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Key Points: 15 

• Climate multi-model ensemble projects change of peak annual runoff timing over the 16 
continental U.S. during the 21st century 17 

• Spatial patterns of peak runoff timing earlier onset as well as delay are more pronounced 18 
for higher future greenhouse concentrations  19 

• Springtime shifts in the dates of maximum snow accumulation and soil moisture wetness 20 
are associated with changes in peak annual runoff timing  21 
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Abstract 27 

The earth’s hydroclimate is continuing to change, and the corresponding impacts on water resource 28 

space-time distribution need to be understood to mitigate their socioeconomic consequences. A 29 

variety of ecosystem services, transport processes, and human activities are synced with the timing 30 

of peak annual runoff. To understand the influence of changing hydroclimate on peak runoff dates 31 

across the continental U.S., we downscaled outputs of ten Global Circulation Models for different 32 

future scenarios. Our results quantify robust spatial patterns of both negative (up to 3-5 weeks) 33 

and positive (up to 2-4 weeks) shifts in the dates of peak annual runoff occurrence by the end of 34 

this century. In snowmelt-dominated areas, annual maxima are projected to shift to earlier dates 35 

due to the corresponding changes in snow accumulation timing. For regions in which the 36 

occurrence of springtime extreme soil wetness shifts to later time, we find that peak annual runoff 37 

is also projected to be delayed. These patterns of runoff timing change tend to be more pronounced 38 

for projections of higher greenhouse concentration in the future.  39 

 40 

  41 
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Plain Language Summary 42 

The occurrence of peak annual runoff characterizes the major phase of watershed surface 43 

hydrology. Many natural dynamics and human activities are synced with the timing of its 44 

occurrence, ranging from ecosystem services and channel transport of sediments and contaminants 45 

to reservoir refilling and management. The sensitivity of peak annual runoff timing to changing 46 

hydroclimate remains unknown. In this work, we identify how peak annual runoff occurrence will 47 

change in the future over the continental U.S. using outputs of several climate models. Spatial 48 

patterns of the change show both earlier (by up to 3-5 weeks) and delayed (up to 2-4 weeks) 49 

occurrence of peak runoff. We attribute these timing changes to the shifts in snowmelt and 50 

springtime soil moisture processes. Specifically, areas in which snowmelt drives watershed 51 

hydrology exhibit earlier dates of maximum snow accumulation and peak runoff. In regions where 52 

peak runoff is projected to occur later, we find a tendency for later occurrence of full saturation 53 

conditions. Earlier and later peak runoff occurrence can potentially lead to competing water use 54 

interests and aggravating concerns for aquatic environments and their ecosystem services. 55 

 56 

Keywords: Climate change (1807); peak runoff (1817); surface hydrology; climate model 57 
projections (1847); uncertainty (1873); human activities 58 
 59 
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1.0 Introduction 61 

Surface water is an essential source of freshwater, whose variability has profound impacts on the 62 

life of humanity (Hall et al., 2014). Surface water peak flows can result in flooding – the most 63 

impactful natural hazard of all weather-related events in terms of fatalities and material costs 64 

(Doocy et al., 2013). But high streamflow also replenishes reservoirs, carries and deposit nutrients 65 

in floodplains, can be the source of tremendous useable energy, and is an important source of 66 

irrigation for agriculture in arid areas. Additionally, the diversity of fish communities is closely 67 

related to the streamflow seasonality (Knight et al., 2014).  Understanding patterns of surface flows 68 

in space and time is therefore crucial for flood control, water supply, crop yield, ecosystem services, 69 

water quality control, and hydropower generation (Kemter et al., 2020). Streamflow characteristics, 70 

such as the magnitude, frequency, and seasonality, can be affected by human-induced land use and 71 

climate change that both intensify the global hydrologic cycle (Bosmans et al., 2017; Winsemius 72 

et al., 2016). Stemming from observation-based studies and climate model projections, analyses 73 

of the sign and magnitude of peak annual streamflow changes in the historical period and the future 74 

remain controversial (Greve et al., 2018; Gudmundsson et al., 2019; Hirsch and Ryberg, 2012; 75 

Lins and Slack, 2005; Mallakpour and Villarini, 2015; Milly et al., 2005; Yang et al., 2017; Zhai 76 

et al., 2020). Nonetheless, there is high confidence that the frequency of extreme floods associated 77 

with annual streamflow maxima has increased over most regions, and this trend is likely to 78 

continue in the future (Arnell and Gosling, 2016; Hirabayashi et al., 2013; Hirsch and Archfield, 79 

2015; Milly et al., 2002; Slater and Villarini, 2016; Swain et al., 2020). A number of studies have 80 

also addressed the question of streamflow seasonality shifts due to impact of non-stationary 81 

climate on maximum annual streamflow occurrence (Bloschl et al., 2017; Clow, 2010; Cunderlik 82 

and Ouarda, 2009; Dudley et al., 2017; Villarini, 2016). Focusing on historical trends using gage-83 
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level data, their principal conclusions are that many watersheds have already experienced a 84 

significant shift in annual maximum streamflow timing. However, an open question is whether 85 

streamflow seasonality will change in the coming decades, and if so, which factors would be the 86 

main drivers.  87 

It is vital to understand the key governing processes that determine the major phase of 88 

watershed streamflow in order to understand its future shifts. Several studies have reported 89 

substantial variability in the seasonality of maximum annual flows over the continental U.S. and 90 

attributed it to distinct differences in flood-generating mechanisms (Berghuijs et al., 2016; 91 

