

Supporting Information

Synergy and Antagonism between Allosteric and Active-Site Inhibitors of Abl Tyrosine Kinase

*Taylor K. Johnson, Daniel A. Bochar, Nathalie M. Vandecan, Jessica Furtado, Michael P. Agius, Sameer Phadke, and Matthew B. Soellner**

anie_202105351_sm_miscellaneous_information.pdf

TABLE OF CONTENTS

I.	Materials and Methods	Pages	2–3
II.	Single drug dose-response curves	Pages	4–5
III.	Analytical data for BaF3/ABL cellular synergy	Pages	6–17
IV.	Analytical data for InCELL Pulse cellular synergy	Pages	18–27
V.	Data for cleavage of Abl by thermolysin	Pages	28–31
VI.	Analytical data for Proteolysis Assay	Pages	32–40
VII.	References	Page	41

I. Materials and Methods.

General Biochemical Methods. Black, opaque-bottom 96 well plates were purchased from Nunc. All proteins were expressed in *E.coli* using previously published procedures.²⁴ Data were obtained using Biotek Synergy Mx and Biotek Synergy 4 plate readers. Curve fitting was done using Graphpad Prism 6 software.

General Procedure for Proteolysis Half-Life Determination. Assays employed a final concentration of 2 μ M abl, 10 μ M compound, and 60 nM thermolysin (Promega, V4001) in 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.5 mM CaCl₂. Compounds and enzyme were allowed to equilibrate for 5 minutes at 20 °C prior to the addition of thermolysin. Reactions were sampled at various time points (2, 5, 10, 30, 60, 90, 120, 180, and 240 minutes) and quenched with 12.5 mM EDTA. Samples were analyzed using a PerkinElmer LabChip GX II with LabChip HT Protein Express Chips as per the manufacturer's instructions. Percent protein remaining was plotted versus time and fit to an exponential one phase decay equation using GraphPad Prism software (version 8.2) to obtain half-lives of each protein.

General procedure for cellular characterization.

1. Cell culture and seeding: All Ba/F3 and K562 cell lines were cultured in RPMI 1640 media with 10% FBS. Parental Ba/F3 cell culture additionally contained 15% WEHI-3 conditioned media. An aliquot of the cells was mixed with Trypan Blue solution and the cell number was quantified using a hemocytometer. The cells were plated 100 μ L in each well at 30,000 cells/mL so that each well contained 3,000 cells. The cells were plated into sterile, clear bottom 96 well plates and then immediately dosed with compound. Additionally, 3 wells were created containing 100 μ L of media with no cells.

2. Dosing: The compounds were made in 100% DMSO at 1,000X the final concentrations that were desired for the assay generally covering a concentration range of 6 log units. These DMSO stocks were diluted 10X in RPMI 1640 media. 1 μ L of the compound diluted in media was added to each well for a final concentration of 0.1% DMSO. The wells containing only media were not dosed. In general, each compound concentration was dosed in triplicate wells. The plates were returned to normal culture conditions (per ATCC) for 72 hours.

3. Assay: After 72 hours, the plates were removed from the incubator, and 10 μ L of WST-1 reagent was added to each well. The plates were returned to the incubator and the color change was visually monitored for 0.5 – 2 hours. When sufficient color change had occurred, the plates were shaken on a plate shaker for 30 seconds, and absorbance at 450 and 630 nm was read in a Biotek Synergy 4 plate reader. The absorbance at 630 nm was subtracted from the absorbance at 450 nm.

4. Data Analyses: The average absorbance value from wells containing media without cells was subtracted from the absorbance value for all the wells containing cells. The absorbance values were then taken as a percentage of the absorbance for the vehicle wells (0.1% DMSO - no compound). The percent compared to vehicle was then plotted vs. log(Concentration). Data analyses and curve fitting were performed using Graphpad Prism 6. For each compound, there were n = 3 data points for each concentration. For curves that did not reach full inhibition, the bottom was set to -10.

General procedure for cellular synergy.

