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ABSTRACT 

Anthropogenic effects on the natural world have been at the forefront of the scientific conscience for at 

least the past 50 years. A measurable proxy for human impact on environment is the health and distribution 

of populations of organisms, especially plant species. In Michigan, a good model plant species for assessing 

human environmental impact is Iris versicolor L., a distinctive wetland plant native to eastern North 

America. We mapped location data for 89 I. versicolor populations and visited a subset of 30 populations 

to assess population presence/absence, total area of current populations, co-occurring plant species with an 

emphasis on invasive and aggressive species, pH, electrical conductivity, and texture of soils; and proximity 

of sites to human disturbances like roads and buildings. Aggressive species appear to have the most 

significant impact on I. versicolor presence/absence, especially Typha species both native and introduced 

to Michigan. I. versicolor appears to be most vulnerable to factors leading to its disappearance at the 

southern margin of its range, perhaps due to a synergistic effect between human disturbances, invasion of 

aggressive species, and warming climate; more research should be conducted to substantiate these findings. 

Continued visitation of these sites would serve to inform relationships between I. versicolor, other native 

and invasive species, humans, and our environment. 
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Introduction 

Anthropogenic effects on the natural world have been at the forefront of the scientific conscience for at 

least the past 50 years (Carson, 1962). In that time, research has been conducted on the impacts of human 

activity on abiotic and biotic factors of the environment, including climate and weather, biogeochemical 

cycling, and abundance of biodiversity. The overall findings have been considered rather bleak – it is known 

that human activities have caused vast changes to the atmo-, litho-, hydro-, and biospheres since at least the 

Industrial Revolution, such that we have ushered in a new geological epoch, moving from the Holocene to 

the “Anthropocene” (Crutzen, 2006; Steffen et al., 2007; Steffen et al., 2011; Lewis & Maslin 2015). 

For experts in the natural sciences, the Anthropocene is marked as the “sixth mass extinction event”, as 

huge swaths of biodiversity are becoming endangered or extinct due to direct or indirect human activities. 

These activities include habitat destruction in the wake of constructing roads, agricultural land, and 

settlement areas; introductions of alien and invasive species via human migrations and transportation; and 

changes to annual global temperatures and precipitation patterns due to climate change (Pryor et al., 2014; 

Seto et al., 2011; Jacquemyn et al., 2010; McGinley, 2010; Brooker, 2006). Species that have not drastically 

decreased in numbers may instead be extirpated from current habitats, shifting their ranges northward or to 

higher elevations to escape the impacts of these activities – particularly rising temperatures or other climatic 

effects (Thomas et al., 2001; Lesica & McCune, 2004; McKenney et al., 2007; Kelly & Goulden, 2008; 

Fosså et al., 2010).  

Because of these very real dangers to global biodiversity, taxa that are endangered or at risk are the focus 

of conservation research, leading to large amounts of literature concerning human impacts on sensitive 

species (Channell & Lomolino, 2000; Male & Bean, 2005; DeCasare et al., 2010). However, common 

species are seldom examined for the effects of human activities on their population sizes and abundance. 

Species of “least concern” may be able to recolonize quickly in the wake of human disturbances, compete 

effectively against aggressive species, or tolerate changes in land use or climatic variables, but it is difficult 

to predict which strategies might be employed by different species. Furthermore, due to their “least 

concern” status, populations of these common species may be disappearing with researchers remaining 

unaware.  

Studying populations of organisms over time can present challenges, especially for mobile species that 

require ample time, resources, and luck to encounter individuals and adequately estimate population size. 

Sessile populations such as plants can mitigate these complications. Furthermore, for long-term studies of 

plant population abundance throughout a given region, a wealth of initial data is already present in the form 

of herbaria. These institutions document the habitats and distributions of plants from across the globe, 

representing a rich history of botanical biodiversity spanning several centuries. Herbaria are increasingly 

valuable databases as our landscapes undergo pronounced changes – yet, how often are populations 

represented in herbarium specimens revisited and reexamined? By revisiting the locations from which 

herbarium specimens were collected, it is possible to examine the ways in which these populations have 

reacted to environmental change through time, or even if they are still present today. 

To effectively examine plant population response to human activities that impact the environment of 

Michigan, a good candidate species would possess: 1) a perennial and riparian habit, such that populations 

would persist year to year regardless of changes in annual precipitation, while also maintaining sensitivity 

to water and soil quality which may be affected by nearby roads and farmland; 2) a described habitat range 

tending toward northern latitudes, so that a response to rising temperatures may be observed; and 3) an 

abundance of specimens with varying collection dates throughout the research area, here the state of 

Michigan. The species Iris versicolor L. fulfills each of these criteria. 
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Iris versicolor, also known as the northern or 

harlequin blue flag iris, is a common monocot 

species of the family Iridaceae (Wilson, 2009). 

Native to northeastern North America with 

introductions in Europe and New Zealand, it is a 

northern species that prefers colder climates (Figure 

1). It can often be found in wetland habitats with 

other riparian taxa. It can be easily identified by its 

long basal leaves and showy purple 3-merous 

perianth, or 3-chambered capsule with large, 

uniformly papillate seeds (Anderson, 1936; Figure 

2). It tends to grow in large mats along rivers, lakes, 

or ditches, reproducing via clonal individuals using 

its thick spreading rhizomes, but it can also be 

pollinated by a variety of insects and disperse its 

seeds along waterways (Lovell, 1899; Needham, 

1900).  

Because of these characteristics of I. versicolor, we predicted that we could reliably relocate the sites of 

historic I. versicolor populations using herbarium specimen data. Furthermore, we predicted that some 

populations – particularly those at more southern latitudes, closer to human disturbances, or with higher 

incidence of invasive species in the habitat – would be absent, and would not be found. We also predicted 

that populations found at their historic sites would inhabit soils with consistent conditions of soil texture, 

pH, and electrical conductivity, especially when compared to sites where I. versicolor populations were 

absent.  

 

 
  

Figure 1. Native range of Iris versicolor in the northeast of 

North America, from collection data spanning 1822 to 

present. Inset of Michigan collection data. Retrieved from 

GBIF (2019). 

Figure 2. Images of Iris versicolor taken in the field. Left: Pressing of I. versicolor collected 2017, showing long basal leaves, 

purple-red flushed base, and perianth. Center: perianth of I. versicolor. The larger “falls” are modified sepals with yellow 

nectar guides. Top right: immature capsules showing three chambers. Bottom right: Mature dehiscent capsule with seeds 

exposed (image credit: Mason, 2005).  
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Methods 

Site establishment 

In October 2016 we compiled locality data from specimens from the University of Michigan Herbarium 

(MICH) for Iris versicolor populations in the state of Michigan. Locations that could be determined from 

herbarium labels were plotted approximately using an ArcGIS map. In total, seventy-four (74) sites were 

mapped.  

We defined the University of Michigan Biological Station as the primary research base for this study and 

removed 32 of the 74 sites from the visitation itinerary due to considerable distance from the base. Nine 

additional sites were excluded later based on incomplete location data (see “Certainty of site location”) or 

inability to access the site. Of the remaining sites, 26 were successfully visited by the first author between 

June and August of 2017. Collections, population presence or absence at each site, and removed sites were 

also plotted on the ArcGIS map. 

Subsequently, 15 additional sites were located using specimens listed in iDigBio 

(https://www.idigbio.org/portal/search), and five of these were successfully visited in the summer of 2018. 

Seven sites originally visited in summer 2017 were also re-visited and examined for changes. Thus, we 

sampled a total of 30 sites, seven of them in both field seasons. A table of the herbarium data initially 

compiled as well as the subset sampled can be found in the Appendix.  

Site visitation and location were facilitated using locality approximations, ArcGIS, and Google Maps 

leading up to and at each site. Location data derived from herbarium labels were variable in quality, and 

sometimes led to difficulty in recognizing a particular location or population in the field as a “site”; for 

example, voucher data describing the “north shore of Rennie Lake” naturally had less site specificity than 

“500 feet east of State Street” or latitude/longitude coordinate data. Thus, time devoted to locating I. 

versicolor at a site was generally one hour, with the population declared absent only when sufficient 

confidence in the correct locality of a site had been achieved (see “Certainty of site location”). A DNR 

research permit (PRD-SU-2017-042) was obtained for work on state lands. For sites located on private 

property, access was requested via spoken landowner approval. 

