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ABSTRACT 
 

 

Epithelia are quasi-two-dimensional sheets of cells that play an important role in the early 

developmental processes of many types of animal tissue. The dynamics of these tissues depend on 

the spatial structure of the cells, which interact and generate mechanical forces amongst one 

another in complex ways. An epithelium is an active disordered material, meaning the study of its 

structural features lack the symmetry or elegance of that allowed by crystallography, limiting the 

tools at one’s disposal to fully describe the relationship between cellular arrangement and the 

resultant forces at work.  

Here, we apply a vertex model framework to represent epithelia and develop an 

understanding of the spatial distribution of cells produced by it. We observe evidence of 

hyperuniformity exhibited by the simulations, characterized by the suppression of density 

fluctuations at long length scales, often referred to as a form of “hidden order” in nature. The 

computational methods employed to produce these results are discussed, as well as the limitations 

that prevent a full exploration of this behavior. We present results relating the presence of 

hyperuniformity to the ratio between the bulk and shear moduli of the tissues, to explain this 

behavior with respect to measurable quantities outside the scope of simulation parameters.         

The vertex model is meant to generalize to any physical or theoretical system describing 

epithelia, and we demonstrate this by comparing data from simulations to a theoretical continuum 

model that predicts the dynamics of elastic tissues featuring noisy growth and mechanical 

feedback. We focus on findings for the statistics of marked, neutral clones and verify the prediction 

that the normalized variance of clone areas scale like the inverse of the initial size of the clone. 

Other analytic results concerning the time-dependent behavior of clone size variance disagree with 

simulation data and suggest evidence of the vertex model exhibiting nonlinear behavior related to 

hyperuniformity.  

We discuss the development of new models to capture the relationship between density 

fluctuations in disordered systems and its elastic properties. The results presented throughout the 

thesis lay a groundwork for future projects in pursuit of understanding the origin of 

hyperuniformity in the vertex model and disordered systems in general. 
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CHAPTER I 

Introduction 
 

Communicating the details with which epithelial cells coordinate themselves into complex 

biological structures can lead to fascinating discussions and insights. Exploring this topic from a 

physics standpoint can reveal even more interesting behavior providing a unique understanding of 

the mechanisms and properties that drive development. This chapter will serve as a general 

introduction to important concepts at the focal point of the thesis. To preface the results of 

subsequent chapters, a brief biological overview of epithelia will be provided, alongside an initial 

introduction to the vertex model used to produce computational simulations. We will then discuss 

ideas from elasticity theory, as these will be used often to relate our discretized cell models of 

epithelia to the well-defined properties of continuous elastic materials. Finally, hyperuniformity in 

disordered systems will be given a thorough treatment, as this phenomenon is the focus for most 

of our findings.  

 

1.1 Epithelium 
  

 Epithelium is one of the primary types of animal tissue organisms use to build complex 

tissues and organs during development [1, 2, 3, 4]. This tissue can be thought of as a quasi-two-

dimensional array of cells that provide a protective alignment for the outer surfaces of organs and 

blood vessels, for example [5, 6, 7]. In particular, epithelial cells play an important role in 

developmental biology, which is typically divided into the processes controlling tissue growth, 

patterning of cellular differentiation, and morphogenesis. In this thesis, the focus is restricted to 

morphogenesis, which attempts to describe the process of how cells and tissue develop their 

shapes. The processes of a tissue determining its shape and spatial distribution of cells are involved 

not only during the embryonic stages of growth for an organism, but also in the study of stem cells 

and regeneration of damaged tissue. Cancer is also relevant example of abnormal morphogenetic 

behavior, and so understanding the underlying mechanics involved is an important topic of interest 

[8, 9, 10, 11].  
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 Epithelia are an active material capable of both producing and reacting to mechanical 

forces. Tissue comprised of epithelial cells form a continuous sheet, with neighboring cells 

attached to each other through specialized protein complexes called adherens junctions. These 

adherens junctions ensure that the boundaries of each cell are bound tightly together and maintain 

the epithelium’s mechanical integrity [12, 13]. Another feature of these cells influencing cell-cell 

interactions is a band of contractile cortical actomyosin underneath the adherens junctions that, in 

combination with one another, creates an effective line tension in each junction allowing cells to 

modulate the contractility of their borders. Altogether, these biological structures describing cell-

cell adhesion and actomyosin cortical contractility introduce forces that cause cell shape change 

and the rearrangements that underlie morphogenetic processes [14, 15].  

 

  
 

FIG. 1.1: A Cartoon example of an epithelium. Bands of actomyosin surrounding each cell 
create contractile forces. Adherens junctions maintain contact between cells. B Simple 

illustrative model of epithelium as a two-dimensional network of cells and edges. Tissue 
dynamics are determined by balancing forces between cell pressures and edge tensions. Original 

cartoon credited to Meryl Spencer [16]. 
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There are three important topological changes that take place in epithelial tissue that drive 

morphogenesis: mitosis, apoptosis (or T2 transitions), and T1 transitions. Mitosis can be described 

as a singular cell dividing itself into two cells with identical properties. During mitosis, a cell is 

segmented along a random axis, and is the primary mechanism by which a tissue can grow [17]. 

Apoptosis is essentially the inverse of mitosis, in which a cell dies and is purged from the tissue. 

During apoptosis, a cell shrinks, and its neighboring cells move in to replace the subsequent gap 

to ensure that the extruded cell does not compromise the continuous nature of the tissue. T1 

transitions, on the other hand, do not involve adding or removing cells from the tissue, acting 

instead as a more direct rearrangement of the cells in a tissue, shown in fig. 1.2. During a T1 

transition, cells swap neighbors by shrinking the border between two cells until four are all adjacent 

to one site, after which the shrunken border elongates in a roughly perpendicular direction. T1 

transitions cause a change in the topology of the tissue, allowing cells in the sheet to change shape 

and reach their preferred locations [18].  

 From the interplay between mechanical forces and cellular rearrangements described 

above, one can attempt to understand the behavior and mechanisms involved in morphogenetic 

processes through a biophysical lens. However, though the importance of cell structure and 

organization in epithelium is apparent, the biophysical mechanisms involved in describing the 

behavior of cell shape and position is still lacking. A further understanding of the physics 

underlying epithelium is required to build more reliable quantitative and predictive models of 

developmental processes in biological tissue.  

 

 

FIG. 1.2: Cartoon of a T1 transition. Neighbor exchange is caused by an edge shrinking until 
forming a fourfold vertex and then elongating again in the perpendicular direction. Original 

cartoon credited to Meryl Spencer [16]. 
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 This thesis focuses on expanding our understanding of the cellular mechanics and 

arrangement of epithelia using one of these predictive models. Given the complex dynamical 

behavior of biological tissue, it is necessary to utilize computational models to study their behavior 

in time [19, 20]. There are many types of models commonly used, though this thesis will deal 

exclusively with a vertex model. The vertex model reduces an epithelial sheet to a two-dimensional 

plane of points representing sites where three or more cells meet, connected by straight lines, or 

edges, as the junctions between neighboring cells. The degrees of freedom of such a model are 

these points, or vertices, which each experience forces imposed by equations of motion and 

integrated through time [21, 22, 23]. This model assigns forces on a cellular scale, ignoring the 

finer biological structures that grant the tissue its mechanical properties. However, the equations 

of motion imposed on each vertex are inspired by known biological components of the cell, such 

as a vertex subject to a contractile force from each of its edges just as a cell feels an effective 

tension from the cortical actomyosin bands along each of its boundaries [24].  

 A physical justification for using the vertex model as described is its similarity to a model 

of dry soap film, an array of bubbles with very little interstitial fluid separating the boundaries 

between them. The behavior of dry soap films is well defined mathematically, from research dating 

as far back as the 1800s by Plateau [18]. In modeling the evolution of a soap film, the final shape 

of each bubble is determined by minimizing the surface area of the bubble or length of its 

interfaces, dependent on some value of surface tension. Due to this interfacial tension influencing 

the dynamics of both soap films and epithelial tissue, models commonly used to describe these 

films have also been used to model the dynamics of epithelium. The vertex model is a simplified 

variant of these types of models, as it is restricted to two dimensions instead of three, and the edges 

representing cell boundaries are straight lines connecting vertices rather than having an arbitrary 

curvature as in the Plateau model. Despite these differences, the vertex model still adequately 

inherits the fundamental physics of the system due to epithelial cells’ approximately polygonal 

shapes and has been applied to the study of epithelial morphogenesis in the past with positive 

results [21, 25, 26]. Simulations produced by the vertex model are featured prominently in the 

work detailed by this thesis and will be discussed further in Chapter II.  
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1.2 Linear Elasticity 
 

 Epithelium, as discussed above, is capable of generating complex internal forces and 

topological rearrangements that can cause complications when applying strategies from physics 

to develop models that try to predict its mechanical properties. Due to the quadratic energy cost 

imposed by our model penalizing deformations from a preferred area, as well as the assumption 

that significant displacement of cell positions occurs over long timescales, the dynamics of the 

tissue are often thought in terms of material properties like elasticity [27, 28]. An obvious first 

guess for a coarse-grained continuum model is linear elasticity, and we will find it useful 

throughout this thesis to compare the results of cell-based, vertex model simulations to the 

predictions of linear elastic theory, which we will review here [29, 30]. 

 We will often borrow from formulations of elasticity theory when describing quantities 

like stress and deformations felt by the tissue. When confronted with some applied force, a material 

body is correspondingly deformed. The deformation of a body is defined mathematically by a 

displacement vector, 𝒖! = 𝒙"! − 𝒙!, which describes the distance traveled by a singular point by 

subtracting the position vector before deformation, 𝒙!, from the position vector after deformation, 

𝒙"!. From this, one can define a tensor giving the change in an element of length in the material 

after deformation at any point, called the strain tensor, 

 

𝑢!# =
1
2 (
𝜕𝒖!
𝜕𝒙#

+
𝜕𝒖#
𝜕𝒙!

+
𝜕𝒖$
𝜕𝒙!

𝜕𝒖$
𝜕𝒙#

+ ≈
1
2(
𝜕𝒖!
𝜕𝒙#

+
𝜕𝒖#
𝜕𝒙!

+	. (1.1) 

 

 The strain tensor is symmetric, and so can be diagonalized at any given point with an 

appropriate choice of coordinate axes. In the case of small deformations, wherein the change in 

distance between two points after deformation is much smaller than the distance itself, the strain 

tensor can be approximated as the expression seen to the far right-hand side of (1.1).  

