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Introduction

Since the late twentieth century, the subject of two-dimensional materials has become an
important and rapidly-growing field in the subject of condensed matter physics. This initially
followed from the desire to make field-effect transistors even thinner to maintain the pace of
Moore’s law, which is the observation that the number of transistors in integrated circuits
doubles every two years. The study of ultrathin semiconductors led to the isolation of the first
atomically-thin layers of graphene in 2004 by Dr. Andre Geim and Dr. Konstantin Novoselov of
the University of Manchester, and since other two-dimensional semiconducting materials have
been isolated and studied.

‘8 When two of these atomically-thin layers are stacked on top
of one another (or if one of them is placed above a thin
metallic plate) they form a parallel plate capacitor, much like
when two plates of metal are stacked with a dielectric layer
placed between them. The capacitance of the resulting
device is defined by the amount of electric charge stored on
the device per unit voltage difference applied, i.e. by the
relation C=0Q/V where Q is the total charge and V is the
voltage difference across the device. The charge separation
forms when you apply a voltage difference to a circuit
containing these separate plates. The voltage difference
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plates and then the plates have different amounts of charge.
Thus, a capacitor is formed whenever you apply a voltage to two separate plates of material that
allow for the motion of electrons. The key difference between these semiconducting bilayers
(dual layers of atomically-thin materials) and a standard capacitor that you would find in an
analog device is the way that electrons move through them, which has a major effect on the
capacitance of the resulting device.

In a standard parallel plate capacitor, the plates are made of =0 R
metal which has ideal or near-ideal conducting properties,

so the electrons are free to move from the plates and
through the wires and collect on them regardless of the
energy of the electrons. In this case, if the plates are large
enough with respect to the distance between the plates, the Capacitor
capacitance of the device can be easily determined using

. . Figure 20 an RC civenit demonserating charge
the equation C= SOA/d: where A is the area of the parallel huildep on siandard capacitor plates.




plates, d is the distance between the plates, and ¢, is the permittivity of free space. This is what
we call the geometric capacitance, and it is different for different capacitor configurations.

In the case when one or both of the plates are

Band ene
ol semiconductors, however, the layers act as a
Comduction band ‘ rermileve  11yDrid between metal and insulators. This means
L ' that the only electrons that are allowed to move
= L _—— freely are the electrons that can overcome the band

_ gap gap of the semiconducting material. This band gap
is a range of energies that the electrons cannot

occupy due to the quantum effects of the material,

i.e. the electrons can exist in the energies below
i ~ the band in an insulating state or, if enough energy
:MMIJmfIrIHn cnbepmmaed e is added to the system, the electrons can overcome
R the band gap to reach a conducting state and move
freely through the circuit. The number of electrons

that can be promoted to the conduction band is also limited by the system energy and a quantity
called the Fermi level or electrochemical potential of the system. This limitation on the number
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of electrons that can occupy the conduction band follows from the Pauli exclusion principle,
which states that no two fermions (particles with half-integer spin values, which includes
electrons) can occupy both the same energy and spin states in a confined space, thus limiting the
amount of charge that can accumulate on the plates of the capacitor. Thus, by changing the
energy of the system to allow more electrons to enter the conduction band, we can change the
capacitance of the device.

Additionally, when the higher-energy electrons gather on one plate and leave the lower-energy
electrons behind, they generate an additional potential energy difference which alters the
capacitance, generating what we call the quantum capacitance. This capacitance is much greater
than the geometric capacitance in these kinds of two-dimensional nanoscale devices. Not to
mention that it can also theoretically lower the capacitance to a negative value, which is the
subject of some research interest.

The quantum capacitance is proportional to the number of electrons that are available to promote
to the conducting band at a given energy. There is a name for this quantity - we call it the
“density of states”, or the number of states a system can exist in as a function of energy. It is
exactly proportional to the quantum capacitance by the relation C, = e’D(E), where e is the
elementary unit of charge and D(E) is the density of states. The density of states is important
whenever we consider the thermodynamic and statistical properties of the material, since it is
often used alongside the Fermi-Dirac distribution as a weight to compute statistical averages of
the material properties.