1. Cell culture and seeding: All Ba/F3 and K562 cell lines were cultured in RPMI 1640 media with 10% FBS. Parental Ba/F3 cell culture additionally contained 15% WEHI-3 conditioned

media. An aliquot of the cells was mixed with trypan blue solution and the cell number was quantified using a hemacytometer. The cells were plated 100 μ L in each well at 30,000 cells/mL so that each well contained 3,000 cells. The cells were plated into sterile, clear bottom 96 well plates and then immediately dosed with compound.

2. Dosing: The compounds dilutions (2X) and combinations were made in 100% DMSO at 1,000X the final concentrations that were desired for the assay. These DMSO stocks were diluted 10X in RPMI 1640 media. 1 μ L of the compound diluted in media was added to each well for a final concentration of 0.1% DMSO. The wells containing only media were not dosed. In general, each compound concentration was dosed in triplicate wells. The plates were returned to normal culture conditions (per ATCC) for 72 hours.

3. Assay: After 72 hours, the plates were removed from the incubator and 10 μ L of WST-1 reagent was added to each well. The plates were returned to the incubator and the color change was visually monitored for 0.5 – 2 hours. When sufficient color change had occurred, the plates were shaken on a plate shaker for 60 seconds and read in a Biotek Synergy 4 plate reader.

4. Data Analyses: The average absorbance value from wells containing media without cells was subtracted from the absorbance value for all the wells containing cells. The data were then calculated as a fraction of the vehicle well (1% DMSO) and subtracted from 1 in order to represent the data as the fraction of population affected by the treatment at each given dose. The data were then analyzed using Compusyn to determine the combination indices.

Equation for Determination of Combination Index (CI)

$$CI = \frac{(D)_1}{(D_x)_1} + \frac{(D)_2}{(D_x)_2} = \frac{(D)_1}{(D_m)_1 \left[\frac{fa}{(1-f_a)} \right]^{1/m_1}} + \frac{(D)_2}{(D_m)_2 \left[\frac{fa}{(1-f_a)} \right]^{1/m_2}}$$
(1)¹

where $(D)_1$ and $(D)_2$ are the doses of drugs 1 and 2, D_m is the dose required to produce the median effect (analogous to IC₅₀, ED₅₀, or LD₅₀ values), m is a Hill-type coefficient signifying the sigmoidicity of the dose-effect curve, and f_a is fraction affected¹

II. Single drug dose-response curves

These dose-response curves were used to aid in the selection of optimal doses for the Chou-Talalay synergy experiments.

BCR-Abl/BaF3:

	Dasatinib	Das-CHO	Das-DFGO	Imatinib	Nilotinib	Ponatinib	GNF-2	Asciminib
IC50	1.508e-010	1.427e-007	2.485e-010	5.972e-007	2.004e-008	1.736e-010	~ 2.926e-007	3.821e-010

InCELL Pulse CETSA:

	Dasatinib	DAS-CHO	DAS-DFGO	Imatinib	Nilotinib	Ponatinib	GNF-2	Asciminib
IC50	6.758e-009	2.303e-008	2.833e-008	1.267e-007	7.638e-009	2.084e-009	1.520e-006	1.044e-007

III. Analytical Data for BCR-Abl/BaF3 Cellular Synergy

Drug/Combo	Dm	m	r
DAS	0.53773	-1.9520	-0.9527
GNF	360.769	-3.4430	-0.9956
DASGNF	105.274	-2.8634	-0.9523

Combo	ED50	ED75	ED90	ED95
DASGNF	1.07062	1.20546	1.37146	1.50509

Dasatinib-Asciminib

Drug/Combo	Dm	m	r
DAS	0.49012	-2.0722	-0.9595
ASC	4.12004	-1.3464	-0.9695
DASASC	2.38456	-2.0298	-0.9990

Combo	ED50	ED75	ED90	ED95
DASASC	1.29319	1.43674	1.62859	1.79427

Imatinib-GNF2

Drug/Combo	Dm	m	r
GNF	331.684	-3.3294	-0.9905
IMA	243.617	-2.2497	-0.9898
IMAGNF	287.416	-2.7159	-0.9727

