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Introduction 
 
When processing image and video data for machine learning algorithms, a major obstacle that 
many research teams face is having to manually label the collected data before training can 
begin. This process can be incredibly slow, taking away valuable time and resources away from 
other necessary tasks, such as developing and tuning the machine learning algorithm or 
collecting a larger, more diverse set of data for testing. This, in turn, can lead to poor model 
performance during training and testing. In addition, much of this effort is often spent on 
labeling consecutive, nearly identical frames, which is redundant and adds little new 
information for the model to work with. The goal of this project is to expedite the labeling 
process by using key features within a video to detect and extract unique, high-information 
frames for manual labelling and propagating those labels to the rest of the dataset through 
interpolation. In this paper, the implementation, testing protocol, and observed results for this 
frame-skipping and interpolation algorithm are described, and further improvements and 
extensions are discussed. 
 
 
Motivation 
 
One major bottleneck that DEVIATE faces, as do a lot of small machine learning and computer 
vision research teams, is the process of data labelling. When working on a specific research 
task, especially one that requires collection of data rather than use of publicly available 
datasets, it is often necessary to label each frame or image in the image or video datasets by 
hand in order to ensure that the objects of interest are properly labelled throughout the 
dataset. Since most machine learning and computer vision models need to be trained on large 
datasets to achieve a reasonable degree of accuracy, this process can be time-consuming.  
 
While large research teams can afford to hire dedicated labelers or crowdsource their labelling 
tasks, small research teams often do not have this option. As such, these teams often have to 
choose between labelling and processing additional data or working on refining some other 
aspect of the model. In the long run, this results in machine learning models that 
underperform, either during the training process or upon use in a real-world application, since 
the models may not have been trained on a wide variety of data.  
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The goal of this capstone project is to expedite the labelling process by automating it, allowing 
researchers to incorporate a wider variety of training data or work on other aspects of the 
model. The approach pursued for this project focused on frame-skipping, which involves 
detecting and skipping low-information frames. 
 

Frame-skipping 

One major source of inefficiency in labelling comes from the labelling of low-information, nearly 
identical frames. Since cameras generally capture several frames per second, the change in the 
filmed environment between frames can be very small, even if there is motion in the 
environment. In addition, since DEVIATE works with video data of driver behavior, many of the 
videos feature stretches in which the driver and environment are almost perfectly still. 
Manually labelling these stretches takes time and adds very little new information when it 
comes to training a model. In other words, labelling these non-unique frames can be a major 
time sink, especially when taken across a dataset of hundreds of videos. As such, being able to 
detect and separate these redundant frames from the important frames could speed up the 
labelling process greatly. Figure 1 shows an example of two frames within a video, taken 20 
frames apart, for which the environment is nearly identical. In fact, the environment was 
almost identical throughout the 20 frames. 

 

          
 
 

Figure 1: Two frames, extracted from a single video from the IVBSS dataset. 

 
The focus of this project is on designing and implementing an algorithm that can extract key 
features within images and track these features reliably throughout a video. These features do 
not necessarily have to be the objects of interest being labelled in each frame, but they must be 
relatively simple to detect and track from frame to frame. The motion of these features will be 
tracked throughout the video, and frames for which there is significant motion observed for a 
user-defined threshold proportion of the key features will be marked as unique and saved for 
manual labelling. Once the labels are generated for these frames, they will then be propagated 
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to the rest of the frames through an interpolation process, allowing for use of the full dataset 
without having to spend the time to manually label each frame. 
 
The main drawback to the process described above is that the accuracy of the propagated 
labels will likely be lower than if all of the frames were labelled by hand. However, if the error is 
small enough relative to the size of the image, it is likely that the loss in accuracy will not greatly 
affect the performance of a model trained on interpolated label data. In addition, should the 
algorithm succeed in significantly reducing the number of frames that need to be manually 
processed, the loss in accuracy would be offset by the ability to spend more time on 
incorporating a larger volume of data or on tuning the model itself. Much of the work done for 
this capstone project has been to assess the degree to which label interpolation affects 
accuracy and performance, and whether or not this change in performance is justified by the 
time saved through this process. 
 
