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Abstract

In this paper, an improved Poisson-Nernst-Planck ion channel (PNPic) model is presented,
along with its effective finite element solver and software package for an ion channel protein in
a solution of multiple ionic species. Numerical studies are then done on the effects of boundary
value conditions, membrane charges, and bulk concentrations on electrostatics and ionic con-
centrations for an ion channel protein, a gramicidin A (gA), and five different ionic solvents
with up to four species. Numerical results indicate that the cation selectivity property of gA
occurs within a central portion of ion channel pore, insensitively to any change of boundary
value condition, membrane charge, or bulk concentration. Moreover, a numerical scheme for
computing the electric currents induced by ion transports across membrane via an ion channel
pore is presented and implemented as a part of the PNPic finite element package. It is then
applied to the calculation of current-voltage curves, well validating the PNPic model and finite
element package by electric current experimental data.

Keywords: Poisson-Nernst-Planck equations, finite element method, ion channel model, cation
selectivity, electric current calculation.

INTRODUCTION

Transport of ions through an ion channel pore is a fundamental process in cell biology. However,
its simulation is very complicated and challenging in atomistic level. A system of Poisson-Nernst-
Planck (PNP) equations is one popular dielectric continuum model for calculating the electrostatics
and ionic concentrations induced by charges from an ion channel protein, a membrane, and an
ionic solution. It has been widely applied to the simulation of ionic transport and the studies
of various membrane kinetics such as membrane potentials, conductances, transport fluxes, and
electric current, etc., in the one-dimensional (1D) case. For instance, the Teorell-Meyer-Sievers
multi-layered model1,2 was successfully used in the numerical simulation of non equilibrium diffuse
double layer3 and the research on ionic transport in ion-exchange membranes4. Mathematically,
several 1D steady-state PNP systems are studied for their solution existence and uniqueness5–7.
Analytic PNP solutions for some 1D cases are also derived in8,9. However, in a realistic bimolecular
context, it is almost impossible to find a three-dimensional (3D) PNP analytic solution. Hence,
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developing numerical methods becomes essential to search for PNP approximate solutions. So
far, different PNP numerical algorithms were developed in the past two decades by using finite
difference methods10,11, finite element methods12,13, a matched interface and boundary method14,
a finite volume method15, a hybrid finite-difference/finite-volume method16, and a spectral element
method17, etc. Of these numerical methods, the finite element method is the most suitable to handle
an irregular molecular surface of an ion channel protein and complicated interface conditions to
generate a PNP approximate solution in high accuracy. Hence, we will use the finite element
method to develop numerical algorithms for solving an improved PNP ion channel (PNPic) model
to be presented in this paper.

A PNPic model is a system of partial differential equations for one electrostatic potential func-
tion u and n ionic concentration functions for a solvent of n ionic species. Here u is defined in
a box domain Ω, which is partitioned into a protein region, Dp, a membrane region, Dm, and
a solvent region, Ds. It is known that one major difficulty of solving a PNP model comes from
the singularity caused by the atomic charges of an ion channel protein. This difficulty has been
overcome by adapting solution decomposition techniques developed in the numerical solution of
the Poisson-Boltzmann equation (PBE)18,19. Recall that in the solution decomposition from18, the
electrostatic potential function u is split into three component functions within the protein region
Dp only, resulting in a Laplace boundary value problem in Dp, which has serious regularity prob-
lems since Dp is strongly non-convex. In contrast, in the solution decomposition from19, u is split
into three component functions, denoted by G, Ψ, and Φ̃, over the whole box domain Ω such that
u = G + Ψ + Φ̃ with G, Ψ, and Φ̃ being the potentials induced by atomic charges, the potentials
and charges on interfaces and boundaries, and ionic charges, respectively. Since G contains all the
singularity points of u, both Ψ and Φ̃ become much easier to calculate numerically than the original
u. Hence, we adapt the splitting technique from19 for the development of our PNPic finite element
solver in this work.

Actually, a box domain Ω is a truncation of an infinite ion channel domain such that Ω contains
only one ion channel protein embedded in the central position of a membrane. To this end, a
PNPic model is defined as a boundary value problem, where Dirichlet boundary value conditions
are commonly used due to their simplicity in implementation and flexibility in application. Hence,
in this work, we develop an improved PNPic model using Dirichlet boundary value conditions
and its finite element solver based on our recent work20, in which we constructed a PNPic model
using Neumann boundary value conditions on the four side surfaces of Ω to avoid the difficulties
of selecting boundary value functions. With our new PNPic solver, in this paper, we will carry out
numerical experiments to explore the PNPic solution differences caused by Dirichlet and Neumann
boundary value conditions. So far, none of such comparison tests were done due to lacking of
required software packages. Together with our recent PNPic package, our new PNPic package
makes such numerical studies possible.

From biochemistry and physiology it has been known that charges from membrane can have
significant effects on electrostatic and ionic concentration. To reflect such effects, we recently
added a membrane surface charge density function, σ, to the both sides of a membrane in a PNPic
model20 and a size modified PBE ion channel model21. But, due to the interactions of a charged
membrane with cations and anions surrounding the membrane, charges on each side surface of
a membrane may have different values22. This motivated us to define σ as a piecewise function
with two expressions — one for the bottom surface and the other one for the top surface of the
membrane. This improvement will give us more options to construct numerical tests for the study
of membrane charge effects.

Naturally, a solvent domain is separated by a membrane into three portions — an extracellular
portion, an intracellular portion, and a channel pore portion. Different portions may have different
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bulk concentrations and different diffusion constants for different ionic species. To reflect this
fact, in this work, we will define bulk concentrations and diffusion constants as piecewise constant
functions so that we can simulate different experimental environments through selecting either
different bulk concentrations or different diffusion constants within one or more than one portion
of the solvent domain. For example, we can add a mixture of 0.2 mole NaCl and 0.1 mole KNO3

to an extracellular portion only similarly to what is done in a chemical laboratory.
Our PNPic finite element package will be a valuable tool for ion channel studies and simulations.

In this paper, we will use it to carry out numerical tests to study the effects of boundary value
conditions, membrane charges, simulation domain sizes, and bulk concentrations on electrostatic
potentials and ionic concentrations for an ion channel protein, a gramicidin A (gA). In these tests,
we construct five different ionic solvents with up to four ionic species and three box meshes with
different mesh sizes. These numerical tests demonstrate that the cation selectivity property of gA
occurs within a central portion of ion channel pore, insensitively to any change of boundary value
conditions, membrane charges, bulk concentrations, or mesh sizes.

