
Viswanath Satish (Orcid ID: 0000-0003-4550-8337) 
 
 
Prospective evaluation of repeatability and reproducibility of radiomic descriptors in 
healthy brain tissue regions in vivo across systematic variations in T2-weighted MRI 
acquisition parameters 
 
Brendan Eck1,2+, PhD, Prathyush V.  Chirra1+, MS, Avani Muchhala1, Sophia Hall1, Kaustav 
Bera1, MBBS, Pallavi Tiwari1, PhD, Anant Madabhushi1,3, PhD, Nicole Seiberlich1,4*, PhD, and 
Satish E. Viswanath1*, PhD 
1 Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 
2 Imaging Institute, Cleveland Clinic, Cleveland, OH, USA 
3 Louis Stokes VA Medical Center, Cleveland, OH, USA 
4 Michigan Institute for Imaging Technology and Translation, Department of Radiology, University 
of Michigan, Ann Arbor, MI, USA 
+ joint first author 
* joint senior authors 
Correspondence can be addressed to: 
NS: 1500 E. Medical Center Dr, B1G503A, Ann Arbor, MI 48109-5030; nse@med.umich.edu; 
216-577-0784 
SEV: 10900 Euclid Ave, Wolstein 6-133, Cleveland, OH 44106; satish.viswanath@case.edu; 216-
368-3888 
 
 
Grant Support: Research reported in this publication was supported by the National Cancer 
Institute under 1U24CA199374-01, R01CA202752-01A1, R01CA208236-01A1, R01CA216579-
01A1, R01CA220581-01A1, 1U01CA239055-01, 1U01CA248226-01, 1U54CA254566-01, the 
National Heart, Lung, and Blood Institute under 2R01HL094557-06, 1R01HL151277-01A1, the 
National Science Foundation (CBET) under 1553441, the National Institute for Biomedical 
Imaging and Bioengineering (NIBIB) CWRU Interdisciplinary Biomedical Imaging Training 
Program under award number 5T32EB00750912, the NIH Training Program in Musculoskeletal 
Research Grant at CWRU 5T32AR007505-32, the NIBIB under 1R43EB028736-01, the National 
Center for Research Resources under award number 1C06RR12463-01, the VA Merit Review 
Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory 
Research and Development Service, the Office of the Assistant Secretary of Defense for Health 
Affairs, through the Breast Cancer Research Program (W81XWH-19-1-0668), the Prostate 
Cancer Research Program (W81XWH-15-1-0558, W81XWH-20-1-0851), the Lung Cancer 
Research Program (W81XWH-18-1-0440, W81XWH-20-1-0595), the DOD/CDMRP Peer 
Reviewed Cancer Research Program (W81XWH-18-1-0404, W81XWH-16-1-0329), the Kidney 
Precision Medicine Project (KPMP) Glue Grant, the Ohio Third Frontier Technology Validation 
Fund, the Dana Foundation David Mahoney Neuroimaging Program, Johnson & Johnson 
WiSTEM2D Award , the V Foundation Translational Research Award, the Wallace H. Coulter 
Foundation Program in the Department of Biomedical Engineering at Case Western Reserve 
University, and the Clinical and Translational Science Collaborative of Cleveland 
(UL1TR0002548) from the National Center for Advancing Translational Sciences component of 
the National Institutes of Health and NIH roadmap for Medical Research. The content is solely 
the responsibility of the authors and does not necessarily represent the official views of the 
National Institutes of Health, the U.S. Department of Veterans Affairs, the Department of Defense, 
or the United States Government. 

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/jmri.27635

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0003-4550-8337
http://dx.doi.org/10.1002/jmri.27635
http://dx.doi.org/10.1002/jmri.27635


 2 

 
Conflicts of Interest: Dr. Madabhushi is an equity holder in Elucid Bioimaging and in Inspirata 
Inc. In addition he has served as a scientific advisory board member for Inspirata Inc, 
Astrazeneca, Bristol Meyers-Squibb and Merck. Currently he serves on the advisory board of 
Aiforia Inc. He also has sponsored research agreements with Philips, AstraZeneca, Boehringer-
Ingelheim and Bristol Meyers-Squibb. His technology has been licensed to Elucid Bioimaging. He 
is also involved in a NIH U24 grant with PathCore Inc, and 3 different R01 grants with Inspirata 
Inc. Dr. Viswanath and Dr. Madabhushi have had technology licensed to Elucid Bioimaging. Dr. 
Seiberlich has received research support from Siemens Healthineers. Dr. Tiwari has received a 
research award from Johnson & Johnson. 
 
Short Title: Radiomic robustness to MRI variations 
 

 
 
Abstract 
 

Background: Radiomic descriptors from MRI are promising for disease diagnosis and 

characterization but may be sensitive to differences in imaging parameters. 

Objective: To evaluate the repeatability and robustness of radiomic descriptors within healthy 

brain tissue regions on prospectively acquired MRI scans; in a test-retest setting, under controlled 

systematic variations of MRI acquisition parameters, and after post-processing.  

Study Type: Prospective 

Subjects: 15 healthy participants  

Field Strength/Sequence: 3.0 T, axial T2-weighted 2D turbo spin-echo pulse sequence, 181 scans 

acquired (two test/retest reference scans and twelve with systematic variations in contrast 

weighting, resolution, and acceleration per participant; removing scans with artifacts). 

Assessment: 146 radiomic descriptors were extracted from a contiguous 2D region of white matter 

in each scan, before and after post-processing. 