Site visitation procedures 

Once a population of I. versicolor was located, we recorded the site number, date, and time of visitation, 

then measured the dimensions of the population (m2). The size of exceptionally large populations expected 

to exceed an area of 200 m2 (such as populations surrounding a lake or along a long stretch of road) was 

extrapolated along the proposed perimeter (lake) or length (road) on a case-by-case basis. The clonal nature 

of I. versicolor led to clumps of leaf rosettes and blooming stems in close proximity; however, distances 

between clumps were often variable. The first author counted the number of clumps in each population, 

measured the dimensions of each clump, and calculated the average clump area for each population. A 

second measure of population size was made by counting vegetative leaf rosettes and blooming stems 

respectively in 1 m2 plots, and calculating an estimated population density for both rosettes and stems using 

average clump area, creating two density measures: rosettes per clump area and stems per clump area). 

A list of co-occurring taxa, identified to genus (family for Poaceae and Cyperaceae), was compiled for an 

approximately two-meter radius from the edge of clumps. Other species were generally not present directly 

within I. versicolor clumps. Soil samples of approximately 100 g were collected from near the roots of I. 

versicolor individuals in plastic bags (one per site) and stored at ambient temperatures. Qualitative notes 

on the locality (broad classifications such as “bog”, “riverbank”, “ditch” as well as notes on disturbances) 

and observations of anomalous conditions concerning the population were recorded for each site. 
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For sites where I. versicolor was apparently absent, qualitative notes concerning the nature of the habitat 

were taken to formulate possible explanations for population absence. Soil samples were also taken at each 

site to measure potentially aberrant pH, electrical conductivity, and soil texture. 

During the 2018 field season, emphasis during site visitation was placed on identifying recognized invasive 

or aggressive species within the suite of co-occurring taxa. “Aggressive” species are defined as species that 

are native to a region, yet have a tendency to outcompete other native taxa. Selected species are listed in 

Table 1. 

Binomial name Common name Potential threat 

Typha angustifolia, 

T. latifolia, T. 

⨯glauca 

Narrowleaf cattail, 

broadleaf cattail, 

hybrid cattail 

Native and invasive species tend to outcompete other taxa 

with environmental changes (Galatowitsch et al., 1999; 

Drohan et al., 2006; Shih & Fenkelstein, 2008; Olson et 

al., 2009) 

Iris pseudacorus Yellow flag Directly competes with native Iris species (Morgan, 2019) 

Solanum dulcamara Bittersweet 

nightshade 

Indicator of invasive species dispersal, anthropogenic 

influence; noxious weed (Cao & Berent, 2019) 

Phragmites 

australis 
Common reed Similar growth habit, outcompetes shoreline species 

(Galatowitsch et al., 1999) 

Lythrum salicaria Purple loosestrife Aggressively colonizes banks, riparian systems 

(Galatowitsch et al., 1999) 

Frangula alnus, 

Rhamnus cathartica 
Glossy buckthorn, 

common buckthorn 
Capitalizes on changes in hydrology and prevents 

returning to natural state; shades out native species 

(Miletti et al., 2005) 

During both field seasons, 49 plant specimens were collected from various sites; of these, 20 were 

specifically Iris versicolor, all containing leaf rosettes and the majority containing flowers or fruits. 

Collections were marked with TJF and collection number and cross-referenced with the original herbarium 

voucher from which locality data were taken, if applicable. The specimens were deposited in the University 

of Michigan Herbarium.  

Certainty of site location 

Due to the large differences in site specificity on herbarium labels, we wanted to confirm that sites declared 

“absent” were truly lost, not artifacts of poor location data or new populations mistaken for those 

represented by herbarium specimens. Qualitative measures of “site certainty” were established on a 1-5 

scale, with a score of 5 indicating utmost certainty of the correct location/population located, and a score 

of 1 indicating an inability to adequately verify site location; any voucher receiving a score of 1, even if 

supposedly visited, was later removed from the study. Figure 3 shows the distribution of certainty metrics 

for present and absent sites, and the number of sites removed due to poor location data. When compared 

using a Welch’s t-test, no significant difference is found between present and absent site certainty (P-value 

= 0.4356). 

Table 1. Invasive and aggressive species recorded for sites visited in 2018. Species of Typha, Frangula, and Rhamnus were 

not differentiated in the field due to their similar proposed effects on I. versicolor habitat. 
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Soil testing 

From the 100 g soil samples collected, 10 g of 

unprocessed soil matter were isolated and mixed 

with 10 mL deionized water. Samples already 

heavily suspended in solution or essentially liquid 

were subsampled to 20 mL rather than adding 

deionized water for a solution. Each sample was 

then tested for pH and electrical conductivity (the 

latter measured in milliSiemens, or mS), and 

assigned a qualitative measure of soil texture via 

ribbon test (Thien, 1979).  

Proximity to man-made structures/dwellings 

Using ArcGIS, distance was measured between data 

points representing historic populations and man-

made structures such as roads (paved and unpaved), 

buildings, agricultural land, and boat launches. 

When applicable, proximity to and notes on 

anticipated impacts of nearby structures were taken 

on site. In addition to measures from each 

disturbance type, the shortest distance from each site to any disturbance was recorded and used to examine 

effects of general human-mediated disturbances on I. versicolor populations.  

Climate data 

Yearly temperature averages (degrees Celsius) and precipitation averages (mm) from 1910 to 2017 

(sampled regularly at 10 year intervals) were retrieved from the NOAA National Centers for Environmental 

Information (NOAA, 2019). Data from over 600 stations throughout Michigan were categorized by latitude 

(for example, data from stations at latitudes 41.0000 through 41.9999 were pooled to represent “41° 

latitude”) and averaged to create an estimate of average temperature and precipitation for a given latitude 

(41° to 47°) for a given year.  

Years of I. versicolor collection were rounded to the nearest year included in the climate dataset (i.e., sites 

collected 1975-1984 would be rounded to 1980), and values for temperature and precipitation at collection 

year were subtracted from the values for 2017, at the appropriate latitude, to obtain an average change in 

temperature and precipitation for each I. versicolor site.  

Statistical analyses 

Data were imported into R and subjected to Welch’s corrected t-tests for each parameter, using absence and 

presence of Iris versicolor and absence and presence of Typha species as test levels. Correlations between 

variables and linear regressions were calculated to assess patterns in the data. 

  

Figure 3. Site “certainty” metrics for present (blue), absent 

(yellow), and removed (grey) I. versicolor research sites. 

Certainty values are given qualitatively as 1-5, with 5 

indicating utmost certainty of site location (i.e., 

latitude/longitude data) and 1 indicating an inability to 

determine site location. No significant difference in 

certainty is found between present and absent sites (P-value 

= 0.4356). 
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Results 

Of the 30 sites included in the study, 21 Iris versicolor populations were successfully located and analyzed 

for the aforementioned parameters. Four additional populations of I. versicolor that had no associated 

voucher record were also located, and specimens from these populations were collected and deposited at 

the UM Herbarium. These “extra” sites are appended to the original 30 sites, for a total of 25 present sites 

and 9 absent sites used in subsequent analyses (Table 2). A map of the located sites and a graphic of the 

relative proportions of each site type are given in Figure 4. Absent site occurrence trended toward a slightly 

lower latitude than present sites, on average (44.3678° N versus 45.2555° N; P-value = 0.0822).  

The invasive taxa emphasized in this study were found at 14 of the extant populations, and 8 of the absent 

(22/34 sites total). Extant populations co-occurred with zero to two invasive taxa, whereas sites of absent 

populations included up to five invasive taxa (Figure 5a). Invasive richness appears to correlate negatively 

with latitude (Table S1) and exhibits this trend most strongly at absent sites (Figure 5c). The vast majority 

of sites with invasive taxa were co-occurring at least with Typha, with minimal occurrences of other 

invasive taxa (Figure 5b). Typha occurred at 8 of 9 (89%) sites where I. versicolor was deemed absent 

versus 11 of 25 (44%) for present and extra sites (P-value = 0.0069).  