The two most important quantities that rose as a consequence of analyzing a capacitor made of at
least one semiconductor layer are the density of states and the quantum capacitance, which just
so happen are related by a constant of proportionality that is well-known. We also noted that we
can change the capacitance of the system by altering the system energy, and that the quantum
capacitance is the most important contributing quantity to the overall capacitance in these
low-dimensional semiconducting systems. Thus, if there was a way to measure the capacitance
of the device, and if we measured the capacitance for a range of energies, we could not only find
the quantum capacitance spectrum of the device (a useful quantity on its own), but we could also
find the density of states of the device, which gives a lot of extra insight to the properties of that
material as well.

Here enters the capacitance bridge. A capacitance bridge is a circuit that contains one unknown
capacitor and is very sensitive to changes in the capacitance of the unknown, allowing us to
easily determine the capacitance of the sample. We can then apply a gate voltage to the device to
alter the system energy. With this capacitance bridge circuit and a device to apply a gate voltage,
we have a way to vary the energy of the device and measure its capacitance as a function of the
system energy, which in turn yields the capacitance spectrum and the density of states of the
material. The capacitance bridge circuit itself looks like:
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Figure 4: Ideal Capacitance Bridge Circuit

It is composed of a semiconductor device with unknown capacitance Cy, a standard capacitor of
known capacitance Cs, a dual-output signal generator controlling the voltage sources ¥y and V5,
and a lock-in amplifier to measure the voltage at the capacitance bridge node. We can alter the
energy of the material sample by applying a gate voltage to it using a DC voltage source. By
holding one voltage source ¥ constant and adjusting the phase and amplitude of the other
voltage source Vy using some kind of feedback loop, we can find the phase and amplitude values
that cause the voltage at the point labeled “NULL” to read zero. Under ideal conditions, when
the voltage at “NULL” is zero, Kirchoff’s Junction Law reduces to VyCy = VCs. Then, since we
control Vyand Vs and Cyis known, we can solve for the device capacitance Cy. Performing this
process for a range of applied voltage values from the DC voltage source yields the capacitance
spectrum and density of states of the semiconductor device.



Outline of Problems Addressed

The problem of measuring the capacitance spectrum of a semiconductor device has been around
for a while, and there is already specialized equipment to do this automatically. Fully functional
commercial capacitance bridges exist that can measure the capacitance spectrum of a device with
good resolution. However, they are generally very expensive and we wanted a way to do this that
was both cost-effective and gave decent resolution for high-frequency excitations. Thus, in order
to record the capacitance spectrum of a semiconductor device for our purposes, we needed the
following elements:
1. A programmable signal generator, to apply in-sync sinusoidal excitations to both
the device and the standard capacitor
2. A programmable DC voltage source to apply a gate voltage to the device
3. Alock-in amplifier to measure the signal at the “NULL” point of the capacitance
bridge corresponding to the excitations
The lab was already equipped with lock-in amplifiers, so this was covered. We intended to build
the signal generator and the DC voltage source from scratch specifically for this application, but
the home-made signal generator had some issues and we ended up using one that was in the lab.

The next step was to complete the necessary programming to configure these components and
have them work in coordination with one another to balance a capacitance bridge circuit and
export the phase and amplitude values that balance the bridge and determine the capacitance
values for each applied DC voltage value. The function that performs the actual loop could be
done in any language, but the interface ultimately needed to be compatible with LabVIEW, the
primary data acquisition program used in our lab.

Once we had a program that could balance the bridge, we wanted to be able to test our code by
performing a frequency sweep measurement with our capacitance bridge. Most capacitors have a
resistive element that can be represented using a parallel resistor, and the leads from the capacitor
to the balance point often have some resistance that can be represented by a series resistor. The
resulting “real” system looks like:
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Figure 5: Real capacitance bridge approximation



When the circuit is balanced and the frequency of the voltage sources is near w = 0, the tangent
of the phase of the voltage source Vy is proportional to ™. Similarly, when the frequency w is
significantly higher than w = 0, the tangent of the phase of the voltage source Vy is proportional
to w. Thus, if we sweep through a large frequency range, we should see a transition in the
frequency dependence of the tangent of the phase of ¥y from w™ to w as the frequency is
increased.