Statistical Tests: Repeatability was assessed in a test/retest setting and between manual and 

automated annotations for the reference scan. Robustness was evaluated between the reference 
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scan and each group of variant scans (contrast weighting, resolution, and acceleration). Both 

repeatability and robustness were quantified as the proportion of radiomic descriptors that fell into 

distinct ranges of the concordance correlation coefficient (CCC): excellent (CCC > 0.85), good 

(0.7 ≤ CCC ≤ 0.85), moderate (0.5 ≤ CCC < 0.7), and poor (CCC < 0.5); for unprocessed and 

post-processed scans separately.   

Results: Good to excellent repeatability was observed for 52% of radiomic descriptors between 

test/retest scans, and 48% of descriptors between automated vs manual annotations, 

respectively. Contrast weighting (TR/TE) changes were associated with the largest proportion of 

highly robust radiomic descriptors (21%, after processing). Image resolution changes resulted in 

the largest proportion of poorly robust radiomic descriptors (97%, before post-processing). Post-

processing of images with only resolution/acceleration differences resulted in 73% of radiomic 

descriptors showing poor robustness.  

Data Conclusions: Many radiomic descriptors appear to be non-robust across variations in MR 

contrast weighting, resolution, and acceleration, as well in test-retest settings, depending on 

feature formulation and post-processing.  

 

Keywords: radiomics, MRI, robustness, repeatability, reproducibility 
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Introduction 

Radiomics, or the computerized extraction of image intensity, shape, appearance, and 

texture descriptors from routine MR or CT imaging(1), has recently demonstrated great success 

for building analytic models for characterizing disease presence or predicting response to therapy 

across multiple organs(2, 3). However, wider adoption of radiomic descriptors as in vivo imaging 

markers of disease requires a comprehensive evaluation of their repeatability and robustness 

under different imaging conditions(4). Thus far, such studies(5) have primarily been conducted 

using CT imaging of diseased patients or phantoms where radiomic descriptors have been 

evaluated under variations of well-understood acquisition parameters(6, 7) (such as 

reconstruction settings, tube currents, radiation doses, or slice thicknesses) in images that have 

been acquired in a prospectively controlled fashion. Given the even greater number of acquisition 

parameters associated with an MRI scan, there is a need to similarly interrogate the impact of 

differences in these parameters on radiomic descriptors. 

For instance, T2-weighted (T2w) MRI scans are often widely available in retrospectively 

pooled cohorts, although with significant variations in acquisition or reconstruction parameters(8). 

As there is no routinely used reference standard T2w MR imaging protocol, a pooled cohort of 

T2w MR images is likely to have significant heterogeneity in terms of acquisition parameters such 

as contrast weighting (repetition time (TR) and echo time (TE)), spatial resolution, and 

reconstruction approaches (parallel imaging). Critically, while radiologists may be able to adapt 

the resulting minor image differences due to prior experience and training, the sensitivity of 

radiomic descriptors to such MR acquisition differences has not been deeply explored.  

Systematically evaluating the impact of individual MR acquisition parameters on radiomic 

descriptors requires a controlled approach, where in vivo MRI scans are prospectively acquired 

such that only one acquisition parameter is changed at a time (e.g. acquire MRI scans where only 

TR values are changed while holding TE, resolution, and all other parameters constant). To 
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minimize the impact of disease heterogeneity in such a controlled study and for generalizable 

results, the performance of radiomic descriptors need to be examined using healthy tissue within 

a fixed body region (e.g. white or grey matter in the brain), rather than using phantoms or 

simulation data(9, 10).  Thus far, robustness of radiomic descriptors has primarily been examined 

in the context of how they vary within the same subject between test/re-test brain MRI scans(11) 

(where the acquisition parameters are the same in both scans, also termed repeatability) or 

across retrospectively curated multi-site or multi-scanner cohorts(12) (where acquisition 

parameters may not be controlled). Radiomic analysis also typically includes several post-

processing operations(12, 13) (such as bias correction(14), intensity standardization(15), and 

resolution resampling) which are applied to MR images prior to extracting a series of different 

types (or “families”) of radiomic descriptors. A detailed study of how post-processing steps impact 

the robustness of radiomic descriptors from different acquisition variants in a controlled setting 

would be beneficial(16).  

Therefore, the aim of this study was to assess the repeatability and robustness of widely 

used radiomic descriptors within well-defined healthy brain tissue regions; both in a test-retest 

setting as well as under controlled, systematic variations of acquisition parameters using 

prospectively acquired T2w MRI scans. A secondary aim was to investigate the impact of post-

processing steps on the robustness of radiomics descriptors. he overall goal was to determine 

which radiomic descriptors were robust across imaging variants, which descriptors benefit from 

post-processing, and which imaging variants could potentially be pooled for wider radiomic 

analyses.    