One important application of a PNPic model is to calculate the electric currents induced by ion
transport across a membrane via an ion channel pore. In this paper, we will present a numerical
scheme for computing electric current in terms of a PNPic finite element solution. In fact, it is
nontrivial to do so due to difficulties caused by an irregular cross section S of an ion channel pore and
a nonuniform flux field, which involves the gradient vectors of potential u and ionic concentration
functions ci. From the finite element theory it is known that a direct calculation of these two
gradient vectors produces a discontinuous flux field when u and ci are approximated as linear finite
element functions. This may cause numerical errors since from the definition of a PNPic model it is
known that the flux field is continuous. Hence, in order to derive an effective numerical scheme for
computing current, we not only need a triangular mesh of an irregular cross section but also need
to find a way to retain the continuity property of a flux field. In addition, a proper quadrature is
needed to calculate each related surface integral. We will do so and implement the new scheme as a
tool for computing current in this work. With this new tool, we will produce I-V (current-voltage)
curves for gA and validate our PNPic model and package by experimental data reported in23.

The rest of the paper is organized in three parts as follows. In the part of Methods, we present
our PNPic model, our PNPic finite element method, and our numerical scheme for computing
electric current. In the part of Numerical Results and Discussions, we present numerical studies,
numerical results, and validation tests. The paper is closed with the part of Conclusions.

METHODS

An improved Possion-Nernst-Planck ion channel model

Let a rectangular box open domain, Ω, be defined by

Ω = {(x, y, z)|Lx1 < x < Lx2 , Ly1 < y < Ly2 , Lz1 < x < Lz2} ,

where Lx1 , Lx2 , Ly1 , Ly2 , Lz1 , and Lz2 are real numbers. The domain Ω is divided as

Ω = Dp ∪Dm ∪Ds ∪ Γm ∪ Γp ∪ Γpm, (1)

where Dp denotes a protein region, which contains an ion channel protein molecular structure with
np atoms; Ds is a solvent region, which contains a solution of n ionic species; Dm is a membrane
region; and Γm, Γp, and Γpm denote the interfaces between Dm and Ds, Dp and Ds, and Dp and
Dm, respectively. The interface Γm and the boundary ∂Ω of Ω are further split by

Γm = Γmb ∪ Γmt, ∂Ω = ΓD ∪ ΓNs ∪ ΓNm, (2)
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Figure 1: An illustration of box domain parti-
tion (1), interface and boundary partition (2),
and membrane location numbers Z1 and Z2.

Figure 2: An interface fitted tetrahedral mesh
of box domain Ω. Here Dp, Dm, and Ds are
highlighted in green, yellow, and blue-violet.

where Γmb and Γmt denote the bottom and top surfaces of membrane, respectively, ΓD consists of
the bottom and top surfaces of ∂Ω, ΓNs = ΓN∩∂Ds, and ΓNm = ΓN∩∂Dm. Here ΓN consists of the
four side surfaces of Ω, ∂Ds denote the boundary of Ds, and ∂Dm the boundary of Dm. Moreover,
we set the z-axis direction as the membrane normal direction and determine the membrane location
by two real numbers Z1 and Z2. An illustration of these partitions is given in Figure 1, where
different interfaces and boundary surfaces are drawn in different line styles and different colors. A
view of an interface fitted irregular tetrahedral mesh of a box domain, which is used in numerical
calculations, is also displayed in Figure 2 to illustrate the complicated shapes of Dp (in green color),
Dm (in yellow color), and Ds (in blue-violet color). Here the channel pore part of Ds is hidden by
Dp. See Figure 5 for two views of a mesh of Ds. These meshes were generated by our finite element
mesh generation tool24, which is an improvement of the mesh package reported in25.

Let ci denote a concentration function of the i-th ionic species in moles per liter (mol/L) and u
a dimensionless electrostatic potential. The three regions Dm, Dp, and Ds are treated as dielectric
media with permittivity constants εm, εp, and εs, respectively. We define a PNPic model (in steady
state) by coupling the Nernst-Planck equations

∇ ·Di(r) [∇ci(r) + Zici(r)∇u(r)] = 0, r ∈ Ds, i = 1, 2, · · · , n, (3)

with the Poisson dielectric equations

−εp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp, (4a)

−εm∆u(r) = 0, r ∈ Dm, (4b)

−εs∆u(r) = β

n∑
i=1

Zici(r), r ∈ Ds, (4c)
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together with the interface conditions

u(s−) = u(s+), εp
∂u(s−)

∂np(s)
= εs

∂u(s+)

∂np(s)
, s ∈ Γp, (5a)

u(s−) = u(s+), εm
∂u(s−)

∂nm(s)
= εs

∂u(s+)

∂nm(s)
+ τσ(s), s ∈ Γm, (5b)

u(s−) = u(s+), εp
∂u(s−)

∂np(s)
= εm

∂u(s+)

∂np(s)
, s ∈ Γpm, (5c)

the Robin boundary value conditions

−Di(s)[∇ci(s) + Zici(s)∇u(s)] · ns(s) = 0, s ∈ Γp ∪ Γm, i = 1, 2, . . . , n,

which reflect the fact that the channel walls are insulating (i.e., charged particles cannot penetrate
them), and the Dirichlet boundary value conditions

u(s) = g(s), s ∈ ∂Ω, (6a)

ci(s) = gi(s), s ∈ ΓD ∪ ΓNs, i = 1, 2, . . . , n. (6b)

Here Di denotes a diffusion coefficient function of the i-th ionic species; g and gi are given boundary
value functions; σ denotes a membrane surface charge density function; Zi is the charge number
of the i-th ionic species; zj and rj are the charge number and atomic position of the j-th atom,
respectively; δrj denotes the Dirac delta distribution at rj ; nm, np, and ns denote the unit outward
normal directions of Dm, Dp, and Ds, respectively; and the constants α, β, and τ are given by

α =
1010e2

c

ε0kBT
, β =

NAe
2
c

1017ε0kBT
, τ =

10−12ec
ε0kBT

,

with NA being the Avogadro constant (an estimate of the number of ions per mole), ec the elemen-
tary charge, kB the Boltzmann constant, and T the absolute temperature.

In this work, we define σ as a piecewise function as follows:

σ(s) =

{
σt, s ∈ Γmt,

σb, s ∈ Γmb,
(7)

where σb and σt denote the surface charge density functions defined on the bottom surface Γmb and
top surface Γmt of membrane, respectively. This membrane surface charge density function is an
improvement of the one used in20. It enables us to deal with more membrane charge cases.