Methods

Initially, the tasks we had to complete were as follows:

1. Build the signal generator

2. Build the DC voltage generator

3. Write the program to automatically balance the bridge

4. Adapt the program to work in a LabVIEW UI
The programmable DC voltage source was built by a former REU student in our lab according to
the specifications of the openDACS project listed in the references. It uses one AD5764
evaluation board and one AD7734 evaluation board controlled by an Arduino Due with a
specialized shield soldered on top to output voltage values between +10V and -10V.

The programmable signal generator proved to be much more difficult. The first iteration was
intended to be a spin-off of another openDACS project for a AC signal generator, also listed in
the references. This configuration is similar to that of the DC voltage source - it uses two
AD9854 evaluation boards controlled by an Arduino Due with another (different) specialized
shield soldered on top to output a wide range of sinusoidal and square wave AC signals at
frequencies of up to 2 MHz. We modified this
configuration by using the same evaluation boards, but
used a version of them that had a USB interface instead of
a serial interface for communicating with the Arduino
Due.

The USB signal generators did not come with any
information regarding programming them, only some
software that could control the board output. Since we
needed to be able to program the output automatically
rather than inputting values to software, much of my time
was spent decoding the information that was sent by the
software over USB to the boards. Once I was able to
decode many of the bits in the bitstrings for various board
operations, we were able to use a Python program to send ST et
the same bitstrings to the boards and remotely control the Figure 6 Equipment selup.
boards in this manner.

Once we were able to program these boards to yield the desired output, we needed to assemble
the signal generator that synchronized the output from two boards simultaneously. Each board
would need a synchronized reference signal operating at the same high frequency and would
need to have roughly the same length of cable connecting them to this reference to eliminate any
reasonable source of desynchronization. In the original configuration presented by openDACS,



this is done by placing a reference oscillator on the customized shield that gets soldered onto the
Arduino Due, which is then wired to the external reference input of the two evaluation boards.
Since we were working to circumvent the Arduino, we had to formulate an alternate solution.
Our idea was to have the square wave output of one board act as the reference signal for the
other board, which would have theoretically had them both operating with respect to the same
reference and should have synchronized their output.

However, this did not result in synchronized output. The reason this did not work was because
the architecture of the evaluation boards requires that the reference input signal should be
approximately 30MHz, and needs to be told if this value changes but still only works correctly if
the oscillator is on the order of 10-20MHz minimum. This exceeded the maximum output
frequency of the board we intended to use as reference by an entire order of magnitude, and even
when we tried to use the maximum output frequency it still did not result in steady, synchronized
output. The next idea was to try and introduce an external oscillator, but such external oscillators
are generally quite expensive on their own and eventually this complication resulted in the
design being scrapped.

For the second iteration of the signal generator, we tried to use the configuration that was
specified initially on the openDACS site using the two evaluation boards and an Arduino Due to
control them. The Arduino is prepared with a shield soldered on top that contains some extra
functionalities, including a reference oscillator crystal that was discussed earlier as well as some
wiring to support LED indicators for the status of the output. The shield also contained all of the
pins that would connect the boards’ serial output pins to the Arduino. This configuration is also
equipped with a USB isolator between the USB input and the Arduino’s USB input, which
prevents noise from interacting with the commands sent by the computer to the signal generator.

However, this configuration also ran into several problems. Firstly, the onset of the ongoing
COVID-19 pandemic delayed much of the progress on constructing the signal generator. Aside
from this, there were also some technical issues. Right off the bat, we were unable to send
commands to the Arduino after constructing the signal generator. We solved this by
circumventing the USB isolator by sending commands directly to the Arduino, which indicated
that the USB isolator was not functioning properly. We tried to move on without the USB
isolator, thinking that we would re-introduce it to the signal generator after fixing other bugs.
Then, the Arduino program that we were provided with to instruct the Arduino’s operation did
not compile. This was due to some incompatibilities with the compiler and the program, and
required extensive research to rectify. After we were finally able to get the code to compile, the
signal generator still provided no output. This could have been for many reasons - for example,
the wiring from the evaluation boards to the Arduino is very complex and lends itself easily to
errors which would cause the output to not work properly. Checking and re-checking the
connections provided no further insight, and we were able to verify that the Arduino was
communicating properly with the boards and was functioning properly. Eventually we were only
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able to obtain DC signals from each output indicating that power was flowing through the
boards, but none of the desired alternating signal output.

