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ABSTRACT

Software projects frequently evolve to integrate new features, update existing operations

and fix errors/bugs to meet new requirements. While this evolution is critical, it may have a

negative impact on the quality of the system. To improve the quality of software systems, the

first step is “detection” of code antipatterns to be restructured which can be considered as

“refactoring opportunities”. Th second step is the “prioritization” of code fragments to be

refactored/fixed. The third step is “recommendation” of refactorings to fix the detected

quality issues. The fourth step is “testing” the recommended refactorings to evaluate their

correctness. The fifth and the last step is the “documentation” of the applied refactorings.

We addressed all the above steps as part of this dissertation. We mainly focused on analyzing

commit messages to improve the process of recommending and documenting refactoring. In

this thesis, we offer these following contributions:

1. We designed a bi-level multi-objective optimization approach to enable the generation

of antipattern examples that can improve the efficiency of detection rules for bad quality

designs. The statistical analysis of our results, based on 662 web services, confirms

the efficiency of our approach in detecting web service antipatterns comparing to the

current state of the art in terms of precision and recall. The combination of dynamic

QoS attributes and structural information of web services improved the efficiency of

the generated detection rules.

2. Regarding refactoring recommendations, we proposed an approach that combines ma-

chine learning with multi-objective optimization techniques. We first identify refac-

xviii



toring opportunities by analyzing developer commit messages and check the quality

improvements in the changed files, then we distill this knowledge into usable context-

driven refactoring recommendations to complement static and dynamic analysis of

code. The evaluation of our approach, based on six open-source projects, shows that

we outperform prior studies that apply refactorings based on static and dynamic anal-

ysis of code alone. This study provides compelling evidence of the value of using the

information contained in existing commit messages to recommend future refactorings.

3. We proposed an interactive refactoring recommendation approach that enables devel-

opers to pinpoint their preference simultaneously in the objective (quality metrics) and

decision (code location) spaces. Developers may be interested in looking at refactoring

strategies that can improve a specific quality attribute, such as extendibility (objective

space), but such strategies may be related to different code locations (decision space).

A manual validation of selected refactoring solutions by developers confirms that our

approach outperforms state of the art refactoring techniques.

4. We proposed a semi-automated refactoring documentation bot that helps developers to

interactively check and validate the documentation of the refactorings and/or quality

improvements at the file level for each opened pull-request before being reviewed or

merged to the master. We conducted a human survey with 14 active developers to

manually evaluate the relevance and the correctness of our tool on different pull re-

quests of 5 open-source projects and one industrial system. The results show that the

participants found that our bot facilitates the documentation of their quality-related

changes and refactorings.

5. We performed interviews with and a survey of practitioners as well as a quantitative

analysis of 1,193 commit messages containing refactorings. The interviews with 14

developers aim to establish a refactoring documentation model as a set of components.

The survey with an additional 75 developers is to understand the experience of develop-

xix



ers in finding and documenting these different components and their importance. The

obtained final model includes the following refactoring documentation components to

answer the following questions: how, why, where, what, and when the refactorings were

introduced. Then, we conducted a manual inspection of commit messages to compare

the final refactoring documentation model with manual refactoring documentation ex-

tracted from open-source projects. Our quantitative results show that while developers

may document in isolation the different components over multiple commits, they rarely

document all of them in a single commit. Our findings can enable (1) researchers to au-

tomatically improve, assess, and generate refactoring documentation, (2) practitioners

to use a standard format in documenting and discussing refactorings, and (3) educators

to teach and emphasize the different important components of refactoring.

6. We formulated the recommendation of code reviewers as a multi-objective search prob-

lem to balance the conflicting objectives of expertise, availability, and history of col-

laborations. Our validation confirms the effectiveness of our multi-objective approach

on 9 open-source projects by making better recommendations, on average, than the

state of the art.

7. We built a dataset composed of 50,000+ composite code changes pertaining to more

than 7,000 open-source projects. Then, we proposed and evaluated a new deep learn-

ing technique to generate commit messages for composite code changes based on an

attentional encoder-decoder with two encoders and BERT embeddings. Our results

show that our technique overcomes the existing approaches in terms of BLEU score.

xx



CHAPTER I

Introduction

1.1 Research Context

1.1.1 Web Services Defects

Service-Oriented Computing (SOC) has emerged as an evolutionary paradigm that is

changing the way software applications are implemented, deployed, and delivered to help

industry meet their ever-more-complex challenges [5]. Nowadays, SOC is becoming widely

accepted in industry such as FedEx 1, Dropbox 2, Google Maps 3, eBay4, etc. The mas-

sive adoption of this paradigm and its popularity are mainly due to the offered reusability,

modularity, flexibility, and scalability [6]. SOC utilizes services which are independent and

portable program units as fundamental elements to support rapid, low cost development of

heterogeneous and distributed systems [7].

Any successful deployed web services evolve over time to meet the new changes in the

requirements and/or to fix bugs. The continuous changes and evolution of web services

may create poor and bad design practices which are generally called ”antipatterns” that

can impact the performance and usability of the web service [8]. Maintaining a good design

quality is critical but it is excessively expensive both in time and resources for the service

providers.

1http://www.fedex.com/ca english/businesstools/webservices
2https://www.dropbox.com/developers/core
3developers.google.com/maps/documentation/webservices
4https://developer.ebay.com/docs
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1.1.2 Software Refactoring

With the ever-growing size and complexity of software projects, there is a high demand

for efficient software refactoring [9, 10, 11, 12] tools to improve software quality, reduce

technical debt, and increase developer productivity. However, refactoring software systems

can be complex, expensive, and risky [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. A recent

study [23] shows that developers are spending considerable time struggling with existing

code (e.g., understanding, restructuring, etc.) rather than creating new code, and this may

have a harmful impact on developer creativity.

Various tools for code refactoring have been proposed during the past two decades ranging

from manual support [24, 25, 26] to fully automated techniques [27, 28, 29, 30, 31, 32, 33, 34,

35, 36]. While these tools are successful in generating correct code refactorings, developers

are still reluctant to adopt these refactorings. This reluctance is due to the tools’ poor

consideration of context and developer preferences when finding refactorings [37, 38, 29, 39].

software refactoring remains a human activity which is hard to fully automate and requires

developer insights. Such insights are important because developers understand their problem

domin intuitively and may have a clear target end-state in mind for their system. In fact,

the preferences of developers ranging from quality improvements to code locations, are still

not well supported by existing tools and a large number of refactorings are recommended, in

general, to fix the majority of the quality issues in the system. Some existing approaches rely

on the use of quality metrics such as coupling, cohesion, and the QMOOD quality attributes

[40] to first identify refactoring opportunities, and then to recommend refactorings to fix

them. Many of the quality issues detected using structural metrics are known as code smells

or antipatterns [41]. However, recent studies have shown that developers are not primarily

interested in fixing antipatterns when they are performing refactoring [42].
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1.1.3 Composite Changes Documentation

Documentation is a recommended practice in software development and maintenance to

help developers understand the code quickly and improve their productivity [43]. According

to a study [44], the lack of up-to-date documentation is one of the biggest challenges in

software maintenance. In fact, developers often ignore the documentation of their changes

due to the time pressure to meet deadlines. The situation is even worse with the documenta-

tion of quality improvements since developers only/mainly focus on documenting functional

changes and bugs fixing [45, 46, 47].

Software refactoring, defined as code restructuring while preserving the behavior [48],

is guided by decisions from developers for various reasons such as improving quality and

preventing bugs [49, 48, 50, 51, 52]. Several empirical studies [53, 54, 55, 56] show that

refactoring is complex and time-consuming, and usually involves a sequence of dependent

code actions to address challenging quality issues [52]. The effective understanding and

documentation of refactorings can play a critical role in reducing and monitoring the technical

debt [57, 58, 59, 60] by different stakeholders including executives, managers, and developers.

In particular, refactoring documentation can help developers, managers, and executives keep

track of applied refactorings, their rationale, and their impact on the system.

One of the laws of software evolution is that a successful software project evolves over

time to meet the new requirements as well as to fix bugs [61]. However, these continuous

changes and evolution may result in a poor quality software product [62]. To help develop-

ers maintain these changes made in software repositories, one common practice is to write

commit messages, which document these changes in version control systems, e.g., Git [63].

To automatically generate such documents, researchers have been creating search-based

approaches [64, 65, 66] that find the most similar commits in the project’s history, to reuse

or adopt their messages. One of the algorithms that they use for calculating the similarity

is the nearest neighbor algorithm [65]. Another line of research uses deep learning models,

especially neural machine translation (NMT) models, to generate short commit messages
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based on diff files [67, 68, 66]. Studies have been proposing different variations of a vanilla

NMT model to improve the quality of the generated commit messages. For example, Pointer-

Generator Network is added to treat out-of-vocabulary words [66]. Xu et al. [69] modified

the encoder to take two inputs: code semantics and code structures for commit message

generation

1.1.4 Code Reviews

The source code review process has always been one of the most important software

maintenance and evolution activities [70]. Several studies show that a careful code inspection

can significantly reduce defects and improve the quality of software systems. Recently this

process has become informal, asynchronous, light-weight and facilitated by tools [71] [72]. A

survey with practitioners, performed by Bacchelli et al. [73], show that code review nowadays

is expanding beyond just looking for defects but to also provide alternatives to improve the

code and transfer knowledge among developers.

1.2 Problem Statement & Proposed Contributions

In this thesis, we built a framework to improve and assist the quality assurance process

via leveraging different algorithms to enhance the mechanisms of detection, correction and

documentation of quality issues and code changes:

• Design and implement scalable approach that combines search algorithms with machine

learning and natural language techniques for the detection of refactoring opportuni-

ties and refactoring recommendation. We utilized for the first time the knowledge

extracted from commit messages analysis to improve the existing tools for detection

and correction of quality issues.

• Design empirical foundation and a thorough empirical evaluation to build a model for

refactoring and quality documentation.
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• Design and implement approaches leveraging template-based and deep-learning tech-

niques to generate documentation for composite code changes.

Figure 1.1: Overview of the contributions of this thesis.

Figure 1.1 represents the different contributions of this thesis. The presented frame-

work contains four main components. The first component is the “defects detection”

where we published one research contribution. Second, we published two research contribu-

tions within the “refactoring recommendation component”. For the “complex code

changes documentation” component, we published one research contributions and suc-

cessfully submitted two contributions to a top journal. Finally, we published one contribution

for “code review component”.

In the following, we will summarize the objectives of each contribution.

5



1.2.1 Contribution 1: Web Service Design Defects Detection

There are various challenges in the existing studies to address the detection of web service

design defects. In fact, there was no use of quality of service metrics such as the response

tine and availability in assisting the performance of a web services. Additionally, most of

the existing tools were either based on a manual detection which is error-prone and requires

high calibration effort to find a threshold for each metric; or automated tools that suffers

from lack of data which impacts their efficiency because to provide efficient detection rules,

we need a high number of interface design defect examples to feed to the model. To address

the previously mentioned challenges, we designed a bi-level multi-objective optimization

approach to enable the generation of antipattern examples that can improve the efficiency

of detection rules for bad quality designs. The statistical analysis of our results, based on a

data-set of 662 web services, confirms the efficiency of our approach in detecting web service

antipatterns comparing to the current state of the art in terms of precision and recall. The

multi-objective search formulation at both levels helped to diversify the generated artificial

web service defects which produced better quality of detection rules. Furthermore, the

combination of dynamic QoS attributes and structural information of web services improved

the efficiency of the generated detection rules. A paper is published in the Information and

Software Technology Journal 5

Note that the adopted detection techniques for Object-Oriented (OO) designs and/or web

services defects are almost similar. In this contribution, we were interested in generalizing

the usefulness of a bi-level optimization and the importance of considering quality attributes

of a software projects beyond the Object-Oriented context.

5Soumaya Rebai, Marouane Kessentini, Hanzhang Wang, Bruce R. Maxim, “Web service design defects
detection: A bi-level multi-objective approach”
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1.2.2 Contribution 2: Interactive Refactoring Recommendation

Antipatterns represent a source for refactoring opportunities. To fix these poor qual-

ity systems, various refactoring recommendation approaches were previously proposed (the

approaches are described in details in section 2.3). The most significant challenge in the

existing interactive refactoring recommendation approaches is related to the huge effort re-

quired from the user in order to evaluate and explore the refactoring solutions. To the best of

our knowledge, there are no existing refactoring tools that enable the interactive exploration

of both quality metrics and code locations during the refactoring process. Thus, we propose

an interactive approach where we combine machine learning technique with multi-objective

optimization to recommend more relevant refactoring solutions. Our proposed solution con-

sists of not only clustering the solution at the objective space (quality metrics) but also at

the decision space (code locations) and therefore we succeed to reduce the developer effort

and the optimization process towards the developer’s region of interest. A paper is accepted

at the IEEE Transactions in Software Engineering journal 6

1.2.3 Contribution 3: Refactoring Recommendation via Commit Messages

Analysis

Although the results of our interactive clustering approach are promising and outperform

the state-of-the-art approaches, we noticed that there are other resources such as commit

messages that help improve the refactoring recommendation and reduce even more the effort

of the developer in exploring the generated solutions. As a result we propose a refactoring

recommendation solution via commit messages analysis where we combine NLP techniques

with multi-objective optimization to detect better refactoring opportunities and then recom-

mend more personalized refactoring recommendations. The results shows an outperformance

over the state-of-the-art techniques. A paper is published in the Information and Software

6Soumaya Rebai, Vahid Alizadeh, Marouane Kessentini, Houcem Fehri, and Rick Kazman, “Enabling
Decision and Objective Space: Exploration for Interactive Multi-Objective Refactoring.”
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Technology Journal 7

1.2.4 Contribution 4: Interactive Refactoring Documentation Bot

Our previous analysis of the commit messages for refactoring documentation and the

promising results of our previous contributions put emphasis on the importance of having

a good documentation in guiding the refactoring process and thus assessing and improving

software quality. Additionally, several automated techniques for the generation and recom-

mendation of documentation of diffs and atomic changes (e.g., [66, 74, 75, 67, 76, 77, 78])

have been recently proposed. However, most of the current development workflows/pipelines

in industry are lacking tools/steps to document refactorings and quality changes/technical

debt. As a result, we propose as a first attempt, a template-based refactoring documentation

bot which helps documenting refactoring and non-functional changes while submitting new

code changes. The feedback of practitioners show the usefulness and the importance of the

bot in assisting developer while committing their changes. A paper is published in 19th

International Working Conference on Source Code Analysis and Manipulation (SCAM) 8

1.2.5 Contribution 5: 4W+H Model for Refactoring Documentation: A Prac-

titioners’ Perspective

To the best of our knowledge, there is no solid empirical foundation on what information

is (or is not) useful to developers when documenting composite changes(e.g. refactorings)

based on surveys with practitioners. Therefore, to further improve the documentation tools

and bots, we were interested in exploring in more details the practitioners’ perspective about

the importance of automating refactoring documentation and what are the most important

components to be documented. The results of the conducted survey report 5 important

7Soumaya Rebai, Marouane Kessentini, Vahid Alizadeh, Oussama Ben Sghaier, and Rick Kazman, “Rec-
ommending Refactorings via Commit Message Analysis.”

8Soumaya Rebai, Oussama Ben Sghaier, Vahid Alizadeh, Marouane Kessentini and Meriam Chater,
“Interactive Refactoring Documentation Bot.”
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components to be documented (Why, Where, What, When and How). A paper is submitted

to the IEEE Transactions in Software Engineering journal 9

1.2.6 Contribution 6: Commit Message Generation of Complex Code Changes

Most of the currently available techniques for code changes documentation are partic-

ularly suitable only when dealing with commits composed of a few atomic changes, i.e.,

operations where developers apply a set of disjointed changes, like additions/deletion of

lines of code, to multiple files. However, they might not be as accurate when facing what

we define as composite changes, namely, a set of conceptually related modifications that

are intended to implement a unique high-level code change. Therefore, in another attempt

towards improving the documentation of complex code changes, we first build a dataset

composed of 50,000+ composite code changes pertaining to more than 7,000 open-source

projects.“Composite change” is a set of conceptually related atomic modifications forming a

, e.g., a bug-fixing activity touching more files. Afterward, we propose and evaluate a new

deep learning technique to generate commit messages for composite code changes based on

an attentional encoder-decoder with two encoders and BERT embeddings. The model takes

diff files and composite changes as two different input sources. Our results show that our

technique overcomes the existing approaches in terms of BLEU score. A paper is submitted

to the IEEE Transactions in Software Engineering journal 10

1.2.7 Contribution 7: Code Reviewers Assignment

Code reviews is considered as the last step in every software project where the code needs

to be reviewed before it goes into production. Our previous contributions focus mainly on

detecting, fixing and documenting changes which significantly help and support the reviewers

during the code review process. However, we were also interested in addressing the challenge

9Soumaya Rebai, Marouane Kessentini, Tushar Sharma, and Thiago Ferreira, “4W+H Model for Refac-
toring Documentation: A Practitioners’ Perspective.”

10Soumaya Rebai, Siyuan Jiang, Marouane Kessentini, Weji Huang, and Fabio Palomba, “Commit Mes-
sage Generation of Composite Changes.”
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of assigning the appropriate reviewers to review certain code fragments. In fact, despite re-

cent progress [79, 80] code reviews are still time-consuming, expensive, and complex involving

a large amount of effort by managers, developers and reviewers. Thongtanunam et al. [81]

found on four open source projects with 12 days as the average to approve a code change.

The automated recommendation of peer code reviewers may help to reduce delays by finding

the best reviewers who will then spend less time in reviewing the assigned files. Therefore,

we propose a multi-objective reviewers assignment solution where we balance collaborations,

expertise and availability. A paper is published in Automated Software Engineering journal

11

1.3 Organization of the Dissertation

This thesis is organized as follows: Chapter II introduces the current state of the art and

related works to this thesis. Chapter III presents multi-objective bi-level approach for web

service design defects detection. Chapter IV describes our proposed approach to interactively

recommend refactoring. Chapter V, discusses our proposed method to recommend refactor-

ing via analyzing commit messages. We present our refactoring documentation bot to assist

the developers documenting their code changes in chapter VI. Chapter VII describes our

proposed model for refactoring documentation, constructed from practitioners’ perspective.

An approach for commit message generation of composite changes is presented in chapter

VIII. We present our multi-objective approach for assigning code reviewers in chapter IX.

Finally, a summary and future research directions are presented in X.

11Soumaya Rebai, Abderrahmen Amich, Somayeh Molaei, Marouane Kessentini and Rick Kazman,
“Multi-Objective Code Reviewer Recommendations: Balancing Expertise, Availability and Collaborations.”
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CHAPTER II

State of the Art

2.1 Introduction

In this chapter, we cover the necessary background information related to our work

followed by an overview of existing studies.

2.2 Background

Quality attributes. QMOOD is a widely used quality model, based on the ISO 9126

product quality model [82]. We selected this model because it is a widely accepted quality

model in industry and it has been validated based on hundreds of industrial projects[82, 83,

84, 33, 1]. Each quality attribute in QMOOD is defined using a combination of low-level

metrics as detailed in Tables 2.1 and 2.2. The QMOOD model has been used in many

studies [40, 85, 86] to estimate the effects of proposed refactoring solutions on software

quality. QMOOD defines six high-level design quality attributes (reusability, flexibility,

understandability, functionality, extendibility, and effectiveness) that can be calculated using

11 lower-level design metrics.

Commits and refactoring. Refactoring documentation has two major parts: pull

requests for “high-level” refactorings [87] and commit messages for code-level refactorings.

The individual commit messages describe refactorings applied by a developer. A refactoring

process typically starts with a new branch. In this branch, each commit should correspond to

11



Table 2.1: QMOOD metrics description.

Design Metric Design Property Description

Design Size in Classes
(DSC)

Design Size Total number of classes in the design.

Number Of Hierarchies
(NOH)

Hierarchies Total number of ”root” classes in the design
(count(MaxInheritenceTree (class)=0))

Average Number of Ances-
tors (ANA)

Abstraction Average number of classes in the inheritance tree for
each class.

Direct Access Metric
(DAM)

Encapsulation Ratio of the number of private and protected attributes
to the total number of attributes in a class.

Direct Class Coupling
(DCC)

Coupling Number of other classes a class relates to, either through
a shared attribute or a parameter in a method.

Cohesion Among Methods
of class (CAMC)

Cohesion Measure of how related methods are in a class in terms
of used parameters. It can also be computed by: 1 −
LackOfCohesionOfMethods()

Measure Of Aggregation
(MOA)

Composition Count of number of attributes whose type is user de-
fined class(es).

Measure of Functional Ab-
straction (MFA)

Inheritance Ratio of the number of inherited methods per the total
number of methods within a class.

Number of Polymorphic
Methods (NOP )

Polymorphism Any method that can be used by a class and its de-
scendants. Counts of the number of methods in a class
excluding private, static and final ones.

Class Interface Size (CIS) Messaging Number of public methods in class.

Number of Methods
(NOM)

Complexity Number of methods declared in a class.

Figure 2.1: An architecture refactoring process in a version-control repository

12



Table 2.2: Quality attributes and their equations.

Quality attributes
Definition
Computation

Reusability
A design with low coupling and high cohesion is easily reused by
other designs.
0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗ Messaging + 0.5 ∗
DesignSize

Flexibility
The degree of allowance of changes in the design.
0.25∗Encapsulation−0.25∗Coupling+ 0.5∗Composition+ 0.5∗
Polymorphism

Understandability
The degree of understanding and the easiness of learning the design
implementation details.
0.33∗Abstraction+0.33∗Encapsulation−0.33∗Coupling+0.33∗
Cohesion − 0.33 ∗ Polymorphism − 0.33 ∗ Complexity − 0.33 ∗
DesignSize

Functionality
Classes with given functions that are publicly stated in interfaces
to be used by others.
0.12∗Cohesion+0.22∗Polymorphism+0.22∗Messaging+0.22∗
DesignSize+ 0.22 ∗Hierarchies

Extendibility
Measurement of a design’s ability to incorporate new functional
requirements.
0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗ Inheritance + 0.5 ∗
Polymorphism

Effectiveness
Design efficiency in fulfilling the required functionality.
0.2∗Abstraction+ 0.2∗Encapsulation+ 0.2∗Composition+ 0.2∗
Inheritance+ 0.2 ∗ Polymorphism
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Figure 2.2: An example commit from the “btm” project.

Figure 2.3: The list of refactorings applied in the commit.
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Figure 2.4: The quality metric changes in the commit.

a code-level refactoring. After developers commit all the code-level refactorings (i.e., finish

the refactoring process), developers make a pull request in which they write a description

of the overall refactoring. If the refactorings are accepted, the branch is merged into the

master branch. Figure 2.1 shows the overall architecture refactoring process in a version-

control repository. The list of refactoring types that can be supported by our research tools

are described in Table 2.3.

Figure 2.2 shows an example of a commit extracted from an open source project. The

refactorings applied by the developers are summarized in Figure 2.3, and the changes in

the coupling (DCC) metric can be seen in Figure 2.4. Of course, refactoring rarely happen

in isolation and most of commits and pull-requests contain a sequence of refactorings as

described in the example Figure 2.3 that shows a sequence of three refactorings applied in

one commit.

Review Process A code review includes all the interactions between the submitter of

a pull-request and one or more reviewers of that change including comments on the code

and discussions with reviewers. The owner is the programmer making the changes to the
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Table 2.3: Refactoring types considered in our study

Refactoring Types Definition
Encapsulate Field Changes the access modifier of public fields to pri-

vate and generates it getter and setter.
Increase Field Security Changes the access modifier of protected fields to

private, and of public fields to protected.
Decrease Field Security Changes the access modifier of protected fields to

public, and of private fields to protected.
Pull Up Field If two subclasses have the same field then this rule

moves this field to their superclass.
Push Down Field If a field is used by only some subclasses then this

rule moves this field to those subclasses.
Move Field Moves a field to another class.
Increase Method Security Changes the access modifier of protected methods

to private, and of public methods to protected.
Decrease Method Security Changes the access modifier of protected methods

to public, and of private methods to protected.
Pull Up Method If two subclasses have the same method then this

rule moves the method to their superclass.
Push Down Method If a method is used by only some subclasses classes

then this rule moves the method to those sub-
classes.

Move Method Moves a method to another class.
Extract Class/Method Creates a new class/method from an existing one.
Extract Superclass If two subclasses have similar features, this rule cre-

ates a superclass and moves these features into it.
Extract Subclass If two superclasses have similar features, this rule

creates a subclass and moves these features into it.
Rename Method/Class/Field Changes the name of a code element.

code and then submitting the review request. A peer reviewer is a developer assigned to

contribute in reviewing the set of code changes. These reviewers write review comments as

feedback to the owner about the introduced changes.

Figure 2.5 shows the code review process in a version-control repository. A code review

process starts with a new branch ( 1○). In this new branch, each commit should correspond

to a code-level change ( 2○). After developers commit all the code-level changes, developers

make a pull request, in which they write a description of the code changes ( 3○). After a pull

request has been sent out, it appears in the list of pull requests for the project in question,
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Figure 2.5: A summary of the code review process.

visible to anyone who can see the project. Then, other collaborators can check the changes

made in the branch and discuss the changes (code reviews 4○). During the code review,

developers may make more changes to the branch. Finally, if the collaborators accept these

code changes, this branch is merged into the master branch ( 5○).

Figure 9.1 shows one example of code reviews where many possible reviewers can be

assigned to review the changes. Thus, dealing with a large number of possible reviewers

for multiple pull requests is a management problem which is under-studied in the research

literature. This management process requires handling multiple competing criteria including

expertise, availability and previous collaborations with the owners and reviewers.

2.3 Related Work

2.3.1 Software Changes Documentation

Empirical Studies. Several existing studies employ techniques such as interviews or

surveys to investigate software documentation from different perspectives (e.g., quality, ben-

efits, and usage.), as described in Table 2.4. The table shows that Forward et al. [88]

concluded from surveying 48 software professionals that documentation tools should be im-

proved in order to reduce the effort required for documentation maintenance, and that we
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Table 2.4: Summary of previous empirical studies on Software Documentation

Paper Main Focus Summary

Forward and
lethrbidge [88]

Documentation tools
The authors ran a survey with 48 participants to conclude that new
technologies should be used to enhance the automation of documen-
tations tools and their maintenance.

Kajko-Mattsson
[47]

Documentation within
corrective maintenance

The authors conducted an exploratory study within 18 software or-
ganizations in Sweden. They concluded that documentation within
corrective maintenance is very neglected

De Souza et al.
[44]

Software maintenance
and documentation

The authors ran a survey with 76 software maintainers where they
established what documentation artifacts are the most useful for
software maintenance.

Chen and
Huang [89]

Software maintainabil-
ity and documentation
quality

After surveying 137 practitioners, the authors conclude that the high
severity documentation quality problems for software maintenance
are: untrustworthiness, incompleteness or inexistence, lack of trace-
ability.

Robillard [90]
Documentation as an
obstacle for learning
APIss

The author interviewed 12 developers and surveyed other 83 at Mi-
crosoft to find out that the main API learning obstacles are: re-
sources for learning (documentation, examples, etc.), API structure,
Background, Technical environment, Process.

Dagenais and
Robillard [91]

Documentation evolu-
tion

The authors surveyed 22 practitioners to find that documentation
could improve the code quality and constant interaction with the
projects’ community positively impacted the documentation.

Robillard and
Deline [92]

Documentation as an
obstacle for learning
APIs

The authors conducted a research study with 440 professional de-
velopers at Microsoft to conclude that the main obstacles faced by
developers while learning new APIs are closely related to API doc-
umentation.

Garousi et al.
[93, 94]

Documentation usage
and quality

The authors proposed a hybrid approach that consists of both quan-
titative and qualitative methods to evaluate software documentation
usage and quality.

Plösch et al.
[95]

Documentation quality

The authors conducted a survey with 88 experts to prove the need for
an automated tool to support software documentation quality. The
most important documentation quality attributes are accuracy, clar-
ity, undertandability, consistency, readability and structuredness.

Uddin and Ro-
billard [96]

Common documenta-
tion problems

The authors surveyed 323 IBM software professionals to investigate
the manifestation of API documentation problems in practice. Their
main finding is that developers prioritize content-related problems
over presentation problems.

Sohan et al. [97] API documentation

The authors conducted a study with 26 software engineers to con-
clude that REST API client developers face productivity with using
correct data types, data formats, required HTTP headers and re-
quest body when documentation lacks usage examples.

Eman et al. [97]
Refactoring in commit
messages

The authors proposed a preliminary work to quantitatively check
if developers self-admit refactorings in commit messages and the
keywords used for this purpose.

Safwan et al.
[98]

Decomposing the ratio-
nale for code changes to
help in documentation

The authors interviewed 20 software developers and surveyed 26 ad-
ditional developers to decompose the rationale of code commits and
understand practitioners’ experience with the identified components.

Emad Aghajani
et al. [99]

Documentation classifi-
cations

The authors surveyed 124 participants to classify documentation ar-
tifacts based on their importance given a specific task(refactoring,
fixing bugs,etc...)

are still lacking a clear understanding of the decomposition of documentation based on the

stockholders’ needs. Safwan et al. [98] conducted interviews and surveys to understand the

documentation of the rationale of code changes by practitioners. However, the focus on the

empirical is just related to the documentation of why developers introduced the code changes

to decompose these reasons into components. Eman et al. [100] proposed a preliminary work

to quantitatively check if developers self-admit refactorings in commit messages and the used
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keywords for this purpose. However, they did not conduct surveys to provide an empirical

foundation for refactoring documentation. Zhi et al. [101] described a mapping study about

the quality and importance of software documentation and concluded that there is a need

for large-scale empirical studies and collaborations with industry to better understand the

way that practitioners document code changes. Our study is within this direction with a

focus on complex code changes such as refactoring.

While many studies focused on the importance, usage, and quality of documentation

spanning the software life-cycle, none of them addressed refactoring/composite changes doc-

umentation.

Tools. In addition to the empirical studies, existing research related to our work focused

on building tools to automatically generate documentation for functional and atomic changes

based on the diffs. We classify them into three categories: commit messages generation, pull

request descriptions generation and source code summarization. Another related research line

proposed an empirical foundation for software documentation and its importance through

surveys [88, 44].

Table 2.5 summarizes some of the previously mentioned studies related to commit message

generation and shows the missing features that are not yet addressed in the existing research.

The last column clearly state that the existing work lacks the focus on documentation for

refactoring and non-functional changes. The input sources column shows that most of the

study related to commit generations used the same input source which mainly consists of

the diff files.

2.3.1.1 Commit Messages Generation

Researchers have adopted three main techniques in existing studies to automatically gen-

erate commit messages: template-based, search-based, and deep learning-based methods.

Template-based approaches [102, 103] including Delta-Doc [78] and ChangeScribe [76, 77]

extract information of a commit and generate messages for the changes following a specific

19



predefined template. The commit messages generated by these approaches can be lengthy

and visibly machine-generated messages. In contrast, search-based approaches [64, 65, 66]

generate commit messages that perceive human-written messages. The search-based ap-

proaches find the most similar commits in the history and reuse their commit messages as a

generated message for the new commit. Search-based techniques work for the code changes

that repeat in software repositories, such as updates of API dependencies. However, they

may fail for new types of code changes. NNGen [66] analyzed the performance of neural

machine translation (NMT) [67] for commit message generation, and showed that a simpler

and faster approach based on nearest neighbor outperforms relatively complex deep learning

methods.

Recently, deep learning techniques attracted researchers’ attention to generate commit

messages [67, 68, 66]. Siyan et al. [67] proposed a NMT-based approach to “translate” diffs

into commit messages. Their model consists of a sequence-to-sequence (Seq2Seq) recurrent

neural network. The model fails to perform well in some cases because they trained their

model using a noisy and not well-cleaned data.

2.3.1.2 Pull Request Description Generation and Source Code Summarization

Liu et al. [74] proposed a deep-learning Seq2Seq approach to generate pull-requests de-

scriptions. They consider pull-request description as a summary of commits messages gener-

ated since the last pull-request. Thus, they address the problem of pull-request descriptions

generation as a text summarization problem for mainly functional changes. Recently, Rebai

et al. [75] built a bot that enables the documentation of applied refactorings and qual-

ity attributes changes as a pull-request description in a continuous integration environment

using the template-based technique. However, the documentation bot suffers from some

limitations such as the generated pull request description can be lengthy containing limited

information based on the pre-defined template.

Source code summarization techniques [104] are used to generate documentation for
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source code fragments. These techniques can also be used to summarize code changes in

commits [104]. Recent studies proposed tools that generate natural language summaries

of source code (e.g. Java methods and classes) [105, 106, 107, 108, 75, 17, 109, 110]. For

instance, Sridhara et al. [111] proposed a tool to generate summaries for Java methods

following two complementary steps. First, they extracted important information from Java

methods. Second, they expressed the extracted content in natural language following pre-

defined templates. The authors extended their work to automatically generate description

for high-level actions within methods. Other existing work [112, 113] leverage text retrieval

techniques to generate source code summaries. For instance, Haiduc et al. [113] addressed

the problem of generating source code entities descriptions using Latent Semantic Indexing

(LSI) [114]. Deep learning models are also used by researchers in addressing source code

summarization. For example, Iyer et al. [115] have proposed a framework, named Code-NN,

to generate summaries for C# and SQL code using a NMT method.

2.3.2 Refactoring Recommendation

2.3.2.1 Manual Refactoring

We start, this section, by summarizing existing manual approaches for software refactor-

ing. In Fowler’s book [9] a non-exhaustive list of low-level design problems in source code has

been defined. For each type of code smell, a list of possible refactorings is suggested that can

be applied by the developers. Du Bois et al. [24] start from the hypothesis that refactoring

opportunities correspond to those that improve cohesion and coupling metrics, and use this

to perform an optimal distribution of features over classes. They analyze how refactorings

manipulate coupling and cohesion metrics, and how to identify refactoring opportunities

that improve these metrics. However, this approach is limited to only certain refactoring

types and a small number of quality metrics. Murphy-Hill et al. [116, 117] proposed several

techniques and empirical studies to support refactoring activities. In [117, 118], the authors

proposed new tools to assist software developers in applying refactoring such as selection as-
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Table 2.5: Related work in automated documentation generation

Paper
Technique
used

Category Granularity
Input
sources

Refactoring
documen-

tation
DeltaDoc; Auto-
matically docu-
menting program
changes [78]

Template-
based
approach

Source code
summariza-
tion

Commit
level

Two versions
of a program

No

Changescribe; A
tool for automat-
ically generating
commit messages
[76, 77]

Template-
based
approach

Source code
summariza-
tion

Commit
level

Source code
and ASTs
(Abstract
Syntax Trees)

No

Automatically
generating com-
mit messages
from diffs using
neural machine
translation [67]

Deep
learning—
NMT

Commit Mes-
sage Genera-
tion

Commit
level

Diff files No

Neural machine-
translation-based
commit message
generation: How
far are we? [66]

Search-
based
method—
Nearest
Neighbors

Commit mes-
sage genera-
tion

Commit
level

Diff files No

Automatic Gener-
ation of Pull Re-
quest [74] Decrip-
tions

Deep
Learning:
Encoder-
Decoder
Model

Pull requests
description
generation

Pull request
level

Commit mes-
sages and
source code
comments

No

Interactive Refac-
toring Documen-
tation Bot [75]

Template-
based
approach

Pull requests
description
generation

Pull request
level

Commit
source code
refactor-
ing applied
and quality
attributes
changes

Yes

sistant, box view, and refactoring annotation based on structural information and program

analysis techniques.

Recently, Ge and Murphy-Hill [119] have proposed a new refactoring tool called Ghost-

Factor that allows the developer to transform code manually, but checks the correctness of

the transformation automatically. BeneFactor [26] and WitchDoctor [120] can detect manual

refactorings and then complete them automatically. Tahvildari et al. [121] also propose a

framework of object-oriented metrics used to suggest to the software developer refactoring

opportunities to improve the quality of an object-oriented legacy system. Dig [122] proposes
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an interactive refactoring technique to improve the parallelism of software systems. However,

the proposed approach did not consider learning from the developers’ feedback and focused

on making programs more parallel. Other contributions are based on rules that can be ex-

pressed as assertions (invariants, pre- and post-conditions). All these techniques are more

concerned around the correctness of manually applied refactorings rather than interactive

recommendations.

The use of invariants has been proposed to detect parts of the program that require

refactoring [123]. In addition, Opdyke [124] has proposed the definition and use of pre-

and post-conditions with invariants to preserve the behavior of the software when applying

refactorings. Hence, behavior preservation is based on the verification/satisfaction of a set

of pre- and post-condition. All these conditions are expressed as first-order logic constraints

expressed over the elements of the program.

To summarize, manual refactoring is a tedious task for developers that involves exploring

the software system to find the best refactoring solution that improves the quality of the

software and fix design defects.

2.3.2.2 Automated Refactoring

To automate refactoring activities, new approaches have been proposed. JDeodorant [125]

is an automated refactoring tool implemented as an Eclipse plug-in that identifies certain

types of design defect using quality metrics and then proposes a list of refactoring strategies to

fix them. Search-based techniques [126] are widely studied to automate software refactoring

and consider it as an optimization problem, where the goal is to improve the design quality of

a system based mainly on a set of software metrics. The majority of existing work combines

several metrics in a single fitness function to find the best sequence of refactorings. Seng et

al. [127] have proposed a single-objective optimization approach using a genetic algorithm

to suggest a list of refactorings to improve software quality. The work of O’Keeffe et al. [128]

uses various local search-based techniques such as hill climbing and simulated annealing to
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provide an automated refactoring support. They use the QMOOD metrics suite [129] to

evaluate the improvement in quality.

Kessentini et al. [130] have proposed single-objective combinatorial optimization using a

genetic algorithm to find the best sequence of refactoring operations that improve the quality

of the code by minimizing as much as possible the number of design defects detected in the

source code. Kilic et al. [131] explore the use of a variety of population-based approaches

to search-based parallel refactoring, finding that local beam search could find the best solu-

tions. Harman et al. [132] have proposed a search-based approach using Pareto optimality

that combines two quality metrics, CBO (coupling between objects) and SDMPC (standard

deviation of methods per class), in two separate fitness functions. Ouni et al. [133] proposed

also a multi-objective refactoring formulation that generates solutions to fix code smells. Ó

Cinnéide et al. [134] have proposed a multi-objective search-based refactoring to conduct an

empirical investigation to assess some structural metrics and to explore relationships between

them. They have used a variety of search techniques (Pareto-optimal search, semi-random

search) guided by a set of cohesion metrics.

The majority of existing multi-objective refactoring techniques propose as output a set of

non-dominated refactoring solutions (the Pareto front) that find a good trade-off between the

considered maintainability objectives. This leaves it to the software developers to select the

best solution from a set of possible refactoring solutions, which can be a challenging task as it

is not natural for developers to express their preferences in terms of a fitness functions value.

Thus, the exploration of the Pareto front is still performed manually, which limits the use of

multi-objective search techniques to address software engineering problems. An intelligent

exploration of the Pareto front is required to expand the applicability of multi-objective

techniques for search-based software engineering problems.

In summary, developers should accept the entire refactoring solution and existing tools

do not provide the flexibility to adapt the suggested solution in existing fully-automated

refactoring techniques. Furthermore, existing automated refactoring tools execute the whole
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algorithm again to suggest new refactorings after a number of code changes are introduced

by developers, rather than simply trying to update the proposed solutions based on the new

code changes. While automation is important, it is essential to understand the points at

which human oversight, intervention, and decision-making should impact on automation.

Human developers might reject changes made by any automated programming technique.

Especially if they feel that they have little control, there will be a natural reluctance to trust

and use the automated refactoring tool [135].

2.3.2.3 Interactive Refactoring

Interactive techniques have been generally introduced in the literature of Search-Based

Software Engineering and especially in the area of software modularization. Hall et al.

[136] treated software modularization as a constraint satisfaction problem. The idea of this

work is to provide a baseline distribution of software elements using good design principles

(e.g. minimal coupling and maximal cohesion) that will be refined by a set of corrections

introduced interactively by the designer.

The approach, called SUMO (Supervised Re-modularization), consists of iteratively feed-

ing domain knowledge into the remodularization process. The process is performed by the

designer in terms of constraints that can be introduced to refine the current modulariza-

tions. Initially, the system begins with generating a module dependency graph from an

input system. This dependency is based on the correlation between software elements (cou-

pling between methods, shared attributes etc.). Possible modularizations are then generated

from the graph using multiple simulated authoritative decompositions. Then, using a clus-

tering technique called Bunch, an initial set of clusters is generated that serves as an input

to SUMO.

The SUMO algorithm provides a hypothesized modularization to the user, who will agree

with some relations, and disagree with others. The user’s corrections are then integrated

into the modularization process, to generate a more satisfactory modularization. The SUMO
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algorithm does not necessarily rely on clustering techniques, but it can benefit from their

output as a starting point for its refinement process.

Bavota et al. [137] presented the adoption of single objective interactive genetic algo-

rithms in software re-modularization process. The main idea is to incorporate the user in

the evaluation of the generated remodularizations. Interactive Genetic Algorithms (IGAs)

extend the Classic Genetic Algorithms (GAs) by partially or entirely involving the user in

the determination of the solution’s fitness function. The basic idea of the Interactive GA

(IGA) is to periodically add a constraint to the GA such that some specific components shall

be put in a given cluster among those created so far. Initially, the IGA evolves similarly to

the non-interactive GAs.

After a user-defined set of iterations, the individual with the highest fitness value is

selected from the population set (in the case of single-objective GA) or from the first front

(in the case of multi-objective GA) and presented to the user. After analyzing the current

modularization, the user provides feedback in terms of constraints dictating for example, that

a specific element needs to be in the same cluster as another one. Although user feedback is

important in guaranteeing convergence, it is essential not to overload the user by asking for

a decision about all the current relationships between elements, especially for a large system.

Overall, the above existing studies of interactive remodularization are limited to few types

of refactoring such as moving classes between packages and splitting packages. Furthermore,

the interaction mechanism is based on the manual evaluation of proposed remodularization

solutions which could be a time-consuming process. The proposed interactive remdoulariza-

tion techniques are also based on a mono-objective algorithm and did not consider multiple

objectives when evaluating the solutions. A recent study [138] extended our previous work

[139] to propose an interactive search based approach for refactoring recommendations. The

developers have to specify a desired design at the architecture level then the proposed ap-

proach try to find the relevant refactorings that can generate a similar design to the expected

one. In our work, we do not consider the use of a desired design, thus developers are not
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required to manually modify the current architecture of the system to get refactoring recom-

mendations. Furthermore, developers maybe interested to change the architecture mainly

when they want to introduce an extensive number of refactorings that radically change the

architecture to support new features.