Because of membrane, the solvent domain Ds can be naturally divided into the bottom portion
Ds,b, top portion Ds,t, and pore portion Ds,p, as illustrated in Figure 3, such that

Ds = Ds,b ∪Ds,t ∪Ds,p, (8)

where Ds,b = {r ∈ Ds | r = (x, y, z) with z < Z1}, Ds,t = {r ∈ Ds | r = (x, y, z) with z > Z2},
and Ds,p = {r ∈ Ds | r = (x, y, z) with Z1 ≤ z ≤ Z2}. Noting that the bulk concentration cbi and
diffusion coefficient Di of ionic species i within these three portions may be different, we define
them by piecewise constant functions as follows:

cbi(r) =


cbi,p, r ∈ Ds,p,

cbi,b, r ∈ Ds,b,

cbi,t, r ∈ Ds,t,

Di(r) =


Di,p, r ∈ Ds,p,
Di,b, r ∈ Ds,b,
Di,t, r ∈ Ds,t,

i = 1, 2, . . . , n, (9)
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Figure 3: An illustration of the partition (8) of a solvent domain Ds. Here Ds,b and Ds,t can be
regarded as the extracellular and intracellular compartments, respectively.

where cbi,p and Di,p, c
b
i,b and Di,b, and cbi,t and Di,t denote the bulk concentration and diffusion

constant of species i within the three portions Ds,p, Ds,b and Ds,t, respectively. The above diffusion
coefficient functions work for a finite element approximation of Nernst-Planck equation (see (17)).
To ensure that the Nernst-Planck equations of (3) are well defined, we modify Di as a smooth
function in the expression

Di(r) =


Di,t, r ∈ Ds,t (top portion of Ds),
Di,p + (Di,t −Di,p)I2(r), r ∈ Db,2 (buffer region 2),
Di,p, r ∈ Dcp (central pore region),
Di,p + (Di,b −Di,p)I1(r), r ∈ Db,1 (buffer region 1),
Di,b, r ∈ Ds,b (bottom portion of Ds),

(10)

where the two buffer regions Db,1 and Db,2 are defined by

Db,1 = {r ∈ Ds | r = (x, y, z) with Z1 6 z 6 Z1 + ĥ}, Db,2 = {r ∈ Ds | Z2− ĥ 6 z 6 Z2},

with ĥ being a parameter for adjusting buffer region size, the central pore region Dcp is defined by

Dcp = {r ∈ Ds | r = (x, y, z) with Z1 + ĥ 6 z 6 Z2− ĥ}, (11)

and I1 and I2 denote the two interpolation functions satisfying the interpolation conditions

I1(x, y, Z1) = 1, I1(x, y, Z1 + ĥ) = 0, I2(x, y, Z2) = 1, I2(x, y, Z2− ĥ) = 0.

Since none of Di,p were known in experiments, we estimate Di,p by

Di,p = θDi,b for 0 < θ < 1. (12)

Consequently, with (5), (7), (9), and (10), we have obtained an improved PNPic model in the case
of using the Dirichlet boundary value conditions. For clarity, we will call this model either our
PNPic model or the PNPic model in the remaining part of this paper.

Our PNPic finite element solver

To overcome the singularity difficulty caused by atomic charges, we define a potential function, w,
independent of any ionic concentration ci, by

w(r) = G(r) + Ψ(r), r ∈ Ω, (13)
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where G is given by

G(r) =
α

4πεp

np∑
j=1

zj
|r− rj |

,

and Ψ(r) is a solution of a linear interface boundary value problem as follows:

∆Ψ(r) = 0, r ∈ Dp ∪Ds ∪Dm,

Ψ(s−) = Ψ (s+) , εp
∂Ψ(s−)
∂np(s) = εs

∂Ψ(s+)
∂np(s) + (εs − εp) ∂G(s)

∂np(s) , s ∈ Γp,

Ψ(s−) = Ψ (s+) , εm
∂Ψ(s−)
∂nm(s) = εs

∂Ψ(s+)
∂nm(s) + (εs − εm) ∂G(s)

∂nm(s) + τσ(s), s ∈ Γm,

Ψ(s−) = Ψ (s+) , εp
∂Ψ(s−)
∂np(s) = εm

∂Ψ(s+)
∂np(s) + (εm − εp) ∂G(s)

∂np(s) , s ∈ Γpm,

Ψ(s) = g(s)−G(s), s ∈ ∂Ω.

(14)

Using (13), we can simplify the PNPic model as a nonlinear system for finding another potential
function, Φ̃, and the n ionic concentrations ci for i = 1, 2, . . . , n as follows:

∇ ·Di(r)
[
∇ci(r) + Zici(r)∇

(
w(r) + Φ̃(r)

)]
= 0, r ∈ Ds, i = 1, 2, . . . , n,

∂ci(s)
∂ns(s) + Zici(s)

∂(w(s)+Φ̃(s))
∂ns(s) = 0, s ∈ Γp ∪ Γm,

ci(s) = gi(s), s ∈ ΓNs ∪ ΓD,

∆Φ̃(r) = 0, r ∈ Dp ∪Dm,

−εs∆Φ̃(r) = β
n∑

j=1
Zjcj(r), r ∈ Ds,

Φ̃(s−) = Φ̃(s+), εp
∂Φ̃(s−)
∂np(s) = εs

∂Φ̃(s+)
∂np(s) , s ∈ Γp,

Φ̃(s−) = Φ̃(s+), εm
∂Φ̃(s−)
∂nm(s) = εs

∂Φ̃(s+)
∂nm(s) , s ∈ Γm,

Φ̃(s−) = Φ̃(s+), εp
∂Φ̃(s−)
∂np(s) = εm

∂Φ̃(s+)
∂np(s) , s ∈ Γpm,

Φ̃(s) = 0, s ∈ ∂Ω.

(15)

Note that both (14) and (15) are well defined without involving any singularity since G has collected
all the singular points rj of the PNPic model. Hence, they can be solved more easily than the PNPic
model and their solutions give the PNPic solution (u, c) with u = G+Ψ+Φ̃ and c = (c1, c2, . . . , cn).

We now construct the finite element approximations of (14) and (15).
To do so, we first generate an interface fitted irregular tetrahedral mesh, Ωh, of Ω, an irregular

tetrahedral mesh, Ds,h, of Ds. We then use them to construct two linear finite element spaces, U
and V , and their subspaces, U0 and V0, respectively, as follows:

U0 = {ν ∈ U | ν = 0 on ∂Ω} , V0 = {µ ∈ V | µ = 0 on ΓNs ∪ ΓD} .

