source management actions, long-term average HV would have increased to 995 

510 km3*days (95% CI: 910-1085 km3*days) by 2020.  The model also projects that if the TMDL is 

511 reached, long-term average HV would decrease to 635 km3*days (95% CI: 440-785 km3*days), 

512 or to 660 km3*days (95% CI: 480-785 km3*days) if the WIP3 Actual reductions are reached. 

513 This TMDL-based HV reduction represents 18% (95% CI: 10-32%) and 32% (95% CI: 22-49%) 

514 reduction from 2018 and 1985 flow-normalized conditions, respectively.  Similar results were 

515 found for summer average HV (Appendix S1: Table S2). 

516 For both total annual and summer average HV, TN load changes occurring at relatively high 

517 loads produce relatively small changes in HV.  But, as loads decrease the curve’s slope becomes 

518 steeper and the HV change per unit TN load increases, suggesting HV reductions may become 

519 more responsive as loads continue to decrease. 

520

521 DISCUSSION
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522 Predictability of different HV metrics - Hypoxic extent metrics used for forecasts, scenarios, 

523 and reporting across several systems have often been estimates of summer maximum volume or 

524 area (e.g., Liu et al. 2011; Scavia et al. 2003, 2006, 2016, 2017; Testa et al. 2017a; Obenour et al. 

525 2012, 2015; Rucinski et al. 2016; Bocaniov and Scavia 2016; Zhang et al. 2016; but see Katin et 

526 al. 2019; Del Giudice et al. 2020; Ross et al. 2020). However, these maxima are not necessarily 

527 representative of year-long conditions. For example, years with particularly large July HV, the 

528 metric historically used to forecast hypoxia in the Chesapeake Bay, do not always exhibit 

529 comparably large total annual HV and vice versa (Fig. 2; Bever et al. 2013; VIMS 2020b). Our 

530 results showed that summer average and total annual HV are considerably easier to predict than 

531 monthly HV (Table 1). This is largely because short-term meteorological events that increase 

532 vertical mixing and lateral advection of bottom water can temporarily decrease HV (Goodrich et 

533 al. 1987; Scully 2010a; Testa et al. 2017b). While these HV disruptions are often relatively short-

534 lived, they increase variability at monthly scales and may lead to substantial overprediction on 

535 short time scales (Testa et al. 2017a). Similar disruptions of seasonal hypoxia occur in other 

536 systems (Turner et al. 2012; Bocaniov and Scavia 2016), leading to either incorporate weather-

537 related drivers or to shift to hypoxia metrics that better integrate conditions throughout the year 

538 (Bever et al. 2013, 2018; Feng et al. 2012; Obenour et al. 2015; Matli et al. 2018, 2020).

539 In addition to being less sensitive to variability caused by episodic weather events, total annual 

540 HV better captures cumulative effects of year-to-year variability in nutrient loads, as illustrated 

541 by the largest improvement in performance when relating this metric to a more comprehensive 

542 estimate of total watershed loads (Table 1). Annual HV also has the benefit of incorporating 

543 climate change effects because it combines hypoxic volume and duration into one metric without 

544 being biased by climate-driven shifts in the timing or location of hypoxia (Irby et al. 2018). By 

545 representing a more integrated, annual-scale estimate of oxygen depletion, total annual HV may 

546 also capture a broader measure of living resource habitat limitation over the annual cycle. 

547 However, monthly forecasts might be more informative if they capture more temporally dynamic 

548 representations of hypoxia severity within a year. Given the wide range of oxygen vulnerability 

549 among marine species (e.g., Vaquer-Sunyer and Duarte 2008), forecasts that quantify periods of 

550 both low and high hypoxia severity during a year may allow for more species-specific 

551 quantification of potential habitat loss and physiological stress. For example, many benthic 

552 invertebrates, which are an important forage base for finfish communities, can tolerate some 
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553 degree of hypoxia (e.g., Modig and Olafsson 1998), while more severe hypoxia has more 

554 widespread ecosystem effects (Vaquer-Sunyer and Duarte 2008; Sturdivant et al. 2014). Thus, as 

555 some organisms may be able to tolerate modest and extensive hypoxia but cannot tolerate the 

556 most severe periods (Brady et al. 2009), it might be important to trade increased uncertainty for 

557 the shorter-term metric. Tradeoffs like this will likely play out in developing most ecological 

558 forecasts, where the chosen time frame for prediction is ultimately a function of the ecological 

559 target of interest and may include indices for both duration and spatial extent to represent the 

560 time-space integration of habitat availability.