 

Materials and Methods 

Data acquisition 
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Institutional review board approval and informed consent were obtained. Fifteen healthy 

volunteers (6 females, 9 males, age 29.4±14 years) were recruited prospectively for MR imaging 

between September 2018 and November 2018. All MR imaging data were acquired in a single 

session for each participant, on the same 3T imaging unit (MAGNETOM Skyra; Siemens 

Healthcare, Erlangen, Germany) and by the same operator. Up to 15 different MRI scans were 

acquired for each participant and exported as DICOM images for further analysis. These T2-

weighted (T2w) acquisitions were based on a standard or reference scan, specifically an axial 2D 

turbo spin-echo pulse sequence with the following parameters: TR=5740ms, TE=94ms, 4mm 

slice thickness, 0.7mm in-plane resolution, 31 slices (image sections). These parameters were 

selected based on the default protocol used clinically at our institution. The total scan time for the 

reference T2w acquisition was 63 seconds. The reference scan was repeated once for each 

participant following which an additional 12 variant scans were also acquired by altering 

parameters individually with respect to the reference scan: TR (3000ms, 4000ms, 5000ms, 

7000ms, 8000ms), TE (84ms, 103ms, 112ms), high in-plane resolution (HR; 0.35mm, 0.5mm), 

low in-plane resolution (LR; 0.9mm), and R=2 parallel imaging acceleration (GRAPPA(17)). 

These variations in image acquisition parameters were chosen based on the range of parameters 

observed in brain tumor scans available(8) in The Cancer Imaging Archive (TCIA). The total scan 

time was 22 minutes and 10 seconds per participant. After data collection, imaging volumes with 

obvious motion artifacts were excluded, resulting in 11-15 usable images per variant scan (see 

Table E1 in the Appendix for details of the total of 181 usable scans). The first  scan acquired for 

each participant was considered the reference scan, with respect to which the retest reference 

scan as well as all variant scans were to be evaluated for repeatability and robustness. Figure 1 

provides an overview of the study workflow and experimental design. 

  

 
Annotation of white matter regions on MRI scans 
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The reference MRI scan for each participant was annotated for white matter (WM) extent by a 

radiologist (KB) with 5 years of experience using 3D Slicer(18) (v4.5, www.slicer.org). WM was 

annotated on a single 2D image section (on each reference scan for each participant) 

approximately 8 mm below the top of the ventricles. This section contained a large region of white 

matter and was easily identifiable across all participant MRI volumes. Manual WM segmentations 

were morphologically eroded by a disk element (3-pixel radius) to reduce the impact of very small 

contour variations and underwent connected component analysis to ensure only large contiguous 

regions were considered (average size 7362±1234 pixels). Pruned WM annotations were mapped 

onto all variant and repeat scans for each participant. To ensure that only WM regions were 

included for further radiomic analysis, the mapped regions were manually inspected and corrected 

as needed. An automated annotation was also performed, using the automated segmentation 

module(19) within 3D Slicer to delineate the WM region on the reference scan for each participant 

(Section E2 in the Appendix summarizes implementation details). 

 

Post-processing of MRI scans 

Prior to radiomics feature extraction, MRI scans are typically subjected to a series of post-

processing steps to overcome image appearance differences. In this work, the set of operations 

applied to the images differed slightly between acquisition variant groups. All scans first 

underwent skull stripping(20) to ensure the bright skull did not affect further corrections. The 

remaining operations included: (a) bias correction(14) to remove smooth variations in MR 

intensities across the image (typically introduced by the receiver coils); (b) linearly resampling the 

DICOM images to ensure that the nominal resolution matched that of the reference scan (0.7 mm 

in-plane); and (c) intensity standardization(15) to ensure that MR intensities in all the volumes 

had consistent WM- and gray matter-specific ranges. Section E4 in the Appendix provides further 

details on the implementation of all post-processing operations. The order of these post-
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processing operations for all acquisition variants is summarized in Table 1, based on previous 

studies in the literature(13, 21, 22). 

 

Radiomic Feature Extraction 

A total of 146 pixel-wise radiomic descriptors from six different families (including variations in 2D 

window sizes (WS) between 3-7 pixels) were extracted from the manually annotated WM region 

on each MR image (both before and after post-processing) using in-house MATLAB (The 

MathWorks, Inc., Natick, MA) implementations. Table E3 in the Appendix gives a description of 

each radiomic feature family and their associated parameters based on the Image Biomarker 

Standardization Initiative guidelines(23). These features can be broadly grouped into six families: 

histogram, gradient(24) and Laws(25) (edge-based), Gabor(26) (wavelet-based), and 

Haralick(27) and COLLAGE(28) (co-occurrence based) descriptors. Pixel-wise feature maps 

were computed for all 181 datasets included in this study,  

 
Statistical Analysis 

To quantify the repeatability and robustness of the different feature families, the concordance 

correlation coefficient(29) (CCC) was computed between each pair of reference and variant 

images, and for each feature separately. If 𝜎𝜎𝑟𝑟 and 𝜎𝜎𝑣𝑣 are the variances and 𝜇𝜇𝑟𝑟 and 𝜇𝜇𝑣𝑣 are the 

means for the radiomic descriptor in the reference and variant images, respectively, and 𝜌𝜌𝑟𝑟,𝑣𝑣 is 

the covariance between them, the CCC is computed as: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
2𝜌𝜌𝑟𝑟,𝑣𝑣

𝜎𝜎𝑟𝑟2 + 𝜎𝜎𝑣𝑣2 + (𝜇𝜇𝑟𝑟 − 𝜇𝜇𝑣𝑣)2 . 