 
Implementation Details 
 
The algorithm, as described above, is made up of two main components. The first, the frame-
skipping component, processes a video or a set of videos, saving the unique frames to a specific 
directory and the list of unique frames to a file. These outputs are then handed to the labelling 
team, who will process and provide label information for the unique frames. Once the unique 
frames are labelled, the labels and the list of unique frames are used as inputs for the 
interpolation component, which propagates the labels throughout the rest of the video by 
interpolating the label coordinates to the previously unlabeled frames.  
 
I tested several frame-skipping and interpolation combinations in order to determine which 
approach performs the best in terms of label accuracy. My experiments and final algorithm 
approach are described below, and the results are described in the Experimentation section. 
 

Frame-skipping 

At a high level, the frame-skipping algorithm takes as input a video file and three threshold 
parameters, the match threshold, the distance threshold, and the similarity threshold, used to 
determine whether any given frame is unique or redundant. First, the initial and final frames of 
the video are labeled as unique. Starting from the second frame, the algorithm iterates through 
each frame of the video, detecting and extracting key point information for the latest frame 
and the last detected unique frame. The algorithm then attempts to find matching key points 
between the two frames, computing the proportion of key points detected in the last unique 
frame for which there were matching key points in the latest frame. If this proportion is lower 
than the match threshold, the algorithm labels the latest frame as unique, since the 
environment has likely changed significantly enough that very few matches can be detected. 
Otherwise, the algorithm iterates through the matched key points in both frames, using the 
pixel coordinates of the matching key point pair computing the Euclidean distance between the 
positions of the key points. If the distance is larger than the distance threshold, then the key 
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point is labeled as mobile, and is otherwise labeled as static. The proportion of static key points 
to the total number of matched points is computed and compared to the similarity threshold. 
If the proportion is lower than the similarity threshold, the frame is labeled as unique, and is 
otherwise labeled as redundant. The frame number of each unique frame is written to an 
output file, and the unique frames are saved to an output directory to make it easier for 
labelers to process the correct frames. 
 
My initial frame-skipping implementation approach involved the use of OpenCV’s ORB key 
point detection library. This library, described in further detail in [1], essentially detects corners, 
edges, and other easily identifiable features within an image by using a combination of image 
filtration and edge detection techniques. While there is very little control over what kinds of 
points are identified, the library does have built-in support for finding matching key points 
between sets of images, which does help in tracking key points throughout a video. In addition, 
for each key point detected, the ORB library saves a large descriptor vector based on the pixel 
location and different visual characteristics of the key point and the surrounding image. Given 
these capabilities, using the ORB library was a good starting point for the frame-skipping 
algorithm. Figure 2 shows a few examples of images processed using the ORB detection library.  
 
After implementing the ORB key point based frame-skipping algorithm, I performed some 
research into alternate key point detection methods, ultimately implementing an alternate 
frame-skipping algorithm using the Shi-Tomasi key point extraction library. Like the ORB 
detection library, the Shi-Tomasi library, described in [2], extracts and marks corner points in 
images. However, while the algorithm is often used in object tracking algorithms, the library 
does not have built-in point matching algorithms. Most of the research I did seems to indicate 
that points are generally matched by computing Euclidean distance or other complex distance 
calculations using the pixel locations in subsequent frames. Unlike the ORB key point 
descriptors, descriptors for Shi-Tomasi key points only save the pixel locations of the detected 
points. This approach could result in inaccurate key point assignments, especially when dealing 
with a large number of key points.  
 

Interpolation 

Once the unique frames detected using the frame-skipping algorithm are labeled, the list of 
unique frames, their corresponding labels, and the desired degree of interpolation are accepted 
as inputs to the interpolation algorithm. The algorithm loops through the unique frames, 
computing a curve of best fit based on a subset of unique frames and using that curve to 
estimate the label positions for all of the redundant frames between the unique frames used. 
The size of the subset used depends on the degree of the interpolating curve. For example, 
computing a linear curve requires two unique frames, while a quadratic or cubic curve would 
need three or nine unique frames, respectively. 

The interpolation algorithm was designed to propagate labels corresponding to single points 
and bounding boxes. The testing performed for this project involved single point labels, but the 
interpolation algorithm is also capable of interpolating bounding box positions by estimating 
the positions of the upper left and lower right corners of a given bounding box. 
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Figure 2: Frames from a cabin view video, before (left) and after (right) ORB key point 
processing. All ORB key points are marked in green.  
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To implement the interpolation algorithm, I used the SciPy interpolation library. The library is 
capable of handling linear, quadratic, and cubic interpolation, so I tested the algorithm with all 
three to see which worked the best. The results of this testing are described in the next section. 