561 Uncertainty characterization - Quantifying and communicating uncertainty is crucial when 

562 forecasts and scenarios are used for environmental decision making (Clark et al. 2001; Harwood 

563 and Stokes 2003; Irby and Friedrichs 2019). A rigorous and transparent characterization of 

564 forecast uncertainty enables stakeholders and policy makers to a) get a realistic picture of the 

565 current state of scientific knowledge of the process being predicted, b) quantitatively evaluate the 

566 risk associated with a range of possible future outcomes and make decisions accordingly, and c) 

567 prioritize future investments to fill knowledge gaps that are responsible for the largest sources of 

568 uncertainty (Pappenberger and Beven 2006; Dietze et al. 2018). The relative magnitude of 

569 different error sources provides useful insights on where to focus future research efforts to 

570 reduce forecast error (Obenour et al. 2014; Bertani et al. 2016; Del Giudice et al. 2020). The 

571 hierarchical approach demonstrated here provides a means to quantify multiple sources of 

572 uncertainty, including parameter uncertainty, model prediction error, and HV measurement error. 

573 While model predictive performance did not change when incorporating multiple sets of HV 

574 estimates, the separate characterization of measurement and prediction error led to wider, but 

575 more realistic, prediction intervals (Cressie et al. 2009). The ability to explicitly separate 

576 different sources of uncertainty also allowed us to develop different types of predictive intervals, 

577 depending on which types of uncertainty are of interest (Fig. 4; See “Management Application”).  

578 Reducing measurement error - We found that uncertainty associated with HV estimates is an 

579 important component of the overall predictive uncertainty (Fig. 4). As a result, efforts to improve 

580 HV estimates and reconcile differences across multiple sets of HV estimates have the potential to 

581 reduce forecast uncertainty. This is consistent with findings in other systems where a thorough 

582 analysis of uncertainty has revealed that accurately capturing temporal dynamics of complex 
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583 ecological processes such as harmful algal blooms and hypoxia is still a major limitation to 

584 reducing forecast error (Del Giudice et al. 2020; Scavia et al. 2020c). 

585 While few monitoring programs have the resources needed for the intensive monitoring required 

586 to accurately capture metrics such as algal and oxygen dynamics, advances in three-dimensional 

587 ecological modeling, space-time geostatistical estimation, and their fusion provide sophisticated 

588 interpolations of limited survey data. For example, as computational power increased and three-

589 dimensional ecological models have become more sophisticated, they have been used to both 

590 provide insights into oxygen dynamics and integrate point estimates across time and space to 

591 generate continuous time series of hypoxia (Bever et al. 2013; Fennel et al. 2016; Katin et al. 

592 2019). Geostatistical techniques are also being used to augment discrete monitoring data and 

593 generate enhanced estimates of algal blooms and hypoxia dynamics integrated over space and 

594 time with quantified uncertainty (Murphy et al. 2011; Obenour et al. 2013; Zhou et al. 2013, 

595 2014; Matli et al. 2018; Fang et al. 2019). Matli et al. (2020) combined these two approaches by 

596 using output from a three-dimensional ecological model as covariates in their space-time 

597 geostatistical analysis for the Gulf of Mexico, reducing prediction uncertainty by 11-40% 

598 compared to using measurement alone. As these modeling and geostatistical approaches 

599 improve, together with the ever-increasing availability of high-frequency sensors and remote 

600 sensing products, the ability to expand beyond the limitations of traditional monitoring will allow 

601 for more integrative and accurate ecosystem metrics used in forecast and scenario development. 

