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Abstract

In this paper, an improved Poisson-Nernst-Planck ion channel (PNPic) model is pres-

ented, along with its effective finite element solver and software package for an ion

channel protein in a solution of multiple ionic species. Numerical studies are then

done on the effects of boundary value conditions, membrane charges, and bulk con-

centrations on electrostatics and ionic concentrations for an ion channel protein, a

gramicidin A (gA), and five different ionic solvents with up to four species. Numerical

results indicate that the cation selectivity property of gA occurs within a central por-

tion of ion channel pore, insensitively to any change of boundary value condition,

membrane charge, or bulk concentration. Moreover, a numerical scheme for comput-

ing the electric currents induced by ion transports across membrane via an ion chan-

nel pore is presented and implemented as a part of the PNPic finite element package.

It is then applied to the calculation of current–voltage curves, well validating the

PNPic model and finite element package by electric current experimental data.
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1 | INTRODUCTION

Transport of ions through an ion channel pore is a fundamental pro-

cess in cell biology. However, its simulation is very complicated and

challenging in atomistic level. A system of Poisson-Nernst-Planck

(PNP) equations is one popular dielectric continuum model for calcu-

lating the electrostatics and ionic concentrations induced by charges

from an ion channel protein, a membrane, and an ionic solution. It has

been widely applied to the simulation of ionic transport and the stud-

ies of various membrane kinetics such as membrane potentials, con-

ductances, transport fluxes, and electric current, and so forth, in the

one-dimensional (1D) case. For instance, the Teorell-Meyer-Sievers

multi-layered model1,2 was successfully used in the numerical simula-

tion of nonequilibrium diffuse double layer3 and the research on ionic

transport in ion-exchange membranes.4 Mathematically, several 1D

steady-state PNP systems are studied for their solution existence and

uniqueness.5–7 Analytic PNP solutions for some 1D cases are also

derived in References 8,9. However, in a realistic bimolecular context,

it is almost impossible to find a three-dimensional (3D) PNP analytic

solution. Hence, developing numerical methods becomes essential to

search for PNP approximate solutions. So far, different PNP numerical

algorithms were developed in the past two decades by using finite dif-

ference methods,10,11 finite element methods,12,13 a matched inter-

face and boundary method,14 a finite volume method,15 a hybrid

finite-difference/finite-volume method,16 and a spectral element

method,17 and so forth. Of these numerical methods, the finite ele-

ment method is the most suitable to handle an irregular molecular sur-

face of an ion channel protein and complicated interface conditions to

generate a PNP approximate solution in high accuracy. Hence, we will

use the finite element method to develop numerical algorithms for

solving an improved PNP ion channel (PNPic) model to be presented

in this paper.
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A PNPic model is a system of partial differential equations for

one electrostatic potential function u and n ionic concentration func-

tions for a solvent of n ionic species. Here u is defined in a box domain

Ω, which is partitioned into a protein region, Dp, a membrane region,

Dm, and a solvent region, Ds. It is known that one major difficulty of

solving a PNP model comes from the singularity caused by the atomic

charges of an ion channel protein. This difficulty has been overcome

by adapting solution decomposition techniques developed in the

numerical solution of the Poisson-Boltzmann equation (PBE).18,19

Recall that in the solution decomposition from Reference 18, the elec-

trostatic potential function u is split into three component functions

within the protein region Dp only, resulting in a Laplace boundary

value problem in Dp, which has serious regularity problems since Dp is

strongly non-convex. In contrast, in the solution decomposition from

Reference 19, u is split into three component functions, denoted by G,

Ψ, and eΦ, over the whole box domain Ω such that u¼GþΨþ eΦ with

G, Ψ, and eΦ being the potentials induced by atomic charges, the

potentials and charges on interfaces and boundaries, and ionic char-

ges, respectively. Since G contains all the singularity points of u, both

Ψ and eΦ become much easier to calculate numerically than the origi-

nal u. Hence, we adapt the splitting technique from Reference 19 for

the development of our PNPic finite element solver in this work.

Actually, a box domain Ω is a truncation of an infinite ion channel

domain such that Ω contains only one ion channel protein embedded

in the central position of a membrane. To this end, a PNPic model is

defined as a boundary value problem, where Dirichlet boundary value

conditions are commonly used due to their simplicity in implementa-

tion and flexibility in application. Hence, in this work, we develop an

improved PNPic model using Dirichlet boundary value conditions and

its finite element solver based on our recent work,20 in which we con-

structed a PNPic model using Neumann boundary value conditions on

the four side surfaces of Ω to avoid the difficulties of selecting bound-

ary value functions. With our new PNPic solver, in this paper, we will

carry out numerical experiments to explore the PNPic solution differ-

ences caused by Dirichlet and Neumann boundary value conditions.

So far, none of such comparison tests were done due to lacking of

required software packages. Together with our recent PNPic package,

our new PNPic package makes such numerical studies possible.

From biochemistry and physiology it has been known that char-

ges from membrane can have significant effects on electrostatic and

ionic concentration. To reflect such effects, we recently added a

membrane surface charge density function, σ, to the both sides of

a membrane in a PNPic model20 and a size modified PBE ion channel

model.21 But, due to the interactions of a charged membrane with cat-

ions and anions surrounding the membrane, charges on each side sur-

face of a membrane may have different values.22 This motivated us to

define σ as a piecewise function with two expressions—one for the

bottom surface and the other one for the top surface of the mem-

brane. This improvement will give us more options to construct

numerical tests for the study of membrane charge effects.

Naturally, a solvent domain is separated by a membrane into three

portions—an extracellular portion, an intracellular portion, and a channel

pore portion. Different portions may have different bulk concentrations

and different diffusion constants for different ionic species. To reflect

this fact, in this work, we will define bulk concentrations and diffusion

constants as piecewise constant functions so that we can simulate differ-

ent experimental environments through selecting either different bulk

concentrations or different diffusion constants within one or more than

one portion of the solvent domain. For example, we can add a mixture of

0.2 mol NaCl and 0.1 mol KNO3 to an extracellular portion only similarly

to what is done in a chemical laboratory.

Our PNPic finite element package will be a valuable tool for ion

channel studies and simulations. In this paper, we will use it to carry

out numerical tests to study the effects of boundary value conditions,

membrane charges, simulation domain sizes, and bulk concentrations

on electrostatic potentials and ionic concentrations for an ion channel

protein, a gramicidin A (gA). In these tests, we construct five different

ionic solvents with up to four ionic species and three box meshes with

different mesh sizes. These numerical tests demonstrate that the cat-

ion selectivity property of gA occurs within a central portion of ion

channel pore, insensitively to any change of boundary value condi-

tions, membrane charges, bulk concentrations, or mesh sizes.