Villarini, 2016). Specifically, precipitation and antecedent soil water conditions were identified as 92 

key factors explaining the occurrence of highest flows over the central U.S. (Slater and Villarini, 93 

2017) and western coastal areas (Berghuijs et al., 2016; Ye et al., 2017). In the western 94 

mountainous areas (Li et al., 2017; Yan et al., 2019) and the northeastern U.S. (Hodgkins et al., 95 

2003), snowmelt was determined to be the dominant driver of runoff. Climate change can directly 96 

or indirectly affect precipitation, soil moisture, and snowmelt processes, with consequences to 97 

flood seasonality across regions with distinct dominant runoff generating mechanisms, triggering 98 

implications for hydropower, agriculture, and aquatic ecosystem services. For example, numerous 99 

studies reported that trends of increasing temperature in regions with snowmelt-driven hydrology 100 

have already resulted in earlier annual peak streamflow (Barnett et al., 2005; Clow, 2010; 101 

Hodgkins et al., 2003; Kam et al., 2018; Regonda et al., 2005; Stewart et al., 2005). Trends and 102 

interpretations in regions with other processes of dominant hydrological influence are cumbersome 103 

to disentangle and projections into the future are also subject to this large attribution uncertainty.  104 

In this study, we address knowledge gaps related to the understanding of future changes in peak 105 

runoff seasonality at the U.S. continental (CONUS) scale. Specifically, we assess the likelihood 106 
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of changes in peak runoff timing during the 21st century based on daily runoff projections that are 107 

outputs of ten General Circulation Models (GCMs) from the fifth phase of the Coupled Model 108 

Intercomparison Project (CMIP5). The sensitivity of GCM-modeled runoff to temperature is not 109 

well constrained, which can result in significant uncertainty for future projections (Lehner et al., 110 

2019). To enhance confidence of the projection and in order to reduce GCM biases, we apply the 111 

Bayesian weighting averaging (BWA) method of Smith et al. (2009) to produce multi-model 112 

ensemble estimates that rely on model performance over the control period and model projection 113 

convergence in the future to assign model weights. The product of Livneh et al. (2013) is used in 114 

this Bayesian framework to reduce biases of GCM runoff estimates. Using the downscaled 115 

estimates of future runoff, we aim to identify patterns of peak runoff timing change under the 116 

different CO2 emission scenarios and carry out analysis that identifies main drivers of the projected 117 

changes.  118 

 119 

2.0 Methods  120 
 121 
2.1 Runoff historical data and projections  122 
 123 

Long-term estimates of daily runoff (surface water yield per unit area) provided by Livneh 124 

et al. (2013) are used in this study as true “observations” within the Bayesian framework of multi-125 

model downscaling to reduce projection biases. Daily runoff is obtained as output of the Variable 126 

Infiltration Capacity (VIC) model (Liang et al., 1994) forced with precipitation and temperature, 127 

at the spatial resolution of . 128 

Realizations from ten General Circulation Models developed in different institutions were 129 

downloaded from the CMIP5 database (http://pcmdi9.llnl.gov/). Only one GCM version is 130 

chosen for each institution (see Table 1) to reduce the dependence within the multi-model 131 

1/16! ×1/16!
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ensemble. GCMs selected in this study satisfy the criteria of availability of daily runoff outputs 132 

and completeness of spatial coverage over the contiguous U.S. Emission scenarios corresponding 133 

to the Representative Concentration Pathway (RCP; van Vuuren et al., 2011) 4.5 and 8.5 are 134 

used to represent medium and most pessimistic predictions of greenhouse gas concentration in 135 

the future. 136 

Because GCM outputs and the runoff dataset of Livneh et al. (2013) have different 137 

meshes, they were converted to the same  resolution for analysis convenience. We first re-138 

mapped all GCM outputs to  resolution with the nearest neighbor method. Then, 139 

both GCM and the runoff data layers were aggregated by averaging over grid cells falling inside 140 

each  cell of the analyzed product set. 141 

 142 

Table 1. List of CMIP5 models used in this study 143 

No. Institution Model Name Resolution (lon x lat) 

1 Beijing Climate Center bcc-csm1-1  

2 Euro-Mediterranean Centre on Climate 

Change 

CMCC-CM  

3 National Center for Meteorological 

Research, Météo-Franch and CNRS 

laboratory 

CNRM-CM5  

4 Commonwealth Scientific and Industrial 

Research Organization – Queensland 

Climate Change Centre of Excellence 

CSIRO-Mk3-6-0  

1! ×1!

1/16! ×1/16!

1! ×1!