 When a body undergoes a deformation, it ceases to be in mechanical equilibrium and 

experiences internal forces, which work to return the body to equilibrium. These internal forces 

are referred to as internal stresses and occur only in the case that the body is deformed. The internal 

stresses inside a tissue are generated by molecular and cellular forces from the cells, though the 

influence of these forces extend only to an order of distance within its neighboring cells, whereas 
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elasticity theory is concerned with distances much larger than the scale of individual cells. The 

stress tensor, 𝜎!#, contains the information about the internal stress of a body at a given point, 

describing the i-th component of the force on unit area perpendicular to the 𝑥#-axis, which can be 

defined with respect to the strain tensor via 

𝜎!# = (
𝜕𝐹
𝜕𝑢!#

+
%
	 , (1.2) 

where F is the free energy of the body per unit volume and T assumes a constant temperature.  

With this, one can obtain an expression for the free energy of a body as a function of the 

strain tensor, by assuming small deformations and expanding in powers of 𝑢!#. In an isotropic 

body at constant temperature, expanding the free energy out to second order gives 

𝐹 = 𝐹& +
1
2𝜆𝑢$$

' + 𝜇𝑢!#'	, (1.3) 

where 𝜆 and 𝜇 are called Lamé coefficients, both with units of force per unit volume. 𝜇 is also 

referred to as the shear modulus, measuring a material’s resistance to forces imposed on its body 

in opposite directions. We also have the bulk modulus, defined in two dimensions simply as 𝜅 =

𝜆 + 𝜇, which measures a material’s resistance to compression and will later be used to rewrite 

(1.3) in terms of 𝜅 and 𝜇. 

 

1.3 Hyperuniformity 
 

Cellular arrangement is an important aspect of understanding tissue behavior in 

morphogenesis due to the spatial structure of cells influencing its mechanics. Studying the 

arrangement of biological tissue is inherently more complicated than the study of, say, crystals, 

since it is a disordered material lacking the symmetries or periodicity usually at one’s disposal to 

simplify matters. Despite the limited toolset available, a common measurement used to 

characterize the spatial structure of disordered media is through density fluctuations [31, 32]. A 

recurring observation throughout this thesis will be the suppression of density fluctuations found 

in simulations from the vertex model, referring to the tendency of cells in a tissue to coordinate 

themselves uniformly in space. Disordered systems which exhibit suppression of density 

fluctuations at large length scales are said to be hyperuniform, which share this behavior with 

crystals, and yet also appear to be statistically isotropic like a liquid or glass. Hyperuniformity in 



 

 9 

disordered media has gained more attention in recent years in the context of biophysics, and 

different strategies have been developed to better quantify it [20, 33, 34, 35, 36].  

For our purposes, cell centroids are represented by points restricted to a plane in two 

dimensions. For a system of n particles, the number of points counted within a single, circular 

measurement window of radius R with center position 𝒓( can be written as a function of the radius 

length, 

𝑁(𝑅) =<Θ(𝑅 − ‖𝒓! − 𝒓(‖)
)

!

	 , (1.4) 

 

where 𝒓! is the position of the centroid of a cell and Θ(x) is the Heaviside function. Density 

fluctuations for this distribution of points are characterized by calculating the variance of the 

number of points within an ensemble of circular measurement windows placed randomly 

throughout the packing, 

〈𝛿'𝑁〉 = 〈𝑁(𝑅)'〉 − 〈𝑁(𝑅)〉'	, (1.5) 

 

where 〈… 〉 represents an ensemble average. In two-dimensional space, density fluctuations of a 

collection of independent, uniformly distributed points scales like the volume of the measurement 

window, 〈𝛿'𝑁〉	~	𝑅'. A crystalline or otherwise regular distribution, however, scales like the 

surface area, 〈𝛿'𝑁〉	~	𝑅. Disordered hyperuniformity, then, is thus described as density 

fluctuations which scale somewhere between these two, 〈𝛿'𝑁〉	~	𝑅*, where 1 ≤ 𝜖 < 2, as 𝑅 →

∞, capturing the suppression of density fluctuations at long-length scales [33]. 
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FIG 1.3: Example of randomly distributed points with a single measurement window of 
radius R. An ensemble of measuring windows such as this with varying radius lengths are placed 
throughout the plane to count the number of points contained within each. Density fluctuations 

of the packing are then characterized using eq. (1.5). 
 

 

A priori, one expects an epithelial sheet with linear elastic properties to exhibit 〈𝛿'𝑁〉 that 

scales as the volume of the measurement window. This expectation can be derived using a result 

borrowed from a recent publication from Damavandi and Lubensky, which proposes a theoretical 

framework describing the growth of elastic tissues with stochastic noise and mechanical feedback 

[37]. In the paper, tissue growth is represented using a symmetric second rank tensor composed of 

average growth component, �̅�, and a component describing noisy fluctuations around the average, 

𝐺N. With a material density defined similarly with a uniform and fluctuating component, 𝜌(𝒓) =

𝜌& + 𝛿𝜌(𝒓), density fluctuations in this model assuming an infinite tissue is related to growth by  

 

𝛿𝜌 = 𝜌&
𝜇

𝜆 + 2𝜇 P
𝐺$$Q − 2𝐺∥Q

�̅�
R		 . (1.6) 
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This expression is written in Fourier-space with 𝐺$$Q  as the trace of the fluctuating growth 

tensor, and 𝐺∥Q as the traceless part of 𝐺N parallel to the frequency vector.  

To estimate the amount of material or cells within a given measurement window of volume 

Ω from this framework, one can integrate over the volume of a circular measuring window of 

radius R to find 

𝑁, = U 𝑑-𝒓
,

𝜌(𝒓) = 𝜌&𝜋𝑅' +U 𝑑-𝒓
,

𝛿𝜌(𝒓)	. (1.7) 

Since variance is defined in terms of a random variable subtracted from its mean, the first 

term on the right-hand side is dropped and we are left with the desired expression, 

〈𝛿'𝑁〉 = U 𝑑-𝒓
,

U 𝑑-𝒓"
,

〈δ𝜌(𝒓)δ𝜌(𝒓")〉	. (1.8) 

If the noise in 𝐺N is delta correlated in space, then we have that 〈𝐺$$Q(𝒓)𝐺$$Q(𝒓")〉	~	𝛿(𝒓 − 𝒓"), 

〈𝐺∥Q(𝒓)𝐺∥Q(𝒓")〉	~	𝛿(𝒓 − 𝒓"), and 〈𝐺$$Q(𝒓)𝐺∥Q(𝒓")〉 = 0, such that 〈δ𝜌(𝒓)δ𝜌(𝒓")〉	~	𝛿(𝒓 − 𝒓") from 

equation (1.6). This implies that the integral of equation (1.8) is proportional to the volume of the 

measurement window, in this case, 〈𝛿'𝑁〉	~	𝑅'.  

Thus, there is reason to suspect that a large sheet of epithelial cells should exhibit a variance 

of the number of cells within a measuring window to scale like its volume, and so appear random 

in its arrangement.  

  

1.4 Format 
 

This thesis is composed of three chapters. Chapter II will discuss further specifics of the 

vertex model and how simulations of epithelia are constructed. Results will be shown of tissue 

simulations that exhibit anomalous hyperuniform behavior, as well as document the challenges 

and attempts made to understand its occurrence. This will involve developing a practice to measure 

density fluctuations from simulation data and comparing it to the bulk and shear properties of the 

tissue. The method in which these quantities are extracted is also explained. In Chapter III, the 

vertex model is used to test the predictions made by the publication mentioned in the previous 

section, whereby a handful of cells are randomly marked as clones and observed as the tissue 

grows to examine the statistics of their size. We find agreement with some predictions made by 

the model, though evidence of hyperuniformity in its results imply that our simulations may be 
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displaying unexpected nonlinear behavior that creates disagreement between the two models. 

Finally, in Chapter IV, attention is given to our most recent efforts made to identify and 

characterize hyperuniformity in disordered elastic media. We call attention to the development of 

a new model which seeks to ensure hyperuniformity is a result of nonlinear elastic deformations, 

and not from flow or plastic deformations. Afterwards, we briefly discuss potential directions for 

the project to be taken in the future. 
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CHAPTER II 

Observed Hyperuniformity in Vertex Model Simulations 
 

 The process by which epithelial cells can arrange themselves into cohesive biological 

structures of profound complexity and importance is as interesting as it is intimidating. Attempting 

to apply the tools available through the language of biophysics and recent innovations of 

computation open the doors to describing how these phenomena occur, but they are not without 

their challenges. Early in our efforts to study the spatial structure of tissues in the vertex model, 

we observed that cells seemed to be demonstrating hyperuniform density fluctuations. Throughout 

each chapter of this thesis hyperuniformity plays a role, and it quickly became apparent that 

understanding its cause would be a priority. This chapter, then, will detail the vertex model’s first 

encounter with hyperuniformity and the progress made in identifying the mechanisms that cause 

it.  

 

2.1 Vertex Model 
 

Here will be provided an elaboration on the vertex model used to simulate epithelial tissue 

further than what was mentioned in Chapter I. The vertex model seeks to evaluate the mechanics 

of epithelium using cells, edges, and vertices, a diagram of which is illustrated in fig. 1.1. Edges 

are straight line approximations of the adherens junctions described in Section 1.1, and capture the 

contractile behavior found along cell borders. Vertices are the points at which three or more edges 

meet and define the motion and degrees of freedom allowing the model to evolve into its final 

morphology. The forces felt by each vertex are generated from both edges and cells, where 

mechanical equilibrium is realized via a balance of the tensions produced by these edges with 

internal pressures assigned to each cell [24]. These forces are derived from an effective energy 

functional dependent on vertex positions, given by  

 

𝑈 =<Γ!𝑙!
!

+
𝐾
2
<(𝐴. − 𝐴&.)'
.

	 . (2.1) 
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The first sum indexes over all edges, where edge i has assigned tension Γ! and length 𝑙!. This term 

captures the effects of both cell-cell adhesion and actomyosin contractility of cellular junctions. 

The second sum indexes over all cells in the tissue, where each cell 𝛼 has an actual area 𝐴. and 

an assigned preferred area 𝐴&.. This term describes the energy cost associated with deforming a 

cell from its preferred area, and the parameter K modulates the strength of this energy cost.  