Several possible levels of interaction are not considered by existing refactoring techniques.

It is easy for developers to identify large classes or long methods that should be refactored,

but they find it is difficult, in general, to locate a target class when applying a move method

refactoring [140]. In addition, existing refactoring tools do not update their recommended

refactoring solutions based on the software developer’s feedback such as accepting, modifying

or rejecting certain refactoring operations.

Furthurmore, None of the above interactive studies considered reducing the interaction

effort with developers which is an important step to improve the applicability of refactoring

tools as highlighted in the survey with developers.

To address the above-mentioned limitations, we proposed in this thesis, a new way for

software developers to refactor their software systems as a sequence of transformations based

on different levels of interaction, implicit exploration of non-dominated refactoring solutions

and dynamic adaptive ranking of the suggested refactorings.

2.3.2.4 Search Based Software Refactoring

Search-based techniques [126] are widely studied to automate software refactoring where

the goal is to improve the design quality of a system based mainly on a set of software metrics.

The majority of existing work combines several metrics in a single fitness function to find the

best sequence of refactorings. Seng et al. [141] have proposed a single-objective optimization

approach using a genetic algorithm to suggest a list of refactorings to improve software

quality. The work of O’Keeffe et al. [128] uses various local search-based techniques such as

hill climbing and simulated annealing to provide an automated refactoring support. They

use the QMOOD metrics suite [129] to evaluate the improvement in quality. Kessentini et
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al. [130] have proposed single-objective combinatorial optimization using a genetic algorithm

to find the best sequence of refactoring operations that improve the quality of the code by

minimizing as much as possible the number of design defects detected in the source code.

Kilic et al. [131] explore the use of a variety of population-based approaches to search-based

parallel refactoring, finding that local beam search could find the best solutions. Harman

et al. [132] have proposed a search-based approach using Pareto optimality that combines

two quality metrics, CBO (coupling between objects) and SDMPC (standard deviation of

methods per class), in two separate fitness functions. Ouni et al. [133] proposed also a multi-

objective refactoring formulation that generates solutions to fix code smells. Ó Cinnéide et

al. [134] have proposed a multi-objective search-based refactoring to conduct an empirical

investigation to assess some structural metrics and to explore relationships between them.

They have used a variety of search techniques (Pareto-optimal search, semi-random search)

guided by a set of cohesion metrics.

The majority of existing multi-objective refactoring techniques propose as output a set of

non-dominated refactoring solutions (the Pareto front) that find a good trade-off between the

considered maintainability objectives. This leaves it to the software developers to select the

best solution from a set of possible refactoring solutions, which can be a challenging task as it

is not natural for developers to express their preferences in terms of a fitness functions value.

Thus, the exploration of the Pareto front is still performed manually, which limits the use of

multi-objective search techniques to address software engineering problems. An intelligent

exploration of the Pareto front is required to expand the applicability of multi-objective

techniques for search-based software engineering problems as addressed in this thesis.

2.3.3 Code Reviews

Expertise has been the most important factor in the studies proposing peer reviewer

recommendation. Zanjani et al. found that expertise changes over time and thus both fre-

quency and recency of reviews must be accounted for to find the most appropriate reviewers.
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Therefore their approach builds a reviewer expertise model, generated from past reviews,

that combines a quantification of review comments and their recency [80].

Balachandran et al. first suggested to use the Review Bot tool, as a recommendation

system to reduce human effort and improve review quality by finding source code issues,

which need to be addressed, but could be missed during reviewer inspection. The bot can

review the code by integrating the static analysis of the source code [71]. The bot, as part of

a review process, is able to recommend the most appropriate human reviewer. In cases when

the project has been modified frequently and there is a history of the changes for the source

code, the bot is a suitable solution. However, Patanamon et al. [142] showed that the Review

Bot’s algorithm had poor performance on other projects with no or little change in their files

due to the lack of history in line-by-line source code. In the same work, they introduced the

idea of using file location (but not content) as an indicator for similarity of reviews. Their

reviewer recommender approach, called File Path Similarity (FPS), implementing this idea,

assumes that files that are located in similar file paths would be managed and reviewed by

similarly experienced expert code reviewers. To improve their previous idea, Patanamon

et al. [81] introduced REVFINDER, a file location-based code-reviewer recommendation

approach. REVFINDER uses the similarity of previously reviewed file paths to recommend

an appropriate code-reviewer. However, they did not consider the reviewer’s work load and

availability.

Xia et al. [143] used bug reports and developer information to recommend developers to

resolve bugs. However, the most notable limitation of these works is that the socio-technical

aspect of the code review process is not considered.

Several other studies focused on human factors and socio-technical aspects of code review.

Cohen et. al., in [144] discuss that code review is a complex process involving both social

and personal aspects. Fagan [145], to ensure the quality of software, introduced software

inspection as a systematic peer review activity. Other studies [146, 147, 148, 148, 149,

150, 151, 152] motivate the need for a peer review recommendation system, considering the
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volunteer nature of open-source software (OSS) developers and the peer review structure,

suggest that different human factors influence the OSS peer review. Baysal et al. conducted

several studies [153, 154, 151] to explore the relationships between a set of personal and

social factors and code review.

Bosu et al. [149] conducted a survey on four aspects of peer impression formation: trust,

reliability, perception of expertise, and friendship. They concluded that there is a high

level of trust, reliability, perception of expertise, and friendship between OSS peers who

have participated in code review for a period of time. In another survey on how social

interaction networks influence peer impressions formation [155], they found that code review

interactions have the most favorable characteristics to support impression formation among

OSS participants.

Based on search based software engineering [156, 157, 158, 159, 18], Ouni et. al [79] com-

bined both aspects in their proposed approach, called RevRec, to provide decision-making

support for code change submitters and reviewer assigners to identify the most appropriate

peer reviewers for code changes. RevRec uses a genetic algorithm to assign reviewers to

review a code change based on expertise and history of collaboration. Their single objective

optimization approach aims to find appropriate reviewers for a given patch based on the

reviewer’s expertise with the submitted patch files, and the reviewer’s prior collaborations

with the review request submitter. Although this is the closest work in the literature to our

proposed approach, our work differs from their work in a few ways: their solution represen-

tation determines if any of the reviewers are recommended to review a single file, therefore

in cases when there are more files to review, let say k files, then the single objective opti-

mization must run k times independently from each other which may not necessarily match

the reality of the task. Our solution representation recommends reviewers for all the files

that need to be reviewed at the same time. Furthermore, they do not consider the current

workload of the reviewers and when they might be available to review the current files that

match their expertise. In our method, we account for a reviewer’s availability and we provide
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a ranking for the recommended reviewers so that if one reviewer is the best match, but busy

with other work, we do not recommend the reviewer as the first choice for reviewing that

file. This will decrease the overall delay in the system for files to get reviewed. Additionally,

to capture the complexity of peer code review task, we formulate the problem as interaction

among the competing objectives of expertise, availability and history of collaborations.
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CHAPTER III

Web Service Design Defects Detection

3.1 Introduction

Service-Oriented Computing (Service-Oriented Computings (SOCs)) has emerged as an

evolutionary paradigm that is changing the way software applications are implemented,

deployed, and delivered to help industry meet their ever-more-complex challenges [5]. Nowa-

days, SOC is becoming widely accepted in industry such as FedEx 1, Dropbox 2, Google

Maps 3, eBay4, etc. The massive adoption of this paradigm and its popularity are mainly

due to the offered reusability, modularity, flexibility, and scalability [6]. SOC utilizes ser-

vices which are independent and portable program units as fundamental elements to support

rapid, low cost development of heterogeneous and distributed systems [7].

Any successful deployed web services evolve over time to meet the new changes in the

requirements and/or to fix bugs. The continuous changes and evolution of web services

may create poor and bad design practices which are generally called ”antipatterns” that

can impact the performance and usability of the web service [8]. Maintaining a good design

quality is critical but it is excessively expensive both in time and resources for the service

providers.

To detect web service antipatterns, most of the existing studies consider only the interface

1http://www.fedex.com/ca english/businesstools/webservices
2https://www.dropbox.com/developers/core
3developers.google.com/maps/documentation/webservices
4https://developer.ebay.com/docs
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or code-level metrics of bad-designed web services [160, 161, 162, 157]. Therefore, they enable

developers to evaluate the quality of their service using mainly static information extracted

from the implementation details of the interface and the services, such as coupling, cohesion,

and number of operations. However, it is widely known that the quality of service metrics

such as the response time and availability play a significant role in evaluating the overall

performance of a service-based system. Furthermore, most of these studies [160, 161, 162,

157] are based on declarative rule specification. The detection rules are manually defined to

identify the key symptoms that characterize an interface design defect using combinations

of mainly quantitative metrics. For each possible interface design defect, rules that are

expressed in terms of metric combinations need high calibration efforts to find the right

threshold value for each metric. In addition, the translation of the symptoms into rules is

not obvious because several symptoms can described using multiple metrics and thresholds.

To address these challenges, few heuristic-based approaches are proposed to generate

design defects detection rules from defect examples [163, 164]. However, such studies require

a high number of interface design defect examples (data) to provide efficient detection rules

solutions. In fact, design defects are rarely documented by developers which explains the

need for an approach that is able to generate artificial defects examples in order to improve

the efficiency of detection rules. In addition, it is challenging to ensure the diversity of

the examples to cover most of the possible bad-practices. In addition, these heuristic-based

studies are still also limited to the use of structural metrics and did not consider the impact of

antipatterns on the performance of the services. In this work, we start from the hypothesis

that the generation of efficient web service defect detection rules heavily depends on the

coverage and the diversity of the used defect examples. In fact, both mechanisms for the

generation of detection rules and the generation of defect examples are dependent. Thus,

the intuition behind this work is to generate examples of defects that cannot be detected

by some possible detection solutions and then adapting these rules-based solutions to be

able to detect the generated defect examples. These two steps are repeated until reaching
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a termination criterion (e.g. number of iterations). To this end, we propose, for the first

time, to consider the web services defects detection problem as a bi-level one [165]. Bi-Level

Optimization Problems (BLOPs) are a class of challenging optimization problems, which

contain two levels of optimization tasks. The optimal solutions to the lower level problem

become possible feasible candidates to the upper level problem. In addition, we assume that

an effective web service antipatterns detection process should be based on a combination of

dynamic Quality of Services (QoSs) attributes and the structural information of web service

(static interface/code metrics). Several of Web services antipatterns can negatively impact

the QoS such as availability and response time. For instance, a GOWS antipattern typically

can include a large number of operations which can reduce the response time dramatically.

A GOWS web service suffers, in general, from a low cohesion which may lead to a high

response time and a low availability due to the large number of calls between operations at

multiple web services.The use of response time quality attribute may help to find the right

threshold in terms of number of operations and cohesion level that can truly impact the web

service performance. Thus, the generated detection rules can be more accurate.

In our approach, the upper level generates a set of detection rules, a combination of

static and dynamic metrics and QoS attributes, which maximizes the coverage of the base

of defect examples and the coverage of artificial defects which are generated by the lower

level and minimizes the size of a generated rule. The lower level maximizes the number of

generated artificial defects that cannot be detected by the rules produced by the upper level

and minimizes the distance between the artificial defects and the base of bad-designed web

services examples. The advantage of our bi-level approach is that the generation of detection

rules is not limited to some defect examples that are hard to collect. However, this approach

allows the prediction of new defects that are different from those in the base of examples.

Furthermore, our problem requires a search in a large space for a solution which balances

different conflicting objectives to generate rules suitable for different scenarios. Therefore,

it would be appropriate to consider a multi-objective search-based approach that finds a
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trade-off between conflicting objectives in each level.

We applied and validated these rules on a benchmark of 662 real-world web services

from different application domains and five common web service antipatterns. However, our

proposed approach can be used in a generic way for any other type of defect as long as a

number of examples are available. Statistical analysis of our experiments shows the efficiency

of our bi-level multi-objective approach in detecting web service antipatterns, with a precision

of 84% and recall of 91%. The results confirm the outperformance of our bi-level approach

compared to state-of-art web service design defects detection techniques [163, 164, 166] and

our previous work limited to mono-objective bi-level approach using only structural metrics

[157]. Thus, the validation confirmed our hypothesis that the detection of antipatterns

require a combination of structural and performance metrics.

3.2 Motivating Example and Challenges

Web Services Design Defects. Web service interface defects are defined as bad design

choices that can have a negative impact on the interface quality such as maintainability,

changeability, comprehensibility and discoverability [167] which may impact the usability

and popularity of services [168]. They can be also considered as structural characteristics

of the interface that may indicate a design problem that makes the service hard to evolve

and maintain, and trigger refactoring [169]. In fact, most of these defects can emerge during

the evolution of a service and represent patterns or aspects of interface design that may

cause problems in the further development of the service. In general, they make a service

difficult to change, which may in turn introduce bugs. It is easier to interpret and evaluate

the quality of the interface design by identifying different defects definition than the use of

traditional quality metrics. To this end, some studies defined different types of web services

design defects [170, 169]. In our experiments, we focus on the eight following web service

defect types since they are the most frequent and severest ones [171], and also to be able to

compare our detection approach to the state of the art:
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• God object Web service (GOWS): implements a high number of operations related to

different business and technical abstractions in a single service.

• Fine-grained Web service (FGWS): is a too fine-grained service whose overhead (com-

munications, maintenance, and so on) outweighs its utility.

• Chatty Web service (CWS): represents an antipattern where a high number of opera-

tions are required to complete one abstraction.

• Data Web service (DWS): contains typically accessor operations, i.e., getters and set-

ters. In a distributed environment, some web services may only perform some simple

information retrieval or data access operations.

• Redundant PortTypes (RPT): is an antipattern where multiple portTypes are dupli-

cated with the similar set of operations. In fact, one of the potential sources of RPT

defects is the use of defective WSDL generation tools as pointed out in [167]. Another

source of RPT is when developers are adding new features in a rush without consid-

ering the reusability of their implementation and architecture design (similar to code

clones).

The web service antipatterns detection mechanism involves finding the fragments of the

design which violate some quality indicators. Table 3.1 describes all the metrics that are

used in this thesis (contribution III) to cover bad quality symptoms. These metrics are a

combination of static, dynamic and performance metrics related to the following abstraction

levels of web services applications :

• Web service interface-level (WSDL) metrics: are mainly related to the interface,

message, operation and Port type. The list of WSDL metrics are described in Table3.1

from ALPS until RPT. In our approach, we are considering the two WSDL versions

1.0 and 2.0 since they are both supported by our parser in extracting the metrics.
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• Web service code-level metrics: are the static information that we can extract

from the services code skeletons. The most widely-used code-level metrics are those

defined by Chidamber and Kemerer [172] as described in Table 3.1 (from Ca until

CC). For all code-level metrics, we calculate the average value for all the classes that

implement the specific web service. For instance , the depth of inheritance (DIT)

represents the depth of inheritance of a class and it is defined as the depth of the class

in the inheritance tree and the depth of a node of a tree refers to the length of the

maximal path from the node to the root of the tree. Thus, we parsed the code to

extract the calls by static analysis and also used relevant keywords such as “extends”

to confirm the nature of these calls. The QoS metrics are more related to the execution

of web services to calculate response time, availability, etc.

• Quality of Service (QoS) metrics: we selected 9 popular metrics (From Response

until Documentation in Table 3.1), namely response, availability, throughput, success-

ability, reliability, and latency are dynamic metrics which measure the web service

overall performance. Documentation and compliance are static metrics to measure the

usability of the web service interface. In our work, We extracted all these metrics from

the QWS dataset [173].

We selected these defect types in our experiments because they are the most frequent,

the hardest to detect [174, 163], and cover different maintainability factors. We have also

several examples of these defects and we are able to compare the performance of our detection

technique to existing studies [157, 163, 166]. However, our proposed approach (contribution

III) is generic and can be extended to any type of defect.

Challenges: In the following, we introduce some issues and challenges related to the

detection of the web service defects. Overall, there is no general consensus on how to decide

if a particular design violates a quality heuristic. In fact, there is a difference between detect-

ing symptoms and asserting that the detected situation is an actual design defect. Another

issue is related to the definition of thresholds when dealing with quantitative information.
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Table 3.1: List of Web services metrics used

Category Metric Name Definitions

QoS Metrics

Response Time to send a request and receive a response (ms)
Availability Number of successful invocation/total invocation (%)
Throughput Number of invocations for a given time (invokes/sec)
Successability Number of response/number of request messages (%)
Reliability Ratio of number of error messages to total messages (%)
Compliance The extent to which a WSDL follows specification (%)
Best practices The extent to which a service follows WS-I BAsic (%)
Latency Time taken for the server to process a given request (ms)
Documentation Measure of documentation (i.e. description tags) in WSDL

Interface Metrics

ALPS Average length of port types signature
COH Cohesion
COUP Coupling
NAOD Number of accessor operations declared
NCO Number of CRUD operations
NOD Number of operations declared
NOPT Average number of operations in port types
NPT Number of port types
RAOD Ratio of accessor operations declared
ALOS Average length of operations signature
AMTO Average number of meaningful terms in operations names
ANIPO Average number of input parameters in operations
ANOPO Average number of output parameters in operations
NPO Average number of parameters in operations
ALMS Average number of message signature
AMTM Average number of meaningful terms in message names
NOM Number of messages
NPM Average number of parts per message
AMTP Average number of meaningful terms in port type names
NCT Number of complex types
NCTP Number of complex types parameters
NST Number of primitive types
RPT Ratio of primitive types over all defined types

Code Metrics

Ca Afferent couplings
CAM Cohesion Among Methods of Class
CBO Coupling Between Object Classes
Ce Efferent couplings
DAM Data Access Metric
DIT Depth of Inheritance Tree
LCOM Lack of cohesion in methods
LCOM3 Lack of cohesion in methods
LOC Lines of Code
MFA Measure of Functional Abstraction
MOA Measure of Aggregation
NOC Number of Children
NPM Number of Public Methods
RFC Response for a Class
WMC Weighted methods per class
AMC Average Method Complexity
CC The McCabe’s cyclomatic complexity
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For example, the GOWS defect detection involves information such as the interface size as

illustrated in Figure 3.1. Although we can measure the size of an interface, an appropriate

threshold value is not trivial to define. An interface considered large in a given service/-

community of users could be considered average in another. Thus, it may not be accurate

to identify a GOWS defect based on structural information such as the number of opera-

tions. Both structural and non-structural (QoS attributes) factors are complementary when

detecting a GOWS antipattern. The impact of the appearance of GOWS can be seen on

the performance of services such as response time and availability. Thus, these attributes

can confirm a GOWS antipattern rather than just relying on number of operations. In fact,

it is always challenging to define a threshold for the number of operations but a combina-

tion of both low QoS attributes and high number of operations will definitely improve the

accuracy of the GOWS detection rules. Programmers are mainly interested to fix design

defects impacting the quality of services and not those who just violate some metrics such

as coupling, cohesion and number of operations. However, existing studies are limited to the

use of structural information when detecting design defects.

Our GOWS motivating example was not only related to the size of the interface but

also other metrics such as low cohesion. The used Amazon service’s interface suffers from

low-cohesion and it is already classified in our dataset as a GOWS antipattern, its high

response time and low availability can be explained by the low cohesion of operations and

not only the size of the interface. If the number of operations becomes high (like in most

GOWS antipatterns) then the response time and availability will be dramatically impacted.

In practice, one of the main reasons of services low availability is the high number of calls

that make some servers inaccessible/down.

The generation of detection rules requires a large defect example set to cover most of the

possible bad-practice behaviors. Defects are not usually documented by developers which

results in lack of defects examples. Thus, it is time-consuming and difficult to collect defects

and inspect manually large web services. In fact, unlike the bugs localization problem where
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Figure 3.1: God object Web service (GOWS) example.

bug reports data are available to train the model, detecting web services antipatterns suffers

from the lack of documented defect examples which affects the efficiency of the generated

detection rules. In addition, it is challenging to ensure the diversity of the defect examples to

cover most of the possible bad-practices then using these examples to generate good quality

of detection rules.

To address the above-mentioned challenges, we propose to consider the web service defects

detection problem as a bi-level multi-objective optimization problem.

3.3 Approach:Bi-level Multi-objective Optimization Technique

In this study, we considered the web services defect detection problem as a bi-level multi-

objective optimization problem where the optimal solution of the lower level problem deter-

mines the feasible space of the upper level optimization problem [165, 175]. In our adaptation,

the upper level problem is the generation of detection rules and the lower level problem is
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the generation of design defects that may not be detected using the rules of the upper level

solutions.

We start by describing the basic concepts of bi-level optimization, then we introduce the

multi-objective optimization technique.

3.3.1 Bi-level Optimization

Most studied real-world and academic optimization problems involve a single level of

optimization. However, in practice, several problems are naturally described in two levels.

Bi-level optimization problem (BLOP) also called two-level optimization, is a specific type

of optimization where one problem is nested within another [165, 175]. In such problems, we

find a nested optimization problem within the constraints of the outer optimization one. The

outer optimization task is usually referred as the upper level problem or the leader problem.

The nested inner optimization task is referred as the lower level problem or the follower

problem, thereby referring the bi-level problem as a leader-follower problem. The follower

problem appears as a constraint to the upper level, such that only an optimal solution to the

follower optimization problem is a possible feasible candidate to the leader one as described

in Figure 3.3.

The problem contains two types of variables: (1) the upper-level variables xu and (2)

the lower-level variables xl. Formally, BLOP is defined as follows:

Definition1. For the upper-level objective function F: Rn × Rn → R and lower-level

objective function f : Rn × Rn → R, the bi-level problem is given by:

min
xu∈XU ,xl∈XL

F (xu, xl)

subject to xl ∈ argmin{f(xu, xl), gj(xu, xl) ≤ 0, j = 1, ..., J}

Gk(xu, xl) ≤ 0, k = 1, ..., K

where Gk : XU × XL → R and gj : XU × XL → R denote respectively the upper and the
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lower level constraints. J is the population size at the upper level, K is the population size

at the lower level and n is the number of fitness functions,

The study involved multiple objectives at the upper lever, and multiple objectives at the

lower level. Thus, the next section presents the Multi-objective optimization technique.

Existing methods to solve BLOPs could be classified into two main families: (1) classi-

cal methods and (2) evolutionary methods. The first family includes extreme point-based

approaches [176], penalty function methods [177] and trust region methods [178]. The main

shortcoming of these methods is that they heavily depend on the mathematical character-

istics of the BLOP at hand. The second family includes meta-heuristic algorithms that are

mainly Evolutionary Algorithms (EAs). Recently, several EAs have demonstrated their ef-

fectiveness in tackling such type of problems thanks to their insensibility to the mathematical

features of the problem in addition to their ability to tackle large-size problem instances by

delivering satisfactory solutions in a reasonable time [179, 180, 181].

In our adaptation, each level is formulated as a multi-objective problem. The next sub-

section will give details about multi-objective optimization.

Figure 3.2: The upper and lower levels of the Bi-Level process
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3.3.2 Multi-Objective Optimization

Multi-Objective search considers more than one objective function to be optimized si-

multaneously. Objective functions are used to evaluate the generated solutions. It is hard

to find an optimal solution that solves such problem because the objectives to be optimized

are conflicting. For this reason, a multi-objective search-based algorithm could be suitable

to solve this problem because it finds a set of alternative solutions, rather than a single so-

lution as result. One of the widely used multi-objective search techniques is Non-dominated

Sorting Genetic Algorithms (NSGA-IIs) [182] that has shown good performance in solving

several software engineering problems [183].

A high-level view of NSGA-II is depicted in Algorithm 1. The algorithm starts by ran-

domly creating an initial population P0 of individuals encoded using a specific representation

(line 1). Then, a child population Q0 is generated from the population of parents P0 (line

2) using genetic operators (crossover and mutation). Both populations are merged into an

initial population R0 of size N (line 5). Fast-non-dominated-sort [182] is the technique used

by NSGA-II to classify individual solutions into different dominance levels (line 6). Indeed,

the concept of non-dominance consists of comparing each solution x with every other solu-

tion in the population until it is dominated (or not) by one of them. According to Pareto

optimality: “A solution x1 is said to dominate another solution x2, if x1 is no worse than x2

in all objectives and x1 is strictly better than x2 in at least one objective”. Formally, if we

consider a set of objectives fi , i ∈ 1..n, to maximize, a solution x1 dominates x2 :

iff ∀i, fi(x2) 6 fi(x1) and ∃j | fj(x2) < fj(x1) (3.1)

The whole population that contains N individuals (solutions) is sorted using the dom-

inance principle into several fronts (line 6). Solutions on the first Pareto-front PF0 get

assigned dominance level of 0 Then, after taking these solutions out, fast-non-dominated-

sort calculates the Pareto-front PF1 of the remaining population; solutions on this second
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Algorithm 1 High level pseudo code for NSGA-II

1: Create an initial population P0

2: Create an offspring population Q0

3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |6 N do
9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i+ 1
12: end while
13: Sort(Fi,≺ n)
14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

front get assigned dominance level of 1, and so on. The dominance level becomes the basis of

selection of individual solutions for the next generation. Fronts are added successively until

the parent population Pt+1 is filled with N solutions (line 8). When NSGA-II has to cut

off a front PFi and select a subset of individual solutions with the same dominance level, it

relies on the crowding distance [182] to make the selection (line 9). This parameter is used to

promote diversity within the population. This front PFi to be split, is sorted in descending

order (line 13), and the first (N- |Pt+1|) elements of PFi are chosen (line 14). Then a new

population Qt+1 is created using selection, crossover and mutation (line 15). This process

will be repeated until reaching the last iteration according to stop criteria (line 4).

Therefore, a bi-level multi-objective optimization problem involves two levels of multi-

objective optimization problems, each one implements an NSGA-II algorithm with different

set of objectives as described in the next subsection.

3.3.3 Approach Overview

As Figure 3.3 shows, our Bi-Level Multi-Objective (BLMO) approach includes two levels

where both the leader and the follower have two objectives.
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Figure 3.3: Bi-level Multi-Objective Web service defects detection overview

As described in Figure 3.3, the proposed approach takes as inputs two sets of web service

examples: (1) one set contains service antipattern examples and (2) another has well-designed

service examples. It extracts the metrics, previously described, of each web service in the

sets. Then, the upper level generates a set of detection rules per solution. The detection

rule generation process selects randomly, from the list of possible metrics, a combination of

quality metrics and their threshold values to detect a specific antipattern type. Therefore,

the optimal solution is a set of detection rules that best detect the antipatterns of the base of

examples and those generated by the lower level while minimizing the number of generated

rules.

The follower (lower level) uses well-designed web service examples to generate “artificial”

design defects based on the notion of deviation from a reference (well-designed) set of web

services. The generation process of web services defect examples is performed using a multi-

objective heuristic search that maximizes on one hand, the distance between generated web

service defect examples and reference examples and, on the other hand, maximizes the
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number of generated examples that are not detected by the leader (detection rules).

In our bi-level multi-objective approach, the two levels are dependent and therefore there

is no parallelism. The upper level is executed for a number of iterations then the lower level

for another number of iterations. After that, the best solution found in the lower level will

be used by the upper level to evaluate the detection rules, and then this process is repeated

several times until reaching a termination criterion such as the number of iterations. For

each level, we selected the ideal point from the Pareto front of solutions which corresponds

to the closest solution to the best possible values of the fitness functions.

Algorithm 2 Upper level algorithm

1: Inputs: Quality of web service metrics M, web services defect examples base B, Well-designed
web services base D, Number of best upper solutions that are considered for lower level optimiza-
tion nbs, Upper population size N1, Lower population size N2, Upper number of generations
G1, Lower number of generations G2

2: Output: Best detection rule BDR
3: Begin
4: P0 ← Initialization(N ,M)
5: for each DBe in P0 do
6: BCS0 ← NSGA-IIWSDefectsGeneration(DR0,D,N2,G2);
7: BR0 ← Evaluations(DR0,B,BCS0);
8: end for
9: t← 1

10: while t<G1 do
11: Qt ← Variation(Pt−1)
12: for each DRt in Qt do
13: DRt = UpperEvaluations(DRt,B);
14: end for
15: for each of the best nbs rules DRt in Qt do
16: BCSt ← NSGA-IIWSDefectsGeneration(DRt,D,N2,G2);
17: DRt ← EvaluationsUpdate(DRt,BCSt);
18: end for
19: Ut ← Pt ∪Qt;
20: Pt+1 ← EnvironmentalSelection(N1,Ut);
21: t←t+1;
22: end while
23: BDR ← IdealPointSelection(Pt);
24: END
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Algorithm 3 Lower level algorithm: NSGA-IIWSDefectsGeneration

1: Inputs: Upper level detection rule UDR, Well-desiged web service examples base D, Population
size N, number of generations G

2: Output: Best artificial web service defects BCS
3: Begin
4: P0 ←Initialization(N ,D);
5: P0 ←Evaluation(P0,D,UDR);
6: t← 1;
7: while t<G do
8: Qt ← Variation(Pt−1)
9: Qt = Evaluation(Qt,D,UDR);

10: Ut ← Pt∪ Qt;
11: Pt+1 ← EnvironmentalSelection(N ,Ut);
12: t←t+1;
13: end while
14: BCS←IdealPointSelection(Pt);
15: END

3.3.4 Problem Formulation

Solution Representation. Each candidate solution in the upper level is a sequence of

detection rules where each rule is represented by a binary tree such that:

• The Root and each internal node represent a logic operator either “AND” or “OR” to

connect other nodes.

• Each leaf node represents a quality metric and its corresponding threshold.

For example, the following rule of Fig. 3.4 states that a web service s satisfying the

following combination of metrics is considered as a GOWS defect:

As described in Figure 3.5, the generated structure of defects, in the lower level, is

represented as a vector where each element is a (metric, threshold) element that characterizes

the generated artificial web service defect.

Fitness Functions. At the upper level, we aim to optimize two fitness functions. The

first one is formulated to maximize the coverage of web services defect examples (input) and

the coverage of the generated artificial web service defects by the lower level. The second

fitness function is formulated to minimize the size of the generated rule. Thus, the fitness
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Figure 3.4: Solution Representation at the Upper Level.

Figure 3.5: Solution Representation at the Lower Level.

functions at the upper level are defined as follows:

Maximizefupper,1 =
Precision (SR,WSDE+AWSD)+ Recall(SR,WSDE+AWSD)

2

Minimizefupper,2 = size(DetectionRules)

(3.2)

where WSDE is the abbreviation for Web Services (WSs) Defect Examples, AWSD is

the abbreviation for Artificial WS Defects and SR is the set of generated detection rules

(solution).

At the lower level, for each solution of the upper level, an NSGA-II is executed to generate

the best set of artificial defects that cannot be detected by the detection rules of the upper

level. Two objective functions are formulated at the lower level to maximize the number of

un-detected artificial defects that are generated and minimize the distance with web services

antipatterns. More formally, the two objectives are expressed as follows:
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Minimizeflower,1 =
M∑
i=1

(ArtificialDefects(i)− Average(RAE(i)))

Minimizeflower,2 = countdefects(DR,AD)

(3.3)

where RAE is the abbreviation for References Antipatterns Examples, DR is the detection

rules defined at the upper level, AD is the generated artificial defects and M is the number

of metrics used to compare between artificial defects and the poor Web services examples.

The first fitness function calculates the distance between the artificial defects and the ones

in our base of examples to make sure that they are different.Thus, M is not restricted based

on the type of antipatterns because we do not want our artifical examples to be restricted

to limited behavior of antipatterns.

In our proposed approach, we are not generating detection rules only based on the QoS

properties but we are including code-level metrics and interface metrics as well. Our bench-

mark/dataset contains web services along with their code-level , interface and QoS metrics

and anti-patterns. The training data/examples guided the bi-level algorithm, via the fitness

functions. to identify/generate the patterns and relationships between the different metrics

and the anti pattern type. Since the fitness functions are mainly based on coverage criteria

thus we can confirm that the best detection rules can be generalized on a large number of

web services.

Change Operators. For the upper level, the mutation operator can be applied to a

leaf node (metric), or to an internal node (logical operator) in our tree representation. It

starts by randomly selecting a node in the tree. Then, if the selected node is a leaf (metric),

it is replaced by another metric or another threshold value. Each metric has a maximum

and minimum values which represent the range from where the change operator selects a

threshold value. However, if it is an internal node (AND-OR), it is replaced by a new

function. For the lower-level, the mutation operator consists of randomly changing a metric

in one of the vector dimension. Regarding the crossover at the upper level, two parents are

selected, and a sub-tree is picked on each one. Then, the crossover operator swaps the nodes
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and their relative sub-trees from one parent to the other. The crossover operator can be

applied to only parents having the anti-patterns type to detect. Each child thus combines

information from both parents.

The crossover operator allows creating two offspring Child1 and Child2 from the two

selected parents Parent1 and Parent2, where the first x elements of Parent1 become the first

x elements of Child2. Similarly, the first x elements of p2 become the first x elements of

Child1.

3.4 Evaluation

In order to evaluate our approach for detecting antipatterns using the proposed bi-level

multi-objective (Bi-Level Multi-Objective Problemss (BLMPOs)) approach, we conducted

a set of experiments based on an existing benchmark[173]. Each experiment is repeated

30 times, and the obtained results are subsequently statistically analyzed with the aim to

compare our multi-objective bi-level approach with a variety of existing web service antipat-

terns detection approaches. In this section, we first present our research questions and then

describe and discuss the obtained results.

3.4.1 Research Questions

We defined the following research questions for our empirical study:

• RQ1. To what extent does the proposed approach detect various types of web service

antipatterns based on a combination of structural and dynamic (QoS) metrics? It

is important to quantitatively assess the completeness and correctness of our BLMO

detection approach based on QoS and multi-objective search.

• RQ2. How does BLOP perform compared to existing web service antipatterns de-

tection algorithms not using QoS metrics and multi-objective search? This research

question is helpful to evaluate the benefits of the use of a multi-objective algorithm at
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both levels since we will compare our approach to our previous work based on a bi-level

mono-objective algorithm (Bi-Level Optimization Problems (BLOPs))[157]. Further-

more, we compared our approach with another mono-level search based approach [163]

and an existing deterministic approach, SODA-W [166] which is not based on heuristic

search. SODA-W is based on manually defined rules(including threshold values) to

detect web service antipatterns. Both approaches are limited to the use of structural

metrics thus they are useful to evaluate the benefits of considering dynamic quality of

services attributes.

• RQ3. To what extent the detection of Web service antipatterns based on a combination

of QoS and structural metrics can be useful and relevant for practitioners? We collected

the opinions of developers about our tool and their perception of the importance of

several of detected web service antipattern types.

3.4.2 Experimental Settings

To evaluate the performance of the proposed approach, we used existing benchmarcks

of referencen number [173] to build our final dataset which consists of 662 good and bad

web services desing. These web services (1) have different sizes, (2) originate from various

application categories such as financial, science, travel, weather, etc, (3) have available source

code, and (4) belonging to different development teams. These web services are retrieved

from the QWS dataset then filtered to eliminate the ones which are not running anymore to

be used by subscribers. We extract their interface file and code skeleton. Then, we manually

inspected and validated the antipatterns of these services.

We considered the different antipattern types described in Section 2. Table 3.2 shows the

distribution of these antipatterns in the 662 web services. We used a 10-fold cross validation

procedure. In fact, the 10-fold cross validation means that we split our data into 10 training

data sets and 1 evaluation data set. For each fold, one category of services (evaluation

data) is evaluated using the remaining nine categories (training data) as training examples.
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Then, we repeated the process ten times. We use the two measures of precision and recall to

evaluate the accuracy of our approach and to compare it with existing techniques. Precision

denotes the ratio of true antipatterns detected to the total number of detected antipatterns,

while recall indicates the ratio of true antipatterns detected to the total number of existing

antipatterns.

Table 3.2: Web services used in the empirical study.

Antipatterns types # services Distribution
GOWS 237 36%
FGWS 179 27%
CWS 39 5%
DWS 119 18%
RPT 113 17%

Table 3.3: Antipattern occurrences within the 662 Web Services.

Category
#

services
#

antipatterns
average
NOD

average
NOM

average
NCT

Financial 121 52 31.73 57.31 22.14
Science 58 19 12.49 17.14 98.72
Search 49 21 9.66 18.94 28.43
Shipping 72 17 17.28 27.76 23.42
Travel 81 22 21.07 33.13 131.12
Weather 73 18 11.63 17.16 8.24
Media 33 19 11.8 16.4 32.29
Education 52 15 12.73 16.23 32.46
Messaging 63 20 9.18 13.36 18.25
Location 83 22 6.89 29.73 11.15
All 662 139 14.18 27.3 48.6

To answer RQ1, we use both recall and precision to evaluate the efficiency of our approach

in identifying antipatterns. We investigated the web service defect types that were detected

to find out whether there is a bias towards the detection of specific web service defect types.

To answer RQ2, we evaluated on the effectiveness of BLMO compared to existing ap-

proaches using the precision (PR) and recall (RC) measures. All three approaches are tested

on the same benchmark described in Table 3.2 to ensure a fair comparison.The distribution

of antipatterns type means the number of services containing at least one instance of that
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type of antipattern divided by the total number of analyzed services. We have also evaluated

the execution time (T) required by the different approaches.

To answer RQ3, we conducted a post-study survey with developers to understand what

types of web services antipatterns are important for them in practice and how useful our

detection tool. To this end, we asked 48 software developers, including 29 professional de-

velopers working on the development of services-based application and 19 graduate students

from the University of Michigan. The experience of these subjects on web development

and web services ranged from 2 to 16 years. All the graduate students have an industrial

experience of at least 2 years with large-scale systems especially in automotive industry.

An often-omitted aspect in metaheuristic search is the tuning of algorithm parameters.

In fact, parameter setting influences significantly the performance of a search algorithm on

a particular problem. The stopping criterion was set to 100,000 fitness evaluations for all

search algorithms in order to ensure fairness of comparison. We used a high number of

evaluations as a stopping criterion since our bi-level approach requires involves two levels

of optimization. Each algorithm was executed 30 times with each configuration and then

comparison between the configurations was performed based on precision and recall using the

Wilcoxon test. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test

used to compare two related samples, matched samples, or repeated measurements on a single

sample to assess whether their population mean ranks differ (i.e. it is a paired difference

test). In our case, it was used due to the randomness of the meta-heuristic algorithms and

to ensure that their out-performance is not random but consistent on 30 independent runs.

Additionally, the other parameters value were fixed by trial and error and are as follows:

(1) crossover probability = 0.4; mutation probability = 0.7 where the probability of gene

modification is 0.1. For our bi-level approach, both lower-level and upper-level are run

each with a population of 20 individuals and 30 generations. It should be noted that the

lower-level routine is not called for all upper-level population members. To control, the high

computational cost of our bi-level approach, only ns% of the best upper-level population
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members are allowed to call the lower-level optimization algorithm. Based on a parametric

study, the value of 5% for ns is found to be adequate empirically in our experiments. For our

experiment, we generated up to 100 artificial web service antipatterns from deviation with

the best of examples.

Since metaheuristic algorithms are stochastic optimizers, they can provide different re-

sults for the same problem instance from one run to another. For this reason, our experimen-

tal study is performed based on 30 independent simulation runs for each problem instance,

and the obtained results are statistically analyzed by using the Wilcoxon rank sum test [184]

with a 95% confidence level (α = 5%). The Wilcoxon signed-rank test is a non-parametric

statistical hypothesis test used when comparing two related samples to verify whether their

population mean-ranks differ or not. The latter verifies the null hypothesis H0 that the

obtained results of two algorithms are samples from continuous distributions with equal me-

dians, as against the alternative that they are not, H1. In this way, we could decide whether

the outperformance of BLMO over one of each of the other detection algorithms (or the

opposite) is statistically significant or just a random result.

3.4.3 Results and Discussions

3.4.3.1 Results for RQ1

Figure 3.6: Median precision on 30 runs for the 10-folds of the 662 web services using the different detection
techniques with a 95% confidence level.
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Figure 3.7: Median recall on 30 runs for the 10-folds of the 662 web services using the different detection
techniques with a 95% confidence level.

Figure 3.8: Median execution time on 30 runs for the 10-folds of the 662 web services using the different
detection techniques.

The results for the first research question RQ1 are presented in Figures 3.6 and 3.7.

The obtained results show that our BLMO approach is able to detect most of the expected

antipatterns in the different web services with a median precision higher than 90%. Thus,

our technique does not have a bias towards the detection of specific web service antipattern

types. As described Figures 3.6 and 3.7, we had an almost equal accuracy distribution of

each Wev service antipattern types. Having a relatively good distribution of antipattern is

useful for developers to make the right decisions about the quality of services. Overall, all the

five web service antipatterns types are detected with good precision and recall scores in the

different systems (an average of 91%). This ability to identify different types of antipatterns

underlines a key strength to our approach. Most other existing tools and techniques rely
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heavily on the notion of size and static information to detect antipatterns. This is reasonable

considering that some antipatterns like the GOWS are associated with the notion of size

(number of operations). For web service antipatterns like RPT, however, the notion of

size is less important, and this makes this type of anomaly hard to detect using structural

information. This also confirms that the use of the dynamic quality of service attributes

helped to achieve good results in detecting antipatterns.

The highest precision value for GOWS (93%) can be explained by the fact that these

web service antipatterns are the easiest to detect due to their structure. For the web services

antipattern type DWS, the precision is the lowest one (88%), but is still an acceptable

score. These antipatterns are likely to be difficult to detect using metrics alone and may

require interactions with the user. Sometimes developers have a reason why a Web service

is too small such as they wanted to make sure that specific operations are loosely coupled

to other services for security reasons. Thus, it is difficult to consider the context of specific

requirements in static and dynamic rules. Similar observations are valid for the recall. The

obtained results indicate that our approach is able to achieve an average recall of 89%.

Thus, the quality of the detection rules are good for almost all the web service defect types

considered in our experiments. Thus, we can conclude that our BLMO multi-objective

approach detects well all the types of considered antipatterns based on a combination QoS

and structural metrics(RQ1).

3.4.3.2 Results for RQ2

The goal of the second research question is to investigate how well BLMO performs

against random search (RS), our previous mono-objective bi-level work [157], an exist-

ing mono-level and single-objective approach (GP) [163] where only defect examples are

used (without the consideration of the lower-level algorithm), and an existing detection tool

(SODA-W) [185] not based on computational search. All these existing work did not consider

the use of dynamic quality of service metrics and they are limited mainly to the interface
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level static metrics. The Random Search is implemented as a sanity check to justify the

need for intelligent search. It has the same structure of our BLOP approach but without the

selection and change operators and it is mainly based on random generation of solutions at

both levels.