128× 64

480× 240

256×128

192× 96
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5 Institute of Numerical Mathematics of the 

Russian Academy of Sciences 

Inmcm4  

6 Institute of Atmospheric Physical and 

Centre for Earth System Science 

FGOALS-g2  

7 Model for Interdisciplinary Research on 

Climate 

MIROC5  

8 Max Planck Institute for Meteorology MPI-ESM-MR  

9 Meteorological Research Institute MRI-CGCM3  

10 Norwegian Climate Center NorESM1-M  

 144 
 145 
2.2 Multi-variate Bayesian Weighting Averaging (BWA) 146 
 147 

It has been established in the literature that making future projections based on a multi-148 

model ensemble is preferred over inferences based on single-model outputs (Knutti et al., 2010; 149 

Tebaldi and Knutti, 2007) due to potentially high biases of any given model. Biases of GCM 150 

projections in climate variables (e.g., temperature and precipitation) can be significant (Knutti et 151 

al., 2010; Xu et al., 2018), and therefore they must be addressed before any robust conclusion on 152 

climate change can be drawn. The Bayesian weighted averaging (BWA) approach of Smith et al. 153 

(2009); Tebaldi et al. (2004); Tebaldi et al. (2005) has grown in popularity as a sufficiently general 154 

tool to assess climate change uncertainties from multiple model projections with minimum 155 

subjective assumptions. This approach is derived from the Reliability Ensemble Average method 156 

introduced by Giorgi and Mearns (2002) to integrate model outputs, such that the model weights 157 

are based on model performance in the past period with historical observations and model output 158 

convergence in the future period. The first version of BWA was univariate such that each location 159 

180×120

128× 60

256×128

192× 96

320×160

144× 96
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was considered separately, creating solutions informed by the local model performance (Tebaldi 160 

et al., 2005). In cases of large model-observation differences, this version could produce 161 

problematic posterior distributions (Smith et al., 2009; Xu et al., 2018). To extend the approach 162 

utility, Smith et al. (2009) proposed a multivariate version of BWA that simultaneously considers 163 

a set of model outputs in multiple regions. Model weights therefore rely on its performance in all 164 

regions and locations considered, which ensures a more robust model skill evaluation given site-165 

to-site variation of uncertainties. Additionally, this method requires fewer parameters in 166 

calculating the posterior distributions than the univariate version and is thus more computationally 167 

efficient. Readers are referred to Smith et al. (2009) for a detailed derivation, and only a brief 168 

description of the formulation is introduced here.  169 

 Smith et al. (2009) postulated that the jth climate model projections in the past and future 170 

in the ith region are denoted as  and , with , , where R is the total 171 

number of regions considered and M is the total number of models in an ensemble.  is the 172 

associated historical observation for the same past period. It is assumed that observations and 173 

projections are random Gaussian variables that are distributed as: 174 

   (1) 175 

   (2) 176 

  (3) 177 

where is the inverse of variance of  based on observational data. The other parameters are 178 

assumed to have the following prior distributions, all are mutually independent: 179 

 180 

   (4) 181 

Xij Yij i = 1,...,R j = 1,…,M

Xi0

Xi0 ~ N[µ0 +ζ i ,λ0i
−1],

Xij ~ N[µ0 +ζ i +α j ,(ηijφiλ j )
−1],

Yij | Xij ~ N[ν0 +ζ i
' +α j

' + βi(Xij − µ0 −ζ i −α j ),(ηijθ iλ j )
−1],

λ0i Xi0

µ0 ,ν0 ,ζ i ,ζ i
' ,β0 ,βi ~U (−∞,∞),
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   (5) 182 

   (6) 183 

   (7) 184 

   (8) 185 

   (9) 186 

Conventionally,  denotes the gamma distribution with the shape parameter  and the rate 187 

parameter . The parameters  and  are interpreted as the global means,  and  are the 188 

differences from the global mean defined for a specific region ‘i’, and  and  represent the 189 

global biases for a specific model ‘j’ for the past and future periods, respectively. In terms of the 190 

variance assumption in the above equations,  represents the inverse of the variance of the jth 191 

model,  represents the inverse of the variance for the ith region in the past, and  represents the 192 

inverse of the variance at ith region in the future. The introduction of  here is to guarantee that 193 

climate models have different patterns of output variance in different regions. The uniform 194 

distribution is selected over , and ,  and  are set to 0.01 to ensure that all of the priors 195 

are uninformative. The other three hyperparameters , ,  are used to define the common 196 

distribution of climate models. The analytical forms of the joint posterior distributions are 197 

unknown, but closed-forms of each marginal posterior distribution are derived in the appendix of 198 

Smith et al. (2009). In practice, the Markov Chain Monte Carlo (MCMC) process is used to 199 

estimate the posterior distributions (Smith et al., 2009). Note that the parameter 𝜆!"  capturing 200 

historical variability of peak runoff timing is accounted for in this methodology to represent ‘noise’ 201 

in the peak time occurrence: larger ‘noise’ implies less confidence in the distributions of model-202 

θ i ,φi ,ψ 0 ,θ0 ,c,aλ ,bλ ~G[a,b],

λ j | aλ ,bλ ~G[aλ ,bλ ],

ηij | c ~G[c,c],

α j |ψ 0 ~ N[0,ψ 0
−1],

α j
' |α j ,β0 ,θ0 ,ψ 0 ~ N[β0α j ,(θ0ψ 0 )

−1].