 The final shape of the tissue is then determined by reaching some local minimum of this 

effective energy. Since the vertex model describes cells evolving on relatively slow timescales in 

a viscous medium, inertial effects are negligible, and the evolution of the vertex positions towards 

this energy minimum is assumed to obey relaxational dynamics [21]. The force on each vertex 

used to reach this minimum can be found by taking the derivative of the energy with respect to 

vertex position. Since a small movement of one vertex only changes the lengths and areas of its 

neighboring edges and cells, respectively, the sum over all edges i and all cells 𝛼 becomes a sum 

over all neighboring edges [𝑖] and all neighboring cells [𝛼] to that vertex. The force on a vertex at 

position 𝒓& imparted by its surrounding edges and cells is then given by  

 

𝐹𝒓! = −
𝜕𝑈
𝑑𝒓&

=
𝐾
2
<(𝐴&. − 𝐴.)
[.]

[�̂� × (𝒍.' − 𝒍.2)] +<Γ!𝒍3i
[!]

	 . (2.2) 

 

Here 𝒍.2 and 𝒍.' are vectors with length of the two edges neighboring both the vertex with position 

𝒓& and cell 𝛼, and 𝒍3i is a unit vector of edge [i] pointing away from 𝒓&. Motion of the vertices is 

determined by assuming that vertices undergo a drag force proportional to their velocity, such that 

the positions of a vertex obey the equation of motion 

 

𝑑𝒓&
𝑑𝑡

=
𝑭𝒓!
𝜇4
	 , (2.3) 

 

where 𝜇4 is a drag constant that helps set the timescale of the simulations. Although Γ! can be 

assigned unique values for each edge, we restrict ourselves to an equal tension model, such that 

Γ! = Γ, as a general case where edge tensions are slower to respond to stress. Likewise, we assign 

a consistent preferred area to each cell, 𝐴& =
5"5#
)

, where n is the number of cells in the packing, 

which is confined to a box of size 𝐿6 by 𝐿7 with periodic boundary conditions. 



 

 15 

 Our implementation of the vertex model uses a C++ framework capable of receiving a full 

description of a tissue as an input, including any relevant parameters and all information needed 

to describe vertex positions and edges connecting them [16]. At the end of a simulation, an output 

file may be created that contains this same description of the tissue, so it may be used as its own 

input if desired, along with any other data that one wishes to extract. The equations of motion are 

integrated using a variable step-size fourth order Runge-Kutta scheme. This choice of integrator 

was chosen rather than, say, a fixed Euler integrator, because there are often periods in the 

evolution of a tissue involving topological changes that require small time steps to minimize errors, 

but these are often followed by long periods during which the tissue is relaxing towards its 

equilibrium configuration and there is very little motion, and so larger integration steps can be 

used to reduce computation time. These time steps of variable lengths used by the integrator are 

distinct from time intervals, which are larger units of time of fixed length within the model, when 

output data is written or other tasks like mitosis are performed. T1 transitions can happen at any 

given time step to allow cells to rearrange themselves whenever needed, though mitosis and 

apoptosis can only be initiated at full time intervals. 

 

2.2 Simulation Conditions and Observed Hyperuniformity 
 

 As noted above, the simulations use periodic boundary conditions such that the cells evolve 

inside a box of length 𝐿6 in the x-direction and length 𝐿7 in the y-direction (with 𝐿6 = 𝐿7 in most 

cases), so the cells in the simulation can topologically be thought as living on the surface of a torus. 

The use of periodic boundary conditions is useful, due to its ability to approximate an infinite 

system with a finite system of cells. Applying concepts from elasticity theory often assume that a 

material exists along an infinite sheet [29], so this is particularly convenient for comparison to 

theoretical models, as is done in Chapter III. If cells are added to the tissue via mitosis or removed 

via apoptosis at any time interval, the size of the box is preserved, and the tissue itself is rescaled 

without the mechanics of the vertices being disrupted, where the preferred area of the cells change 

according to the number of cells in the packing. 

 Initial conditions of the packing are prepared using a MATLAB script specifying any 

parameter choices and starting configuration of the cells within the simulation. For the results 

featured in this thesis, initial configurations were generated by creating a Voronoi tessellation. 
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This involves placing down points onto a plane with a Poisson distribution and partitioning the 

plane into cells such that the space in each cell is closer to its corresponding point than any other 

point in the plane. This ensures that the cells begin with an approximately random arrangement so 

they can relax to some unique configuration as it reaches a local energy minimum. 

 MATLAB was used for both visualization of the tissue’s evolution through time and for 

the analysis of any data extracted from the simulations. At each time interval, data is recorded to 

an output file that contains the information necessary to completely reconstruct the tissue. This can 

be used to produce movies that show the evolution of the packing in time, which is essential to 

confirm that the tissue is behaving physically and demonstrating the properties one expects. To 

characterize density fluctuations of the tissue, a MATLAB script was written that allows one to 

plot 〈𝛿'𝑁〉 as a function of R for the configuration of a simulation at a given time interval. The 

function stores the position of the centroid of each cell from the output of a simulation so the 

number of cells can be counted that lie within a circular measurement window. An array of radii 

is chosen ranging from a minimum radius corresponding to the mean edge length of all edges in 

the packing to a maximum radius corresponding to 𝐿6/4. More radius measurements mean more 

data points, and thus a more detailed picture of the density fluctuations at different length scales 

of the tissue. The number of measurement windows sampled for each radius measurement affects 

how closely each data point resembles the true value for 〈𝛿'𝑁〉 at a given length scale. Each of 

these measurement windows are placed randomly inside the box, respecting periodic boundary 

conditions, and count the number of cell centroids within them, as in (1.4). For each distinct radius 

measurement, the variance of the number of cells counted for each window in the ensemble is 

calculated.  

 Figure 2.1 (a) shows a log-log plot of 〈𝛿'𝑁〉 normalized by 𝑅' as a function of R. To 

produce these simulation results and others later in this chapter, an initially random Voronoi 

tessellation of 108 cells was relaxed until a configuration was produced having reached mechanical 

equilibrium. These plots were created by averaging the data from 10 different simulations, each 

with uniquely seeded initial tessellations. Values for Γ and K can be found in Table 2.1, chosen 

historically to align with experimental data from Drosophila wing discs [38]. Assuming the ansatz 

that the plots should follow a power law 〈:
$;〉
=$

	~	𝑎𝑅>, we can perform a linear fit to estimate the 

exponent and characterize the density fluctuations of the epithelium. Here an exponent of 𝑚 = −1  
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FIG 2.1: A Log-log plot of 〈𝛿𝟐𝑁〉/𝑅' as a function of R for the final relaxed configuration of a 
system of 108 cells, averaged over 10 different simulations. The blue line is a reference for the 

slope of a curve demonstrating perfect hyperuniformity, whereas a horizontal slope would 
represent that of a random distribution of cells. The red dashed line is a linear fit that estimates 
the exponent of the power law behavior, showing that the density fluctuations of the tissue are 
highly suppressed. B Plot of the extracted exponent values for density fluctuations at different 
time intervals. The data starts near a value of 0 from the initially random Voronoi tessellation, 

and quickly decreases towards hyperuniformity as the packing relaxes. 
 

 

corresponds to a packing exhibiting perfect hyperuniformity, whereas 𝑚 = 0 to that of an 

uncorrelated, uniform distribution of cells. 

The data implies a clear suppression of density fluctuations at long length scales. Small 

perturbations can be seen at the onset of the curve due to finite size effects from measuring 

windows being close to the characteristic cell size. By extracting the exponent at different time 

intervals throughout the evolution of the packings, we can also create plots illustrating how this 

quantity changes with time, shown in fig. 2.1 (b). We will see that the data does not always conform 

exactly to a power law due to finite size effects as measurement windows approach the 

characteristic cell size or the size of the box, especially for early time intervals in the simulations. 

For this reason, the fits for the exponents do not always reflect that of a perfect power law, and so 

fig. 2.1 (b) should serve only as a rough indication for how the density fluctuation curves evolve 

in time.  

ln
( 	〈
𝛿'
𝑁
〉
𝑅' ⁄
	)  

ln(	𝑅	) 
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𝑎𝑙
𝑢𝑒
𝑠 

𝑇𝑖𝑚𝑒 
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2.3 Elastic Properties of the Simulated Tissue 
 

 
 

FIG 2.2: Cartoon of a small packing of cells from the vertex model simulations before and after 
a deformation is applied (exaggerated here for visualization purposes). A Application of a 

hydrostatic compression on the tissue. B Application of a squeeze deformation on the tissue, 
preserving the total area of the box. 

  
 

Due to the unexpected result of identifying such pronounced suppression of density 

fluctuations in these packings, one hypothesis is that if statistics were collected for considerably 

larger tissues, and so extend the data for 〈𝛿'𝑁〉 to even further length scales, the system would 

experience a crossover in behavior, transitioning from the displayed hyperuniformity to a more 

horizontal curve, as predicted by linear elasticity theory [37]. As can be seen in fig. 2.1 (a), there 

is a slight increase in the slope of the data that may suggest the presence of a continuous crossover 

beginning to occur. Recent papers have made observations of hyperuniformity in disordered 
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packings using similar computational models, and by modulating parameters controlling the 

dynamics of their simulations, found evidence of a crossover from hyperuniform to Poisson 

behavior at long length scales within the solid phase, with the scale at which the crossover occurs 

diverging as the fluid phase is approached [20,33]. In the fluid phase, however, hyperuniformity 

was shown to be maintained without a crossover. The vertex model we work with does not have a 

fluid phase, since our energy functional uses a linear tension, preventing the packing from freely 

moving between different equilibrium configurations with no cost in energy, which is 

characteristic of a fluid.  

This implies that the choice in parameters of our model may be causing the tissue to behave 

similar to a fluid, where the cells are able to rearrange themselves uniformly with few barriers. A 

fluid, by definition, has zero shear modulus, so it is reasonable to suspect that the tissue behaving 

fluid-like may correspond to it possessing a shear modulus that is significantly smaller than its 

bulk modulus. While our model is not capable of behaving like a true fluid, it can exhibit nonlinear 

elastic behavior with a soft shear modulus, where cells move about with very little energy cost. 

This suggests a relationship between the length scale at which hyperuniformity breaks in tissue 

simulations and the bulk and shear moduli, which are physical quantities. We then want to find a 

way to modulate these elastic properties of the tissue by changing the parameters of the simulation. 