Figures 3.6 and 3.7 report the average comparative results on 30 runs with 95% as

confidence level using the Wilcoxon rank sum test.The confidence level is the threshold to

determine if the results are statistically significant or not. RS (random search at both levels

using the same fitness functions) did not perform well when compared to BLMO both in

terms of precision and recall achieving average less than 50% on the majority of different

web service antipattern types. The main reason could be related to the large search-space of

possible combinations of metrics and threshold values to explore, and the diverse set of web

service defects to detect. Furthermore, the results achieved by BLMO are also better than the

mono-objective bi-level and mono-level approaches [163, 157] in terms of both precision and

recall. In fact, the mono-objective genetic programming technique have an average between

74% and 79% of precision and recall however BLOP (mono-objective bi-level) has better

scores with an average of more than 84% of precision and recall on most of the different web

services. Thus, both techniques have lower precision and recall than BLMO. These results

confirm that an intelligent search is required to explore the search space and that the use of

the mutli-objective search at two levels along with the QoS attributes improved the obtained

detection results.

While SODA-W shows promising results with an average precision of 76% and recall of

73%, it is still less than BLMO in all the five considered defect types. We conjecture that

a key challenge with SODA-W is that it simplifies the different notions/symptoms that are

useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a smaller

set of WSDL interface metrics comparing to our approach. In an exhaustive scenario, the

number of possible antipatterns to manually characterize with rules can be large and hard

to generalize, and rules that are expressed in terms of metric combinations need substantial
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calibration efforts to find the suitable threshold value for each metric. However, our approach

needs only some examples of defects to generate detection rules.

Since our proposed solution is based on bi-level optimization, it is important to evaluate

the execution time (T). It is evident that BLMO requires higher execution time than RS,

BLOP, GP,and SODA-W since BLMO has an optimization algorithm to be executed at the

lower level. To reduce the computational complexity of our BLOP adaptation, we selected

only best solutions (10%) at the upper level to update their fitness evaluations based on

the coverage of artificial web service antipatterns that are generated by the optimization

algorithms executed at the lower level for every selected solution. All the search-based

algorithms under comparison were executed on machines with Intel Xeon 3 GHz processors

and 8 GB RAM. As described in Figure 3.8, all the existing studies were faster than BLMO.

However, the execution for BLMO is reasonable because the algorithm is executed only once

then the generated rules will be used to detect antipatterns. There is no need to execute

BLMO again except in the case that the base of examples (training set) will be updated

with a high number of new web service antipattern examples.

One of the advantages of using our BLMO adaptation is that the developers do not

need to provide a large set of examples to generate the detection rules. In fact, the lower-

level optimization can generate examples of web service defects that are used to evaluate

the detection rules at the upper level. The existing mono-level work of Ouni et al. [163]

(GP) require a higher number of defect examples than BLMO to generate good quality of

detection rules. We can conclude, based on the obtained results that our BLMO approach

outperforms, in average, the state of the art web service antipatterns detection techniques

that are not using multi-objective search and QoS metrics (response to RQ2).

3.4.3.3 Results for RQ3

Subjects were first asked to fill out a questionnaire containing five questions. The ques-

tionnaire helped to collect background information such as their role within the company,
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their programming experience, their familiarity with web services. The first part of the

questionnaire includes questions to evaluate the relevance of some detected web service an-

tipatterns by BLMO using the following scale: 1. Not at all relevant; 2. Slightly relevant; 3.

Moderately relevant; and 4.Extremely relevant. If a detected antipattern is considered rele-

vant then this means that the developer considers that it is important to fix it. The second

part of the questionnaire includes questions for those antipatterns that are considered at least

“moderately relevant”. We asked the subjects to specify their usefulness based on the fol-

lowing options: 1. web services selection; 2. Quality assurance; 3. Bug prediction; 4. Effort

prediction; and 5. Refactoring opportunities. The questionnaire is completed anonymously

thus ensuring confidentiality and this study were approved by the IRB at the University of

Michigan: “Research involving the collection or study of existing data, documents, records,

pathological specimens, or diagnostic specimens, if these sources are publicly available or if

the information is recorded by the investigator in such a manner that participants cannot

be identified, directly or through identifiers linked to the participants”.

During the entire process, subjects were encouraged to think aloud and to share their

opinions, issues, detailed explanations and ideas with the organizers of the study (one grad-

uate student and one faculty) and not only answering the questions. A brief tutorial session

was organized for every participant around web services antipatterns and quality of services

to make sure that all of them have a minimum background to participate in the study. The

instructions indicate also that the developers need to inspect the source code and the in-

terfaces to evaluate the detected web service antipatterns and their relevance and not by

evaluating the quality metric values. In addition, all the developers performed the experi-

ments in a similar environment: similar configuration of the computers, tools and facilitators

of the study. These sessions were also recorded as audio and the average time required to

finish all the questions was 2 hours.

We evaluated, first, the relevance of a set of 30 detected web service antipatterns (6

instances from each type of antipattern) by the participants. Figure 3.9 illustrates that only
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less than 17% of detected antipatterns are considered not at all relevant by the developers.

Around 68% of the antipatterns are considered as moderately or extremely relevant by

the different participants, and this confirms the importance of the detected web service

antipatterns for developers.

To better evaluate the relevance of the detected web service antipatterns, we investigated

the types of antipatterns that developers perhaps consider them more or less important than

others (e.g. RPT, GOWS, etc.). Figure 3.10 summarizes our findings. It is clear that the

detected GOWS are considered very relevant for developers. One of the reasons can be the

impact of large number of operations on the performance of the services (response time,

availability, etc.). In addition, it is very difficult for users to select a relevant operation when

the interface contains a very large number of operations. Another interesting observation

is that RPT antipatterns are not considered very relevant by developers. It is hard for

developers to decide about the relevance of some types of antipattern without checking

manually some of the detect ones and understand their possible impact. Thus, we did this

post-study questionnaire to ask the developers after using the tool and checking some of the

results. It may inform future research about which antipattern types to prioritize.

Figure 3.9: The relevance of detected web service antipatterns.

It is also important to evaluate the usefulness of the detected web service antipatterns

from the developers perspective. Thus, we asked the participants to justify the usefulness
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Figure 3.10: Relevance of different types of web service antipattern.

Figure 3.11: The usefulness of web service antipatterns for developers

of the code-smells ranked as moderately or extremely relevant. Figure 3.11 describes the

obtained results. The main usefulness is related to web services selection, refactoring guid-

ance and quality assurance. In fact, most of the participants we interviewed found that

the detected antipatterns give relevant advices about where refactorings should be applied

to fix operations and portTypes. In addition, they found that the web service antipatterns

detection process is much more helpful than the traditional analysis of quality metrics to find

refactoring opportunities. They consider the use of traditional quality metrics for Quality

Assurance as a time consuming process, and it is easier to interpret the results of detected

antipatterns and apply the appropriate refactorings to improve the overall quality of the web

services.

We summarize briefly in the following the feed-back of the participants during the think
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aloud sessions. Most of the participants mention that the detection rules generated by our

bi-level multi-objective approach represents a faster solution than manual assessment of

the quality of web services. The manual techniques represent a time consuming process to

calibrate the metrics threshold or the combination of metrics to identify a maintainability

issue manually. The participants found the detection rules useful to maintain a good quality

of the design of web services. In addition, the developers liked the flexibility to modify

the rules (metrics or thresholds) if required. Some possible improvements for our detection

techniques were also suggested by the participants. Some participants believe that it will

be very helpful to extend the tool by adding a new feature to rank the detected web service

antipatterns based on several criteria such as risk, cost and benefits. They believe that

current web service quality assessment tools do not provide any support to estimate the risk,

cost and benefits of fixing some maintainability issues.

To conclude, the developers found the use of QoS and multi-objective search efficient to

detect web service antipatterns and found most of the detected types relevant (answer to

RQ3).

3.5 Threats to Validity

One possible construct validity threat arises because although we considered several well-

known web services design defect types, we must further evaluate the performance and ability

of our bi-level technique to detect other defect types. A construct threat can also be related

to the corpus of manually detected web service design defects since developers do not all

agree if a candidate is a defect or not. We will ask some new experts to extend the existing

corpus and provide additional feedback regarding the detected antipatterns. In addition,

the recall score is challenging to calculate by the developers of our experiments and requires

additional participants to check its accuracy. A limitation related to our experiments is

the difficulty to set the thresholds for some of existing state of the art techniques. In fact,

we used the default thresholds used by these techniques that can have an impact on the
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quality of the results. The evaluation of detected web service defects for some participants

is mainly based on the definitions of the antipatterns and the examples that we provided

during the pilot study. However, the definition of antipatterns is subjective and depends

on the programming behavior of the participants thus this can affect the accuracy of the

detection results.

A construct threat is related to the fact that our detection results depend on the examples

of antipatterns and well-designed web services. In addition, the generation of artificial web

services can lead to several non-useful examples (generated by the lower-level). Additional

constraints should be defined to better guide the search at a lower level to refine the gener-

ation of artificial web service examples. The same observation is valid for the used change

operators at both the upper and lower levels that can generate invalid rules and antipattern

examples (e.g. redundancy) may be avoided by the definition of additional constraints.

We take into consideration the internal threats to validity in the use of stochastic algo-

rithms since our experimental study is performed based on 30 independent simulation runs

for each problem instance, and the obtained results are statistically analyzed by using the

Wilcoxon rank sum test with a 95% confidence level. The parameter tuning of the different

optimization algorithms used in our experiments creates another internal threat that we need

to evaluate in our future work by additional experiments to evaluate the impact of upper

and lower levels’ parameters on the quality of the results.

For the selection threat, the subject diversity in terms of profile and experience could

affect our study. We mitigated the selection threat by giving written guidelines and exam-

ples of antipatterns already evaluated with arguments and justification. Additionally, each

group of subjects evaluated different antipatterns from different systems using different tech-

niques/algorithms. Randomization also helps to prevent the learning and fatigue threats.

Only few antipatterns per system were randomly picked for the evaluation. Diffusion threat

is related to the fact that most of the subjects are from the same university, and the ma-

jority know each other. However, they were instructed not to share information about the
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experience before a certain date.

External validity refers to the generalization of our findings. In our study, external

threat to validity concerns mainly the employed defect types and the studied web services.

We considered five types of web service antipatterns which constitute a wide representative

set of standard and most frequent defects. Likewise, we have selected 662 real world web

services belong to different application domains, offer diverse functionalities, have different

sizes and were developed by different companies.

3.6 Conclusions and Future Work

We proposed a bi-level multi-objective approach for the web service antipatterns detection

problem. In our approach adaptation, the upper level generates a set of detection rules

which are a combination of QoS, Interface, and code level metrics, using two conflicting

fitness functions. The first objective is to maximize the coverage of both the base of defect

examples and artificial defects generated by the lower level and to minimize the coverage

of well-designed web service examples. The second objective is to minimize the size of a

detection rule. The lower level generates artificial defects that cannot be generated by the

upper-level detection rules which will help to generate fitter rules.

We implemented our proposed approach and evaluated it on a benchmark of 662 web

services and several common web service antipattern types. The empirical study shows that

proposed bi-level multi-objective optimization approach outperforms our previous multi-

objective approach, bi-level approach and other state-of-the-art approaches. As part of our

future work, we are planning to explore the use of bi-level for the automated repair of

detected antipatterns. Additionally, we may consider other techniques such as the concept

of generative adversarial networks [186] in generating the artificial defects. We will also work

on the prioritization of detected defects due to the large number of potential issues that need

to be fixed when improving the quality of Web services. For example, we can evaluate the

impact of detected defects on the overall quality of service as a way to rank the identified
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antipatterns. Furthermore, an empirical study about the impact of different antipatterns on

QoS (maintainability, changeability, comprehensibility, discoverability) is considered as part

of our future work.
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CHAPTER IV

Enabling Decision and Objective Space Exploration for Interactive

Multi-Objective Refactoring

4.1 Introduction

With the ever-growing size and complexity of software projects, there is a high demand for

efficient refactoring [9] tools to improve software quality, reduce technical debt, and increase

developer productivity. However, refactoring software systems can be complex, expensive,

and risky [13, 14, 15]. A recent study [23] shows that developers are spending considerable

time struggling with existing code (e.g., understanding, restructuring, etc.) rather than

creating new code, and this may have a harmful impact on developer creativity.

Various tools for code refactoring have been proposed during the past two decades ranging

from manual support [24, 25, 26] to fully automated techniques [27, 28, 29, 30, 31, 32,

33, 34, 35, 36]. While these tools are successful in generating correct code refactorings,

developers are still reluctant to adopt these refactorings. This reluctance is due to the tools’

poor consideration of context and developer preferences when finding refactorings[37, 38,

29, 39]. In fact, the preferences of developers ranging from quality improvements to code

locations, are still not well supported by existing tools and a large number of refactorings

are recommended, in general, to fix the majority of the quality issues in the system.

In our recent survey, supported by an NSF I-Corps project, with 127 experienced de-

velopers in software maintenance at 38 medium and large companies (Google, eBay, IBM,
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Amazon, etc.) [1, 2], 84% of face-to-face interviewees confirmed that most of the existing

automated refactoring tools detect and recommend hundreds of code-level issues (e.g., an-

tipatterns and low quality metrics/attributes) and refactorings. However, these tools do not

specify where to start or how they relate to a developer’s context (e.g., the recently changed

files) and preferences in terms of quality targets. This observation is consistent with an-

other recent study [187]. Furthermore, refactoring is a human activity that cannot be fully

automated and requires a developer’s insight to accept, modify, or reject recommendations

because developers understand their problem domain and may have a clear target design in

mind. Several studies reveal that automated refactoring does not always lead to the desired

architecture even when quality issues are properly detected, due to the subjective nature of

software design choices [188, 36, 189, 33, 38, 35, 190]. However, manual refactoring is often

error-prone and time-consuming [42, 156].

Several studies have been proposed recently to have developers interactively evaluate

refactoring recommendations [3, 187, 191, 1, 2]. The developers provide feedback about

the refactored code and may introduce manual changes to some of the recommendations.

However, this interactive process can be expensive since developers must evaluate a large

number of possible refactorings and eliminate irrelevant ones. Both interactive and auto-

mated refactoring approaches have to deal with the challenge of considering many quality

attributes for the generation of refactoring solutions. One of the most commonly used qual-

ity attributes are the ones of the Quality Metrics for Object Oriented Designss (QMOODs)

model including reusablitiy, extensibility, effectiveness, etc [192]. QMOOD was empirically

validated by many studies, based on hundreds of open source and industry projects, to en-

sure that they are associated with the qualities they are supposed to measure and that they

are also conflicting [193, 188, 83].

Refactoring studies have either aggregated these quality metrics to evaluate possible

code changes or treated them separately to find trade-offs [188, 187, 191, 36, 189, 33, 190,

84]. However, it is challenging to define weights upfront for the quality objectives since
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developers are often unable to express them. Furthermore, the number of possible trade-

offs between quality objectives is large, which makes developers reluctant to look at many

refactoring solutions—a time-consuming and confusing process. The closest work to this

study of Alizadeh et al. [2, 1] shows that even the clustering of non-dominated refactoring

solutions based on quality metrics will still generate a considerable number of refactorings to

explore. Developers, in practice, combine the use of quality metrics and code locations/files

to target when deciding which refactoring to apply. However, existing refactoring tools are

not enabling the interactive exploration of both quality metrics and code locations during

the refactoring process. The search is beyond just filtering the refactorings but how can

the algorithm find better recommendations after understanding the preferences of the users

and giving them a good understanding on how the refactorings are distributed if they are

interested in improving specific quality objectives.

In this research work, we propose an interactive approach that combines multi-objective

search, interactive optimization, and unsupervised learning to reduce developer effort in

exploring both objective spaces (quality attributes) and decision spaces (files). As a first step,

a multi-objective search algorithm, based on NSGA-II [182], is executed to find a compromise

between the multiple conflicting quality objectives and generates a set of non-dominated

refactoring solutions. Then, an unsupervised clustering algorithm clusters the different trade-

off solutions based on their quality metrics. Finally, another clustering algorithm is applied

within each cluster of the objective space based on the code locations where the refactorings

are recommended to help developers explore the impact of quality attributes while choosing

the code fragments to refactor. The input for the second clustering is generated from the

first clustering step, hence both algorithms are hierarchical. In other words, the developer

can interact with our tool by exploring both the decision and objective spaces to identify

relevant refactorings based on their preferences quickly. Thus, the developers can focus on

their regions of interest in both the objective and decision spaces. The developers are, in

general, first concerned about improving specific quality attributes then they will look for the
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refactorings that best target the files related to their current interests and ownership [194, 38].

Therefore, we followed this pattern in our approach by clustering first the objective space

then we showed the developers the distribution of the refactorings into different decision

space clusters for their preferred objective space cluster.

Our approach takes advantage of multi-objective search, clustering, and interactive com-

putational intelligence. Multi-objective algorithms are powerful in terms of diversifying

solutions and finding trade-offs between many objectives but generate many solutions. The

clustering and interactive algorithms are useful in terms of extracting developers knowledge

and preferences. Existing interactive search-based software refactoring techniques are mainly

limited to objective space exploration without considering the decision space.

To evaluate our approach, we selected active developers to manually evaluate the effec-

tiveness of our tool on 6 open source projects and one industrial system. Our results show

that the participants found their desired refactorings faster and more accurately than the

current state of the art of refactoring tools. This confirms our hypothesis that the second

level of clustering (decision space) can help developers to quickly find relevant refactorings

based on their preferences in terms of both quality objectives to improve and the location of

these changes. A video demo of our interactive refactoring tool can be found at [195].

The main outcome of this contribution can be summarized as follows:

1. To the best of our knowledge, this contribution introduces one of the first search-based

software engineering techniques that enables the interactive exploration of the objective

and decision spaces while existing work focus only on either the objective space or

the decision space and they often lack user interaction in the decision space. Our

approach is not about a simple filtering of the refactorings based on the locations/files

or a clustering of the Pareto front based on the locations. We enabled programmers

to interactively navigate between both objective and decision spaces to understand

how the refactorings are distributed if they are interested to improve specific quality

objectives. Then, our approach can generate even more relevant suggestions after

69



extracting that knowledge from the exploration of the Pareto front.

2. Our contribution is beyond the adoption of an existing metaheuristic technique to refac-

toring. The proposed approach includes a novel algorithm to enable the exploration

of both decision and objective spaces by combining two level of clustering algorithms

with multi-objective search.

3. We implemented and validated our framework on a variety of open source and industrial

projects. The results support the hypothesis that the combination of both the objective

and decision spaces significantly improved the refactoring recommendations.

4.2 Interactive Refactoring Challenges

Refactoring is a human activity that is hard to automate due to its subjective nature and

the high dependency on context. While successful tools for refactoring have been created,

several challenges are still to be addressed to expand the adoption of refactoring tools in

practice. To investigate the challenges associated with current refactoring tools, we con-

ducted a survey, as part of an NSF I-Corps project, with 127 professional developers at 38

medium and large companies including eBay, Amazon, Google, IBM, and others [2, 1]. All

these developers had a minimum of 11 years of experience in software maintenance tasks and

especially refactoring. 112 face-to-face meetings were conducted based on semi-structured

interviews to understand the challenges that developers are facing with existing refactoring

tools.

From these interviews and our extensive industry collaboration, we learned that architects

usually have a desired design in mind as a refactoring target, and developers need to conduct

a series of low-level refactorings to achieve this target. Without guiding developers, such

refactoring tasks can be demanding: it took one software company several weeks to refactor

the architecture of a medium-size project (40K Lines of Codes (LOCs)) [2]. Several books

[196, 13, 9] on refactoring legacy code and workshops on technical debt present the substantial
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costs and risks of large-scale refactorings. For example, Tokuda and Batory [197] proposed

different case studies with over 800 applied refactorings, estimated to take more than 2 weeks.

There are two major strategies for refactoring in practice: (a) root-canal refactoring and

(b) incremental refactoring. The root-canal refactoring is when project owners decide to

heavily refactor their system, since some major issues were observed such as the inability to

add new features without introducing clones. While root-canal refactoring is less frequent

than incremental refactoring, it is still very important in practice. It is currently a major

challenge in the software industry, especially with legacy systems such as the ones that we

observed at Ford, eBay and so on.

The majority of the interviewees emphasized that root-canal refactoring to restructure

the whole system is rare and they are mainly interested in refactoring files that they own

rather than files owned by their peers. Refactoring is a complex problem and there are many

reasons for why developers may adopt recommended refactorings, among them ownership

and code metrics. Note that ownership does not mean a lot in the context of root-canal

refactoring (unlike incremental refactoring) since developers may refactor code even though

they do not own it. Most existing refactoring tools do not offer a capability of integrating

developers’ preferences, in terms of which files they may want to refactor, and purely rely

on potential quality improvements. Fully automated refactoring usually do not lead to the

desired architecture, and a designer’s feedback should be considered. Moreover, prior work

[198] shows that even some semi-automated tools are underutilized by developers. Over 77%

of our interviewees reported that the refactorings they perform do not match the capabilities

of low-level transformations supported by existing tools, and 86% of developers confirmed

that they need better design guidance during refactoring: ”We need better solutions of

refactoring tasks that can reduce the current time-consuming manual work. Automated tools

provide refactoring solutions that are hard and costly to repair because they did not consider

our design needs.”

Based on our previous experience on licensing refactoring research prototypes to industry,
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developers always have difficulties and concerns about expressing their preferences up-front

as an input to guide refactoring suggestions. They prefer to get insights from some generated

refactoring solutions then decide which quality attributes they want to improve. For instance,

the number of code smells that are detected for systems is in the hundreds and we have seen

reluctance about up-front selection of code smells for refactoring since it is hard for developers

to understand the benefits of fixing these smells. Even worse, developer’s preferences are not

limited to just the quality metrics and their improvements but also where these refactorings

will be applied. Our goal is to reduce the need for these up-front developer preferences since

they are hard to define in practice by integrating the user’s feedback within the different

components of multi-objective algorithm for its next run, as described in section 4.3.5. If

the developers are clear about their preferences up-front then they can adjust the fitness

functions to target them. Many existing refactoring tools fail to consider the developer

perspective, and the developer has no opportunity to provide feedback on the refactoring

solution being recommended. Furthermore, as development must halt while the refactoring

process executes, fully-automated refactoring methods are not useful for floss refactoring

where the goal is to maintain good design quality while modifying existing functionality.

The developers have to accept the entire refactoring solution even though they prefer, in

general, step-wise approaches where the process is interactive, and they have control of the

refactorings being applied. Step-wise approaches, unlike the fully automated ones, involve

the developers in the loop so they can accept and reject refactoring solutions and express

their preferences, thus they have more flexibility in choosing the final set of refactoring to be

applied to the system. Determining which quality attribute should be improved, and how, is

never a purely technical problem in practice. Instead, high-level refactoring decisions have to

take into account the trade-offs between code quality, available resources, project schedule,

time-to-market, and management support.

Based on our survey, it is challenging to aggregate quality objectives into one evaluation

function to find good refactoring solutions since developers are not able, in general, to express
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Figure 4.1: The output of a multi-objective refactoring tool [1] finding trade-offs between QMOOD quality
attributes on ganttproject v1.10.2 with clustering only in the objective space.

their preferences upfront. While recent advances on refactoring proposed tools support

multiple preferences of developers based on multi-objective search, these tools still require

the user to navigate through many solutions. Figure 4.1 shows an example of a Pareto front

of non-dominated refactoring solutions improving the QMOOD [189] quality attributes of a

Gantt Project generated using an existing tool [1]. QMOOD is a widely accepted software

quality model, based on our collaborations with industry and existing studies [1, 2, 199,

200, 201, 188, 3]. While developers were interested in giving feedback for some refactoring

solutions, they still find the interaction process time-consuming. Even when refactoring

solutions are clustered based on the quality objectives, as shown in Figure 4.1, the number

of solutions to be checked by developers can be substantial. Thus, they want to know how

different the solutions are within the same objective space. It may be possible to find more

than one refactoring solution that offers the same level of quality improvements but by

refactoring different code locations/files. In fact, the objective space clustering is important

for developers to understand which refactorings could help them to achieve their goals of

improving specific quality attributes. However, each cluster will still include a considerable

number of solutions since each solution contains a good number of refactorings. Thus, the
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Figure 4.2: Overview of our proposed approach: DOIMR

objective space clustering is necessary and the decision space clustering is complementary to

the first phase. Existing refactoring techniques do not, however, enable developer interaction

based on both the decision space and objective space; that is the main challenge of this work.

For instance, the objective space exploration can help developers focusing on their targeted

design quality improvements then the decision space can help them to focus on files they are

owning or related to their current tasks or interests.

4.3 Approach Description: Enabling Decision and Objective Space Exploration

for Interactive Multi-Objective Refactoring

Figure 4.2 describes our proposed approach which is composed of four major steps. In

the first step, a multi-objective search algorithm is executed to find a set of non-dominated

solutions between different conflicting quality objectives of QMOOD [129]. Then, the sec-

ond step clusters these solutions based on these quality attributes. We call this procedure

“objective space clustering”. The third step takes, as input, every cluster identified from

the user’s choice in the objective space and execute another unsupervised learning algorithm

to cluster the solutions based on their code locations. Hence, we call this “decision space

clustering”. Finally, developers can interactively choose among the clustered solutions to

find a compromise that suits their preferences in both the decision and objective spaces. For

instance, developers may select a cluster (from the objective space clustering) that corre-
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sponds to their quality improvement preferences. Then, the second clustering will show them

how the solutions in the preferred objective space cluster are different in the decision space.

For example, the user can easily avoid looking at many solutions that are similar in the

decision space (modifying almost the same code locations) based on the second clustering.

Note that our algorithm is hierarchical, thus the input of the second clustering algorithm

(decision space) is the set of clusters generated by the first clustering algorithm (objective

space) that are selected as preferred ones by the user. The multi-objective search algorithm

runs for a number of iterations to finally generate refactoring solutions to the user. If the

developer is not satisfied with the solutions that are recommended from these iterations,

s/he can explore the clustering results and express their preferences and needs; then another

run of the multi-objective algorithm will take place for a number of iterations taking into

consideration the developer’s preferences (more details are presented in the next sections).

This process is iterative until the user is satisfied with a final set of refactoring solutions that

is aligned with his preferences.

The next sections will explain in further detail the steps of our methodology.

4.3.1 Phase 1: Multi-Objective Refactoring

The search for a refactoring solution requires the exploration of a large search space

to find trade-offs between 6 different quality objectives. The multi-objective optimization

problem can be formulated mathematically in this manner:

Minimize F (x) = (f1(x), f2(x), ..., fM(x)),

Subject to x ∈ S,

S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0};

where S is the set of inequality and equality constraints, g and h are real valued functions
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defined on S, x is an N vector of decision variables, and the functions fi are objective or fitness

functions. In multi-objective optimization, the quality of an optimal solution is determined

by dominance. The set of feasible solutions that are not dominated with respect to each

other is called Pareto-optimal or Non-dominated set.

In the following subsections, we briefly summarize the adaptation of multi-objective

search to the software refactoring problem.

Solution Representation. We encode a refactoring solution as an ordered vector of

multiple refactoring operations. Each operation is defined by an action (e.g., move method,

extract class, etc.) and its specific controlling parameters (e.g., source and target classes,

attributes, methods, etc.) as described in Table 4.3. We considered a set of the most

important and widely used refactorings in our experiments: Extract Class/SubClass/Su-

perClass/Method, Move Method/Field, PullUp Field/Method, PushDown Field/Method,

Encapsulate Field and Increase/Decrease Field/Method Security. We selected these refac-

toring operations because they have the most impact on QMOOD quality attributes [202].

During the process of population initialization or a mutation operation of the algorithm, the

refactoring operation and its parameters are formed randomly. Due to the random nature

of this process, it is crucial to evaluate the feasibility of a solution meaning to preserve the

software behavior without breaking it. This evaluation is based on a set of specific pre-

and post-conditions for each refactoring operation as described in [124]. Figure 4.3 shows

an example of a concrete refactoring solution proposed by our approach for GanttProject

v1.10.2, including several refactorings applied to different code locations.

Fitness Functions. We used the Quality Model for Object-Oriented Design (QMOOD)

[192] as a means of estimating the effect of a refactoring operation on the quality of the

software. This model is developed based on the international standard for software product

quality measurement and is widely used in the industry. QMOOD is a comprehensive way to

assess software quality and includes four levels. Using the first two levels—Object-oriented

Design Properties and Design Quality Attributes—as fitness functions, we formulated the
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Figure 4.3: Example of a refactoring solution proposed by our tool for GanttProject v1.10.2.

problem as discovering refactorings to improve the design quality of a software system. The

fitness functions we calculate are Understandability, Functionality, Reusability, Effectiveness

Flexibility, Extendibility, Complexity, Cohesion, and Coupling. We measured the relative

change of these quality attributes after applying a refactoring solution as follows:

FitnessFunctioni =
Qafter

i −Qbefore
i

Qbefore
i

(4.1)

where Qbefore
i and Qafter

i are the value of the quality metric i before and after applying

a refactoring solution, respectively.

Table 4.1 and 4.2 describe the QMOOD metrics and their computation formulas used in

our optimization approach.

4.3.2 Phase 2: Objective Space Clustering

One of the most challenging and tedious tasks for a user during any multi-objective

optimization process is decision making. Since many Pareto-optimal solutions are offered,

it is up to the user to select among them, which requires exploration and evaluation of the

Pareto-front solutions.

The goal of this step is to cluster and categorize solutions based on their similarity in the

objective space. These clusters of solutions help give the user an overview of the options.
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Table 4.1: QMOOD metrics and their computation formulas.

QMOOD Metrics Definition / Computation

Reusability −0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗ Messaging + 0.5 ∗
DesignSize

Flexibility 0.25 ∗Encapsulation− 0.25 ∗Coupling+ 0.5 ∗Composition+ 0.5 ∗
Polymorphism

Understandability −0.33 ∗ Abstraction + 0.33 ∗ Encapsulation − 0.33 ∗ Coupling +
0.33 ∗ Cohesion − 0.33 ∗ Polymorphism − 0.33 ∗ Complexity −
0.33 ∗DesignSize

Functionality 0.12∗Cohesion+0.22∗Polymorphism+0.22∗Messaging+0.22∗
DesignSize+ 0.22 ∗Hierarchies

Extendibility 0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗ Inheritance + 0.5 ∗
Polymorphism

Effectiveness 0.2 ∗Abstraction+ 0.2 ∗Encapsulation+ 0.2 ∗Composition+ 0.2 ∗
Inheritance+ 0.2 ∗ Polymorphism

Therefore, this technique gives the users more explicit initial exploration steps where they can

initiate the interaction by evaluating each cluster center or representative member. Based

on our previous refactoring collaborations with industry, developers are always highlighting

the time-consuming and confusing process to deal with the large population of Pareto-front

solutions: “where should I start to find my preferred solution?”. This observation is valid

for many Search-based software engineering (SBSE) applications using multi-objective search

[2].

Clustering is an unsupervised learning method to discover meaningful underlying struc-

tures and patterns among a set of unlabelled data. It puts the data into groups where the

similarity of the data points within each group is maximized while minimizing the similarity

between groups.

Determining the optimal number of clusters is a fundamental issue in clustering tech-

niques. One method to overcome this issue is to optimize a criterion where we try to

minimize or maximize a measure for the different number of clusters formed on the data set.

For this purpose, we used the Calinski Harabasz (CH) Index, which is an internal clustering
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Table 4.2: Design metrics description.

Design Metric Design
Property

Description

Design Size in Classes
(DSC)

Design Size Total number of classes in the design.

Number Of Hierarchies
(NOH)

Hierarchies Total number of ”root” classes in the design
(count(MaxInheritenceTree (class)=0))

Average Number of Ances-
tors (ANA)

Abstraction Average number of classes in the inheritance tree for each class.

Direct Access Metric
(DAM)

Encapsulation Ratio of the number of private and protected attributes to the
total number of attributes in a class.

Direct Class Coupling
(DCC)

Coupling Number of other classes a class relates to, either through a shared
attribute or a parameter in a method.

Cohesion Among Methods
of class (CAMC)

Cohesion Measure of how related methods are in a class in terms of used
parameters. It can also be computed by: 1 − LackOfCohe-
sionOfMethods()

Measure Of Aggregation
(MOA)

Composition Count of number of attributes whose type is user defined
class(es).

Measure of Functional Ab-
straction (MFA)

Inheritance Ratio of the number of inherited methods per the total number
of methods within a class.

Number of Polymorphic
Methods (NOP )

Polymorphism Any method that can be used by a class and its descendants.
Counts of the number of methods in a class excluding private,
static and final ones.

Class Interface Size (CIS) Messaging Number of public methods in class.
Number of Methods
(NOM)

Complexity Number of methods declared in a class.

validation measure based on two criteria: compactness and separation [203]. We selected

the CH index due to the small size of the number of solutions to cluster (our data), and it

is known to provide quick clustering solutions with acceptable quality for similar problems.

CH assesses the clustering outcomes based on the average sum of squares between individual

clusters and within clusters. Therefore, we execute the clustering algorithm on the Pareto-

front solutions with various numbers of components as input. The CH score is calculated

for each execution, and the result with the highest CH score is recognized as the optimal

clustering.

After determining the best number of clusters, we employ a probabilistic model-based

clustering algorithm called “Gaussian Mixture Model” (Gaussian Mixture Models (GMMs)).

GMM is a soft-clustering method using a combination of Gaussian distributions with different

parameters fitted on the data and more details about this algorithm can be found in [204].

The parameters are the number of distributions, Mean, Co-variance, and Mixing coefficient.
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The optimal values for these parameters are estimated using the Expectation-Maximization

(EM) algorithm [205]. EM trains the variables through a two-step iterative process.

After the convergence of EM, the membership degree of each solution to a fitted Gaussian

or cluster is kept for the preference extraction step. Furthermore, to find a representative

member of each cluster, we measure the corresponding density for each solution and select

the solution with the highest density.

To calculate the probability distribution function of different Gaussian components, we

compute the Mahalanobis distance between data points and its estimated mean vector for

all clusters. We allow to choose full covariance matrices in order to model each cluster as an

ellipsoid with arbitrary orientation and stretch. In practice, using full covariance matrices

improves the performance of the GMM.

4.3.3 Phase 3: Decision Space Clustering

Our approach gives developers the ability to pinpoint their preferences in a different space

than the optimization space related to the location of refactorings. In the exploration of the

decision space, user preferences are defined for the set of controlling parameters (mainly

code elements to be refactored) that each refactoring has (see Table 4.3). After selecting

a preferred objective space cluster, the developer may want to see “the distribution of the

solutions within that region of interest”. In other words, the clustering in the decision space

will show developers the refactoring solutions that improve the quality at the same level

(within the same objective space cluster) but targeting different parts of the systems. To do

this, we group the solutions by their similarity in the decision space and present them to the

developer as depicted in Figure 4.4 where only two clusters were found in the decision space.

In each of these two clusters, the solutions composing it are introducing refactorings into

similar locations with comparable impact on the different quality attributes. These solutions

in the decision space are clustered based on the refactoring locations and their frequency. In

fact, Figure 4.4 shows the projection on the objective space of the solutions clustered based
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on the criteria of the decision space (each color is one decision space cluster); a user can click

on the preferred solution to see the criteria of the decision space including the code locations.

The developer can combine both kinds of information together (impact of the solution on

quality and the code locations) to decide which solution to explore further.

Figure 4.4: Clustering based on code locations (decision space) of the refactoring solutions of one region
of interest in the objective space of GanttProject v1.10.2.

Table 4.3: Refactoring operations with their controlling parameters.

Refactorings Controlling parameters
Move Method (sourceClass, targetClass, method)
Move Field (sourceClass,targetClass,field)
Pull Up Field (sourceClass,targetClass,field)
Pull Up Method (sourceClass,targetClass,method)
Push Down Field (sourceClass,targetClass,field)
Push Down Method (sourceClass,targetClass,method)
Inline Class (sourceClass,targetClass)
Inline Method (sourceClass,sourceMethod,targetClass,targetMethod)
Extract Method (sourceClass,sourceMethod,targetClass,extractedMethod)
Extract Class (sourceClass,newClass)

To get an optimal grouping of solutions in the decision space of where refactorings are

applied, we use a procedure similar to the one used in the objective space with additional

pre-processing steps to project the solutions on the decision space. We define a projection

operator based on the frequency of changes to the classes by the refactorings and their
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locations (refactored files). Since refactoring operations affect classes differently, where some

make changes only at the same class level while others have a source class and a target class,

we only count source classes in our work to have a consistent representation for all vectors and

to create a new representation for the refactoring vector in the decision space. In this new

domain space, the solutions are represented as vectors of integers where the refactored classes

are the dimensions of the space, and the values are the number of refactoring operations for

that class. The projection operator is used for the entire Pareto-front and enables having two

different representations of the same solution set. Note that the number of refactored classes

depends on the size of the refactoring solutions. Since we considered the same minimum

and maximum size thresholds of refactoring solutions for all executions of the algorithm,

the time to generate the clusters is similar even for larger projects since the size is not

based on all code elements of the project but just those in the refactoring solutions. A

larger set of modified code elements may generate more clusters to explore, which can make

the interaction more time-consuming. Additionally, the decision space clustering heavily

depends on how many code elements are refactored within each solution. If the majority of

the solutions in the Pareto front are refactoring almost the same code elements (for instance,

one class) then mainly one big cluster will be generated in the decision space. It is true that

a large refactoring solution may have a higher probability to modify larger code elements

than a smaller one but it is more accurate to estimate the number of possible clusters in the

decision space based on the code elements that are refactored by the solutions in the Pareto

front.

The main contribution of our work is enabling the exploration of a diverse set of refactor-

ing solutions within the same objectives space. This amounts to having multiple solutions

that are neighbors in the objective space but completely different in the decision space. To

do this, we go through all the clusters determined in the previous step and then use the

GMM clustering algorithm with the same steps described above to group similar solutions in

the decision space. Thus, developers can improve the code toward their preferred objectives
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Figure 4.5: Illustration of the clustered solutions in the objective space and the decision space

while only refactoring the parts of the code that interest them.

Figure 4.5 shows an example of our approach (DOIMR) where after generating the Pareto-

front for the effectiveness and extendibility objectives, the developer can select a cluster in

the objective space for further exploration. Then, a developer can explore the clusters and

observe that within this cluster, there are three different clusters in the decision space. The

region of interest can be highlighted, and the developer can select solutions that correspond to

their interest to create further preferences that can be integrated in the optimization process

to converge to the desired optimum. For better visualization of the clustered solutions, our

tool offers a feature for two-dimensional views.

4.3.4 Phase 4: Developer Feedback and Preference Extraction

The results of the Bi-Space clustering algorithm are presented to developers in the form

of an interactive chart where they can visualize the cluster of their choice in the objective
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and decision spaces. This presentation helps them get a complete picture of the diversity

of the refactoring solutions and the various compromises they may offer. Our goal is to

minimize the effort spent by developers to interact with the system and select a final set of

refactorings.

Looking at the solutions, developers can evaluate every solution based on their prefer-

ences. The granularity offered by our representation enables developers to make evaluations

at the cluster level (selecting one or more clusters in the objective space), solution level (se-

lecting solutions within a chosen cluster) and refactoring level (choosing to accept, reject, or

modifying some refactorings within the chosen solution as shown in Figure 4.3.). The score

obtained reflects developer preferences and serves to determine their region of interest.

At the solution level, the developer is capable of inspecting every refactoring and mod-

ifying it. Refactoring operations can be added, deleted, modified, or re-ordered. The in-

formation collected afterward is used to calculate a score at the solution level by averaging

the scores for every refactoring, and at the cluster levels by averaging the scores of the so-

lutions. The user can reorder the refactorings during the interaction process to fix those

that they become invalid, due to the violation of pre-conditions, after removing or modifying

other refactorings in the sequence. As described in the solution representation section, these

conditions are checked when generating new solutions including the application of change

operators. It is possible that the order need to be changed again by the user during the new

interactions phase with new solutions since the purpose of reordering is not mainly related

to the quality improvements or locations but more to keep the refactoring sequence valid if

removing/modifying some refactorings require to change the order again.

We calculate the score of a solution and a cluster after the developer interacts with the

solutions and provides his feedback in terms of rejecting, accepting, deleting and reordering

the solutions. Thus, the scores are extracted from the developer during every interaction

independently. If the new population contains some exact same solutions from the previous

interaction then the solution already has the score calculated from the previous interaction.
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In this way, we can characterize the developer’s region of interest as the cluster with the

highest score. Information about the preferred classes, refactorings, and quality metrics is

extracted and used to create preferences that can be considered in the optimization process.

Therefore, the search becomes guided in both the decision and the objective spaces, and we

can converge on a developer’s preferred solution faster.

For this purpose, we compute the weighted probability of refactoring operations (RWP )

and target classes of the source code (CWP ) as follow:

RWPp =

∑
si∈cj γij × (|rp ∈ si|)∑

rm∈Ref

∑
si∈cj γij × (|rm ∈ si|)

(4.2)

CWPq =

∑
si∈cj γij × (|clq ∈ si|)∑

clm∈Cls

∑
si∈cj γij × (|clm ∈ si|)

(4.3)

where j is the index of selected cluster, si is the solution vector, γij is the membership

weight of solution i to the cluster j, r is refactoring action, Ref is the set of all refactor-

ing operations, and Cls is the set of all classes in the source code. For every interaction,

we compute the probabilities RWP and CWP again without considering previous values

because the preferences are already considered when generating the new solutions and we

are interested in knowing the developer’s feedback about the new solutions thus the new

clusters.

4.3.5 Integrating Developer’s Feedback

If the user decides to continue the search process, then the generation and selection of the

solutions in the next iteration of the multi-objective search is based on (1) the probability

formulas of both refactorings and their locations extracted from the preferred decision and

objective clusters which are used in the selection step and change operators; and (2) the initial

population of the next iteration of the search algorithm which is seeded from the solutions

of the preferred cluster. These are the two key factors to integrate user’s preferences. More
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details about the different components of multi-objective optimization are described in the

following:

• Preference-based initial population: The solutions from preferred clusters will make

up the initial population of next iteration as a means of customized search starting

point. In this way, we initiate the search from the region of interest rather than

randomly. New solutions need to be generated to fill and achieve the pre-defined

population size. Instead of random creation of the refactoring operations (refactoring

action and target class) based on a unify probability distribution, we utilize RWP and

CWP as a probability distribution. In other words, we copy the solutions from the

preferred cluster of the previous round and we randomly create new solutions using

the probability distributions to reach the expected population size.