After much deliberation, we decided to place this configuration on the backburner to proceed
with completing the capacitance bridge and the program for balancing it. To substitute the failed
signal generators, we used a KeySight 33500B programmable waveform generator that was
present in the lab. This is capable of performing much of what the signal generators we were
working on are able to do, and most importantly it has two output signals that can be
synchronized and that have independent phase and amplitude controls for each output. It also
comes equipped with a reference signal output that is quite useful for setting the reference
frequency of the lock-in amplifier.

Once all of the components were ready, we constructed the capacitance bridge circuit using a
breadboard and prepared to test our program. We decided to use Python as our primary language,
since it is quite flexible and as such lends itself very easily to remote programming of laboratory
equipment. The package PyVISA allows for easy communication with VISA devices over GPIB
connection (like the waveform generator and lock-in

amplifier we are using) and the package PySerial ’ y=fla)

allows for easy communication with other serial
devices (like the house-made DC voltage source). . Tangesi &3,

Tangent at 1,

Once we were able to establish the means of .
communicating with the equipment, we had to ;
determine a method of balancing the capacitance
bridge. Since the bridge voltage reads zero when the
desired conditions are met, our heads initially turned
to root-finding algorithms to help us balance the
bridge. The first one we used is called the secant method, a discretized version of Newton’s
method for finding the roots of functions. It starts with an initial guess of the root of the function
x,. Then, you use the function f{x) and its derivative /’(x) to make a more educated guess x; = x, -
fxp)/f(x,), and you repeat this process of making more educated guesses of the location of the
root until the change of the value after each iteration satisfies a desired level of accuracy. To
discretize this, we need to change the function derivative to a finite difference using the
definition of the derivative:

fv(x) = lim (f(x‘h‘:z f(x)) N f'(x) ~ fx+Aax) = f(x)

Ax
e—0

Figure 7; An lustration of Newton 5 method

Here, f(x) corresponds to the voltage at the balance point read by the lock-in amplifier and x
corresponds to a given phase and then amplitude of the excitation signal. It also converges to a
zero incredibly quickly, having quadratic convergence. However, this method does not place any
constraints on the guesses for phase and amplitude of the excitation, even though the phase must
be an angle on the unit circle (i.e. between 0° and 360°) and the amplitude must be a positive
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number. The phase constraint can be easily solved by applying a modulo operator to the output
of the algorithm, but the occasional prediction of negative amplitudes could not be reconciled.

Flx)

—1 Fa)

Figure 8: Mustration of the bisection method.

We then moved on to a binary search algorithm. This is rooted
in binary search tree data structures, but can be applied to
function roots as well. The idea is that if a function f{x) switches
signs on the interval x € [a,b] then there is a value of x for
which the function f{x) is equal to zero in that interval. You can
then check the value of f(x) at the midpoint m between a and b.
Since f{m) will be one of positive, negative, or zero, we have
either reduced our interval on which the zero exists to [a, m] or
[m, b], or we have found our zero. We can repeat this bisection
of the interval until we get a change in the midpoint value that
meets a desired level of accuracy. This has already been much
more successful than Newton’s method, since we can place
constraints on the amplitude and phase by limiting the search
interval [a,b]. However, this algorithm converges to a zero

slower than Newton’s method does, since it halves the search area on each iteration and thus
converges linearly instead of quadratically. While this method still converges relatively quickly,

since even linear convergence is quite fast on most computers, it may affect the speed of the

program in the future.

In the system, we use the binary search algorithm to determine the phase of ¥y which moved all
of the signal to the X channel of the lock-in amplifier, i.e to find the phase of Vy for which the Y
channel reads 0 V. Then, we use another binary search algorithm to determine the amplitude of
V'y for which the X channel then reads zero. The real part of the equation, i.e. Vy cos(¢), can then
be substituted into the expression VyCy = V(s for Vy to determine the capacitance of the device.