Using the above finite element spaces, we can get a finite element approximation of (14) as follows:

Find Ψ ∈ U satisfying Ψ(s) = g(s)−G(s) on ∂Ω such that

a(Ψ, ν) = L(ν) ∀ν ∈ U0, (16)

where a(·, ·) is a bilinear functional defined by

a(Ψ, ν) = εp

∫
Dp

∇Ψ(r) · ∇ν(r)dr + εm

∫
Dm

∇Ψ(r) · ∇ν(r)dr + εs

∫
Ds

∇Ψ(r) · ∇ν(r)dr,
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(a) Top view (b) Side view

Figure 4: Two views of a gA ion channel molecular structure (in cartoon) and its Van deer Waals
volume (in grey) occupied by the atomic balls of gA.

and L(·) is a linear functional defined by

L(ν) =(εs − εp)
∫

Γp

∂G(s)

∂np(s)
ν(s)ds + (εs − εm)

∫
Γm

∂G(s)

∂nm(s)
ν(s)ds

+ (εm − εp)
∫

Γpm

∂G(s)

∂np(s)
ν(s)ds + τ

∫
Γm

σ(s)ν(s)ds.

Once a solution Ψ of (16) is found, we can obtain a finite element approximation of (15) as
follows: Find Φ̃ ∈ U0 and ci ∈ V satisfying ci = gi on ΓNs ∪ ΓD for i = 1, 2, . . . , n such that

∫
Ds
Di

[
∇ci + Zici∇(w + Φ̃)

]
∇µidr = 0 ∀µi ∈ V0, i = 1, 2, . . . , n,

a(Φ̃, ν)− β
n∑

j=1
Zj

∫
Ds
cjνdr = 0 ∀ν ∈ U0,

(17)

where w has been defined in (13).
We developed effective iterative schemes for solving the linear finite element equation (16) and

the nonlinear finite element system (17), respectively, and implemented them in Python and Fortran
as a software package based on our previous work20. We omit the description of these iterative
schemes here since these schemes are very similar to those given in20.

Electric current calculation

As one important application of our PNPic model, we present a numerical scheme for computing
electric currents induced by ion transports across the membrane through an ion channel pore.
These currents include the electric currents Ii,S of species i and total current IS as follows:

Ii,S = −ecNA

103
ZiDi,p

∫
S

[
∂ci(s)

∂z
+ Zici(s)

∂u(s)

∂z

]
ds for i = 1, 2, . . . , n, IS =

n∑
i=1

Ii,S , (18)
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(a) A solvent region mesh Ds,h (b) Side view of Ds,h

Figure 5: Two views of an irregular tetrahedral mesh of solvent domain Ds extracted from Mesh 1
for the gA ion channel protein. Here one view of Mesh 1 has been displayed in Figure 2.

.

where S denotes a cross section of an ion channel pore with the normal direction being the z-axis
direction, Di,p is a diffusion constant of species i within the channel pore in Å/ps (pico-second),
and the currents have been measured in pA (pico-ampere).

However, the surface integral Ii,S is difficult to calculate since an ion channel pore may have a
very complicated shape, causing cross section S to have an irregular boundary curve. Another diffi-
culty arises from the calculation of partial derivatives ∂ci(s)

∂z and ∂u(s)
∂z as required in the calculation

of terms, Ji, by the formulas

Ji =
∂ci(s)

∂z
+ Zici(s)

∂u(s)

∂z
, i = 1, 2, . . . , n.

In fact, u and ci are produced by our PNPic finite element package as linear finite element functions.
Their partial derivatives become piecewise constant functions, which are discontinuous across the
four faces of each tetrahedron. This may cause large errors in the calculation of currents since from
the PNPic definition it can be seen that the partial derivatives (or gradient vectors) of u and ci
are continuous. In this work, we overcame the cross section mesh generation difficulty by using the
visualization tool ParaView26. We then deal with the discontinuous problem in two steps.

In Step 1, we use the Slotboom variable transformation ci = e−Ziuc̄i to transform Ji as

Ji = e−Ziu
∂c̄i(s)

∂z
, i = 1, 2, . . . , n, (19)

where c̄i denotes the i-th Slotboom variable, which has been calculated and saved during a search
for a PNPic finite element solution20,24. Because of the transformation (19), we now only need to

calculate the partial derivative ∂c̄i(s)
∂z . Since c̄i is much smoother than u, by (19), we can significantly

reduce the errors of computing Ji.
In Step 2, we calculate Ji, indirectly, as a solution, ϕi, of a variational problem as follows: Find

ϕi ∈ V0 such that ∫
Ds,h

ϕivdr =

∫
Ds,h

e−Ziu
∂c̄i(s)

∂z
vdr ∀v ∈ V0, i =, 2, . . . , n.
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Clearly, ϕi is continuous over Ds since it belongs to the finite element function space V0. Hence,
the continuity of Ji is retained by setting Ji = ϕi for i = 1, 2, . . . , n.

After obtaining ϕi, we calculate the surface integral Ii,S by

Ii,S = −ecNA

103
ZiDi,p

∫
S
ϕi(s)ds ≈ −

ecNA

103
ZiDi,p

∑
T ∈Sh

∫
T
ϕi(x, y, ẑ)dxdy, (20)

where Sh denotes a triangular mesh of the cross section S, T is a triangle element, and ẑ is
the location number of S on the z-axis. There exist many quadratures for computing triangular
integrals (see27 for example). We can properly select one according to the accuracy requirement.

To further raise the numerical accuracy of currents, we select m cross sessions Sj of an ion
channel pore to produce m current values Ii,Sj for j = 1, 2, . . . ,m. We then use their averages to
re-define the currents Ii of species i and total current I as follows:

Ii =
1

m

m∑
j=1

Ii,Sj for i = 1, 2, . . . , n, I =

n∑
i=1

Ii, i = 1, 2, . . . , n. (21)

We implemented our current calculation scheme in Python as a part of our PNPic finite element
package based on the state-of-the-art finite element library from the FEniCS project28. To this
end, we derived a tool for computing the electric currents Ii and I of (21). This tool enables us to
validate our PNPic model and package by using experimental data available in the literature.