Combo	ED50	ED75	ED90	ED95
IMAGNF 1	1.07537	1.12340	1.17893	1.22120

Imatinib-Asciminib

Drug/Combo	Dm	m	r
IMA	213.299	-2.0714	-0.9806
ASC	3.99456	-2.2695	-0.9544
IMAASC	158.173	-3.0529	-0.9606

Combo	ED50	ED75	ED90	ED95
IMAASC 1	1.12626	1.31462	1.53521	1.70650

Nilotinib-GNF2

Drug/Combo	Dm	m	r
GNF	305.060	-2.2627	-0.9637
NILO	11.8307	-2.7963	-0.9969
NILGNF	149.888	-1.9798	-0.9948

Combo	ED50	ED75	ED90	ED95
NILGNF 1	1.59844	1.39624	1.22181	1.11698

Nilotinib-Asciminib

Drug/Combo	Dm	m	r
NILO	12.5815	-2.6289	-0.9873
ASC	4.08488	-2.3880	-0.9650
NILASC	9.92739	-2.9080	-0.9892

Combo	ED50	ED75	ED90	ED95
NILASC 1	1.06259	1.12423	1.18995	1.23713

Ponatinib-GNF2

Drug/Combo	Dm	m	r
GNF	217.943	-2.0843	-0.9505
PONA	0.68557	-3.5580	-0.9672
PONGNF	116.107	-3.7661	-0.9661

Combo	ED50	ED75	ED90	ED95
PONGNE	1.20535	1.35779	1.54781	1.70349

Ponatinib-Asciminib

Drug/Combo	Dm	m	r
PONA	0.78362	-2.0072	-0.9606
ASC	3.64145	-2.2926	-0.9530
PONASC	2.56180	-4.0787	-0.9610

Combo	ED50	ED75	ED90	ED95
PONASC	1.13112	1.44261	1.84201	2.17656

Drug/Combo	Dm	m	r
DFGO	1.64395	-4.8848	-0.9373
GNF	1313.29	-0.6030	-0.9969
DFGGNF	307.442	-1.0236	-0.9510

Combo	ED50	ED75	ED90	ED95
DFGGNF	1.34809	0.96943	1.24430	1.84496

DAS-DFGO-II – Asciminib

Drug/Combo	Dm	m	r
DFGO	1.95313	-3.0281	-0.9544
ASC	4.33040	-2.8843	-0.9888
DFGASC	3.53858	-3.4850	-0.9709

Combo	ED50	ED75	ED90	ED95
DFGASC	1.04667	1.10970	1.17662	1.22448

DAS-CHO-II – GNF2

Drug/Combo	Dm	m	r
СНО	62.8500	-2.4836	-0.9935
GNF	350.039	-2.4789	-0.9646
CHOGNF	158.014	-2.8688	-0.9513

Combo	ED50	ED75	ED90	ED95
CHOGNF ().79521	0.84420	0.89621	0.93340

DAS-CHO-II – Asciminib

Drug/Combo	Dm	m	r
СНО	64.7249	-3.6691	-0.9960
ASC	4.25424	-3.1862	-0.9913
CHOASC	23.3313	-2.8485	-0.9801

Combo	ED50	ED75	ED90	ED95
CHOASC (0.82627	0.77921	0.73520	0.70689

V. Analytical Data for InCELL Pulse CETSA Synergy

Dasatinib-GNF2

Drug/Combo	Dm	m	r
DAS	16.2394	-0.8918	-0.9798
GNF	3507.01	-1.3245	-0.9506
DASGNF	358.707	-1.2181	-0.9838

CI values

at:

Combo ED95 DASGNF 1.13144

Dasatinib-Asciminib

Drug/Combo	Dm	m	r
DAS	9.69257	-0.6764	-0.9662
ASC	570.043	-0.5555	-0.9852
DASASC	92.5031	-0.6796	-0.9496

	CI values at:
Combo	ED95
DASASC	1.27397

Imatinib-GNF2

Drug/Combo	Dm	m	r
IMA	166.378	-1.3318	-0.9978
GNF	1479.10	-1.3152	-0.9496
IMAGNF	948.220	-1.5973	-0.9974

CI values

at:

Combo	ED95	
IMAGNF	2.16487	

Imatinib-Asciminib

Drug/Combo	Dm	m	r
IMA	209.310	-0.9389	-0.9985
ASC	140.775	-0.8559	-0.9622
IMAASC	243.698	-0.9304	-0.9928

CI values	
at:	
Combo	ED95
IMAASC	1.70554

Nilotinib-GNF2

Drug/Combo	Dm	m	r
NILO	14.8299	-1.1627	-0.9654
GNF	1211.85	-0.9354	-0.9514
NILGNF	601.377	-1.0918	-0.9967

Combo	ED95
NILGNF	1.4382

Nilotinib-Asciminib

Drug/Combo	Dm	m	r
NILO	21.2276	-1.0496	-0.9951
ASC	143.412	-1.0143	-0.9679
NILASC	114.248	-1.1152	-0.9988

CI values	
at:	
Combo	ED95
NILASC	1.51862

Ponatinib-GNF2

Drug/Combo	Dm	m	r
PON	3.81974	-1.1703	-0.9913
GNF	2079.03	-1.2593	-0.9894
PONGNF	244.710	-1.3122	-0.9982

	CI values at:		
Combo	ED95		
PONGNF	0.96071		

Ponatinib-Asciminib

Drug/Combo	Dm	m	r
PONA	2.64755	-1.4674	-0.9883
ASC	70.0436	-1.1453	-0.9878
PONASC	43.0758	-1.3255	-0.9943

Combo	ED95		
PONASC	1.45577		

DAS-DFGO-II – Asciminib

Drug/Combo	Dm	m	r
DFGO	38.7354	-1.1178	-0.9754
ASC	99.9675	-0.8204	-0.9879
DFGASC	142.498	-0.9308	-0.9689

(CI values at:		
Combo	ED95		
DFGASC	2.17956		

DAS-CHO-II – Asciminib

Drug/Combo	Dm	m	r
СНО	36.2497	-1.2448	-0.9919
ASC	147.585	-0.9862	-0.9969
CHOASC	117.076	-0.9208	-0.9905

	CI values at:		
Combo	ED95		
CHOASC	0.76886		

V. Data for cleavage of Abl by thermolysin

Abl is selectively cleaved after the GV residues in the kinase-SH2 linker:

	ABL	NKPTVY GV SPN-YDKW
	ABL2	NKPTVY <mark>GV</mark> SPI-HDKW
	SRC	-PTSKPQTQ GL AKDAW
	YES	-PTVKPQTQ GL AKDAW
	FGR	-TIMKPQTL <mark>GL</mark> AKDAW
	ITK	-RQKAPVTA <mark>GL</mark> RYGKW
	BTK	-NKNAPSTA <mark>GL</mark> GYGSW
	TEC	-GKNAPTTA GF SYEKW
	TXK	-GSCLPATA GF SYEKW
1		

FULL LENGTH

Theoretical pl/Mw (average) for the user-entered sequence:						
10	20	30	40	50	60	
GHMARWNSKE	NLLAGPSEND	PNLFVALYDF	VASGDNTLSI	TKGEKLRVLG	YNHNGEWCEA	
70	0.0	9.0	100	110	120	
OTKNGOGWVP	SNYTTPVNSL	EKHSWYHGPV	SRNAAEYLLS	SGINGSFLVR	ESESSPGORS	
giidlogollii				DOTINODI LIVIR		
13 <u>0</u>	140	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>	
ISLRYEGRVY	HYRINTASDG	KLYVSSESRF	NTLAELVHHH	STVADGLITT	LHYPAPKRNK	
1.0.0	0.00	010	0.00	0.00	0.4.0	
190	20 <u>0</u>	210	22 <u>0</u>	23 <u>0</u>	240	
PTVIGVSPNI	DKWEMERTDI	TMKHKLGGGQ	IGEVIEGVWK	KISLTVAVKT	LKEDTMEVEE	
250	260	270	280	290	300	
FLKEAAVMKE	IKHPNLVQLL	GVCTREPPFY	IITEFMTYGN	LLDYLRECNR	QEVNAVVLLY	
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	36 <u>0</u>	
MATQISSAME	YLEKKNFIHR	DLAARNCLVG	ENHLVKVADF	GLSRLMTGDT	YTAHAGAKFP	
370	380	300	400	110	120	
	VNKEGTKGDU			TDI GOUVEII	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
TIMIAI DODA	INTESTIODV	WALGVIIIMET	ATIGNOTITG	TTTT		
430	440	450	460	470		
GCPEKVYELM	RACWQWNPSD	RPSFAEIHQA	FETMFQESSI	SDEVEKELGK	QGV	

