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42 Abstract

43 Pharmacogenetics (PGx) seeks to enable selection of the right dose of the right drug for each patient to 

44 optimize therapeutic outcomes. Most PGx focuses on pharmacokinetics (PK), due to our relatively 

45 advanced understanding of the genes involved in PK and the causative effects of variants in those genes. 

46 Genetic variants can also affect pharmacodynamics (PD), but relatively few PGx-PD associations have 

47 been identified. This is partially due to a more limited understanding of the relevant genes and the 

48 consequences of genetic variation, but is also due in part to the potential confounding of PK variability in 

49 assessments of clinical outcomes that have a contribution from both PK and PD. For example, it is 

50 challenging to confirm the effect of mu opioid receptor (OPRM1) genetic variation on opioid response 

51 due to the contribution of CYP2D6 genotype to bioactivation of some opioid drugs (i.e., codeine and 

52 tramadol). The objectives of this mini-review are to describe several recent efforts to discover and 

53 validate PGx-PD that disentangle the influence of PK variability and propose potential approaches that 

54 could be used in future PGx-PD analyses. We use the effect of OPRM1 genetics on opioid response to 

55 illustrate how these analyses could be conducted and conclude by discussing how PGx-PD could be 

56 translated into clinical practice to improve therapeutic outcomes. 
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58

59

60 Pharmacogenetics of Pharmacodynamic Drug Response (PGx-PD)

61 The promise of pharmacogenetics (PGx) is the ability to select the right dose of the right drug for each 

62 patient. This idea acknowledges that each patient is unique, and optimal treatment should incorporate 

63 those factors that define the patient as a unique individual rather than assuming that the population 

64 mean or median sufficiently represents the patient1. Most of the work in PGx and personalized medicine 

65 has focused on pharmacokinetics (PK) as the phenotype of interest, including individualized dosing to 

66 achieve target drug exposures. 

67 The focus on PGx of PK (PGx-PK) is due to several factors. PGx-PK builds upon substantial 

68 understanding of drug PK, including knowledge of the specific enzymes and transporters primarily 

69 responsible for the absorption, distribution, metabolism, and excretion of individual drugs. It also builds 

70 on substantial work to identify functional variants in the genes coding for these enzymes and 

71 transporters and the translation of genotypes to predicted activity phenotypes2. PK data are relatively 

72 easy to collect and measure, and provide a sensitive, quantitative phenotypic endpoint for PGx-PK 

73 analyses, with the caveat that often systemic PK is measured, and this may not accurately reflect PK at 

74 the target site. Clinical translation is relatively straightforward; adjustment of dosing reduces PK 

75 variability across PGx-PK groups, or substitution of an alternate agent with a different metabolic 

76 pathway may avoid inefficacy or toxicity. There are many examples of this approach, including recent 

77 guidelines for dosing tacrolimus based on CYP3A5 genotype3, or avoiding codeine in individuals with 

78 extreme CYP2D6 genetic phenotypes4, including poor or ultrarapid metabolizers.

79 Despite the potential for genetic variants to also affect drug sensitivity, or pharmacodynamics 

80 (PD), there are relatively few established PGx-PD associations. Genetic variants may affect the 

81 expression, function, occupancy, or activation of a drug target, among many other possible biological 

82 mechanisms5. The clinical consequence of PGx-PD is that a systemic exposure within the desired range 

83 may not necessarily elicit the desired response if genetic variation results in a drug target that is non-

84 functional or not expressed to an appreciable extent (putting the patient at risk for an off-target or 

85 noxious on-target response). There are several reasons for the relative paucity of validated PGx-PD 

86 effects, including incomplete understanding of candidate PD genes, incomplete knowledge of the 

87 functional effects of variants within those genes, lack of well-phenotyped PD endpoints, variable efficacy 
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88 endpoints for different indications of the same drug, and perhaps smaller effects from many PD genes 

89 and variants, similar to the genetics of complex diseases. 