Numerical Results and Discussions

We did numerical tests on an ion channel protein, Gramicidin A (gA)29, in a salt solution of up to
four ionic species by our PNPic software package and our recent software package reported in20.
In these numerical tests, we used the bulk diffusion constants Db

i = 0.203, 0.196, 0.133, 0.0793, and
0.19 for Cl−, K+, Na+, Ca2+, and NO−3 from the website https://www.aqion.de/site/194. Within
the channel pore, we set the diffusion constant Dp

i = θDb
i with θ = 0.055 and the buffer region

parameter ĥ = 3. These diffusion constants were used to construct the diffusion coefficient function
Di(r) of (10). In addition, we used a boundary value function g of (6b) from30 as follows:

g(s) =


gb(s), s ∈ ΓD with z = Lz1 (bottom surface of Ω),

gt(s), s ∈ ΓD with z = Lz2 (top surface of Ω),

gb(s) + k(s) [gt(s)− gb(s)] , s ∈ ΓN (the four side surfaces of Ω),

where s = (x, y, z), gb and gt are two potential surface functions defined on the bottom and top
surfaces of the box domain Ω, respectively, and k(s) is a linear interpolation function defined by

k(s) =
z − Lz1

Lz2 − Lz1

.

In numerical tests, we set gt = −2 and gb = 2. We also fixed the boundary value functions gi = cbi
for i = 1, 2, . . . , n and the permittivity constants εp = 2, εm = 2, and εs = 80.

An ion channel protein, a gramicidin A (gA), is a natural antibiotic peptide with 15 amino
acids (552 atoms) forming a cation-permeable channel pore as shown in Figure 4. The molecular
structure and cation selectivity property of gA have been known31,32, making gA a valuable test
case for our studies.
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Box mesh
Ωh

Dimensions of box domain Ω
[Lx1 , Lx2 ; Ly1 , Ly2 ; Lz1 , Lz2 ]

Number of vertices Number of tetrahedra
Ωh Ds,h Ωh Ds,h

Mesh 1 [−19, 18;−19, 19;−27, 20] 68,614 40,438 385,740 182,761

Mesh 2 [−39, 38;−39, 39;−27, 20] 83,272 51,803 479,678 252,236

Mesh 3 [−59, 58;−59, 59;−27, 20] 114,001 65,149 671,009 332,121

Table 1: Box domain dimensions and mesh data for the meshes used in numerical tests.

Using the PQR file of gA from30, we constructed three box domain meshes Ωh and three related
solvent domain meshes Ds,h. The membrane location numbers Z1 and Z2 were set as

Z1 = −11, Z2 = 6.

The dimensions and mesh data of these meshes are listed in Table 1. Two views of a solvent domain
mesh Ds,h extracted from Mesh 1 are displayed in Figure 5, showing a complicated geometrical
shape of a solvent domain Ds. One view of Mesh 1 (an irregular interface fitted tetrahedral mesh)
has been displayed in Figure 2. These meshes were used in our numerical tests.

To help understand the influence of electrostatics on ionic concentrations, we split the electro-
static potential u into a positive potential, u+, and a negative potential, u−, as follows:

u(r) = u+(r) + u−(r) with u+(r) =
u(r) + |u(r)|

2
and u−(r) =

u(r)− |u(r)|
2

, r ∈ Ω. (22)

This makes us easy to show how u+ and u− affect the concentration distribution profiles of anions
and cations, respectively.

We used the 2D curve scheme from our previous work20 to draw the potentials u± and ionic
concentrations ci as two dimensional (2D) curves along the z-axis direction (i.e., a normal direction
of the membrane). These 2D curves were plotted in terms of points (zj , u±j ) and (zj , cji ) for j =

1, 2, . . . ,m, respectively, with u±j and cji denoting the average values of u± and ci over the j-th
block mesh Bj of a block partition of a solvent domain mesh Ds,h along the z-axis direction and

zj being the j-th partition number of interval Lz1 ≤ z ≤ Lz2. That is, u±j and cji are defined by

u±j =
1

VBj

∫
Bj

u±(r)dr, cji =
1

VBj

∫
Bj

cji (r)dr, j = 1, 2, . . . ,m for i = 1, 2, . . . , n,

where VBj denotes the volume of Bj . We used the same block partition with m = 50 and h̄ = 4 for
all our 2D curves. Here h̄ is a parameter for controlling the volume of Bj .

Using the same block partition, we also drew a difference function between two functions, say
f1 and f2, as a 2D curve by using the m points (zj , dj) with dj being defined by

dj =

∫
Bj

|f1(r)− f2(r)|dr, j = 1, 2, . . . ,m. (23)

For example, f1 and f2 can be the two potential functions generated by our PNPic finite element
package using two different boundary value conditions, respectively.

Since our 2D curve is easy to view and can be a good approximation to the distribution profile
of a 3D function, it is particularly valuable for us to carry out numerical studies.

We used five different ionic solvents for our numerical tests as listed below:

Solvent 1 A solvent of 0.5 mole KCl in Ds,b and Ds,t.

11



(a) Bulk concentration cbi (b) K+ concentration (c) Cl− concentration

Figure 6: A comparison of the bulk concentrations cbi for i = 1, 2 with the concentrations of K+

and Cl− generated by the PNPic finite element package for gA in Solvent 2. Here cbi is a piecewise
constant functions defined in (9), cbi,b = 0.3, cbi,t = 0.1, cbi,p = 0, gb = 2, gt = −2, and σb = σt = 0.

Mesh Calculate G & ∇G Solve (16) for Ψ Solve (17) for Φ̃ & ci Total CPU time

Mesh 1 0.21 seconds 1.76 seconds 3.395 minutes 4.238 minutes

Mesh 2 0.26 2.46 5.218 7.052

Mesh 3 0.35 3.88 7.879 10.361

Table 2: Computer CPU times spent by our PNPic finite element package for gA in Solvent 1 based
on the three meshes reported in Table 1. Here gb = 2, gt = −2, and σb = σt = 0.

Solvent 2 A solvent of 0.3 mole KCl in Ds,b and 0.1 mole KCl in Ds,t.

Solvent 3 A mixture of 0.2 mole NaCl and 0.1 mole KNO3 in Ds,b only.

Solvent 4 A mixture of 0.1 mole NaCl and 0.1 mole CaCl2 in Ds,b and Ds,t.

Solvent 5 A mixture of 0.2 mole NaCl and 0.1 mole KNO3 (potassium nitrate) in Ds,b and Ds,t.