To do this, it is necessary to develop a method which determines the bulk and shear moduli directly 

from simulation data. This will be done by deforming a relaxed tissue packing via imposing a 

hydrostatic compression to isolate the bulk modulus, or via a pure shear to isolate the shear 

modulus. Using (1.3), we can deform the packings for different scalar values of strain and compare 

them with the total energy of the system, then conduct the appropriate fits to recover estimates for 

both moduli. It is convenient to decompose (1.3) to separate it into pure shear and hydrostatic 

compression components and omit the free energy of the undeformed body, 

𝐹 = 𝜇(𝑢!# −
1
2𝛿!#𝑢$$)

' +
1
2𝜅𝑢$$

'		. (2.4) 

To estimate the bulk modulus, a hydrostatic compression or expansion is imposed on the 

tissue after it has reached a relaxed state. The dimensions of the box size then rescale to 𝐿"6 = 𝛼𝐿6 

and 𝐿"7 = 𝛼𝐿7, with 𝛼 as a small scaling factor taking values close to 1. This type of deformation 

has zero non-diagonal components for the strain tensor of the material, so the first term of (2.4) is 

dropped and the free energy can be found by integrating over the volume of the box, 
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𝐸(A) =
1
2𝐿6𝐿7𝜅𝑢$$

'	, (2.5) 

 

where the trace of the strain tensor for this deformation can be derived from (1.1) as 𝑢$$ =

2(𝛼 − 1). This expression allows one to deform a tissue over many values of 𝛼 to make plots 

comparing the total energy of the tissue at different levels of strain and make a fit to extract an 

estimate of 𝜅, seen in fig. 2.3 (a). 

For the shear modulus, a pure shear is imposed by expanding the packings in one direction 

and compressing in the other direction in such a way that preserves the total area of the box, which 

we will call a squeeze deformation. The dimensions of the box rescale to 𝐿"6 = 𝛼𝐿6 and 𝐿"7 =
2
.
𝐿7. Contrary to the previous case, this drops the 𝜅 dependency of (2.4) and the free energy is 

found similarly by integrating over the volume of the box, 

 

𝐸(C) = 𝐿6𝐿7𝜇𝑢!#'	, (2.6) 

 

where the sums of the squared components of the strain tensor for this deformation can be derived 

to be 𝑢!#' = (𝛼 − 1)' + {2
.
− 1|

'
. We can use this similarly to extract an estimate for 𝜇, as shown 

in fig. 2.3 (b).  

 

Table 2.1: Displayed in each row are the parameter schemes used to produce the 〈𝛿𝟐𝑁〉 

curves in fig. 2.4 (a). The first row shows the original set of parameters used and corresponding 

bulk and shear moduli. The remaining parameter schemes are arranged in order of increasing 

𝜇 𝜅⁄ . 

𝑲 𝚪 𝜿 𝝁 𝝁
𝜿%  

0.003264 17.4859 3.8383 0.2185 0.0569 

0.003264 8.7430 3.9595 0.1089 0.0275 

0.006528 17.4859 7.9199 0.2229 0.0281 

0.001632 17.4859 1.7925 0.2172 0.1211 

0.003264 34.9718 3.5858 0.4404 0.1228 
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FIG 2.3: A Plot of the total free energy of a tissue simulation after imposing hydrostatic 

compression or expansion for different values of 𝑢$$. The red curve fits the data to the form of 
(2.5) to estimate the bulk modulus of the system. The minimum for this plot occurs for even 

lower values of strain, since further compression would be needed for the increase in energy due 
to cells shrinking to overtake that of the energy decrease from edge tensions. B Plot of the total 
free energy of a tissue simulation after imposing a squeeze deformation for different values of 
𝑢!#'. We plot energy in terms of 𝑢!#' to acquire a linear fit for (2.6) to estimate the shear 

modulus of the system, for convenience. 
  
 

2.4 Results for Varied 𝝁, 𝜿  

 
The moduli were found by fitting data taken from an average of 15 simulations with unique 

initial configurations, and from these fits estimated that 𝜅 = 3.8380 and 𝜇 = 0.2182 (with units 

of force per unit volume) using the original parameters for Γ and K. This suggests that the shear 

modulus of these tissue simulations is, in fact, much lower than the bulk modulus, supporting the 

idea that a small ratio between the shear and bulk moduli are contributing to the displayed 

suppression of density fluctuations. To further this claim, the moduli from simulations using 

different choices in parameters were taken, the values of which can be found in Table 2.1. Changes 

in energy due to compressions or expansions are dominated by the deformation of cell areas in 

(2.1), so the bulk modulus of the tissue is expected to scale proportionally to our choice in K. 

𝑇𝑜
𝑡𝑎
𝑙	𝐸
𝑛𝑒
𝑟𝑔
𝑦 
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𝑛𝑒
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FIG 2.4: Log-log plots of 〈𝛿𝟐𝑁〉/𝑅' as a function of R for the final relaxed configuration 

of a system of 108 cells. The blue lines are a reference for the slope of a curve possessing the 
slope of a curve demonstrating hyperuniformity, whereas a zero slope would represent that of a 
random distribution. A Shows density fluctuation curves for different bulk and shear modulus 

schemes. We see that decreasing Γ or increasing K (decreasing the ratio of 𝜇 𝜅⁄ ) by a factor of 2 
produces greater suppression of density fluctuations. In contrast, increasing Γ or decreasing K 
(increasing the ratio of 𝜇 𝜅⁄ ) by a factor of two diminishes this suppression. B We choose an 
arbitrary parameter (𝜇 𝜅⁄ = 0.1211 in this case) to demonstrate the behavior of these curves 

before the simulations have properly relaxed. Failing to reach a minimized energy configuration 
can hint towards a crossover that is not representative of the equilibrated state of the tissue. 

 

 

Likewise, since applying a pure shear to the packings largely maintains the initial area of 

each cell, the change in energy should be dominated by edge tensions, hence the shear modulus 

scaling proportionally to Γ. Furthermore, inversely scaling the parameters of the simulations (i.e., 

doubling Γ and halving K) should lead to an identical ratio of bulk to shear, C
A
, and so should 

demonstrate similar cell distributions. To show this, four different sets of parameters were chosen 

to simulate and compare fluctuations. In each case, either Γ or K are doubled or halved from its 

original value.  

The 〈𝛿'𝑁〉 data corresponding with K being doubled and Γ being halved demonstrate 

fluctuations suppressed even more than with the original parameters as expected, aligning almost 

exactly with the reference line indicating a perfectly hyperuniform distribution. The opposite cases 

ln
( 	〈
𝛿'
𝑁
〉
𝑅' ⁄
	)  

ln
( 	〈
𝛿'
𝑁
〉
𝑅' ⁄
	)  

ln(	𝑅	) ln(	𝑅	) 



 

 23 

when Γ is doubled and K is halved appear to be less uniform than the other sets of data. We even 

see a sign of an increase in the slopes, suggestive of a continuous crossover, although the slope of 

these two curves seem to decrease at longer length scales. This decrease at large R is likely not 

truly representative of the architecture of the cells, but instead a result of finite size effects as 

measuring windows become comparable to the size of the box, causing correlations in the statistics 

collected by the windows which systematically decrease the variance measurements collected. 

Despite this discrepancy near the tail end of the data, the results verify the claim that density 

fluctuations are suppressed for decreased ratios of C
A
, while becoming less suppressed for increased 

ratios of C
A
. 

 

2.5 Conclusion 
 

We have thus found that the vertex model exhibits hyperuniform density fluctuations, and 

that the extent of these fluctuations depends on the shear to bulk ratio of the tissue. The methods 

and conclusions presented represent meaningful strides towards relating the anomalous 

hyperuniformity seen in simulations of epithelial tissue with physical quantities that, if developed 

further, could be used as a theoretical framework to be tested against experimental findings. 

Although the initial application of the described methods used to compare the density fluctuations 

of tissues against different ratios of C
A
 was promising, a few challenges quickly made themselves 

apparent that would intervene with our ability to produce the results needed to continue using the 

same model. 

First, as was hinted to by the decrease of 〈𝛿'𝑁〉 for large R, there is a need to generate even 

larger numbers of cells to observe fluctuations at larger length scales without the intervention of 

finite size effects. To be confident in the existence of a continuous crossover that may appear over 

long distances, statistics should be collected from a tissue of a size far exceeding what was shown 

above. This is necessary to see the full crossover, which means reaching length scales long enough 

such that the 〈𝛿'𝑁〉 curves become clearly horizontal. However, adding cells has a significant 

impact on the time required to reach equilibrium, the computational efforts of which would outpace 

the time constraints for this project. In addition, a broader range of parameter choices increasing 

the value of C
A
 would be needed to develop a strong relationship between this ratio and the 
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occurrence of hyperuniformity, though this is hampered by the slowing of dynamics as one 

increases Γ or decreases K. One can define a mechanical timescale for the vertex model dependent 

on these parameters, given by 𝜏 = C%$!
D

 or 𝜏 = C%$!
E$!&

, where 𝑙& represent the average length of an 

edge [38]. To change Γ or K in a way that increases C
A
 causes a decrease in the time scale of the 

dynamics, such that the mechanical timestep for the simulations must also necessarily decrease in 

response. This causes the simulations to slow significantly, and, combined with the need for larger 

tissues discussed prior, can make the relaxation time required for tissues at high values of  C
A
  

infeasible. To illustrate the effects not relaxing a packing until proper equilibrium is reached can 

have on data, fig. 2.4 (b) is provided to show how the 〈𝛿'𝑁〉 curve evolves at different intervals 

during the simulation. It is evident that not allowing the tissue enough time to relax can produce 

results that may imply a crossover event that is not truly emblematic of the fully relaxed 

configuration.  

Additionally, increasing the ratio of the moduli involves a modulation of the parameters 

that puts a heavy emphasis on the contractile forces from edge tension, and diminishing those from 

area deformations. This tends to disrupt the balance between these forces for more extreme 

parameter schemes and induces widespread topological changes in the form of apoptosis and T1 

transitions on account of edges experiencing less resistance from contracting. Not only does this 

often lead to an unacceptable reduction in the number of cells in the packing or crashing altogether, 

but it represents a systematic breakdown of mechanics that disrupts the relaxation process and thus 

yields behavior that is not comparable with other results.  

Although these initial findings were promising, the barriers presented by the vertex model 

indicated that a different model must be employed pursue them further. The efforts made toward 

developing such a model can be found in the contents on Chapter IV.  
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CHAPTER III 

Clone Statistics 
 

The study of clones to track growth and development of biological tissues is a useful 

method for many areas within cell biology [39,40]. A clone is a group of cells that are genetically 

identical to one another, marked in some way allowing the progeny of these cells to inherit this 

marking and be distinguished from cells surrounding them. This can be used, for example, in 

tracking the lineage of cells of embryonic organs, wherein individual cells are marked with a 

fluorescent reporter gene which is then used to observe clone sizes and composition throughout 

development. The use of clones can also commonly be found in the study of stem cell fate and 

tumor growth [41,42,43]. Here, clones are utilized as a means of understanding stochasticity in 

elastic tissues. There is noise inherent to the growth of any biological system that can play a 

significant role in development, but stochastic growth of tissues is, as of yet, a largely unexplored 

subject.   