602 The hierarchical framework presented here also allows for the estimation of separate 

603 measurement errors for sets of metrics that are known to be characterized by markedly different 

604 measurement uncertainty.

605 Reducing model error - Model error results from an incomplete deterministic representation of 

606 mechanisms and drivers. This type of uncertainty can be reduced through model improvements 

607 that include additional drivers and/or enhance the model`s ability to capture biophysical 

608 relationships. In our case, a better characterization of the load sources and replacing the 

609 calibration target with HV metrics that are less sensitive to short-term weather resulted in 

610 improved model performance (Table 1). 

611 Considerable inter-annual HV variability remained unexplained (Table 1). This is expected 

612 because the relatively simple model does not include other drivers like climate-related variables 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

613 (Scully 2013; Li et al. 2016; Irby et al. 2018; Du et al. 2018). Models of intermediate complexity 

614 that combine the strengths of data assimilation with parsimonious ecological process-based 

615 representations have been effective in explaining additional variability in similar systems while 

616 retaining the ability to characterize uncertainty (Liu and Scavia 2010; Rucinski et al. 2014; 

617 Obenour et al. 2015; Del Giudice et al. 2020). However, adding drivers that help explain 

618 additional inter-annual variability but are not reliably forecast at seasonal time scales, as is often 

619 the case for weather-related variables, may add substantial uncertainty, or make the model less 

620 effective in forecast mode.  All ecological forecast models will need to eventually strike a 

621 balance between the availability of driver forecasts, model performance, and parsimony.

622 Value of seasonal forecasts - Near-term seasonal forecasts benefit scientists and other 

623 stakeholders because they generate knowledge on external controls of ecosystems and permit the 

624 translation of that knowledge into a prediction with societal value (Testa et al. 2017a; Dietze et 

625 al. 2018). Seasonal forecasts relate causes and consequences of ecological conditions and can 

626 help raise public awareness of potential controls. Although the initial motivation for an 

627 ecological forecast may be to provide operational, quantitative information to support natural 

628 resource management, widely-communicated forecasts also engage audiences outside of the 

629 resource management community. 

630 Public engagement can maintain motivation and build support for improving water quality. The 

631 release of seasonal hypoxia forecasts in Chesapeake Bay have facilitated that engagement 

632 (Scavia and Bertani 2020), along with periodic updates throughout the summer (Maryland DNR 

633 2020), and end-of-year summaries of the yearly severity of hypoxia (VIMS 2020a). Testa et al. 

634 (2017a) showed that hypoxia-related media activity increased substantially following initiation 

635 of Chesapeake Bay hypoxia forecasts. Articles mentioning forecasts made up 41-56% of all 

636 articles related to Chesapeake Bay hypoxia between 2013 and 2015. Similarly, the Gulf of 

637 Mexico and Lake Erie annual forecasts each generate hundreds of local and national media 

638 reports, resulting in elevated awareness and support for action. Newsletters and websites that 

639 supplement the forecasts (e.g., Scavia and Bertani 2020; Rabalais 2020) draw attention to other 

640 issues associated with hypoxia, expand discussions around any unexpected factors causing the 

641 forecasts to fail, and provide platforms to assess new discoveries while allowing for continuous 

642 improvement of the forecast modeling tools. 
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643 Our efforts also highlight how we can gain scientific insights by building and iteratively 

644 revisiting ecological forecast models (Dietze et al. 2018). By routinely evaluating our forecasts 

645 against observations and investigating the causes leading to model failure in specific years, we 

646 gained critical knowledge that guided refinements of HV metrics and relevant load sources. For 

647 example, overprediction of average July HV routinely observed in summers with anomalous 

648 weather events (Testa et al. 2017a) led to the exploration of HV metrics that would be less 

649 sensitive to transient weather conditions and would thus result in improved model performance 

650 (this study). This is only the last of a series of iterations that the model has gone through over the 

651 years as new data became available, more forecasts were made, and model performance could be 

652 re-assessed. For example, a re-evaluation of model performance with a longer forecasting record 

653 led to switching to a more parsimonious model formulation where all parameters are kept 

654 constant through time rather than allowed to vary over the years (Evans and Scavia 2011). That 

655 work also showed how model parameter values gradually changed and model accuracy and 

656 precision improved as individual years were progressively added to the calibration dataset. 