Here the solvent domain Ds has been split by (8) into the bottom portion Ds,b, top portion Ds,t,
and pore portion Ds,p as illustrated in Figure 3. Solvent 1 was applied to the test cases in Table 2
and Solvent 2 in Figures 6, 8, 9, and 10. Solvents 3, 4 and 5 (i.e., three mixtures) were used for
producing the test results reported in Figures 7 and Table 3, 11, and 12, respectively. We have set
cbi,p = 0 in all the tests.

Performance of our PNPic finite element package

We did numerical tests by our PNPic finite element package for gA in Solvent 1 based on Meshes
1, 2 and 3 to demonstrate the performance of our PNPic finite element package in computer CPU
time. These numerical tests were done on our iMac computer with one 4.2 GHz Intel core i7
processor and 64 GB memory. Here σb = σt = 0; the nonlinear variational system (17) was solved
by an efficient relaxation iterative algorithm with the relaxation parameter ω = 1 and the iteration
error tolerance being 10−5; and each related linear system was solved by a generalized minimal
residual method using incomplete LU preconditioning with the absolute and relative residual error
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(a) Bulk concentration for K+ and NO−
3 (b) Bulk concentrations of Na+ and Cl−

(c) Steady concentrations of Na+ and K+ (d) Steady concentrations for Cl− and NO−
3

Figure 7: A comparison of the bulk concentrations with the steady concentrations of cations Na+

and K+ and anions Cl− and NO−3 — the concentrations generated by the PNPic finite element
package for gA in Solvent 3. Here gb = gt = 0 and σb = σt = 0.

tolerances being set as 10−7. See20,24 for the details of the relaxation iterative algorithm. In each
mesh case, the iteration error was quickly reduced from the initial error O(102) to O(10−6) in only
18 iterations, indicating that our relaxation iterative algorithm for solving (17) has a fast rate of
convergence independent of the mesh size.

Table 2 lists the CPU times spent on the three major computing parts as well as the total CPU
time for gA in Solvent 1, showing a good performance of our PNPic finite element package.

Bulk concentrations versus steady concentrations

Figure 6a displays a color mapping of a bulk concentration function, cbi , of Solvent 2 on a cross
section defined by y = 0, showing that the bulk concentrations cb1 and cb2 of cations K+ and anions
Cl−, respectively, are two piecewise constant functions of (9) with cbi,b = 0.3, cbi,t = 0.1, and cbi,p = 0
for i = 1, 2 (i.e., n = 2). That is, we added 0.3 mole KCl to the bottom portion Ds,b and 0.1 mole
KCl to the top portion Ds,t while not adding any salt to the channel pore portion Ds,p, resulting
in Solvent 2. Figures 6b and 6c also give the color mappings of the steady concentrations — the
concentrations of K+ and Cl− generated by the PNPic finite element package for gA in Solvent
2 on the cross section defined by y = 0. Here none of membrane charges were considered (i.e.,
σb = σt = 0). From a comparison of the bulk concentrations with the steady concentrations it can
be seen that the bulk concentrations were changed completely in the steady status — most cations
K+ were attracted to the central channel pore Ds,p from the both sides of membrane while none
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(a) Color mapping at y=0 (b) A currently-used 2D curve (c) Our refined 2D curve

Figure 8: A comparison of our 2D curve with a color mapping and a currently-used 2D curve for
a concentration of K+ reported in Figure 9a. Here the color mapping visualizes the concentration
values on a cross section (y = 0) and the currently-used 2D curve is produced by the concentration
values on a segment (−27 ≤ z ≤ 20) of the z-axis.

of anions entered the pore portion Ds,p, confirming the cation selectivity property of gA.
To further explore the cation selectivity property of gA, we made numerical tests for gA in

Solvent 3. That is, the bulk concentrations cbi were set as piecewise constant functions defined
in (9) with cb1,b = 0.2 for Na+, cb2,b = 0.2 for Cl−, cb3,b = 0.1 for K+, and cb4,b = 0.1 for NO−3
while cbi,t = 0 and cbi,p = 0 for i = 1, 2, 3, 4 (i.e., none of salt were added to the top and channel
pore portions Ds,t and Ds,p). We also set gb = gt = 0 and σb = σt = 0 without considering any
external voltage and membrane charge. These bulk concentrations are displayed in Figures 7a and
7b as comparisons to the concentrations of two cations Na+ and K+ and two anions Cl− and NO−3
generated by the PNPic package for gA in Solvent 3.

Figure 7 shows that most anions Cl− and NO−3 remained in the bottom portion Ds,b while most
cation species Na+ and K+ entered the central pore region Dcp and some of them entered the top
portions Ds,t of Ds through the ion channel pore. This numerical test further confirms the cation
selectivity property of gA.

A comparison of our 2D curve with a color mapping and another 2D curve.

As an example, in Figure 8, we compare our 2D curve with a color mapping and a currently-
used 2D curve (i.e., a curve produced by the values of a 3D function on a line segment, which is
commonly used in the literature (see30 for example)) for a concentration cK of cations K+ reported
in Figure 9a. Here the color mapping visualizes the values of cK on a cross section defined by
y = 0 and the currently-used 2D curve displays the values of cK on a segment (−27 ≤ z ≤ 20) of
the z-axis. Thus, more cross sections and line segments are needed to display other values of cK .
In contrast, our 2D curve reflects a global distribution profile of cK across the membrane in the
z-axis direction — the normal direction of membrane since each point represents an average value
of cK over a block partition of a solvent domain Ds in the z-axis direction. Hence, it is particularly
valuable in our numerical studies.

Effects of membrane charges

To study the effect of membrane charges, we did numerical tests for gA in Solvent 2 by using three
different membrane surface charge density functions defined in (7) with (σb, σt) = (−20,−20),
(20, 20) and (20,−20), respectively. As a comparison, we also repeated the test using (σb, σt) =
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(a) σb = 0, σt = 0 (b) σb = −20, σt = −20

(c) σb = 20, σt = 20 (d) σb = 20, σt = −20

(e) Comparison of u− (f) Comparison of u+

Figure 9: Effects of membrane charges on ionic concentrations (a to d) and electrostatic potentials
(e, f) for gA in Solvent 2. Here σb and σt are the surface charge densities on the bottom and top
surfaces of membrane, respectively; and u+ and u− are defined in (22). Here gb = 2 and gt = −2.

(0, 0), i.e., without considering any membrane charge. The test results are reported in Figure 9.
Figure 9 shows that membrane charges have an impact on electrostatics and ionic concentrations.