One important application of a PNPic model is to calculate the

electric currents induced by ion transport across a membrane via an

ion channel pore. In this paper, we will present a numerical scheme

for computing electric current in terms of a PNPic finite element solu-

tion. In fact, it is nontrivial to do so due to difficulties caused by an

irregular cross section S of an ion channel pore and a nonuniform flux

field, which involves the gradient vectors of potential u and ionic con-

centration functions ci. From the finite element theory it is known that

a direct calculation of these two gradient vectors produces a discon-

tinuous flux field when u and ci are approximated as linear finite ele-

ment functions. This may cause numerical errors since from the

definition of a PNPic model it is known that the flux field is continu-

ous. Hence, in order to derive an effective numerical scheme for com-

puting current, we not only need a triangular mesh of an irregular

cross section but also need to find a way to retain the continuity prop-

erty of a flux field. In addition, a proper quadrature is needed to calcu-

late each related surface integral. We will do so and implement the

new scheme as a tool for computing current in this work. With this

new tool, we will produce I-V (current–voltage) curves for gA and vali-

date our PNPic model and package by experimental data reported in

Reference 23.

The rest of the paper is organized into three parts as follows. In the

part of Section 2, we present our PNPic model, our PNPic finite element

method, and our numerical scheme for computing electric current. In the

part of Section 3, we present numerical studies, numerical results, and

validation tests. The paper is closed with the part of Section 4.

2 | METHODS

2.1 | An improved Possion-Nernst-Planck ion
channel model

Let a rectangular box open domain, Ω, be defined by
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Ω¼ x,y,zð Þ j Lx1 < x< Lx2 ,Ly1 < y < Ly2 ,Lz1 < x< Lz2
� �

,

where Lx1 , Lx2 , Ly1 , Ly2 , Lz1 , and Lz2 are real numbers. The domain Ω is

divided as

Ω¼Dp [ Dm [ Ds [ Γm [ Γp [ Γpm, ð1Þ

where Dp denotes a protein region, which contains an ion channel

protein molecular structure with np atoms; Ds is a solvent region,

which contains a solution of n ionic species; Dm is a membrane region;

and Γm, Γp, and Γpm denote the interfaces between Dm and Ds, Dp and

Ds, and Dp and Dm, respectively. The interface Γm and the boundary

∂Ω of Ω are further split by

Γm ¼Γmb [ Γmt, ∂Ω¼ΓD [ ΓNs [ ΓNm, ð2Þ

where Γmb and Γmt denote the bottom and top surfaces of membrane,

respectively, ΓD consists of the bottom and top surfaces of ∂Ω,

ΓNs = ΓN \ ∂Ds, and ΓNm = ΓN \ ∂Dm. Here ΓN consists of the four side

surfaces of Ω, ∂Ds denote the boundary of Ds, and ∂Dm the boundary

of Dm. Moreover, we set the z-axis direction as the membrane normal

direction and determine the membrane location by two real numbers

Z1 and Z2. An illustration of these partitions is given in Figure 1,

where different interfaces and boundary surfaces are drawn in differ-

ent line styles and different colors. A view of an interface fitted irregu-

lar tetrahedral mesh of a box domain, which is used in numerical

calculations, is also displayed in Figure 2 to illustrate the complicated

shapes of Dp (in green color), Dm (in yellow color), and Ds (in blue-

violet color). Here the channel pore part of Ds is hidden by Dp. See

Figure 5 for two views of a mesh of Ds. These meshes were generated

by our finite element mesh generation tool,24 which is an improve-

ment of the mesh package reported in Reference 25.

Let ci denote a concentration function of the i-th ionic species in

moles per liter (mol/L) and u a dimensionless electrostatic potential. The

three regions Dm, Dp, and Ds are treated as dielectric media with permit-

tivity constants ϵm, ϵp, and ϵs, respectively. We define a PNPic model

(in steady state) by coupling the Nernst-Planck equations

r�Di rð Þ rci rð ÞþZici rð Þru rð Þ½ � ¼0, r∈Ds, i¼1,2, � � �,n, ð3Þ

with the Poisson dielectric equations

�ϵpΔu rð Þ¼ α
Xnp
j¼1

zjδrj ,r∈Dp, ð4aÞ

�ϵmΔu rð Þ¼0,r∈Dm, ð4bÞ

�ϵsΔu rð Þ¼ β
Xn
i¼1

Zici rð Þ,r∈Ds, ð4cÞ

together with the interface conditions

u s�ð Þ¼ u sþð Þ, ϵp
∂u s�ð Þ
∂np sð Þ ¼ ϵs

∂u sþð Þ
∂np sð Þ , s∈Γp, ð5aÞ

u s�ð Þ¼ u sþð Þ, ϵm
∂u s�ð Þ
∂nm sð Þ¼ ϵs

∂u sþð Þ
∂nm sð Þþ τσ sð Þ, s∈Γm, ð5bÞ

u s�ð Þ¼ u sþð Þ, ϵp
∂u s�ð Þ
∂np sð Þ ¼ ϵm

∂u sþð Þ
∂np sð Þ , s∈Γpm, ð5cÞ

the Robin boundary value conditions

�Di sð Þ rci sð ÞþZici sð Þru sð Þ½ � �ns sð Þ¼0, s∈Γp [ Γm, i¼1,2,…,n,

which reflect the fact that the channel walls are insulating

(i.e., charged particles cannot penetrate them), and the Dirichlet

boundary value conditions

F IGURE 1 An illustration of box domain partition (1), interface
and boundary partition (2), and membrane location numbers Z1
and Z2

F IGURE 2 An interface fitted tetrahedral mesh of box domain Ω.
here Dp, Dm, and Ds are highlighted in green, yellow, and blue-violet
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u sð Þ¼ g sð Þ, s∈ ∂Ω, ð6aÞ

ci sð Þ¼ gi sð Þ, s∈ΓD [ ΓNs, i¼1,2,…,n: ð6bÞ

Here Di denotes a diffusion coefficient function of the i-th ionic spe-

cies; g and gi are given boundary value functions; σ denotes a membrane

surface charge density function; Zi is the charge number of the i-th ionic

species; zj and rj are the charge number and atomic position of the j-th

atom, respectively; δrj denotes the Dirac delta distribution at rj; nm, np,

and ns denote the unit outward normal directions of Dm, Dp, and Ds,

respectively; and the constants α,β, and τ are given by

α¼1010e2c
ϵ0kBT

, β¼ NAe2c
1017ϵ0kBT

, τ¼10�12ec
ϵ0kBT

,

with NA being the Avogadro constant (an estimate of the number of

ions per mol), ec the elementary charge, kB the Boltzmann constant,

and T the absolute temperature.