G[a,b] a

b µ0 ν0 ζ i ζ i
'

α j α j
'

λ j

φi θ i

ηij

(−∞,∞) a b c

β0 θ0 ψ 0
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observation biases and thus this will cause the posterior distribution of peak runoff timing change 203 

to have larger variance.  We further note that the random variables  and  representing model 204 

biases additionally account for the uncertainty of biases in GCM model outputs and their larger 205 

variances (assessed via the MCMC process) will yield higher ‘noise’ in the projections of timing 206 

of peak runoff (see SM. 2 robustness metric).  207 

 208 

2.3 Adaption of BWA to peak runoff timing 209 

GCMs estimate runoff (i.e., water excess in a model grid cell), not streamflow (i.e., the flow rate 210 

at a given point in a channel network). Consequently, in this study we use annual peak runoff as 211 

an indicator of the occurrence of major hydrological phase, rather than annual peak streamflow 212 

used in previous observation-driven studies. Runoff routing to channel network and in-channel 213 

wave transformation can introduce additional uncertainty since the coarse spatial resolution of 214 

GCM computational mesh cannot represent these processes and the resultant runoff-streamflow 215 

basin lag. However, a comparison between the high-resolution Livneh et al. (2013) runoff dataset 216 

and streamflow measured at USGS gauges across CONUS illustrates that the correlation between 217 

the average annual runoff and streamflow is high both in terms of magnitude and timing (Figure. 218 

S1). This suggests that shifts in the timing of both variables in the future period should be also 219 

correlated (although this is apparently impossible to verify). We further emphasize that peak runoff 220 

timing is not equivalent to peak streamflow timing. An apparent advantage is that runoff 221 

projections from grid-based model outputs allow us to study runoff spatial variability over the 222 

entire U.S. continent, without the need to explicitly include the effects of water management, 223 

which is necessary for point-scale streamflow analysis. The quality of daily runoff product of 224 

Livneh et al. (2013) used in the Bayesian framework to reduce biases has been verified (SM. 1). 225 

α j α j
'



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Confidential manuscript submitted to Earth’s Future 

 12 

The occurrence date of annual peak runoff is the variable of interest inferred from GCM 226 

outputs. Daily GCM runoff outputs are used to derive the annual peak runoff timing, and Day of 227 

Year (DOY) is used to represent its occurrence date, where January 1st corresponds to 1 and 228 

December 31st to 365 (or 366 during a leap year). The original BWA cannot be applied directly to 229 

DOY due to its circular nature. To resolve this issue, we use the differences between the modeled 230 

and observed dates as the variable of interest in BWA to convert the circular variable to a linear 231 

variable: 232 

   (10) 233 

   (11) 234 

where  and  respresent the deviations from the observed peak runoff timing ( ) for the 235 

 model at  location for the control period and future period, respectively. An example of the 236 

conversion is given in SM. 3. 237 

The Bayesian posteriors of multi-model ensemble mean of runoff peak timing are 238 

constructed using outputs of selected GCMs (see Table 1) for the control and future periods. The 239 

control period is defined as 1961-1990, and two future periods selected in this study are 2041-2070 240 

(mid-century) and 2071-2100 (end-century). Two CO2 emission scenarios, RCP 4.5 and RCP 8.5 241 

(Rogelj et al., 2012), are used here to represent the different possible trajectories of the global 242 

climate evolution. We use the differences of the mean peak annual runoff timing estimated from 243 

the Bayesian posteriors for future and control periods to make inferences on the change of runoff 244 

seasonality timing caused by the global change. The robustness metric of Knutti and Sedláček 245 

(2012) accounting for the uncertainty of GCM projections is used to calculate the strength of the 246 

change signal of the multi-model mean (see SM. 2). Higher robustness of the inferred change will 247 

depend on the peak timing variability over historical period, both in terms of observations and 248 

!Xij = Xij − Xi0 ,

!Yij = Yij − Xi0.

!Xij !Yij Xi0

jth ith
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model simulations, model vs. observation differences (i.e., model biases), and the degree of 249 

convergence of modeled outputs for both historical and future periods. 250 

 251 

2.4 Dates of maximum precipitation and snowpack, and the distribution of soil moisture 252 

saturation  253 

Precipitation is an obvious driver of many hydrologic dynamics. We compute shifts in the 254 

dates of maximum 1, 3, 5, and 7-day accumulated precipitation by taking the difference of the 255 

multi-model date averages (equal GCM weights) for the future and control periods. 256 

We use the occurrence time of maximum annual snow water equivalent (maxSWE) from 257 

the selected set of GCMs to identify the onset of snow melting phase. Only cells with maxSWE 258 

higher than 15  (i.e.,15  liquid water depth) are analyzed to ensure sufficient snow 259 

accumulation prior to snowmelt. We compute the change of the maxSWE mean date by taking the 260 

difference of the multi-model date averages (equal GCM weights) for the future and control 261 

periods. 262 

Daily soil moisture over the top 10 cm depth from the selected set of GCMs is used to 263 

develop a distribution of springtime dates of extreme wetness. We first use the maximum soil 264 

moisture over the selected 30-year periods (control or future) to identify the soil saturation limit  265 