Distances of I. versicolor sites from human-mediated disturbances were most abundant for distances from 

paved and unpaved roads and buildings. The disturbance type that was most often the shortest distance to 

I. versicolor sites was unpaved (dirt) roads (positive correlation shown in Table S1). For absent sites, 

shortest distance to human disturbance appeared to decrease sharply with latitude; however, upon adjusting 

for outliers (see Discussion), shortest distance to human disturbance increased with increasing latitude 

(Figure 6a and b). Richness of invasive taxa decreased exponentially with increasing distance from invasive 

taxa (Figure 6c). Further analyses revealed that sites with Typha co-occurrence have significantly shorter 

distances to human disturbances (Figure 6d; P-value = 0.0464).  

Shortest distance to human disturbance was found to correlate negatively with pH of I. versicolor sites – 

i.e., pH appeared to increase in I. versicolor sites closer to human disturbances (Table S2, Figure 7a). When 

examining this trend with Typha co-occurrence, sites with Typha had significantly higher pH (P-value = 

0.001561, Figure 7b). Further analyses of this relationship found that sites with Typha co-occurrence also 

had significantly higher EC values (P-value = 0.04562), and lower values for latitude (P-value = 0.01424). 

The observed trends for these values for I. versicolor and Typha presence/absence are compared in Figure 

8. 

Total population area, the main metric of population “size” for this study, was found to be highly variable 

among I. versicolor populations, with values ranging from less than 1 m2 to over 350 m2. Few parameters 

had meaningful correlations, although a weak negative trend was observed with both soil pH and EC (Table 

S2). When observed in relation to Typha co-occurrence, a strong correlation between Typha co-occurrence, 

increasing pH, and decreasing population size was observed (P-value = 0.0268; Figure 9a). No significant 

trend was observed for soil EC (Figure 9b). To confirm whether the observed trend was a function of Typha 

co-occurrence or distance to human disturbance, population area was examined in relation to distance to 

human disturbance; no significant difference between sites with and without Typha co-occurrence was 

observed (P-value = 0.4323; Figure 9c). 

Soil textures were classified into 11 types (using methodology described in Methods), plus “decaying 

organic matter” when excessive amounts of humus, unidentifiable “muck”, or animal feces were present at 

a site (Figure 10). Most I. versicolor sites identified as present were located in primarily loamy soils, while 

most sites recorded as absent possessed sandy soils.  

To examine trends in average temperature and precipitation per latitude bracket, as well as the average for 

the entire state, we plotted the average temperature and precipitation per latitude once every ten years over 

the past 100 years (Figure 11). Average temperature shows a steady increase across all latitudes over time, 
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with no single latitude showing a significant deviation from the mean. Average temperature for latitudes 

41, 42, and 43° N have increased from 9.26, 8.46, and 7.93° C to 10.21, 9.49, and 9.12° C, respectively; the 

average annual temperature at 43°N for 2017 almost exceeds that of 41°N in 1910. Average precipitation 

for the entire state shows an increasing trend over time. There appears to be more variation across latitudes, 

but again, no single latitude shows a trend with a significant deviation from the mean. 

To examine trends in population presence/absence over time, voucher age was compared with change in 

average temperature and precipitation at site latitudes between collection year and 2017 (Figure 12a and b). 

As expected, average changes in temperature and precipitation decreased over time across all sites, with a 

significant decline for temperature (P-value = 0.0234). No significant differences were observed between 

present and absent populations for average change in temperature or precipitation (P-values = 0.3548 and 

0.3564, respectively). Year of collection was plotted against latitude (Figure 12c), and specimens that were 

collected after that latitude had experienced an average annual temperature greater than 8°C (average annual 

temperature at the southern margin of I. versicolor’s range, 43°N, in 1910) were indicated. This shows that 

the most recent I. versicolor collections up to 45°N latitude have experienced average annual temperatures 

in excess of I. versicolor’s southern margin in 1910.  
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Sites P/A TA C ACA R/CA S/CA pH EC ST Lat 

17 0 0.00 0.00 0.00 0.00 0.00 4.85 0.01 9 46.0431 
22 0 0.00 0.00 0.00 0.00 0.00 7.71 0.17 11 45.7711 

23 0 0.00 0.00 0.00 0.00 0.00 6.94 0.18 7 44.1179 

57 0 0.00 0.00 0.00 0.00 0.00 7.73 1.43 * 45.0069 
66 0 0.00 0.00 0.00 0.00 0.00 6.94 0.41 11* 44.3118 

75 0 0.00 0.00 0.00 0.00 0.00 8.22 0.15 8 43.1465 

76 0 0.00 0.00 0.00 0.00 0.00 7.32 0.20 5 42.1274 
81 0 0.00 0.00 0.00 0.00 0.00 7.11 0.18 4 43.5942 

84 0 0.00 0.00 0.00 0.00 0.00 7.41 0.42 10* 45.1905 

1 1 242.01 6.00 1.39 12.20 1.44 6.81 0.13 6 44.5236 
3 1 11.61 1.00 11.61 3.88 0.00 6.24 0.01 8 46.1802 

5 1 232.26 6.00 0.42 83.71 14.35 6.15 0.51 3 45.1972 

6 1 304.80 12.00 0.14 14.35 7.18 7.15 0.25 3 45.0810 
9 1 34.84 3.00 3.25 15.38 1.54 6.16 0.22 2 45.6099 

10 1 0.84 1.00 0.84 23.92 11.96 7.45 0.41 6 45.4406 

12 1 9.29 3.00 0.19 32.29 5.38 5.44 0.01 8 46.3391 
21 1 1.95 1.00 1.95 15.38 0.00 6.49 0.34 6 45.3364 

27 1 97.55 6.00 0.09 64.59 0.00 7.14 0.07 8 44.6762 

35 1 0.09 1.00 0.09 200.00 44.44 8.01 0.24 8 44.4715 

55 1 62.50 6.00 2.22 50.00 25.00 7.25 0.13 9 44.0340 

56 1 242.01 1.00 0.09 43.06 0.00 5.49 0.03 2 44.5021 

58 1 45.00 4.00 2.28 20.00 5.00 6.53 0.12 7 43.6199 
60 1 338.82 10.00 2.23 4.04 1.35 6.88 0.19 2 44.4099 

65 1 0.98 1.00 0.98 25.63 7.18 7.32 0.03 2 45.4039 

68 1 9.29 1.00 9.29 23.55 6.73 6.86 0.15 5 45.9746 
70 1 2.32 1.00 2.32 2.15 1.29 7.40 0.42 8 45.9534 

72 1 27.87 2.00 4.55 8.79 0.00 6.47 0.00 8 45.9701 

73 1 232.26 15.00 0.37 13.46 2.69 5.64 0.00 8 46.3443 
74 1 1.86 1.00 1.86 5.92 2.69 7.16 0.80 9 46.4179 

79 1 8.25 1.00 8.25 12.00 2.00 7.49 0.29 3 43.1104 

**014 1 1.30 1.00 1.30 3.84 2.31 7.11 0.62 2 45.3556 
**015 1 0.37 2.00 0.14 86.11 14.35 8.33 0.11 1 44.4923 

**016 1 83.61 8.00 2.97 8.41 2.35 6.25 0.18 7 46.4660 

**019 1 69.68 1.00 69.68 29.90 4.48 6.76 0.15 6 46.4765            
Sites D/U D/P D/B D/AF D/BL SD Age YC Cert 

 