 
Experimentation 
 
In order to test the frame-skipping and interpolation algorithms described above, I processed 
51 videos from the IVBSS dataset, collected from face cam views of a series of volunteer 
drivers. The objects of interest in these videos, all of which were labelled for each frame using a 
pretrained neural network, are five facial features, including the eyes and the corners of the 
mouth. The frames in each video have dimensions of 300x448 and are in black and white. 
Figures 1 and 2 show frames from cabin view videos in the IVBSS dataset.  
 

Testing Protocol and Evaluation 

The setup for the algorithm is largely the same as described in the Implementation section. The 
key difference is that upon processing a video and extracting the unique frames using the 
frame-skipping algorithm, the corresponding labels for that video are used instead of manually 
generated labels. Upon interpolating these labels to the rest of the frames in the video, the 
results are compared to the corresponding neural-network generated labels, which are treated 
as the ground truth for testing. 

 
As discussed previously, the frame-skipping algorithm accepts three threshold parameters 
corresponding to the proportion of matched points to total points required to process a frame, 
the distance threshold between matching points that determines whether an individual point is 
considered moving, and the minimum proportion of mobile matched points to total matched 
points required to consider a frame as unique. Since the values of these thresholds could differ 
from video to video due to a number of factors, such as lighting and testing environment, I set 
up a grid search algorithm that searches over a range of values for each parameter, testing all 
possible combinations over that range given a step size for each variable. The first threshold 
parameter mentioned above was hard-coded at 0.40, to make the testing process quicker. 
Aside from the defined range, the only constraint on the threshold values was that the 
proportion of ground-truth frames used could not exceed 80% of the total number of frames, 
to prevent the algorithm from considering low-error solutions which do not skip many frames. 
 
In general, the goal of these experiments was to evaluate the algorithm described here in terms 
of accuracy and time taken. Since the labels for each object of interest are given here in the 
form of pixel coordinates, the interpolation error is measured by computing the Euclidean 
distance between the ground truth labels and the interpolated labels for the frames marked as 
redundant. For each video, I recorded the average error per frame, including and excluding the 
unique frames, the ideal threshold parameters for the video, and the proportion of frames 
labelled as unique. This information allows me to assess both how accurate the interpolation is 
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and the time and effort saved by processing the videos through the frame-skipping algorithm 
rather than labelling everything by hand. 
 
In order to assess the time taken per video, I recorded the number of frames and the time 
taken, in seconds, to process each video. This allows me to explore the relationship between 
video length and time taken to process the video, and to see if the algorithm can run quickly 
enough to work for a real-world application. 
 

Ideal Setup 

The first round of experiments for this algorithm involved testing different combinations of 
frame-skipping and interpolation approaches to see which combination worked the best. As 
discussed earlier, when deciding which frame-skipping implementation to use, I found that the 
ORB detection library handles detecting and tracking matching key points far better than the 
Shi-Tomasi library, since the Shi-Tomasi corner detector only returns information about the 
position of the corner and does not have an implementation for point matching. As such, I 
ultimately decided to use the ORB key point detection approach. 

 
For the interpolation algorithm, I tested linear, quadratic, and cubic interpolation methods, 
using the SciPy library, across a set of 20 videos. In general, I found that the linear interpolation 
approach had a much lower average error than the other approaches. When attempting 
quadratic or cubic interpolation, I found that the derived fitting functions often gave unrealistic 
estimations for label locations, including coordinates that were far beyond the bounds of the 
image. One possible explanation for this is that the fitting algorithm is unable to properly 
handle sudden head turns or other motions, fitting incredibly steep quadratic or cubic functions 
to account for these movements. In any case, the linear interpolator worked far better than the 
alternatives. 
 

Time Performance 

Through my experimentation, I found that the frame-skipping and interpolation algorithms are 
capable of processing videos very quickly. Generally speaking, I found that the interpolation 
algorithm took under a second to run, regardless of video length, making the frame-skipping 
algorithm the bottleneck as far as time is concerned. Figure 3 shows a plot of the time taken to 
run the frame-skipping algorithm on each video, as a function of the number of frames. 