In this work, we define σ as a piecewise function as follows:

σ sð Þ¼
σt, s∈Γmt,

σb, s∈Γmb,

�
ð7Þ

where σb and σt denote the surface charge density functions defined

on the bottom surface Γmb and top surface Γmt of membrane, respec-

tively. This membrane surface charge density function is an improve-

ment of the one used in Reference 20. It enables us to deal with more

membrane charge cases.

Because of membrane, the solvent domain Ds can be naturally

divided into the bottom portion Ds,b, top portion Ds,t, and pore portion

Ds,p, as illustrated in Figure 3, such that

Ds ¼Ds,b [ Ds,t [ Ds,p, ð8Þ

where Ds,b = {r ∈ Ds j r = (x,y,z) with z < Z1}, Ds,t = {r ∈ Ds j r = (x,y,z)

with z > Z2}, and Ds,p = {r ∈ Ds j r = (x,y,z) with Z1 ≤ z ≤ Z2}. Noting

that the bulk concentration cbi and diffusion coefficient Di of ionic spe-

cies i within these three portions may be different, we define them by

piecewise constant functions as follows:

cbi rð Þ¼
cbi,p, r∈Ds,p,

cbi,b, r∈Ds,b,

cbi,t, r∈Ds,t,

8>><
>>: Di rð Þ¼

Di,p, r∈Ds,p,

Di,b, r∈Ds,b,

Di,t, r∈Ds,t,

8><
>: i¼1,2,…,n, ð9Þ

where cbi,p and Di,p, cbi,b and Di,b, and cbi,t and Di,t denote the bulk con-

centration and diffusion constant of species i within the three por-

tions Ds,p, Ds,b and Ds,t, respectively. The above diffusion coefficient

functions work for a finite element approximation of Nernst-Planck

equation (see Reference 17). To ensure that the Nernst-Planck equa-

tions of (3) are well defined, we modify Di as a smooth function in the

expression

F IGURE 3 An illustration of the partition (8) of a solvent domain
Ds. Here Ds,b and Ds,t can be regarded as the extracellular and
intracellular compartments, respectively

F IGURE 4 Two views of a gA
ion channel molecular structure
(in cartoon) and its Van deer
Waals volume (in gray) occupied
by the atomic balls of gA
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Di rð Þ¼

Di,t, r∈Ds,t topportion ofDsð Þ,
Di,pþ Di,t�Di,p

� �
I2 rð Þ, r∈Db,2 buffer region2ð Þ,

Di,p, r∈Dcp central pore regionð Þ,
Di,pþ Di,b�Di,p

� �
I1 rð Þ, r∈Db,1 buffer region1ð Þ,

Di,b, r∈Ds,b bottom portion ofDsð Þ,

8>>>>>><
>>>>>>:

ð10Þ

where the two buffer regions Db,1 and Db,2 are defined by

Db,1 ¼ r∈Ds j r¼ x,y,zð ÞwithZ1⩽z⩽Z1þ ĥ
n o

,

Db,2 ¼ r∈Ds j Z2� ĥ⩽z⩽Z2
n o

,

with bh being a parameter for adjusting buffer region size, the central

pore region Dcp is defined by

Dcp ¼ r∈Ds j r¼ x,y,zð ÞwithZ1þbh⩽ z⩽ Z2�bhn o
, ð11Þ

and I1 and I2 denote the two interpolation functions satisfying the

interpolation conditions

I1 x,y,Z1ð Þ¼1, I1 x,y,Z1þbh� �
¼0, I2 x,y,Z2ð Þ¼1, I2 x,y,Z2�bh� �

¼0:

Since none of Di,p were known in experiments, we estimate

Di,p by

Di,p ¼ θDi,b for 0 < θ <1: ð12Þ

Consequently, with (5a), (7), (9), and (10), we have obtained an

improved PNPic model in the case of using the Dirichlet boundary

value conditions. For clarity, we will call this model either our

PNPic model or the PNPic model in the remaining part of this

paper.

2.2 | Our PNPic finite element solver

To overcome the singularity difficulty caused by atomic charges, we

define a potential function, w, independent of any ionic concentration

ci, by

w rð Þ¼G rð ÞþΨ rð Þ, r∈Ω, ð13Þ

where G is given by

G rð Þ¼ α

4πϵp

Xnp
j¼1

zj
r� rj
		 		 ,

and Ψ(r) is a solution of a linear interface boundary value problem as

follows:

ΔΨ rð Þ¼0, r∈Dp [ Ds [ Dm,

Ψ s�ð Þ¼Ψ sþð Þ, ϵp
∂Ψ s�ð Þ
∂np sð Þ ¼ ϵs

∂Ψ sþð Þ
∂np sð Þ þ ϵs�ϵpð Þ ∂G sð Þ

∂np sð Þ , s∈Γp,

Ψ s�ð Þ¼Ψ sþð Þ, ϵm
∂Ψ s�ð Þ
∂nm sð Þ ¼ ϵs

∂Ψ sþð Þ
∂nm sð Þ þ ϵs�ϵmð Þ ∂G sð Þ

∂nm sð Þþ τσ sð Þ, s∈Γm,

Ψ s�ð Þ¼Ψ sþð Þ, ϵp
∂Ψ s�ð Þ
∂np sð Þ ¼ ϵm

∂Ψ sþð Þ
∂np sð Þ þ ϵm�ϵpð Þ ∂G sð Þ

∂np sð Þ , s∈Γpm,

Ψ sð Þ ¼ g sð Þ�G sð Þ, s∈ ∂Ω:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð14Þ

Using (13), we can simplify the PNPic model as a nonlinear system

for finding another potential function, eΦ, and the n ionic concentra-

tions ci for i = 1, 2, …, n as follows:

r�Di rð Þ rci rð ÞþZici rð Þr w rð Þþ eΦ rð Þ
� �h i

¼0, r∈Ds, i¼1,2,…,n,

∂ci sð Þ
∂ns sð ÞþZici sð Þ

∂ w sð Þþ eΦ sð Þ
� �

∂ns sð Þ ¼0, s∈Γp [ Γm,

ci sð Þ¼ gi sð Þ, s∈ΓNs [ ΓD,

ΔeΦ rð Þ¼0, r∈Dp [ Dm,

�ϵsΔeΦ rð Þ¼ β
Pn
j¼1

Zjcj rð Þ, r∈Ds,

eΦ s�ð Þ¼ eΦ sþð Þ, ϵp
∂ eΦ s�ð Þ
∂np sð Þ ¼ ϵs

∂ eΦ sþð Þ
∂np sð Þ , s∈Γp,

eΦ s�ð Þ¼ eΦ sþð Þ, ϵm
∂ eΦ s�ð Þ
∂nm sð Þ ¼ ϵs

∂ eΦ sþð Þ
∂nm sð Þ , s∈Γm,

eΦ s�ð Þ¼ eΦ sþð Þ, ϵp
∂ eΦ s�ð Þ
∂np sð Þ ¼ ϵm

∂ eΦ sþð Þ
∂np sð Þ , s∈Γpm,

eΦ sð Þ¼0, s∈ ∂Ω:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ

Note that both (14) and (15) are well defined without involving

any singularity since G has collected all the singular points rj of the

PNPic model. Hence, they can be solved more easily than the PNPic

model and their solutions give the PNPic solution (u,c) with u¼
GþΨþ eΦ and c = (c1, c2, …, cn).