• Preference-based mutation: We use a bit flip mutation with mutation probability fixed

to 0.4. For every solution that is selected to be mutated, instead of randomly se-

lecting refactoring operations and controlling parameters from equally probabilities

distribution, we considered preferred refactoring operations which have higher RWP

and CWP . The refactorings with higher RWP are the first candidates to be consid-

ered for replacing selected refactorings by the mutation operator and the locations with

higher CWP are selected for the controlling parameters to be changed for the selected

refactorings.

• Preference-based selection: the selection operator tends to filter the population and

assign higher chance to the more valuable ones based on their fitness values. In order

to consider the user preferences in this process, we adjusted this operator to include

closeness to the reference solution as an added measure of being a valuable individual

of the population. That means the chance of selection is related to both fitness values
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and distance to the region of interest as:

Chance(si) ∝
1

dist(si, CRj)
, F itness(si) (4.4)

where dist() indicates Euclidean distance and CRj is the representative solution of

cluster j. The representative solution is the centroid of the preferred cluster. All the of

the six used fitness functions are aggregated in Fitness(si) by calculating the average.

The selection operator is computed on the final region of interest of the developer

which includes the results of both decision and objective space clusterings. Since the

two clustering algorithms are hierarchical, the cluster j is the user’s preferred decision

space cluster.

The above-mentioned customized operators aid to keep the stochastic nature of the opti-

mization process and at the same time take the user preferred refactoring and target code

locations (classes) into account.

Our proposed approach will help the developer to understand the diversity of the refac-

toring solutions when visualizing the clusters thus it will help the user to locate her/his

region of interest in both the objective and decision spaces. The goal of the interactions and

clustering is to gradually reduce the number of refactoring solutions to be explored by the

users based on their preferences. If the developer is still interested to apply more refactor-

ings after selecting the final solution, the tool can be re-executed on the new system after

refactoring to find other potential solutions.

4.4 Evaluation

4.4.1 Research Questions

We defined three main research questions to measure the correctness, relevance, and ben-

efits of our decision and objective space interactive clustering-based refactoring (DOIMR)
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tool comparing to existing approaches that are based on interactive clustering-based refac-

toring only in the objectives space (Alizadeh et al.) [2], interactive multi-objective search

(Mkaouer et al.) [3, 1], fully automated multi-objective search (Ouni et al.) [4] and fully

automated deterministic tool not based on heuristic search (JDeodorant) [125]. A tool demo

of our tool and supplementary appendix materials (questionnaire, setup of the experiments,

statistical analyses, and detailed results) can be found in our study’s website 1.

The research questions are as follows:

• RQ1: Does our approach make more relevant recommendations for developers, as

compared to existing refactoring techniques?

• RQ2: Does our approach significantly reduce the number of relevant refactoring rec-

ommendations and the user interaction effort, as compared to existing interactive refac-

toring approaches?

• RQ3: Qualitative Analysis. To what extent the user preferences, interaction and

identified region of interest are similar?

4.4.2 Experimental Setup

We considered a total of seven systems, summarized in Table 4.4, to address the above

research questions. We selected these seven systems because they are of reasonable size,

have been actively developed over the past 10 years, and have been extensively analyzed by

the other tools considered in this work. UTest2 is a project of our industrial partner used

for identifying, reporting, and fixing bugs. We selected that system for our experiments

since five developers of that system agreed to participate in the experiments, and they are

very knowledgeable about refactoring—they are part of the maintenance team. Table 4.4

1A demo and supplementary appendix materials can be found at the following link: https://sites.google.
com/view/tse2020decision

2SEMA Inc.
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Table 4.4: Statistics of the studied systems.

System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.10.2 241 48
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117
JFreeChart v1.0.9 521 170

provides information about the size of the subject systems (in terms of number of classes

and KLOC).

To answer RQ1, we asked a group of 35 participants to manually evaluate the relevance of

the refactoring solutions that they selected using four other tools. The first tool of Alizadeh

et al. is an approach based on only objective clustering of the Pareto front [2], using the

interactive multi-objective search. The second tool is an interactive multi-objective refac-

toring approach proposed by Mkaouer et al. et al. [3, 1], but the interactions were limited

to the refactorings (accept/reject) and there is no clustering of the Pareto front or learning

mechanisms from the interaction data. Thus, the comparison with these tools will help us to

evaluate our main contribution that is built on the top of existing multi-objective refactor-

ing algorithms: the combined use of decision and objective space exploration for interactive

refactoring. We have also compared our DOIMR approach to two fully-automated refactor-

ing tools: Ouni et al. [4] and JDeodorant [125]. Ouni et al. [4] proposed a multi-objective

refactoring formulation based on NSGA-II that generates a solution to maximize the design

coherence and refactoring reuse from previous releases. JDeodorant [125] is an Eclipse plu-

gin to detect bad smells and apply refactorings. As JDeodorant supports a lower number of

refactoring types with respect to the ones considered by our tool, we restrict our comparison

with it to those refactorings. We used these two tools to evaluate the relative benefits of our

interactive features in helping developers identifying relevant refactorings.

We preferred not to use measures such as antipatterns or internal quality indicators as
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proxies for estimating the relevance of refactorings since the developers’ manual evaluation

already includes a review of the impact of suggested changes on the quality. Furthermore,

not all the refactorings that improve quality attributes are relevant to the developers, which

is one of the main motivations of this work. The only rigorous way to evaluate the rele-

vance of our tool is the manual evaluation of the results by active developers. This manual

evaluation score, MC, consists of the number of relevant refactorings identified by the devel-

opers over the total number of refactorings in the selected solution. Due to the subjective

nature of refactoring and the large size of considered systems, it is almost impossible to

estimate the recall. There is no unique solution to refactor a code/design; thus, it is chal-

lenging to construct a gold-standard for large-systems, which makes calculating the recall

very challenging.

Participants were first asked to fill out a pre-study questionnaire containing six questions.

The questionnaire helped to collect background information such as their role within the

company, their programming experience, and their familiarity with software refactoring. The

list of questions of all the questionnaires and the obtained results can be found in the online

appendix. Although the vast majority of participants were already familiar with refactoring

as part of their jobs and graduate studies, all the participants attended a two-hour lecture

on refactoring by the organizers of the experiments. The details of the selected participants

can be found in Table 4.5, including their programming experience in years, familiarity

with refactoring, etc. These participants were recruited based on our networks and previous

collaborations with 4 industrial partners. They all had a minimum of 6 years experience post-

graduation and were working as active programmers with strong backgrounds in refactoring,

Java, and software quality metrics.

Each participant was asked to assess the meaningfulness of the refactorings recommended

after using the five tools on distinct 5 systems (one tool per system), to avoid a training

threat to validity. In this case, none of the participants get more familiar with a specific

system or a tool during the validation. We have also randomized the order of evaluated tools
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between the participants to ensure a fair comparison. The participants not only evaluated

the suggested refactorings but were asked to configure, run, and interact with the tools on

the different systems. The only exceptions were related to the five participants from the

industrial partner, where they agreed to evaluate only their industrial software. We assigned

tasks to the participants according to the studied systems, the techniques to be tested and

developers’ experience. Each of the five tools has been evaluated 5 times on each of the

seven systems. Thus, the total number of manual evaluations is 175 among all the 7 projects

and 5 tools. Our aim is to find a trade-off between the statistical power and reducing the

training and fatigue threats. Thus, we asked each participant to evaluate 5 distinct tools on

5 different projects to avoid that their performances will be impacted by the training effect

of the system or/and refactoring tool.

To answer RQ2, we measured the time (T ) that developers spent to identify the best

refactoring strategies based on their preferences and the number of refactorings (NR). Fur-

thermore, we evaluated the number of interactions (NI ) required on the Pareto front for all

interactive refactoring approaches. This evaluation will help to understand if we efficiently

reduced the interaction effort. For this research question, we decided to limit the comparison

to only the interactive multi-objective work of Mkaouer et al. [3, 1] and Alizadeh et al. [2]

since they are the only ones offering interaction with the users, and it will help us understand

the real impact of the decision space exploration (not supported by existing studies) on the

refactoring recommendations and interaction effort. However, for the execution time, we

compared our tool with non-interactive approaches as well.

TO answer RQ3, our experiments involved the 35 participants where each of the 7 projects

is evaluated using the 5 tools however only two of these tools can generate regions of interests

(clusters). Thus, we evaluated if the participants selected the same regions of interests on

the 7 projects using the two clustering-based interactive tools. We considered two regions of

interests are similar/overlapping if the coordinates of their centroid is almost same by calcu-

lating the euclidean distance. We have also evaluated the frequency of common refactorings
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Table 4.5: Selected Participants.

System #Subjects Prog. Exp. Avg. (Years)
[Avg-Min-Max]

Refactoring Exp.

ArgoUML 5 [7.5 - 6 - 8.5] Very High
JHotDraw 5 [8 - 6.5 - 9] Very High
Azureus 5 [9.5 - 7.5 - 11.5] High
GanttProject 5 [7 - 6 - 8.5] High
UTest 5 [15.5 - 13 - 19.5] Very High
Apache Ant 5 [9 - 6 - 12.5] Very High
JFreeChart 5 [7 - 6 - 9.5] Very High

among the selected final solutions by the users to identify any common patterns.

4.4.3 Parameter Setting

It is well known that many parameters compose computational search and machine learn-

ing algorithms. Parameter setting is one of the longest standing grand challenges of the

field. We have used one of the most efficient and popular approaches for parameter setting

of evolutionary algorithms, which is Design of Experiments (DoE). Each parameter has been

uniformly discretized in some intervals. Values from each interval have been tested for our

application. Finally, we pick the best values for all parameters. Hence, a reasonable set of

parameter’s values have been experimented. This process is done for each of the studied

algorithms while the interactive module is disabled.

The stopping criterion was set to 100,000 evaluations for all optimization and search

algorithms to ensure fairness of comparison (without counting the number of interactions

since it is part of the users’ decision to reach the best solution based on their preferences).

The parameters of the multi-objective algorithm are as follows: Single point crossover

probability = 0.7; Bit flip mutation probability = 0.4, where the probability of gene modi-

fication is 0.5 and stopping criterion was set to 100,000 evaluations. We also set the initial

population size to 100 and utilized Binary selection operator. The minimum and maximum

length of solution vectors are limited to 10 and 30, respectively.

Furthermore, we used the maximum number of iterations = 1000 and convergence thresh-
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old = 0.0001 for the GMM clustering phase. We calculated these parameters using the same

DoE approach in a way to make sure that log likelihood function is converged for all studied

systems. For instance we picked the minimum number of iterations that guarantees the

convergence of clustering algorithm for all systems.

4.4.4 Results

Results for RQ1. Figure 4.6 summarizes the manual validation results of our DOIMR

approach compared to the state of the art, as evaluated by the participants. It is clear

from the results that interactive approaches generated much more relevant refactorings, as

compared with the automated tools of Ouni et al. and JDeodorant. Among the interactive

approaches, DOIMR outperformed the other interactive approaches of Mkaouer et al. and

Alizadeh et al. which supports the idea that information that the developer used from the

decision space, such the code locations where refactorings were applied and the refactor-

ings frequency, was helpful. On average, for all of our seven studied projects, 91% of the

proposed refactoring operations were considered to be useful by the subjects. The remain-

ing approaches have an average of 83%, 71%, 67%, and 56% respectively for Alizadeh et

al. (interactive with objective space clustering), Mkaouer et al. (interactive multi-objective

approach), Ouni et al. (fully automated multi-objective approach) and JDeodorant (deter-

ministic non-search-based approach). The highest MC score is 100% for the Azureus and

Gantt projects, and the lowest score is 91% for the industrial system UTest. This lowest score

can be explained by the fact that the participants are very knowledgeable about the evalu-

ated system. The participants were not guided on how to interact with the systems, and they

mainly looked at the source code to understand the impact of recommended refactorings.

We found that automated refactorings generate a lot of false positives. Both the Ouni

et al. and JDeodorant tools recommended a large number of refactorings compared to the

interactive tools, and many of them are not interesting for the context of the developers, and

so the developers reject these refactorings, even though they may be correct. For instance,

93



the developers of the industrial partner rejected several recommendations from these auto-

mated tools simply because they were related to stable code or code fragments outside of

their interests. The majority of them will not change code out of their ownership as well.

Furthermore, they were not interested to blindly change anything in the code just to improve

quality attributes. Compared to the remaining interactive approaches, we found that some

of the refactoring solutions of DOIMR will never be proposed by Mkaouer et al. or Alizadeh

et al. since they are selected because of their extensive refactoring on specific code fragments

that developers may found essential to improve their quality based on the features included

in these classes. In fact, one of the main challenges of multi-objective search is the noise

introduced by sacrificing some objectives and trying to diversify the solutions. Thus, the de-

cision space exploration can help the developers know the most diverse refactoring solutions

among one preferred cluster in the objective space. Thus, developers did not waste time on

evaluating refactoring solutions that are similar but related to entirely different code files.

To better investigate the comparison of our approach to the closest work of Alizadeh

et al. based only on the objectives space exploration, we qualitatively evaluated the role

of the decision space exploration to increase the relevance of refactoring recommendations.

Based on the participants feedback during the post study interviews, 26 of the interviewees

highlighted that the final step of the decision space exploration helped them to understand

differences between the refactoring solutions targeting their goals such as improving specific

quality attributes. It was not practical for them to check all the solutions of the preferred

objective space cluster. Thus, the decision space highlighted the solutions that are truly

different (modifying different code locations) but still achieving the same levels of quality

improvements. For instance, some developers preferred solutions that modified a minimum

number of code locations but still reached the same level of quality improvements. Others

preferred solutions that modified the files that they owned. Still other developers found the

refactorings addressing diverse code locations, including long refactorings sequences, are best

since they want to make major changes independently of the cost. And other developers
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Figure 4.6: Median manual evaluations, MC, on the 7 systems.

selected solutions that can be associated with recent pull-requests or those under review.

Thus, the main advantage of the decision space clustering is to help the users understand,

with low effort, which refactoring strategy may help them achieve their goal based on their

context. For most cases, it was sufficient to look at the center of the clusters to understand

the differences between solutions that can target the same objectives.

To conclude, our DOIMR approach outperformed the four other refactoring approaches

in terms of recommending relevant refactoring solutions for developers (RQ1).

Results for RQ2. Figures 4.7, 4.8, and 4.9 give an overview of the number of refactorings

for the selected solution, number of required interactions, and the time, in minutes, using

our tool, the interactive clustering approach of Alizadeh et al., and the interactive multi-

objective approach of Mkaouer et al. However, for the execution time, we compared our tool

with non-interactive approaches as well. Based on the results of Figure 4.7, it is transparent

that our approach significantly reduced the number of recommended refactorings compared
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Figure 4.7: The median number of recommended refactorings, NR, of the selected solution on the 7 systems.

to the other interactive approaches while increasing the manual correctness as described in

RQ1. The highest number of refactorings was observed on the industrial system with 32

refactorings using DOIMR, 48 using Alizadeh et al. and 72 refactorings using Mkaouer et

al. This result may be explained by the size and the quality of this system along with the

fact that it was evaluated by some of the original developers of UTest. The lower number of

recommended refactorings using DOIMR, compared to the other interactive approaches, is

related to the elimination of the noise in multi-objective search not only in terms of objectives

but the relevant code locations to be refactored (decision space). It is normal to see fewer

refactorings when the search space is reduced to a smaller number of files, which was the

case of DOIMR.

Figure 4.8 shows that DOIMR required far fewer developer interactions than the other

interactive approaches. For instance, only 13 interactions were required to modify, reject

and select refactorings on Azureus using our approach, while 23 and 38 interactions respec-

tively were needed for Alizadeh et al. and Mkaouer et al. The reduction of the number of
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interactions is mainly due to the smaller number of solutions to explore, after the selection

of a preferred cluster in both the objective and decision spaces.

The participants also spent less time to find the most relevant refactorings on the various

systems compared to the other interactive and non-interactive approaches, as described in

Figure 4.9. The execution time of our approach includes the execution of the multi-objective

search, both clusterings, and the different phases of interaction until the developer is satisfied

with a specific solution. The execution time of Alizadeh et al. included all the steps of multi-

objective search, the objective space clustering, and the interactions while Mkaouer et al.

included the multi-objective search and the user interactions. Thus, it is natural that the

main differences in the execution time can be observed in the interaction effort. The average

time of our approach is reduced by over 40 minutes (70%) compared to Mkaouer et al. for

the case of JHotDraw. The reduction of the execution time is mainly explained by the rapid

exploration of fewer solutions after looking mainly to the most diverse (different) solutions

in the decision space of the preferred cluster in the objective space. In fact, our DOIMR

tool has more components (clustering at both objective and decision spaces) than Alizadeh

et al. and Mkaouer et al. but the clustering at both spaces significantly reduced the most

time-consuming step (user interactions) since the clusterings, and multi-objective search

algorithms are quick and executed in few minutes (between 2 and 4 minutes). The execution

time is mainly affected by the developer’s interaction effort. The developer’s interaction effort

is not only affected by the number of recommended refactorings, but it is also affected by

the solutions that they need to explore and check manually. The decision space clustering of

the preferred cluster from the objective space dramatically reduced the number of solutions

to check which resulted in fewer interactions. For instance, a user can easily avoid checking

many solutions within the same decision space cluster (modifying similar elements) that have

similar impacts on the objectives. We note that the execution times included the interaction

with the user.

Results for RQ3. Our experiments involved 35 participants where each of the 7 projects
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Figure 4.8: The median number of required interactions (accept/reject/modify/selection), NI, on the 7
systems.

Figure 4.9: The median execution time, T, in minutes on the 7 systems.

98



is evaluated using the 5 tools however only two of these tools can generate regions of interests

(clusters). Thus, we evaluated if the participants selected the same regions of interests on the

7 projects using the two clustering-based interactive tools as shown in Figure 4.10. Note that

the minimum number of iterations is 2 for JHotdraw and the maximum is 9 for ArgoUML

using our approach where feedback/interactions with the user are recorded. In each of these

iterations, the user interacted with the proposed solutions to reject/modify/accept/reorder

refactorings. The regions of interests can be only compared in the two tools for the objective

space since only our approach generates clusters in the decision space. The overlap measure

is calculated based on the number of common clusters that are selected by the participants

divided by the total number of selected clusters by the participants. In fact, the overlap

measure is the number of the clusters that are selected by multiple users similarity between

the clusters for each participant and thus to understand the differences in the developers’

preferences. We applied this measure separately on both the decision and objective spaces.

The results show that an average of 61% of the selected regions of interests are the same

which confirms that the decision space clustering helped developers to select their preferred

solution since better refactoring solutions were observed using our approach even when the

selected region of interest is the same in the objective space. Another interesting observation

is that almost half of the selected region of interest in the objective space are different which

means that developers may have different preferences when refactoring systems as explained

in the previous comments. We have also checked if multiple participants select the same

region of interest in the decision space by looking only at the results of our approach on

the 7 projects (5 selected solutions per project using our tool by the participants since each

of the 35 participants evaluated 5 distinct tools on 5 different projects). It is interesting

to note that the overlap average in the regions of interests at the decision space is higher

than the objective space with an average of 71% which can be explained by the fact that

the diversity of solutions within a preferred cluster in the objective space is less than the

diversity of solutions in the objective space.
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Figure 4.10: region of interest at the objective and decision space levels.

Since the execution of the two clustering algorithms is hierarchical, the final results are

actually the combination of two clustering steps. We recorded in our tool all the interactions

with the user and we found that all participants used both the objective and decision space

clusters before selecting a final solution. In the post-study feedback, participants empha-

sized that both the decision and objective space interactions helped them to find a relevant

solution. The common pattern was to establish their goals from refactoring the code and

then they used the decision space to find a solution that matched their context (e.g. code

reviews, root-canal refactoring, etc.).

To further investigate the preferences of the participants, Figure 4.11 summarizes the

distribution of the refactoring types among the final selected refactoring solutions by the

participants. It is clear that the preferred solutions mainly included Extract Class (22%),

Move Method (19%) and Extract Method (17%). In fact, the impact of these refactoring

types can be positive on many quality attributes such as extendability, reusability, etc.

Since the above results based on the medians are maybe more useful to compare the differ-

ent interactive approaches, we present and discuss in the following the results per participant
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Figure 4.11: Refactoring types distribution among the solutions selected by the user
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Figure 4.12: Distribution of the number of refactorings in the selected solutions for the 35 participants.

for the number of refactorings in the selected solution, number of required interactions and

time spent to find a relevant solution. The box plots of Figure 4.12 shows that the size of

the refactoring solutions selected by the participants tend to be similar for our approach

(between 25 and 35 refactorings) on the different projects. However, the deviation is high

for the approach of Mkaouer et al. but they tend to be larger than the clustering-based

approaches which shows the value of using the clusters to better understand the preferences

and guide the search towards relevant refactorings. The same observations apply for the time

spent by developers and the number of interactions as described in Figures 4.13 and 4.14.

In fact, a higher number of interactions will lead to higher time spent by the participants to

find relevant refactoring solutions. While the time spent by the participants for using the

tool of Mkaouer et al. is diverse, all of them spent more time than our approach for all the

projects and participants.

Although the results show the outperformance of interactive approaches compared to

102



Figure 4.13: Distribution of the time spent to find a relevant solution for the 35 participants.

Figure 4.14: Distribution of the number of required interactions for the 35 participants.
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automated ones based on different metrics, there are also some limitations related to the use

of interactive approaches such as the fatigue despite that our approach significantly reduced

the number of iterations with the decision space clustering. It is possible that users can be

confused and provide inconsistent feedback which can negatively impact the behavior of the

search in the next iterations. The visualization support is also critical to enable relevant

feedback from developers to understand the impacts of the recommended refactorings. An-

other limitation of the interactivity is the difficulty to backtrack some interaction decisions

provided to the search algorithm. Finally, the total execution time of interactive approaches

is higher than automated ones as described in Figure 4.9.

Statistical Analysis Since meta-heuristic algorithms are stochastic optimizers, they can

provide different results for the same problem instance from one run to another. We utilized

statistical analysis to perform a comparison between several metaheuristic approaches in

this study and to determine the reliability of the results obtained. The following statistical

tests show that all the comparisons performed between our approach and existing ones are

statistically significant based on all the metrics considered in our experiments.

We used one-way ANOVA statistical test with a 95% confidence level (α = 5% to find out

whether our sample results of different approached are different significantly. Since one-way

ANOVA is an omnibus test, a statistically significant result determines whether three or more

group means differ in some undisclosed way in the population. One-way ANOVA is conducted

for the results obtained from various studied metaheuristic algorithm (independent variable

- groups) to investigate and compare each performance metric (dependent variable) on each

subject system (software project). We test the null hypothesis (H0) that population means

of each metric is equal for all methods (µmetric
M1 = µmetric

M2 = µmetric
M3 = µmetric

M4 where metric ∈

{T,NI,NR,MC} against the alternative (H1) that they are not all equal and at least one

method population mean is different.

There are some assumptions for one-way ANOVA test which we assessed before applying

the test on the data:
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Normal Distribution: Some of the dependent variables were not normally distributed for

each method, as assessed by Shapiro-Wilk’s test. However, the one-way ANOVA is fairly

robust to deviation from normality. Since the sample size is more than 15 and the sample

sizes are equal for all groups (balanced), non-normality is not an issue and does not affect

Type I error.

Homogeneity of variances: The one-way ANOVA assumes that the population variances

of the dependent variables are equal for all groups of the independent variable. If the

variances are unequal, this can affect the Type I error rate. There was homogeneity of

variances, as assessed by Levene’s test for equality of variances (p > 0.05).

We have also checked the assumption of IID data within each group. In fact, the resid-

uals from the model are approximately normal since the values are approximately similar.

Intuitively, data values are IID if they are not related to each other and if they have the

same probability distribution. Thus, the assumption of IID data is verified.

The results of one-way ANOVA tests indicates that The group means were statistically

significantly different (p < .0005) and, therefore, we can reject the null hypothesis and accept

the alternative hypothesis which says there is difference in population means between at least

two groups.

The obtained value of F-statistics for each metric are as follows: FT = 99.18, FNI =

327.41, FNR = 40.96, and FMC = 102.84. In one-way ANOVA, the F-statistic is the ratio of

variation between sample means over variation within the samples. The larger value of F-

statistics represents the group means are further apart from each other and are significantly

different. Also, it shows that the observation within each group are close to the group mean

with a low variance within samples. Therefore, a large F-value is required to reject the null

hypothesis that the group means are equal. Our obtained F-statistics results are correspond

to very small p-values.

Since one-way ANOVA does not indicate the difference size, we also calculated the

“Vargha-Delaney A” measure [206]. This measure clarifies the effect size (strength of as-
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Table 4.6: Vargha-Delaney A measure for different metrics between our method(M1) and others.
Label of the methods: M1 DOIMR (Our approach), M2=Alizadeh et al. [2], M3=Mkaouer et al. [3, 1],
M4=Ouni et al. [4]

T NI NR MC
Comparison M1-M2 M1-M3 M1-M2 M1-M3 M1-M2 M1-M3 M1-M2 M1-M3 M1-M4

ArgoUML 0.94 0.89 0.91 0.86 0.93 0.87 0.91 0.86 0.86
JHotDraw 0.88 0.9 0.84 0.89 0.88 0.91 0.88 0.89 0.88

GanttProject 0.91 0.92 0.87 0.82 0.91 0.94 0.85 0.92 0.86
UTest 0.93 0.84 0.83 0.9 0.93 0.88 0.94 0.84 0.9

Apache Ant 0.89 0.88 0.88 0.81 0.86 0.82 0.9 0.86 0.83
Azureus 0.93 0.82 0.9 0.86 0.83 0.93 0.83 0.91 0.81

JFreeChart 0.83 0.91 0.92 0.83 0.86 0.86 0.92 0.94 0.92

sociation) and it estimates the degree of association between the independent factor and

dependent variable for the sample. the A measure is a value between 0 and 1. When it is

exactly 0.5, then the two methods achieve equal performance. When A is less than 0.5, the

first method is worse, and when A is more than 0.5, the second method is worse. The closer

to 0.5, the smaller the difference between the techniques, and the farther from 0.5, the larger

the difference.

Table 4.6 shows the ”Vargha-Delaney A” results for different metrics between our method

and others on each subject system. Since Ouni et al. (M4) is a fully automated multi-

objective search without the interactive component, it is only considered for MC metrics.

Table 4.6 shows that our approach is better than all the other algorithms with an A effect

size that is at least higher than 0.81 for all the 7 systems and the 4 considered metrics (T,

NI, NR, MC). For instance, considering the execution time T, we find that our approach

(M1) has an A effect size that is higher than 0.91 for ArgoUML,GanttProject, Azureus and

UTest; and an A effect size higher than 0.83 for JHotDraw, JFreeChart and Apache Ant.

This confirms our findings in RQ2 that the clustering at both spaces significantly reduced

the execution time. Same observations apply to reduction of the number of recommended

refactorings (NR) and number of interactions (NI). Overall, the high A effect size values for

all the metrics and the 7 systems show that the DOIMR outperforms the state of the art

refactoring techniques and the outperformance is significant.
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4.5 Threats to Validity

Conclusion validity. The parameter tuning used in our experiments creates an internal

threat that we need to evaluate in our future work. We have used one of the most efficient

and popular approaches for parameter setting of evolutionary algorithms, which is Design

of Experiments (DoE). Each parameter has been uniformly discretized in some intervals.

Values from each interval have been tested for our application. Finally, we chose the best

values for all parameters. Hence, a reasonable set of parameter values have been studied.

Another conclusion threat is the number of interactions with the developers since we did not

force them to use the same maximum number of interactions which may sometimes explain

the out-performance of our approach. Moreover, the developers interacted with the different

tools using their offered original graphical interfaces (UIs) which may represent another

threat. In fact, developers may perform better with a given tool because it has a better

user friendly graphical interface to understand the impact of the refactorings. However, the

participants were given the same amount of time to use the tool (limited to three hours).

Internal validity. The variation of correctness and speed between the different groups

when using our approach and other tools can be an internal threat since the participants

have different levels of experience. To counteract this, we assigned the developers to different

groups according to their programming experience to reduce the gap between the groups,

and we also adopted a counter-balanced design. Regarding the selected participants, we took

precautions to ensure that our participants represented a diverse set of software developers

with experience in refactoring, and also that the groups formed had similar average skill sets

in terms of refactoring area. To mitigate the training threat, we ensured that the participants

(1) did not evaluate the same tool more than one time (even on different projects), (2) did

not evaluate the same project more than one time, and (3) we used a random order between

the participants for the sequence of tools to be evaluated on different systems. To mitigate

the fatigue threat, we allowed participants to perform the experiments in multiple sessions

(at least one tool per session).
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Construct validity. The developers involved in our experiments may have had divergent

opinions about the relevance of the recommended refactorings, which may impact our results.

However, some of the participants are the original programmers of the industrial system,

which may reduce the impact of this threat. Unlike fixing bugs, refactoring is a subjective

process, and there is no unique refactor solution; thus, it is difficult to construct a gold-

standard for large systems which makes calculating recall challenging. Does the deviation

from an expected refactoring solution mean that the recommendation is wrong or simply

another way to refactor the code?

External validity. The first threat is the limited number of participants and evaluated

systems, which threatens the generalizability of our results. Besides, our study was limited to

the use of specific refactoring types and quality attributes. Furthermore, we mainly evaluated

our approach using classical algorithms such as NSGA-II, but other existing metaheuristics

can be used. Future replications of this study are necessary to confirm our findings.

4.6 Conclusion

In this research work, we presented a novel way to enable interactive refactoring by com-

bining the exploration of quality improvements (objective space) and refactoring locations

(decision space). Our approach helped developers to quickly explore the Pareto front of

refactoring solutions that can be generated using multi-objective search. The clustering

of the decision space helped the developers identify the most diverse refactoring solutions

among ones located within the same cluster in the objective space, improving some desired

quality attributes. To evaluate the effectiveness of our tool, we conducted an evaluation with

human subjects who evaluated the tool and compared it with the state-of-the-art refactoring

techniques. Our evaluation results provide evidence that the insights from both the decision

and objective spaces helped developers to quickly express their preferences and converge

towards relevant refactorings that met the developers’ expectations.

In our future work, we are planning to automatically learn from user interactions for fast
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convergence to good refactoring solutions. Besides we plan to expand our experiments with

more systems and participants.
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CHAPTER V

Refactoring Recommendation via Commit Messages Analysis

5.1 Introduction

Software restructuring or refactoring [48] is critical to improve software quality and de-

veloper’s productivity, but it can be complex, expensive, and risky. As projects evolve,

developers in a rush to deliver new features frequently postpone necessary refactorings until

a crisis occurs [207]. By that time it often results in degraded performance, an inability to

support new features, or even a failed system and significant losses [208, 209, 210]. Thus,

several studies have been proposed to (semi-) automate the recommendation of refactor-

ings to help developers improving the quality of their systems in a more timely fashion

[211, 212, 28, 42, 37, 32, 213, 35, 214, 36].

While code-level refactoring is widely studied and well supported by tools [215, 216, 214,

1, 217], it remains a human activity which is hard to fully automate and requires developer

insights. Such insights are important because developers understand their problem domain

intuitively and may have a clear target end-state in mind for their system. A majority of

existing tools and approaches rely on the use of quality metrics such as coupling, cohesion,

and the QMOOD quality attributes [40] to first identify refactoring opportunities, and then

to recommend refactorings to fix them. Many of the quality issues detected using structural

metrics are known as code smells or antipatterns [41]. However, recent studies have shown

that developers are not primarily interested in fixing antipatterns when they are performing
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refactoring [42].

In a recent survey of Alizadeh et al. [1, 2] with several software companies, 84% of

interviewees confirmed that most of the automated refactoring tools recommend hundreds

of code-level quality issues and refactorings, but these tools fail to adequately explain how

these refactorings are relevant to a developer who is combining refactorings with other tasks

such as fixing bugs and enhancing features. This observation is consistent with other stud-

ies [187, 218, ?] showing that refactorings rarely happen in isolation. Without a rigorous

understanding of the rationale for refactoring, recommendation tools may continue to suffer

from a high false-positive rate and limited relevance to developers [219, 220, 221]. How-

ever, if a refactoring rationale can be automatically identified, this can guide refactoring

recommendations to be more relevant and less ad hoc. Recent empirical studies show that

while developers document their refactoring intention, they may miss relevant refactorings

aligned with their rationale [219, ?]. One of the main reasons is that manual refactoring is

a tedious and time-consuming task which also explains the tendency of the developers to

perform the minimum possible number of refactorings [1, 222]. Thus, it is critical to provide

developers a semi-automated refactorings support that can understand their rationale and

translate it into actionable refactorings recommendation. In this research work, we start

from the observation that a majority of inconsistencies between documented and applied

refactorings were due to poor refactoring decisions taken manually by developers [219, ?].

Therefore, we think that there is a need for linking documentation to refactoring recommen-

dations as well as a need for an automated system that can not only check the consistency

of the developer-created descriptions of refactoring but also recommend further refactoring

to meet their rationale. However, none of the existing studies have used this knowledge to

guide the process of refactoring recommendation. Thus, we propose a novel approach, called

RefCom, to capitalize on this previously unused resource.

Our ultimate goal is to recommend a set of refactoring solutions that enhance the im-

provements described in the commit messages or provide developers better ways to refactor
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their code based on the rationale found in the commits. RefCom identifies potential incon-

sistencies between developer intentions and actual applied refactorings and recommends an

additional set of refactorings that better meet developer intentions and expectations. In fact,

this contribution validated the first hypothesis that commit messages document refactorings

applied by developers including their intention by answering the following research question:

RQ1: To what extent are refactorings documented in commit messages?

The second hypothesis validated in this contribution is the inconsistencies (or incomplete

refactorings) between documented and applied refactorings in terms of expected impact/in-

tention via answering the following research question:

RQ2: To what extent do developers accurately document their refactoring and its rationale?

These observed inconsistencies/gaps (RQ2) along with the fact that refactoring documen-

tation is available at the commit level (RQ1) are the main motivations to refine existing

refactoring recommendation tools. Thus, we selected our previous multi-objective refactor-

ing recommendation tool [4] as a case study for this purpose while answering our following

third research question:

RQ3: To what extent can our approach recommend relevant refactorings based on commit

analysis compared to existing refactoring techniques?

However, it is possible to expand the outcomes of RQ1 and RQ2 to build better refactoring

recommendation tools in general. To summarize, our contributions are not limited to recom-

mending refactorings solutions using a straightforward multi-objective technique. We believe

that RQ1 and RQ2 can advance the knowledge within the refactoring community. For the

first two contributions RefCom uses Natural Language Processings (NLPs) and static and

dynamic analysis to detect developers’ intentions, the actual refactorings and the quality

attributes improvement. For the third contribution, we used a multi-objective algorithm

to recommend refactoring solutions to enhance the applied refactorings (after extracting

developer’s intention) or fix the detected inconsistencies.
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We validated our approach on six open source projects containing a large number of

commits. Our validation shows that RefCom outperforms both the actual refactorings ap-

plied by developers in their commits and existing refactoring tools based on antipatterns and

static and dynamic analysis [4, 125]. Thus, the use of the knowledge extracted from commit

messages is critical to better understand developer preferences.

The primary contributions of this research work can be summarized as follows:

1. This work introduces, for the first time, an approach,

RefCom, based on commit messages to recommend refactorings. Thus, the recom-

mendations are based on understanding the developers’ intention to refactor the code

from the commit messages rather than fixing antipatterns and improving the majority

of quality metrics.

2. The proposed technique can either: (a) enhance some of the previously refactored

files in the commits by providing better alternatives after extracting the refactoring

rationale; or (b) recommend refactorings to address the quality issues mentioned in the

commit messages when we did not find an actual improvement when checked the files

before and after the commit.

3. The presented work reports the results of an empirical study on the implementation of

our approach. The obtained manual evaluation results provide evidence to support the

claim that our proposed approach is more efficient, on average, than existing refactoring

techniques based on a benchmark of 6 open source systems in terms of the relevance

of recommended refactorings especially for the case of incremental refactorings.

5.2 Motivation

The primary motivation for our work emerged from our interactions, as part of an NSF

I-Corps project, with 127 professional developers at 38 medium and large-size companies
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including eBay, Amazon, Google, IBM, and others. The main goal of that study was to

identify the challenges associated with current refactoring tools. These are discussed next.

Understanding the refactoring rationale is a key for relevant recommenda-

tions. Developers lack knowledge of why they should apply the refactorings recommended

by existing tools and are frequently overwhelmed by hundreds of automatically generated

antipatterns to fix and quality attributes to improve without any indication of their impact

on their current context [223, 224, 4, 217]. While existing refactoring approaches are mainly

based on static and dynamic analyses to find refactoring opportunities [125, 225], develop-

ers may not have the time and motivation to fix every quality issue. For instance, several

developers we interviewed [1, 2, 226] mentioned that they are reluctant to apply refactorings

on files that they do not ”own” or that are not related to their current tasks. Without

understanding and detecting developer intentions when they choose to refactor their code,

refactoring recommendation techniques will continue to be underutilized [227].

Developers describe and document refactoring opportunities in commit mes-

sages. While several empirical studies [228, 229] have shown that over 62% of code reviews

discuss maintainability issues to be addressed by refactoring, and only 23% are focused on

bug-fixing, most existing work still relies primarily on static and dynamic analyses to identify

refactoring opportunities and to explain the need for them. During our survey of industrial

partners (for three projects) we found that an average of 38% of quality issues discussed in

code reviews and commit messages could not be detected using existing traditional static

and dynamic analysis tools for code smell detection. As described in Figures 2.2, 2.3 and 2.4,

the developer documented their refactoring rationale in terms of improving the coupling that

was detected both in the metrics change and the detected refactorings in that commit. Thus,

a recommendation refactoring tool can use this information of both the quality attribute to

improve and the improved code location (files) to find more refactorings that may fit with

the current intention of the developer. But none of the existing studies have used commit

message analysis to detect refactoring opportunities or to infer recommendations.
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Figure 5.1: Approach Overview: RefCom.

Developers may not manually find the best refactoring strategy meeting their

needs. Developers need documentation to comprehend refactoring and understand quality

changes for code reviews, and to assess technical debt. We found that 46% of the commits in

JHotDraw, Xerces, and three projects of one of our industrial partners, eBay, were related to

refactoring, as detected using RefactoringMiner [230]. However, 39% of the documentation

of their pull-request descriptions or commit messages was inconsistent with the actual quality

changes observed in the systems after refactoring. We found that a majority of the incon-

sistencies in these projects was attributable to poor refactoring decisions taken manually by

developers rather than to wrong documentation. Thus we need to link documentation with

refactoring recommendations and we need an automated system that can check the consis-

tency of the developer-created descriptions of refactorings and which can also recommend

further refactorings for quality changes.

5.3 Approach: RefCom: Commit-Based Refactoring Recommendations

Figure 5.1 gives an overview of our RefCom approach consisting of three main compo-

nents: the extraction of refactoring-related commits, the identification of refactoring ratio-

115



Algorithm 4 Commit-based multi-objective refactoring

1: Input: Sys : system to evaluate, Pt: parent population, Files : detected files from the
commits analysis, Quality Attributes : detected quality attributes to improve from the
commits analysis

2: Output: Pt+1

3: Begin
4: /* Test if any user interaction occurred in the previous iteration */
5: St ← ∅, i← 1;
6: Qt ← V ariation(Pt);
7: Rt ← Pt ∪Qt;
8: Pt ← evaluate(Pt, Ct, Sys);
9: (F1, F2, ...)← NonDominatedSort(Rt);

10: repeat
11: St ← St ∪ Fi;
12: i← i+ 1
13: until (|St| ≥ N)
14: Fl ← Fi; //Last front to be included
15: if |St| = N then
16: Pt+1 ← St;
17: else
18: Pt+1 ← ∪l−1

j=1Fj;
19: /*Number of points to be chosen from Fl*/
20: K ← N − |Pt+1|;
21: /*Crowding distance of points in Fl */
22: Crowding −Distance− Assignment(Fl);
23: Quick − Sort(Fl);
24: /*Choose K solutions with largest distance*/
25: Pt+1 ← Pt+1 ∪ Select(Fl, k);
26: end if
27: if CommitsAnalysis← TRUE then
28: /* Select and rank the best front */
29: Filter − Solution(F1, F iles,QualityAttributes);
30: Recommend− Solution(Commit)
31: end if
32: End

nale from commits (where and why developers applied refactorings) and the recommendation

of refactorings based on the extracted rationale from the commits to address the identified

quality issues and meet the developer’s intention. We describe, in the following, these three

main components.
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Table 5.1: An example of a solution: sequence of refactorings recommended by RefCom

Operation Source/entity Target entity
Move Method ctrl.booking.BookingController::handleLodgingViewEvent (java.awt.event.ActionEvent):void ctrl.booking.LodgingModel
Extract Class ctrl.booking.SelectionModel:: -flightList+ addFlight():void+clearFlight():void ctrl.booking.FlightList
Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel

5.3.1 Refactoring Related Commit Extraction

The refactoring related commits are the union of the results of the RefactoringMiner

detection, keywords extraction and QMOOD improvement evaluation. We decided to unify

the data from these sources for the following reasons: (1) RefactoringMiner can help to

identify the applied refactorings even if they did not improve quality metrics or they were

not documented, (2) the keywords extraction can help to detect commits related to refac-

torings even there were no refactorings detected by RefactoringMiner or no observed quality

improvements (inconsistencies detection), and (3) the QMOOD improvements can help not

only in identifying commits related to refactoring even if they were not documented in the

commits but also in understanding the impact of the applied refactorings. Additionally, we

determined that the combination of the keywords, quality changes, and RefactoringMiner

is sufficient to filter the commits since we have also manually inspected some of them as

well. In fact, we selected the commits that are identified by only one of the three strategies

(RefactoringMinder, QMOOD improvements or keywords). We considered commits that are

confirmed by at least two out of these three strategies as having already a very high prob-

ability to be related to refactorings. Thus, we inspected manually all the commits that are

only detected with exclusively one of the three strategies. The total number of commits in

that category are around 23% (319 commits).

RefactoringMiner can detect non-documented refactorings in the commit messages, and

the use of the keywords is useful to identify the claims and intentions of developers which may

not be translated into actual refactorings. The automated check of quality changes can also

help to identify refactoring-related commits and check if the developers actually addressed the

quality issues described in the commit messages. To summarize, the documented refactorings

are in general the ones that are described in the commit messages and eventually could be
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detected using the keywords. Furthermore, we are able to detect the refactorings related

commits using both RefactoringMinder and the QMOOD improvements. In fact, these

refactorings related commits may not be described in the commits message but they are

detected because they contained identified refactorings or they improved the quality.