90 Genome-wide association studies (GWAS) have identified near monogenic PGx-PD associations 

91 of genes that were unlikely to have been selected for candidate genetic studies6. To date, these striking 

92 PGx-PD associations have been primarily observed in PK-independent outcomes, such as the 

93 associations for HLA genes with drug-induced hypersensitivity6 or CACNA1A/RYR1 with malignant 

94 hyperthermia7. Unlike these strongly penetrant genetic associations, most clinical outcomes are 

95 multifactorial, including a contribution from both PK and PD5, 8 (Figure 1). There has been limited success 

96 identifying these PGx-PD associations, partially due to the confounding effects of PK in the analysis. For 

97 example, there is evidence that genetic variation in the mu opioid receptor (OPRM1) is associated with 

98 response to opioid analgesics, but this association has been difficult to validate due to the confounding 

99 of variability in morphine systemic exposure.4 

100 The objective of this mini-review is to describe potential approaches to deconvolute the 

101 confounding effects of PK to isolate PGx-PD effects. We illustrate these approaches using recent efforts 

102 to identify PGx-PD and by returning to the example of the putative association of OPRM1 genetics on 

103 opioid response. We conclude by describing what is needed to advance PGx-PD research and integrate 

104 PGx-PD into individualized treatment to improve therapeutic outcomes. 

105 Approaches to Identifying PGx-PD Associations 

106 Drugs Dosed to Standardize Target Concentrations

107 For some drugs, particularly those with narrow therapeutic windows, clinical testing of drug 

108 concentrations is pursued, and dosing is adjusted to achieve a target concentration, commonly referred 

109 to as therapeutic drug monitoring (TDM). By adjusting the dose to achieve a target concentration, such 

110 as a maximum or minimum concentration (e.g., Cmax or Cmin), TDM can enhance efficacy and/or reduce 

111 toxicity. Tacrolimus, some antibiotics, and some anti-epileptics undergo TDM per routine. Effective use 

112 of TDM minimizes variability in exposure (at least as indicated by sampling of blood) and reduces the 

113 contribution of exposure variability in the analysis of treatment outcomes. This strategy was used to 

114 identify the PGx-PD association between variants in the KCNQ1 gene (encoding the pore-forming 

115 subunit of the voltage-gated potassium channel, KvLQT1) and new-onset post-transplant diabetes 

116 mellitus in patients treated with tacrolimus9. 
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117 There are several limitations to this approach. One is that the TDM metric used to individualize 

118 dosing (i.e., Cmin) is unlikely to capture all individual variability in PK and may not be the primary 

119 determinant of the outcome of interest. For example, for PD outcomes such as nephrotoxicity or 

120 efficacy, Cmax or systemic exposure defined as area under the concentration-time curve (AUC) may be 

121 more relevant than Cmin (trough), but these data may not be available. Additionally, the steepness of the 

122 concentration-response slope may be an important consideration. It is also required that the TDM 

123 measurements are available for a time relevant to the PD outcome. For example, a GWAS of tacrolimus-

124 exposed individuals was unable to include drug levels as a covariate in the analysis of nephrotoxicity 

125 because data were not available at the same time as renal function measurements12. 

126 Since TDM is only used for specific drugs, the use of clinically obtained drug concentrations is 

127 relevant to a limited number of medications. There is evidence that TDM may be beneficial for a larger 

128 number of medications, even including broad therapeutic index drugs. A CYP2D6 genotype-stratified PK 

129 study of atomoxetine revealed a 50-fold range in systemic exposure in   patients receiving standard 

130 dosing, and suggested that even maximal recommended dosing   would fail to achieve target exposure 

131 in a substantial proportion of CYP2D6 normal metabolizers (NMs)10.  A recently published CPIC guideline 

132 recommends checking the atomoxetine concentration in patients exhibiting inadequate clinical 

133 response to inform subsequent therapeutic decisions11. Expanding TDM to more agents could have 

134 direct clinical benefit while improving the identification of PGx-PD associations.

135 For the example of OPRM1, since TDM is not used to guide codeine dosing, codeine or morphine 

136 metabolite data are not readily available to investigate PGx-PD effects for OPRM1. A concentration-

137 controlled clinical trial13, in which patients are randomly assigned to receive personalized codeine dosing 

138 to achieve one of several pre-specified morphine exposure levels, could be a possible alternate source of 

139 data that is similar to a TDM situation, with which PGx-PD analyses could be conducted without the 

140 confounding of PK. 