As CCC ranges between 0 and 1, it was subdivided into four robustness ranges for easier 

interpretability(30): excellent (CCC > 0.85), good (0.7 ≤ CCC ≤ 0.85), moderate (0.5 ≤ CCC < 0.7), 

and poor (CCC < 0.5). 
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Agreement between manual and automated annotations was assessed via the Dice coefficient: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
2|𝑊𝑊𝑀𝑀𝑎𝑎 ∩𝑊𝑊𝑀𝑀𝑚𝑚|  
|𝑊𝑊𝑀𝑀𝑎𝑎| + |𝑊𝑊𝑀𝑀𝑚𝑚|

, 

where WMa corresponds to the automated WM annotations, WMm to the manual WM annotations, 

and |.| is the cardinality operator.  

Radiomic descriptor repeatability was evaluated in a test/retest setting for reference parameters 

as well as between annotation sources (on the reference image). First, CCC was computed for 

each of the 146 radiomic descriptors based on comparing the reference image and the repeated 

reference image using manual WM annotations. Next, CCC was calculated for each of the 146 

radiomic descriptors between manual and automated WM annotations on the first reference 

image. Repeatability was evaluated for unprocessed and post-processed images separately and 

visualized via a thermometer plot for the different CCC ranges. Each thermometer was shaded in 

based on the proportion of descriptors from that family that fell within a specific CCC range. 

Additionally, the impact of minor differences between image contrast (TR/TE) variants and the 

reference image was evaluated by comparing the repeatability of radiomic descriptors before and 

after coregistration. CCC was calculated for each of the 146 descriptors by comparing the 

reference image to each of the eight unregistered TR/TE variants using manual annotations. Next, 

each TR and TE volume was affinely coregistered to the corresponding reference volume, for 

each participant separately (via 3D Slicer). CCC was then again calculated for all 146 descriptors 

between the reference image and eight coregistered TR/TE variant images using manual 

annotations. No additional post-processing was applied in this experiment to specifically evaluate 

the impact of coregistration alone. Thermometer plots were used to visualize the proportion of 

radiomic descriptors that fell into each range of CCC values per feature family, for unregistered 

and coregistered scans separately.  
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Radiomic descriptor robustness was similarly evaluated for each acquisition variant with respect 

to the reference image; for unprocessed and post-processed images separately. Variant images 

were grouped by parameter (TR, TE, LR, HR, GRAPPA; see Table 1) and the number of radiomic 

descriptors per feature family that fell into each CCC range were counted and normalized by the 

total number of comparisons conducted. The proportion of radiomic descriptors that fell into each 

range of CCC values were visualized via thermometer plots per feature family and for each 

acquisition variant group separately. 

 

Results 

Repeatability of radiomic descriptors in test/retest evaluation, between annotation 

sources, and before/after coregistration  

Figure 2(A) depicts a thermometer plot summarizing the results of test/retest evaluation of the 

reference acquisition parameters, using unprocessed and post-processed images. Overall, 77-78 

descriptors out of a total set of 146 (53%) showed good to excellent repeatability (regardless of 

post-processing) while 28/146 descriptors (19%) on unprocessed and 22/146 descriptors (15%) 

on post-processed images showed poor repeatability. When examined by feature family, 75% of 

the Gabor descriptors showed excellent test/retest repeatability, followed by histogram (54%), 

and COLLAGE (35%) on unprocessed images. However, the proportions of repeatable 

descriptors in each of these feature families were markedly reduced in post-processed images to 

33% (Gabor), 0% (histogram), and 15% (COLLAGE). Gradient descriptors were consistently 

poorly repeatable in test/retest evaluation, on both unprocessed (100% poor) and post-processed 

images (90% poor). Similarly, test/retest repeatability measurements in Laws descriptors 

remained largely unchanged between unprocessed (38%, good to excellent) and post-processed 

(32%, good to excellent) images. While 38% of Haralick descriptors showed good to excellent 
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test/retest repeatability on unprocessed images, this proportion increased to 79% on post-

processed images. 

Figure 2(B) shows a thermometer plot summarizing the results of comparing radiomic descriptors 

between manual and automated WM annotations on the reference image. Manual and automated 

WM annotations showed reasonable overlap with a Dice coefficient of 0.77±0.05 across all 

participants. Overall, while 47/146 descriptors (32%) showed excellent repeatability and 57/146 

descriptors (57%) showed poor repeatability between annotation sources on unprocessed 

images, these proportions worsened after post-processing (17% or 25 descriptors excellent, 58% 

or 84 descriptors poor). Good to excellent maual/automated repeatability on unprocessed images 

was primarily observed for Gabor (100%), histogram (54%), and Haralick (62%) descriptors. Post-

processing resulted in fewer good to excellent Gabor (33%) and histogram (15%) descriptors, 

although the number of Haralick descriptors (62%) with good to excellent manual/automated 

repeatability remained unchanged. Similarly, the proportion of COLLAGE descriptors within 

different repeatability ranges also remained relatively unchanged between unprocessed (50%, 

good to excellent) and post-processed images (43%, good to excellent). Finally, edge-based 

descriptors showed poor repeatability between annotation sources, on both unprocessed 

(gradient: 90%, Laws: 94%) and post-processed images (gradient: 90%, Laws: 100%). 

Figure 2(C) shows a thermometer plot summarizing the impact of image coregistration on the 

repeatability of radiomic features between TR/TE variants and the reference scan. Across all 

feature families, only 15% of descriptors showed good-excellent repeatability prior to registration 

which was markedly reduced on coregistered scans (9% with good-excellent repeatability). 