5.3.2 Identifying Refactoring Rationale from Commits

Identifying refactoring rationale has two parts. The first part is the detection of the files

that are refactored by developers in a commit. The second part is the identification of changes

in the QMOOD quality attributes then comparing these changes with the information in the

commit message.

For the first part, we used the GitHub API to identify the changed files in each commit.

In the second part, we compared the QMOOD quality attribute values before and after the

commit to capture the actual quality changes for each file. Once the changed files and quality

attributes were identified, we checked if the developers intended to actually improve these

files and quality attributes. In fact, we preprocessed the commit messages and we used the

names of code elements in the changed files and the changed quality metrics as keywords to

match with words in the commit message. Once the refactoring rationale is automatically

detected using this procedure, we continue with the next step to find better refactoring

recommendations that can fully meet the developer’s intentions and expectations. In case

that no quality changes were identified at all then a warning will be generated to developers

that the manually applied refactorings are not addressing the quality issues described in his

commit message.

5.3.3 Refactoring Recommendations

After the identification of the refactoring rationale from the history of commits as de-

scribed in the previous step, we adopted an existing multi-objective algorithm for refactoring

[4] to search for relevant refactoring solutions improving both the detected files and changed
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quality attributes. A refactoring solution, as shown in Table 5.1, consists of a sequence

of n refactoring operations involving one or multiple source code elements of the system

to refactor. For every refactoring, pre- and post-conditions are specified to ensure the fea-

sibility of the operation [9]. We selected multi-objective algorithm adaptation due to the

conflicting quality attributes that are considered in this study. In fact, our adaptation of

multi-objective algorithm takes as objectives the 6 QMOOD quality attributes. Furthermore,

multi-objective search has the advantage of generating a diverse set of solutions, thus we can

filter the recommendations automatically based on the preferred files and quality attributes

of the developer (extracted from the commits as described in the previous step) without the

need to run the refactoring recommendation algorithm multiple times. For instance, if the

refactoring rationale extracted from commits focused on improving both understandability

and reusability in specific Class A and Class B, we execute our multi-objective algorithm

using all the 6 quality attributes then we filter the Pareto front based on the two main cri-

teria that are contained in the extracted refactoring rationale. First, we make sure that the

selected solution is the one that provides the highest improvement in the quality attributes

extracted from the commits during our analysis step (e.g. understandability and reusability).

Second, the optimal solution should also refactor the detected changed files in the commits

(e.g. Class A, Class B.

For more details about the multi-objective refactoring algorithm, the reader can refer to

[4].

The adopted multi-objective refactoring tool is based on the non-dominated sorting ge-

netic algorithm (NSGA-II) [231] to find a trade-off between the six QMOOD quality at-

tributes. A multi-objective optimization problem can be formulated as follow :

minimize
x

F (x) = (f1(x), f2(x), ..., fM(x))

subject to x ∈ S

S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0}

(5.1)
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where S is the set of inequality and equality constraints and the functions fi are objective

or fitness functions. In multi-objective optimization, the quality of a solution is recognized

by dominance. The set of feasible solutions that are not dominated by any other solution is

called Pareto-optimal or Non-dominated solution set.

NSGA-II is a multi-objective evolutionary algorithm operating on a population of can-

didate solutions which are evolved toward the Pareto-optimal solution set. As described in

Algorithm 4, the first iteration of the process begins with the complete execution of NSGA-II

adapted to our refactoring recommendation problem based on the fitness functions repre-

senting each of the quality attributes. In the beginning, a random population of encoded

refactoring solutions, P0, is generated as the initial parent population. Then, the children

population, Q0, is created from the initial population using crossover and mutation. Parent

and children populations are combined to form R0. Finally, a subset of solutions is se-

lected from R0 based on the crowding distance and domination rules. This selection is based

on elitism which means keeping the best solutions from the parent and child population.

Elitism does not allow an already discovered non-dominated solution to be removed. After

the identification of the non-dominated refactoring solutions, we apply a filter on them con-

sisting of the detected changed files from the commit(s) and the desired quality attributes,

also extracted from the commit(s). These identified refactorings are assigned to each of the

commits that have been modified by the developers.

5.3.4 Running Example

To demonstrate a practical example of our proposed approach, we analyzed a real-world

software repository on GitHub. For this purpose, we executed our tool on a repository called

”Inception D”. This project provides a semantic annotation platform offering intelligent

annotation assistance and knowledge management. It is a large project including over 5000

commits.

As a first step of our approach, we analyzed and filtered the commits of the mentioned
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repository and we extracted the refactoring-related commits. Figure 5.2 represents the com-

mit where the developer(s) documented the changes as ” Refactor PredictionTask.java for

increased reusability”. It is clear from the developer’s documentation that his intention was

to improve the reusability of that class. This information helped in identifying the refactor-

ing rationale. Our refactoring recommendation component takes as an input the modified

classes which is, in this commit, ”PredictionTask.java” and ”Reusability” as a quality at-

tribute to improve. Figure 5.4 shows the list of refactorings that were recommended by our

tool to enhance/extend the developer’s list of applied refactoring as shown in Figure 5.3.

Three out of the four recommended refactoring solutions contained the specific modified

file as a parameter. To show the usefulness and the impact of our recommended solutions,

RefCom generates charts for comparaison between the before developer’s changes, the after

developer’s changes and the after RefCom refactorings values of each QMOOD quality at-

tributes. Figure 5.5 highlights that RefCom clearly provided much better alternatives than

the actual manual refactorings applied by the developer. For instance, the reusability at-

tribute was significantly improved—almost 15 times more than the improvement introduced

by the developer’s changes.

5.4 Evaluation

5.4.1 Research Questions

To validate our proposed approach, we defined the following three research questions:

• RQ1. To what extent are refactorings documented in commit messages?

• RQ2. To what extent do developers accurately document their refactoring and its

rationale?

• RQ3. To what extent can our approach recommend relevant refactorings based on

commit analysis compared to existing refactoring techniques?
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Figure 5.2: The analyzed commit message from ”Inception D”
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Figure 5.3: The manual refactoring applied by the developer in the commit

Figure 5.4: The List of refactorings recommended by RefCom
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Figure 5.5: QMOOD quality before and after the commits comparing the manual refactorings and RefCom

While the first research question will validate our first hypothesis about developers doc-

ument their refactoring rationale in commit messages, the second research question will vali-

date the second hypothesis that developers spend the minimum of manual refactorings effort

to fix the identified quality issues, thus there are inconsistencies (or incomplete refactorings)

between documented and applied refactorings in terms of expected impact/intention. The

third question will evaluate the relevance of the recommended refactorings after integrating

the two above insights into our refactoring tool to make actionable recommendations. A

demo of our refactoring tool, Refcom, can be found in [232].

5.4.2 Experimental Setting

To address the research questions, we analyzed the six open source systems in Table

5.2. Atomix is a fault-tolerant distributed coordination framework. Btm is a distributed

and complete implementation of the JTA 1.1 API. Jgrapht is a graph library that pro-

vides mathematical graph-theory objects and algorithms. JSAT is a set of algorithms for

pre-processing, classification, regression, and clustering with support for multi-threaded ex-

ecution. Pac4j is a security engine. Tablesaw includes a data-frame, an embedded column

store, and hundreds of methods to transform, summarize, or filter data. We selected these

projects because of their size, number of commits, and applied refactorings.
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Table 5.2: Summary of the evaluated systems.

N Project Name LOC Number of Classes Total Commits Refactoring related commits Total number of refactorings

1 atomix 182280 1459 4237 343 12909
2 btm 34232 187 975 150 522
3 jgrapht 158665 526 2902 204 2202
4 JSAT 182267 436 1561 236 1457
5 pac4j 31916 302 2282 127 3130
6 tablesaw 52837 224 1930 327 3143

To answer RQ1, we computed the ratio of the number of refactoring related commits

to the total number of commits. Then, we counted the number of documented refactorings

among these identified refactoring related commits. Documented refactorings are the commit

messages that contain documentation about refactoring. These documented refactorings are

detected using keywords. However, refactoring related commits are the commits found after

the union of the results of RefactoringMiner [230] detection, keywords extraction (same list of

keywords previously mentioned) and the observed quality attribute changes between commits

detected using our dedicated parser. A commit can be considered as a “refactoring related

commit” , while it does not contain refactoring documentation (in the commit message)

because it may contain either refactorings detected by RefactoringMiner or included quality

improvements (when comparing before/after refactoring). In addition to evaluate the number

of refactoring related commits and documented refactorings, we have also evaluated the main

quality attributes that are documented in refactoring related commits to understand the

most important ones that developers document. The detection of the documented quality

attributes is carried out by searching for quality attributes names and their roots in the

commit messages. Finally, we investigated the number of commits that introduce significant

changes in the quality attributes, but which developers did not document.

To answer RQ2, we checked all the quality attributes by analyzing the code, and not

only the ones claimed/documented by developers in their commits. There are two main

reasons for checking all the quality attributes improvement. First, it helped identifying the

refactoring related commits that contain documented quality attributes but there were no

actual observed improvement of the quality attributes before and after the commit. Second,

checking all the quality attributes improvement helps detecting the commit that does not
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claim a quality attribute but still is related to refactoring. In fact, we have used Refactoring-

Miner [230] and our tool for code analysis to detect the situations where quality attributes

changes and applied refactorings were not documented. These are opportunities for refac-

toring solutions that better address these quality attributes.

To answer RQ3, we used the outcomes of the two prior research questions to identify

developer refactoring rationale per commit: what files did they want to refactor? And

what quality attributes did they want to improve? Then, we used that rationale to guide

and filter the refactoring recommendations generated using our approach based on multi-

objective search. We compared the automated refactorings using RefCom to the manual

refactorings applied by the developers in the commits in terms of quality improvements.

Then, we compared the recommended refactorings to two existing studies [125, 4] using a

relevance measure. The relevance of the refactorings is defined as the number of refactoring

recommendations accepted by developers participating in our experiments divided by the

total number of recommended refactorings.

We asked 24 developers to evaluate the meaningfulness of the refactorings recommended

by Refcom and by the approach of Ouni et al. [4] and JDeodorant [125] for pull-requests

on the six subject systems. We followed a random order of the three tools when the results

were manually inspected. All the experimental techniques generate sequences of refactoring

operations that make sense when considered together rather than when looking at them in

isolation. However, it is not an option to ask a developer to assess the meaningfulness of

all the refactoring operations generated for a given system. For this reason, we started by

filtering for each system the sequences of refactoring operations impacting the files of a set of

pull-requests to make a fair comparison between both tools. Then, the developers manually

evaluated the outcomes of both tools for the commits of each pull-request.

Each participant was then asked to assess the meaningfulness of the sequences of refac-

toring operations. We made sure that each participant only evaluated refactoring sequences

recommended by the three competitive techniques on one system. The rationale for such
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a choice is that an external developer would need time to acquire system knowledge by in-

specting its code, and we did not want participants to have to comprehend the code from

multiple systems since this would introduce a training effect in our study.

To support such a complex experimental design, we built a Java Web-app that automat-

ically assigns the refactored pull-requests to be evaluated to the developers. The Web-app

showed each participant one sequence of refactoring operations on a single page, providing

the developer with (i) the list of refactorings (e.g. move method mi to class Cj, then push

down field fk to subclass Cj, etc. ), (ii) the code of the classes impacted by the sequence

of refactorings, and (iii) the complete code of the system subject of the refactoring with

the generated refactoring sequence. The web page showing the refactoring sequence asked

participants the question Would you apply the proposed refactorings? with a choice between

no (i.e., the refactoring sequence is not meaningful), or yes (i.e., the refactoring sequence is

meaningful and should be implemented). Moreover, participants were optionally allowed to

leave a comment justifying their assessment. The Web-app was also in charge of:

Balancing the evaluations per system. We made sure that each system received roughly

the same number of participants evaluating the different refactored pull-requests/commits

(files associated/modified by these pull-requests) by the three approaches.

Keeping track of the time spent by participants in the evaluation of each refactoring

sequence/pull-request. The time spent by participants was counted in seconds since the

moment the Web-app showed the refactoring on the screen to the moment in which the

participant submitted their assessment. This feature was done to remove participants from

our data set who did not spend a reasonable amount of time in evaluating the refactorings.

We consider less than 90 seconds a reasonable threshold to remove noise (i.e., we removed all

evaluation sessions in which the participant spent less than 90 seconds in analyzing a single

refactoring sequence).

Collecting demographic information about the participants. We asked their programming

experience (in years) overall and in Java, and a self-assessment of their refactoring experience
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(from very low to very high). All of the participants were hired based on our current and

previous extensive industry collaborations on refactoring. Despite that we contacted open

source developers, we did not receive from them a timely response or did not answer at

all which is a common challenge and threat in human studies within software engineering

research [233]. We made sure that all the selected participants from industry are experienced

in refactoring and used before these open source systems/libraries.

Table 5.3: Participants involved to answer RQ3.

System #Partic. Avg. Prog. Avg. Java Avg. Refact.
Experience Experience Exp.(1-5)

atomix 4 9 9 4.0 (high)
btm 4 8 7 3.5 (medium)
jgrapht 4 10 9 3.8 (medium)
JSAT 4 9 7 3.5 (high)
pac4j 4 7.5 7 4.5 (very high)
tablesaw 4 9 9 3.5 (high)

Table 5.3 shows the participants involved in our study and how they were distributed in

the evaluation of the refactoring sequences generated for the six systems.

5.4.3 Results

Results for RQ1. Since our work is based on the assumption that developers write

commit messages to document some of the applied refactorings, we identified first the com-

mits related to refactorings then we checked those that documented the applied refactorings

in the commit messages.

Table 5.4 summarizes our findings. It is clear that all the six open source projects have

extensive refactorings applied in previous commits: an average of over 30% of all commits.

The Atomix system has the highest number of commits related to refactoring. We found

that 211 commit messages documented the applied refactorings, which is more than 60%

of commits containing refactorings. The same observation can be applied to the remaining

systems. While developers extensively apply refactorings, they may not document all of

them. Still there are enough commits including refactoring documentation to identify further
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opportunities for refactoring.

Table 5.4: An overview of the documented commits related to refactoring on the six open source systems.

Project Total number of commits
Commits related
to refactoring

Docuented commits related
to refactoring

Commits identified
with RefacotoringMiner

Commits identified
with Quality Improvements

atomix 4237 343 211 233 174
btm 975 150 52 55 46
jgraphft 2902 204 107 87 40
jsat 1561 236 113 58 65
pac4j 2282 127 84 65 33
tablesaw 1930 327 159 116 63

We also investigated the main quality attributes of QMOOD that were documented

by developers in the commit messages when refactorings were applied to improve those

attributes. As described in Figure 5.6, we found understandability to be the most common

quality documented by developers in commit messages. In 4 of the 6 open source systems it is

the most common quality attribute documented by developers. For instance, the developers

mentioned the rationale of understandability in messages in 53% of the commits improving

the Atomix system. Reusability is the second most documented rationale, on average, in the

six systems. It is also normal that developers document the rationale of the refactorings in

combination with the features that were modified (functionality).

To conclude, we found that developers do document refactorings and they extensively

apply refactorings over the commits of all six open source systems. Our results show that

developers mention quality attributes as a rationale for their refactorings in over 50% of

commits related to refactoring that are documented, which is enough to find opportunities

for enhanced refactorings.

Results for RQ2. Figure 5.7 shows that developers are documenting their intention to

refactor the code to address quality issues in the commit messages; however we did not find

any quality improvements when we analyzed the quality changes in the files of these commits.

For the Btm system, we found that only 32 out of 149 commits related to refactoring have

actual quality changes. Only 60 out 236 commits related to refactorings have actual quality

changes despite developers commenting on applying refactorings in their commit messages.

It is clear that developers highlight their intention to refactor the code with its ratio-
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Figure 5.6: The percentage of documented quality attributes per system among the commits improving
the quality attributes.

Figure 5.7: Missed documented refactoring opportunities in the 6 systems.
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nale; however no actual quality improvements have been observed in many commits. This

conclusion is one of the main motivations for RQ3.

Results for RQ3. After validating the two hypotheses of the previous research ques-

tions, we implemented our Refcom tool for improving the QMOOD quality attributes by

integrating a filter to guide the refactoring recommendations based on rationale identified in

the previous research questions (what quality attributes and which files do developers want

to improve?). Figure 5.6 shows that developers documented refactorings with the intention

of improving all the 6 quality attributes but with different levels of frequency. For instance,

it is clear that developers focused on improving both understandability and reusability in

project atomix. Thus, we executed our multi-objective algorithm using all the 6 quality at-

tributes then we filter the Pareto front based on the two main criteria that are contained in

the extracted refactoring rationale. First, we make sure that the selected solution is the one

that provides the highest improvement in the quality attributes extracted from the commits

during our analysis step (e.g. understandability and reusability in project atomix). Second,

the optimal solution should also refactor the detected changed files in the commits. We

compared our results with two existing refactoring tools. Ouni et al. [4] proposed a multi-

objective refactoring formulation based on NSGA-II that generates a solution to maximize

the design coherence and refactoring reuse from previous releases. JDeodorant [125] is an

Eclipse plugin to detect bad smells and apply refactorings.

Figure 5.8 highlights the out-performance of RefCom compared to the tools of Ouni et

al. [4] and JDeodorant [125]. In fact, most refactorings recommended by our approach are

relevant, and all of them were successfully applied for the case Atomix system on the expected

files and achieved high-quality improvements, based on the feedback from the participants.

By looking at the comments left by participants when justifying their assessments, thir-

teen out of the twenty four developers highlighted in their comments about the refactoring

sequences that they found the refactorings relevant because they are completing the effort

started by the submitter of the developer as described in the commit messages. For example,
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Figure 5.8: The relevance of the recommended refactorings by RefCom compared to existing refactoring
approaches.

one of the developers wrote in a comment: “I found these refactorings really improving the

reusability of this class which is the main intention of the developer but he just applied couple

of move methods. I found the tool recommendation even better to improve the reusability.”.

We found this comment as important qualitative evidence of only the value of RefCom in

terms of analyzing the recently closed pull-requests to identify changed files and fix the

identified quality issues in these files.

Thus RefCom provided relevant refactoring recommendations based on the commit anal-

ysis, outperforming existing approaches to recommend refactorings.

5.5 Threats to Validity

We discuss in this section the different threats related to our experiments.

The threats to internal validity can be related to the list of keywords that we used to

identify the commits where developers documented refactorings. However, the impact of
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this threat was limited by considering the use of RefactoringMiner to identify the actual

refactorings applied by developers. The parameters tuning of the optimization algorithm

used in our experiments may create an internal threat that needs to be evaluated in future

work since the parameter values used in our experiments were found by trial and error.

Construct validity is concerned with the relationship between theory and what is ob-

served. We have used the QMOOD quality attributes to capture the quality changes between

commits. While the QMOOD model is already empirically validated by existing studies [154],

it is possible that some quality changes may not be detected using QMOOD.

External validity refers to the generalizability of our findings. We performed our ex-

periments on 6 open-source systems belonging to different domains. However, we cannot

assert that our results can be generalized to other applications and other developers. More-

over, we found that only 32 out of 149 commits related to refactoring have actual quality

changes which limits the generalizability of our findings and requires more experiments. An-

other threat could be the number of subjects (24 developers) used for validation. Future

replications of this study are necessary to confirm our findings.

5.6 Conclusion

We presented a first attempt to recommend refactorings by analyzing commit messages.

The salient feature of the proposed RefCom approach is its ability to capture developers

need, from their commit messages, and propose to them refactorings to enhance their changes

to better address quality issues. To evaluate the effectiveness of our technique, we applied

it to six open-source projects and compared it with state-of-the-art approaches that rely on

static and dynamic analysis. Our results show promising evidence on the usefulness of the

proposed commit-based refactoring approach.

Future work will involve validating our technique with additional refactoring types, pro-

gramming languages and a more extensive set of projects and commits to investigate the

general applicability of the proposed methodology. We will also check the relevance of inte-
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grating commit messages in finding and recommending refactoring opportunities then fixing

them based on different refactoring recommendations tools beyond our previous work.
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CHAPTER VI

Refactoring Documentation Bot

6.1 Introduction

Documentation is a recommended practice in software development and maintenance to

help developers understand the code quickly and improve their productivity[43]. According

to a study [44], the lack of up-to-date documentation is one of the biggest challenges in

software maintenance. In fact, developers often ignore the documentation of their changes

due to the time pressure to meet deadlines. The situation is even worse with the documenta-

tion of quality improvements since developers only/mainly focus on documenting functional

changes and bugs fixing [45, 46, 47].

Refactoring [234] is used to improve the quality of code while preserving its behavior.

Tom Mens et al. [50] defined the different steps of refactoring including the detection, pri-

oritization, recommendation, testing and documentation. While existing refactoring studies

extensively addressed the first four steps [235, 236, 217], the last documentation step received

the least attention from the refactoring community and there are no tools support currently

for refactorings documentation.

Github is a well-known collaborative platform used by the development community to

manage their software projects as part of a continuous integration process. In this context,

programmers need documentation such as commit messages and pull requests descriptions

to understand the rationales behind changes without digging into the low-level details [237,
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238, 239, 240]. As part of our preliminary work, we found that an average of only 12%

of commit messages described applied refactorings for JHot-Draw, Xerces, and three eBay

projects while 46% of these systems’ commits are mainly about refactorings as detected

using RefactoringMiner [235]. Furthermore, developers often do not explain why they

do the refactorings. Software engineering researchers often use antipatterns as the causes

for the refactorings, but they are not accurately documenting the quality improvements of

their code in terms of quality metrics. Another study highlighted that several refactoring

opportunities or applied refactorings documented in commit messages could not be captured

using traditional quality metrics or antipatterns [219]. One of the reasons is that many

developers lack the background of exact (formal) definitions of antipatterns and quality

metrics so they may use them in different ways than the academic settings. Thus, a tool

support is not only needed for the generation of refactoring documentation but also checking

and fixing the documentation specified by developers to describe their quality improvements.

To the best of our knowledge, the automated documentation of refactorings has not been

explored yet. Therefore, we need semi-automated tool support for checking/validating and

recommending refactorings documentation. This documentation system will enhance the

understandability of introduced quality improvements and the rationale behind that, and

will motivate developers to conduct refactorings. A recent study of Mcburney et al. [43]

shows that documentation needs to be prioritized for refactoring.

In this chapter, we propose a semi-automated bot, implemented as a Git app, to generate

documentation for two different levels of refactorings. The documentation for code-level

refactorings and architectural refactorings will be provided in one message that, if accepted,

will be submitted as a description for the pull-request. When the developer submits a

pull-request, our documentation bot will generate a natural language explanation for each

introduced quality changes and refactoring using a rules-based approach, linking the quality

improvements to the applied refactorings. Even though we are able to automatically generate

explanations for refactorings and quality changes, the developer’s intervention is required
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since they may not find all the generated messages important to integrate into the pull-

request description or they may disagree with some of them. In other words, a developer in

the loop to evaluate the documentation is necessary to make sure that what we described

is actually what he/she intended to change in that specific pull request. In our interactive

documentation framework, the users can accept, reject or modify the suggested message. An

accepted documentation will be automatically submitted as a description to the pull-request.

Since refactoring do not happen in isolation most of the time, the bot is documenting the

impact of a sequence of refactorings, in a pull-request, on quality and not each refactoring

in isolation. Programmers frequently floss refactor, that is, they interleave refactoring with

other types of programming activity. Thus, the documented refactorings and quality changes

are actually appended to other descriptions related to functional changes.

We conducted a human survey with 14 active developers to manually evaluate the rele-

vance and the correctness of our tool on different pull requests of 5 open source projects. The

results show that the participants found that our bot facilitates the documentation of their

quality-related changes and refactorings. A tool demo of our refactoring documentation bot

can be found in [241].

The primary contributions of this research work can be summarized as follows:

1. The presented work introduces, for the first time, a documentation bot for refactorings

implemented as a Git app that can be easily integrated to any GitHub repository.

The bot generates in natural language a pull-request description documenting the

applied refactorings, their rationale and explanations on their impact on quality. It can

also detect inconsistencies in the commit messages or pull-request description already

documented by the developer then suggests how to fix them.

2. The developer can interact with the bot to accept/modify/reject the recommended

refactorings documentation after checking the explanation provided by the bot in a

Web app linked to GitHub.
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3. The pressented work reports the results of an empirical study on the implementation

of our approach. The obtained manual evaluation results by practitioners provide

evidence to support the claim that our bot generates relevant and consistent documen-

tation for refactorings.

6.2 Problem Statement & Motivations

During our extensive interactions with software developers from industry, we observed

that a lot of their projects had little to no refactoring documentation. Developers confirmed

that they consider documentation very important but the limited time and budget prevented

them from adequately document their work especially related to the quality improvements.

They confirmed in one of the surveys with industry, as part of an NSF project, that docu-

menting their changes takes time since they have to write what refactorings they applied,

their locations and what they intended to improve in their code quality. They also claimed

that it is not always straightforward to specify the quality attributes to improve since several

programmers in the organization may use different jargon to describe quality improvements.

Developers need documentation to comprehend refactoring, but they may not use tra-

ditional academic words to explain the refactorings such as antipatterns, code smells, and

even their perception of quality metrics is different from the academic one [43]. As part of

our survey and analysis with the industrial partners, we found that an average of only 12%

of commit messages described applied refactorings for JHotDraw, Xerces, and three indus-

trial projects while 38% of these systems’ commits are mainly about refactorings as detected

using RefactoringMiner [235]. Software engineering researchers often use antipatterns

as the causes for the refactorings, but in our preliminary work, we found that only 0.13% of

the commit messages from 1,984 popular projects in GitHub contain any antipattern. For

example, abstraction inversion, a design antipattern of not exposing a functionality required

by users, does not occur once in all the commit messages. This observation indicates that

developers do not know about the terms of antipatterns, such as abstraction inversion, or
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they do not make connections between refactorings and antipatterns. Therefore, we need

to understand the developers’ intention when they are performing refactorings from commit

messages without assuming that they have the background knowledge of antipatterns.

We used the 59 software engineering antipattern terms defined in Wikipedia 1. Then,

we searched these antipattern terms in all the commit messages from 1,984 popular projects

(including C and Java) in GitHub. Only 0.13% of the 8.4 million commit messages mention

any antipattern term. This shows that developers do not use antipattern terms in software

documents, which indicates that developers may not understand antipattern terms. Further-

more, we searched these antipattern terms in three large-scale projects’ pull requests, Redis,

React-native, and Git. In all the 9,172 closed pull requests, we found only 14 “hard code”,

four “call super”, two “magic numbers”, one “circular dependency”, and one “spaghetti

code.” Missing antipattern terms in commit messages does not mean that developers do not

explain refactoring opportunities.

The two main challenges associated with the current refactoring documentation can be

presented as follows:

• Poorly written pull request documentation: Figure 6.2 shows that in the pull

request captured in Figure 6.1, 4 out of 6 QMOOD quality attributes were improved.

Despite the different changes in the quality attributes, the developer did not accu-

rately document his changes in a well-written and comprehensive way that shows how

importantly his changes impacted the quality.

• Documenting functional changes rather than quality changes: Programmers,

when working in teams, try to accurately document their pull request to facilitate

the collaboration. Despite the effort to write good and comprehensive documenta-

tion, developers often document the code changes which are related to the functional

requirements of the software. They often forget to describe and explain the changes

from quality perspective. Non-functional requirements such as the ” quality attributes”

1https://en.wikipedia.org/wiki/Anti-pattern#Software engineering
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Figure 6.1: Pull Request with Poor Documentation

improvement are often neglected by developers in their documentation as described in

Figure 6.3 that shows the significant quality improvements before and after the pull

request.

6.3 Approach: Refactoring Documentation Bot

Figure 6.4 gives an overview of our refactoring documentation bot consisting mainly of

three main components: 1) the analysis of the pull-request changes to identify the changed

files and evaluate the quality changes; 2) the check of the documentation written by the

developer to identify any missing or potential incorrect documentation about the refactorings;

and 3) the rules-based generation of the documentation. To generate commit messages,

there are three types of approaches: (a) rule-based natural language generation systems; (b)

search-based systems that find the most similar commits in the history and use their commit

messages; and (c) deep learning models as natural language generation systems. Rule-based

approaches, such as DeltaDoc [78], ChangeScribe [76, 77], and others [102, 103], extract

the information of a commit’s changes and generate commit messages based on rules. Our

bot is using the third category of documentation generation approaches, for timely response

in terms of execution time, by linking the identified quality changes to specific pre-defined
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Figure 6.2: The quality metrics change in the pull request.

Figure 6.3: PR with only functional changes are documented
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Figure 6.4: Approach Overview: Refactoring Documentation Bot

templates to document them as detailed later. Once the refactorings documentation of the

Pull-Request is generated, the developer can interact with the bot to accept or reject or

modify some of the generated sentences after checking the explanations supporting them in

a Web app.

The documentation-Bot is a Spring Boot application that is implemented as a GitHub

App [242]. The bot can be used by any public and private GitHub Java repository without

restrictions after simply adding it to the repository. Then, the bot will start monitoring

the repository and get notified by any new or opened pull-request then it will execute in a

sequence the three main components as detailed in Figure 6.4.

6.3.1 Pull-Request Changes Analysis

When the documentation-bot gets notified of a new pull request, it clones the repository

on GitHub for local editing of the source code. The bot extracts automatically all commits

messages and modified files of the submitted pull-request. The GitHub API was used to

identify these changed files. In order to assess the quality change, it compares the QMOOD
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quality attributes value at the file level before and after the pull request using our own parser.

We have also used RefactoringMiner [235] to find out which refactorings have been applied

in that Pull-Request. We selected RefactoringMiner due its high precision and recall score

of more than 90% as reported in [235].

Table 6.1: List of used keywords related to refactoring

Abstraction Access Aggregate Anti Pattern Antipattern Architecture

Change design Cleanup Code beauty Code cleansing Code cleanup Code cosmetics

Code improvements Code optimization Code reformatting reordering Code revision Code smells

Cohesion Compatibility Complexity Composition Cosmetic changes Coupling

Dead code Decompose Decoupling Deprecated code Design Design Pattern

Design metric Designed code Divide Duplicate Easy Effectiveness

Encapsulation Enhance Extend Extendibility Extract Fix a design flaw

Fix code smell Fix issue Fix module structure Fix quality Fix technical debt Flexibility

Functionality Getting code out of Hierarchies Improve Inheritance Inline

Less code Long method Maintenance Make easier Messaging Metrics

Modular Modularize Moved code out of Multi module Nicer code Move

Performance Polishing code Polymorphism Poor coding Pull down Push

Pull up Quality Redesign Redundant Refactor Reformat

Rename Remove dependency Reorganize Replace Restructure Reusability

Reuse Rework Rewrite Robustness Scalability Separate

Simplify Split Stability Structural changes Structure Understandability

Understanding Unneeded Unnecessary code Unused Useless Visibility

6.3.2 Checking the Current Documentation of the Developer

After the identification of the changed files, the important QMOOD quality changes and

the refactorings from the history of commits in the pull request as described in the previ-

ous step, the refactoring documentation-bot checks whether refactorings and their quality

change have been documented by developers. In order to perform this verification step, we

manually defined a large set of keywords that may cover most of the words used by devel-

opers to document quality attributes. Then, we manually classified those keywords into the

6 QMOOD categories (extendibility, reusability, flexibility, understandability, functionality,

extendibility, effectiveness). The full list of used keywords can be found in Table 6.1. These

keywords have been already defined in the literature based on different surveys including

Microsoft developers [243].
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The combination of keywords and the detected refactorings along with the name of the

modified files represent a sufficient set of features that help us checking whether the specific

quality attributes and refactorings detected in the previous step are documented in any

of the commit messages and the developer’s pull request description. This step serves as

both detecting inconsistencies in the refactoring documentation manually provided by the

developer and detecting missing refactoring and quality documentation. A recent empirical

study shows that developers may introduce inconsistent documentation of refactorings and

quality changes [219]. The bot can check, for instance, if reusability was really improved as

claimed by the developer in the commit message or the pull-request description.

6.3.3 Generation of the Refactoring Documentation and Interaction with De-

velopers

The previous two steps are important towards the generation and correction of the refac-

toring and quality documentation. The bot will not only be limited to generating or fixing

the documentation but also 1) providing a support of the recommended documentation based

on the identified refactoring and quality attributes change; and 2) enabling developers inter-

action to accept or reject or modify the documentation as shown in Figure 6.10. To make

the interaction easy, we are providing low-level interactions at the file level by linking the

generated documentation to the changed file(s).

The generated refactoring documentation will follow a specific set of rules template as

described in Figure 6.6: Our message will be composed of the location (file name), the refac-

toring applied and the quality attributes that have significantly changed and the developers

missed them in their documentation. In other words, our bot will document what has been

refactored? Why the refactorings were applied? What is the impact of these refactorings on

quality. Then, the developers can interact to introduce more details if needed.

After a round of interactions, the developer may decide to update the current description

and messages on the GitHub repository as shown in Figure 6.7.
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Figure 6.5: Developer’s interaction with the Refactoring Documentation Bot

Figure 6.6: Developer’s Pull Request Description vs. our Bot’s Description

6.4 Validation

To evaluate the ability of our refactoring documentation bot to generate relevant messages

for commits and pull-requests, we conducted a set of experiments based on 5 open source

systems. A demo of the refactoring documentation bot can be found in [241]. In this section,
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Figure 6.7: A generated pull request description submitted on GitHub by our bot

we first present our research questions and validation methodology followed by experimental

setup. Then we describe and discuss the obtained results.

6.4.1 Research Questions

It is important to evaluate, first, the correctness of the generated refactoring documen-

tation. Developers are not interested, in practice, to include all the correct refactorings

documentation especially at the pull-request level. Thus, we evaluated the relevance of the

recommended refactorings documentation to include in commits and pull-request messages

and analyzed the interaction data of the users. We defined two main research questions to

measure the correctness, relevance and benefits of our refactoring documentation bot. The

research questions are as follows:

• RQ1: Correctness and Relevance of the recommended refactoring documen-

tations. To what extent our bot can generate correct and meaningful documentations

based on the feedback from participants?

• RQ2: Insights from practitioners. How do programmers evaluate the usefulness
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of our tool (survey)?

6.4.2 Experimental Setting and Studied Projects

To address the different research questions, we used the 5 open source systems in Table

6.2. We selected these projects because of their size, number of commits, applied refactorings,

etc. To answer RQ1, we asked a group of 14 active programmers to manually evaluate the

correctness and relevance of the messages generated by our bot documenting the quality

improvements and related refactoring. The correctness is defined as the number of correctly

documented commits and pull-requests over the total number of generated messages. Since

not all correct refactoring documentations will be actually applied by developers, we asked

them to also report those they found relevant and actually integrated to expand current

pull-request/commits messages then we calculated the relevance score which is the number

of relevant messages divided by the total number of messages generated by the bot. We

have also collected the interaction data between the developers and the bot in terms of the

number of accepted, modified and rejected messages.

Since not all pull-requests are mainly related to refactorings, we selected the ones that

included at least 5 refactoring operations per pull-request and made significant change in the

average QMOOD quality measure of at least 0.1. The number of pull-requests per project

are described in Table 6.2.

To answer RQ2, we used a questionnaire that collected the opinions of the participants

about their experience in using our bot. It contains mainly questions on the usability of

the documentation bot, the use of QMOOD to document quality changes, the importance

of refactoring documentation, and the need for a refactoring documentation bot.

All the participants are volunteers and familiar with Java development and refactoring.

The experience of these participants on Java programming ranged from 4 to 19 years. We

carefully selected the participants to make sure that they already applied refactorings during

their previous experiences in development.
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Table 6.2: Summary of the evaluated systems.

System Release #Classes #Pull Requests
Gson v2.8.5 206 18

JHotDraw v7.5.1 585 11
GanttProject v1.10.2 241 14
Apache Ant v1.8.2 1191 9
JFreeChart v1.0.9 521 12

Figure 6.8: The average manual correctness score on the different 5 systems as evaluated by the participants.

Participants were first asked to fill out a pre-study questionnaire containing five questions.

The questionnaire helped to collect background information such as their role within the

company, their programming experience, and their familiarity with software refactoring. In

addition, all the participants attended one lecture about refactoring. Each participant was

asked to evaluate all the pull-requests selected for our experiments on the different projects

during a period of one week.

6.4.3 Results

Results for RQ1. Figure 6.8 summarizes our findings regarding the correctness of the

generated pull-request and commit messages on the 5 systems. We found that a considerable
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Figure 6.9: The average manual relevance score on the different five systems
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number of proposed documentation for refactoring, with an average between 94% and 86%

respectively for Gantt and JFreeChart, were already considered correct by the participants.

The manual correctness score was consistent on all the five systems which confirm that the

results are independent from the size of the systems, number of refactorings and quality

changes.

We report as well the results of our empirical evaluation of the relevance (not only cor-

rectness) in Figure 6.9. In fact, developers may not want to document all quality changes

and associated refactorings in the commits and pull request message. As reported in this

figure, the majority of the refactoring documentation solutions recommended by our inter-

active approach were relevant and approved by developers. On average, for all of our five

studied projects,the manual relevance score is 4.3 based on a Likert scale (from 1 to 5).

The highest MC score is 4.6 for both the Gantt and Gson projects and the lowest score is

4 for JFreeChart. Most of the refactorings/quality changes documentation that were not

manually approved by the developers were found to be introducing minor improvements or

they have to be grouped together to make sense.

Considering three other metrics NAR (percentage of accepted messages), NMR (percent-

age of modified messages) and NRR (percentage of rejected messages), we seek to evaluate

the efficiency of our interactive approach to avoid a high interaction effort. We recorded these

metrics using a feature that we implemented in our tool to record all the actions performed

by the developers during the evaluation. Figure 6.10 shows that, on average, more than

the majority of the generated messages were applied by the developers an few of them were

either modified or rejected. For instance, we found on the large Gson open source system

that 15 out of the 18 generated messages were approved by developers and only two were

rejected. Thus, it is clear that our recommendation tool successfully suggested a good set of

messages to document refactorings/quality changes.

Results for RQ2. We asked participants to rate their agreement on a Likert scale from

1 (complete disagreement) to 5 (complete agreement) with the following statements:
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Figure 6.10: The average number of AR (percentage of accepted messages), NMR (percentage of modified
messages) and NRR (percentage of rejected messages) on the different five systems.

1. The interactive refactoring documentation bot is desirable feature for continuous inte-

gration.

2. The documentation of refactorings based on their impact on the QMOOD changes is

effective to explain the rationale.

The post-study questionnaire results show the average agreement of the participants was

4.7 and 4.2 based on a Likert scale for the first and second statements, respectively. This

confirms the usefulness of our refactoring documentation approach for the software devel-

opers considered in our experiments. Most of the participants mention that our interactive

documentation is faster than the tedious manual way to document refactorings since they

admitted the lack of refactoring documentation comparing to functional changes. Thus, the

developers liked the functionality of our tool that helps them to expand the commits and

pull-requests message in an interactive fashion.

The participants also suggested some possible improvements to our refactoring documen-

tation bot. Some participants believe that it will be very helpful to extend the tool by adding

a new feature to select up-front the types of refactoring and quality improvements to be doc-
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Figure 6.11: Distribution of the opinions of the participants about the usability of our refactoring docu-
mentation bot

umented. Another suggested improvement is to expand the tool to generate documentation

for both functional and non-functional changes.

Figure 6.11 shows that over 60% of the participants agreed that the bot was easy to use

especially in the context of continuous integration. The bot did not require any configuration

and it is installed as a Git app in any GitHub repository. When the developers can check his

pull request to add more documentation from the bot before submitting it for peer review.

Over 75% of the participants found that documenting refactorings is important as de-

scribed in Figure 6.12. The majority of them highlighted that it is a missing feature in

existing refactoring tools and it can help reviewers in understanding the code changes that

are related to refactorings and why they were applied. The managers/executives want to

check if their developers care about the quality of their code thus it is easier for them to

check the pull-requests/commits description rather than looking to the code.

6.5 Threats to Validity

We discuss in this section the different threats related to our experiments.

Internal validity. Threats to internal validity can be related to the list of keywords

and their grouping into the QMOOD categories that we used to identify whether the quality

attributes changes and the refactorings were documented by the developers. However, the
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Figure 6.12: Distribution of the opinions of the participants about the importance of our refactoring
documentation bot

impact of this threat was limited by considering the use of RefactoringMiner to identify

the actual refactorings applied by developers. Furthermore, the user interaction may help

mitigating this threat since our goal is not fully automating the documentation generation

process.

Construct validity is concerned with the relationship between theory and what is

observed. We have used the QMOOD quality attributes to capture the quality changes

between commits. While the QMOOD model is already empirically validated by existing

studies [154], it is possible that some of the quality changes may not be detected using

QMOOD. Another threat to construct validity can be related to the diverge opinions of

developers involved in our experiments when evaluating the documentation. Actually, we

received different opinions about the suggested documentation in terms of importance and

relevance which may impact the validity of our results. However, some of the participants

are the original programmers of the evaluated systems which may reduce the impact of this

threat where they are confident about the relevance of the documented quality changes.

External validity refers to the generalizability of our findings. We performed our ex-

periments on 5 open-source systems belonging to different domains and we conducted our

survey with active developers. However, we cannot assert that our results can be generalized

to other applications and other developers. Our bot is mainly now limited to object-oriented

programming languages. However, Java, for instance, is one of the most popular program-
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ming language which is used in a large number of projects. In the future, we will extend

our approach to support other programming languages and paradigms. Future replications

of this study are necessary to confirm our findings.

6.6 Conclusion

We presented a documentation bot to document the developers changes in terms of

quality attributes improvement and refactorings. The bot also enable the interaction with

the developer to adjust the generated documentation. To evaluate the correctness and the

relevance of our bot, we selected developers to evaluate our bot on different pull requests

of 5 open-source projects. The results show clear evidence that our bot helped developers

documenting the quality improvement of the applied refactorings.
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CHAPTER VII

4W+H Model for Refactoring Documentation: A Practitioners’ Perspective

7.1 Introduction

Software refactoring, defined as code restructuring while preserving the behavior [48],

is guided by decisions from developers for various reasons such as improving quality and

preventing bugs [49, 48, 50, 51, 52]. Several empirical studies [53, 54, 55, 56] show that

refactoring is complex and time-consuming, and usually involves a sequence of dependent

code actions to address challenging quality issues [52]. The effective understanding and doc-

umentation of refactorings can play a critical role in reducing and monitoring the technical

debt [57, 58, 59, 60] by different stakeholders including executives, managers, and develop-

ers. In particular, refactoring documentation can help developers, managers, and executives

keep track of applied refactorings, their rationale, and their impact on the system. Refactor-

ings can be well-understood without documentation when they are carried out in isolation.