141 Investigate PGx-PD Associations by Adjusting for PK

142 For drugs that do not undergo TDM, there are several analytical approaches to reduce the contribution 

143 of PK variability to investigate PGx-PD associations. One straightforward approach that does not require 

144 measured drug concentrations is to conduct the PGx-PD analysis within a PGx-PK stratum. For instance, 

145 investigating the association of OPRM1 genotype with analgesic response to CYP2D6 substrates, such as 

146 codeine or tramadol, in only CYP2D6 normal metabolizers. This approach will reduce the contribution of 

147 PK variability but will not eliminate it completely as CYP2D6 activity can vary several-fold within 
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148 individuals with the same genotype14. An extension of this approach is to conduct the analysis within 

149 each CYP2D6 metabolic phenotype strata or adjust for metabolic phenotype.

150 When concentrations measurements are available, the simplest approach is to adjust for measured drug 

151 concentrations in the analysis. For example, nephrotoxicity due to vancomycin is partially determined by 

152 vancomycin trough concentrations. In order to identify PGx-PD associations, a GWAS of nephrotoxicity 

153 adjusted for vancomycin trough concentrations, which enabled identification of a variant near the GJA1 

154 gene (encoding connexin43)15. Applying this approach OPRM1, an analysis of the association of OPRM1 

155 genotype with analgesia that adjusted for measured morphine concentrations during codeine treatment 

156 could substantially reduce the contribution of PK variability. 

157 Demonstrate PK-outcome Association Stratified by PGx-PD

158 PK-outcomes associations can be detected using standard statistical approaches such as regression 

159 models. However, these associations can be confounded by PGx-PD effects, which can lead to an 

160 inability to detect the PK-outcome association in pooled patients. If the PK-outcome association is 

161 revealed by stratifying the cohort by the PGx-PD genotype, this provides evidence that the genotype is 

162 contributing to the outcome of interest. Importantly, this type of stratified analysis can accommodate 

163 PGx-PD effects that invert the PK-outcome association (Figure 2), as has been recently reported for 

164 paroxetine and genotype of the paroxetine drug target SLC6A416. In patients with genetic variants 

165 associated with low SLC6A4 expression, patients with lower plasma concentrations had better clinical 

166 improvement than patients with higher concentrations, potentially due to target saturation and off-

167 target effects. In patients with variants associated with high SLC6A4 expression, the response improved 

168 with higher blood concentration.  This inverse association within each genotype group would be difficult 

169 to detect using any of the other strategies proposed in this commentary. In terms of OPRM1, at least 

170 one study has analyzed the association between opioid concentration and analgesic response within 

171 OPRM1 genotype groups17.   

172 Introduce PGx-PD into PK-outcomes Model

173 Another somewhat related approach is to first establish the PK-outcomes model and then introduce the 

174 PGx-PD variable. Multivariable models retain only variables that explain residual variability in the 

175 outcome of interest. Including measured PK in a model accounts for the contribution of PK variability, 

176 and the residual variability will be predominantly contributed by PD (Figure 3). This approach was 

177 recently used in a PGx-PD analysis of paclitaxel-induced peripheral neuropathy. First, a model was 

178 created that included systemic paclitaxel PK and other clinical variables that were associated with the 
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179 risk of neuropathy18. Then genes involved in hereditary neuropathy that had previously been reported 

180 to increase risk of paclitaxel-induced neuropathy were investigated, including variants in EPHA5. 

181 Introducing those variants into the neuropathy-prediction model demonstrated that these genotypes 

182 affect a patient’s neuropathy sensitivity after accounting for variability in cumulative paclitaxel 

183 exposure19. Importantly, a post-hoc analysis confirmed that this association for EPHA5 would not have 

184 been detected without including measured paclitaxel PK in the multivariable model. In the case of 

185 OPRM1, this approach would be attempted by first modeling the morphine-analgesia association and 

186 then adding OPRM1 genotype as a covariate in the model to see if it explains residual variability in the 

187 resulting analgesic effect. 