We now construct the finite element approximations of (14)

and (15).

To do so, we first generate an interface fitted irregular tetrahedral

mesh, Ωh, of Ω, an irregular tetrahedral mesh, Ds,h, of Ds. We then use

them to construct two linear finite element spaces, U and V, and their

subspaces, U0 and V0, respectively, as follows:

U0 ¼ ν∈U ν¼0 on ∂Ωj g, V0 ¼ μ∈V μ¼0 on ΓNs [ ΓDj g:ff

Using the above finite element spaces, we can get a finite ele-

ment approximation of (14) as follows:

Find Ψ ∈ U satisfying Ψ(s) = g(s) � G(s) on ∂Ω such that

a Ψ,νð Þ¼ L νð Þ 8ν∈U0, ð16Þ

where a(�, �) is a bilinear functional defined by
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a Ψ,νð Þ¼ ϵp

Z
Dp

rΨ rð Þ �rν rð Þdrþ ϵm

Z
Dm

rΨ rð Þ �rν rð Þdr

þϵs

Z
Ds

rΨ rð Þ �rν rð Þdr,

and L(�) is a linear functional defined by

L νð Þ¼ ϵs� ϵpð Þ
Z

Γp

∂G sð Þ
∂np sð Þν sð Þdsþ ϵs�ϵmð Þ

Z
Γm

∂G sð Þ
∂nm sð Þν sð Þds

þ ϵm�ϵpð Þ
Z

Γpm

∂G sð Þ
∂np sð Þν sð Þdsþ τ

Z
Γm

σ sð Þν sð Þds:

Once a solution Ψ of (16) is found, we can obtain a finite element

approximation of (15) as follows: Find eΦ∈U0 and ci ∈V satisfying ci ¼
gi onΓNs [ ΓD for i¼1,2,…,n such that

R
Ds
Di rciþZicir wþ eΦ� �h i

rμidr¼0 8μi ∈V0, i¼1,2,…,n,

a eΦ,ν
� �

�β
Pn
j¼1

Zj
R
Ds
cjνdr¼0 8ν∈U0,

8>><
>>:

ð17Þ

where w has been defined in (13).

We developed effective iterative schemes for solving the linear

finite element Equation (16) and the nonlinear finite element system

(17), respectively, and implemented them in Python and Fortran as a

software package based on our previous work.20 We omit the descrip-

tion of these iterative schemes here since these schemes are very sim-

ilar to those given in Reference 20.

2.3 | Electric current calculation

As one important application of our PNPic model, we present a

numerical scheme for computing electric currents induced by ion

transports across the membrane through an ion channel pore. These

currents include the electric currents Ii,S of species i and total current

IS as follows:

Ii,S ¼�ecNA

103
ZiDi,p

Z
S

∂ci sð Þ
∂z

þZici sð Þ ∂u sð Þ
∂z


 �
ds for i¼1,2,…,n, IS

¼
Xn
i¼1

Ii,S,

ð18Þ

where S denotes a cross section of an ion channel pore with the nor-

mal direction being the z-axis direction, Di,p is a diffusion constant of

species i within the channel pore in Å/ps (pico-second), and the cur-

rents have been measured in pA (pico-ampere).

However, the surface integral Ii,S is difficult to calculate since an

ion channel pore may have a very complicated shape, causing cross

section S to have an irregular boundary curve. Another difficulty arises

from the calculation of partial derivatives ∂ci sð Þ
∂z and ∂u sð Þ

∂z as required in

the calculation of terms, Ji, by the formulas

Ji ¼
∂ci sð Þ
∂z

þZici sð Þ ∂u sð Þ
∂z

, i¼1,2,…,n:

In fact, u and ci are produced by our PNPic finite element package

as linear finite element functions. Their partial derivatives become piece-

wise constant functions, which are discontinuous across the four faces

of each tetrahedron. This may cause large errors in the calculation of cur-

rents since from the PNPic definition it can be seen that the partial deriv-

atives (or gradient vectors) of u and ci are continuous. In this work, we

overcame the cross section mesh generation difficulty by using the visu-

alization tool ParaView.26 We then deal with the discontinuous problem

in two steps.

In Step 1, we use the Slotboom variable transformation ci ¼
e�Ziuci to transform Ji as

Ji ¼ e�Ziu
∂ci sð Þ
∂z

, i¼1,2,…,n, ð19Þ

where ci denotes the i-th Slotboom variable, which has been calcu-

lated and saved during a search for a PNPic finite element solu-

tion.20,24 Because of the transformation (19), we now only need to

calculate the partial derivative ∂ci sð Þ
∂z . Since ci is much smoother than u,

by (19), we can significantly reduce the errors of computing Ji.

In Step 2, we calculate Ji, indirectly, as a solution, φi, of a varia-

tional problem as follows: Find φi ∈ V0 such that

Z
Ds,h

φivdr¼
Z

Ds,h

e�Ziu
∂ci sð Þ
∂z

vdr 8v∈V0, i¼ ,2,…,n:

Clearly, φi is continuous over Ds since it belongs to the finite ele-

ment function space V0. Hence, the continuity of Ji is retained by set-

ting Ji = φi for i = 1, 2, …, n.

After obtaining φi, we calculate the surface integral Ii,S by

Ii,S ¼�ecNA

103
ZiDi,p

Z
S
φi sð Þds≈ �ecNA

103
ZiDi,p

X
T ∈ Sh

Z
T
φi x,y,bzð Þdxdy,

ð20Þ

where Sh denotes a triangular mesh of the cross section S, T is a trian-

gle element, and bz is the location number of S on the z-axis. There

exist many quadratures for computing triangular integrals (see Refer-

ence 27 for example). We can properly select one according to the

accuracy requirement.