However, refactoring always happens as a group of dependent refactoring operations and can

even be mixed with functional changes. For instance, fixing major issues such as architecture

hotspots may require a long sequence of refactorings applied in one commit and it is hard to

capture that rationale without explicit documentation. Unlike existing techniques for gener-

ating commit messages to atomic changes based on deep-learning or textual similarities, we

advocate for an empirical foundation that can be used to evaluate the quality of refactoring

documentation and template/standards to generate it.
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The commit messages and the pull-requests descriptions are becoming the most com-

mon ways to document code changes, including refactoring, in modern collaborative coding

platforms, e.g., GitHub [244]. Recent research studies [67, 245, 75] have advocated for the

development of automated recommendation systems to generate commit and pull-request

messages. Thus, several automated techniques for the generation and recommendation of

documentation of diffs and atomic changes (e.g., [66, 74, 75, 67, 76, 77, 78]) have been re-

cently proposed. However, most of the current development workflows/pipelines in industry

are lacking tools/steps to document refactorings and quality changes/technical debt. To the

best of our knowledge, there are no standards to document refactorings or any prior empir-

ical studies about understanding refactoring documentation. The current set of commonly

used tools offer to see and document diff-changes but not dependent atomic changes/diffs.

Only two studies are related to refactoring documentation to (1) check if developers doc-

ument refactorings in commit messages using key-words [100], and (2) generate refactoring

documentation based on a pre-defined template to describe the changes [75]. None of these

existing studies proposed a solid empirical foundation on what information is (or is not)

useful to developers when documenting refactorings based on surveys with practitioners.

We advocate that a critical and fundamental step in providing an efficient support for

developers in documenting refactoring is to discover the specific pieces of information, called

components, that are necessary to include in commit messages to describe introduced refac-

torings. Thus, the main goal of this research work is to discover these components in which

developers decompose the refactoring documentation. We formed our intuition that it could

be decomposed into multiple components, each one addressing different aspects of the refac-

toring, by taking inspiration from recent empirical work with developers on understanding

the rationale of code changes [98] and documenting functional changes [246].

We used three complementary methods in our study. As a first step, we discovered how

developers decompose refactoring documentation by interviewing 14 software developers to

establish a model for refactoring documentation. In a second step, we performed a survey
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to ask an additional 75 developers about their experiences with requiring, finding, and doc-

umenting the different components of our refactoring documentation model. During these

two steps, we answered the following three research questions (RQ):

RQ1. What are the refactoring documentation components in commit messages?

RQ2. How important is refactoring documentation in general, and each of its com-

ponents in particular?

RQ3. What is the developer’s experience with finding and documenting each of these

refactoring’s components?

The third step of commits analysis aims to compare the explicit and implicit preferences

of developers when documenting refactorings, and also evaluate different variations of the

identified documentation model. We asked each of the participants during the interviews

to evaluate the documentation quality of around 100 refactorings-related commit messages

from our data-set using the Likert Scale before starting the discussions or showing our initial

components. Thus, all the 1193 commit-messages were evaluated by the interviewees in

terms of quality with an overlap of 207 random-commit-messages. Each of these 207 commit

message was evaluated by two-participants to calculate the Cohen’s-Kappa statistics for

the agreement between the participants. We have also conducted a manual inspection of

1,193 commit messages extracted from open-source projects to compare the final refactoring

documentation model, obtained after the interviews and the survey, with actual refactoring

documentation extracted from open-source projects. To further study the correlation of the

five components of our final model 4W+H and its variations with the quality of refactoring

commit messages, used two statistical tests of Goodman and Kruskal, and Chi-Square. Thus,

we answered the following research question based on these two above scenarios:

RQ4. Would comparing the experience of developers in requiring, finding, and evalu-

ating the refactorings documentation with samples of actual refactoring commit
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Figure 7.1: Research Design

messages reveal some inconsistencies?

Our findings can enable (1) researchers to automatically improve, assess, and generate

refactoring documentation, (2) educators to teach and emphasize the different important

components of refactoring documentation, and (3) practitioners to use a standard format in

documenting and discussing refactorings. Though we identified a set of essential components

of refactoring documentation, adoption of the components remains context-dependent in

practice. Using our model, software development teams can design their organization-specific

guidelines to include or exclude the proposed components for refactoring documentation.

Replication Package. All material and data used in our study as well as the developers’

anonymized answers are available in our replication package [247].

7.2 Study Design

As described in Figure 7.1, we first used face-to-face unstructured interviews with 14

developers to discover the components of refactoring documentation and thereby, design an

initial model. Before starting the discussions or showing (after the discussion) our initial

components, the interviewees have also conducted an analysis of 1,193 refactoring commit

messages to evaluate their quality. The purpose of this step was to stimulate their memo-

ries/experiences with refactorings-related-commits using these diverse-examples and use the

data to validate our documentation model later. These interviews allowed rich conversa-

tions and insights. Then, we extended the obtained initial documentation model with a
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larger number of 75 practitioners using a survey. Furthermore, the practitioners answered

our questions about their experiences in finding and documenting these different refactoring

components. The use of these mixed methods has been widely employed by several other

studies of software developers [248, 249, 250, 251].

7.2.1 Research Questions

RQ1: What are the components of the refactoring documentation in commit messages

and pull-request descriptions? First, we asked practitioners about the possible components

of refactoring documentation that correspond to the information pieces to form a high-

quality description of refactorings. Our aim is to find a set of components for refactoring

documentation to help developers in improving the quality of their refactoring documentation

in code commits.

RQ2: How important is refactoring documentation in general, and each of its compo-

nents in particular? Since it may not be possible to force developers to document all the

components, we investigated the level of importance/need for each component for practi-

tioners to ensure a high quality of refactoring documentation. The outcome of this research

question can help in building automated tools to check the quality of refactoring documen-

tation and to warn practitioners about missing details in their commit messages that include

refactorings.

RQ3: What is the developers’ experience with finding and documenting refactoring com-

ponents? The aim of this research question is to understand the effort spent by practitioners

to find and document each of the identified components of the refactoring documentation

model. Identifying these components that are hard to find and document can emphasize the

need for tools to generate them.

RQ4: Would comparing the experience of developers in requiring, finding, and evaluating

the refactorings documentation with samples of actual refactoring commit messages reveal

some inconsistencies? We compared in this research question the outcomes of both the
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interviews and the survey with actual documentation of refactorings extracted from open

source systems as well as industrial projects. We have also conducted correlation analysis

between the discovered components and the quality of commit messages. Observations from

the comparison between the practitioners’ need and actual refactoring documentation found

through commit messages analysis could lead us to the areas of improvement for researchers

and practitioners to address them and also validate the proposed refactoring documentation

model.

7.2.2 Phase 1: Interviews with Developers to Design a Refactoring Documen-

tation Model

Interviews Setup. The goal of the first phase of our research is to build a model

for refactoring documentation. Toward this goal, we scheduled pilot sessions to arrange

our individual interviews with developers. These unstructured interviews consisted of three

main parts. In the first part, we asked the participants to evaluate the quality of refactoring

commit messages based on their experience. Then, we collected possible components that

can form a complete and high-quality refactoring documentation. Finally, the third part

consisted of investigating these practitioners’ experience in finding and documenting the

identified components along with their importance.

Before starting the individual interview sessions, we carried out an in-depth analysis

of previous studies that are related to code changes documentation in general [245, 244,

47, 243, 93, 49, 98]. We identified the most common and frequent components in software

documentation in general to distill the existing knowledge for refactorings, since they are

special cases of code changes. Our main observation is that most of the previous studies

were considering What are the applied code changes? and Why these code changes were

made? as important and common components to be documented when describing general

code changes. Thus, we considered these two components as our first initial refactoring

documentation model to be reviewed and extended by practitioners.
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We started our individual interviews by providing 100 examples of commit messages

documenting refactorings extracted from open-source projects. We asked each participant

to evaluate the quality of 100 different refactorings-related commit message from our dataset

using the Likert Scale (1:very poor, 5:very good). Then, we asked them to tell us some real-

world situations when they needed to carefully check a sequence of code refactorings to

understand it. These steps helped stimulate the practitioners’ memories as well. As a next

step, we asked them to think about possible components to document refactorings after

describing their experiences in requiring, finding, and documenting refactorings that they

applied in the past. Then, the participant created their own model. After that, we showed

them an initial model of the two components of the refactoring documentation that we

established from existing studies on documentation of code changes. We discussed with the

participants the differences and they showed us at least one example of any new component

that they suggested.

To prevent any potential bias in the presented initial refactoring documentation model,

we ensure that it was based on the existing research literature on refactoring documentation

rather than reflecting our opinions. Furthermore, we showed the initial model to practitioners

after they provided us their own components for refactoring documentation. Finally, we

instructed them to use their own components when they extended the initial model. Our

final model of refactoring documentation of code commits included 5 components (see Table

7.2), which is more extensive than the initial model (limited to 2 components). We found

that there was a clear consensus among all 14 participants based on the interviews about

these 5 components, but 3 of them mentioned 3 other possible components (highlighted

in gray in Table 7.2). Thus, we decided to focus on the 5 components mentioned by all

the participants in the survey with a large number of participants, as discussed in the next

section, for the following reasons: (1) We wanted to make the conducted survey reasonable in

terms of the time and not too long, (2) our goal is to design a first refactoring documentation

model that is robust but can be extended later, and (3) we still validated quantitatively all 8
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components, but without involving practitioners in the survey. We will provide more details

in the results section.

Selection and hiring of participants. We advertised our study in mailing lists that

covered 36 developers from industrial partners and top 30 developers from open-source

projects, of our refactoring dataset (phase 3), selected based on their number of commits in-

cluding refactoring (extracted using RefMiner). Out of the 21 participants who responded,

we selected 16 of them (9 from industry partners and 7 from the open-source projects)

based on the number of years of experience (should be more than 5 years), current posi-

tions (required a current active position in industry) and availability for virtual face-to-face

interviews. Table 7.1 shows an overview of the background of the selected 14 participants

after eliminating 2 participants due to their very limited feedback. They are all considered

experts in refactoring in the development teams they work based on their several years of

experience and extensive involvement in code rewriting projects.

Table 7.1: Demographic Information about the 14 interviewees.

Current Position # Participants Avg. Exp.
(Years)

Avg. Refactor-
ing Exp. (1-5)

Technical Lead 5 11.5 Very High (4.7/5)
Developer 6 8 Very High (4.7/5)
Manager/Executive 3 10 High (4.1/5)

7.2.3 Phase 2: Survey about the Identified Refactoring Documentation Com-

ponents

After defining a model for refactoring documentation, we designed a survey aimed at a

relatively large number of developers to understand their experiences and opinions about

the importance of these identified components and their level of difficulty in finding and

documenting each of them.

Figure 7.2 depicts the flow of our survey which was carried out using Qualtrics1. The

1https://www.qualtrics.com
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numbered black boxes present the different sections in which participants answer questions.

The survey starts with a welcome section where we explain the goal of the study and approx-

imate completion time. We also provide an example of a commit message extracted from

a GitHub repository of an open-source project for each of these refactoring documentation

components.

Figure 7.2: Design of the survey.

We refined our survey through pilot sessions to remove ambiguities and reduce its comple-

tion time. The survey included several Likert scale-style questions about each component of

our final refactoring documentation model. The final survey included the following sections.

• Section-I: Demographics: This section presents basic demographic questions to the

participants. In particular, we ask participants about their current position and total

experience in terms of years related to software development, as well as their level

of expertise in refactoring, software quality assurance, continuous integration, software

development, and code review (step 1 in Figure 7.2). The collected information helps

portray a clear and professional profile of our participants.

• Section-II: Refactoring Documentation in practice: This section contains nine questions

related to refactoring documentation, documentation tools, and the need for refactoring

documentation (step 2 in Figure 7.2).
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• Section-III: Refactoring Documentation Model: For this section we used our refactoring

documentation model that we built in Phase I to understand the developers’ experience

with each of the components composing it.

In the survey, we introduced each component individually with a detailed description that

includes examples extracted from GitHub (step 3 in Figure 7.2). We asked participants to

evaluate the importance, difficulty of documenting/finding, and the frequency of document-

ing/finding the component based on their experience (step 3-a and step 3-b ). Finally,

we asked whether the refactoring documentation model is comprehensive and whether they

would like to propose any modifications.

We used the snowball sampling of the interviews for our survey by reaching out to our

industry partners and asking them to advertise it to their contacts. We also advertised it

via social media, including Twitter, Facebook, etc. We analyzed 75 survey responses, after

having discarded six responses based on the short time that they spent to take the survey

(less than 10 minutes).

7.2.4 Phase 3: Quantitative Analysis

7.2.4.1 Data Collection and Sampling

As the first step in performing our quantitative analysis, we collected a total of

330,101 commit messages of 7,492 open-source projects downloaded from GitHub, contain-

ing 1,208,970 refactorings. Then, we extracted the applied refactoring by analyzing code

changes of every extracted commit using RefMiner [252]. We selected RefMiner because it

has demonstrated high precision and a recall score of more than 90% [235] for segregating

refactoring changes from other changes.

To get our final sample for the manual analysis step, we adopted a guided sampling pro-

cedure by defining three criteria. First, we made sure that our samples of commit messages

were submitted by different committers. The second criterion was that our projects should be

different in size and activity, e.g. refactorings count and commits count. The third criterion
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was mainly related to the refactoring types, where we wanted to inspect commit messages

that contained different types of applied refactorings (e.g., extract class, move method, etc.)

supported by RefMiner in its last version [235]. After applying the above-defined criteria, we

performed further filtering on the 1,300 refactoring-related commit messages by discarding

the commits that were empty, too short (one word), or full of special characters (e.g., ‘?????

?????’).

Our final diverse sample consisted of 1,193 commit messages extracted from 612 open

source projects with different natures and submitted by 893 different programmers. It is

available as part of the replication package [247].

7.2.4.2 Manual Analysis of Commit Messages

After collecting refactoring-related commit messages and filtering them, our second step

was to manually analyze each of the commit messages and annotate them based on the final

refactoring documentation model obtained from the interviews. For each commit message,

we manually tagged 0 or 1 for each of the 8 components (how, why, where, when, what, who,

benefits, severity) if the corresponding component was documented in the commit message.

The manual analysis process took 8 days in total and was performed by the authors of this

research work.

The manual analysis of commit messages to identify the components was performed by

two of the authors independently for all the messages. A third author looked to the dis-

agreements and decided which tag is correct. We discuss in the next section the Cohen’s

Kappa statistics for each component to compute the inter-rater reliability. It is relevant

to mention that two of the authors have over 12-years of research and industrial experi-

ence on refactoring while the third author did many extensive similar experiments on large

open-source/industry projects. Furthermore, the identification of the components is not a

subjective task.
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Component Explanation

How
How developers document refactoring in practice. Answer to this question will help to understand
whether developers mix functional and non-functional changes while documenting refactorings.

Why
The rationale of refactorings: The reasons behind the changes. For instance, the reason for
changes could be improvements towards specific quality attributes or refactoring code smells

Where Location of the applied refactorings i.e., at the package, class, or method level.
What Refactoring Types: i.e., rename method, extract class, move method, etc...

When
Refactoring Timing: i.e., after fixing a bug, before releasing the code, during code review, or after
introducing major functional changes

Who The person(s) who made the changes.
Severity/Importance of the fixed problem How critical, severe or important the problem was.
Benefits from the introduced changes Estimated positive impact of the changes on the system.

Table 7.2: Refactoring documentation model

(a) Position and Years of experience. (b) Level of Expertise.

Figure 7.3: Demographics of our participants.

7.3 Results

Figure 7.3 represents the demographic information of our participants. All the partici-

pants are very familiar with refactoring, software quality assurance, continuous integration,

and code review.

RQ1: What are the refactoring documentation components in commit mes-

sages?

After the conducted interviews, none of the 14 developers removed any of the two prelimi-

nary components as described in Table 7.2. The participants reported a total of 9 components

for refactoring documentation, where 7 of them were newly added during the interviews. Af-

ter analyzing the distribution of our participants’ feedback and categorizing the suggested

components, we found that there was a strong consensus for five common components among

all the interviewees. These components are: when, why, where, what, and how. However,

we did not have enough evidence about the three other additional components (severity of,
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benefits of, and committer (who) of the applied refactoring) because they were suggested

by a small number of participants (only 3 out of 14 participants). Furthermore, the ninth

component consists of “overall description of the code changes”, which we removed from

our analysis because it is too general and mentioned by only one participant. After aggre-

gating and analyzing some of the suggested components, we obtained the final refactoring

documentation model that we show in Table 7.2.

Our main goal from sketching this model is to define a rigorous set of components that

practitioners can use to understand and document refactorings. Thus, we limited the online

survey to the five main components to target a reasonable time frame to complete it (RQ2

and RQ3), but we considered the last three components of the model (refer to Table 7.2)

with the least consensus in our commits analysis and model validation as discussed later

(RQ4).

¤Key findings: The main refactoring documentation components reported by developers

are why, what, where, when, and how code refactorings are applied. Some possible additional

components with less consensus which are: the committer, benefits, and severity of applied

refactoring, which can be considered but require further validation.

RQ2: How important is refactoring documentation in general, and each of

its components in particular?

In this section, we investigated the practitioners’ perspective about the importance and

the challenges of refactoring documentation and the components of our proposed documen-

tation model.

Figure 7.4 summarizes the responses collected from section 1 of our survey (step 2 in

Figure 7.2). The participants in our study rated the importance of refactoring documentation

from Extremely important, to Not at all important as presented in part 1 of Figure 7.4.

In fact, 75% of the participants reported that refactoring documentation is important. In

addition, one of the valuable results of our survey is presented in part 2 of Figure 7.4 where

the percentage of developers highlighting the need for an automated tool for refactoring

documentation is 78.67%. This significant high percentage reflects the importance and the
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need for refactoring documentation in practice.

When asked about how often developers use commit messages and pull-request descrip-

tions to understand their colleagues’ code changes, 42.33% was the percentage for Always

and 30.67% for Most of the time (see part 3 in Figure 7.4). This information confirms

the significant role of refactoring documentation in the process of comprehending the code.

While our participants put emphasis on the importance of refactoring documentation, they

reported the challenges associated with it (see part 4 in Figure 7.4): time-consuming

(37.18%), deadline pressure (26.28%), lack of tools to at least semi-automate the documen-

tation (18.59%), and can be lost with other functional changes (14.74%). The participants

also added other challenges including “lack of common technical words to describe refactoring

activities”. The responses of the participants to the question “Should refactoring documen-

tation follow specific guidelines?” are represented in part 5 of Figure 7.4). 84% of the

participants either strongly agree or agree that refactoring documentation should follow a

guideline, which confirms the need to define these best practices.

Figure 7.5 and 7.6 show the importance of each component of our refactoring documen-

tation model and whether developers wanted to keep/remove any of them. Interestingly,

the majority of the participants reported that they would rather keep all 5 of the proposed

components. More precisely, our participants provided positive comments describing the

model as comprehensive. One participant said:“I think your 5 components makes a lot of

sense.” and another participant wrote: “I’m not sure what there is to really add”. The top

two components that developers would highly agree to keep are the why and the where as

shown in Figure 7.5. The high importance of the why and where highlights that developers,

while seeking and documenting refactoring-related changes, focus more on the rationale for

the changes and the location of the refactorings applied.

RQ3: What is the developers’ experience with finding and documenting

refactoring’s components?

Figure 7.7 shows the frequency and difficulty of finding and documenting for why, where,
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Figure 7.4: Information highlighting the importance of refactoring documentation (RQ1), according to the
survey results.

Figure 7.5: Importance of the refactoring documentation components.
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Figure 7.6: Participants modifications to the components (survey results).

Figure 7.7: Experience of practitioners finding and documenting why, where, what, and how (survey
results).

what, and how components; Figure 7.8 shows the experience of practitioners finding and

documenting the When component as described below.

Frequency and difficulty of finding. The most frequent and easiest-to-find compo-

nent is the What (type of applied refactoring), with 44% for “Always & Most of the time”

answers, followed by How and Why components. This shows that developers easily recognize

the applied refactoring types, which can be explained by the fact that there is a pre-defined

and finite list for refactoring types.

Frequency and difficulty of documenting. Figure 7.7 shows that developers often
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mix functional and non-functional requirements in their commit messages. In fact, the most

frequently documented and the easiest-to-document component is How, with 41.33% and

24% responses, respectively. Overall, the difficulty vs. frequency with which developers

document different refactoring documentation components is almost similar for all compo-

nents. For instance, while the Where (location of refactoring) represents the second most

frequently documented component, it is the most difficult to document from the developers’

perspective. These results highlight the contradictions between frequency and difficulty of

documenting the different refactoring components. In fact, developers frequently document

our model’s components highlighting their importance, but they also continuously expressed

a struggle to understand complex refactoring and their relevance; thus, they find them hard

to document. This type of contradiction between frequency and difficulty of documenting

refactorings could provide an explanation for why developers report that refactoring docu-

mentation is challenging, time-consuming, and difficult to write without guidelines, which

can impact the consistency between the refactoring documentation and the actual code

changes/refactorings.

Figure 7.8 investigates the experience of practitioners with documenting when refactor-

ings are applied. While the left side of Figure 7.8 shows that developers most likely document

refactoring applied after introducing major functional changes (86.67%) and after fixing a

bug (77.33%), the right side shows that the most challenging time to document refactoring

is after introducing major functional changes. In fact, major functional changes require an

extensive code cleaning and restructuring, which may result in a high number of different

refactoring activities that can be difficult to document.

We were also interested in decomposing the rationale of refactoring, since it is the second

most important component reported by practitioners (70.66% agreed about its importance,

refer to Figure 7.5). The responses of the participants, reported in Figure 7.9, show that

the documentation of the refactoring rationale can be decomposed further, mainly into code

smells documentation (60% of responses) and QMOOD quality attributes [253] documenta-
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Figure 7.8: Experience of practitioners finding and documenting When (survey results).

Figure 7.9: Decomposition of the rationale for refactoring (survey results).

tion (58.67% of responses). Participants did also report other possible reasons behind their

applied refactorings. One participant said “I also do refactoring to reduce impact of errors.”

and other participants reported preventing bugs as a rationale for refactorings.

To get a better idea about the experiences of developers with documenting the rationale

of refactorings, we asked the participants about their preference for documenting (1) each

of the six QMOOD quality attributes [82] and (2) different code smells types [254]. Most

of the practitioners are mainly interested in documenting Understandability, Functionality,

and Reusability as a rationale for their applied refactorings. One participant said “I

found the QMOOD attributes very relevant since I mainly do refactorings to improve

understandability and reusability of my code”. The top 5 code smells types that were

reported by our participants are: architecture, design, implementation, performance, and

test smells. We have also found that developers focus more on documenting the refactoring

related to restructuring the architecture of the system.

RQ4: Would comparing the experience of developers in requiring, finding,

and evaluating the refactorings documentation with samples of actual refac-

toring commit messages reveal some inconsistencies?
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Figure 7.10: The percentage of each individual documented component in our commit messages sample.

Figure 7.11: Distribution of sub-components of the when and why according to our quantitative analysis.

Importance of the components Vs. Actual documented components ratio.

Figure 7.10 shows the frequency of finding/documenting each individual component of the

model (Table 7.2) in our commit messages sample. Interestingly, the most documented

components in practice are why (56.58%), what (54.32%), and where (47.69%). However,

the order of the components in terms of the importance score reported by our participants is

reversed, but they still have similar rates. In fact, Figure 7.5 shows that the most important

component is where, followed by what and why. This difference shows that there is a gap

between actions and opinions, and thus the where component should be better documented

in existing commit messages.

Despite the high importance of refactoring documentation and the positive feedback

about the components of our documentation model, we found that in practice, a reasonable

number of commit messages contain at most only one component documented. In fact,

14.50% of the inspected commit messages have none of the components documented, and

14.59% contained documentation for only one component. Figure 7.10 also shows that
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the Benefits component is highly documented by developers in practice. This information

was not emphasized by our participants during the interview sessions. We considered this

component as an optional component, but based on our quantitative analysis, it can be useful

to add to our refactoring documentation model in the future after further investigation.

Regarding the documentation of the rationale of refactorings, our commits analysis find-

ings (see Figure 7.11) confirm that it can be further decomposed mainly into quality attributes

changes and others that include fixing bugs and functional purposes. Code smells was the

least documented by developers in practice, which is in contradiction to our practitioners’ re-

sponses (Figure 7.9). One of the reasons that could explain this contradiction is that many

developers lack the knowledge of formal definitions of these code smells, such as ’feature

envy’, and may use different vocabulary for the same meaning.

Figure 7.9 also presents the decomposition of the When component in practice. The

results show that developers often document refactorings after introducing major functional

changes (12.74%), after fixing a bug ( 14.41%), and before releasing the code (12.31%). Both

after introducing major functional changes and before releasing the code were also reported

by our participants as the most frequently documented components.

We note that the disagreements between the authors are very rare when identifying the

components in the refactoring commit messages. The Cohen’s Kappa results show that min

Kappa was 0.909 for the HOW component. In case of any disagreements between two authors

who checked the messages independently, the opinion of the third author is considered.

How developers document the different components in practice. Our man-

ual inspection of commit messages shows that while developers may document in isolation

the different components over multiple commits, they rarely document all of them in a

single commit. For instance, only 0.92% (11 commits) contained all the components doc-

umented. Moreover, one interesting result is that at least two components out of the 8

investigated components are documented by developers in practice. In addition to investi-

gating how many components developers document in practice, we were interested in assign-
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Figure 7.12: Correlation between the components.

ing weights to the components and capturing their pairwise correlations. Our correlation

analysis results are represented in Figure 7.12, which shows that there is a strong correla-

tion between where-how, where-what, why-how, when-why, severity-when, benefits-why, and

benefits-severity. This correlation analysis will help in defining the context for documenting

each component. Understanding how the components are linked together and investigating

their pattern of appearance in the actual documentation can help developers in choosing a

subset of components to document.

Validation of the proposed refactoring documentation model. All the commit

messages were evaluated by the interviewees in terms of quality with an overlap of 207 random

commit messages. Thus, each of the 14 participants evaluated between 14–15 overlapping-

messages used to calculate the Cohen’s-Kappa statistics which was higher than 0.85. This

confirms that there is a clear consensus when evaluating the quality of commit messages

using the Likert Scale.

We first checked the frequency of each component of the proposed model in the commit

messages with different levels of quality (from very poor to very good). Figure 7.13 shows

that all the five components (4W+H) were frequent/strongly-correlated with good/very

good commit messages with almost equal-distribution, and they are much less frequent in
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Figure 7.13: Distribution of the 5 components per quality score.

poor/very poor commit messages: when new components are added then the quality of com-

mits message increased. It is clear that the WHY is the most important/frequent component

in very good/good messages and the WHO/Severity are the less frequent ones which con-

firm our conclusion to remove WHO and Severity from our final documentation model. The

benefits component is overlapping with the WHY which explains its frequency/correlation

in good/very good messages thus we removed the benefits component from our final model.

To statistically study the correlation/association of the five components of our final model

4W+H and its variations with the quality of refactoring commit messages, we run two tests

which are: GOODMAN AND KRUSKAL’S and Chi-Square test. Our aim is to investigate

the correlation between the quality of commit messages and the different variations of the

proposed taxonomy (different combinations of the components). The number of variations

of 4W+H is 5 where each time we remove one component out of the five and we study

again the correlation with the quality categories of commit messages. Thus, the two studied

variables are the quality of the commit messages and the aggregation of the components of

the studied model as a single variable.

The comparison between the different variants of our 4W+H model shows that the aggre-

gation of all of them has the strongest correlation with the quality of commit messages. We

have significant association between our model 4W+H and its 5 variations with the quality
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of documentation (all the p-values for the 6 tests are less than .0005). Based on the Cramer’s

V value (effect size), the 4W+H and Quality variables have the highest association strength

(0.527) and 3W+H (no Why) Quality has the lowest. Thus, the complete model (all the 5

components) contributes better to the quality of the documentation. The detailed statistical

test results can be found in the appendix [247].

Table 7.3: Statistical analysis (model variants and quality of messages)

Model variants Chi-Square Value ρ-value Effect Size
4W-H 1323.343 < 0.001 0.527
4W 1163.564 < 0.001 0.494
(3W+H)’ (no Why) 1178.095 < 0.001 0.497
(3W+H)” (no Where) 1178.095 < 0.001 0.497
(3W+H)”’ (no What) 1235.875 < 0.001 0.509
(3W+H)”” (no When) 1110.499 < 0.001 0.482

7.4 Discussions and Implications

Better understanding of refactoring documentation. A guideline or a rigorous

pre-defined template for refactoring documentation can be a starting point for improving

how developers document their refactoring. Moreover, a pre-defined template makes the

discussions between practitioners about refactoring and its impact on the code consistent

and more understandable. However, we do not advocate that every identified component in

this study should be documented by developers in all the cases. In fact, our participants

mentioned different levels of importance and frequency to look for these components (refer to

Figures 7.5 and 7.7), and our goal is to understand the pieces of information that developers

may search for when understanding refactorings.

Refactoring vs code changes documentation. Some of the refactoring documenta-

tion components identified in this study can be used for documenting regular code changes as

well. However, some others are specific to refactoring such as code smells, QMOOD quality

metrics improvement, and refactoring types. We discussed existing studies in the related

work section about documenting code changes, and this study can be extended to under-
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stand the differences in the importance and frequency of the documentation components of

refactorings versus regular code changes.

Implications for educators and practitioners. Our results provide a common ground

for documenting, discussing, and assessing refactoring and its impact on the system. This

common ground will help educators to disseminate multiple dimensions of refactoring docu-

mentation in commit messages.

Though we do not expect practitioners to document all the refactoring documentation

components independently from the context, we expect them to judge which components are

more relevant and adequate for their specific context. Team-leads can work with developers

to establish customized guidelines from this study for documenting refactorings.

These guidelines could trigger developers to capture the impact and the rationale of their

code changes appropriately for each situation, developing beneficial habits and long-lasting

documentation.

Implications for researchers and tool builders. We observed in Section 7.3 that, in

practice, software developers fail to document refactoring components. Such practices make

it harder for other software developers to comprehend the introduced refactorings. With

this proposed empirical study, we described the scientific foundations required to generate

refactoring documentation. For instance, a new checker and generator for CI platforms

could be developed to generate refactoring documents. Specifically, the tool could support

the following features: (1) check the consistency and the completeness of refactoring and

non-functional requirements documentation, (2) offer suggestions to document and complete

the missing important components, or (3) generate a complete refactoring documentation

and present it for the developer’s approval.

7.5 Threats to Validity

Construct validity. Some threats can be related to the construction of the proposed

refactoring documentation model. To mitigate the threat, we made sure not to limit the
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interviews to a list of predefined questions. We also encouraged the participants to think

openly without providing any implicit inputs and bias. We gave them enough time to formu-

late their ideas. We have included a free-form “Other” option in the answers of interviews

and survey questions to enable them freely express their feedback and ideas.

Internal validity. Some online participants of the survey may have decided to take it

because they had greater interest/enthusiasm in documentation than others, thus they could

provide a “biased view” of the investigated phenomena on refactoring documentation. To

mitigate this threat, we ensured that the selected population is composed of practitioners

(e.g. Figure 7.3) with different roles, background, different organizations, and may have

different views on the refactoring documentation issues. A typical co-factor in survey studies

is the respondent’s fatigue bias. We mitigated this threat by running a pilot study with four

developers and four PhD students to make sure that the survey could be answered within

20 minutes. Another internal threat to validity in our study is drawing conclusions based

on recollected memories. Thus, we allowed enough time for participants to remember their

experiences with refactoring documentation.

External validity. The selected practitioners may not represent the very large popu-

lation of developers. To mitigate this threat, our participants were chosen from a diverse

population, with diverse expertise and years of experience (e.g. Figure 7.3).

7.6 Conclusion

We used a combination of interviews and a survey to understand refactoring documenta-

tion from practitioners’ perspective. We started first with a set of interviews with practition-

ers to define a refactoring documentation model. Then, we performed a large online survey

to gather the experiences of practitioners with the importance, frequency, and difficulty of

refactoring documentation for the different components of our model. We found 5 main

important refactoring documentation components for practitioners.

The outcomes of this empirical study can be used to improve the quality of refactoring
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documentation. Furthermore, researchers and tool builders can use the discovered compo-

nents and the experiences of the developers to build refactoring documentation generation

tools.
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CHAPTER VIII

Commit Message Generation of Composite Changes

8.1 Introduction

In modern software development, developers collaborate together by submitting source

code changes onto version control systems (VCS), e.g., Git [242]. These allow developers

to store different versions of the system being developed and archive them as commits, i.e.,

individual changes to a file (or a set of files). In so doing, developers can document the

newly committed code changes through commit messages, which are short natural language

descriptions of the modifications performed. Previous work has shown that high-quality

commit messages maintain the rationale of the code changes, in addition to favoring program

understandability [78, 251] and developer’s productivity [255].

Unfortunately, commit messages in reality are often empty, have very short strings or lack

any semantic meaning [256]. For this reason, the research community has been actively work-

ing on automated techniques to support developers when describing code changes through

commit messages [76, 257, 258, 69]. In this respect, the last few years have seen the rise

of two main lines of research. On the one hand, researchers have proposed search-based

approaches [64, 65, 66] that find the most similar commits in the project’s history in order

to reuse or adapt their messages. On the other hand, deep learning models have been inves-

tigated: most of them are based on neural machine translation (NMT) and generate short

commit messages based on diff files [67, 68, 66]. Later studies have also proposed different
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variations of a vanilla NMT model to improve the quality of the generated commit messages.

For example, a pointer-generator network is added to treat out-of-vocabulary words [66]. Xu

et al. [69] modified the encoder to take two inputs: code semantics and code structures for

commit message generation.

While these previous research studies reported promising results, with both search-based

and NMT models being able to generate commit messages similar to those written by devel-

opers, most of the currently available techniques are particularly suitable only when dealing

with commits composed of a few atomic changes, i.e., operations where developers apply a

set of disjointed changes, like additions/deletion of lines of code, to multiple files. However,

they might not be as accurate when facing what we define as composite changes, namely, a

set of conceptually related modifications that are intended to implement a unique high-level

code change.

To highlight the limitations of existing approaches, let us consider the example of a

commit1 of the OpenEngSB framework- a technical integration platform for software

tools.2 From a purely structural perspective, the commit modifies 13 files by adding 134

lines of code and deleting 41 of them. Analyzing it more deeply, the actions done in the

commit had the main goal of performing a number of composite operations: the classes

EncryptionException, DecryptionException, and MarshalException were subject to a

Move Class [234] in order to place them in a more coherent package. The committer ap-

plied rename operations aimed at providing a better name to the class MarshalException

and its methods. Finally, s/he also applied an Introduce Parameter refactoring to the

GenericSecurePortTest class. The remaining modifications updated the references of the

changed classes.

This example presents a key challenge for the existing approaches: the diff file contains

more than 300 lines with 175 additions and deletions. Representing a similar diff is challeng-

ing and would require additional information to be properly exploited by existing approaches.

1github.com/openengsb/openengsb/, commit:99154fe7f14e1f7941e5a1bdda1b79a6d896f44c
2Link: http://openengsb.org/.
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Indeed, it is rare to have other diffs that are similar in text. As a consequence, a search-based

approach is likely to fail because it may not find similar commits in the change history, pro-

viding a poor solution. For this exemplary commit, indeed, the state-of-the-art search-based

technique proposed by Liu et al. [65] would output the following commit message:

Commit message. FFT convolution almost done Problem with rearranging of

size is odd (e.g. 315).

An improved representation of these composite changes that considers enhanced mech-

anisms to structure similar diff files might potentially lead to better outcomes. Similarly,

an NMT model would not perform well if its training set does not contain enough of these

cases. For the example above, the technique proposed by Jiang et al. [67] would deliver the

following commit message:

Commit message. Moved to class.

This example clearly highlights that existing techniques do not properly treat these types

of composite commits and as a consequence cannot generate meaningful commit messages.

We argue that novel strategies able to provide additional information when training these

models, e.g., the type of changes, could induce a boost in their performance to generate better

commit messages that capture the logic behind applying a sequence of atomic changes.

In this chapter, we aim to overcome the limitations of existing techniques. We first mine

over 7,000 open-source projects from Github and build a new dataset of 53,066 composite

code changes. Afterward, we devise a novel mechanism that improves the representation

of composite code changes: we (1) add change types as input to enrich the description

of the commits; (2) use a placeholder mechanism to standardize diff-format text; and (3)

build a language model that is pre-trained on a larger corpus to embed rare words based on

their context. We evaluate our approach using the human-written commits contained in the

built dataset, finding improvement over the start-of-the-art techniques in terms of BLEU
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score. We have also conducted controlled experiments with 12 practitioners and professional

developers to evaluate the semantic meaning of the generated commit messages.

Our results show that adding change types as a second input to an NMT model or a

search-based method can increase the BLEU score by more than 3 points. Similarly, using

the placeholder mechanism increases the BLEU score by more than 2 points for both the

NMT and the search-based method. Finally, the BERT embeddings increase the BLEU score

of the NMT model by 2 points. The manual evaluation results are in line with our findings

of the BLEU scores.

Replication Package. All data, and the anonymized developers’ answers are available in

our replication package [259].

Data Preparation Commit history
Training set

New commits
Test set

Commit 
extraction

Composite 
changes

Diff files

Commit messages

Placeholder mechanism

Placeholder injection to three sources

…

Vector of 
composite changes

Diff’s vocabulary 
Messages’ vocabulary

Attentional encoder-decoder 
model with two encoders and 

BERT embeddings

Deep Learning Model
Commit message generation 
for composite code changes

Figure 8.1: Overview of the methodology.

8.2 Methodological Overview

Figure 9.2 overviews the main steps of our methodology applied to address the problem

of generating meaningful commit messages for composite code changes. As depicted, we

designed our research with two major steps. At first, we required a large amount of data

pertaining to composite code changes made on real software projects. In this regard, we

devised a set of data collection, cleaning, and preparation steps aimed at retrieving as many

composite code changes as possible, other than human-written commit messages, that al-

lowed us to conduct large-scale experimentation. These pieces of data were split to create a

training and a test set. Section 8.3 describes the dataset construction and preparation.

On the basis of the collected dataset, we implemented our novel strategy to generate com-

mit messages for composite code changes. Section 8.4 reports the two components forming

the technique, namely, (1) the placeholder mechanism and its injection within three sources

184



like vector of composite changes, diff’s vocabulary, and commit message’s vocabulary, and

(2) the definition of an attentional neural network with two encoders and a BERT embed-

ding mechanism. These two components allow the generation of commit messages, whose

effectiveness was later assessed through the empirical investigation presented and discussed

in Section 9.4.

8.3 Dataset Construction

8.3.1 Data Collection

To collect a large amount of data that can be later exploited in the context of techniques

for commit message generation, we mined a random set of 7, 492 open-source projects from

GitHub. This step provided us with a total of 330, 101 commit messages. Given the

amount of data mined, a manual validation of composite code changes would be excessively

expensive; therefore, we had to identify an automated strategy to distinguish atomic from

composite changes. After some manual analyses, we decided to collect composite changes by

mining refactoring-related commits while relaxing the pre- and post-conditions to preserve

the behavior. In fact, the composition of atomic changes led to a refactoring type such as

extract class, extract method, etc. However, we relaxed the behavior preservation check,

as many of these composite changes would have enabled the collection of data related to

bug fixes and features change/integration rather than just structural changes. On the one

hand, these commits are by nature composite, i.e., developers who refactor source code apply

unique conceptually related changes to improve the internal structure of source code. On the

other hand, collecting composite changes from different commits would have been a source of

imprecision that would increase threats to internal validity. Thus, we found that the best way

is to get inspiration from the definition of refactoring types, since they are comprehensive of

possible composite code actions, while removing the conditions of the behavioral preservation

so as to collect data beyond reasons related to changes in the structure. This choice is

the best compromise in terms of accuracy of the information retrieved. Nonetheless, it is
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important to remark that this choice is not binding for the inner-working of commit message

generation techniques. Our goal is indeed one of generating reasonable commit messages

from conceptually-related changes independently from their final goal. From an operational

perspective, we used the GitHub APIs [260] to download GitHub repositories. Then, we

extracted the applied composite changes of every commit in all the downloaded repositories

using RefactoringMiner [235] without considering the pre/post conditions of behavioral

preservation. We selected RefactoringMiner because it has shown high precision and a

recall score of more than 90% [235]. By applying the tool on the repositories, we collected a

total of 1, 208, 970 composite operations. Additionally, we also collected diff files for all the

commits using the command git diff. The full list of composite types is online [259].

8.3.2 Data Cleaning and Structuring

Significant preparation was necessary to build a dataset suitable for commit message gen-

eration experiments. We perceive this non-trivial preparation as an important contribution

to the research field, as a similar dataset of such size and complexity is not available for

documentation of composite code changes documentation.

The first step in our pursuit is to have a cleaned and well-filtered dataset to avoid noisy

data that may lead to misleading results [261].

We started by preprocessing our collected dataset (applied composite changes, com-

mit messages, diff files, and information about committers and projects) by removing non-

alphabetic characters and discarding empty or too-short commit messages. We also removed

the merge, rollback, and bot-generated as well as trivial commits as suggested by other rel-

evant studies [67, 66]. The full list of our cleaning steps is available in our online appendix

[259]. To reduce vocabulary size, we removed commit IDs from diff files. After the above

preprocessing steps, we had 269, 252 commits remaining.
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8.3.3 Composite Changes Data Filtering

Starting from the output of the previous stage, our goal was to retrieve high-quality

commit message from composite change commits. Hence, we devised a filtering procedure

aimed at discarding those commits that were not accompanied by good commit messages.

This procedure was based on:

Step 1. Get composite changes-related commit messages. We used the keywords

provided by Rebai et al. [75] to identify commit messages explicitly referring to composite

changes. We got around 40,000 commits.

Step 2. Compute the rank of the sentence structure. Since we want to have well-

written commit messages similar to human-written ones, we extracted the sentence struc-

ture of each commit message. The sentence structure extraction has two main stages which

are tokenization and tagging. We used Spacy and Stanza [262] (previously called CoreNLP)

in the context of these two stages. To compute the rank of a sentence structure, we (1)

extracted the sentence structures of all the commit messages, (2) computed the number

of occurrences of each sentence structure, and (3) sorted the sentence structures by their

occurrences. We hypothesize that if the structure is popular, then it is probably a good

structure for a commit message.