Especially, adding negative charges on one side surface of membrane attracted more cations K+

because it caused a larger negative potential in magnitude near this membrane surface. And
adding positive charges on one side surface of membrane increased positive potential values and
attracted more anions Cl− near this membrane surface. Even so, it is interesting to note that the
cation selectivity property of gA is still well retained in the central part of ion channel pore. This
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(a) Case of Mesh 1 with 68,614 mesh points

(b) Case of Mesh 2 with 83,272 mesh points

(c) Case of Mesh 3 with 114,001 mesh points

Figure 10: Differences between the potentials u± and ionic concentrations generated by the Dirichlet
boundary conditions and those by the Neumann boundary conditions based on Meshes 1, 2, and 3
given in Table 1 for gA in Solvent 2. Here gb = 2 and gt = −2.

indicates that atomic charge within the central portion of ion channel pore can be so strong that
membrane charges can not affect the cation selectivity of gA.
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Figure 11: Concentrations for gA in Solvent 4. Figure 12: Concentrations for gA in Solvent 5.

Effects of boundary value conditions and mesh domain sizes

We used our PNPic finite element package to produce the test cases of using Dirichlet boundary
value conditions. We then repeated the tests using the PNP finite element package reported in20

to produce the test cases of using Neumann boundary value conditions. The purpose of these tests
is to study the effects of boundary value conditions and mesh domain sizes on electrostatics and
ionic concentrations. To focus on such a study, we did not consider any membrane charge effect by
setting (σb, σt) = (0, 0). We used the meshes given in Table 1 to do these tests to explore the mesh
domain size effect. To clearly display the differences, we calculated the difference functions by using
the formulas of (23). Here f1 and f2 represent the electrostatic potentials u± and concentrations
ci generated by our PNPic finite element package and the package from20, respectively. We then
reported these difference functions as 2D curves in Figure 10.

From Figure 10 we can see that the Dirichlet and Neumann boundary value conditions caused
different potential and concentration functions mainly outside a central ion channel pore region,
Dcp, as defined in (11). In other words, the affections of boundary value conditions were little
within Dcp. It is interesting to note that as the mesh size was increased from 68614 to 114001 mesh
points, these differences became larger. Even so, the differences remained very small within Dcp.

Cation selectivity properties of gA under mixture solutions

To explore the cation selectivity properties of gA under mixture solutions, we did numerical tests
by the PNPic finite element package for gA in Solvents 3, 4 and 5. The test results of Solvent 3
has been reported and discussed in Figure 7. Hence, we only discuss the test results of Solvents 4
and 5 here, which are reported in Figures 11 and 12, respectively.

Solvent 4 consists of three ionic species: two cations Na+ and Ca2+ and one anion Cl−. Their
bulk concentrations cbi were given in mol/L as constants cb1 = 0.1 for cations Na+, cb2 = 0.1 for
cations Ca2+, and cb2 = 0.3 for anions Cl− over the whole solvent domain Ds. From Figure 11 it
can be seen that cations Na+ and Ca2+ are distributed mostly within the central pore region Dcp

(as defined in (11) with ĥ = 3Å) while anions Cl− were mostly expelled from Dcp in spite of its
triple bulk concentration. This test exposes one cation selectivity property of gA under a mixture
solution — cations having larger charge numbers can be stronger in competition for space within
the central ion channel pore if they have the same bulk concentrations.

In the case of Solvent 5, a finite element solution of our PNPic model gave four ionic concen-
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Cross Section S I1,S for Cl− I2,S for NO−3 I3,S for Na+ I4,S for K+ IS

S1 1.73× 10−4 8.08× 10−5 1.77 1.31 3.08

S2 1.74× 10−4 8.16× 10−5 1.78 1.31 3.09

S3 1.73× 10−4 8.10× 10−5 1.82 1.34 3.16

S4 1.72× 10−4 8.04× 10−5 1.80 1.33 3.13

S5 1.79× 10−4 8.36× 10−5 1.76 1.30 3.06

S6 1.68× 10−4 7.85× 10−5 1.86 1.37 3.23

Electric currents in average values over the six cross sections Sj

I1 for Cl− I2 for NO−3 I3 for Na+ I4 for K+ I

1.73× 10−4 8.10× 10−5 1.80 1.33 3.13

Table 3: A comparison of electric currents Ii,Sj and ISj of (18) on six cross sections Sj with the
average currents Ii and I of (21) for gA in Solvent 3 (a mixture solution of four ionic species, two
anions Cl− and NO−3 and two cations Na+ and K+) under 100 mV voltage on Mesh 1.

tration functions — two for the cation species Na+ and K+ and two for the anion species Cl−

and NO−3 . The two cation species have the same charge number +1 and the two anion species
have the same charge number −1. To distinguish them, the bulk concentrations (0.2 mol/L) of
ions Na+ and Cl− were set to double those (0.1 mol/L) of ions K+ and NO−3 in the whole solvent
domain Ds. From Figure 12 it can be seen that more cations Na+ were attracted into the central
ion channel pore region Dcp than cations K+ because of its double bulk concentration. This test
exposes another cation selectivity property of gA under a mixture solution — cations having larger
bulk concentration can be stronger in competition for space within the ion channel pore if their
charge numbers are the same.

Validation by electric current experimental data

We calculated the electric currents using our formulas of (18) and (21) for gA in Solvent 3. In these
calculations, we selected the six cross sections Sj of the gA channel pore at z = −6,−4,−2, 0, 2, 4
and then generated their meshes by using the visualization tool ParaView26. As examples, we
display four of them in Figure 13 to demonstrate that different cross sections can have different
shapes and meshes. The test results are reported in Table 3. Here we set gt = 0 and gb =
3.892, which yielded a voltage of 100 mV. These currents were calculated by our electric current
computational tool from our PNPic finite element package.

From Table 3 it can be seen that the currents of two anions Cl− and NO−3 are almost zero,
indicating that most anions were blocked by the gA channel pore. While both cations Na+ and
K+ produced electric currents, the current of Na+ ions was larger than that of K+ simply because
the bulk concentration of Na+ doubled that of K+. The results in Table 2 also show that different
cross sections caused different current values. Hence, it is necessary to refine the currents by our
average formulas of (21).

