

Holistic Classification of Wind Turbine Performance

The Problem

Problem Statement: Design a system that compiles subsystem performance metrics into an overall turbine health score to allow for a holistic understanding of performance at the turbine- and site-level and to detect long-term issues.

- \mathbf{r}
- Wind energy is a key tool in decarbonizing the energy sector and combating climate change, and installed wind capacity continues to grow in the US and around the world.
- \mathbf{k}
 - Current wind energy capacity in the US is 118 GW, which is an increase of 14.2 GW from the previous year. Global wind energy capacity is 744 GW.
 - With a rapidly growing capacity, there is a continued need to quantify and understand holistic, long-term wind turbine performance and health.

Invenei

The Procedure

1. Identify Data Signals and Priority -> 2. Conduct Analyses Level

Subsystem	Data Signal	Priority	
Power Grid	Active Power	Highest	
	Reactive Power	Medium-Low	
	Current	Medium	
	Voltage	Medium	
Pitch Control	Blade Pitch Angle	Medium-High	
	Tip:Speed Ratio	High	
Digital Signals	Digital State	High	

- Filter out known offline periods
- Calculate: •
 - Ratio of measured active 0 power to rated power
 - Distribution of reactive 0 power
 - Standard deviation in blade 0 pitch angles
 - Time spent in each digital Ο state
 - Tip:speed ratio Ο
- Plot as a function of time and as a function of wind speed

3. Synthesize Findings into Health Score

- Compare plots of tip:speed ratio, duration of offline periods, deviation in blade pitch angles, and active power ratio to discern trends
- Brainstorm which calculated values could be used represent others
- Determine how much understanding would be lost in synthesizing scores

Existing Solutions:	Deviation from Power Curve	Turbine Reliability	Mean Time-to-Failure & Time-to-Repair	Gearbox & Drivetrain Health
------------------------	----------------------------------	------------------------	---	-----------------------------------

The Solution

A turbine health dashboard that shows:

- 1. The fraction of the year that the turbine is available to generate power, but does not generate power
- 2. The ratio of the measured active power to the rated active power
- 3. The standard deviation in blade pitch angle

Next Steps:

- Modify the "Fraction of the year available but not generating" metric to the total amount of energy that could have been generated
- Expand analysis to include different sites and multiple years

Acknowledgements:

Invenergy Mentor: Jim Klus, Manager, Performance Analytics Faculty Advisor: Margaret Wooldridge, Professor, Mechanical Engineering