657 Results of that study indicated that gradual shifts in parameter estimates over time reflected an 

658 apparent increased sensitivity of the system to nutrient loads (Evans and Scavia 2011). Those 

659 findings led to the adoption of a moving-window calibration approach for a few years (2010-

660 2014), which was abandoned in 2015 to return to a calibration based on the full dataset (Scavia 

661 and Bertani 2020) as new forecast performance indicated excessive sensitivity of the calibration 

662 window to years with anomalous weather. By continually updating model calibration as new data 

663 became available, we also found that the ratio of both summer average and total annual HV to 

664 spring TN load has been increasing in recent years (Appendix S1: Fig. S4). This is consistent 

665 with previous research that suggested the Bay became more susceptible to hypoxia over the past 

666 35 years (Hagy et al. 2004; Kemp et al. 2005; Murphy et al. 2011). Persistent hypoxia despite N 

667 load reductions has been attributed to changes in wind forcing (Scully 2010b), altered spatial 

668 patterns of chlorophyll-a (Lee et al. 2013; Testa et al. 2018; Wang and Hood 2020), and 

669 warming (Du et al. 2018; Ni et al. 2020). These studies point to multiple compounding factors 

670 that may be counteracting nutrient reductions and offer hypotheses to test in future applications 

671 of our forecast model.

672 In addition, for cases where the same model is used for both seasonal forecasts and scenarios, the 

673 track records of the seasonal forecasts provide useful skill assessments and measures of 
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674 confidence (e.g., Scavia and Bertani 2020; Scavia et al. 2020a,b; Testa et al. 2017a). Examples 

675 where the same model has been used for both seasonal and short-term forecasts and scenario 

676 planning include hypoxia in the Gulf of Mexico (Scavia et al. 2017), Chesapeake Bay (Irby and 

677 Friedrichs 2019, VIMS 2020b), and the Neuse River Estuary (Katin et al. 2019), and harmful 

678 algal blooms in Lake Erie (Scavia et al. 2016; Verhamme et al. 2016; Stumpf et al. 2016; Bertani 

679 et al. 2016).  

680 Management scenario application - Unlike other ecological forecasts for the Gulf of Mexico 

681 and Lake Erie (GLWQA 2016; Task Force 2016), the original Chesapeake Bay model was not 

682 used to guide management decisions, primarily because it was driven only by Susquehanna River 

683 loads as opposed to watershed-wide loads. Our analyses demonstrated that driving the model 

684 with TN load from all major tributaries and point sources resulted in the best performance for the 

685 two metrics that best characterize the system’s response to inter-annual variability in loads (Fig. 

686 4). This not only corroborates the importance of watershed-wide load reduction strategies as 

687 expressed in the Chesapeake Bay TMDL (US EPA 2010), but also makes the revised model 

688 more suitable to evaluate those efforts. The Bay’s water quality restoration targets are based on 

689 spatio-temporal patterns in DO concentrations rather than Bay-wide HV (US EPA 2010), and the 

690 resolution of this model prevents it from evaluating those targets directly. However, the model 

691 has been useful in tracking progress over time (Testa et al. 2017a). In addition, because the 

692 revised model is better connected to watershed-wide restoration efforts, it can now be used (e.g., 

693 Fig. 4) to explore how management actions have influenced hypoxia, how they may influence it 

694 in the future, and as an independent line of evidence to support results from the official suite of 

695 complex process-based models used by the CBP. 