188 Incorporation of Genetics in Pharmacometric Models

189 The previously described multivariable statistical approaches are empirical, simpler approaches for 

190 investigators who do not have expertise in population pharmacokinetic-pharmacodynamic (popPKPD) 

191 modeling. The ideal methods to investigate PGx-PD effects are likely to develop popPKPD or possibly 

192 physiologically-based PKPD (PBPKPD) models. PopPKPD models20 are typically used to understand the 

193 relationship between drug concentration and PD response by accounting for the variability in PK and PD 

194 parameters from covariates. Traditionally, these covariates are clinical variables that affect PK or PD 

195 parameters, though it has become increasingly common to investigate PGx factors affecting PK 

196 parameters (i.e., drug clearance). Similarly, genetic factors of PD response could be explored in a 

197 popPKPD model to understand variability in PD parameters, including maximal drug effect (Emax) or 

198 potency (EC50).This approach was recently used within a study of the effectiveness of buprenorphine for 

199 reducing illicit opioid use21. The base PKPD model identified the buprenorphine EC50 for successful opioid 

200 abstinence. One of the covariates associated with this EC50 was the rs678849 genotype of the delta-

201 opioid receptor (OPRD1). A very similar approach could be used for OPRM1 by building a popPKPD 

202 model that relates morphine exposure to analgesia, and then investigating the OPRM1 genotype as a 

203 covariate on the analgesic response parameters Emax or EC50.  

204 On the other hand, PBPKPD models22 provide a mechanistic representation of the drug in the biological 

205 system by explicitly considering the organs and tissues to estimate drug concentrations within each 

206 tissue. Thus, PBPKPD models can potentially link target site concentrations to the PD response and any 

207 PGx factors affecting the PD response, for instance the binding of the drug to its target site, could be 

208 modeled. In the OPRM1 example, the PBPKPD model could be built in which the concentrations of 
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209 morphine in the brain could be estimated, followed by modeling of the binding of morphine to OPRM1 

210 and then investigating the effects of OPRM1 genotype on this binding and the resulting analgesic effect. 

211 Clinical Translation and Recommendations for Future Work

212 Integrating PGx-PD into Precision Treatment

213 As mentioned earlier, the clinical translation of PGx-PK by adjusting doses according to PGx-PK genotype 

214 to standardize drug concentration is relatively straightforward. In this sense, “individualized treatment” 

215 means stratifying dosing so all patients achieve the same exposure. PGx-PD is somewhat more complex 

216 to translate into clinical practice since it implies that the optimal exposure level for each patient is 

217 distinct. The appropriate dosing patients with each PD-PGx genotype is a function of the direction of 

218 effect (i.e., sensitive vs. resistant) of that genotype and the relevant clinical outcome (i.e., efficacy 

219 and/or toxicity) (Figure 4). Patients who are “sensitive” to the therapeutic effects of a drug may achieve 

220 greater benefit at typical levels of exposure; this may enable downward titration of the exposure to 

221 reduce risk of toxicity (or maintaining typical exposure to enhance efficacy without increasing toxicity). 

222 Patients who are “sensitive” to drug toxicity cannot tolerate typical exposure and require reduced 

223 exposure, which may reduce efficacy. Toxicity “resistant” patients can tolerate higher exposure, which 

224 could allow for upward titration of exposure to enhance efficacy or maintaining exposure to maintain 

225 efficacy, potentially with less toxicity. Finally, patients “resistant” to therapeutic effects will require 

226 higher exposure or may not be able to achieve therapeutic response at any tolerable exposure level. The 

227 sensitivity/resistance to therapeutic effects and toxicity may be linked, in which case proper titration 

228 could yield the typical balance of efficacy and toxicity, or may be independent, based on the biologic 

229 mechanism. Importantly, these situations demonstrate the complexity of translating PGx-PD into clinical 

230 practice by individualizing dosing so each patient achieves the exposure that optimizes their clinical 

231 outcomes. 