To further raise the numerical accuracy of currents, we select

m cross sessions Sj of an ion channel pore to produce m current values

Ii,Sj for j = 1, 2, …, m. We then use their averages to re-define the cur-

rents Ii of species i and total current I as follows:

Ii ¼
1
m

Xm
j¼1

Ii,Sj for i¼1,2,…,n, I¼
Xn
i¼1

Ii, i¼1,2,…,n: ð21Þ

We implemented our current calculation scheme in Python as a

part of our PNPic finite element package based on the state-of-the-
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art finite element library from the FEniCS project.28 To this end, we

derived a tool for computing the electric currents Ii and I of (21). This

tool enables us to validate our PNPic model and package by using

experimental data available in the literature.

3 | NUMERICAL RESULTS AND
DISCUSSIONS

Wedid numerical tests on an ion channel protein, Gramicidin A (gA),29 in a

salt solution of up to four ionic species by our PNPic software package

and our recent software package reported in Reference.20 In these

numerical tests, we used the bulk diffusion constants

Db
i ¼0:203,0:196,0:133,0:0793, and 0.19 for Cl�, K+, Na+, Ca2+, and

NO�
3 from the website https://www.aqion.de/site/194. Within the chan-

nel pore, we set the diffusion constant Dp
i ¼ θDb

i with θ = 0.055 and the

buffer region parameter bh¼3. These diffusion constants were used to

construct the diffusion coefficient function Di(r) of (10). In addition,

we used a boundary value function g of (6b) from Reference 30 as

follows:

g sð Þ¼
gb sð Þ, s∈ΓDwith z¼ Lz1 bottom surface of Ωð Þ,
gt sð Þ, s∈ΓDwith z¼ Lz2 top surface of Ωð Þ,
gb sð Þþk sð Þ gt sð Þ�gb sð Þ½ �, s∈ΓN the four side surfaces of Ωð Þ,

8><
>:

where s = (x,y,z), gb and gt are two potential surface functions defined

on the bottom and top surfaces of the box domain Ω, respectively,

and k(s) is a linear interpolation function defined by

k sð Þ¼ z�Lz1
Lz2 �Lz1

:

In numerical tests, we set gt = �2 and gb = 2. We also fixed the

boundary value functions gi ¼ cbi for i = 1, 2, …, n and the permittivity

constants ϵp = 2, ϵm = 2, and ϵs = 80.

An ion channel protein, a gramicidin A (gA), is a natural antibiotic

peptide with 15 amino acids (552 atoms) forming a cation-permeable

channel pore as shown in Figure 4. The molecular structure and cation

selectivity property of gA have been known,31,32 making gA a valuable

test case for our studies.

Using the PQR file of gA from Reference 30, we constructed

three box domain meshes Ωh and three related solvent domain

meshes Ds,h. The membrane location numbers Z1 and Z2 were

set as

Z1¼�11, Z2¼6:

The dimensions and mesh data of these meshes are listed in

Table 1. Two views of a solvent domain mesh Ds,h extracted from

Mesh 1 are displayed in Figure 5, showing a complicated geomet-

rical shape of a solvent domain Ds. One view of Mesh

1 (an irregular interface fitted tetrahedral mesh) has been dis-

played in Figure 2. These meshes were used in our numerical

tests.

To help understand the influence of electrostatics on ionic

concentrations, we split the electrostatic potential u into a posi-

tive potential, u+, and a negative potential, u�, as follows:

F IGURE 5 Two views of an
irregular tetrahedral mesh of
solvent domain Ds extracted from
mesh 1 for the gA ion channel
protein. Here one view of mesh
1 has been displayed in Figure 2

TABLE 1 Box domain dimensions and mesh data for the meshes used in numerical tests

Number of vertices Number of tetrahedra

Box mesh Ωh Dimensions of box domain Ω Lx1½ , Lx2 ; Ly1 , Ly2 ; Lz1 , Lz2 � Ωh Ds,h Ωh Ds,h

Mesh 1 [�19, 18;�19, 19;�27, 20] 68,614 40,438 385,740 182,761

Mesh 2 [�39, 38;�39, 39;�27, 20] 83,272 51,803 479,678 252,236

Mesh 3 [�59, 58;�59, 59;�27, 20] 114,001 65,149 671,009 332,121
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u rð Þ¼ uþ rð Þþu� rð Þ withuþ rð Þ¼ u rð Þþ j u rð Þ j
2

andu� rð Þ

¼ u rð Þ� j u rð Þ j
2

, r∈Ω: ð22Þ

This makes us easy to show how u+ and u� affect the concentra-

tion distribution profiles of anions and cations, respectively.

We used the 2D curve scheme from our previous work20 to draw

the potentials u± and ionic concentrations ci as two dimensional (2D) cur-

ves along the z-axis direction (i.e., a normal direction of the membrane).

These 2D curves were plotted in terms of points zj ,u�j

� �
and zj ,cji

� �
for

j = 1, 2, …, m, respectively, with u�j and cji denoting the average values

of u± and ci over the j-th block mesh Bj of a block partition of a solvent

domain mesh Ds,h along the z-axis direction and zj being the j-th parti-

tion number of interval Lz1≤ z≤ Lz2. That is, u�j and cji are defined by

u�j ¼ 1
VBj

Z
Bj

u� rð Þdr, cji ¼
1
VBj

Z
Bj

cji rð Þdr, j¼1,2,…,m for i¼1,2,…,n,

where VBj denotes the volume of Bj. We used the same block partition

with m = 50 and h¼4 for all our 2D curves. Here h is a parameter for

controlling the volume of Bj.

Using the same block partition, we also drew a difference func-

tion between two functions, say f1 and f2, as a 2D curve by using the

m points (zj, dj) with dj being defined by

dj ¼
Z

Bj

j f1 rð Þ� f2 rð Þ j dr, j¼1,2,…,m: ð23Þ

For example, f1 and f2 can be the two potential functions gener-

ated by our PNPic finite element package using two different bound-

ary value conditions, respectively.

Since our 2D curve is easy to view and can be a good approxima-

tion to the distribution profile of a 3D function, it is particularly valu-

able for us to carry out numerical studies.

We used five different ionic solvents for our numerical tests as

listed below:

1. Solvent 1: A solvent of 0.5 mol KCl in Ds,b and Ds,t.

2. Solvent 2: A solvent of 0.3 mol KCl in Ds,b and 0.1 mol KCl

in Ds,t.

3. Solvent 3: A mixture of 0.2 mol NaCl and 0.1 mol KNO3 in

Ds,b only.

4. Solvent 4: A mixture of 0.1 mol NaCl and 0.1 mol CaCl2 in Ds,b

and Ds,t.

5. Solvent 5: A mixture of 0.2 mol NaCl and 0.1 mol KNO3

(potassium nitrate) in Ds,b and Ds,t.