Step 3. Count composite change operations in the commit. For each of the com-

mit messages, we computed the number of composite change operations applied. We

hypothesize that if a commit contains a higher number of composite changes, it has a

higher chance to be more complex to document.

Step 4. Count the developer’s composite changes. Our fourth filtering criterion is

based on developer profiling. If a committer is applying a high number of composite ac-

tions and a high number of commits, then there is a high chance that the other commits
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by the developer are also include composite changes. Therefore, for every committer, we

computed , the sum of the numbers of composite changes and commits.

Step 5. Computing the filtering score. After performing all four of the previous filter-

ing steps separately, we computed a filtering score of each commit of our initial database.

The filtering score of a commit is the arithmetic average of the rank of the sentence struc-

ture, the number of composite operations in the commit, and the number of the developers’

composite changes and commits.

All the above-mentioned values were normalized using min-max scaling. After scoring

the commits, we manually examined 488 commit messages belonging to different scores

ranges. We observed that (1) the higher the score, the higher the correlation with composite

changes and the better the commit message; and (2) most of the good commit messages

have a score above 0.25, which we chose as a threshold for selecting more commit messages

from the remaining data. Finally, the scoring of the commits helped us increase our 40,000

commit messages extracted from Step 1 with high-quality commit messages. After cleaning,

filtering, and scoring the commits we were left with 53, 066 commits that we think are

composite changes-related with well-written structures. Finally, we randomly divided our

dataset into 3 sets (training, validation, and test sets) using 70%-15%-15% splits. The

training set contains 37,146 commits. The validation and testing sets each contain both

7,960 commits.

8.3.4 Prepare the Dataset for the Models

As a final stage, we conducted further filtering and tokenization steps to get the data

ready for our models. In particular, we filtered the commits by the size of diffs and removed

the commits that had a diff file larger than 1MB since such large files are not suitable for

NMT. After combining all the filtering steps done on our dataset, we had 269, 252 commits

remaining. Finally, we tokenized the extracted commit messages, diffs, and performed com-
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posite changes. Since NMT needs predefined vocabularies for its input sources, we chose

to work with 50,000 tokens for the diffs, as was often done in the previous studies [67] and

other NMT models [263]. In the training set, the number of distinct composite change types

was 18 ( Encapsulate Field, Increase Field, Decrease Field, Pull up Field, Push Down Field,

Move Field, Increase Method, Decrease Method, Pull Up Method, Push Down Method, Move

Method, Extract Class/Method, Extract Superclass, Extract Subclass and Rename Method-

/Class/Field) and our commit messages had 30,000 distinct tokens. Thus, we selected all

30,000 tokens to be the vocabulary of commit messages and 18 tokens as the vocabulary for

composite changes.

8.4 Generating Commit Messages for Composite Changes

8.4.1 Component #1: Placeholder Mechanism

The placeholder mechanism consists of temporarily replacing the non-standard tokens

including emoticons, brands, numbers, and other identifiers with special placeholder tokens

during translation without actually translating them. Previous studies [264, 265, 266] re-

ported that this mechanism improves translation accuracy even with noisy texts. To help

NMT learn changes more efficiently, we also standardized our collected commit messages by

replacing all the unique names such as class, method, and package names as well as com-

mitter names, bugs numbers, and versions, with their corresponding placeholders. Thus,

these identifiers were not treated as individual words in this study. This preprocessing step

of placeholders relies on Java naming conventions in order to distinguish between methods,

classes, and packages names. To replace identifiers in a commit’s change types, we extracted

the impacted entities based on the rules of the composite operations’ controlling parameters.

For example, for change type like “extract class,” the first parameter is the source class and

the second parameter is the new extracted class, both of which should be replaced with

placeholders.

Table 8.1 lists the placeholders used in our dataset. The unique names and identifiers are
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saved and categorized based on their types. Thus, for every commit we have the list of the

replacement placeholders that can be used during the refinement step. The outcome of

this step is a registry that maps placeholders to their actual names. This mechanism has two

main advantages: (1) it reduces the vocabulary size and (2) it enhances the similarity between

parts of code that otherwise would be very different because of the unique identifiers (e.g.

different class names). The generated commit message gets postprocessed in the refinement

step.

Table 8.1: List of placeholders.

Placeholders Description
#class#, #package#, #method#,
#attribute#, #interface#

Identifiers of source code entities

#version# A specific release of a software program
#nbr# Any number that can represent: bug,

issue or number of new added features
#@person# The name of the collaborators/commit-

ters

This refinement step consists of searching for placeholders in predicted messages and

replacing them with their actual words from the registry created during the preprocessing

step while checking the actual applied change types. One main challenge encountered is

that sometimes there are different candidates for the same placeholder and the change types

cannot always help in choosing the best one. Thus, the simplest solution to deal with this

challenge is to randomly select from one mapping from the candidates found in the registry.

8.4.2 Component #2: Deep Leaning Model

This section describes our proposed neural model. The model assumes a typical NMT

architecture, which is based on a slightly modified attentional encoder-decoder [267]. It

has two encoders- one for composite changes and one for diffs data. The model takes our

generated BERT embeddings as initial embeddings. In the rest of this section, we give more

details about our enhanced model.
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8.4.2.1 Adding Change Types as a Second Input to the NMT Model

While software composite changes can be categorized using different methodologies, refac-

toring operations are used here for labeling changes because (1) refactoring operations are

abstract information hidden in the concrete changes that is more difficult for the models to

learn, and (2) many code changes can be labeled as one of the refactoring operations, which

can be a good starting point for our method.

In our first method, the types of refactoring operations are used to label composite change

types. The complete list of refactoring operations retrieved by RefactoringMiner is in

our online appendix, yet it includes most of the well-known refactoring types studied in the

literature, e.g., Extract Class, Rename Method, and Move Field. We note that the collected

data exclude the behavior preservation part to take inspiration from the refactoring types

while making the scope broader to include both functional and non-functional changes.

More specifically, each composite change operation takes a list of controlling parameters

[268]. For instance, the Extract Method operation is represented by the following tuple:

Extract Method (sourceClass, sourceMethod, targetClass, ExtractedMethod). The operation

extracts a block of code in sourceMethod in sourceClass to ExtractedMethod in targetClass.

For each commit, we obtained a list of composite change operations as its change types.

The vector of change types, which may also be called the composite changes vector, is

represented in the figure below—note that controlling parameters are omitted from the

figure due to space limits.

In the following sections, we describe our method of adding the composite changes to the

NMT model.

Neural machine translation (NMT), also called the neural sequence-to-sequence model

[269, 270, 271], consists of two recurrent neural networks, an encoder and a decoder. The

encoder converts a sequence/sentence into a fixed length vector representation. The decoder
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takes the vector representation as an input and converts it to another sequence. The input

sequence of the encoder and the output sequence of the decoder are in different languages.

In our work, we exploited an NMT with two encoders, each encoder taking different inputs

separately. Existing work [272, 273] combined different data sources for image captioning

(e.g., merging convolution image output with a list of tags). Additionally, to generate sub-

routine summarization, LeClair et al. [274] proposed an attentional encoder-decoder with

two encoders consuming two different data sources (code/text data and AST data). Our

model architecture is inspired by the models used in these studies. The main differences

between our Neural Machine Translations (NMTs) model and LeClair et al.’s are that (1)

we adapted two attention mechanisms in our model and concatenated the vectors from each

attention mechanism to create our context vector; (2) we used GRU instead of CuDNNGRU;

and (3) for the model hyperparameters, the number of recurrent units was decreased from

256 to 128, the embedding dimension for the commit messages was increased from 100 to

128, and the embedding dimension for the diff text was increased from 256 to 768.

More specifically, the first encoder is to process the change types we collected, and the

second one is dedicated to processing the diff files. We modified the first encoder presented

by LeClair et al. [274] to work with our change types which are different from their input

source, AST. We trained our model on 37,146 triples (diffs, composite changes, human-

written commit messages) with a validation set of 7,960 (prepared in 8.3.1). We ran 20

epochs for training, using Adam with an initial learning rate of 0.01.

8.4.2.2 A BERT Embedding Technique

Pretrained language models provide significant improvements for a range of language

understanding tasks [275, 276, 277, 278]. The main idea is to train a large generative model on

a vast dataset and use the resulting representations on tasks for which only a limited number

of labeled data are available. The BERT model architecture [278] is based on a multi-layer

bidirectional transformer [279]. Instead of the traditional left-to-right language modeling
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objective, BERT is trained on two tasks: predicting randomly masked tokens (MLM) and

predicting whether two sentences follow each other. To the best of our knowledge, there are

rarely public pretrained BERT [278] models in the software engineering domain and there is

no out-of-the-box model for diff text. The original BERT was pretrained on Wikipedia and

BookCorpus [280] with a total size of 13 GB, which mainly focus on natural language and

have a large gap to the diff-format texts, so it cannot be used in our task.

Dataset for Pretraining. As one of our main contributions, we pretrained a BERT model

from scratch on 70k diff files randomly sampled from the dataset in Section 8.3.2. The

dataset led to a size of 5 GB due to implementation and hardware limits. More specifically,

we collected 70k diff files by the following three steps: (1) filtering out files containing non-

Latin characters, such as Chinese, Japanese, and Korean; (2) filtering out extremely large

diff files, whose size are over 1 MB; and (3) randomly sampling 70k samples from the

remaining files (211k in total). The purpose of the first step was to build an efficient

subword-level vocabulary for our BERT. According to machine learning convention, our

pretraining dataset was independent of the test dataset. This setting was enforced to make

sure that there was no information leakage from the test set to the training set.

Segments. We set the input sequence length limit at 512, which is a common setting for

pretraining BERT. However, many diff files have more than 512 tokens, and for simplifying

the process, instead of using a sliding window approach, we chose to split each diff file

into segments and used segments as input sequences. The rationale for this processing

method is that diff files are naturally composed of multiple blocks of continuous changes.

Specifically, we split the diff files by “diff --git” and “@@.”

Implementation and Training Details. Rather than using the original BERT training

process, we exploited RoBERTa [281], which has the same architecture as BERT [278],

but optimized the overall training scheme. One big difference between RoBERTa and the

original BERT is that RoBERTa has only one task, MLM. We used the implementation
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provided from Huggingface.3 We uset 12 layers of transformer decoder blocks, each block

having 12 self-attention heads with 768 hidden dimensions, for 132M parameters in total.

We use Adam with an initial learning rate of 5e-5, β1 of 0.9 and β2 of 0.999. The batch size

was 32 (16 on each GPU). Our training stopped before one epoch finished, at step 73.5k,

after 23 hours of training on an Nvidia Quadro P6000 GPU and an Nvidia Titan RTX. At

the time of stopping, the curve of loss had flattened, so we choose to use this pretrained

model instead of continuing the pretraining.

Get embeddings. The conventional way of using a pretrained language model is to finetune

it toward a downstream task. Instead, to quickly test our hypothesis of the usefulness

of BERT embeddings in our task, we used embeddings generated by BERT directly as

the initial embeddings for the NMT model. BERT generates embeddings for a token

dynamically, which means each embedding is informed by the context of a word. To

get accurate embedding for each word, we needed to store every embedding for every

appearance of the word in the training set. This would explode the storage and increase

the complexity of the NMT model’s training process. Therefore, as the first step toward

using the diff-based BERT model, we applied a simple mechanism where we ran BERT on

the training set (the training set for the NMT model) and for each token, we stored only

one embedding. In the end, we had a matrix with a size of 30k x 768, which was used as

the initial embeddings for the NMT model.

To examine the quality of the embeddings that BERT generates, we inspected the em-

beddings using t-SNE visualization [282]. Figure 8.2 shows the visualization of a partial set

of the vocabulary. The green group includes the words done, called, added, returned,and

disabled, which tend to be finished actions; the orange group: ask, use, apply, need, and

delegate is more about requests; the red group: swing, awt, Dimension, Border, and JPanel

is Java Swing related.

3https://huggingface.co/transformers/
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Figure 8.2: An embedding visualization of a partial set of the vocabulary.

8.5 Empirical Experiments

The goal of the empirical study was to assess the performance of our proposed approach

for commit message generation of composite code changes, with the purpose of understanding

how its different components work when compared to existing methods. The perspective

is of both researchers and practitioners: the former are interested in understanding how

to generalize existing commit message generators to more complex code changes such as

the composite ones; the latter are interested in assessing the feasibility of the proposed

approach in practice. More specifically, the empirical experiments revolve around three

research questions.

• RQ1. How does the devised strategy based on the addition of change types as a second

input work when compared with baseline models?

• RQ2. How does the devised strategy based on placeholders work when compared with

baseline models?
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• RQ3. How does the NMT model perform with BERT embeddings compared with the

model without BERT embeddings?

These three research questions aim at assessing the gain provided by the defined methods

when generating commit messages for composite changes. In the next sections, we describe

the methodology and results addressing our goals.

8.5.1 Research Methodology

To address our research questions, we proceeded with a mixed-method approach [283],

combining quantitative results with qualitative insights coming from developers.

Table 8.2: The list of used baselines.

Baseline Placeholder Mechanism
Composite changes
as a second input

Technique
SB vs. DL

Number of encoders Research Questions

NMT Two Yes Yes Deep Learning 2 RQ1, RQ2,RQ3
NMT-emptySecondInput Yes No Deep Learning 2 RQ1

NMT One Yes No Deep Learning 1 RQ1
NNGen+ChangeTypes Yes Yes Search-Based RQ1, RQ2
NNGen Yes No Search-Based RQ1
NMT TwoV No Yes Deep Learning 2 RQ2
NNgen+ChangeTypesV No Yes Search-Based RQ2

Automatic evaluation. From a quantitative standpoint, we assessed the performance

of the three devised methods by computing the well-known BLEU index [284]. This is a

metric that is able to establish the quality of text that has been machine-translated from

one natural language to another. The general idea behind the metric is to assess how close

the machine translation is with respect to a professional human translation. It analyzes n-

grams and computes the precision of the machine-translation on blocks of text. The BLEU

index scores a translation on a scale between 0 and 1, where 1 indicates a perfect translation

in terms of adequacy and fluency of the output. In our work, the number of modified n-

grams that the metric computes was equal to 4, as done in previous work [67]: as such, the

computed BLEU-4 index measures the average modified 4-gram precision with a penalty for

overly short sentences. Table 8.2 describes the baselines used.

In RQ1, we included the information on composite changes to both NMT and NNGen

models. As such, we compared our method with a series baselines (the first five lines of table
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8.2). First, we considered NMT Two, which is an NMT model similar to our approach but

does not take BERT embeddings. Second, we considered the approach proposed by Jiang

et al. [67] with our placeholder mechanism (called NMT One in Table 8.2). This is based

on a neural machine translation (NMT) model to generate commit messages from diffs. The

source code diffs are considered as the source language and the commit messages as the

target language. The model by Jiang et al. consists of two recurrent neural network layers,

one for encoder and the other for decoder. They employed a standard Bahdanau attention

mechanism [285]. We also considered an NMT with an empty second input. This is the same

model as NMT Two (two encoders), but we did not provide change types in the testing: this

baseline allowed us to quantify more precisely the actual relevance of the information on

change types. Moreover, we considered the basic NNGen which is a search-based method

proposed by Liu et al. [74] as baseline: this is based on the nearest neighbor (NN) algorithm.

NNGen [65] takes a new diff and a training set as inputs and outputs a one-sentence commit

message for the new diff. It chooses the top-k similar diff files to the new diff file using cosine

similarity. Then, it calculates BLEU score to choose the most similar out of the top-k diffs

file. Finally, NNGen reuses the same message of the most similar diff from the training set

as the new commit message. In our validation, NNGen uses the placeholder mechanism.

Additionally, to investigate the importance of the change types and compare our approach

with an advanced search-based method, we implemented NNGen+changeTypes. To add

change types to the NNGen Model, we adapted the steps presented by Zhongxin et al. [65]

to include our new input vector composite changes and to make it more specific to run on

our dataset.

We used the similarity between change types (e.g. composite change operations) instead

of textual similarity to guide the search algorithms. We developed a strategy to assess the

similarity of composite changes by considering the types of different operations, the scales of

the changes and the involved parameters. Our approach first extracted diffs and composite

changes vector from the training set. Next, the training diffs with their training composite
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changes vector and the new diff with its composite changes vector were represented as vectors

in the form of “bags of words” [286]. Then, it calculated the cosine similarity between the

new diff vector and rest of all the training diff vectors individually; similarly between the new

composite changes vector and rest of all the training composite changes vectors individually.

The algorithm selected the top k training diffs with their composite changes vectors with

combined highest similarity scores. After that, the BLEU-4 score between the new diff with

its composite changes vector and each of the top-k training diffs with their composite changes

vectors were computed. The training commit with the highest BLEU-4 score after combining

the results from its training diff and composite changes vector, was regarded as the nearest

neighbor of the new submitted commit.

In RQ2, we assessed the gain provided by the placeholder mechanism to both the

NMT and NNGen models that include the change types information. The baselines used

to answer this research question were NMT Two, NMT TwoV, NNGen+ChangesTypes,

and Nngen+ChangesTypesV. The only difference between NMT Two and NMT TwoV is

that the latter does not take into consideration the placeholder mechanism. Similarly,

NNGen+ChangesTypesV is a variant of NNGen+ChangesTypes that does not include the

placeholder mechanism. This can be seen as an iterative evaluation where we quantified

how much the performance of our models can further improve by means of the placeholder

mechanism.

In RQ3 we compared our BERT embeddings method to the NMT Two model that does

not include embeddings.

Manual evaluation. We complemented the automatic evaluation with a survey con-

ducted with practitioners aimed at evaluating the commit messages generated by our models

NMT Two (2 encoders) and NNGen+ChangeTypes. While BLEU computed the textual sim-

ilarity between the generated and the reference messages, the human study aimed to evaluate

the semantic similarity. More particularly, we selected 12 participants for 40 minutes each to

evaluate the generated commit messages. The detailed demographics of the participants are
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available in our replication package; in short, the are all industrial developers with a develop-

ment experience of more than 5 years. The survey started with a welcome section where we

explained the goal of the study and the approximate completion time. The welcome section

also had information about the scoring system that would be used in the study. In fact, we

used the same scoring system as was provided by Zhongxin et al. [65]. The survey had two

sections:

Section I: Demographics. This section presents basic demographic questions to the par-

ticipants, such as their software development experience. In particular, we asked partici-

pants about their current position and total experience in terms of years related to software

development, as well as their level of expertise in composite changes/refactoring, software

quality assurance, continuous integration, software development, and code review. The

collected information helped portray a clear and professional profile of our participants.

Section II: Generated Message Evaluation. This section contained a description of

the study and a link to two Excel files. The first contained 101 rows and had six

columns which are the commit ID, three columns for commit messages (reference message,

NMT Two (2 encoders message), and NNGen+ChangeTypes message in random order),

the applied composite changes, and a column to answer the question “which commit mes-

sage better describes the changes in composite operations and diff files?” and optionally

to justify their choice in an open-ended question. Participants were also given a link where

they could find the diff files for every studied commit. The three commit messages were

presented anonymously. Thus, participants could not distinguish between reference and

generated messages. In the second file, we revealed only which commit message was the

reference commit and asked participants to select a score between 0 to 4 for the remaining

two messages, where 0 meant that there was no similarity between the message and the

reference and 4 meant that the message had the same meaning.

We randomly selected 606 commits from our dataset and divided them evenly into 6
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groups. Each group had its specific survey, and it was distributed to 2 different participants.

8.5.2 Analysis of the Results

The results of the study are analyzed in the following.

Automatic evaluation. Table 8.3 describes the BLEU-4 scores for each of the ap-

proaches compared in our experiments. From the table, we observe that NMT Two (2

encoders) has the highest BLEU score with 16.83 BLEU and NNGen has the lowest with

9.87 BLEU.

Table 8.3: Method comparison in terms of BlEU-4 scores.

Dataset Approach BLEU-4
NMT Two (2 encoders) 16.83%
NMT-emptySecondInput
(2 encoders)

13.04%

NMT One (1 encoder) 11.72%
NNGen+ChangeTypes 12.79%
NNGen 9.87%

With placeholders

NMT BERT (2 encoders) 18.91%
Without placeholders NMT TwoV (2 encoders) 14.07%

NNGen+ChangeTypesV 10.75

Table 8.3 clearly shows that both NMT Two (2 encoders) (16.83 BLEU) and

NNGen+ChangeTypes (12.79) have significantly higher BLEU scores than the considered

baselines—NMT One (1 encoder) (11.72 BLEU) and NNGen (9.87 BLEU). Additionally,

NMT Two (2 encoders) outperforms NNGen+ChangeTypes by almost 4 full BLEU points.

This significant difference in performance can be explained by the nature of composite

changes and the type of commits that we have in our dataset. In fact, we manually looked

into a random subset of our dataset (∼400 commits) and confirmed that it is rare to find

similar diffs in our dataset. While an information retrieval can be useful to some extent

in documenting code changes, it cannot be used to generate commit messages for either

composite changes or partially new code changes.
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One major observation is that NMT Two (2 encoders) outperforms all the other differ-

ent techniques. One important question to be addressed at this stage is “Will NMT Two (2

encoders) also work on commits when change types are not available?” To answer this ques-

tion, we tested NMT Two (2 encoders) without change types as inputs. In other words, the

first encoder’s input is set to empty. The BLEU score of this test, NMT-emptySecondInput

(2 encoders), is 13.04%. The reported BLEU score clearly shows that NMT Two (2 en-

coders) works better than the baselines even though there are additional inputs of change

types. Furthermore, the deterioration of the scores highlighted in red in Table 8.3 sheds

light on the importance of our placeholder mechanism. For NMT Two (2 encoders) and

NNGen+ChangeTypes, BLEU scores were decreased by more than two points when the

placeholder mechanism was not used.

Turning attention to the performance of the BERT embeddings, Table 8.3 reports the

BLEU-4 score for NMT Two (2 encoders) combined with BERT embeddings. The BLEU

score for this enhanced approach is 18.91% which represents an improvement of two full

BLEU point over our model NMT Two (2 encoders) that uses the default embeddings. This

outperformance shows that pretraining a BERT model and using its embeddings in the model

to generate commit messages helps NMT to better capture the changes and thus improve

the overall model performance.

An example of the commit messages generated by NMT Two, NMT-BERT and the

reference message is represented in Figure 8.3. This commit4 has 7 changed files, with 5

additions and 12 deletions. A subset of the applied composite changes is represented in Figure

8.3. The commit generated by NMT-BERT captures specifically the composite changes

“moving classes” better than NMT Two (2 encoders). The generated message by NMT-

BERT has clearer information about the changes made in the commit than the reference

message and the message generated by NMT Two.

4https://github.com/sudheer307/flashbang-playn,
commit:80600650c1fb25450b610aa82f9d9ded16323207
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Figure 8.3: A commit from flashbang-playn github repository and its three associated commit messages.

Manual evaluation We obtained 1212 pairs of responses from our manual evaluation.

Each pair contained a choice for the message that better describes the composite changes,

a score for the message generated by NMT Two (2 encoders) and a score for a message

generated by the NNGen+ChangeTypes model. We found a low disagreement rate between

the two evaluators with a Cohen’s Kappa coefficient [287] equal to 0.95 for the scoring of

the messages and a Cohen’s Kappa coefficient of 0.92 for choosing the best commit message.

Both Cohen’s Kappa statistics showed that there was a considerable agreement between

different evaluators. For each group, the two assigned evaluators were able to contact each

other to look into the disagreements and decided the final score/choice. Following the same

scoring scale described by Zhongxin et al. [65], we categorized the generated messages

into three categories: low-quality (score of 0 and 1), a score of 2 as medium-quality, and

a score of 3 and 4 as high-quality. Table 8.4 presents the results. We can see that the

proportion of high-quality of NMT Two (2 encoders) messages is significantly higher than

that of NNGen+ChangeTypes commit messages. While the percentage of the medium-

quality messages for NMT Two (2 encoders) is 17%, NNGen has a comparable proportion

of 15.22%.

As for the question of which commit message better describes the changes, more than

one-third of the time (34.32%) the developer chose the message generated by our model
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Table 8.4: The results of our user study.

Approach Low Medium High
NMT (2 encoders) 64% 17% 19%
NNGen+ChangeTypes 79% 15.22% 5.78%

NMT Two (2 encoders) as the message that better described the changes. Only 14% of the

developer’s choices went to the messages generated by NNGen+ChangeTypes. Comparing

the effectiveness of NMT Two (2 encoders) and NNGen+ChangeTypes in generating com-

posite changes-related commit messages, we found that the deep learning model is more

than twice as effective as the information retrieval approach—this is consistent with what

was discovered in our automatic evaluation.

We were also interested in understanding the reasons and the situations where the evalua-

tor chose the reference message over the generated messages. After looking at all the survey

results, we found that 20% of the time the reference message and the message generated

by NMT Two (2 encoders) were “similar in meaning but have different information” (score

3). This means that both of them were describing the changes in different ways and that

each message had different information to include. The developer left a comment when they

found it hard to choose between them, saying “Both Message#2 and Message#3 look good

as a commit message and they can be complementary”. Figure 8.5 shows one such example,

where the evaluator chose the first commit but both were similar and seemed to serve as

a good message for the changes. This observation may put an emphasis on the usefulness

of building a tool not only to generate a completely new commit message but also to check

for the completeness of the documentation, thus assisting the developer in writing a more

comprehensive description for commits with composite code changes.

To get a better explanation for the relatively high percentage of low-quality commit

messages (Table 8.4) for NMT Two (2 encoders) while they were frequently chosen as the

best commits to describe the changes, we manually examined some specific examples where

the developers chose them as the best commit message but assigned them a low score. In fact,
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Figure 8.4: An example where NMT (2 encoders) performs better than the reference message.

Figure 8.5: An example of good messages deemed complementary by the evaluators.

the scoring system relies only on the similarity of the commit messages, with the assumption

that the reference message is of a high-quality. However, our manual examination revealed

that the reference messages can be poorly-written, which aligns with the findings of Cortes

et al. [76]. Therefore, the generated commit message can be in fact of a higher quality, while

not being similar to the reference message. Figure 8.4 shows one of these examples (more

examples in our appendix [259]).

Additional manual analysis. In an effort to provide further findings into the useful-

ness of change types for commit message generation, we manually investigated the types of

composite change operations that were more useful in our dataset for the generation. This

analysis aims to explain the rationale behind the performance improvement of the model

NMT Two (2 encoders) when adding the change types as an additional input. To investi-
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gate the impact of different change types such as composite change operations, we performed

correlation analysis between the quality of the commit messages and the frequency of the

different applied composite change operations of the specific commit.

Figure 8.6: Distribution of frequent Composite change types.

The five most frequent composite change operations in our dataset are: Extract Method,

Rename Method, Rename Class, Move Class, and Rename Package. Figure 8.6 shows the

distribution of these five composite change operations in bad and good quality commit

messages. ”Rename Method” has the highest impact on the generation of good quality

commits followed by ”Rename Class”, and then ”Move Class” and “Extract Method”. On

the other hand, ”Extract Method” has the highest impact on the generation of bad quality

commits. For both quality levels (bad and good), we could see that ”Rename Package”

has the lowest impact on the model performance, out of the top five change types. One

most probable reason for this low impact is that ”rename package” changes are not well

documented or are not well captured from diffs, and thus their contributions to the learning

process are not significant.

Table 8.5 shows the correlation table of the most frequent change types in good-quality

commit messages. All five composite change operations are strongly correlated (correlation

coefficient above 0.92). This implies that the model generates good messages when there
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Table 8.5: Good quality generated commit messages.

ExtractMethod RenameMethod RenameClass MoveClass RenamePackage
ExtractMethod 0.97 0.95 0.95 0.92
RenameMethod 0.96 0.96 0.93
RenameClass 0.96 0.92
MoveClass 0.94
RenamePackage

are more correlated change types. In other words, if a commit has many change types that

are somehow related to each other (e.g., changing the same code fragment or improving the

same quality aspect), the better the performance of the model would be.

Figure 8.7: Heatmap of the attention layer in NMT (2 encoders) for the Change Types input for a good
commit.

To further understand how composite change operations impact model performance, we

performed attention visualization [288, 289] for a good example of where composite changes

input gets the attention and plays an important role in generating the commit message, as

shown in Figure 8.7. The x-axis in Figure 8.7 is the commit message input and the y-axis is

the change types input vector (applied composite changes). High activation (more yellow)

indicates more attention paid. For instance, we can notice in Figure 8.7 that the model gave

attention to “package” and associated it with the “move class” change type. This can be

explained by the fact that the model learned to give attention to “package” when there was

a “move class” since classes are usually moved within packages.
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8.6 Threats to Validity

One potential threat to validity could be related to our dataset and the quality of the

collected commit messages. We have carefully extracted actual human-written commit mes-

sages from 7,492 GitHub repositories, and used several cleaning, standardizing, and filtering

steps, including the extraction of the structure of the commits, and then selected a good

set of relatively high-quality composite changes-related commit messages. Another threat

to validity is about the limited number of evaluators participating in our human evaluation.

We cannot guarantee that the choice of a commit message or its assigned score is fair. How-

ever, we tried to mitigate the human bias by selecting as many professional participants as

possible. We also assigned two evaluators for each set of 101 commit messages, and the

disagreements were rare (Cohen’s Kappa score of 0.95).

Finally, another threat is related to the implementation. NMT (1 encoder) and NMT (2

encoders) have different training setups and model parameters. The former uses the setup

that Jiang et al. [67] have reported. Thus, the comparison of the results may be affected.

However, both models are seq-2-seq models with almost the same architecture. The data

preparation is the same for both models.

8.7 Conclusion

We have shown how NMT techniques can be enhanced to address the problem of commit

messages generation for composite code changes. Our NMT-BERT model outperforms the

state-of-the art techniques, shedding light on the importance of working with a pretrained

model as the source for embeddings. Diff files can be very lengthy, which remains a problem

that we are planning to address in the future. Lastly, we consider this presented work as

a step forward, suggesting solutions and insights on how to advance the state-of-the-art

techniques for commit messages generation.
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CHAPTER IX

Multi-Objective Code Reviewer Recommendations: Balancing Expertise,

Availability and Collaborations

9.1 Introduction

The source code review process has always been one of the most important software

maintenance and evolution activities [70]. Several studies show that a careful code inspection

can significantly reduce defects and improve the quality of software systems. Recently this

process has become informal, asynchronous, light-weight and facilitated by tools [71] [72]. A

survey with practitioners, performed by Bacchelli et al. [73], show that code review nowadays

is expanding beyond just looking for defects but to also provide alternatives to improve the

code and transfer knowledge among developers.

Despite recent progress [79, 80] code reviews are still time-consuming, expensive, and

complex involving a large amount of effort by managers, developers and reviewers. Thongta-

nunam et al. [81] found on four open source projects with 12 days as the average to approve

a code change. The automated recommendation of peer code reviewers may help to reduce

delays by finding the best reviewers who will then spend less time in reviewing the assigned

files.

The majority of existing tools and techniques for automated recommendation of code

reviewers are based on the level of reviewer expertise [80, 71, 142, 81]. Expertise is mainly

defined as the prior knowledge of the changes under review. For instance, a selected peer
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reviewer with high expertise should have reviewed the same files [81, 142], or even the same

lines of code in the files [71]. An empirical study at Microsoft found that selected reviewers

with high expertise can provide valuable and rapid feedback to the author of the code under

review [73]. However, reviewers with high expertise may not be always available in practice,

or at least assigning them may create delays.

To address the above challenges we propose to formulate the selection of peer code re-

viewers as a multi-objective problem. The goal is to balance the conflicting objectives of

expertise, availability and history of collaborations. The multi-objective approach tries to

find a trade-off between multiple objectives and minimizing the former collaborations on

reviewing the same files is just one component between many objectives. We adopted one of

the widely used multi-objective search algorithms, NSGA-II [231], to find a trade-off depend-

ing on current context and available resources. For instance, our formulation can slightly

sacrifice expertise to avoid a delay caused by limited resources (e.g. low availability of peer

reviewers). In another context, the reviewer(s) with the highest expertise can be selected

when the goal is to inspect high priority code changes such as critical buggy files. Thus, our

approach enables navigation between the three different dimensions by generating multiple

non-dominated peer reviewer recommendations instead of one solution as is done in existing

work.

Our validation on 9 open source confirms the effectiveness of our multi-objective approach

by making better recommendations than the state of the art.

9.2 Preliminary Study

As part of preliminary work of this contribution, we performed unstructured survey with 6

senior managers and 11 senior developers actively involved in code reviews to assign reviewers

or/and review pull-requests. We decided to perform an unstructured survey to encourage the

participants to think-aloud and avoid biasing them with our opinions. Furthermore, the goal

of our surveys is get insights about the current challenges in code reviews rather than a large
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Figure 9.1: An example of a code review extracted from OpenStack

empirical study. We found that 10 days is the average to approve a code change at eBay.

The main reason based on the surveys for the delay is the challenging task of identifying the

right reviewers which is aligned with existing studies[290, 291].

A senior manager confirmed that ”We don’t actually need more tools to just suggest

reviewers based on expertise. We need better support to manage code reviews especially

with short deadlines and limited resources while not sacrificing a lot of expertise. It is a

complex problem.” In addition, the participants highlighted that it is critical to consider the

priority of the files to be inspected as part of the management of the code review process.

Furthermore, we found in our interviews that the social interactions between code authors

and reviewers is another critical aspect to consider to ensure high quality reviews.

Existing studies assume that peer reviewers with high interactions with authors/owners

of the code under review are the best to select [79]. However, this aspect may be considered

negative with extensive mutual peer reviews and/or quick approval of code changes as sug-

gested by the participants. The diversity of peer code reviews is important, as pointed out

by the eBay senior managers and peer reviewers, especially when frequent patterns of code
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authors/reviewers are observed.

9.3 Approach

In this section, we describe our proposed approach for recommending the most appropri-

ate set of reviewers for pull-requests to be reviewed using multi-objective search.

9.3.1 Multi-Objective Optimization

Multi-Objective search considers more than one objective function to be optimized si-

multaneously. It is hard to find an optimal solution that solves such problems because the

objectives to be optimized are conflicting. For this reason, a multi-objective search-based

algorithm could be suitable to solve this problem because it finds a set of alternative solu-

tions, rather than a single solution as result. One of the widely used multi-objective search

techniques is NSGA-II [231, 292, 293] that has shown good performance in solving several

software engineering problems [183].

A high-level view of NSGA-II is depicted in Algorithm 5. The algorithm starts by ran-

domly creating an initial population P0 of individuals encoded using a specific representation

(line 1). Then, a child population Q0 is generated from the population of parents P0 (line

2) using genetic operators (crossover and mutation). Both populations are merged into an

initial population R0 of size N (line 5). Fast-non-dominated-sort [231] is the technique used

by NSGA-II to classify individual solutions into different dominance levels (line 6). Indeed,

the concept of non-dominance consists of comparing each solution x with every other solu-

tion in the population until it is dominated (or not) by one of them. According to Pareto

optimality: “A solution x1 is said to dominate another solution x2, if x1 is no worse than x2

in all objectives and x1 is strictly better than x2 in at least one objective”. Formally, if we

consider a set of objectives fi , i ∈ 1..n, to maximize, a solution x1 dominates x2 :

iff ∀i, fi(x2) 6 fi(x1) and ∃j | fj(x2) < fj(x1)
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Algorithm 5 High level pseudo code for NSGA-II

1: Create an initial population P0

2: Create an offspring population Q0

3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |6 N do
9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i+ 1
12: end while
13: Sort(Fi,≺ n)
14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

The whole population that contains N individuals (solutions) is sorted using the domi-

nance principle into several fronts (line 6). Solutions on the first Pareto-front F0 get assigned

dominance level of 0. Then, after taking these solutions out, fast-non-dominated-sort cal-

culates the Pareto-front F1 of the remaining population; solutions on this second front get

assigned dominance level of 1, and so on. The dominance level becomes the basis of selection

of individual solutions for the next generation. Fronts are added successively until the parent

population Pt+1 is filled with N solutions (line 8). When NSGA-II has to cut off a front Fi

and select a subset of individual solutions with the same dominance level, it relies on the

crowding distance [231] to make the selection (line 9). This parameter is used to promote

diversity within the population. This front Fi to be split, is sorted in descending order (line

13), and the first (N- |Pt+1|) elements of Fi are chosen (line 14). Then a new population Qt+1

is created using selection, crossover and mutation (line 15). This process will be repeated

until reaching the last iteration according to stop criteria (line 4).
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Figure 9.2: Overview of our multi-objective search-based approach for code reviewer recommendation.

9.3.2 Approach Overview: A Multi-objective Code Reviewer Recommendation

Framework

The ultimate goal of our Code Reviewer Recommendation framework is to automatically

assign the most appropriate reviewers to newly opened pull-requests. The assignment is

performed by balancing three important competing criteria: the expertise of the reviewers,

their availability (considering their current workload) and their social connections (collabora-

tions) with the submitter of the open pull request(s). Thus, we propose to use multi-objective

search, based on NSGA-II [231], to find a tradeoff between the different competing objectives.

An overview of the approach is illustrated in Figure 9.2.

Our approach takes as input: 1) the pull-request(s) to be reviewed; 2) the pull-request(s)

under review and the involved reviewers; and 3) the detailed history of closed pull-requests.

The extraction of these 3 required inputs is easy and straightforward by simply providing

the GitHub link of the project to our tool. Using our integrated parser, we automatically

analyze the GitHub repository to collect the code review history, commit messages and source

code. Next, from the collected data, we extract three clusters of interaction information: a

File-Reviewer interaction matrix (FR), a Developer-Reviewer interaction matrix (DR) and
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a File-Developer interaction matrix (FD). From the open pull-requests to be reviewed we

can automatically extract the files that need to be reviewed and evaluate the expertise of

assigned reviewers in our solution representation, as detailed later.

As an output, our multi-objective algorithm generates a set of trade-off solutions where

each solution consists of assigning one or more reviewers per pull-request. Thus, the solution

can be represented as a matrix matching reviewers to the files of the pull-request(s). For

each file, the reviewers are ranked based on their level of expertise to review the file, their

availability, and their past collaboration with the developer of that file, all while reducing

the number of reviewers per pull-request as much as possible.

To find a trade-off between the different objectives, we used NSGA-II [231] since it was

used for similar discrete problems in software engineering and performed well. The use of

a metaheuristic algorithm to deal with conflicting objectives is justified by the large search

space to explore. Let M be the number of total reviewers and P number of total files

submitted to be reviewed for code changes. The size of the search space to explore in order

to find the best subset of m reviewers among a set of M reviewers to review p files is ofm

M

× p = m!
m!(M−m)!

× p. This is a very fast growing function and as M grows the search

space becomes prohibitively large to the point where exhaustive search is not practical. We

propose the use of metaheuristic search to explore this combinatorial search space to find

near-optimum reviewer recommendations.

The multi-objective approach proposed in this research work generates as output a set of

non-dominated solutions (Pareto front). It is up to the team manager to select the reviewers

assignment solution based on their preferences. Thus, the final output of the algorithm is

a set of solutions (Pareto front) representing trade-offs between the three objectives. It is

up to the manager to select the reviewers assignment (choose a solution) based on their

preferences. In general, the preferences are defined based on the current context: urgency

to release code quickly, available resources, speedy growth phase of the project, etc. These
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different contexts are not changing daily and they are not related to only one or few pull-

requests but more related to the situation of the whole project. The preferred solution

can be quickly selected by looking at the distribution of the solutions in the Pareto front

or ranking the solutions based on the most preferred fitness function based on the current

context. The two common ways to extract a solution from the Pareto front are the use of the

reference point and the knee point [294, 295, 296, 297]. The knee point corresponds to the

solution with the maximal trade-off between all fitness functions, i.e., a vector of the best

objective values for all solutions. In order to find the maximal trade-off, we use the trade-off

worthiness metric proposed by [297] to evaluate the worthiness of each solution in terms of

objective value compromise. While the knee point selection may not be the perfect way, it

is the only strategy to ensure a fair comparison with the mono-objective and deterministic

approaches since they generate only one solution as output.

The manager may select a reference point with high expertise, if s(he) cares about finding

knowledgeable reviewers of the files while accepting some delays in the review process. Thus,

the selected solution will be the closest one to the specified reference point. This scenario

happens, for example, when a pull-request is modifying some security critical files. However,

it is not required that the managers specify the reference point for each pull-request since

the preferences usually depend on the context of the whole project and they do not change

daily. Moreover, the knee point can be automatically calculated based on the distribution

of the solutions in the Pareto front [294] and it represents the maximum trade-off between

the objectives.

9.3.3 Main Components of the Approach

9.3.3.1 Reviewer’s Expertise Model

This model aims at exploring reviewer-file connections: Who are the peer reviewers who

worked on the same file? From the previous commits and closed pull-requests, we can

automatically extract a matrix that represents the expertise of reviewers. Expertise value is
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defined as the number of times that the reviewer reviewed the same file. In fact, for every

file, the matrix keeps track of reviewers who reviewed that specific file and how many times

every reviewer reviewed that particular file.

FR is a P ×M matrix where each entry frk,i represents the number of times reviewer

ri reviewed or modified file fk where i ∈ {1, 2, . . . ,M}, k ∈ {1, 2, . . . , P}, P is total number

of files requested to be reviewed and M total number of reviewers working on the project.

This matrix represents how familiar is each reviewer with each file, which is used as a proxy

measure for expertise.

FR = (fr(k,i))ε
P×M (9.1)

9.3.3.2 Reviewer-Developer Collaboration Model

To take the socio-technical factor into account when searching for the best reviewers

to review a code change, we extracted the collaborations between reviewers and developers

from the history of closed pull-requests. In fact, for every potential recommended reviewer,

we extract both the list of developers and the files per pull-request that he/she reviewed

or modified in the past. Then, we calculated for each pair (reviewer,developer) the total

number of commonly modified files. Note that the reviewer can be found in the comments

of the pull-requests of the submitter (developer). Thus, a ”Collaborations” matrix DR is

automatically created.

To sum up, DR is a N ×M matrix where each entry drj,i represents the number of times

reviewer ri reviewed a file changed by developer dj where i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N},

N is total number of developers working on the project and M total number of reviewers

working on the project. In fact, drj,i is defined as the number of files that the reviewer

and the developer collaborated together (reviewed or modified) in the past. This matrix

represents the social connections between reviewers and developers.
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DR = (dr(j,i))ε
N×M (9.2)

9.3.3.3 Availability Model

To estimate the availability of peer reviewers, we considered of the number of files per open

pull-requests and numbers of commits where they are currently involved. We represented the

availability (workload) in a vector A = [a1, a2, . . . , aM ] where ai represents the total number

of files of open pull requests and commits for a reviewer ri.