Mw: 53847.91

CUT N_TERM

Theoretical pl/Mw (average) for the user-entered sequence:

10	20	30	40	5 <u>0</u>	6 <u>0</u>
GHMARWNSKE	NLLAGPSEND	PNLFVALYDF	VASGDNTLSI	TKGEKLRVLG	YNHNGEWCEA
70	80	90	100	110	120
QTKNGQGWVP	SNYITPVNSL	EKHSWYHGPV	SRNAAEYLLS	SGINGSFLVR	ESESSPGQRS
130	140	150	160	170	180
ISLRYEGRVY	HYRINTASDG	KLYVSSESRF	NTLAELVHHH	STVADGLITT	LHYPAPKRNK

PTVY

Mw: 20566.80

CUT C-TERM

Theoretical pl/Mw (average) for the user-entered sequence:

10	20	30	40	5 <u>0</u>	6 <u>0</u>
VSPNYDKWEM	ERTDITMKHK	LGGGQYGEVY	EGVWKKYSLT	VAVKTLKEDT	MEVEEFLKEA
70	80	90	100	110	120
AVMKEIKHPN	LVQLLGVCTR	EPPFYIITEF	MTYGNLLDYL	RECNRQEVNA	VVLLYMATQI
130	140	150	160	170	180
SSAMEYLEKK	NFIHRDLAAR	NCLVGENHLV	KVADFGLSRL	MTGDTYTAHA	GAKFPIKWTA
190	200	210	220	230	240
PESLAYNKFS	IKSDVWAFGV	LLWEIATYGM	SPYPGIDLSQ	VYELLEKDYR	MERPEGCPEK
250	260	270	280		
VYELMRACWQ	WNPSDRPSFA	EIHQAFETMF	QESSISDEVE	KELGKQGV	

Mw: 33242.07

Cleavage of Abl by thermolysin over time. Peak at 33.7 is an internal control.

Full timecourse:

	Half I :fa (min)	T _{1/2}	log(Relative Half Life)	
	nan Lite (mm)	WT Abl T _{1/2}		
WT Abl	43.8 ± 5.7	1	0	
SH3 Engaged Abl	169.8±20.5	3.87	0.59	
A337N Abl	17.0±6.3	0.39	-0.41	
Vehicle	29.3 ± 4.1	1	0	
Dasatinib	2.7 ± 0.1	0.09	-1.05	
Imatinib	2.3 ± 0.2	0.08	-1.1	
Nilotinib	2.5 ± 0.1	0.09	-1.05	
Ponatinib	2.3 ± 0.3	0.08	-1.1	
GNF-2	367.5 ± 59.1	12.54	1.1	
Asciminib	282.5 ± 17.9	9.64	0.98	
Das-DFGO-II	2.2 ± 0.7	0.07	-1.15	
Das-CHO-II	47.2 ± 7.9	1.61	0.21	
Vehicle	25.4 ± 2.6	0.87	-0.06	
GNF-2	330.7 ± 11	11.28	1.05	
Asciminib	297 ± 24	10.13	1.01	
GFN-2+Das-DFGO-II	22.5 ± 1.7	0.77	-0.11	
GNF-2+Das-CHO-II	393.7 ± 12	13.43	1.13	
Asciminib+Das-DFGO-II	19.9 ± 3	0.68	-0.17	
Asciminib+Das-CHO-II	512.6 ± 22.7	17.49	1.24	

VI. Analytical data for Protein Half Lives as Determined *via* Proteolysis Assay.

VII. References

(1) Chou, T.-C.; Talalay, P. Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. *Adv. Enzym. Regul.* **1984**, *22*, 27–55.