17 0.039 1.220 1.280 —  —  0.039 41 1976 2 
 

22 0.200 0.610 0.093 —  —  0.093 70 1947 4 
 

23 0.100 0.001 0.160 —  —  0.001 34 1983 4 
 

57 0.370 0.006 0.070 —  —  0.006 61 1956 2 
 

66 0.002 1.000 0.830 —  —  0.002 44 1973 5 
 

75 0.032 0.070 0.580 —  —  0.032 10 2007 3 
 

76 0.880 1.300 0.815 —  —  0.815 8 2009 4 
 

81 0.640 0.790 0.347 —  —  0.347 90 1927 4 
 

84 0.003 0.900 0.810 —  —  0.003 21 1996 4 
 

1 0.004 1.370 1.400 —  —  0.004 80 1937 4 
 

3 0.600 2.310 0.138 —  —  0.138 82 1935 3 
 

5 0.037 1.640 0.110 —  —  0.037 69 1948 3 
 

6 0.008 2.410 0.560 —  —  0.008 32 1985 4 
 

9 0.167 6.600 3.060 3.630 —  0.167 63 1954 3 
 

10 0.004 0.390 0.030 —  0.004 0.004 103 1914 2 
 

12 0.570 2.180 0.533 —  —  0.533 49 1968 4 
 

21 0.018 0.200 0.200 —  —  0.018 70 1947 4 
 

27 0.036 0.520 0.550 —  —  0.036 15 2002 4 
 

35 —  0.002 —  —  0.002 0.002 78 1939 3 
 

55 1.150 0.025 1.020 —  —  0.025 88 1929 4 
 

56 0.142 1.730 1.500 —  —  0.142 66 1951 3 
 

58 0.009 0.890 0.070 —  —  0.009 19 1998 3 
 

60 0.010 2.740 1.000 —  —  0.010 8 2009 3 
 

65 0.015 1.630 1.400 —  —  0.015 63 1954 3 
 

68 0.040 0.140 0.027 —  —  0.027 78 1939 5 
 

70 0.290 0.089 0.160 —  —  0.089 75 1942 2 
 

72 0.024 0.600 0.630 —  —  0.024 35 1982 2 
 

73 0.020 0.350 2.620 —  —  0.020 61 1956 2 
 

74 0.002 1.320 9.370 —  —  0.002 45 1972 2 
 

79 0.004 0.460 0.070 —  —  0.004 79 1938 5 
 

**014 —  0.007 0.260 —  —  0.007 —  2017  —  
 

**015 0.005 1.020 0.090 —  —  0.005 —  2017 —  
 

**016 0.072 0.080 0.150 —  —  0.072 —  2017 —  
 

**019 0.008 0.100 1.220 —  —  0.008 —  2017 —  
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Sites IR T IP SD PA LS FR AvgT AvgP 
 

17 0 0 0 0 0 0 0 1.79 10.61 
 

22 1 1 0 0 0 0 0 3.57 7.90 
 

23 1 1 0 0 0 0 0 3.38 12.15 
 

57 1 1 0 0 0 0 0 1.92 4.97 
 

66 1 1 0 0 0 0 0 1.60 10.34 
 

75 1 1 0 0 0 0 0 0.08 9.37 
 

76 4 1 0 1 1 1 1 -0.20 5.98 
 

81 3 1 0 0 1 1 1 0.97 17.22 
 

84 3 1 0 1 0 1 0 0.48 12.87 
 

1 1 1 0 0 0 0 0 2.92 7.37 
 

3 1 0 1 0 0 0 0 1.36 7.85 
 

5 1 1 0 0 0 0 0 3.57 7.90 
 

6 1 1 0 0 0 0 0 -0.49 7.16 
 

9 0 0 0 0 0 0 0 3.57 7.90 
 

10 1 1 0 0 0 0 0 1.59 14.65 
 

12 0 0 0 0 0 0 0 1.02 8.01 
 

21 0 0 0 0 0 0 0 3.57 7.90 
 

27 0 0 0 0 0 0 0 0.60 10.45 
 

35 1 1 0 0 0 0 0 2.92 7.37 
 

55 1 0 1 0 0 0 0 1.84 18.68 
 

56 0 0 0 0 0 0 0 3.09 6.51 
 

58 2 1 0 1 0 0 0 1.69 2.78 
 

60 0 0 0 0 0 0 0 -1.09 12.06 
 

65 0 0 0 0 0 0 0 3.57 7.90 
 

68 1 1 0 0 0 0 0 2.53 7.30 
 

70 0 0 0 0 0 0 0 2.53 7.30 
 

72 0 0 0 0 0 0 0 2.27 13.31 
 

73 0 0 0 0 0 0 0 1.02 8.01 
 

74 1 1 0 0 0 0 0 1.02 8.01 
 

79 2 1 0 1 0 0 0 3.30 5.80 
 

**014 1 0 1 0 0 0 0 —  —  
 

**015 1 1 0 0 0 0 0 —  —  
 

**016 0 0 0 0 0 0 0 —  —  
 

**019 1 1 0 0 0 0 0 —  —  
 

  

Table 2. Raw data for each site. P/A = presence/absence, TA = total area, C = clumps, ACA = average clump area, R/CA = 

rosettes per clump area, S/CA = stems per clump area, pH = soil pH, EC = soil electrical conductivity, ST = soil texture, Lat = 

latitude, D/U = distance from unpaved road, D/P = distance from paved road, D/B = distance from building, D/AF = distance 

from agricultural field, D/BL = distance from boat launch, SD = shortest distance, Age = voucher age, YC = year collected, 

Cert = certainty, IR = richness of invasive taxa, T = Typha species present, IP = Iris pseudacorus, SD = Solanum dulcamara, 

PA = Phragmites australis, LS = Lythrum salicaria, FR = Frangula and Rhamnus species present, AvgT = average change in 

temperature, and AvgP = average change in precipitation. Soil texture values range from 1-11, where 1 = clay, 2 = clay loam, 

3 = silty clay loam, 4 = silty clay, 5 = silty loam, 6 = loam, 7 = sandy clay loam, 8 = sandy loam, 9 = loamy sand, 10 = sand, 

and 11 = sand and rock. * values indicate “decaying organic matter” as a substantial component of soil substrate. 

Presence/absence values of 0 represent absent populations, and values of 1 represent present populations. Site values in the 

format “**0##” are “extra” sites.  
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Figure 4. An ArcGIS map of site localities, with 

pins noting populations that were described as 

“present” or “absent” at a given site, and four 

“extra” populations that were documented in 

2017 (a). The most southern I. versicolor site 

included in the study was located at 42.12738° 

N, and the most southern I. versicolor site with 

a population recorded as present was located at 

43.11036° N. Proportions of site type are also 

given (b). 

(a) 
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Figure 5. Most extant populations sampled had few to no 

invasive taxa co-occurring nearby, whereas some absent 

populations had high numbers of co-occurring invasive taxa 

(a; P-value = 0.0596). Latitude and invasive taxa richness 

exhibit a negative correlation, especially in absent sites (b; 

R2 = 0.4288 for absent site trendline; n = 9, P-value = 

0.2130). The majority of sites, regardless of I. versicolor 

presence or absence, only had one invasive taxa present; this 

was most commonly Typha (c). Blue (circles) corresponds 

with present I. versicolor populations, and yellow 

(diamonds) corresponds with absent populations. 
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Figure 6. Shortest distance (km) of I. versicolor sites from human disturbances shows interesting trends. Initial analyses show 

absent sites are farthest from human disturbance at low latitudes (a), but after adjusting outliers (see Discussion), distance to 

human disturbance increases with latitude for all sites (b). There appears to be an exponential relationship between distance to 

human disturbance and number of invasive taxa (c). Further analysis reveals that sites with Typha co-occurrence are 

significantly closer to human disturbances than sites without Typha (d; P-value = 0.0464). For a, b, and c, blue (circles) 

corresponds with present I. versicolor populations, and yellow (diamonds) corresponds with absent populations. For d, green 

(circles) corresponds with Typha co-occurrence, and brown (diamonds) corresponds with no Typha co-occurrence.  