Data. For expertise and collaborations, we considered all the data since the start of the

project because we believe that more information about the expertise and collaborations

of the developers is useful in assigning the appropriate reviewer. Regarding the availability

model, we considered the last 7 days of open pull requests because we wanted to have an

estimate of the current workload of the reviewers.

9.3.4 Problem Formulation

9.3.4.1 Solution Representation

The solution of the optimization problem is a matrix S that contains an integer value

o ∈ {0, 1, 2, . . . ,M} for entry sk,i denoting the recommended order (rank) for the reviewer

ri to review file fk. This matrix contains P rows and M columns. P is the number of files

that contains code changes to be reviewed and M is the number of potential reviewers. To

initialize the matrix S, we first extract the number M because it represents the number of

candidate reviewers for the files to be reviewed in the submitted pull-request. Second, we

extract the files to be reviewed in the pull-request to review. Then, initially, each S[k,i] will

take a distinct random number. Assigning 0 to S[k,i] means that the kth developer is not

assigned to review the ith file and assigning an integer 0¡o¡=M means that the developer

is assigned to review the ith changed file and his rank is o within the list of appropriate

reviewers.
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Figure 9.3: An example of our solution representation. Red: this reviewer is not recommended to review the
file; green: the most appropriate reviewer for the file; and purple: recommended, but the least appropriate
reviewer for the file.

After each iteration, the genetic algorithm decides if a reviewer is suitable for a review

assignment for a specific file or not. If yes, it will decide the rank of that reviewer, compared

to other candidate reviewers for the same file, based on our three objectives ( defined in the

section 9.3.4.2).

An example of a two-dimensional solution representation is illustrated in Figure 9.3. Let

say we have seven reviewers who are working on the project: Brian, Matt, John, Alex, David,

Jack and Zuul, and there are k files with code changes. Based on our solution representation,

we suggest which reviewers are appropriate for reviewing which file(s) and in what order.

In this example, Brian is not recommended to review file1 and file2, but he is the most

appropriate reviewer to review the changes in filek. To review file1, Matt is the second best

reviewer and Zuul is the third best one. To sum up, our multi-objective algorithm outputs

reviewer-file matrix ( as shown in Figure 9.3) which assigns reviewers to all the files changed

in the submitted pull-request. Thus, for each pull-request (PR) we rank the reviewers based

on how many files in that PR he/she is able to review taking into consideration the different

fitness functions.
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9.3.4.2 Fitness Functions

In our approach, we aim to optimize three fitness functions. The first and the second

ones are formulated to maximize the expertise and the availability of the reviewers. While

the third fitness function is formulated to minimize the social connections between reviewers

and developers in the hope of reducing human bias. The motivation of our multi-objective

approach is aligned with the observation of a recent study at Microsoft [298] highlighting

that promoting diversity depends on the norms of the team, i.e., some teams prefer diverse,

some teams prefer close connections. While previous collaborations between developers and

reviewers could reduce the tension around the review task, the extensive former interac-

tions/collaborations can be an indication of light/weak review to approve code quickly to

meet release deadlines especially when associated with low expertise. The multi-objective

approach proposed in this research work generates as an output a set of non-dominated solu-

tions (Pareto front). It is up to the team manager to select the reviewers assignment solution

based on their preferences. If the team prefers close connection then the selected/preferred

solution from the Pareto front will be in the region of interest where the objective of col-

laborations is high otherwise the selected solution will be in the area of the Pareto front

where the value of collaboration is low. Our goal is to provide a diverse set of good reviewers

assignment solutions rather than only one solution then the user can select the preferred one

based on his/her preferences.

We present in the following our three fitness functions: availability, expertise and collab-

orations.

Availability. The availability is the inverse of the estimated wait until reviewers that

are selected to work on a selected set of file S become available. In our case, the waiting

period is deducted from the workload that the reviewer has. We considered the workload as

the combination of the number of commits submitted recently (during the last 7 days) and

the total number of files for all open pull-requests.
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Availability =
1∑P

k=1

∑M
i=1 ai ∗ S[k, i]

, sk,i > 0 (9.3)

where a = {a1, a2, . . . , aM} is an array that contains the tasks queued for a reviewer. ai

represents the number of tasks in the queue for the reviewer ri. P is total number of files

requested to be reviewed and M is total number of reviewers working on the project.

Expertise Considering File Priority. PR is a vector of weights that defines how

urgently a file needs to be reviewed. For a file fk, the priority score will take 1 if the tag

”priority” is used in the pull-request, otherwise, the priority will be 0. We used both FR

and PR to formulate the reviewer expertise as an objective.

Expertise =
P∑

k=1

M∑
i=1

FR[k, i] + PR[k]

S[k, i]
, sk,i > 0 (9.4)

where M is total number of reviewers working on the project and P is total number of

developers working on the project. FR is a File-Reviewer matrix and S[k, i] represents the

rank of the reviewers in the solution S. In fact, We are ranking the reviewers from 0 to P .

For instance, if we have P = 7 developers (potential reviewers), a reviewer with rank 2 would

be more appropriate than a reviewer with rank 4 to review the assigned file.

Both fitness functions ”availability” and ”expertise” are to be maximized. Thus, a lower

rank (more suitable reviewer) would result in a higher fitness function (availability or ex-

pertise) since the rank (S[k, i]) is in the denominator. Therefore, the top ranked developers

with high expertise/availability would be more likely to survive for the next evaluations of

the multi-objective algorithm.

Collaboration. It is computed as the sum of all connections between recommended

reviewers selected to work with a selected set of developers:

Collaboration =
N∑
k=1

P∑
j=1

M∑
i=1

DR[j, i] ∗ FD[k, j] ∗ (S[k, j] > 0) (9.5)

Where (s[k, j] > 0) is a binary mask for S[k, j], meaning each entry with value 0 will
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remain 0 and each entry with value greater than 0 will become 1. P is total number of files

requested to be reviewed, M is total number of reviewers working on the project and N

is total number of developers working on the project. DR is a Developer-Reviewer matrix

and FD is a File-Developer matrix where FD[i, j] represents the number of times that the

developer i worked on the file j. Therefore, the developer who changed the file under review

(one or many times) can be assigned as a reviewer. The two matrix DR and FD are created

during the data extraction step.

9.3.4.3 Change Operators

We applied single point crossover and swap mutation to explore and exploit the search

space. Regarding crossover, we deploy a single random cut-point crossover. This operator

is performed by generating a random crossover point. The cut-point is a binary block from

crossover point K, which is a row-index and a column- index of a solution, to the end of

the solution is copied from one parent, the rest is copied from the second parent. Then, it

exchanges the sub-sequences before and after K between two parent individuals to create

two offspring. In case we generate any infeasible offspring we apply a repair mechanism.

Our mutation—bit inversion changes the new offspring by swapping two rows in the

matrix of the solution. Mutation can occur at each row in the matrix with some probability.

The purpose of mutation is to prevent all solutions in the population falling into a local

optimum.

9.4 Experiment and results

To evaluate our approach for recommending relevant peer reviewers, we conducted a

set of experiments based on different versions of 9 open source systems. Due the stochastic

nature of search algorithms, each experiment was repeated 30 times and the results were sub-

sequently and statistically analyzed with the aim of comparing our multi-objective approach

with both a mono-objective search technique based on an aggregation of expertise and col-
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laborations [79] and also all the three objectives (AEC GA), and existing tools not based on

heuristic search cHRev[299], REVFINDER[81], and ReviewBot[71] that only use expertise

models without considering collaborations and availability of peer reviewers. Furthermore,

we conducted an ablation study to compare our approach with three multi-objective variants

considering two out of the three objectives (AC NSAG-II, AE NSGA-II and EC NSGA-II).

All these existing studies were already evaluated in the literature on the same projects con-

sidered in this validation and the associated data is available thus we did not find a need

to re-implement them. In this section, we present our research questions followed by exper-

imental settings and parameters. Finally, we discuss our results for each of those research

questions.

9.4.1 Research Questions

We focused on the following three research questions to evaluate the efficiency of our

approach:

• RQ1. (Efficiency) Can the proposed approach precisely identify relevant peer review-

ers?

• RQ2. (Comparison to search-based techniques) Does the proposed multi-objective

approach perform significantly better than an existing mono-objective formulation ag-

gregating expertise and collaboration [79], a mono-objective aggregation of all the three

objectives (AEC GA) and variants of our multi-objective search considering two out

of the three objectives (NSGA-II, AE NSGA-II and EC NSGA-II)?

• RQ3. (Comparison to state-of-the-art) Does our approach perform significantly better

than existing peer reviewer recommendation techniques not based on heuristic search?

To answer RQ1, we validated the proposed multi-objective technique on 9 medium to

large-size open-source systems, as detailed in the next section, to evaluate the correctness

of our code-reviewer recommendation framework. To ensure a fair comparison with existing
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techniques, we followed a similar evaluation procedure by taking the most recent 1000 reviews

and the reviewers assigned to these pull-requests as the ground truth. We built the different

expertise, availability and collaborations models based on the review data just before the

pull-request to evaluate in order to assign peer reviewers. We used GitHub API to extract the

information about the pull request. From the information extracted, there is a tag ’reviewer’

which contains the name of the reviewer. The name of the reviewer is also extracted from the

comments under the pull request and this information is also provided by GitHub API.To

this end, we used the following evaluation metrics:

• Precision@k denotes the number of correct recommended peer reviewers in the top

k of recommended ones by the solution divided by the total number of peer reviewer

recommendations to inspect.

• Recall@k denotes the number of correct recommended peer reviewers in the top k of

recommended ones by the solution divided by the total number of expected reviewers

to be recommended based on the ground truth.

• MMR@k measures the mean reciprocal rank which is an average rank of correct

reviewers in the recommendation list. The higher the value the better.

Since the number of involved reviewers in each pull-request evaluation is limited in general

to a few developers, we calculate these precision and recall metrics with different k values,

1, 3, 5 and 10.

To answer RQ2, we compared, using the above metrics, the performance of our multi-

objective approach with an existing mono-objective formulation, based on a Genetic Algo-

rithm, aggregating the two objectives of expertise and collaboration into one objective as the

sum of them with equal weight [79]. We selected that mono-objective approach since it is

the closest one to our work and already outperformed random search and other metaheuris-

tic algorithms (simulated annealing and Particle Swarm Optimization) based on the results

presented in [79]. Furthermore, we implemented a mono-objective approach aggregating all
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the three objectives (AEC GA) in one fitness function to evaluate the impact of adding the

availability objective on the quality of the results by comparing with [79]. In addition, we

compared different variants of our multi-objective approach including only two out of the

three objectives (NSGA-II AE, AC and EC) to evaluate the contribution of each objective

to the quality of the assignment results. The comparison between NSGA-II EC and the

mono-objective search using only expertise and collaboration [79] can confirm the impact of

the conflicting nature of the two objectives on the quality of the results.

To answer RQ3, we compared our multi-objective approach to different existing tech-

niques not based on heuristic search:

• REVFINDER [81] uses the paths of the files to be reviewed to find reviewers who

evaluated files in the same location.

• cHRev [299] is a hybrid approach using the frequency and recency of the history of the

reviews to find relevant peer reviewers.

• ReviewBot [71] uses static analysis tools to find experienced reviewers

We limited the evaluation in RQ2 and RQ3 to Android, OpenStack, and Qt to ensure

a fair comparison based on an existing benchmark [81, 300, 79]. More details about these

projects will be presented in the next section.

9.4.2 Studied Projects

As described in Table 9.1, we used a data set of 9 open-source systems including 3 projects

(OpenStack, Android and Qt) from existing code review benchmarks [300, 81, 79]. We used

our tool to collect the data about Atomix, Tablesaw, Vavr, Takes, Dkpro-core, and Pac4j.

In fact, our tool is implemented in a way that it takes a link to the project repository on

GitHub and extracts all the needed data automatically similar to the existing public dataset

for OpenStack, Android and Qt. To collect the data, we used GitHub API to send multiple

queries to GitHub to get the needed information about the project under study. Actually,
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GitHub API provides different queries to extract the information about the pull requests,

its reviewers, its changed files and all the committer names. The response to each query is

a JSON file. Thus, we had to perform some cleaning and extracting steps to keep only the

needed pieces of information.

• Atomix: A fault-tolerant distributed coordination framework.

• Tablesaw: A data science platform that includes a data-frame, an embedded column

store, and hundreds of methods to transform, summarize, or filter data.

• Vavr: A functional component library that provides persistent data types and func-

tional control structures.

• Takes: Opinionated web framework which is built around the concepts of True Object-

Oriented Programming and immutability.

• Dkpro-core: A collection of reusable NLP tools for linguistic pre-processing, machine

learning, lexical resources, etc.

• Pac4j: A security engine.

• Android: A software stack for mobile devices developed by Google.

• OpenStack: A large platform for cloud computing to manage a data-center.

• Qt: A widget toolkit for creating graphical user interfaces.

Table 9.1 shows statistics for the analyzed systems including the number of reviewers,

the number of reviews in a project, the size, etc. All collected reviews are from closed

pull-requests and contain at least one file. We selected these open source projects for our

experiments since they contain a large number of code reviews and they have been studied

in the software review literature [299, 81, 71] to ensure a fair comparison with the current

state of the art.
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Table 9.1: Summary of Studied Systems

Project (Studied Period)
# of
classes

# of
reviewers

# of
files

# of
reviews

Atomix (04/2017-11/2018) 1459 136 182280 4237
Tablesaw (06/2016-03/2018) 224 12 52837 1930
Vavr (04/2016-08/2018) 301 123 126683 4188
Takes (07/2015-05/2018) 472 264 50369 2687
Dkpro-core (03/2015-08/2018) 376 411 54695 4564
Pac4j (08/2014-10/2017) 302 29 31916 2282
Android (10/2008-01/2012) 563 94 26840 5126
OpenStack (07/2011-05/2012) 539 82 16953 6586
Qt (05/2011-05/2012) 782 202 78401 23810

9.4.3 Parameter Tuning and Statistical Tests

Since metaheuristic algorithms are stochastic optimizers, they can provide different re-

sults for the same problem instance from one run to another. For this reason, our exper-

imental study was performed based on 30 independent simulation runs for each problem

instance and the obtained results were statistically analyzed using the Friedman test with

a 95% confidence level (α = 5%). Since the Friedman test results were significant, we used

the Wilcoxon rank sum test [184] in a pairwise fashion (AEC NSGA-II versus each of the

competitor approaches) in order to detect significant performance differences between the al-

gorithms under comparison based on 30 independent runs. For deterministic techniques, we

did not perform 30 independent runs. The Wilcoxon test allows testing the null hypothesis

H0 that states that both algorithms medians’ values for a particular metric are not statisti-

cally different against H1 which states the opposite. The Wilcoxon test does not require that

the data sets follow a normal distribution since it operates on values’ ranks instead of oper-

ating on the values themselves. Since we are comparing more than two different algorithms,

we performed several pairwise comparisons based on Wilcoxon test to detect the statistical

difference in terms of performance. To compare two algorithms based on a particular metric,

we record the obtained metric’s values for both algorithms over 30 runs. For deterministic

techniques, we considered one value of each metric on each system. After that, we compute
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the metric’s median value for each algorithm. Besides, we executed the Wilcoxon test with a

95% confidence level (α = 5%) on the recorded metric’s values using the Wilcoxon MATLAB

routine. If the returned p-value is less than 0.05 then we reject H0 and we can state that one

algorithm outperforms the other, otherwise we cannot say anything in terms of performance

difference between the two algorithms.

The above tests allow verifying whether the results are statistically different or not.

However, it does not give any idea about the difference in magnitude. To this end, we used

the Vargha and Delaney’s A statistics which are non-parametric effect size measures. In our

context, given the different performance metrics (such as Precision@k and Recall@k), the

A statistics measure the probability that running an algorithm B1 (NSGA-II) yields better

performance than running another algorithm B2 (such as GA). If the two algorithms are

equivalent, then A = 0.5.

An often-omitted aspect in metaheuristic search is the tuning of algorithm parameters.

In fact, parameter setting significantly influences the performance of a search algorithm

on a particular problem. For this reason, for each search algorithm and each system, we

performed a set of experiments using several population sizes: 10, 20, 30, 40 and 50. The

stopping criterion was set to 100,000 fitness evaluations for all search algorithms to ensure

fairness of comparison. We used a high number of evaluations as a stopping criterion since

our approach requires multiple objectives. Each algorithm was executed 30 times with each

configuration and then the comparison between the configurations was performed based on

different metrics described previously using the Friedman test. The other parameter values

were fixed by trial and error and are as follows: (1) crossover probability = 0.5; mutation

probability = 0.4 where the probability of gene modification is 0.2. We used the same

parameters of the existing work of Ouni et al., called RevRec, [79] for a fair comparison.
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9.4.4 Results

Results for RQ1. The results of Tables 9.2-9.3 and Figure 9.4 confirm the efficiency of

our multi-objective approach, based on NSGA-II, to identify relevant peer reviewers for pull-

requests from all the 9 open source systems. Tables 9.2 and 9.3 show the average precision@k

and recall@k results of our NSGA-II AEC technique on the various systems, with k equal to

1, 3, 5 and 10. For example, most of the recommended peer reviewers in the top 3 (k=3) are

relevant (compared to the expected results) with precision over 60% on all the 9 systems.

The lowest precision is around 47% for k=10 which still could be considered acceptable due

to a large number of possible reviewers in the selected systems.

In terms of recall, Table 9.3 confirms that the majority of the expected peer reviewers

to recommend are located in the top 10 (k=10) with a recall score over 53%. The highest

recall is 78% for k=10 (Qt project). Since several pull-requests may require more than one

peer reviewer, most of the highest recall scores are obtained for k=5 and k =10.

Figure 9.4 shows that NSGA-II was able to efficiently rank the recommended peer-

reviewers. In fact, the median MMR on the different systems is higher than 68% with

the highest score of 79% for the Open Stack project. This outcome is important since the

efficient ranking of the recommended peer reviewer is one of the main motivations of our

approach that consider not only the expertise but also the availability and the collaborations

among reviewers. The availability in our case is considered based on the number of commits

and files that a programmer is working on in the time period closest to the evaluated pull-

request. We noticed that our technique does not have a bias toward the evaluated system.

We had almost consistent average scores of precision, recall and the mean reciprocal rank.

Results for RQ2. Tables 9.2-9.3 and Figure 9.4 confirm that our multi-objective ap-

proach (AEC NSGA-II) is better, on average, than the existing mono-objective technique,

RevRec [79], based on the 3 metrics of precision, recall and MMR on all the 9 systems.

The median precision and recall values of the RevRec tool on the 9 systems are lower than

56% as described in Table 9.2 for all values of k (1, 3, 5 and 10). Furthermore, the EC
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Table 9.2: Median Precision@k results for the search algorithms (multi-objective variants) including RevRec
(mono-objective search) on all the systems based on 30 runs. All the results are statistically significant using
the Friedman test and Wilcoxon with a 95% confidence level (α = 5%)

Project k
Precision@k

AEC

(NSGA-II)
RevRec (GA) AEC (GA)

AC

(NSGA-II)

AE

(NSGA-II)

EC

(NSGA-II)

Atomix

1 0.62 0.56 0.60 0.52 0.58 0.60

3 0.58 0.44 0.47 0.41 0.44 0.51

5 0.52 0.38 0.43 0.36 0.40 0.47

10 0.47 0.41 0.41 0.38 0.41 0.45

Tablesaw

1 0.57 0.49 0.54 0.44 0.52 0.54

3 0.64 0.52 0.56 0.41 0.52 0.60

5 0.61 0.44 0.51 0.38 0.48 0.56

10 0.55 0.41 0.46 0.40 0.44 0.50

Vavr

1 0.62 0.53 0.56 0.46 0.53 0.58

3 0.58 0.47 0.52 0.41 0.44 0.54

5 0.64 0.56 0.59 0.47 0.52 0.61

10 0.66 0.51 0.56 0.44 0.53 0.60

Takes

1 0.57 0.48 0.52 0.42 0.50 0.52

3 0.62 0.56 0.59 0.48 0.52 0.59

5 0.55 0.46 0.50 0.40 0.43 0.52

10 0.53 0.44 0.47 0.37 0.44 0.50

Dkpro-core

1 0.63 0.52 0.56 0.41 0.50 0.59

3 0.57 0.47 0.51 0.34 0.43 0.54

5 0.66 0.55 0.59 0.42 0.55 0.61

10 0.59 0.43 0.49 0.37 0.47 0.52

Pac4j

1 0.61 0.52 0.56 0.41 0.54 0.58

3 0.56 0.43 0.47 0.38 0.45 0.49

5 0.59 0.39 0.46 0.33 0.42 0.51

10 0.54 0.42 0.46 0.36 0.40 0.49

Android

1 0.68 0.58 0.62 0.51 0.60 0.64

3 0.62 0.47 0.53 0.44 0.51 0.56

5 0.53 0.39 0.43 0.37 0.41 0.45

10 0.47 0.34 0.39 0.31 0.36 0.41

OpenStack

1 0.72 0.59 0.64 0.52 0.61 0.64

3 0.61 0.51 0.54 0.46 0.52 0.56

5 0.64 0.43 0.5 0.39 0.48 0.52

10 0.54 0.36 0.39 0.33 0.36 0.43

Qt

1 0.58 0.49 0.51 0.46 0.47 0.53

3 0.61 0.45 0.50 0.43 0.43 0.55

5 0.54 0.41 0.45 0.39 0.38 0.48

10 0.46 0.34 0.39 0.31 0.32 0.39

NSGA-II variant of our approach outperformed the mono-objective search aggregating the

same objectives [79] based on the metrics on almost all the systems. Thus, an interesting

observation is the clear conflicting objectives of expertise and collaborations which confirms
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Table 9.3: Median Recall@k results for the search algorithms (multi-objective variants) including RevRec
(mono-objective search) on all the systems based on 30 runs. All the results are statistically significant using
the Friedman test and Wilcoxon test with a 95% confidence level (α = 5%)

Project k
Recall@k

AEC
(NSGA-II)

RevRec (GA) AEC (GA)
AC

(NSGA-II)
AE

(NSGA-II)
EC

(NSGA-II)

Atomix

1 0.56 0.43 0.48 0.39 0.46 0.51
3 0.52 0.39 0.44 0.36 0.44 0.47
5 0.61 0.46 0.53 0.41 0.50 0.58
10 0.58 0.34 0.45 0.39 0.43 0.56

Tablesaw

1 0.51 0.43 0.48 0.37 0.46 0.48
3 0.55 0.41 0.46 0.36 0.43 0.52
5 0.52 0.38 0.44 0.35 0.40 0.50
10 0.59 0.33 0.50 0.36 0.42 0.56

Vavr

1 0.53 0.41 0.48 0.38 0.43 0.50
3 0.62 0.39 0.52 0.35 0.46 0.59
5 0.55 0.42 0.50 0.40 0.44 0.52
10 0.59 0.38 0.46 0.34 0.41 0.54

Takes

1 0.49 0.41 0.46 0.38 0.44 0.46
3 0.53 0.44 0.47 0.39 0.42 0.50
5 0.62 0.37 0.43 0.31 0.40 0.59
10 0.66 0.34 0.51 0.32 0.39 0.62

Dkpro-core

1 0.54 0.47 0.44 0.40 0.42 0.51
3 0.51 0.41 0.46 0.39 0.43 0.48
5 0.58 0.39 0.49 0.36 0.46 0.53
10 0.67 0.35 0.59 0.31 0.56 0.63

Pac4j

1 0.56 0.41 0.49 0.38 0.44 0.53
3 0.62 0.36 0.53 0.31 0.50 0.58
5 0.51 0.31 0.39 0.28 0.35 0.47
10 0.63 0.38 0.49 0.31 0.47 0.60

Android

1 0.57 0.38 0.51 0.36 0.48 0.54
3 0.72 0.51 0.63 0.48 0.60 0.67
5 0.76 0.61 0.66 0.53 0.63 0.71
10 0.79 0.71 0.77 0.66 0.71 0.77

OpenStack

1 0.59 0.41 0.49 0.38 0.45 0.56
3 0.68 0.54 0.62 0.51 0.60 0.65
5 0.76 0.61 0.68 0.53 0.64 0.72
10 0.81 0.74 0.77 0.68 0.69 0.77

Qt

1 0.56 0.41 0.48 0.38 0.43 0.50
3 0.66 0.50 0.58 0.47 0.50 0.61
5 0.68 0.59 0.63 0.53 0.61 0.63
10 0.76 0.65 0.68 0.57 0.65 0.71

our observation in the eBay survey that collaborations does not mean qualified reviewers

(with high expertise) are assigned to review the pull-requests. The same observation is valid

for the ranking of recommended peer reviewers based on the MMR measure as described in
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Figure 9.4. For instance, the MMR score for AEC NSGA-II is 78% on the Takes project

while it is limited to 61% for RevRec.

The outperformance of NSGA-II can be explained as well by the consideration of the

new objective of availability which may reflect the reality of how peer reviewers are man-

ually assigned to reduce delays. In fact, the aggregation of all the three objectives in a

mono-objective search (AEC GA) is performing better than [79] which confirms the positive

contribution of the availibility objective on the quality of the results. The least performance

of our multi-objective approach in terms of MMR ( slightly less than RevRec) was observed

for the Dkpro-core and pac4j projects. While investigating the reasons behind this decreased

performance, we found out that the main reason is that these projects have a large enough

number of contributors comparing to their sizes(in terms of files, commits and pull-request).

In fact, the ratio ’contributors to size’ is larger than the other projects. Thus, the availability

objective may not represent a big concern for these projects unlike the others since they have

enough contributors to review the changed files/pull-requests.

All these results were statistically significant on 30 independent runs using the Friedman

test and Wilcoxon test (pairwise comparison) with a 95% confidence level (α < 5%). We

also found the results of the Vargha Delaney A12 statistic are higher than 0.8 (large) on all

the systems which confirms the significant outperformance of AEC NSGA-II comparing to

the mono-objective formulation. The detailed effect size results can be found in Tables 9.4

and 9.5.

Table 9.4: The effect size for Precision based on 30 runs when comparing AEC NSGA-II versus each of the
search algorithms.

Project Effect Size-RevRec (GA) Effect Size-AEC (GA) Effect Size-AC (NSGA-II) Effect Size-AE (NSGA-II) Effect Size-EC (NSGA-II)
Atomix 0.52 0.61 0.82 0.76 0.58
Tablesaw 0.39 0.72 0.79 0.73 0.63
Vavr 0.87 0.63 0.86 0.78 0.71
Takes 0.64 0.68 0.91 0.83 0.68
Dkpro-core 0.92 0.77 0.83 0.71 0.72
Pac4j 0.86 0.72 0.72 0.84 0.66
Android 0.52 0.64 0.77 0.92 0.74
OpenStack 0.76 0.68 0.84 0.81 0.63
Qt 0.94 0.71 0.92 0.83 0.61

Results for RQ3. Since it is not sufficient to compare our approach with just search-
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Table 9.5: The effect size for Recall based on 30 runs when comparing AEC NSGA-II with each of the
search algorithms.

Project Effect Size-RevRec (GA) Effect Size-AEC (GA) Effect Size-AC (NSGA-II) Effect Size-AE (NSGA-II) Effect Size-EC (NSGA-II)
Atomix 0.64 0.66 0.83 0.72 0.61
Tablesaw 0.82 0.62 0.75 0.69 0.53
Vavr 0.93 0.71 0.83 0.77 0.64
Takes 0.72 0.63 0.91 0.82 0.68
Dkpro-core 0.89 0.74 0.84 0.91 0.59
Pac4j 0.74 0.61 0.88 0.73 0.71
Android 0.91 0.77 0.94 0.68 0.63
OpenStack 0.83 0.82 0.83 0.73 0.69
Qt 0.72 0.64 0.86 0.77 0.57

Figure 9.4: Median MMR results for the different search algorithms on all systems based on 30 runs. All
the results are statistically significant using the Friedman test with a 95% confidence level (α = 5%)

based algorithms, we compared the performance of NSGA-II to three different peer reviewer

recommendation techniques which are not based on heuristic search, as described in Tables

9.6 and 9.7, and Figure 9.5.

Similar to the comparison with RevRec, we used the precision@k, recall@k and MMR

measures with k ranging from 1 to 10. NSGA-II achieves better results, on average than

the other three methods on all the three projects. For example, our approach achieved a

Precision@k median of 63%, 59%, 48% and 43% are achieved for k= 1, 3, 5 and 10 respectively

as described in Table 9.6. In comparison, CHrev achieved a median Precision@k of 58%,

47%, 39%, and 34% are obtained for k= 1, 3, 5 and 10. CHRev has the highest precision

among all the remaining tools of REVFINDER and ReviewBot. Similar observations are
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also valid for the recall@k and MMR.

Table 9.6: Median Precision@k results for all the approaches on three systems based on 30 runs. All the
results are statistically significant using the Friedman test and Wilcoxon test with a 95% confidence level (α
= 5%)

Project K
Precision@k

ACE
(NSGA-II)

AEC
(GA)

AC
(NSGA-II)

AE
(NSGA-II)

EC
(NSGA-II)

RevRec
(GA)

cHRev REVFINDER ReviewBot

Android

1 0.68 0.62 0.51 0.60 0.64 0.58 0.50 0.34 0.21
3 0.62 0.53 0.44 0.51 0.56 0.47 0.35 0.25 0.17
5 0.53 0.43 0.37 0.41 0.45 0.39 0.30 0.22 0.12
10 0.47 0.39 0.31 0.36 0.41 0.34 0.26 0.18 0.09

OpenStack

1 0.72 0.64 0.52 0.61 0.64 0.59 0.48 0.32 0.24
3 0.61 0.54 0.46 0.52 0.56 0.51 0.42 0.27 0.20
5 0.64 0.50 0.39 0.48 0.52 0.43 0.38 0.25 0.16
10 0.54 0.39 0.33 0.36 0.43 0.36 0.31 0.21 0.11

Qt

1 0.58 0.51 0.46 0.47 0.53 0.49 0.45 0.30 0.22
3 0.61 0.50 0.43 0.43 0.55 0.45 0.40 0.27 0.19
5 0.54 0.45 0.39 0.38 0.48 0.41 0.37 0.21 0.13
10 0.46 0.39 0.31 0.32 0.39 0.34 0.31 0.16 0.09

Table 9.7: Median Recall@k results for all the approaches on three systems based on 30 runs. All the
results are statistically significant using the Friedman test and Wilcoxon test with a 95% confidence level (α
= 5%)

Project K
Recall@k

ACE
(NSGA-II)

AEC
(GA)

AC
(NSGA-II)

AE
(NSGA-II)

EC
(NSGA-II)

RevRec
(GA)

cHRev REVFINDER ReviewBot

Android

1 0.57 0.51 0.36 0.48 0.54 0.38 0.27 0.18 0.11
3 0.72 0.63 0.48 0.60 0.67 0.51 0.50 0.39 0.19
5 0.76 0.66 0.53 0.63 0.71 0.61 0.61 0.48 0.29
10 0.79 0.77 0.66 0.71 0.77 0.71 0.65 0.54 0.38

OpenStack

1 0.59 0.49 0.38 0.45 0.56 0.41 0.31 0.15 0.12
3 0.68 0.62 0.51 0.60 0.65 0.54 0.39 0.29 0.20
5 0.76 0.68 0.53 0.64 0.72 0.61 0.52 0.37 0.32
10 0.81 0.77 0.68 0.69 0.77 0.74 0.66 0.46 0.39

Qt

1 0.56 0.48 0.38 0.43 0.50 0.41 0.33 0.14 0.90
3 0.66 0.58 0.47 0.50 0.61 0.50 0.47 0.27 0.16
5 0.68 0.63 0.53 0.61 0.63 0.59 0.52 0.35 0.24
10 0.76 0.68 0.57 0.65 0.71 0.65 0.60 0.43 0.30

9.5 Threats to Validity

Conclusion validity is concerned with the statistical relationship between the treatment

and the outcome. We addressed conclusion threats to validity by performing 30 independent

simulation runs for each problem instance and statistically analyzing the obtained results

using the Friedman test with a 95% confidence level (α = 5%). However, the parameter

tuning of the different optimization algorithms used in our experiments creates another
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Figure 9.5: Median MMR results for all the approaches on three systems based on 30 runs. All the results
are statistically significant using the Friedman test and Wilcoxon test with a 95% confidence level (α = 5%)

internal threat that we need to evaluate in our future work. The parameter values used in

our experiments were determined by trial-and-error [301]. In addition, the estimation of the

availability of reviewers on open source systems may not be very accurate.

Construct validity is concerned with the relationship between theory and what is ob-

served. The definition of expertise and collaborations can be subjective and hard to formal-

ize thus further empirical studies are required to validate the different metrics used in our

work. We are planning to consider other possible formations as part of our future work and

compare between them. Additionally, our current definition of the availability needs further

improvement. In fact, reviewers can be assigned other types of development activities than

coding ( e.g., testing, design/architecture, requirements analysis, etc.). The data about these

activities are not always available. However, the formulation of our fitness function is easy to

modify in a way that enables managers to enter the number of tasks per reviewer, especially

the ones that they are beyond code reviews.

External validity refers to the generalizability of our findings. In this study, we performed

our experiments on different widely used open-source systems belonging to different domains
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and having different sizes. However, we cannot assert that our results can be generalized to

other systems. Future replications of this study are necessary to confirm our results with a

larger set of pull requests and reviewers.

Another threat to our approach could be the effort required by the manager to select

the preferred solution. In general, the preferences are defined based on the current context

such as: the urgency to release code quickly, available resources, speedy growth phase of the

project, etc. These different contexts are not changing daily and they are not related to only

one or few pull-requests but they are more related to the situation of the whole project. To

mitigate this threat, we provide the distribution of the solutions of the Pareto front which

can be ranked based on the preferred fitness functions or based on the current context. Thus,

the preferred solution can be selected in an easier and faster way.

9.6 Conclusion

We formulated the recommendation of peer code reviewers as a multi-objective problem

to find a trade-off between the competing objectives of expertise, availability and history of

collaborations. Unlike existing approaches, our approach can sacrifice expertise to avoid a

delay caused by limited resources (e.g. low peer reviewer availability). Our evaluation results

confirm the efficiency of our multi-objective approach on 9 open source projects in finding

better reviewer recommendations, as compared to the state of the art [79]. Furthermore, our

survey with practitioners highlighted the importance of managing code reviews to reduce

delays while ensuring high expertise as much as possible.
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CHAPTER X

Conclusion

The features and improvements that were delivered in this dissertation and the results

that were achieved are summarized in this chapter. In addition, the suggested possible

improvements to the proposed contributions are discussed.

10.1 Summary

In Chapter I and Chapter II, we defined the research context and the challenges, the

contributions of this thesis, required background, and state-of-the-art and related works to

our approaches.

In Chapter III, we proposed a bi-level multi-objective approach for the web service

antipatterns detection problem. In our approach adaptation, the upper level generates a set

of detection rules which are a combination of QoS, Interface, and code level metrics, using

two conflicting fitness functions. The first objective is to maximize the coverage of both the

base of defect examples and artificial defects generated by the lower level and to minimize

the coverage of well-designed web service examples. The second objective is to minimize the

size of a detection rule. The lower level generates artificial defects that cannot be generated

by the upper-level detection rules which will help to generate fitter rules.

We implemented our proposed approach and evaluated it on a benchmark of 662 web

services and several common web service antipattern types. The empirical study shows that
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proposed bi-level multi-objective optimization approach outperforms our previous multi-

objective approach, bi-level approach and other state-of-the-art approaches.

In Chapter IV, we presented a novel way to enable interactive refactoring by combining

the exploration of quality improvements (objective space) and refactoring locations (decision

space). Our approach helped developers to quickly explore the Pareto front of refactoring

solutions that can be generated using multi-objective search. The clustering of the deci-

sion space helped the developers identify the most diverse refactoring solutions among ones

located within the same cluster in the objective space, improving some desired quality at-

tributes. To evaluate the effectiveness of our tool, we conducted an evaluation with human

subjects who evaluated the tool and compared it with the state-of-the-art refactoring tech-

niques. Our evaluation results provide evidence that the insights from both the decision and

objective spaces helped developers to quickly express their preferences and converge towards

relevant refactorings that met the developers’ expectations.

Therefore, in Chapter V, we presented a first attempt to recommend refactorings by an-

alyzing commit messages. The salient feature of the proposed RefCom approach is its ability

to capture developers need, from their commit messages, and propose to them refactorings

to enhance their changes to better address quality issues. To evaluate the effectiveness of our

technique, we applied it to six open-source projects and compared it with state-of-the-art

approaches that rely on static and dynamic analysis. Our results show promising evidence

on the usefulness of the proposed commit-based refactoring approach.

To assist developers in documenting changes in terms quality attributes improvement

and refactoring while submitting their code changes on GitHub, we presented in Chapter

VI, an interactive documentation bot to document the developers changes. The bot enables

the interaction with the developer to adjust the generated documentation. To evaluate the

correctness and the relevance of our bot, we selected developers to evaluate our bot on

different pull requests of 5 open-source projects. The results show clear evidence that our

bot helped developers documenting the quality improvement of the applied refactorings.
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Chapter VII is dedicated to our empirical study about refactoring documentation. In

fact, we used a combination of interviews and a survey to understand refactoring docu-

mentation from practitioners’ perspective. We started first with a set of interviews with

practitioners to define a refactoring documentation model. Then, we performed a large on-

line survey to gather the experiences of practitioners with the importance, frequency, and

difficulty of refactoring documentation for the different components of our model. We found

5 main important refactoring documentation components for practitioners.

The outcomes of this empirical study can be used to improve the quality of refactoring

documentation. Furthermore, researchers and tool builders can use the discovered compo-

nents and the experiences of the developers to build refactoring documentation generation

tools.

Furthermore, we addressed the problem of peer code reviewers recommendation in chapter

IX. We proposed a multi-objective approach to find a trade-off between the competing

objectives of expertise, availability and history of collaborations. Unlike existing approaches,

our approach can sacrifice expertise to avoid a delay caused by limited resources (e.g. low

peer reviewer availability).

Finally, in Chapter VIII, we have shown how NMT techniques can be enhanced to

address the problem of commit messages generation for composite code changes. Our NMT-

BERT model outperforms the state-of-the art techniques, shedding light on the importance

of working with a pretrained model as the source for embeddings. Diff files can be very

lengthy, which remains a problem that we are planning to address in the future. Lastly, we

consider this presented work as a step forward, suggesting solutions and insights on how to

advance the state-of-the-art techniques for commit messages generation.

10.2 Future Work

Some future works direction can be summarized as follows:

1. Nowadays, developers are continuously applying refactoring via commits/pull-requests
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in CI environment. Therefore, there is a need to establish an empirical study (e.g.

a large-scale survey) to understand the impact of continuous integration environment

on refactoring. Multiple factors can impact refactoring, especially in CI environment.

A new research study can focus on presenting continuous refactoring as multi-faced

complex problem from different dimensions such as technical, social and business per-

spectives.

2. Regarding composite changes documentation, we plan to extend our refactoring docu-

mentation bot to reduce the developer’s interaction effort and to improve the documen-

tation of complex changes via linking the quality changes with quality issues, also called

antipatterns. Once the complex changes are linked to the quality improvement and

quality issues, the bot can document the changes that affect a specific architectural

group. Additionally, the work can be extended by incorporating natural languages

techniques to understand the dependencies between complex changes and feed the new

knowledge into a better neural machine translation mode to generate more relevant

commit messages for the developer.

3. With the popular use of version control and issue tracking systems, developers suffer

from an increase workload to review code, deal with open issues, answer comments and

merge pull requests. Thus, many open issues are subject to remain unresolved. From

our research and previous analysis of code sources on GitHub (contributions V, VI,

VII, and VIII), we found significant number of open issues are related to quality issues

and refactoring and they remain open for long time as developers are busy with other

issues related to bugs and functional requirements. Therefore, it could be interesting as

future work to leverage the functionalities of our current documentation bot in addition

to other functionalities (e.g, refactoring documentation bot, antipatterns detection bot,

etc. ) to build a management bot that can continuously check a software repository

and try to support the developers and assist them in resolving the open issues related
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to quality and refactoring.

10.3 Publications List

• Soumaya Rebai, Marouane Kessentini, Hanzhang Wang, Bruce R. Maxim, ”Web ser-

vice design defects detection: A bi-level multi-objective approach.” Information and

Software Technology Journal, Vol 121: 106255, 21 pages, Impact factor: 2.92 (2020)

https://doi.org/10.1016/j.infsof.2019.106255

• S. Rebai, O. Ben Sghaier, V. Alizadeh, M. Kessentini and M. Chater, ”Interactive

Refactoring Documentation Bot,” 2019 19th IEEE International Working Conference

on Source Code Analysis and Manipulation (SCAM), Cleveland, OH, USA, 2019, pp.

152-162, Acceptance rate 24%

https://doi.org/10.1109/SCAM.2019.00026.

• Soumaya Rebai, Marouane Kessentini, Vahid Alizadeh, Oussama Ben Sghaier, and

Rick Kazman, ”Recommending Refactorings via Commit Message Analysis.” Infor-

mation and Software Technology (2020): Volume 126, 2020,106332, ISSN 0950-5849.

Impact factor: 2.92 (2020) https://doi.org/10.1016/j.infsof.2020.106332

• Soumaya Rebai, Vahid Alizadeh, Marouane Kessentini, Houcem Fehri, and Rick Kaz-

man, “Enabling Decision and Objective Space: Exploration for Interactive Multi-

Objective Refactoring.” IEEE Transactions on Software Engineering (2020), DOI:

10.1109/TSE.2020.3024814, Impact Factor 6.11.

• Rebai, Soumaya, Abderrahmen Amich, Somayeh Molaei, Marouane Kessentini, and

Rick Kazman. ”Multi-objective code reviewer recommendations: balancing exper-

tise, availability and collaborations.” Automated Software Engineering (2020): 1-28.

https://doi.org/10.1007/s10515-020-00275-6

• Soumaya Rebai, Siyuan Jiang, Marouane Kessentini, Weijing Huang and Fabio

240



Palomba , “Commit Message Generation of Composite Changes.” under review at

the IEEE Transactions in Software Engineering journal.

• Soumaya Rebai, Marouane Kessentini, Tushar Sharma and Thiago Ferreira , “4W+H

Model for Refactoring Documentation: A Practitioners’ Perspective.” under review

at the IEEE Transactions in Software Engineering journal.

241



BIBLIOGRAPHY

[1] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai, “An
interactive and dynamic search-based approach to software refactoring recommenda-
tions,” IEEE Transactions on Software Engineering, 2018.

[2] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort via clustering-
based multi-objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 464–474, ACM, 2018.

[3] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “Recom-
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