Here the solvent domain Ds has been split by (8) into

the bottom portion Ds,b, top portion Ds,t, and pore portion

Ds,p as illustrated in Figure 3. Solvent 1 was applied to the

test cases in Table 2 and Solvent 2 in Figures 6, 8–10. Solvent 3

(a mixture) was used for producing the test results reported in

Figure 7 and Table 3 while Solvents 4 and 5 (other two mixtures)

in Figures 11 and 12, respectively. We have set cbi,p ¼0 in all the

tests.

TABLE 2 Computer CPU times spent
by our PNPic finite element package for
gA in solvent 1 based on the three
meshes reported in Table 1. Here gb = 2,
gt = �2, and σb = σt = 0

Mesh Calculate G & =G Solve (16) for Ψ Solve (17) for eΦ & ci Total CPU time

Mesh 1 0.21 s 1.76 s 3.395 min 4.238 min

Mesh 2 0.26 2.46 5.218 7.052

Mesh 3 0.35 3.88 7.879 10.361

F IGURE 6 A comparison of the bulk concentrations cbi for i = 1, 2 with the concentrations of K+ and cl� generated by the PNPic finite
element package for gA in solvent 2. Here cbi is a piecewise constant functions defined in (9), cbi,b ¼0:3, cbi,t ¼0:1, cbi,p ¼0, gb = 2, gt = �2,
and σb = σt = 0
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3.1 | Performance of our PNPic finite element
package

We did numerical tests by our PNPic finite element package for gA in

Solvent 1 based on Meshes 1, 2, and 3 to demonstrate the perfor-

mance of our PNPic finite element package in computer CPU time.

These numerical tests were done on our iMac computer with one

4.2 GHz Intel core i7 processor and 64 GB memory. Here σb = σt = 0;

the nonlinear variational system (17) was solved by an efficient relaxa-

tion iterative algorithm with the relaxation parameter ω = 1 and the

iteration error tolerance being 10�5; and each related linear system

was solved by a generalized minimal residual method using incomplete

LU preconditioning with the absolute and relative residual error toler-

ances being set as 10�7. See References 20,24 for the details of the

relaxation iterative algorithm. In each mesh case, the iteration error

was quickly reduced from the initial error O(102) to O(10�6) in only

18 iterations, indicating that our relaxation iterative algorithm for

solving (17) has a fast rate of convergence independent of the

mesh size.

Table 2 lists the CPU times spent on the three major computing

parts as well as the total CPU time for gA in Solvent 1, showing a

good performance of our PNPic finite element package.

3.2 | Bulk concentrations versus steady
concentrations

Figure 6(A) displays a color mapping of a bulk concentration function,

cbi , of Solvent 2 on a cross section defined by y = 0, showing that the

bulk concentrations cb1 and cb2 of cations K+ and anions Cl�, respec-

tively, are two piecewise constant functions of (9) with cbi,b ¼0:3,

cbi,t ¼0:1, and cbi,p ¼0 for i = 1, 2 (i.e., n = 2). That is, we added 0.3 mol

F IGURE 7 A comparison of

the bulk concentrations with the
steady concentrations of cations
Na+ and K+ and anions Cl� and
NO�

3—The concentrations
generated by the PNPic finite
element package for gA in
solvent 3. Here gb = gt = 0
and σb = σt = 0

TABLE 3 A comparison of electric
currents Ii,Sj and ISj of (18) on six cross
sections Sj with the average currents Ii
and I of (21) for gA in solvent 3 (a
mixture solution of four ionic species,
two anions Cl� and NO�

3 and two cations
Na+ and K+) under 100mV voltage on
mesh 1

Cross section S I1,S for Cl
� I2,S for NO�

3 I3,S for Na+ I4,S for K
+ IS

S1 1.73 � 10�4 8.08 � 10�5 1.77 1.31 3.08

S2 1.74 � 10�4 8.16 � 10�5 1.78 1.31 3.09

S3 1.73 � 10�4 8.10 � 10�5 1.82 1.34 3.16

S4 1.72 � 10�4 8.04 � 10�5 1.80 1.33 3.13

S5 1.79 � 10�4 8.36 � 10�5 1.76 1.30 3.06

S6 1.68 � 10�4 7.85 � 10�5 1.86 1.37 3.23

Electric currents in average values over the six cross sections Sj

I1 for Cl
� I2 for NO�

3 I3 for Na+ I4 for K
+ I

1.73 � 10�4 8.10 � 10�5 1.80 1.33 3.13
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KCl to the bottom portion Ds,b and 0.1 mol KCl to the top portion Ds,t

while not adding any salt to the channel pore portion Ds,p, resulting in

Solvent 2. Figure 6(B,C) also give the color mappings of the steady

concentrations — the concentrations of K+ and Cl� generated by the

PNPic finite element package for gA in Solvent 2 on the cross section

defined by y = 0. Here none of membrane charges were considered

(i.e., σb = σt = 0). From a comparison of the bulk concentrations with

the steady concentrations it can be seen that the bulk concentrations

were changed completely in the steady status — most cations K+

were attracted to the central channel pore Ds,p from the both sides of

membrane while none of anions entered the pore portion Ds,p, con-

firming the cation selectivity property of gA.

To further explore the cation selectivity property of gA, we made

numerical tests for gA in Solvent 3. That is, the bulk concentrations cbi
were set as piecewise constant functions defined in (9) with cb1,b ¼0:2

for Na+, cb2,b ¼0:2 for Cl�, cb3,b ¼0:1 for K+, and cb4,b ¼0:1 for NO�
3

while cbi,t ¼0 and cbi,p ¼0 for i = 1, 2, 3, 4 (i.e., none of salt were added

to the top and channel pore portions Ds,t and Ds,p). We also set

gb = gt = 0 and σb = σt = 0 without considering any external voltage

and membrane charge. These bulk concentrations are displayed in

Figure 7(A,B) as comparisons to the concentrations of two cations

Na+ and K+ and two anions Cl� and NO�
3 generated by the PNPic

package for gA in Solvent 3.

Figure 7 shows that most anions Cl� and NO�
3 remained in the

bottom portion Ds,b while most cation species Na+ and K+ entered

the central pore region Dcp and some of them entered the top por-

tions Ds,t of Ds through the ion channel pore. This numerical test fur-

ther confirms the cation selectivity property of gA.