Among feature families, while 51% of COLLAGE descriptors showed good-excellent repeatability 

on unregistered scans (and comprised the largest proportion of such features), no COLLAGE 

descriptors (0%) were repeatable after coregistration. Coregistration also worsened the 

performance of histogram (83% before, 92% after), Gabor (84% before, 90% after), and Haralick 
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(75% before, 95% after) descriptors; all of which showed markedly poorer repeatability on 

coregistered scans. Only the edge-based feature families appeared to benefit from coregistration 

and showed improved repeatability, seen in the performance of gradient descriptors (100% poor, 

0% excellent before to 90% poor, 4% excellent after) as well as Laws descriptors (84% poor, 15% 

good-moderate before to 40% poor, 58% good-moderate after). 

 
Radiomic descriptor robustness between different MR acquisition variant groups  

Thermometer plots showing the proportion of radiomic descriptors within each robustness range 

for each group of acquisition variants (TR, TE, LR, HR, GRAPPA) are depicted in Figure 3, with 

different colors corresponding to different feature families. These are examined in more detail in 

the context of each acquisition variant group, as follows. 

 

Robustness of radiomic feature families with respect to variations in MR image contrast 

acquisition parameters  

The only descriptor family with moderate to excellent performance under TR/TE contrast 

variations was COLLAGE (TE: 85%; TR: 68%). The proportion of COLLAGE descriptors within 

each robustness range also remained largely unchanged between unprocessed and post-

processed images. Additionally, a larger number of COLLAGE descriptors exhibited higher 

robustness across changes in TR (18-20% excellent, 43-45% good) as compared to changes in 

TE (0% excellent, 29% good). Figure 4(A) shows an expression heatmap for a representative 

COLLAGE descriptor (entropy WS=5) with good robustness across changes in TE and excellent 

robustness across changes in TR.  

While also in the co-occurrence family, a majority of Haralick descriptors showed poor robustness 

across changes in TE and TR, both before (61% and 83%, respectively) and after (55% and 76%, 

respectively) processing. The gradient and Laws operator families (edge-based) were poorly 
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robust across all image contrast variations, whether on unprocessed (82-100% poor) or post-

processed images (81%-100% poor). Figure 4(B) shows a representative edge-based descriptor 

(Laws L5E5) as an expression heatmap, illustrating poor robustness of feature expression across 

TR and TE changes, both for the unprocessed images as well as after post-processing.  

The histogram and wavelet feature families largely exhibited poor robustness across changes in 

TR (81% and 86%, respectively) as well as TE (67% and 77%, respectively), on unprocessed 

images. Post-processing slightly improved the robustness in both feature families across TE 

variations, with 79% of histogram descriptors and 88% of Gabor descriptors showing good to 

moderate robustness. A larger number of descriptors in these families were robust after post-

processing the images with TR variations, seen by the increased proportions in excellent 

(histogram: 11%, Gabor: 13%) as well as good to moderate (histogram: 58%, Gabor: 80%) CCC 

ranges.  

 

Robustness between radiomic feature families with respect to differences in nominal MR 

image resolutions 

Histogram and Gabor feature families comprised the largest proportion of descriptors with 

excellent robustness across lower resolution variants (54% and 67%, respectively) on 

unprocessed images. Post-processing severely impacted both feature families, resulting in 54% 

of histogram descriptors and 58% of Gabor descriptors demonstrating moderate robustness (no 

descriptors showed excellent robustness in either family). When considering higher resolution 

imaging variants, 81% of histogram descriptors and 100% of Gabor descriptors showed poor 

robustness on unprocessed images. These proportions were slightly improved after post-

processing, with only 58% of histogram descriptors and 63% of Gabor descriptors showing poor 

robustness, and the rest showing moderate robustness. Figure 5 shows a representative wavelet 
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descriptor (Gabor WS=3, Orientation=0°) illustrating the change in robustness for higher- and 

lower-resolution variants compared to the reference, both before and after post-processing. 

The Haralick and COLLAGE families had marginally fewer descriptors with poor robustness on 

unprocessed LR variants (Haralick: 82%, COLLAGE: 88%) compared to unprocessed HR 

variants (Haralick: 100%, COLLAGE:98%). However, while the proportion of poorly robust 

Haralick (92%) and COLLAGE (92%) descriptors remained relatively unchanged on post-

processed LR variants, post-processed HR variants exhibited a marked reduction in the number 

of poorly robust co-occurrence descriptors (Haralick: 74%, COLLAGE: 54%). The proportion of 

COLLAGE descriptors with good to excellent robustness increased after post-processing across 

both resolution variants (LR: 4% good, HR: 35% good to excellent), compared to Haralick 

descriptors (LR: 0%, HR: 2%; good to excellent). Gradient descriptors were 100% poorly robust 

across all resolution variants, whether on unprocessed or post-processed images. By 

comparison, while 91% to 97% of Laws descriptors were poorly robust on unprocessed LR and 

HR variant images respectively, only 79% (LR) and 82% (HR) of these descriptors were poorly 

robust after post-processing.  

 

Robustness between radiomic feature families with respect to changes in parallel imaging 

reconstruction  

Most descriptors in the Haralick and COLLAGE families were poorly robust between accelerated 

variants and the non-accelerated reference, both on unprocessed(Haralick: 77%, COLLAGE: 

65%) and post-processed(Haralick: 79%, COLLAGE: 65%). The proportion of descriptors in 

different robustness ranges did not markedly change between unprocessed and post-processed 

images, though COLLAGE (35% for both unprocessed images) had a marginally higher number 

of descriptors with good to moderate robustness compared to Haralick (23% for unprocessed 

images, 20% for post-processed images). Figure 6 shows a representative Haralick descriptor 
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(Information Measure 2) with poor robustness between the GRAPPA variant and the non-

accelerated reference image. 