Figure 7. Relationships between shortest distance to human disturbance and soil pH. Soil pH appears to decrease as sites are 

located farther away from human disturbance (a). When looking at the distribution of sites with Typha co-occurrence, it was 

found that sites with Typha have significantly higher pH (b, P-value = 0.0016). For a, blue (circles) corresponds with present 

I. versicolor populations, and yellow (diamonds) corresponds with absent populations. For b, green (circles) corresponds 

with Typha co-occurrence, and brown (diamonds) corresponds with no Typha co-occurrence. 
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Figure 8. A comparison of trends for I. versicolor presence/absence and Typha co-occurrence at I. versicolor sites. Trends 

show pH consistently decreasing with increasing latitude, though co-occurrence with Typha appears to stabilize pH across 

latitude (a and b). Soil electrical conductivity (EC) appears to increase weakly with increasing latitude, and Typha co-

occurrence marginally increases the trend (c and d). Blue (circles) and yellow (diamonds) show I. versicolor 

presence/absence, respectively; green (circles) and brown (diamonds) show Typha co-occurring or not at I. versicolor sites. 
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Figure 9. Measures of population area in relation to soil 

pH (a) and EC (b), differentiated by Typha co-occurrence. 

Population size decreases slightly with both pH and EC, 

but Typha co-occurrence is associated with a sharp 

decrease in population size as pH increases (R2 = 0.661, n 

= 11, P-value = .0268). Distance to disturbance alone was 

found to have no significant effect on I. versicolor 

population size (c; P-value = 0.4323). Green (circles) 

corresponds with Typha co-occurrence with I. versicolor 

populations, and brown (diamonds) corresponds with no 

Typha co-occurrence. Y-axes are given on a log scale. 

0.01

1

100

0 0.2 0.4 0.6

I. versicolor populations with Typha co-
occurrence are not significantly smaller 

than those without. 

0.01

1

100

0 0.2 0.4 0.6 0.8 1

Increasing soil EC is associated with 
decreasing population size, and higher 

likelihood of Typha co-occurrence.

R² = 0.1649

R² = 0.661

0.01

1

100

4.5 5.5 6.5 7.5 8.5

Typha co-occurrence is associated with 
increasing pH and decreasing I. 

versicolor population size.

(b) 

(b) 

(a) 

(c) 

(d) (c) 

(a) 



FABER ET AL. — HUMAN IMPACTS ON IRIS VERSICOLOR L. 

13 

 

 

 

 

  

Figure 10. Soil texture types against number of present and absent sites. Present sites are indicated by blue bars, and absent 

sites are indicated by yellow bars. The majority of present sites had soil with loamy character, while most absent sites had 

silty or sandy character. “Decaying organic” refers to soils mainly comprised of wet humus material or manure. 
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Figure 11. Average temperature (°C) and precipitation (mm) for latitudes across Michigan, every ten years from 1910 to 

2017. Average temperatures have steadily increased throughout the state over the past century. Average precipitation has 

generally increased, but with more variation than average temperature. Average temperature for latitudes 41, 42, and 43° N 

have increased from 9.26, 8.46, and 7.93° C to 10.21, 9.49, and 9.12° C, respectively.  
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Discussion 

The most interesting results we have found are in relation to: 1) a latitudinal gradient of I. versicolor 

presence/absence, 2) the effect of invasive species on I. versicolor presence/absence, and 3) the effect of 

Typha co-occurrence on soil pH and I. versicolor population size. Implications of soil texture are also 

discussed, as well as study limitations and future directions. 

Latitude and Iris versicolor presence/absence 

Statistical t-tests showed a trend of more Iris versicolor populations being absent at southern sites on 

average (44.3678° N versus 45.2555° N; P-value = 0.0822). While not statistically significant, this trend 

may indicate potential effects on I. versicolor populations at the southern edge of its range.  

Patterns of I. versicolor absence at southern latitudes may be linked with habitat destruction through 

degradation of wetlands, competition with invasive or newly aggressive species, or changes in temperature 

or precipitation associated with climate change. At least the latter two of these potential effects are most 

exacerbated at the southern edge of I. versicolor’s range (Figures 5, 11, 12). Our data most support the 

invasion hypothesis, with more invasive species being identified both at absent and at lower latitude sites 

(Figure 5c, P-value = 0.0596). However, invasive species competition may be facilitated by warming 

throughout Michigan, with average annual temperatures increasing by as much as 2.7° C over the past 

century (42° N; Figure 11). Warming temperatures may also reduce the competitive ability of I. versicolor, 

leading to a higher susceptibility to being outcompeted at southern sites. This competition may occur 

between not only I. versicolor and invasive species, but also more southern-ranged native species that have 

co-occurred with I. versicolor for years or even decades. As an indication of this, we can further examine 

the temperature data in Figures 11 and 12.  

The native range of I. versicolor in Michigan reaches as far south as Newaygo and Sanilac Counties, whose 

southern boundaries are at 43°N (Reznicek et al., 2011). Historic data for latitudes 41, 42, and 43° N show 

average temperature increases from 9.26, 8.46, and 7.93°C to 10.21, 9.49, and 9.12°C, respectively; the 

average annual temperature for 43°N latitude in 2017 has almost reached that of 41°N latitude in 1910. 

Furthermore, we compared changes in average annual temperature at each latitude with the recorded annual 

temperature for 43°N in 1910 (about 8°C; Figure 12c). By 2017, latitudes up to 45°N had experienced 

average annual temperatures above 8°C. Assuming climate (and especially temperature) is a crucial factor 

of delimiting species ranges, we suggest that the range of I. versicolor is shifting northward as southern 

populations become less fit and die out from stress or competition. This trend is observed in other plant and 

animal species in various regions (Lesica & McCune, 2004; Kelly & Goulden, 2008; Chen et al., 2011). 

Under this assumption, new I. versicolor populations should also become established at more northern 

latitudes than previously recorded, though the ability of I. versicolor and other plants to establish at the 

same rate of southern range die-off is contested (DiMento & Doughman, 2014).  

Evidence is also found for the hypothesis of habitat destruction via human construction of roads and 

buildings. Distance to unpaved and paved roads show little to no correlation with latitude, but distances to 

buildings and shortest overall distance to disturbance have notable correlations (Tables S1 and S2). The 

two southernmost sites – both with absent I. versicolor populations – have the first and third highest 

“shortest distance” values recorded for this study, meaning they were located farthest away from the human 

disturbances we considered (Table 2). However, these sites were also located within nature reserves 

undergoing processes of invasive species removal; thus, it could be argued that these sites have the closest 

proximity to human disturbances of all sites in this study. With this revision, site distance from human 

disturbance increases slightly with latitude, and sites with Typha co-occurrence are significantly closer to 

human disturbances (Figure 6, P-value = 0.0464). Hence, disturbance may also lead to increased 

vulnerability at I. versicolor sites, especially more southern sites. This triple-threat for southern I. versicolor 

populations – increased proximity to human disturbances, average annual temperatures reaching 
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unfavorable levels, and more co-occurrence with invasive species – may contribute to I. versicolor 

population disappearance.  

Despite these hypotheses, there is the potential of systematic error within our data. As shown in Figure 4, 

study sites were not evenly distributed throughout the state, especially in the southern I. versicolor range. 

The average of the highest and lowest latitudes for all sites (46.47647° N and 42.12738° N respectively) is 

44.3019° N, nearly a full degree of latitude lower than the average latitude of all sites, 45.0205° N. 

Furthermore, when using these averages to compare incidence of I. versicolor sites at higher and lower 

latitudes, 7 sites were located below 44.3019° N and 15 were located below 45.0205° N. Thus, while the 

observed trend in site latitude is potentially interesting for examining I. versicolor’s response to latitude-

dependent variables, such as warming climate, the paucity of sampling especially in I. versicolor’s southern 

range prevents us from claiming with certainty that a climate or human disturbance effect is present along 

a latitudinal gradient. Increasing the sample size of the study, especially in the lower portion of I. 

versicolor’s range in Michigan, may confirm or reject the observation of latitudinal presence/absence.  

Typha impact on Iris versicolor presence/absence and population size 

The most common invasive species at each site were members of the genus Typha (Figure 5). Typha 

presence was recorded for every absent site except the northernmost one, and was found to correlate highly 

with site latitude for all site types, but also with soil pH and EC (Table S1; Figures 7 & 8). The correlations 

with site absence and latitude support our hypothesis that southern I. versicolor sites are more vulnerable 

to being outcompeted, though it is difficult to determine the strength of effect of climate variables. Human 

activities may facilitate Typha dispersal and aggression across all of Michigan, whether through intentional 

planting of Typha to prevent fertilizer run-off and aid in wastewater treatment (Hammer, 1992; 

Nilratnisakorn et al., 2009; Prellwitz & Thompson, 2014), or through unintentional disturbances that can 

give Typha an edge on other native species (Shih & Fenkelstein, 2008; Olson et al., 2009, Albert & Minc, 

2014).  