𝜃#$% . We then construct empirical cumulative density function (CDF) of the dates between 266 

February 1st and May 31st when soil moisture is higher than 0.95 ∗ 𝜃#$%, using both control and 267 

future periods based on the outputs of all GCMs (see Table 1). Only late winter - spring period is 268 

considered since the robustness metric of Knutti and Sedláček (2012) for changes in peak runoff 269 

timing exhibits high values (> 0.6) during this interval only. The difference of days between the 270 

[kg m2] [mm]



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Confidential manuscript submitted to Earth’s Future 

 14 

two CDFs corresponding to the median values (i.e., CDF at 0.5) is used to represent the shift of 271 

the distribution centroid of extreme springtime soil wetness in the future.  272 

 273 

3.0 Results 274 

3.1 Changes of peak annual runoff timing  275 

The peak annual runoff over the continental U.S. exhibits clear regional patterns (Figure S2).  276 

Figure 1 illustrates the change of the mean timing of annual peak runoff between the future and 277 

the control periods inferred from the multi-model BWA posterior distributions. We present four 278 

cases corresponding to two future periods and two emission scenarios. The grid cells with high 279 

confidence of the change inference based on the robustness metric of Knutti and Sedláček (2012) 280 

are highlighted. Higher robustness means that the project runoff changes are more significant than 281 

the model noise and historical variability (Figure S3), i.e., the associated projection uncertainty is 282 

smaller. The fractions of the CONUS area in Figure 1 showing grid cells with high robustness 283 

changes for these four time periods are (a). 9.3%, (b). 10.2%, (c). 10.7%, and (d). 17.2%, implying 284 

that the higher the greenhouse gas concentrations changes (and, correspondingly, the higher the 285 

projected temperature increases), the more consistent and significant runoff peak timing changes 286 

projected by GCMs. The spatial patterns of robust changes are similar across all four scenarios. 287 

Specifically, the regions with winter snowpack, such as the Rocky Mountains and New England, 288 

are projected to have annual peak runoff shift to earlier dates, by up to 3-5 weeks. Peak runoff is 289 

likely to be delayed by up to 2-4 weeks in the Midwest region, southern Florida, and parts of the 290 

west coast, where soil moisture has been argued to be the key factor in peak runoff formation 291 

(Ivancic and Shaw, 2015). The change in the west of Gulf Coast region has a high uncertainty due 292 

to the poorly pronounced period of peak runoff, since highest runoff can occur at any time of a 293 
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year. The changes have different signs for the upper Missouri basin region, when comparing the 294 

results for the end of century RCP 8.5 scenario with the other three cases, but the spread of model 295 

projections likely cause this since the inference robustness is not high.  296 

 297 

 298 
Figure 1. Change of the mean date of annual peak runoff occurrence between the control 299 
(CTL) and future periods (FUT). The difference (FUT – CTL) is estimated using the dates of 300 
maximum likelihood from BWA posterior distributions for the two periods. The grid cells with 301 
inference of high robustness (SM.2, metric of Knutti and Sedláček (2012) higher than 0.6) are 302 
stippled with green points. “MID” (subplots (a) and (b)) represents the date difference with 303 
respect to 2041-2070 and 1961-1990 periods, and “END” (subplots (c) and (d)) represents the 304 
difference with respect to 2071-2100 and 1961-1990 periods. Daily runoff product (SM.1) of 305 
Livneh et al. (2013) and outputs from ten GCMs are used to construct the BWA posterior.  All of 306 
the results are shown at resolution.  307 
 308 

3.2 Attribution of the change in peak annual runoff timing 309 

To develop an attribution of the patterns of peak runoff timing change in Figure 1, we investigate 310 

outputs of daily precipitation, surface snow accumulation, and top layer (0-10 cm) soil moisture 311 

1°×1°
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from the same CMIP5 multi-model ensemble. Figure 2a shows the changes of annual peak daily 312 

precipitation timing for the end of the century RCP 8.5 scenario (the other cases can be found in 313 

Figure S4). While extreme heavy precipitation (e.g., corresponding to return periods larger than 314 

100 years) is generally associated with long-term maximum annual runoff (Smith et al., 2013), 315 

changes of the mean timing of peak daily annual precipitation cannot explain the change in the 316 

mean timing of peak annual runoff (Figure S5a). Likewise, shifts in maximum 3-day, 5-day, and 317 

7-day accumulated precipitation also were not found to be related to the inferred changes in the 318 

peak runoff seasonality (not shown). This is consistent with previous studies that relied on stream 319 

gauge data to demonstrate that snowpack dynamics and antecedent soil wetness can play more 320 

critical roles in generating peak annual streamflow (Ivancic and Shaw, 2015), with the exception 321 

for urban areas where heavy rainfall was identified to be the primary factor (Sharma et al., 2018).  322 