Finally, we did more current calculations for gA in a salt solution of cations K+ and anions
Cl− to further validate our PNPic model and software package by electric current experimental
data. In these validation tests, we generated five I-V curves by using the six cross section meshes
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Voltage
cbi = 0.1; θ = 0.023 cbi = 0.2; θ = 0.035 cbi = 0.5; θ = 0.055 cbi = 1.0; θ = 0.065 cbi = 2.0; θ = 0.07

(mV) I Iexp I Iexp I Iexp I Iexp I Iexp

50 0.55 0.65 0.91 1.06 1.62 1.66 2.18 2.08 2.89 2.49

100 1.12 1.20 1.83 1.89 3.25 3.46 4.37 4.18 5.70 5.12

150 1.70 1.71 2.77 2.72 4.93 4.94 6.59 6.49 8.46 8.12

200 2.29 2.12 3.73 3.51 6.66 6.55 8.91 8.86 11.54 11.86

Table 4: A comparison of the currents I calculated by our formula (21) with the experimental
currents Iexp extracted from one figure (Figure 8) of the reference23 for gA in a salt solution of cbi
mole KCl on Mesh 1. Here cbi is the bulk concentration of Ds (with cbi,p = 0); voltage was set as
gb − gt in mV with gt = 0; I and Iexp were in pA; θ is defined in (12).

Figure 13: Four cross section meshes of gA
ion channel pore that were used to calculate
the electric current I defined in (21). They
were generated by using ParaView26.

Figure 14: Five I-V curves produced by the cur-
rent data of Table 4. Here the solid lines stand
for our predicted curves and the star markers
represent the experimental values from23.

of Table 3 and the voltage V = 50 mV, 100 mV, 150 mV, 200 mV. By the formula

gb − gt =
ec

103KBT
V ≈ 0.0389216 V,

we set gt = 0 and got gb = 1.946, 3.892, 5.838, 7.784 for the tests. The diffusion coefficient Di,p was
set by (12) with a properly-selected value of θ to fit the experimental data. These values of θ are
reported in Table 4. Hee the total electric current I was calculated by our formula (21).

Table 4 gives a comparison of the numerical values of current I calculated by our tool from the
PNPic finite element package according to our formula (21) with the experimental values extracted
from one figure (Figure 8) of the reference23. Using these data, we plotted five I-V (current-voltage)
curves and displayed them in Figure 14 to more clearly compare them. From Figure 14 it can be
seen that the currents computed by our PNPic finite element package match well the experimental
data. These tests further validate our PNPic model and finite element package.
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Conclusions

We have presented an improved Poisson-Nernst-Planck ion channel (PNPic) model and an effective
finite element method for solving this model. We then implemented this finite element method in
Python and Fortran as a software package, which works for an ion channel protein with a three-
dimensional molecular structure and an ionic solvent with multiple species. Compared to other
PNPic models available in the current literature, the major improvements made in our PNPic
model involve boundary value conditions, a membrane surface charge density, bulk ionic concen-
trations, and diffusion coefficient functions. These improvements provide us with more options in
the selection of membrane charges, bulk concentrations, and diffusion coefficient functions, greatly
enhancing our capability to carry out channel studies and simulations.

As initial applications, we used our PNPic finite element package to explore the cation selec-
tivity property of an ion channel protein, a gramicidin A (gA), in this work. In these numerical
experiments, the two side surfaces of a membrane were set to have different surface charge densi-
ties; different ionic bulk concentrations were assigned to the bottom, top, and pore portions of a
solvent domain to mimic different chemical test environments. The cation selectivity property of
gA was exposed in five different ionic solvents with up to four ionic species. The derived numerical
results have shown that varying membrane charges and bulk concentrations has little influence on
the cation selectivity property of gA. They also expose that the cation selectivity property of gA
happens within the central ion channel pore only, implying that it is mainly determined by the
atomic structure and charges of an ion channel protein within the central pore area.

Moreover, we did comparison studies between our PNPic model and our recent PNP ion channel
model reported in20 for gA based on three mesh domains with different mesh sizes. The purpose
of this study is to show how Dirichlet and Neumann boundary value conditions affect ion channel
selectivity properties. In our recent PNP model, Neumann boundary value conditions are applied
to the four side surfaces of both a box domain and a solvent domain to avoid the difficulties
of selecting boundary value functions that we face in the case of using Dirichlet boundary value
conditions. Since a PNPic model using Dirichlet boundary value conditions is a basic model, it
is important for us to further improve it and develop its effective finite element methods in this
work. With the new PNPic package, we now can carry out ion channel studies through selecting
different boundary value functions. We also can do the comparison studies with other models like
what we did with the model of20 in this paper, from which we observed that either Neumann or
Dirichlet boundary value conditions have little influence on the cation selectivity property of gA
even though yielding significantly different electrostatic potentials and ionic concentrations near the
related boundaries. During these studies, we also found that box domain sizes have little influence
on the cation selectivity property of gA.

One important application of a PNP model is to calculate the electric current within an ion
channel pore in the steady status. To improve the numerical accuracy of current calculation, we
have developed an effective numerical scheme for computing the electric current by using advanced
mathematical techniques in this paper. One key part of this scheme is an effective quadrature
for computing a surface integral defined on a cross section of an ion channel pore. Each electric
current value is then calculated as an average of several surface integral values. We implemented
this scheme in Python as a part of our PNPic finite element package. As applications, we used this
scheme to calculate the currents of four ionic species for gA in a mixture solution of four species.
Furthermore, we produced five I-V (current-voltage) curves for gA in a salt solution of two ionic
species, which matched well the experimental data from the literature. Consequently, our PNPic
model and finite element package were validated not only by the cation selectivity property of gA
but also by the physical and chemical experimental data of gA.
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Even though many promising numerical results are reported in this paper, more numerical tests
are required to do in the future. We plan to do so for other ion channel proteins and other ionic
solvents. We will further explore the effects of boundary value conditions, membrane charges, and
bulk concentrations on electrostatics and ionic concentrations by using different boundary value
functions, different membrane charges, and different bulk concentrations. Moreover, we will do
more validation tests on our PNPic model and finite element package by using more chemical
experimental data that we could find in the literature. To this end, our PNPic finite element
package will become a powerful tool for ion channel studies.
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An Improved Poisson-Nernst-Planck Ion Channel Model and Numerical 
Studies on Effects of Boundary Conditions, Membrane Charges, and Bulk 

Concentrations 

 
In this study, we added 0.3 and 0.1 moles of KCl, respectively, to the bottom and top water 
compartments connected by a voltage-dependent anion channel (VDAC with PDB ID: 3EMN) as 
the conduit of ions. We then generated the concentrations of K+ and Cl− and visualized them in 
color mappings and two-dimensional curves by the Poisson-Nernst-Planck finite element 
package of this paper, clearly validating the anion selectivity of VDAC.  
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