Typha co-occurrence is shown to have a stabilizing effect on soil pH and EC across latitudes, showing less 

fluctuation with increasing latitude than sites without Typha (Figure 8). The correlations with soil properties 

could be due to some property of Typha in riparian systems, where Typha is able to regulate soil pH and 

EC; this idea underlies the use of Typha in wastewater treatment plots, to “clean” water systems 

(Nilratnisakorn et al., 2009). However, the observed trends could also signify a difference in fundamental 

niche for I. versicolor and Typha species, where I. versicolor is better adapted to soils with lower levels of 

pH than Typha species. I. versicolor has been shown to adapt to acidic soils through thickening its rhizome, 

supporting this claim (Gates & Erickson, 1924). This would indicate that changes in pH are not driven by 

Typha co-occurrence, but by some other factor, like proximity to a human disturbance – but our data do not 

show a strong relationship between pH and proximity to human disturbance when Typha is not included 

(Figure 7). A combination of these hypotheses may apply, in which Typha is most competitive at pH values 

near 7, and is able to somewhat regulate pH to achieve these levels, creating a more ideal habitat for itself 

in the process. This may contribute to the aggressive nature of Typha species in their natural habitats (Shih 

& Fenkelstein, 2008; Olson et al., 2009; Albert & Minc, 2014).  

Furthermore, we have uncovered a significant relationship between Typha co-occurrence, increasing pH, 

and decreasing I. versicolor population size (Figure 9a). It appears that increasing the alkalinity of soils 

alone has no significant effect on I. versicolor population size (P-value = 0.5732), but increasing pH and 

Typha co-occurrence leads to major decreases in I. versicolor population size (P-value = 0.0268). This does 

not appear to be an artifact of distance to human disturbance, as there is no significant difference in 

population size between sites with Typha co-occurrence and those without (Figure 9c, P-value = 0.9792).  

Combining these evidences, we may conclude with reasonable certainty that competition with Typha 

species is a considerable threat to the population size and overall abundance of I. versicolor in Michigan. 

Future studies that differentiate between various Typha species in Michigan (i.e., native species T. latifolia, 
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introduced species T. angustifolia, and invasive hybrid T. ⨯glauca) may uncover more nuanced 

relationships between Typha species and I. versicolor and other native riparian species.  

Other invasive species 

Other invasive species were not emphasized in the results due to the low frequency of recorded occurrence 

of each invasive species per site. Attempting to draw conclusions from population sizes of less than four 

occurrences is not justified, especially when species occurred only at present (Iris pseudacorus) or only at 

absent (Phragmites australis, Lythrum salicaria, Frangula alnus/Rhamnus cathartica) sites.  

Low frequency of recorded invasive species per site may be due to methodological error since these species 

were not emphasized in co-occurring taxa identification until the second research period, summer 2018. 

Because the second research period also focused on sites at lower latitudes, the observed trend of invasive 

species richness with lower latitude may be an artifact of the sampling rather than a real trend. Nonetheless, 

interesting notes are made here about invasive taxa patterns near I. versicolor sites. 

Iris pseudacorus, the yellow flag, is an invasive Iris introduced to the United States as an ornamental that 

promptly escaped cultivation. It is classified as an invasive weed in 12 states in the US, including Michigan 

(Morgan, 2019). Its habit and preferred habitat are nearly identical to that of I. versicolor, and as such it 

would be expected to outcompete the native species; however, I. pseudacorus was recorded at only three I. 

versicolor sites. Furthermore, these sites all had present I. versicolor populations. The two species appeared 

to co-occur along rivers and lakeshores rather than directly compete for habitat. None of the three voucher 

specimens from the I. versicolor sites mentioned presence of I. pseudacorus at time of collection, so it is 

unknown how long these populations have co-occurred; monitoring of these sites in years to come may be 

necessary to assess the extent of competitive interaction that may exist between these species.  

Frangula alnus and Rhamnus cathartica, glossy buckthorn and common buckthorn respectively, are 

members of the Rhamnaceae and notorious invaders of the Great Lakes Region (Michigan Natural Features 

Inventory, 2012; Stuartevant, 2019). These shrubs leaf out early and hold their leaves until late in the season, 

obscuring light from native understory species and decreasing native plant diversity. These plants have also 

been associated with altering nutrient cycling and facilitating changes in soil hydrology, draining wetlands 

and preventing recolonization of riparian species (Miletti et al., 2005). Two sites had recorded occurrences 

of Frangula or Rhamnus, both of which were located in preservation areas: the Chippewa Nature Center in 

Midland County, and the MacCready Reserve in Jackson County. Both nature areas had signs detailing 

buckthorn removal projects and the potential ecological threats these taxa present, and I. versicolor was 

absent in both areas. In fact, the two sites with the highest invasive taxa richness were the two sites 

designated as public nature areas dedicated to native plant conservation. This great irony may indicate that 

despite our best efforts, invasive species dispersal is greatest where human traffic is greatest.  

Phragmites australis, common reed, and Lythrum salicaria, purple loosestrife, were both recorded as 

present at the two nature reserve sites previously mentioned, and L. salicaria was also found at a disturbed 

site in Petoskey County where no I. versicolor was identified. Since neither of these taxa were found 

frequently nor in isolation from other invasive taxa, it is difficult to surmise the strength of their relative 

impacts on I. versicolor population presence/absence.  

Solanum dulcamara, bittersweet nightshade, is a climbing herbaceous plant in the Solanaceae. It is not a 

species that would appear to readily compete with I. versicolor, since it is not strictly riparian nor would 

prefer to climb I. versicolor and potentially shade or constrict the plant, but its presence could be considered 

an indicator of human activity and invasive species dispersal (though dispersal may also be facilitated by 

animals, such as birds (Cao & Berent, 2019). S. dulcamara was identified at four sites, two present and two 

absent; these sites were mainly in the southern half of Michigan, in Jackson, Lapeer, Newaygo, and 

Charlevoix counties (Table 2). Other than a marginally higher presence at 43°N latitude and below, this 
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species does not appear to be an indicator of any great disturbance in regards to I. versicolor 

presence/absence. 

Nature of I. versicolor in disturbed sites 

We have shown that sites with shorter distances to human disturbances tend to have a higher likelihood of 

co-occurrence with invasive species (especially Typha), but on the whole, I. versicolor sites were located 

at fairly short distances from human disturbances anyway. This could be an artifact of more I. versicolor 

populations being recorded where they are obvious, i.e. near roadsides or areas where humans frequently 

pass by. There are very few records included this study where sites were located several miles from any 

human disturbance. Indeed, more digitization efforts in herbaria have shown substantial collection biases 

(Daru et al., 2017). 

Despite the aforementioned findings of I. versicolor competing poorly in disturbed sites, some 

observations support the claim that I. versicolor does well in disturbed sites. Site 06, located along Herron 

Rd. in Alpena County, was visited during both summers 2017 and 2018. The site was described as a mile-

long stretch of unpaved road with deep ditches on either side, with I. versicolor appearing infrequently 

within said ditches. During summer 2017, the site appeared to have been completely cleared of woody 

vegetation on the eastern side (perhaps recently mowed for the installation of electrical poles), with an 

expanse of about ten meters from the road dominated by a prairie-like community. Beyond the cleared 

area and on the western side of the road was mesic forest. The original voucher, collected in 1972, stated 

that the specimen was collected in the eastern ditch; upon visitation in 2017, only 1-3 individuals were 

observed, all occurring singularly, at odd intervals on the eastern side of the road. About 12 individuals, 

occurring either singly or with two or three stems, were observed on the western, shaded side. We 

surmised that the recent clearing of the eastern side of the road and ditch had also severely cut down the I. 

versicolor population, and it was only now reestablishing, either from rhizomes or seeds coming from 

upstream of the ditch (though wild germination rates appear to be poor (Zhang et al., 2000)). 