This chapter will focus on testing a theoretical model of growth in elastic tissues proposed 

by Damavandi and Lubensky, a paper published by our group from 2019 [37]. The model involves 

a flat, two-dimensional epithelium treated as an elastic continuum. It assumes an infinite tissue 

growing exponentially on average, where random fluctuations can induce linear elastic 

deformations and thus local mechanical stress. A linear feedback of the stress tensor is 

implemented on the local growth rate, which serves to relax stress where it occurs. The paper looks 

at the dynamics of marked clones genetically identical to the surrounding tissue (called neutral 

clones) assuming both isotropic and anisotropic growth. For the case of anisotropic growth, it is 

predicted that the variance of clone sizes scales like the average area squared and that the area of 

large clones is just as variable as that for small clones. Verifying these predictions is the subject 

of this chapter and will involve comparing properties of continuous medium to those collected 

from the discretized cell equivalent of the vertex model. To acquire these results, clone tracking 

features were implemented into the simulations, as well as a pressure dependent feedback system 

on division rate. Before discussing these implementations, a brief overview will be given to the 

details of the continuum model needed to derive the equations used for comparison with simulation 

data.  
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3.1 Continuum Model Overview 
 

 

FIG 3.1: Cartoon of a simulation with clones implemented. The leftmost image depicts an early 
time interval after the initially random Voronoi tessellation has been relaxed and clones are first 

marked. The rightmost image shows the tissue after it has grown slightly, demonstrating how 
cells created from the division of clones inherit its distinct marking so the statistics of their size 

and growth can be analyzed.    
 

 

We consider the general anisotropic case for growth only, since divisions in the vertex 

model are locally anisotropic due to the splitting of cells along specific directions, despite growth 

appearing isotropic on average. As mentioned in the Chapter I, growth is represented in the 

continuum model using the second-rank symmetric tensor 𝐺!F = 𝑒G!4𝛿!F + 𝐺N!F, where the first term 

describes a spatially uniform expansion with average growth rate 𝛾& at time t, and the second term 

describes fluctuations around this average. The dynamics of 𝐺N are defined assuming small 

deviations from uniform growth in terms of the stress tensor, given by  

 

𝜕4 �
𝐺N!F
�̅�
� = 𝑐𝜎$$

𝛿!F
2
+ 𝑐(H) P𝜎!F − 𝜎$$

𝛿!F
2
R + 𝜉!F(𝑹, 𝑡)	. (3.1) 
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This gives the time derivative of growth fluctuations at fixed Lagrangian coordinates R, capturing 

the effects of both stress feedbacks and noise. The constants 𝑐 and 𝑐(H) describe the strengths of 

feedback on hydrostatic and deviatoric stresses, respectively, and 𝜉!F is a noise term. (1.6) 

introduced the expression for density fluctuations, which related 𝛿𝜌 to 𝐺N by two scalar quantities 

𝐺N$$ and 𝐺N∥. Analogously, we can define a pair of independent, Gaussian random variables 𝜉�$$ and 

𝜉�∥ corresponding to the noise associated with these two components of growth. These terms are 

taken to be delta correlated in space and time.  

Substituting an appropriate stress into (3.1) yields differential equations describing 

dynamics in terms of three independent modes. The two relevant for the analysis of clones are  

 

𝜕4𝛿𝜌 = −�𝑘 + 𝑘(H)�𝛿𝜌 + 𝜌&
𝜇

𝜆 + 2𝜇
(𝜉$$ − 2𝜉∥)	 (3.2) 

 

𝜕4𝑍5 = 𝜉$$ + 2
𝑘
𝑘(H)

𝜉∥	. (3.3) 

 

Here k is a constant written in terms of feedback strength and the Lamé coefficients, 𝑘 = 'C((IJC)
IJ'C

, 

and 𝑘(H) is the deviatoric analog defined similarly. The second of these equations describe 𝑍5, the 

amplitude of the longitudinal soft mode, which produces no stress in the tissue and thus grows 

diffusively. This soft mode implies that the random fluctuations of growth induce displacements 

that exactly cancel in such a way that discourages mechanical stress or changes in density, whereby 

areas of the tissue experiencing faster growth will balance out with areas of slower growth. 

 These results allow one to define an expression to describe the variance of clone size. 

Starting with an initially circular clone of radius 𝑅(, this variance is given by the lengthy result 

 

𝑣𝑎𝑟(𝐴) = �̅�8U U �
𝛼2'

𝜌&'
⟨𝛿𝜌(𝑹, 𝑡)𝛿𝜌(𝑹", 𝑡)⟩ +

2𝛼2𝛼'
𝜌&

⟨𝛿𝜌(𝑹, 𝑡)𝑍5(𝑹", 𝑡)⟩

+𝛼''⟨𝑍5(𝑹, 𝑡)𝑍5(𝑹", 𝑡)⟩
� 𝑑𝑹𝑑𝑹"

𝑹'L=𝒄𝑹L=𝒄
, (3.4) 

 



 

 28 

with simplifying constants 𝛼2 =
(IJC)#MC#(*)

CN#J#(*)O
 and 𝛼' =

#(*)

#J#(*)
. From (3.2) and (3.3) we see that the 

autocorrelation terms above will expand into autocorrelation terms for noise. These 

autocorrelations are defined in the following ways, with fixed noise strengths 𝐷2 and 𝐷': 

 

〈𝜉$$(𝑹, 𝑡)𝜉))(𝑹", 𝑡")〉 =
𝐷2
�̅�'
𝛿(𝑡 − 𝑡")𝛿(𝑹 − 𝑹")	 (3.5) 

〈𝜉∥(𝑹, 𝑡)𝜉∥(𝑹", 𝑡")〉 =
𝐷'
�̅�'
𝛿(𝑡 − 𝑡")𝛿(𝑹 − 𝑹")	. (3.6) 

 

Using these results from the model, we can now derive the equations which will be applied for the 

comparison to vertex model simulations. We are interested in finding the behavior of 𝑣𝑎𝑟(𝐴) 

throughout time, which will involve additional integrations of (3.4) with respect to time. After 

expanding the correlators of (3.4), substituting in (3.5) and (3.6), and integrating over space and 

time, we can construct an expression describing the variance of clone sizes compared with the 

mean, 

 

𝑣𝑎𝑟(𝐴)
〈𝐴〉' =

1
𝜋𝑅('

[Α(𝑒M'G!4 − 𝑒M'#4) + Β(𝑒M'G!4 − 𝑒M#4) + 𝐶(1 − 𝑒M'G!4)]	, (3.7) 

 

where the mean area is given by 〈𝐴〉 = �̅�'𝜋𝑅(', and the prefactors by 

 

Α =
1
2
(𝜆 + 𝜇)'

(𝜆 + 2𝜇)'
𝐷2 + 4𝐷'
𝑘 − 𝛾&

	 (3.8) 

 

Β = −2
𝜆 + 𝜇
𝜆 + 2𝜇

4𝐷'
𝑘 − 2𝛾&

	 (3.9) 

 

𝐶 =
2𝐷'
𝛾&

		 . (3.10) 

 

This result is taken in the limit where 𝑘(H) → 0, since although the vertex model allows random 

deviations from isotropic growth arising from the anisotropy of individual cell division evens, we 
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consider here a mechanical feedback, as will soon be discussed, that effects growth in an isotropic 

manner. At long times, it is clear from (3.7) that the variance will approach a constant, and scale 

like initial clone size,  

 

lim
4→Q

P
𝑣𝑎𝑟(𝐴)
〈𝐴〉' R =

2𝐷'
𝛾&𝜋𝑅('

	~	
1
𝑅('

	 . (3.11) 

 

This tells one that the variability of clone size depends only on the size of the initial clone, 

and surprisingly, not on the size of the clone at any given point in time. This result is unique to the 

case of anisotropic growth due to the soft mode dynamics, as this ratio decays to zero for the 

isotropic case for which soft modes are not present. Equations (3.7) and (3.11) will be tested 

against the variance of clone areas in simulations to determine if predictions from the continuum 

model accurately translate to results from our discretized model.  

 

3.2 Parallels to the Vertex Model 
 

 To create simulations that can be compared to the continuum model, a pressure dependent 

mechanical feedback was added to the vertex model that regulates cell division rates. Mitosis can 

occur at each time interval during the simulations, where each cell is given a small probability 𝑝& 

to divide, creating a new edge that splits its area in half along a random direction and imparting its 

properties to two daughter cells. A feedback meant to isotropically damp density fluctuations 

where they occur is implemented by introducing a linear pressure dependence to this initial 

division probability, where pressure in the model is defined for cell i using 𝑃 = 𝐾(𝐴& − 𝐴!). This 

is meant to affect growth such that the probability of division at a given time interval is higher for 

cells above their preferred area than cells below, 

 

𝑝 = 𝑝& �1 −
𝑃

𝐾𝐴&(1 − 𝑓)
�	 , (3.12) 

 

where f is a parameter that sets the strength of the feedback. This choice in feedback describes a 

simple linear dependence on pressure, where any cell a fraction f of the preferred area will have 
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zero chance to divide, a cell satisfying its preferred area will divide with probability 𝑝&, and a cell 

above this will have an increased chance to divide. For any cell below the area threshold of 𝑓𝐴& 

that would produce a negative probability from (3.12), we manually set 𝑝 = 0. Although it was 

also implemented that a cell is given an associated probability to activate cell death below this 

threshold, cells under this area rarely occurred using standard parameters and so had a negligible 

effect on simulation results. In this respect, f is chosen such that 0 < 𝑓 < 1, where values close to 

0 correspond to lower feedback strengths, and values close to 1 are higher in strength – choices for 

f outside these bounds cease to have physical meaning and are not considered.  

 Next, we consider how to relate the parameters in the vertex model describing growth and 

feedback with those involved in the continuum model. For growth, this means finding a way to 

express the uniform growth constant 𝛾& in terms of the fixed probability assigned to each cell for 

division, 𝑝&. We will do this by comparing how the total area of the tissue should evolve in either 

case. For the continuum model, the dilation of a tissue starting at an area of 𝐴& is given by 𝐴&𝑒'G!4, 

whereas growth in the discretized model can be represented probabilistically using 𝐴&(1 + 𝑝&)4, 

where t is interpreted as an arbitrary dimensionless unit of time within the simulations. Setting 

these two expressions equal gives the desired relationship as 2𝛾& = ln(1 + 𝑝&). We will find that 

this result agrees nicely with estimates of the growth rate from simulations. 