The edge-based feature family were similarly poorly robust on unprocessed (gradient: 100%, 

Laws: 71%) and post-processed images (gradient: 80%, Laws: 76%). However, while 6% of Laws 

descriptors showed excellent robustness on unprocessed GRAPPA variants, no Laws descriptors 

showed excellent robustness after post-processing. Conversely, 20% of gradient descriptors 

appeared moderately robust on post-processed GRAPPA variants compared to 0% on 

unprocessed images. Histogram (54%) and Gabor (67%) descriptors were the only feature 

families with excellent robustness on unprocessed GRAPPA variants, compared to the reference. 

After post-processing, none of these descriptors showed excellent robustness, although 23% of 

histogram and 33% of Gabor descriptors show moderate robustness. 

 

Discussion 

Wider clinical use of radiomic descriptors for characterizing tissue and disease on imaging is 

contingent on understanding their repeatability in test-retest settings and robustness across 

variations in image acquisition parameters(5, 16). In this study, an in vivo MR imaging cohort was 

prospectively accrued to study (1) which radiomic descriptors were repeatable in a test-retest 

setting and between different annotation sources, (2) how robust different families of radiomic 

descriptors were across controlled, systematic variations in individual MRI acquisition parameters 

and whether post-processing steps improved their robustness, and (3) which imaging variants 

could potentially be pooled for wider radiomic analyses. To minimize the impact of disease 

heterogeneity and to have generalizable results in such a controlled study, performance of 

radiomic descriptors was studied within well-defined white matter brain tissue regions on MRI 

scans from healthy volunteers.  
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Repeatability analysis involved two distinct comparisons. First, when comparing radiomic 

descriptors between the reference acquisition and a second repetition of the reference, 

approximately half of descriptors showed good to excellent repeatability while nearly 20% showed 

poor repeatability.. Second, when comparing radiomic descriptors between manually and 

automatically generated white matter annotations on the same reference images, approximately 

40% of descriptors showed poor repeatability and nearly half showed good to excellent 

repeatability. Radiomic descriptors thus exhibited poorer repeatability between manual and 

automated annotations than between test/retest scans, as has been observed previously (31, 32) 

and potentially due to the moderate overlap between the two sets of annotations. Among feature 

families, co-occurrence based Haralick and COLLAGE descriptors consistently showed good to 

excellent repeatability performance which was only marginally changed after post-processing; in-

line with previous findings across a number of different organs(9, 10, 32, 33). By contrast, gradient 

and Laws descriptors were poorly repeatable in both comparisons (both before and after post-

processing) which resonates with studies suggesting their sensitivity to even marginal imaging or 

annotation differences (34, 35). The difference in repeatability performance between edge-based 

and co-occurrence descriptors further suggests that first-order derivatives (used in Laws and 

gradient operators) may be more sensitive than higher-order derivatives (used in Haralick and 

COLLAGE). Interestingly, coregistration of contrast variants to the reference resulted in edge-

based descriptors (gradient, Laws), in turn showing a marked increase in repeatability with 

respect to the reference. The sensitivity of these descriptors may thus be a function of subtle 

shifts and artifacts which may be introduced within a scan or between scans. Histogram and 

Gabor descriptors demonstrated excellent repeatability on unprocessed images in both the 

test/retest and expert/automated evaluation, but post-processing reduced their level of 

repeatability. Since no contrast differences are expected in repeatability analysis, the different 

post-processing steps may have introduced subtle variations in the intensity distributions(21) 

which are known to directly impact the repeatability of histogram and Gabor descriptors (9).   
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In this study, radiomic descriptor robustness was evaluated by comparing the reference scan with 

scans having systematic changes in each of TR, TE, HR, LR, GRAPPA, using the original 

unprocessed images as well as after post-processing. For unprocessed image contrast variants, 

only ~1% of the descriptors showed excellent robustness across changes in TE while 4% showed 

excellent robustness when considering changes in TR. Radiomic descriptors have previously 

demonstrated poor robustness to changes in TE(30) and our study suggests that they may be 

sensitive to changes in TR as well, especially when the resulting contrast differences are not 

accounted for via post-processing. After applying post-processing, there was a marked increase 

in the proportions of radiomic descriptors with good to excellent robustness across varying TR 

and TE values and a reduced proportion of descriptors with poor robustness. The large 

differences in signal intensities in image contrast variants (compared to the reference) appear to 

thus only be partially accounted for via the post-processing steps of bias correction and intensity 

standardization (12).  

When considering unprocessed resolution variants, ~20% of descriptors showed excellent 

robustness between scans at a lower voxel resolution and the reference while no descriptors 

showed good or excellent robustness between unprocessed variants with a higher voxel 

resolution and the reference. The impact of nominal voxel resolution on radiomic descriptors has 

been noted previously(36, 37), and is likely due to corresponding variations in the number of 

voxels and the concomitant differences in spatial extent when computing voxel-wise feature 

responses. Post-processing LR variants resulted in no descriptors showing excellent robustness 

and two feature families (histogram and Gabor) exhibiting worsened robustness compared to 

unprocessed images. By contrast, post-processing HR variants modestly improved robustness 

where ~10% of descriptors exhibited good to excellent robustness.  In other words, linearly up-

sampling a lower-resolution image to match the higher-resolution reference had an overall 

negative impact while downsampling a higher-resolution image to match a lower-resolution 
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reference had only a marginally positive impact. Post-processing interpolation does not fully 

account for differences between scans acquired at different image resolutions, where interpolated 

voxels via up-sampling appear to worsen the robustness of radiomic descriptors (also noted 

previously(38)) while downsampling higher-resolution images appears to marginally reduce 

resolution-related differences. 