 
As seen in Figure 3, the relationship between the video length, in frames, and the time taken to 
process the video is linear. As seen in the line of best fit provided in Figure 3, the algorithm is 
capable of processing roughly 78 frames per second, regardless of the overall length of the 
video. To put that in perspective, the longest videos tested, at roughly 13 minutes, took under 
two minutes to process. Therefore, in terms of time, the algorithm performs incredibly well. 
 



 8 

Despite this performance, however, there are two important caveats to note. The first is that 
while an individual run takes very little time, the parameter grid search described above 
requires multiple runs of the algorithm per video in order to find the optimal set of parameters 
for each video. For example, since we tested three different values for the distance threshold 
and five different values for the mobile point threshold, there are a total of 15 possible 
combinations of parameters per video, meaning each video could take anywhere between a 
few seconds and half an hour to fully process with the optimal parameter set. Unfortunately, 
despite testing extensively, I was unable to find a set of parameters that works reasonably well 
universally, nor was I able to find any pattern that would make it easier to determine the 
optimal parameter values more quickly for each video. 
 

 
Figure 3: Time taken to perform the frame-skipping processing per video 
 
 
The second caveat is that while the testing gave consistent time results most of the time, there 
were some significant anomalies in which the performance was far below average. During one 
early round of testing on a subset of 20 videos, I found that the algorithm was only able to 
process 25 frames per second, indicating that the frame-skipping process was taking over three 
times as much time per video as reported above. While the slower value was reported during 
the capstone presentation, prior and subsequent testing has consistently shown that the frame-
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skipping algorithm performance is generally far closer to the faster performance described 
above. Since all of the tests conducted include these 20 videos, and since the algorithm had not 
changed significantly between these tests, it is unlikely that the slow performance described 
here is anything other than an anomaly. It is possible that the testing server was in use by other 
researchers during this round of testing, which would result in slower performance since the 
algorithm would not have had access to the full computing power of the server in this case. For 
reference, Figure 4 shows the time performance observed during earlier tests. 

 
Accuracy and Benefits 

As expected, I did see some loss in accuracy when comparing the interpolated ground truth 
labels to the original labels. The interpolation error for each video, on average, is a distance of 
30 pixels per frame, and the median error is a distance of 25 pixels per frame. Given the 
dimensions of the frames, this is an error of roughly 6%. This is an acceptable level of error for 
the benefits that the procedure provides in terms of reduction of the labeling effort. 

On average, the frame-skipping algorithm labels roughly half of the frames as unique, meaning 
that labelers would only have to label half of the frames for each video tested, on average. This 
is a significant reduction in the amount of effort required to label each video. In addition, it 
seems that the length of a video does not have a strong correlation with the proportion of 
frames needed to label a video, meaning that the results described here hold true even for 
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larger videos. As such, this algorithm could potentially reduce the time needed to label to half 
of the time it would have taken to manually label each frame. 

 

The performance of the algorithm can vary significantly from video to video. For example, while 
the mean error per video is a distance of 30 pixels between the target and the interpolated 
label, the maximum error is a distance of over 100 pixels, and the standard deviation is 
relatively large. By analyzing the videos for which the algorithm performed poorly, I found that 
these videos often feature a lot of sudden movements or changes in lighting, which may explain 
the poor interpolation performance.  
 

Metric Interpolation Error 
(excluding ground 
truth frames) 

Interpolation Error 
(including ground 
truth frames) 

Percent of ground 
truth labels used 

Mean 31.00 16.51 51.21% 
Median 25.09 10.29 59.76% 
Range 7.17 - 105.93 1.80 - 58.67 8.84% - 79.28% 
Standard Deviation 20.46 14.93 21.36% 

Table 1: Interpolation Error. Error for a single video is calculated by computing Euclidean 
distance between ground truth and interpolated label for each frame and object of interest and 
then taking the average of these distances. The values above are derived by computing the 
corresponding metric across the testing dataset of 51 videos. 

 
 
Extensions 
 
While the results described above look promising, there are some concerns left to be addressed 
regarding the interpolation accuracy, the large variance in performance from video to video, 
and how the observed results could affect machine learning models trained on data processed 
using the frame-skipping and interpolation algorithm, rather than being manually labeled. The 
extensions described below are intended to address these concerns. 
 