 To find a similar expression for mechanical feedback k requires that we first find one for 

the feedback strength constant mentioned earlier, c. If we assume a similar pressure dependent 

feedback in the continuum as was suggested in (3.12), we can expect growth of the form 𝛾 = 𝛾& −

𝑐𝑃. As explained above, when the pressure of a cell is at some threshold defined by f (or when 

some point R reaches some threshold stress in the case of a continuous elastic sheet), we expect 

the local growth rate to vanish, such that we can substitute in the previously given definition of 

pressure to obtain 𝑐 = G!
[ER!(2MS)]

. This allows us to make a theoretical estimate for k based on 

parameters all attainable from the vertex model itself, 

 

𝑘 =
𝜆 + 𝜇
𝜆 + 2𝜇

2𝜇𝛾&
𝐾𝐴&(1 − 𝑓)

	. (3.13) 
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Using the standard parameter choices for K, 𝐴&, 𝛾& derived above, and the results from Chapter II 

to describe the Lamé coefficients, the feedback strength of the simulations should be determined 

by our choice in f.  

 

3.3 Results and Conclusion 

 

FIG 3.2: 𝑣𝑎𝑟(𝐴)/〈𝐴〉' as a function of time intervals for different choices of feedback strength. 
The dashed blue curve fits the data to a single exponential function of the form 𝑔2(𝑡) = 𝑐2 −
𝑐'𝑒M(&4. The red dashed line represents an estimate of the asymptote based on the fit. A No 

feedback implemented into the simulation. B A case of stronger feedback strength, such that 𝑓 =
2 3⁄ . 

 

 The simulations used for the following results begin with an initially random Voronoi 

tessellation of 250 cells and divide until the packing reaches a size of 108 cells – a number chosen 

so that dynamics may be reasonably compared with those assuming an infinite tissue. We use the 

standard parameter set for Γ and K and assume the estimated bulk and shear properties of the tissue 

found in Chapter II. The probability of a cell dividing per time interval is chosen such that the 

tissue grows quasistatically, in this case with a chance of 2
8&&

, so that 2𝛾& = 0.002497. The values 

of f used, in ascending order of strength, are 2
-
, '
-
, and T

2&
, chosen such that the scale of k is 

comparable to that of 𝛾&. The case where mechanical feedback is not included is also considered. 

At the beginning of the simulations, 20 groups of cells are chosen of some initial size, and each 

𝑇𝑖𝑚𝑒 
 

𝑇𝑖𝑚𝑒 
 

𝑣𝑎
𝑟(
𝐴)
/〈
𝐴〉

'  

𝑣𝑎
𝑟(
𝐴)
/〈
𝐴〉
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marked uniquely such that their progeny inherit this mark. An example of a group of clones 

evolving in time is shown in fig. 3.1. The statistics for clones was taken by averaging data over 

100 different simulations, amounting to 2000 clones.  

 Fig 3.2 shows two examples of the behavior of 𝑣𝑎𝑟(𝐴)/〈𝐴〉'. For every choice of feedback 

strength tested, the plots demonstrate a clear asymptotic trend at large times, as predicted to occur 

from the presence of soft modes in the anisotropic case of growth. Two different strategies were 

employed to fit the simulation data. Both sets of fits were performed using the MATLAB (R2017b) 

nonlinear least-squares curve-fitting function lsqcurvefit. The first of these fits uses a generic set 

of exponential functions to match the form of (3.7), the resultant fitted parameters for which are 

shown in Table 3.1. We found that for any choice of feedback strength, the best fit was provided 

using a single exponential function of the form 𝑔2(𝑡) = 𝑐2 − 𝑐'𝑒M(&4. In fact, we see that for every 

feedback strength tested, 𝑐2 ≈ 𝑐', which suggests that each roughly assume the form of (3.7) in 

the case of no feedback when 𝑘 → 0, 

 

lim
#→&

P
𝑣𝑎𝑟(𝐴)
〈𝐴〉' R =

Α + Β − 𝐶
𝜋𝑅('

[𝑒M'G!4 − 1]	. (3.14) 

 

As seen in Table 3.1, the fitting parameter in the exponent for 𝑔2 consistently agreed with 

our expectations for the growth rate. Without feedback, this parameter was estimated to be 𝑐- =

0.002511, closely resembling the theoretical estimate of 2𝛾&. Including feedback, the fitting 

parameter never exceeded a percent error of 14% of the expected value. However, disagreements 

begin to surface when a second or third exponential is added to the fits where we expect to see 

fitted exponents that resemble our predictions for growth rate and feedback strength. In every case, 

the fitting parameters in the exponents were nearly identical, suggesting that the data is best fit 

with a single exponential function. This implies that the variance curves seem to neglect the effects 

of feedback and are modeled best accounting only for the contributions from growth rate. 
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Table 3.1: Displayed in each row is the ratio f determining feedback strength, the corresponding 
value for k estimated using the standard parameter set, and the coefficients from different 

exponential fits 𝑔2(𝑡) and 𝑔'(𝑡). For 𝑔2, the estimate for 𝑐- closely resembles our predictions of 
2𝛾&. For 𝑔', the columns for 𝑐- and 𝑐U represent the fitted exponents. The similarity of these two 

estimates in each case suggest that the data is better modeled by a single exponential function. 
The fits for a function with three exponentials are omitted for space since it suggests the same 

conclusion as the double exponential.  
 
 
 
 

 

 

 

 

 

 

 

𝒇 𝒌 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 

𝒈𝟏(𝒕) = 𝒄𝟏 − 𝒄𝟐𝒆M𝒄𝟑𝒕 

 0 0.2402 0.2470 0.00251   

𝟏
𝟑¤  0.000190 0.2297 0.2250 0.00243   

𝟐
𝟑¤  0.000380 0.2048 0.2023 0.00284   

𝟗
𝟏𝟎¤  0.001265 0.1489 0.1509 0.00255   

𝒈𝟐(𝒕) = 𝒄𝟏 − 𝒄𝟐𝒆M𝒄𝟑𝒕 − 𝒄𝟒𝒆M𝒄𝟓𝒕 

 0 0.2075 0.0795 0.00298 0.0901 0.00299 

𝟏
𝟑¤  0.000190 0.1865 0.0708 0.00380 0.0982 0.00381 

𝟐
𝟑¤  0.000380 0.1799 0.0908 0.00338 0.0614 0.00342 

𝟗
𝟏𝟎¤  0.001265 0.2049 0.0764 0.00308 0.0912 0.00310 
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FIG 3.3: A The estimate of the asymptote of 𝑣𝑎𝑟(𝐴)/〈𝐴〉' for 𝑡 → ∞, extracted from single 
exponential fits (as in fig. 3.2) for clones of varied initial sizes. We show results for different 

feedback strengths and see that all obey the same 1 𝑛(⁄  behavior demonstrated by the fits, where 
𝑛( is the initial number of cells per clone.  B We show how estimations of the asymptote vary as 

a function of the number of clones analyzed for an arbitrary case of feedback strength (no 
feedback, in this case). We see that using 2000 clones converges to a stable value. 

 

We now consider the dependence of the clone size variance with their initial area, as 

proposed in (3.11). This was done by taking the asymptote estimates using the single exponential 

fits described above, where the initial number of cells in a clone range identically in each case 

from 1 to 4. The values of these asymptotes are plotted against initial clone size, as shown in fig. 

3.3 (a). If we assume the number of cells in a clone scales closely with its total area, we then see 

that the data demonstrates a clear inverse relationship between the clone variance as 𝑡 → ∞ and its 

initial area. This verifies the basic relationship proposed in (3.11), implying that the variance of a 

large clone’s area is just as much as a smaller clone, depending only on the initial size that each 

starts out as. There also appears to be a systematic decrease in variance as feedback increases, 

though the clone area dependence is correctly maintained between all cases. The apparent feedback 

dependence displayed by the curves, although intuitive to suspect that variance should decrease 

with increased k, is an unexpected result of its long-term behavior.  

 The second set of fits were taken assuming all the estimated parameters from the vertex 

model, where the only unknowns are the noise constants, 𝐷2 and 𝐷'. The same nonlinear least- 
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squares fitting function was applied on the variance data to model (3.7) exactly, using the noise 

constants as fitting parameters. The details of these fits can be viewed in Table 3.2, and clearly 

reflect the incompatibility between clone behavior found in the vertex model and that predicted 

for the continuum. The asymptotes at large t suggested by these fits are inconsistent with that seen 

in the data. Further, the noise constants appear to have some unexpected correlation with k, which 

should remain constant between different instances of feedback.  

 

 

Table 3.2: Displayed in each row are the results from fitting 𝑣𝑎𝑟(𝐴)/〈𝐴〉' for different feedback 
strengths using 𝐷2 and 𝐷' as fitting parameters. We see that 𝐷2 and 𝐷' appear to vary with k, 

which are expected to remain constant. Also showed are the estimates for 𝑣𝑎𝑟(𝐴)/〈𝐴〉' as 𝑡 →
∞, which are much higher than what the data suggests it should be. This table implies that the 

continuum model does not accurately reflect the clone variance from the simulations.  
 

These results suggest that the clones in simulations are demonstrating dynamics not fully 

captured from those described of a continuous elastic sheet. Though we can observe certain 

predictions that are relevant to the simulations – namely, the dependence of size variance on initial 

clone size and the apparent asymptotic behavior of these curves because of soft modes unique to 

anisotropic growth – it appears that the effects of mechanical feedback are largely neglected in the 

vertex model despite this. It is likely the case that the simulations are displaying certain nonlinear 

behaviors during its evolution related to the presence of hyperuniformity, as seen in Chapter II, 

negating the effects of any implemented feedback. The formulations of the Damavandi and 

Lubensky paper are those of a linear elastic continuum, and the suppression of density fluctuations 

is not supported outside of those induced by an added mechanical feedback. It is prudent, then, to 

develop a full understanding of hyperuniformity before returning to the subject of this chapter 

further. Recent progress and efforts to do this will be the focus of Chapter IV.  

𝒇 𝒌 𝑫𝟏 𝑫𝟐 𝑨𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆 

	𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 

 0 0.6795 0.3183 0.4079 

𝟏
𝟑¤  0.000189 0.3820 0.9431 1.2087 

𝟐
𝟑¤  0.000380 0.6175 0.5105 0.6542 

𝟗
𝟏𝟎¤  0.001265 1.1434 0.2716 0.3480 



 

 36 

CHAPTER IV 

Developing New Models 
 

 In light of results from the previous two chapters, it should be evident that the recurrence 

of hyperuniformity in the current state of the vertex model is an anomaly which cannot be ignored. 