Finally, when comparing accelerated variants (GRAPPA) to the reference, good to excellent 

robustness was exhibited by ~25% of descriptors. Parallel imaging reconstruction is intended to 

result in almost identical average signal intensity values compared to the reference(10), which 

appears to result in robust descriptors in families that are most dependent on the underlying 

intensity profiles (histogram and Gabor, similar to findings from our repeatability analysis). Post-

processing of the reference and GRAPPA-accelerated images resulted in an increased proportion 

of poorly robust descriptors, due to histogram and Gabor descriptors exhibiting worsened 

robustness. Similar to findings from repeatability analysis, applying bias correction and intensity 

standardization appeared to worsen the performance of radiomics descriptors when no contrast 

differences are present between the reference and the variant scan; likely indicating that 

additional variations were introduced by post-processing operations.      

In this study, we further evaluated the robustness of individual radiomic feature families with 

respect to the different acquisition variants to understand their robustness to changes in the 

imaging protocol. Histogram and Gabor descriptors were the only families to show excellent 

robustness across multiple unprocessed imaging variants. Post-processing modestly improved 

the robustness of both feature families across contrast differences, but also reduced robustness 

in the lower resolution and GRAPPA-accelerated variants. These two feature families may thus 

be most robust on MRI scans with minimal image contrast differences (i.e. unprocessed test-

retest images, different annotation sources, images with parallel imaging or of a lower resolution). 

Haralick descriptors (intensity co-occurrences) showed poor robustness across almost all 
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acquisition variants, unlike their good to excellent repeatability performance. COLLAGE 

descriptors (gradient orientation co-occurrences) were split between good, moderate, and poor 

robustness for almost all imaging variants, similar to their repeatability performance. The differing 

performance between the two types of co-occurrence descriptors may be because intensity co-

occurrences (used in Haralick) are more dependent on absolute image intensity values than 

gradient co-occurrences (used in COLLAGE, based on relative differences between adjacent 

pixels), lessening the impact of small image contrast changes on the latter. Overall, good to 

moderate robustness was achieved by a majority of histogram, Gabor, COLLAGE, and Haralick 

(only TE changes) descriptors when images of different contrasts (TR and TE) had been post-

processed. Gradient features were universally poorly robust across all variants, with a small 

fraction (~20%) becoming slightly more robust to changes in parallel imaging acceleration with 

the application of post-processing. Similarly, Laws features were also poorly robust across all 

imaging variants; however, this did not change as a result of post-processing. Similar to their 

repeatability performance, first-order derivatives in these feature families appeared to be highly 

sensitive to both image contrast and resolution differences between MR scans.  

Limitations 

Diseased individuals were not included in our cohort in order to carefully study radiomic descriptor 

robustness in as controlled a fashion as possible within healthy brain tissue regions. We evaluated 

a single tissue type (white matter) in our experiments as this typically comprises a large 

contiguous region on a brain MRI section and was easily identifiable. The repeatability and 

robustness of radiomic features identified in our study thus need to be confirmed for other tissue 

regions (grey matter, cerebrospinal fluid), for other acquisition sequences(39) (e.g. T1-weighted, 

diffusion-weighted), as well as in diseased individuals in the future. In addition, in this study, we 

opted to evaluate the robustness of radiomic descriptors based on defining ranges for the CCC 

measure alone, as has been commonly reported in the literature(30, 40). Our study was also 
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limited to a subset of possible variations in the T2-weighted brain MR imaging acquisition, this 

subset being based on the range of values found in brain MRI scans in TCIA(8). Other common 

variations in the MR acquisition such as the number of averages, sampling bandwidth, or motion 

could be studied in future work. While only a single reader’s manual annotations were used in this 

study, these were compared against an automated annotation approach (in terms of overlap as 

well as descriptor repeatability). An expansion on this study may include additional readers to 

more fully assess the impact of interobserver variation in this context. This study also used 

DICOMs for analysis and not images directly reconstructed from the raw data. As different 

vendors use different algorithms and filters to generate DICOM images from k-space data, this 

may be an additional source of variation that requires a more detailed interrogation in the future. 

Additional factors which could be explored include the software package used, additional feature 

families, parameters such as bin size or neighborhood window, as well as comparing voxel- and 

region-wise descriptors. Finally, the sequence of post-processing operations used in our 

experiments was determined based on the literature(13, 21, 22).  These could be further permuted 

to identify a post-processing sequence to optimally account for imaging differences due to 

variations in acquisition parameters, potentially further improving the robustness of radiomic 

descriptors. 