Training Using Interpolated Data 

Ultimately, the goal of the project is to make image and video labeling more efficient to allow 
researchers more time to work on training or improving their machine learning models. As 
such, in order to fully assess the feasibility of using the frame-skipping algorithm in place of 
manual labeling, I am currently working on training a machine learning algorithm using the 
interpolated labels generated during the experimentation phase and comparing its 
performance to the same model trained on the ground truth data. While I was unable to 
complete this phase of experimentation this semester, I am currently working on setting up and 
performing testing with machine learning algorithms. 
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One area of application that DEVIATE focuses on is assessing driver behavior and potential 
distractions while driving. In order to study the use and effects of cell phones while driving, the 
team has developed a machine learning model that accepts the positions of facial features as 
inputs and outputs an activity label corresponding to whether or not the driver is calling 
someone or otherwise interacting with a cellphone. I am currently working on adapting this 
model to accept my interpolated facial feature labels as inputs during the training process in 
order to assess how this affects the prediction accuracy of the machine learning model. The 
performance will be compared to that of the same model trained on the ground truth data. If I 
find that the accuracy of the model trained on interpolated label data is comparable to that of 
the model trained on ground truth data, I would then conclude that the frame-skipping 
algorithm, in its current state, could be used in place of manual labelling. Even if the 
performance is slightly worse, the time saved on labeling could be used to improve the model 
or incorporate larger datasets during the training process, potentially offsetting any loss in 
prediction accuracy. 
 

Background Point Detection 

When looking at Figure 2, one trend that becomes apparent is the consistent detection of static 
background points. For example, in the frames depicted in Figure 2, there are a significant 
number of key points detected on the steering wheel and dashboard, objects which are not of 
interest and will see very little movement throughout the video. Since the frame-skipping 
algorithm identifies unique frames by assessing the proportion of key points that are matching 
and the proportion of these matches that are static, having a large number of static points can 
artificially inflate these proportions and make it harder to detect whether there is motion 
between frames. While this effect can be partially offset by choosing stricter threshold 
parameters, it is possible that these stricter thresholds result in failing to identify unique 
frames, resulting in lower interpolation accuracy. 

 
In order to address this issue, I attempted to preprocess the videos by finding key points in all 
of the frames of a given video and then saving the key points which are consistently marked 
static throughout the majority of the video. However, this approach does significantly increase 
the runtime of the frame-skipping algorithm and, as of now, is not able to consistently detect 
background points. Based on the distance threshold set, the algorithm generally only detects 
one or two points, not significant enough to noticeably improve the performance of the frame-
skipping algorithm.  
 
After concluding testing with the machine learning model, as described above, I plan to focus 
on more consistently detecting and pruning out background points in a given video. This is likely 
to improve the performance of the frame-skipping algorithm, since it allows the algorithm to 
focus only on the points we would expect to move. Should the approach above not work, I have 
also considered pruning points based on location. Under this approach, I would disregard points 
that are present within areas of the frame in which I would not expect motion. This requires 
some manual preprocessing for each video to be labeled and could significantly slow down the 
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labeling process, although the frame-skipping algorithm runs fast enough and can reduce the 
time needed to label enough that this would still be an improvement over manual labelling.  
 
 
Conclusion 
 
Over the course of this semester, a frame-skipping and interpolation algorithm has been 
designed and implemented. The algorithm is capable of extracting unique frames from a given 
video using key features within each frame of the video and interpolating the labels for these 
unique frames to the rest of the frames. Extensive testing of this algorithm has shown that the 
algorithm runs very quickly and can reduce the average number of frames to be manually 
labeled per video by half, while only marginally reducing the accuracy of the labels as compared 
to labeling all of the frames by hand. As such, the algorithm described in this paper is suitable 
for use in place of manual labeling, given the immense time reduction observed through use of 
the algorithm over manual data processing. 
 
Further work on this frame-skipping algorithm is planned in two areas. First, there is still work 
to be done in assessing the effects of using interpolated labels to train machine learning 
algorithms. In addition, the accuracy of the interpolation method can also be increased by 
ignoring background points during the frame-skipping process.  
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