The conclusions of Chapters II and III suggest that the suppression of density fluctuations originate 

from some unexpected nonlinear behavior affecting the dynamics of tissue simulations whether its 

relaxing with or without cell divisions. Without a means of identifying its cause, it would be ill-

advised to apply our model broadly to other physical or theoretical systems describing epithelia, 

which generally assume some linear elastic properties of the material [27,28]. The set of hurdles 

elaborated on in Section 2.4 motivates the transition to a new model to expand on the relationship 

between the manifestation of hyperuniformity in cell networks and its elastic properties. The 

subject of this chapter, then, is to present the most recent efforts made to develop a new model for 

this purpose. 

 We will discuss a model involving a triangular lattice connected by a 2-spring network 

with uniformly distributed rest lengths. It will be explained how one can measure density 

fluctuations by how well each triangle conforms to a preferred area based on the rest lengths of its 

edges, and how the stiffness of both types of springs in the model can alter the bulk and shear 

properties of the system. The relationship between these stiffness parameters and the moduli will 

be derived analytically and show results of density fluctuations for various ratios of 𝜇 𝜅⁄ . We find 

that results do not appear hyperuniform as 𝜇 𝜅⁄ → 0, instead demonstrating Poisson behavior in 

every case [34]. It should be stressed that this model is not intended as an analogue for epithelia, 

but rather as a generalization to examine the occurrence of hyperuniformity in elastic systems with 

quenched randomness. We finish the chapter with a brief proposition of a model to investigate 

hyperuniformity for future projects. 

 

4.1 Triangular Lattice Model 
 

   Choosing a new model to study density fluctuations in place of the vertex model must 

satisfy a set of requirements that compensates for the limitations inherent in a more 
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computationally rigorous model, as are conventionally used for the study of epithelia. First, it 

should simplify dynamics to be more computationally efficient and exhibit the basic properties of 

an elastic sheet, but still demonstrate an ability to arrange itself in a way that can be generalized 

and applied to disordered materials. Second, these rearrangements should behave such that a 

measure of density fluctuations analogous to those for a cellular tissue is clearly defined, and that 

the bulk and shear properties of the material can be intentionally augmented via the parameters 

involved in dynamics. Lastly, we want to ensure that the hyperuniformity is a result of nonlinear 

elastic deformations, and not from flow or plastic deformations. Thus, we want to see 

hyperuniformity in a model without topological changes or opportunities to flow, such as T1’s.   

 We propose a model satisfying each of these constraints, referred to here as the Triangular 

Lattice Model. Fundamentally, the components are the same as those used in the vertex model, 

insofar that we work within a two-dimensional network of cells, edges, and vertices. Forces due 

to cell pressure and edge tensions, however, are removed and replaced by edges that behave like 

simple Hookean springs of given rest length 𝑙&! and stiffness Γ!. The energy functional of this 

network can then be described by  

 

𝑈 =<Γ!(𝑙! − 𝑙&!)'
!

	 . (4.1) 

 

The force imposed on each vertex, derived in the same fashion as Section 1.1, thus depends only 

on the lengths of each edge, 

 

𝐹𝒓! = −
𝜕𝑈
𝑑𝒓&

= 2<Γ!(𝑙! − 𝑙&!)𝒍3i
[!]

	 . (4.2) 

 

Whereas before cells and vertices could have as many edges or connections as was 

conducive for reaching a minimal energy configuration, this model (as implied by its name) is 

initially constructed as a regular triangular lattice, where each vertex is connected by an edge to 

its nearest neighbor. Topological transitions of any kind are not included, which means major cell 

rearrangements cannot occur, cells maintain the same three edges initially assigned to them, and 
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all vertices are three-fold coordinated. Reducing the model to a spring lattice and removing 

topological changes serves to drastically increase the computational efficiency of the system. 

 

 

FIG 4.1: Cartoon showing the evolution of the triangular lattice model simulations. 
Starting from a regular triangular lattice connected by springs with randomly assigned rest 

lengths, the triangles warp their shapes to conform with a preferred area set by these rest lengths. 
Smaller versions of these lattices are shown in either corner for detail. 

 

 

If we begin with a regular triangular lattice, then for the packing to display some interesting 

behavior outside of this initially stable configuration, we must implement some variety in either 

the rest lengths or stiffness of each spring. For this model, we do both. We first discuss rest lengths, 

which are assigned randomly to each edge and meant to introduce some amount of disorder to the 

packing. In this respect, 𝑙&! acts as a random variable distributed uniformly about the characteristic 

length of an edge in the regular triangular lattice, 𝑙&. Assigning random rest lengths means that a 

unique preferred area can be calculated for each triangle given the assignment of its three edges. 

Geometrically, this corresponds to the existence of some target background metric for the lattice, 

such that the initial regular configuration represents a heterogeneous distribution of area and 

experiences random local stresses [44]. For large enough packings, the preferred area of all 

triangles is expected to match that of the box, preventing any complications of internal stresses 
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resembling a net pressure inflicted on the system. This implies that there exists an equilibrium 

configuration the lattice can relax to that conforms to each triangle’s preferred area, effectively 

resulting in a packing of uniform density. Thus, we have a new way to measure density fluctuations 

for the triangular lattice model. By assigning random rest lengths to each edge, one can define a 

unique preferred area to each triangle, and determine density fluctuations in much the same way 

as was proposed in eq. (1.5),  

 

〈𝛿'𝐴&!〉 = 〈𝐴&!(𝑅)'〉 − 〈𝐴&!(𝑅)〉'	. (4.3) 

 

This is done by measuring the area of triangles inside an ensemble of measuring windows, with 

respect to their preferred areas, rather than actual area. By doing this, we can produce plots 

analogous to those from Chapter II and interpret them in much the same way.  

Another feature of the triangular lattice model is that it implements two distinct types of 

springs of differing stiffnesses. The first type of spring is distinguished by a characteristic stiffness 

Γ2, and is assigned a set of edges that together form a honeycomb lattice within the packing. The 

remaining edges of the triangular lattice are the second type of spring, with characteristic stiffness 

Γ', as shown in fig. 4.2. The choice to include two types of springs was made as a means of 

manually augmenting the bulk and shear properties of the lattice. For example, setting Γ' = 0 

neutralizes the contribution of type 2 springs, reducing the system to a honeycomb lattice, which 

is known to have zero shear modulus. Conversely, increasing the stiffness of type 2 springs should 

make the more lattice more rigid and increase its resistance to shear. We then expect density 

fluctuations to demonstrate the same relationship to the elastic properties of the spring lattice in 

much the same way we predict it should for the vertex model. To verify these predictions, we must 

first derive the relationship between the stiffness parameters and elastic moduli of the lattice. 
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FIG 4.2: Cartoon of the 2-spring lattice in a uniform configuration. Type 1 springs are 
shown in red, and here it is clear that together they form a honeycomb lattice. Type 2 springs are 
shown in blue. Giving type 2 springs a nonzero stiffness can improve the shear resistance of the 

system. A unit cell containing two vertices is drawn using black lines, which is used to derive the 
shear modulus in Section 4.2. The length of the type 1 spring bolded and oriented parallel to the 

x-axis in the unit cell is used as an energy minimizing parameter, labelled 𝑙. We also define 
quantities of width and height to simplify calculations – w and h in the diagram. 

 

4.2 Elastic Properties of the Lattice  
 

Deriving the relationship between the bulk and shear moduli with respect to Γ2 and Γ' can 

be done very similarly as was detailed in Section 2.3, though with a spring lattice, this can be done 

analytically for the case without any randomness. In actuality, the bulk and shear moduli randomly 

fluctuate in space due to the heterogeneity introduced into the lattice from the variable rest lengths, 

though these calculations represent the estimated average elastic properties over the entire lattice, 

valid for large packings.   

𝒉 =
√𝟑
𝟐
𝒍𝟎 

𝒘 =
𝟑
𝟐
𝒍𝟎 

𝒍 
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To calculate the bulk modulus, we can model the energy of the system after applying a 

hydrostatic deformation by expanding out (4.1) in terms of a packing with 𝑚2 type 1 springs, 𝑚' 

type 2 springs, and a scaling factor for the deformation 𝛼, 

 

𝐸H
(A) = 𝑚2Γ2(𝛼𝑙& − 𝑙&)' +𝑚'Γ'(𝛼𝑙& − 𝑙&)'	, (4.4) 

 

where the subscript d refers to this representing a discretized form of free energy. We can easily 

compare this to the continuous elastic expression for free energy in (2.5) to obtain an expression 

for the bulk modulus. Rewriting 𝑚2 = 3𝑛, 𝑚' = 6𝑛, and 𝐿6𝐿7 = {-√-
'
𝑙&
'𝑛| in terms of the 

number of hexagons in the type 1 spring honeycomb, n, we find that  

 

𝜅 =
√3
3
[Γ2 + 2Γ']	. (4.5) 

 

The shear modulus proves a bit more difficult to find analytically. To simplify matters, 

we look at a single unit cell of the lattice containing two vertices, shown in fig. 4.2. To simplify 

notation, we define a unit of width 𝑤 = -
'
𝑙& and height ℎ = √-

'
𝑙&. We attempt to model the 

energy of the system after shearing the lattice using a squeeze deformation to find 𝜇. Unlike the 

bulk modulus, though, we must allow the vertices to move after deforming to find its minimal 

energy configuration. Taking advantage of symmetries, one recognizes that the vertices will 

remain bound to the x-axis, so we can parametrize the energy within the unit cell using the length 

of the edge connecting the two vertices, denoted 𝑙. Rewriting the scaling factor 𝛼 = 𝜀 + 1, we 

can write represent the energy within the unit cell after applying a shear strain 𝜀 ≪ 1 with 

respect to 𝑙, 

 

𝐸(𝑙)H
(C) = Γ2(𝑙 − 𝑙&)' + 2Γ2 P¹{𝑙 −

]
^J2
|
'
+ (ℎ[𝜀 + 1])' − 𝑙&R

'

+2Γ' {º
2
^J2

− $
'
» − 𝑙&|

'
+ 4Γ' P¹{

$
'
|
'
+ (ℎ[𝜀 + 1])' − 𝑙&R

'

	 . (4.6)
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Defining the energy in terms of 𝑙 allows us to minimize energy with respect to 𝑙 to find the 

desired configuration. We write 𝑙 into a power series and expand terms about 𝜀 = 0 to second 

order. Solving _`
($)*

(.)