 

Conclusions 

In conclusion, acquisition parameter changes in T2-weighted MR images can have a significant 

impact on the repeatability and robustness of derived radiomic descriptors. Only certain subsets 

of imaging variants should be safely considered for pooled analysis, but only for a subset of 

radiomic descriptors and potentially with better post-processing. Improved quality control of 

acquisition parameters and incorporation of descriptor robustness are hence critical to ensure 
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clinically relevant and generalizable radiomic analysis and machine learning performance via 

MRI. 
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Tables 

Experiment Parameter variants considered Number of 
comparisons 

Post-processing 
steps applied 

Repeatability 

Reference 
Repeated reference 

146 BC+IS 

Expert annotation 
Automated Annotation 

146 BC+IS 

 
Unregistered contrast variants 
Coregistered contrast variants 

146*8=1168 Registration 

Image contrast 
parameters 
(TR/TE) 

TE= [84,103,112] 
TR= 5740 
Size=0.7 
R=1 

146*3 = 438 

BC+IS 
TE=94 
TR= [3000,4000,5000,7000,8000] 
Size=0.7 
R=1 

146 *5 = 730 

Voxel resolution 
parameters 

TE=94 
TR=5740 
Size= [0.9], termed LR 
R=1 

146 

RR+BC+IS 
TE=94 
TR=5740 
Size= [0.35,0.5], termed HR 
R=1 

146*2=292 

Acceleration 
parameters 
(GRAPPA) 

TE=94 
TR=5740 
Size=0.7 
R=[2] 

146 BC+IS 

 

Table 1: Summary of experiments conducted in this work. Radiomic descriptor repeatability 
was evaluated between: (a) expert and automated annotations across variant and reference 
scans, (b) test/retest scans based on reference parameters, (c) contrast variants and reference 
before and after coregistration. For robustness analysis, imaging acquisition parameters were 
grouped, and the bolded parameter set corresponds to the variant scans evaluated with respect 
to the reference scan (TR=5740ms, TE=94ms, Size=0.7mm, R=1). LR = lower resolution, HR = 
higher resolution, BC = bias correction, IS = intensity standardization, RR = resolution resampling. 
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Figure Legends 

Figure 1: Study workflow showing (left) prospective MRI data acquisition with controlled variations 
of sequence parameters, and (right) processing steps. Reference images were acquired using a 
T2w turbo spin echo sequence using our institution’s default clinical protocol, which was repeated 
once for test/retest evaluation. Variant images were acquired by altering a single acquisition 
parameter individually, yielding a total of 181 brain MRI scans from 15 healthy participants. 
Primary experimental workflow (purple box) involved annotation of white matter on each MRI scan 
followed by radiomic feature extraction within this region. For robustness analysis, feature values 
from each variant scan were compared to those from the reference scan to quantify the impact of 
acquisition variations. For repeatability analysis, descriptor performance was compared between 
manually annotated (green outline) as well as automatically delineated (yellow outline) white 
matter regions, in a test/retest evaluation of the reference scan, as well as before and after 
coregistration of contrast variants and the reference scan. Descriptor repeatability and robustness 
was assessed on unprocessed images as well as after all images had undergone post-processing 
(blue box). 
 
Figure 2: Thermometer plot for repeatability experiments showing results of (A) test/retest 
evaluation (between reference and the repeated reference images) within manual WM 
annotations, (B) manual and automated WM annotations on the first reference image, and (C) 
before/after coregistration of contrast variants with the first reference image. Plots are shaded 
based on proportion of radiomic descriptors from different families (in different colors) that fall 
within different CCC-based robustness ranges, with exact numerical percentages included. Note 
that CCC ranges were defined as follows: excellent (CCC > 0.85), good (0.7 ≤ CCC ≤ 0.85), 
moderate (0.5 ≤ CCC < 0.7), and poor (CCC < 0.5). 
 
Figure 3: Thermometer plots for robustness experiments depicting proportions of radiomic 
descriptors from different families (shaded in different colors) falling within different CCC-based 
robustness ranges, with exact numerical percentages also indicated. All descriptors were 
compared between reference and variant images within expert WM annotations, with plots 
grouped by acquisition variant as summarized in Table 1. Note CCC ranges were defined as 
follows: excellent (CCC > 0.85), good (0.7 ≤ CCC ≤ 0.85), moderate (0.5 ≤ CCC < 0.7), and poor 
(CCC < 0.5). 
 
Figure 4: Fig. 4.  Representative radiomic heatmaps for (A) a COLLAGE descriptor (entropy 
WS=5, co-occurrence family) exhibiting good to excellent robustness across variations in TR and 
TE, and (B) representative radiomic heatmaps for a Laws descriptor (L5E5, edge-based family) 
exhibiting poor robustness across variations in TR and TE. Post-processing does not appear to 
markedly affect the appearance of feature heatmaps when compared between top (unprocessed) 
and bottom (post-processed), across all columns.  
 
Figure 5: Representative radiomic heatmaps for a Gabor descriptor (WS=3, Orientation=0°, 
wavelet family) on unprocessed (top row) and post-processed images (bottom row), within the 
expert WM annotation. Feature heatmaps on unprocessed LR variant images are more consistent 
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with the reference (excellent robustness) while unprocessed HR variant images are relatively 
inconsistent (poor robustness). Post-processing causes the feature heatmap to appear similar 
across LR and HR variant images with respect to the reference (moderate robustness in both 
cases). 
 
Figure 6: Representative radiomic heatmaps for Haralick descriptor (Information Measure 2, co-
occurrence family) showing poor robustness between variant (GRAPPA reconstruction, R=2) and 
reference (non-accelerated, R=1) images, on unprocessed (top row) and post-processed images 
(bottom row). Note marked variations in the feature heatmaps within expert WM annotations on 
variant images compared to the corresponding reference image, which remains inconsistent 
despite post-processing. 
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