The change of maxSWE mean date illustrates the predominantly earlier dates of maximum 323 

snow accumulation in the future (Figure 2b for RCP8.5 end-of-century; Figure S6 for all of the 324 

future cases). As the delayed peak runoff cannot be attributed to the changes of maxSWE timing 325 

(Figure S5b), we explore the possibility of impact of maxSWE date change on earlier timing of 326 

peak runoff only (i.e., blue cells with green circles in Figure 1d). For all the four future scenarios, 327 

a positive relationship between the peak runoff and the peak maxSWE timing change indicates a 328 

coherent shift of both to earlier dates (Figure 3, blue squares). The high correlation also implies 329 

causation as the shifts are projected to occur in regions dominated by snowpack (Figure 2b) and 330 

snowmelt process is the dominant runoff generation mechanism, i.e., the earlier start of snowmelt 331 

is related to the earlier phase of runoff production via well-understood, physically meaningful 332 

processes. 333 
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 334 
Figure 2. Change of precipitation, snowpack, and spring soil moisture seasonality (RCP8.5 335 
scenario).  (a) The difference of annual timing of peak precipitation between the end-of-century 336 
and the control period. (b) The difference of annual timing of maxSWE between the end-of-337 
century and the control period. The white areas along the southern and western coasts represent 338 
negligible snow accumulation in the control period (i.e., maxSWE < 15 mm). Hatching marks 339 
areas in which snow accumulation becomes negligible in the future. (c) Empirical cumulative 340 
density functions (CDFs) of the dates between February 1 (DOY=32, ‘DOY’ – day of year) and 341 
May 31 (DOY=151) on which soil moisture is 95%-100% of its saturation limit. GCM outputs 342 
during the control period (solid black line) and the end of century period (red dashed line) are 343 
used. The CDFs are constructed for an exemplary grid cell (with the robustness metric of the 344 
peak timing change > 0.6) indicated with the black square in the inset. The solid green line 345 
represents the shift between the two CDFs at their median values, i.e., the difference represents 346 
the date change of the distribution centroid of springtime extreme soil wetness. Subplot (d) 347 
illustrates the shift of the centroid of springtime wetness illustrated in (c) between the end-of-348 
century and the control period over the CONUS area. 349 

 350 

The projections of daily water content in the top 10 cm of soil are used to investigate the 351 

impact of soil wetness on later peak runoff occurrence (i.e., red cells with green circles in Figure 352 

1d). Unlike precipitation and snow, soil moisture is bounded by the saturation limit  𝜃#$%, reaching 353 
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this limit many times in a given year. Consequently, we identified all dates when soil moisture 354 

exceeded 95% of 𝜃#$% in GCM outputs for both the control and future periods to construct their 355 

empirical cumulative density function (Sec. 2.4). As an example, Figure 2c illustrates CDFs 356 

inferred from multi-model projections for control and future periods for a grid cell with the delayed 357 

peak runoff in the end-century RCP 8.5 scenario. What is apparent in this illustration is that nearly 358 

the entire CDF of the days of extreme spring wetness in future shifts to a later time of the year, as 359 

compared to the control period. This delay reflects the combined control of precipitation, 360 

evapotranspiration, and snowmelt on soil wetness due to the persistence property of soil moisture 361 

(Ghannam et al., 2016).   362 

While peak annual runoff may correspond to any day on the CDF of dates of extreme 363 

springtime wetness, we calculate the difference between the median CDF values to assess the 364 

interval between the two distribution centroids. Figure 2d illustrates these differences over the 365 

CONUS area for the end-of-century RCP8.5, which yields a positive relationship with the shift of 366 

annual peak runoff timing to later dates only (Figure 3d, red squares). The relationship is relatively 367 

insensitive to the choice of the CDF quantile (e.g., using 25% and 75% in Figure S.7 leads to 368 

similar inferences). By taking the difference of the dates at 50% of CDF, we infer the shift of 369 

springtime soil wetness centroid. However, the occurrence of peak runoff cannot be related to the 370 

occurrence of extreme wetness dates in any straightforward fashion, i.e., peak runoff can 371 

theoretically occur on any date of springtime soil saturation conditions.  Specifically, Figure 4 372 

shows that during the control period peak annual runoff occurred on average around DOY 50 (i.e., 373 

32% of the CDF); it shifts to DOY 65 (43% of the CDF) for future conditions. Furthermore, the 374 

results for the other future projection scenario (i.e., RCP4.5) and period (i.e., mid-century) show 375 

similar patterns of the change (Figure 3a-c and Figure S.8). 376 
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 377 
Figure 3. Attribution of the change in mean timing of annual peak runoff.  Regressions 378 
between the peak annual runoff timing change and the change of the date of maximum snow 379 
water equivalent (blue squares), and the shift of centroid date of extreme spring soil wetness (red 380 
squares) for (a). the mid-of-century, RCP4.5 scenario, (b) the mid-of-century, RCP8.5 scenario, 381 
(c) the end-of-century, RCP4.5 scenario, and (d) the end-of-century, RCP8.5 scenario. Only the 382 
results for locations with the change robustness metric larger than 0.6 for peak annual runoff 383 
timing are presented. The peak runoff timing changes are calculated using the multi-model 384 
ensemble mean with equal weights assigned to each GCM to ensure a consistent comparison 385 
with the changes in the peak SWE and soil moisture timing. The grey line represents the 1:1 386 
reference line, and the blue and red dashed lines are the linear least-squares regression lines.  387 
is the correlation coefficient and p is the corresponding p-value. 388 