Upon visitation in 2018, when we checked the progress of the population, it appeared that the singular 

individuals we had observed the previous year had been quite successful. One individual, which had only 

one bloom and one leaf rosette in 2017, had 8 leaf rosettes in 2018 and multiple blooms producing seed. 

The high light intensity of the cleared eastern road as well as the opened habitat for I. versicolor to spread 

via rhizome likely led to high productivity for the eastern irises, and allowed them to continue 

reestablishing.  

The high light requirements, and relatively slow spread, of I. versicolor (Coulber, 2019) may mean that 

periodic disturbance of I. versicolor habitat is actually beneficial to its persistence. If succession would be 

allowed unabated, large woody species with riparian habits such as Alnus spp. would be able to colonize 

and shade I. versicolor, leading to less bloom output and the potential for genetic stagnation due to no 

sexual reproduction occurring within the population (excessive shading leading to no bloom output was 

observed for sites 03, 21, 27, 56, and 72; Table 2). This, coupled with I. versicolor’s slow rhizomatous 

spread compared to other riparian species like grasses, sedges, or Typha, can lead to I. versicolor 

becoming outcompeted. With regular clearing of shading species, or species with less hardy or no 

rhizomes, I. versicolor can likely persist for long periods of time. The oldest voucher used in this study, 

collected 103 years before the 2017 visitation, may be an example of this exceptional persistence, in 

which I. versicolor was collected near a maintained boardwalk in Manistique on the shore of Lake 

Michigan.  
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Soil texture and sedimentation rates 

Soil textures for sites with present I. versicolor populations tended to have loamy soils, while sites with 

absent populations tended to have sandy soils or soils with excessive organic matter (Figure 10). Sandy or 

highly organic soils may have increased sedimentation, leading to covering and suffocating of I. versicolor 

rhizomes; suffocated rhizomes can be found under the substrate, decaying in the spring (Gates & Erickson, 

1924).  

Increased sedimentation and subsequent suffocation of I. versicolor rhizomes that may contribute to 

population absence would be expected to occur more frequently after deforestation, when soils are more 

susceptible to erosion (Daniels, 1987), or as a function of increased precipitation (Sweeney, 1992). Average 

annual precipitation has increased throughout Michigan over the past century (Figure 11), indicating that 

sedimentation rates may be a concern, especially as climate continues to change into the next century (Pryor 

et al., 2014). Examining voucher age and location in relation to deforestation events or other changes in 

land use would be an effective means of assessing how I. versicolor populations may respond to these 

disturbances as well.  

Study limitations 

As mentioned previously, the unequal distribution of study sites throughout Michigan presents difficulty 

for drawing conclusions about I. versicolor presence/absence in relation to a latitudinal gradient. Unequal 

emphasis on identification of invasive species across sites also mitigates our ability to state conclusions 

about invasive co-occurrence with certainty (with the exception of Typha spp.). Determining that a site was 

the correct locality but that I. versicolor was not present was difficult to accomplish with certainty; it is 

possible that I. versicolor was present at some of the sites we called “absent”, but we simply were looking 

in the wrong place. Lastly, because of our emphasis on the impacts of human disturbances on I. versicolor 

populations, we did not examine the potential effects of “natural” disturbances, such as flooding, disease, 

or herbivory. 

Future renditions of this study or similar projects would benefit from an equally enforced methodology 

across all sites, and an improved methodology for determining a population to be absent (perhaps searching 

for decaying rhizomes, as in Gates & Erickson, 1924). Introducing measures for monitoring water level at 

a site or the ability of the site’s soils to retain water, the microbial community and nutrient composition of 

soils, the reproductive phenology of I. versicolor across sites, and the interactions of I. versicolor with 

pollinators, herbivores, and pests would all be of use for disentangling the effects of these variables on I. 

versicolor and its habitat. In addition to these, the use of environmental niche modeling to predict the future 

distribution of I. versicolor and monitoring the areas within this predicted range would be interesting to 

further understand the niche requirements and dispersal ability of I. versicolor. Revisiting these sites 

periodically to more closely track the presence, disappearance, and even recolonization of I. versicolor, as 

well as changes in co-occurring taxa and the surrounding habitat, would provide valuable data for 

improving our understanding of what contributes to the ecology of I. versicolor. 

Confirmation of our findings via experiments would also be useful. Specifically, greenhouse experiments 

of the competitive ability of I. versicolor against other species at different levels of pH, average temperature, 

and with disturbance regimes would aid in determining the causal factors of I. versicolor absence. Studies 

of the ability of I. versicolor to withstand sedimentation would also improve our understanding of this 

species. Finally, disentangling the apparent effects of disturbance, temperature, and invasion on I. 

versicolor will help in understanding conservation of this and similar species, as well as how compounding 

factors of human disturbance may contribute to changes in ecosystem composition and function. 

Aside: quality of herbarium data 

The variance in the quality of location data obtained from herbarium specimens illuminates an issue within collections 

that must be addressed for future projects. A growing interest has been exhibited in mapping specimen localities for 
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public use (Daru et al., 2017), but this data is only as accurate as the data from which it was obtained. Particularly for 

older specimens, location data is at worst diminished to a nearby city or lake name, which may be useful for broad 

understanding of a species’ habitable range but functionless for a project interested in examining the ecology of 

individual habitats. Fortunately, recent collectors have taken up the use of GPS coordinates or mapping software such 

as ArcGIS, GBIF, or iNaturalist to increase accuracy. Regulation of collection donations to include certain locality 

specifications – perhaps something as simple as mandating the inclusion of latitude/longitude data – would simplify 

the digitization process and facilitate returning to populations to monitor their health and longevity.  

Furthermore, in the interest of monitoring population growth and decline, such information may be requested for 

collected specimens: photographs of the individual and the population, approximate measurements of the scope of a 

population (if applicable; measurements of population “length” and “width” may be difficult for a population that 

appears to stretch for several miles), and noticeable signs of disease, co-occurring species, or disturbances that may 

explain species colonization or extirpation. Additional metadata for herbarium specimens, especially in this era of 

“big data”, can only improve future research projects and our understanding of the world’s flora.   

Conclusions 

Iris versicolor is still present at most of the sites we examined, though populations may be shrinking or 

disappearing in relation to competition with species of Typha. I. versicolor populations may be most 

vulnerable in the southern margin of its range, where its habitat experiences higher rates of human 

disturbance, a greater dispersal of invasive species, and high average annual temperatures. However, there 

is also evidence that periodic human disturbance is beneficial to I. versicolor, perhaps in isolation of these 

other factors. Soils for present populations have consistent soil texture, but pH and electrical conductivity 

appear to be sensitive to other factors, particularly those that correlate with Typha co-occurrence. Visiting 

these sites periodically in coming years and adding more parameters to site assessments may uncover 

more interactions between I. versicolor, other native and invasive species, humans, and our environment.  
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(S1) P/A TA C ACA R/CA S/CA pH EC Lat D/DR D/A D/B SD IR T IP SD PA LS FR 

P/A 1.00 0.37 0.45 0.19 0.37 0.33 -0.19 -0.22 0.36 -0.18 0.18 0.14 -0.24 -0.49 -0.40 0.19 -0.19 -0.42 -0.52 -0.42 

TA 0.37 1.00 0.79 -0.01 0.06 -0.02 -0.31 -0.17 0.01 -0.19 0.09 -0.04 -0.01 -0.31 -0.14 -0.11 -0.17 -0.15 -0.19 -0.15 
C 0.45 0.79 1.00 -0.10 0.06 0.09 -0.27 -0.22 0.16 -0.17 -0.02 0.01 -0.09 -0.38 -0.27 -0.01 -0.15 -0.19 -0.23 -0.19 