696 Being based on a steady-state solution, the model cannot predict how long it may take to achieve 

697 the mean HV expected under a specific management scenario. It is also important to note that 

698 scenario predictions may be conservative because our simple model does not account for future 

699 changes in biogeochemical processes such as in sediment oxygen demand. Changes in these 

700 processes would not influence seasonal forecasts because their impacts would have been 

701 accommodated during model calibration. However, such processes may change through time as a 

702 result of sustained load reductions. In the short- to mid-term, the accumulation of estuarine 

703 nutrients and organic matter is likely to result in a time lag between load reductions and 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

704 detectable improvements in water quality (Jeppesen et al. 2005; Bocaniov and Scavia 2016); 

705 over the long term it is reasonable to expect that substantial and continued load reductions would 

706 eventually result in a decrease in oxygen consumption and specifically sediment oxygen demand 

707 (Smith and Matisoff 2008; Rucinski et al. 2014). This in turn may lead to additional reductions in 

708 HV, although there is substantial uncertainty on how and over what time frames these 

709 biogeochemical processes may respond to long-term management actions. Future model 

710 enhancements should address this limitation, for example by incorporating parsimonious 

711 parameterizations of oxygen consumption processes, similar to what has been done in other 

712 systems (Borsuk et al. 2001; Del Giudice et al. 2020; Obenour et al. 2015; Rucinski et al. 2014, 

713 2016). 

714 Another important consideration when using the model in scenario mode is that it was calibrated 

715 to a dataset in which inter-annual variability in loads is largely due to variation in precipitation 

716 and hydrology. On the other hand, decreases in loads due to management actions are expected to 

717 be mainly associated with decreases in constituent concentrations rather than changes in 

718 hydrology. Using the model in scenario mode thus assumes that the relationship between loads 

719 and HV observed over the calibration period would hold when changes in loads are due to 

720 changes in land management rather than changes in hydrology. Although this is a common 

721 underlying assumption of similar relatively simple models used both in forecasting and scenario 

722 mode (Obenour et al. 2014; Stumpf et al. 2016; Scavia et al. 2017), the inclusion of separate 

723 terms in the model for discharge and nutrient inputs would allow one to explore differences in 

724 the system's response to changes in loads due to different factors (Stumpf et al. 2012, Del 

725 Giudice et al. 2020). 

726 Despite these limitations, some of the characteristics that make this model a useful complement 

727 to existing sophisticated three-dimensional hydrodynamic-biogeochemical models of the 

728 Chesapeake Bay include a) the ability to seamlessly and readily incorporate new data as they 

729 become available and routinely update model calibration in line with an adaptive management 

730 approach, b) the fast computation time, which makes it possible to easily evaluate large numbers 

731 of management scenarios, and c) the ability to rigorously characterize uncertainty and provide 

732 probabilistic predictions. Separating different sources of uncertainty is important because the 

733 target of management actions is typically the true, latent state of an ecosystem property (e.g., the 
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734 true, unknown HV represented by yi in Eq. 6), which is not affected by measurement error. The 

735 portion of the overall model predictive uncertainty that is due to HV measurement error can thus 

736 be removed when using the model to answer management questions, thereby leading to narrower 

737 prediction intervals (solid gray lines in Fig. 4). In addition to that, different error intervals are 

738 relevant to different management questions and uncertainty is generally lower when predicting a 

739 long-term average response compared to predictions for individual years (Fig. 4). In our case, 

740 when using the model to predict the expected long-term mean HV associated with a given 

741 management scenario, stochasticity associated with individual year variability (i.e., model 

742 prediction error) is not relevant because it does not influence the expected long-term mean 

743 response (Scavia et al. 2020c). However, this source of error should be considered when using 

744 the model in forecast mode to accommodate the additional uncertainty arising from forecasting 

745 HV in a specific year.

746 Forecasting best practices – There is increasing consensus among scientists as to what 

747 represent best practices that should be followed when producing, evaluating, and communicating 

748 ecological forecasts (Dietze et al. 2018; Harris et al. 2018; White et al. 2019; Carey et al. 2021). 