232  Conclusion and Future Directions for Research and Practice

233 We have described several approaches for reducing confounding by PK to assist with identifying PGx-PD 

234 effects for multi-factorial clinical outcomes. Other challenges mentioned earlier, such as the limited 

235 understanding of the genes responsible for PD effects and the consequences of genetic variation in 

236 those genes and the lack of well-phenotyped PD endpoints, require additional consideration and 

237 investigation but are beyond the scope of this mini-review. In addition to a general recognition of the 

238 challenges with PGx-PD, there are several other initiatives that would improve our ability to conduct the 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

239 analyses described within this mini-review. First, a greater effort is needed to collect samples for PK 

240 analysis, as this is the most direct way to account for PK variability in PGx-PD studies. One highly 

241 efficient potential approach is to collect scavenged samples, which reduces the cost and some of the 

242 regulatory issues around PK sampling and is especially beneficial in patients who are difficult to sample 

243 including neonates, children, and the elderly23. PGx-PD analyses would also benefit from development of 

244 more precise biomarkers defining clinically relevant outcomes. These analyses also require further 

245 development of modeling approaches that integrate PGx-PD analyses, perhaps including simulation 

246 approaches to determine the optimal exposure and necessary dosing for patients based on PD 

247 genotype. Finally, clinical translational researchers will likely need to develop prospective study designs 

248 to demonstrate the clinical utility of individualized treatment based on PGx-PD effects24. One possible 

249 study design would be a variation of concentration-controlled clinical trials, PGx-PD stratified studies, in 

250 which participants are genotyped for the drug target of interest. In such a study design a 

251 pharmacometric model is used to individualize drug doses to achieve a target exposure (Cmax or AUC); 

252 inadequate therapeutic response at the initial exposure level can be followed with an increase in 

253 exposure and re-assessment of therapeutic response, allowing for exposure-response relationships to 

254 be established for each drug target genotype.  This approach is analogous to genetics-stratified dose 

255 escalation studies that have been used to validate PGx-PK effects in oncology25. A more concerted effort 

256 to discover and validate PGx-PD effects will someday usher in a new era of personalized treatment in 

257 which patients are dosed to achieve their personalized target concentration, improving therapeutic 

258 outcomes, and realizing the promise of PGx. 
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336 Figure Legends:

337 Figure 1: Drug response is a consequence of drug exposure (pharmacokinetics, PK) and sensitivity 

338 (pharmacodynamics, PD). A patient who has ineffective treatment could be due to inadequate exposure 

339 or reduced sensitivity (i.e., resistance). Similarly, a patient who experiences toxicity could be due to 

340 supra-therapeutic exposure or enhanced sensitivity. Patients who experience efficacy without toxicity 

341 could have normal exposure and sensitivity, or off-setting increased exposure and decreased sensitivity, 

342 or vice-versa, that produce a typical response. 

343 Figure 2: In the combined cohort there is no apparent association between drug exposure (PK) and 

344 response. However, when the cohort is stratified by pharmacogenetic variant that impacts 

345 pharmacodynamics (PGx-PD), there are inverse associations between exposure and response within 

346 each PGx-PD genotype, as per the example in the text of paroxetine and SLC6A4. 

347 Figure 3: Pharmacogenetics of pharmacodynamics (PGx-PD) affects the patient’s drug response at a 

348 given exposure level. In this example, at a given drug exposure (solid vertical line) a patient with wild-

349 type PGx-PD would have near complete drug response (solid horizontal line). At that same exposure, a 

350 patient carrying a single resistance allele would have a small response (dashed horizontal line) and a 

351 patient with homozygous resistant genotype would have almost no drug response (dotted horizontal 

352 line). The corollary is that achieving the same drug response in patients with different PGx-PD genotypes 

353 requires different drug exposures. 
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354 Figure 4: Integrating pharmacogenetics of pharmacodynamics (PGx-PD) into clinical practice requires 

355 adjusting dosing so that patients achieve the exposure that is consistent with their optimal treatment 

356 outcomes. Patients can be “sensitive” (orange bodies) or “resistant” (dark green bodies) to efficacy 

357 and/or toxicity. In each case, treating that patient with standard dosing will result in higher or lower 

358 efficacy and/or toxicity than is typical. Depending on the PGx-PD genotype, a dose decrease or increase 

359 could result in superior (blue), inferior (red), or similar (yellow) treatment outcomes. 
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