3.3 | A comparison of our 2D curve with a color
mapping and another 2D curve

As an example, in Figure 8, we compare our 2D curve with a color map-

ping and a currently-used 2D curve (i.e., a curve produced by the values

of a 3D function on a line segment, which is commonly used in the liter-

ature (see Reference 30 for example)) for a concentration cK of cations

K+ reported in Figure 9(A). Here the color mapping visualizes the values

of cK on a cross section defined by y = 0 and the currently-used 2D

curve displays the values of cK on a segment (�27 ≤ z ≤ 20) of the z-

axis. Thus, more cross sections and line segments are needed to display

other values of cK. In contrast, our 2D curve reflects a global distribu-

tion profile of cK across the membrane in the z-axis direction—the nor-

mal direction of membrane since each point represents an average

value of cK over a block partition of a solvent domain Ds in the z-axis

direction. Hence, it is particularly valuable in our numerical studies.

3.4 | Effects of membrane charges

To study the effect of membrane charges, we did numerical tests for

gA in Solvent 2 by using three different membrane surface charge

density functions defined in (7) with (σb, σt) = (�20, �20), (20, 20),

and (20, �20), respectively. As a comparison, we also repeated the

test using (σb, σt) = (0, 0), that is, without considering any membrane

charge. The test results are reported in Figure 9.

Figure 9 shows that membrane charges have an impact on elec-

trostatics and ionic concentrations. Especially, adding negative char-

ges on one side surface of membrane attracted more cations K+

because it caused a larger negative potential in magnitude near this

membrane surface. And adding positive charges on one side surface

of membrane increased positive potential values and attracted more

anions Cl� near this membrane surface. Even so, it is interesting to

note that the cation selectivity property of gA is still well retained in

the central part of ion channel pore. This indicates that atomic charge

within the central portion of ion channel pore can be so strong that

membrane charges can not affect the cation selectivity of gA.

3.5 | Effects of boundary value conditions and
mesh domain sizes

We used our PNPic finite element package to produce the test cases

of using Dirichlet boundary value conditions. We then repeated the

F IGURE 8 A comparison of our 2D curve with a color mapping and a currently-used 2D curve for a concentration of K+ reported in Figure 9
(A). Here the color mapping visualizes the concentration values on a cross section (y = 0) and the currently-used 2D curve is produced by the
concentration values on a segment (�27 ≤ z ≤ 20) of the z-axis
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tests using the PNP finite element package reported in Reference 20

to produce the test cases of using Neumann boundary value condi-

tions. The purpose of these tests is to study the effects of boundary

value conditions and mesh domain sizes on electrostatics and ionic

concentrations. To focus on such a study, we did not consider any

membrane charge effect by setting (σb, σt) = (0, 0). We used the

meshes given in Table 1 to do these tests to explore the mesh domain

size effect. To clearly display the differences, we calculated the differ-

ence functions by using the formulas of (23). Here f1 and f2 represent

the electrostatic potentials u± and concentrations ci generated by our

PNPic finite element package and the package from Reference 20,

respectively. We then reported these difference functions as 2D cur-

ves in Figure 10.

From Figure 10 we can see that the Dirichlet and Neumann

boundary value conditions caused different potential and concentra-

tion functions mainly outside a central ion channel pore region, Dcp, as

defined in (11). In other words, the affections of boundary value con-

ditions were little within Dcp. It is interesting to note that as the mesh

size was increased from 68,614 to 114,001 mesh points, these differ-

ences became larger. Even so, the differences remained very small

within Dcp.

3.6 | Cation selectivity properties of gA under
mixture solutions

To explore the cation selectivity properties of gA under mixture solu-

tions, we did numerical tests by the PNPic finite element package for

gA in Solvents 3, 4, and 5. The test results of Solvent 3 has been

reported and discussed in Figure 7. Hence, we only discuss the test

results of Solvents 4 and 5 here, which are reported in Figures 11 and

12, respectively.

F IGURE 9 Effects of
membrane charges on ionic
concentrations (a–d) and
electrostatic potentials (e, f) for
gA in solvent 2. Here σb and σt
are the surface charge densities
on the bottom and top surfaces
of membrane, respectively; and
u+ and u� are defined in (22).

Here gb = 2 and gt = �2
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Solvent 4 consists of three ionic species: two cations Na+ and

Ca2+ and one anion Cl�. Their bulk concentrations cbi were given in

mol/L as constants cb1 = 0.1 for cations Na+, cb2 = 0.1 for cations Ca2

+, and cb2 = 0.3 for anions Cl� over the whole solvent domain Ds. From

Figure 11 it can be seen that cations Na+ and Ca2+ are distributed

mostly within the central pore region Dcp (as defined in (11) with

F IGURE 10 Differences
between the potentials u± and
ionic concentrations generated
by the Dirichlet boundary
conditions and those by the
Neumann boundary conditions
based on meshes 1, 2, and
3 given in Table 1 for gA in
solvent 2. Here gb = 2

and gt = �2

F IGURE 11 Concentrations for gA in solvent 4 F IGURE 12 Concentrations for gA in solvent 5
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bh¼3Å) while anions Cl� were mostly expelled from Dcp in spite of its

triple bulk concentration. This test exposes one cation selectivity

property of gA under a mixture solution — cations having larger

charge numbers can be stronger in competition for space within the

central ion channel pore if they have the same bulk concentrations.

In the case of Solvent 5, a finite element solution of our PNPic

model gave four ionic concentration functions — two for the cation

species Na+ and K+ and two for the anion species Cl� and NO�
3 . The

two cation species have the same charge number +1 and the two

anion species have the same charge number �1. To distinguish them,

the bulk concentrations (0.2 mol/L) of ions Na+ and Cl� were set to

double those (0.1 mol/L) of ions K+ and NO�
3 in the whole solvent

domain Ds. From Figure 12 it can be seen that more cations Na+ were

attracted into the central ion channel pore region Dcp than cations K+

because of its double bulk concentration. This test exposes another

cation selectivity property of gA under a mixture solution—cations

having larger bulk concentration can be stronger in competition for

space within the ion channel pore if their charge numbers are

the same.

3.7 | Validation by electric current
experimental data

We calculated the electric currents using our formulas of (18) and (21)

for gA in Solvent 3. In these calculations, we selected the six cross

sections Sj of the gA channel pore at z = �6, �4, �2, 0, 2, 4 and then

generated their meshes by using the visualization tool ParaView.26 As

examples, we display four of them in Figure 13 to demonstrate that

different cross sections can have different shapes and meshes. The

test results are reported in Table 3. Here we set gt = 0 and

gb = 3.892, which yielded a voltage of 100 mV. These currents were

calculated by our electric current computational tool from our PNPic

finite element package.

From Table 3 it can be seen that the currents of two anions Cl�

and NO�
3 are almost zero, indicating that most anions were blocked

by the gA channel pore. While both cations Na+ and K+ produced

electric currents, the current of Na+ ions was larger than that of K+

simply because the bulk concentration of Na+ doubled that of K+.