749 Some of those practices have been at the core of this work and we discussed their importance 

750 extensively in previous sections, including explicitly accounting for and propagating multiple 

751 sources of uncertainty, such as observation and process uncertainty, identifying better predictor 

752 variables that are expected to relate to the forecast endpoint, using the model to make both short- 

753 and long-term predictions to accommodate the time scales of management decisions while also 

754 using short-term forecasts to facilitate evaluation of model performance, and routinely assessing 

755 and updating the model with new data (Dietze et al. 2018; Harris et al. 2018; White et al. 2019). 

756 Our work also demonstrates the importance of several other proposed best practices. For 

757 example, the decrease in the best model`s predictive performance when run in blind forecast 

758 mode (NSE = 0.47) compared to full calibration mode (NSE = 0.52) confirms the importance of 

759 evaluating models through out-of-sample validation approaches, such as hindcasting, to avoid 

760 over-optimistic conclusions on forecasting performance (Dietze et al. 2018; Harris et al. 2018; 

761 White et al. 2019). We also showed that our model represents an improvement over a baseline 

762 model that assumes no changes over time and essentially predicts constant HV (Dietze et al. 

763 2018; Harris et al. 2018; White et al. 2019). Finally, loads and DO measurements used to 

764 produce our forecasts are made publicly available within 2 and 6-10 months of collection, 
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765 respectively (Soroka and Blomquist 2020, Chesapeake Bay Program 2020), and past forecasts 

766 are archived publicly (Scavia et al. 2019) for retrospective assessment of performance (Dietze et 

767 al. 2018; Harris et al. 2018; White et al. 2019).

768 CONCLUSIONS

769 We presented an updated and revised version of a long-standing estuarine hypoxia forecasting 

770 model. Our revisions focused on some of the most critical challenges and opportunities faced by 

771 contemporary ecological forecasting models (Dietze et al. 2018), including a) the adoption of 

772 metrics of ecosystem state and anthropogenic pressure that strike an optimal balance between 

773 predictability and relevance for management purposes, b) the ability to incorporate multiple data 

774 sources within a (Bayesian hierarchical) framework that allows to rigorously separate and 

775 propagate different sources of uncertainty, and c) the ability to use the model in scenario mode to 

776 probabilistically evaluate the effect of alternative management decisions on future ecosystem 

777 state. The model`s relative simplicity facilitates an iterative process of model application, 

778 evaluation, and enhancement through regular incorporation of updated information and is part of 

779 what makes this tool a useful complement to more sophisticated process-based models. Finally, 

780 the basic formulation and minimal data needs (DO and TN are among the parameters routinely 

781 assessed in water quality monitoring programs) make forecast operations straightforward and 

782 transparent and the model itself readily adaptable to other estuarine systems facing similar 

783 anthropogenic pressures. 
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1168

1169

1170 Tables

1171

1172 Table 1 - Best performing model for each HV metric.  NSE = Nash-Sutcliffe Efficiency, r2 = 

1173 square of the correlation coefficient between observed and predicted values, RMSE = root mean 

1174 square error, MAE = mean absolute error, RSTDE = residual standard error, Coverage = 

1175 percentage of the observations used in calibration that fall within the 95% prediction intervals, 

1176 CRPS = Continuous Ranked Probability Score, CRPS score = CRPS skill score (see text for 

1177 definition), Sus = Susquehanna, Pot = Potomac, PS = point sources. Results for September HV 

1178 not shown because no model resulted in NSE > 0. Three Average July models have the same 

1179 NSE. For comparison, performance of the previous model version (driven by Jan-May 

1180 Susquehanna River loads and predicting Average July HV) is also reported, together with 

1181 performance of the two best models predicting Average July and Total Annual HV with 