 389 
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 390 
Figure 4. CDFs of dates of extreme springtime soil wetness and the shifts of peak annual 391 
runoff timing (RCP8.5, end-of-century scenario).  The blue solid lines (red dashed lines) 392 
represent CDFs of dates of soil saturation for each cell in Figure 2d with delayed peak annual 393 
runoff (red cells with green circles - high robustness) for control period (future period). Black 394 
squares (black) circles are the corresponding peak annual runoff occurrence dates from multi-395 
model mean for the control period (future period). The green solid lines illustrate the shift of 396 
peak annual runoff timing for all examined cells.  397 

 398 

We additionally note that the negative changes of soil wetness timing also exhibit (weaker) 399 

correlation with the negative changes of peak runoff timing (Figure S5c). However, these projected 400 

shifts of runoff timing to earlier dates are located in regions dominated by snowpack runoff 401 

generation (Figure 1). Therefore, changes in snowmelt timing are expected to contribute to changes 402 

in spring soil moisture dynamics, triggering collinear effects between the two predictors: the 403 

timing of maxSWE and the centroid date of soil saturation during spring period.  404 

 405 

4.0 Discussions and conclusions 406 

In this study, we focus on linking peak runoff seasonality with changes in the climate system. In 407 

summary, our results show clear spatial patterns of peak annual runoff timing change over the 408 

continental U.S. caused by the projected global climate change that drives changes in the physical 409 
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processes of land-surface hydrology. We find that snowmelt will occur earlier in the future and 410 

this will cause a shift of peak annual runoff to earlier dates, with the median of 2.7 (RCP4.5) to 411 

3.9 (RCP8.5) weeks by the end of the century in regions where snowmelt is the dominant runoff 412 

generating mechanism. In other regions, where climate projections yield a robust signal of delay 413 

in peak annual runoff timing with the median of 1.6 (RCP4.5) to 2.6 (RCP8.5) weeks by the end 414 

of the century, we uncover the importance of soil wetness during spring period; we find that there 415 

is an overall shift of extreme soil wetness conditions to later dates. Such shifts in the timing of 416 

extreme soil moisture conditions may correspond to various expressions of the soil moisture 417 

process (e.g., conceptual illustrations in Figure S9), e.g., they may correspond to specific changes 418 

in its first and higher-order moments.  However, while we note that springtime moisture conditions 419 

are projected to be drier (e.g., by ~3%, end-of-century, RCP8.5) and exhibit higher variance (~7%), 420 

we do not find a strong relationship between changes in these two moments and changes in peak 421 

runoff timing. Since the distribution of soil moisture is always positively skewed, the change in 422 

these moments may be insufficient to represent the change in peak runoff timing, which is likely 423 

to be affected by extremes of soil moisture process. Further attribution analysis is warranted. 424 

We find that all the changes are projected to be more pronounced and more robust by the 425 

end of the 21st century if the current greenhouse gas emission levels are maintained, since RCP8.5 426 

represents the “business as usual” scenario (van Vuuren et al., 2011). Such changes can pose 427 

serious challenges to the human activities and natural environment, since they are adapted to the 428 

historical runoff seasonality (Bloschl et al., 2017). For example, nearly three quarters of water 429 

supply in the western United States are driven by snowmelt (Dettinger, 2005) and the 3-5 week 430 

earlier peak runoff can result in competing water use interests: prioritizing reservoir storage can 431 

conflict with ensuring sufficient flows for salmon migration (Dudley et al., 2017). Likewise, a 2-432 
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4 week delay in springtime extreme wetness conditions in the U.S. Midwest may imply late crop 433 

planting and a delay in springtime fertilizer applications; when combined with high flows and 434 

warmer summer conditions, this can pose threat to aquatic environments and their ecosystem 435 

services (Michalak et al., 2013). 436 

This study analyses runoff rather than streamflow because streamflow is not available in 437 

GCMs’ outputs. Despite the correlation of the two for the historical period (Figure S1b), caution 438 

must be exercised in interpretation of the study results. Specifically, while robust changes of the 439 

former in the future are detected, this study does not present objective evidence that the timing of 440 

peak streamflow will be impacted in the same fashion. To investigate the change of peak 441 

streamflow timing, a hydrodynamic model is needed to route runoff. However, modeling this 442 

process will introduce additional uncertainties from unavoidable errors in representation of 443 

drainage network and channel geometry, and specification of “effective” friction properties of the 444 

land-surface at the scale of GCM grid cell of several hundred square kilometers, etc. There is 445 

currently no objective way of accounting for these additional uncertainties and thus projections of 446 

streamflow metrics into future will likely remain elusive.    447 

Furthermore, the timing of peak daily average runoff can be different from the timing of 448 

peak instantaneous runoff. Conceptually, the difference between the two would be characteristic 449 

of systems in which peak runoff is controlled by extreme rainfall. The latter is not well captured 450 

by GCMs (Dai, 2006; Stephens et al., 2010) and thus in these systems one expects low 451 

convergence of GCM outputs. We do however identify regions with high robustness of the change 452 