The results in Table 2 also show that different cross sections caused

different current values. Hence, it is necessary to refine the currents

by our average formulas of (21).

Finally, we did more current calculations for gA in a salt solution

of cations K+ and anions Cl� to further validate our PNPic model and

software package by electric current experimental data. In these

F IGURE 13 Four cross section meshes of gA ion channel pore
that were used to calculate the electric current I defined in (21). They
were generated by using ParaView26

TABLE 4 A comparison of the currents I calculated by our formula (21) with the experimental currents Iexp extracted from one figure
(Figure 8) of the Reference 23 for gA in a salt solution of cbi mol KCl on mesh 1. Here cbi is the bulk concentration of Ds (with cbi,p ¼0); voltage was
set as gb� gt in mV with gt = 0; I and Iexp were in pA; θ is defined in (12)

Voltage
cbi ¼0:1;θ¼0:023 cbi ¼ 0:2;θ¼0:035 cbi ¼0:5;θ¼0:055 cbi ¼1:0;θ¼0:065 cbi ¼ 2:0;θ¼0:07

(mV) I Iexp I Iexp I Iexp I Iexp I Iexp

50 0.55 0.65 0.91 1.06 1.62 1.66 2.18 2.08 2.89 2.49

100 1.12 1.20 1.83 1.89 3.25 3.46 4.37 4.18 5.70 5.12

150 1.70 1.71 2.77 2.72 4.93 4.94 6.59 6.49 8.46 8.12

200 2.29 2.12 3.73 3.51 6.66 6.55 8.91 8.86 11.54 11.86

F IGURE 14 Five I-V curves produced by the current data of
Table 4. Here the solid lines stand for our predicted curves and the
star markers represent the experimental values from Reference 23
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validation tests, we generated five I-V curves by using the six cross

section meshes of Table 3 and the voltage V = 50 mV, 100 mV,

150 mV, 200 mV. By the formula

gb�gt ¼
ec

103KBT
V ≈0:0389216 V,

we set gt = 0 and got gb = 1.946, 3.892, 5.838, 7.784 for the tests.

The diffusion coefficient Di,p was set by (12) with a properly-selected

value of θ to fit the experimental data. These values of θ are reported

in Table 4. Hee the total electric current I was calculated by our for-

mula (21).

Table 4 gives a comparison of the numerical values of current

I calculated by our tool from the PNPic finite element package

according to our formula (21) with the experimental values extracted

from one figure (Figure 8) of the Reference 23. Using these data, we

plotted five I-V (current–voltage) curves and displayed them in

Figure 14 to more clearly compare them. From Figure 14 it can be

seen that the currents computed by our PNPic finite element package

match well the experimental data. These tests further validate our

PNPic model and finite element package.

4 | CONCLUSIONS

We have presented an improved Poisson-Nernst-Planck ion channel

(PNPic) model and an effective finite element method for solving this

model. We then implemented this finite element method in Python

and Fortran as a software package, which works for an ion channel

protein with a three-dimensional molecular structure and an ionic sol-

vent with multiple species. Compared to other PNPic models available

in the current literature, the major improvements made in our PNPic

model involve boundary value conditions, a membrane surface charge

density, bulk ionic concentrations, and diffusion coefficient functions.

These improvements provide us with more options in the selection of

membrane charges, bulk concentrations, and diffusion coefficient

functions, greatly enhancing our capability to carry out channel stud-

ies and simulations.

As initial applications, we used our PNPic finite element pack-

age to explore the cation selectivity property of an ion channel pro-

tein, a gramicidin A (gA), in this work. In these numerical

experiments, the two side surfaces of a membrane were set to have

different surface charge densities; different ionic bulk concentra-

tions were assigned to the bottom, top, and pore portions of a sol-

vent domain to mimic different chemical test environments. The

cation selectivity property of gA was exposed in five different ionic

solvents with up to four ionic species. The derived numerical

results have shown that varying membrane charges and bulk con-

centrations has little influence on the cation selectivity property of

gA. They also expose that the cation selectivity property of gA hap-

pens within the central ion channel pore only, implying that it is

mainly determined by the atomic structure and charges of an ion

channel protein within the central pore area.

Moreover, we did comparison studies between our PNPic model

and our recent PNP ion channel model reported in Reference 20 for

gA based on three mesh domains with different mesh sizes. The pur-

pose of this study is to show how Dirichlet and Neumann boundary

value conditions affect ion channel selectivity properties. In our recent

PNP model, Neumann boundary value conditions are applied to the

four side surfaces of both a box domain and a solvent domain to avoid

the difficulties of selecting boundary value functions that we face in

the case of using Dirichlet boundary value conditions. Since a PNPic

model using Dirichlet boundary value conditions is a basic model, it is

important for us to further improve it and develop its effective finite

element methods in this work. With the new PNPic package, we now

can carry out ion channel studies through selecting different boundary

value functions. We also can do the comparison studies with other

models like what we did with the model of Reference 20 in this paper,

from which we observed that either Neumann or Dirichlet boundary

value conditions have little influence on the cation selectivity property

of gA even though yielding significantly different electrostatic poten-

tials and ionic concentrations near the related boundaries. During

these studies, we also found that box domain sizes have little influ-

ence on the cation selectivity property of gA.

One important application of a PNP model is to calculate the electric

current within an ion channel pore in the steady status. To improve the

numerical accuracy of current calculation, we have developed an effective

numerical scheme for computing the electric current by using advanced

mathematical techniques in this paper. One key part of this scheme is an

effective quadrature for computing a surface integral defined on a cross

section of an ion channel pore. Each electric current value is then calcu-

lated as an average of several surface integral values.We implemented this

scheme in Python as a part of our PNPic finite element package. As appli-

cations, we used this scheme to calculate the currents of four ionic species

for gA in amixture solution of four species. Furthermore, we produced five

I-V (current–voltage) curves for gA in a salt solution of two ionic species,

which matched well the experimental data from the literature. Conse-

quently, our PNPic model and finite element package were validated not

only by the cation selectivity property of gA but also by the physical and

chemical experimental data of gA.

Even though many promising numerical results are reported in

this paper, more numerical tests are required to do in the future.

We plan to do so for other ion channel proteins and other ionic sol-

vents. We will further explore the effects of boundary value condi-

tions, membrane charges, and bulk concentrations on electrostatics

and ionic concentrations by using different boundary value func-

tions, different membrane charges, and different bulk concentra-

tions. Moreover, we will do more validation tests on our PNPic

model and finite element package by using more chemical experi-

mental data that we could find in the literature. To this end, our

PNPic finite element package will become a powerful tool for ion

channel studies.
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