_$
= 0 for 𝑙 thus gives a minimum energy configuration when the edge 

between the vertices is a length of  

 

𝑙⋆ = 𝑙& �1 −
3Γ'

2Γ2 + Γ'
𝜀 +

3Γ2�8Γ2' − Γ2Γ' + 11Γ''�
2(2Γ2 + Γ')-

𝜀'�	 . (4.7) 

 

We then substitute this result into (4.6) to find the relaxed energy of the unit cell after 

imposing a squeeze deformation to second order in the strain, 

 

𝐸H
(C) = 𝑙&

' �
3
2
Γ2𝛽' +

5
4
Γ'(𝛽 − 3)'� 𝜀'	, (4.8) 

 

where 𝛽 = -D$
'D/JD$

. It should be noted that 𝐸H
(C) → 0 as Γ' → 0, which is good since we expect 

energy to vanish to quadratic order for small shear strain in a honeycomb lattice.  

Having acquired a discretized expression of free energy, one need only compare this to 

(2.6) in terms of 𝜀 to find the shear modulus. Defining the volume of the continuous elastic 

formulation 𝐿6𝐿7 =
-√-
'
𝑙&
' as that of the unit cell, we find that  

 

𝜇 =
√3
9 �

3
2 Γ2𝛽

' +
5
4Γ'

(𝛽 − 3)'�	 . (4.9) 

 

(4.5) and (4.9) become a system of equations we can use to find Γ2 and Γ' in terms of the 

moduli, such that C
A
 can be manually chosen for specific choices of the stiffness parameters. The 

ratios and corresponding choices in parameter used for simulations are shown in Table 4.1. 

However, it should be noted that given the limit behavior of the moduli, there is an apparent 

maximum ratio that can be achieved within the constraints of this model. One can show by writing 
C
A
 in terms of the ratio of the stiffness parameters D$

D/
, seen in fig. 4.3 (b), that this max ratio is C

A
=
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0.730. The triangular lattice model, then, can modulate the ratio of the moduli to a much higher 

degree than that demonstrated by the vertex model.  

 

𝚪𝟏 𝚪𝟐 𝜿 𝝁 𝝁
𝜿¤  

𝟏. 𝟕𝟑𝟐𝟎 0 1 0 0 

𝟏. 𝟒𝟖𝟕𝟖 0.1221 1 1
4¤  1

4¤  

𝟏. 𝟏𝟗𝟕𝟏 0.2675 1 1
2¤  1

2¤  

𝟏. 𝟎𝟎𝟔𝟐 0.3629 1 5
8¤  5

8¤  

 

Table 4.1: Displayed in each row is the parameter schemes used to produce the 〈𝛿𝟐𝐴〉 
curves in fig. 4.3 (a). We show the choices of parameter required for desired bulk and shear 

moduli. The parameter schemes are arranged in order of increasing 𝜇 𝜅⁄ . 
 

4.3 Results and Future Direction 
 

Fig. 4.3 (a) shows the density fluctuations of the triangular lattice simulations for 

different ratios of  C
A
. These results were collected from an average of 10 relaxed packings of 6 ∙

108 triangles, with rest lengths assigned using a uniform distribution over a range of 𝑙& ±
2
8
𝑙&. 

This range was chosen arbitrarily, since changing it did not seem to have a significant impact on 

the data. Surprisingly, the density fluctuations are not suppressed for decreasing moduli ratios, in 

stark contrast to the vertex model case considered in previous chapters. In fact, the plot implies 

that for any choice of C
A
, the distribution of area throughout the packings are random.    

Although a promising start towards developing a model that can illuminate further the 

relationship between the occurrence of hyperuniformity and the elastic quantities of a disordered 

material, the data reveals one glaring problem which largely hinders its usefulness. First, to 

choose values of  C
A
 small enough to expect hyperuniform behavior, one of the stiffness 

parameters must be significantly smaller than the other. A consequence of this is that the forces 

produced by these springs are, in effect, negligible compared to the other type of springs. This 

makes it so the triangles can no longer preserve their preferred area, which undermines the 
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method employed to measure density fluctuations, and tends triangles to adopt a random area. 

Without knowing if the triangles are unable to conform to their preferred areas due to the bulk 

and shear constraints imposed on them or from one type of spring dominating dynamics means 

that very little conclusive information can be extracted from the data. Although they may all 

have the same slope behavior in fig. 4.3 (a), we do see a systematic decrease in 〈𝛿'𝐴〉/𝑅' 

between each of the curves. This is because as C
A
 increases, the stiffness of both types of spring 

become closer in value, the forces imposed by each are then comparable, and so the triangles can 

meet their preferred areas to some extent. Although this effect is not significant enough to 

change the density fluctuation behavior in any of these cases, we do see a slight decrease in 

variance of area as  C
A
  increases. 

 

 

FIG 4.3: A Log-log plot of 〈𝛿'𝐴〉/𝑅' as a function of R for different ratios of 𝜇 𝜅⁄ . The 
results shown are taken from systems of 6 ∙ 108 triangles, and the bounds of the x-axis have been 

narrowed to remove data affected by finite size effects, as seen in the plots of Chapter II. The 
slopes of these curves appear flat, indicating random fluctuations of density in the system in all 
cases. The only distinction between them is a systematic decrease in the variance of their areas, 
which is discussed in the text. B The blue curve shows the theoretical relationship between 𝜇 𝜅⁄  
and the stiffness ratio Γ' Γ2⁄ . The red dashed line represents the stiffness ratio that can produce 
the highest value for 𝜇 𝜅⁄ . This ratio is 𝜇 𝜅⁄ = 0.730 for a stiffness ratio of Γ' Γ2⁄ = 0.811. For 

our data, we choose parameter schemes starting at Γ' Γ2⁄ = 0 and working up towards this 
maximum. 
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Current efforts to understand the physical origin of hyperuniformity are in the works, 

attempting to build off the strategies developed for the triangular lattice model. This involves 

constructing a new energy functional that penalizes triangles from deviating from a randomly 

assigned preferred area, along with a spring-like angular dependent energy cost which 

incentivizes triangles to remain equilateral. Density fluctuations will be measured in largely the 

same way as described in Section 4.1, though these areas are expected to be preserved due to its 

explicit definition inside the model. Additionally, we expect that the bulk and shear moduli 

should be easier to modulate, since they should be coupled independently with the energy 

contributions generated by deviations from area or bond angles, respectively.  
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CHAPTER V 

Conclusion 
 

 In this work, we have detailed the progress regarding the ongoing investigation of 

anomalous suppression of density fluctuations observed in computational simulations of 

epithelium. Disordered hyperuniform systems have gained more attention in recent years due to 

their novel properties and important role in many biological phenomena [31,32,33]. The tools 

available to study density fluctuations of disordered media at long orders of distance are limited, 

and efforts to understand the physical mechanisms underlying the presence of hyperuniformity 

are largely absent. The primary goal of this thesis was to provide insight into the methods used to 

measure density fluctuations in simulated epithelial tissues and results thereof, as well as develop 

new models to approach the cause of hyperuniformity observed from a biophysical standpoint. 

Our investigation regarding the subject has yet to reach a definite conclusion, though the findings 

presented are interesting in their own respect and establishes a useful groundwork for future 

courses of study.  

 Chapter II introduced the vertex model, which allows the simulation and analysis of 

epithelial tissue by approximating it as a two-dimensional disordered network of cells, edges, 

and vertices. The dynamics of the resultant cell packings take inspiration from their actual 

biological structure, accounting for forces due to intrinsic cell pressure and contractile edge 

tension at cell membranes. We then explained the process of analyze density fluctuations by 

counting the number of cell centroids within an ensemble of circular measurement windows and 

plotting the variance of these counts with respect to R, where the behaviors of these curves are 

used to characterize whether the cell distributions display hyperuniformity. This verified that the 

simulations demonstrate a clear suppression of density fluctuations using a standard set of 

parameters chosen to represent the dynamics of Drosophila wing discs during early stages of 

development [38]. We hypothesize that this behavior may relate to physical quantities in the 

form of the bulk and shear moduli of the material, under the assumption that tissues with a 

relatively low resistance to shear behave like a fluid and could allow cells the freedom to 

rearrange necessary to induce hyperuniform configurations. After laying out the technique 

developed to extract the bulk and shear moduli from our simulations, evidence was shown of this 
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relationship by comparing the density fluctuations for different ratios of  C
A
, though there were 

many restrictions posed by the vertex model that made further elaboration on these findings 

infeasible.  

 Chapter III attempts to lean away from the topic of hyperuniformity and compare 

simulation data from the vertex model to a recent theoretical continuum model of growth in 

elastic tissues which accounts for mechanical feedback and noisy dynamics [37]. Here, we 

formulated expressions allowing certain quantities and predictions from the continuum model to 

translate compatibly with that of our discretized vertex model in the case of anisotropic growth 

and implemented an isotropic pressure-dependent feedback regulating division rate. We focused 

on the statistics of clone size by introducing some of our own into simulations and verified the 

prediction that for 𝑡 → ∞, the normalized variance of clone areas scale like the inverse of the 

initial size of the clone. However, we found that the variance of clone areas through time derived 

from the continuum model did not correctly predict that demonstrated by simulation data. It is 

suggestive that the hyperuniformity found in simulations is dampening density fluctuations and 

undermining the effects of feedback, such that the only simulation data applicable to the 

continuum model is that which neglects mechanical feedback entirely.  

 We are then highly motivated to develop new models that can identify the cause of 

hyperuniformity in the vertex model and disordered, elastic materials in general. Chapter IV 

suggests our latest attempt for this, in which an initially triangular lattice connected by springs 

are assigned random rest lengths to implicitly define a preferred area for each triangle. Springs 

were assigned one of two stiffness parameters with which we could choose to manually alter the 

bulk and shear properties of the lattice. Although we expected to see a relationship between 

fluctuations in density corresponding to our choice in C
A
, we found that our method for measuring 

these fluctuations fail for smaller ratios. This model, however flawed, represents a strong 

foundation that will be built from in later projects. 

 Identifying the origins of hyperuniformity poses a difficult challenge to understand given 

the number of computational obstacles involved. This thesis demonstrates our initial efforts to 

devise such an understanding, and although our results have varied, each step of progress towards 

unraveling the questions surrounding hyperuniformity have been useful in their own respect. In 

addition to presenting evidence of hyperuniform behaviors in simulations of disordered systems, 

the intention of this thesis is also to serve as a reference for those who might further pursue this 
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subject within the context of the vertex model in future projects. Our hope is only that with every 

step, we move closer to realizing the answers we seek.  
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