1182 Susquehanna loads only.
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HV 

metric

Load 

Sources

Load 

Period
NSE r2 RMSE MAE RSTDE Coverage CRPS

CRPS  

score

June All 

tributaries

Mar-Jun 0.25 0.30 1.75 1.45 1.81 100% 1.02 0.12

July Sus + Pot 

+ PS

Oct-May 0.29 0.30 2.38 1.82 2.46 94% 1.35 0.20

July Sus + Pot 

+ PS

Nov-Jun 0.29 0.29 2.39 1.82 2.47 97% 1.35 0.19

July All 

tributaries 

+ PS

Nov-May 0.29 0.29 2.39 1.78 2.52 94% 1.36 0.19

August All 

tributaries 

+ PS

Jan-Jun 0.22 0.24 1.63 1.30 1.69 97% 0.93 0.20

Summer All 

tributaries 

+ PS

Jan-Jun 0.40 0.43 1.01 0.81 1.04 94% 0.57 0.26

Annual All 

tributaries 

+ PS

Jan-Jun 0.52 0.52 123 96 130 94% 68.12 0.36

July Sus Jan-May 0.14 0.18 2.62 2.08 2.68 97% 1.49 0.10

July Sus Dec-Jun 0.23 0.24 2.49 1.98 2.60 97% 1.42 0.14
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Annual Sus Jan-May 0.28 0.37 150 113 156 97% 82.17 0.22

1184

1185

1186 Table 2 - Total annual and summer average HVs (mean and 95% credible intervals) predicted 

1187 under different total nitrogen (TN) load scenarios. For details on each scenario see text.

Scenario Jan-Jun TN 

Load (kg/day)

Total Annual HV (95% 

CI) (km3*days)

Summer Average HV 

(95% CI) (km3)

1985 FN 486713 930 (840-1005) 7.2 (6.5-7.8)

2018 FN 350360 770 (640-870) 5.9 (4.9-6.5)

2020 No Action 564932 995 (910-1085) 7.8 (7.2-8.4)

WIP3 Actual 285570 660 (480-785) 4.9 (3.8-5.9)

WIP3 Planning 

Targets

274250 635 (440-785) 4.7 (3.4-5.6)

1188

1189 FIGURE CAPTIONS

1190 Fig. 1 - Annual total nitrogen (TN) loads from nine tributaries (Sus: Susquehanna; Rap: 

1191 Rappahannock; Pot: Potomac; Pat: Patuxent; Pam: Pamunkey; Mat: Mattaponi; App: 

1192 Appomattox; Jam: James; Cho: Choptank) and point sources downstream from the tributary 

1193 monitoring stations (PS). Point source data for Jul-Sep 2018 are partial. Water year: Oct-Sep.

1194 Fig. 2 - Average July (a) and total annual (b) hypoxic volumes (HVs) estimated using three 

1195 different interpolation methods over 1985-2018. Zhou estimates are available only through 2010. 

1196 Shaded areas mark years when weather events disrupted hypoxia shortly before the July cruises.

1197 Fig. 3 - Observed vs. predicted total annual (a) and summer average (b) HV for the model 

1198 calibrated to three sets of HV estimates simultaneously. The gray bars represent 95% predictive 

1199 intervals accounting for model prediction error, HV measurement error, and parameter 

1200 uncertainty. The 1:1 line is shown in black for reference.
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1201 Fig. 4 - Response curves for total annual (a) and summer average (b) HV vs. average Jan-Jun 

1202 load from all tributaries and point sources. The response curves were generated using models 

1203 calibrated to three sets of HV estimates simultaneously (means of the three sets of estimates 

1204 shown as circles for the years 1985-1994, squares for the years 1995-2004 and diamonds for the 

1205 years 2005-2018). HV estimates are colored according to the corresponding average Jan-Jun 

1206 flow from all tributaries. Shaded area: 95% credible intervals (accounting for parameter 

1207 uncertainty); solid gray lines: 95% prediction intervals (accounting for parameter uncertainty and 

1208 prediction error); dashed gray lines: 95% prediction intervals (accounting for parameter 

1209 uncertainty, prediction error and HV estimation error). Dashed vertical and horizontal lines 

1210 indicate the mean HV expected under different management scenarios after averaging out year-

1211 to-year variability in hydrology (see main text for a description of each scenario).
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1216 Fig. 2 
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1219 Fig. 3 
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