(Figure 1), implying that runoff dynamics bear a signature of day-to-day persistence reflecting 453 

their driving processes (Berghuijs et al., 2016; Ye et al., 2017). Arguably, this suggests that in 454 
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these regions the timing of annual peak of instantaneous runoff coincides with that of annual peak 455 

of daily average runoff. 456 

While the Bayesian method was applied to reduce the multi-model ensemble uncertainty, 457 

the approach does not automatically guarantee the uncertainty of future runoff projection to be 458 

well constrained, which represents a limitation of this study. In fact, the uncertainty of BWA 459 

projections can be large for many grid cells, as the Bayesian posterior of the peak runoff timing 460 

change can span a wide range: from negative to positive values (Figure 5). We acknowledge that 461 

it is not reliable to draw any conclusion for locations with such a high uncertainty. However, grid 462 

cells with high values of the robustness metric exhibit consistent bounds (i.e., either positive or 463 

negative) informed by a narrower model spread, indicating superior agreement among the models. 464 

This supports the high confidence placed by the analysis on cells with high robustness in the multi-465 

model ensemble. While not entirely impossible, the signal of high robustness is unlikely to be 466 

merely fortuitous as the presented results on change of peak runoff timing make perfect physical 467 

sense.   468 

 469 

 470 

Figure 5. Uncertainty bounds for the change of the mean date of annual peak runoff 471 
occurrence. (a). 25%, and (b) 75% of the BWA posterior distribution of the change of mean date 472 
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of annual peak runoff occurrence between the end-of-century and the control period, the RCP 8.5 473 
projection. The green dots denote cells with high robustness metric (as identified in Figure 1d). 474 

 475 

We acknowledge that the real-world impacts of climate change on runoff generation are 476 

complicated and controlled by many factors at the scales of their governing physical processes. 477 

Specifically, with their simplified runoff generation mechanisms, current GCM versions can 478 

realistically mimic only major phases of runoff due to the input of rain or meltwater in excess of 479 

soil saturation. GCM land-surface modules are one-dimensional representations of hydrology   480 

over large areas of a grid cell that grossly simplifies spatial variations of land-surface conditions. 481 

They cannot capture vital details of the other types of runoff generation such as those controlled 482 

by hillslope hydrology and surface-groundwater interactions (Beven, 2012; Bisht et al., 2018), soil 483 

structure (Or, 2020), snow redistribution across landscape in areas of complex topography 484 

(Chegwidden et al., 2020), or mosaic of landuse variations such as those due to urbanization 485 

(McGrane, 2016). While relevant processes and their controlling factors can be captured by 486 

detailed models of watershed hydrology stemming from the first principles (Fatichi et al., 2012; 487 

Ivanov et al., 2008; Kim et al., 2012; Maxwell et al., 2014), these models cannot be operated at 488 

global scales. This is because of the infeasibly enormous computational demand implied by the 489 

high spatial resolution and time stepping required for appropriate solution of the governing partial 490 

differential equations (Fatichi et al., 2016). Therefore, suitable simplifications (known as 491 

“parameterizations”) of processes (e.g., surface and groundwater flow, snow) and/or controlling 492 

factors (e.g., topography, soil structure, landuse) continue to be necessary for GCMs. 493 

Correspondingly, recent developments targeting to improve the representation and realism of 494 

hydrological physical processes in land-surface models have included surface water dynamics 495 

(Ekici et al., 2019), land-river interactions (Chaney et al., 2020; Decharme et al., 2019), 496 
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parameterizations of sub-grid topography (Tesfa et al., 2020), variable soil thickness (Brunke et 497 

al., 2016), and variably saturated flow dynamics with groundwater (Bisht et al., 2018). While 498 

comprehensive offline assessments have been carried out, these developments have not yet been 499 

directly implemented in GCMs; further studies are necessary to better understand the sensitivity  500 

(Dwelle et al., 2019) of the modeled runoff dynamics to the inclusion of new parameterizations 501 

and their parameters. On a related note, confirmation (Oreskes et al., 1994) of model parameters 502 

is another vital step to improve the skill of runoff generation simulations (Huang et al., 2013; Troy 503 

et al., 2008) that has been long overlooked. In summary, many efforts have been dedicated to 504 

improving the realism of large-scale hydrological process and robustness of runoff projections. 505 

Continued efforts will need focus on sensitivity of GCM runoff generation to the inclusion of new 506 

processes and key controlling factors. It will be necessary to understand whether they lead to the 507 

improved space-time representation of runoff process and GCM agreement with large-scale 508 

hydrological models that have more sophisticated physical representation of the governing 509 

processes.     510 
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