ACA 0.19 -0.01 -0.10 1.00 -0.01 -0.03 -0.05 -0.10 0.27 -0.14 -0.10 0.04 -0.11 -0.03 0.11 0.03 -0.04 -0.08 -0.10 -0.08 

                     
R/CA 0.37 0.06 0.06 -0.01 1.00 0.88 0.19 -0.11 -0.07 0.01 0.16 -0.05 0.10 -0.21 0.10 -0.04 -0.15 -0.15 -0.19 -0.15 

S/CA 0.33 -0.02 0.09 -0.03 0.88 1.00 0.29 -0.04 -0.08 -0.02 0.01 -0.02 0.05 -0.16 0.16 0.15 -0.13 -0.14 -0.17 -0.14 

pH -0.19 -0.31 -0.27 -0.05 0.19 0.29 1.00 0.35 -0.43 -0.17 -0.21 -0.11 0.00 0.29 0.55 -0.01 0.14 0.10 0.16 0.10 
EC -0.22 -0.17 -0.22 -0.10 -0.11 -0.04 0.35 1.00 0.02 0.09 -0.20 0.19 -0.01 0.05 0.33 0.00 0.01 -0.06 0.02 -0.06 

Lat 0.36 0.01 0.16 0.27 -0.07 -0.08 -0.43 0.02 1.00 -0.10 -0.03 0.32 -0.38 -0.56 -0.40 0.05 -0.51 -0.50 -0.40 -0.50 

D/DR -0.18 -0.19 -0.17 -0.14 0.01 -0.02 -0.17 0.09 -0.10 1.00 0.01 -0.11 0.64 0.40 0.04 -0.15 0.07 0.53 0.38 0.53 

D/A 0.18 0.09 -0.02 -0.10 0.16 0.01 -0.21 -0.20 -0.03 0.01 1.00 0.28 0.24 -0.13 -0.21 -0.07 0.10 0.00 -0.01 0.00 

D/B 0.14 -0.04 0.01 0.04 -0.05 -0.02 -0.11 0.19 0.32 -0.11 0.28 1.00 -0.05 -0.10 0.03 -0.07 -0.06 -0.06 -0.05 -0.06 

SD -0.24 -0.01 -0.09 -0.11 0.10 0.05 0.00 -0.01 -0.38 0.64 0.24 -0.05 1.00 0.51 0.21 -0.14 0.28 0.75 0.57 0.75 
IR -0.49 -0.31 -0.38 -0.03 -0.21 -0.16 0.29 0.05 -0.56 0.40 -0.13 -0.10 0.51 1.00 0.29 0.10 0.50 0.78 0.84 0.78 

T -0.40 -0.14 -0.27 0.11 0.10 0.16 0.55 0.33 -0.40 0.04 -0.21 0.03 0.21 0.29 1.00 -0.35 0.32 0.22 0.28 0.22 

IP 0.19 -0.11 -0.01 0.03 -0.04 0.15 -0.01 0.00 0.05 -0.15 -0.07 -0.07 -0.14 0.10 -0.35 1.00 -0.11 -0.08 -0.10 -0.08 
SD -0.19 -0.17 -0.15 -0.04 -0.15 -0.13 0.14 0.01 -0.51 0.07 0.10 -0.06 0.28 0.50 0.32 -0.11 1.00 0.30 0.53 0.30 

PA -0.42 -0.15 -0.19 -0.08 -0.15 -0.14 0.10 -0.06 -0.50 0.53 0.00 -0.06 0.75 0.78 0.22 -0.08 0.30 1.00 0.80 1.00 

LS -0.52 -0.19 -0.23 -0.10 -0.19 -0.17 0.16 0.02 -0.40 0.38 -0.01 -0.05 0.57 0.84 0.28 -0.10 0.53 0.80 1.00 0.80 
FR -0.42 -0.15 -0.19 -0.08 -0.15 -0.14 0.10 -0.06 -0.50 0.53 0.00 -0.06 0.75 0.78 0.22 -0.08 0.30 1.00 0.80 1.00 

                     
                     
(S2) P/A TA C ACA R/CA S/CA pH EC Lat D/DR D/A D/B SD IR T IP SD PA LS FR 

P/A —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  
TA —  1.00 0.76 -0.09 -0.09 -0.15 -0.33 -0.16 -0.17 -0.16 0.02 -0.11 0.15 -0.29 0.01 -0.20 -0.15 —  —  —  

C —  0.76 1.00 -0.21 -0.13 -0.07 -0.27 -0.22 -0.01 -0.12 -0.12 -0.06 0.04 -0.36 -0.12 -0.11 -0.10 —  —  —  

ACA —  -0.09 -0.21 1.00 -0.09 -0.10 -0.02 -0.09 0.28 -0.13 -0.14 0.01 -0.11 0.14 0.23 0.00 0.00 —  —  —  
R/CA —  -0.09 -0.13 -0.09 1.00 0.86 0.36 -0.06 -0.30 0.11 0.10 -0.11 0.37 -0.07 0.31 -0.11 -0.11 —  —  —  

S/CA —  -0.15 -0.07 -0.10 0.86 1.00 0.48 0.05 -0.28 0.04 -0.05 -0.07 0.25 -0.01 0.35 0.10 -0.09 —  —  —  

pH —  -0.33 -0.27 -0.02 0.36 0.48 1.00 0.31 -0.39 -0.42 -0.15 -0.04 -0.17 0.22 0.44 0.04 0.09 —  —  —  
EC —  -0.16 -0.22 -0.09 -0.06 0.05 0.31 1.00 0.08 0.01 -0.16 0.44 0.21 0.03 0.31 0.07 -0.02 —  —  —  

Lat —  -0.17 -0.01 0.28 -0.30 -0.28 -0.39 0.08 1.00 0.26 -0.13 0.37 0.06 -0.32 -0.26 -0.03 -0.60 —  —  —  

D/DR —  -0.16 -0.12 -0.13 0.11 0.04 -0.42 0.01 0.26 1.00 0.02 -0.09 0.44 -0.02 -0.11 -0.15 -0.15 —  —  —  
D/A —  0.02 -0.12 -0.14 0.10 -0.05 -0.15 -0.16 -0.13 0.02 1.00 0.25 0.38 -0.23 -0.14 -0.10 0.09 —  —  —  

D/B —  -0.11 -0.06 0.01 -0.11 -0.07 -0.04 0.44 0.37 -0.09 0.25 1.00 -0.06 -0.06 0.15 -0.10 -0.09 —  —  —  

SD —  0.15 0.04 -0.11 0.37 0.25 -0.17 0.21 0.06 0.44 0.38 -0.06 1.00 -0.36 0.15 -0.17 -0.13 —  —  —  

IR —  -0.29 -0.36 0.14 -0.07 -0.01 0.22 0.03 -0.32 -0.02 -0.23 -0.06 -0.36 1.00 -0.01 0.41 0.17 —  —  —  

T —  0.01 -0.12 0.23 0.31 0.35 0.44 0.31 -0.26 -0.11 -0.14 0.15 0.15 -0.01 1.00 -0.33 0.33 —  —  —  

IP —  -0.20 -0.11 0.00 -0.11 0.10 0.04 0.07 -0.03 -0.15 -0.10 -0.10 -0.17 0.41 -0.33 1.00 -0.11 —  —  —  
SD —  -0.15 -0.10 0.00 -0.11 -0.09 0.09 -0.02 -0.60 -0.15 0.09 -0.09 -0.13 0.17 0.33 -0.11 1.00 —  —  —  

PA —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  
LS —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  

FR —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  

Tables S1 and S2. Correlations between study parameters are given for all sites (S1) and only present and “extra” populations (S2). Colors scale to level of correlation. 

Darker green cells indicate high positive correlation between parameters, and darker red cells indicate high negative correlation between parameters. P/A = 

presence/absence, TA = total area, C = clumps, ACA = average clump area, R/CA = rosettes per clump area, S/CA = stems per clump area, pH = soil pH, EC = soil 

electrical conductivity, Lat = latitude, D/DR = distance from dirt road, D/A = distance from asphalt, D/B = distance from building, SD = shortest distance, IR = 

invasives richness, T = Typha species present, IP = Iris pseudacorus, SD = Solanum dulcamara, PA = Phragmites australis, LS = Lythrum salicaria, and FR = 

Frangula and Rhamnus species present. — values in S2 occur due to no variation in values for these metrics for present or “extra” populations (all values are either 0 

or 1). Correlations discussed further in the text are shown in black boxes. 