Results

All the following capacitance measurements were performed with V= 10mV and a 0° phase
offset at a frequency of 10kHz. We ran three test trials to identify the capacitance of various
capacitors with the following results:

12

Cs Cy Predicted Phase ¢ Amplitude Cy Measured
Trial 1 48pF 68pF 192.1° 0.00612 V 80.21pF
Trial 2 48pF 101pF 197.6° 0.004524 V 111.3pF
Trial 3 48pF 123pF 201.3° 0.003618 V 142.4pF

We then repeated this for different standard capacitors and repeated five trials for each

configuration:
Cy Phase . Cy %
Cs Predicted ) Amplitude Measured | Error | /Verage Std Dev
204.1° [ 0.002856 V | 84.39pF | 19.4%
203.7° [ 0.002904 V | 82.99pF | 17.8%
Trial 1 | 22pF 68pF 204.1° [ 0.002904 V | 83.08pF | 18.1% | 83.19pF | 0.69pF
203.7° [ 0.002892 V | 83.07pF | 18.1%
203.7° [ 0.002904 V | 82.97pF | 17.8%
211.8° 1 0.001006 V | 54.97pF | 23.7%
) 212.1° [ 0.001006 V | 55.15pF | 23.3%
Trial 2.1 4.7pF | 68pF 1515101 0.001006 v | 55.15pF | 23.3% | >>-11PF | 0-09pF
212.1° [ 0.001006 V | 55.15pF | 23.3%
210.9° 1 0.001066 V | 73.34pF 8.5%
211.3° 1 0.001054 V | 75.51pF | 9.9%
Trial 3 | 6.8pF 68pF 210.9° 1 0.001066 V | 74.34pF 8.5% | 74.77pF | 0.53pF
211.1° [ 0.001066 V | 74.50pF 8.7%
210.9° 1 0.001054 V | 75.19pF 9.6%
157.4° [ 0.02243V | 32.84pF | 46.2%
157.4° [ 0.02237V | 32.93pF | 45.8%
Trial 4 | 68pF | 47pF | 157.9°| 0.02209V | 33.22pF | 44.5% | 32.95pF | 0.27pF
157.9° [ 0.02212V | 33.18pF | 44.7%
157.1° [ 0.02267V | 32.56pF | 47.4%
. 191.6° | 0.00628 V 110.5pF | 9.5%
Trial 5 | 68pF 100pF 191.3° | 0.00626V | 110.7pF | 9.7% 110.3pF | 0.42pF
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191.6° | 0.00633 V | 109.6pF | 8.8%
191.3°| 0.00629V | 110.2pF [ 9.3%
191.3° | 0.00628 V | 110.4pF | 9.4%
205.1° 1 0.002578 V | 291.2pF | 13.3%
205.3°1 0.002578 V | 291.7pF | 13.1%
Trial 6 | 68pF | 330pF | 205.1° | 0.002578 V | 291.2pF | 13.3% | 291.7pF | 0.80pF
205.3° 1 0.002566 V | 293.1pF | 12.6%
205.1° 1 0.002578 V | 291.2pF | 13.3%
180.5° | 0.00978 V | 102.2pF | 2.2%
100p 180.7° | 0.00976 V | 102.5pF | 2.4%
Trial 7 F 100pF | 180.7° | 0.00974V | 102.7pF | 2.6% | 102.6pF | 0.25pF
180.7° | 0.00973 V | 102.8pF [ 2.7%
180.7° | 0.00972V | 1029pF | 2.8%
186.8° | 0.00759V | 132.7pF | 13.0%
100p 187.1° | 0.00759V | 132.8pF [ 13.0%
Trial 8 F 150pF | 186.9° | 0.00763 V | 132.0pF | 13.6% | 132.6pF [ 0.37pF
186.9° | 0.00761V | 132.4pF [ 13.3%
187.1° | 0.00758 V | 132.9pF | 12.8%
193.4°| 0.00572V | 179.7pF | 22.4%
' 100p 193.5° | 0.00568 V | 181.1pF | 21.5%
Trial 9 F 220pF | 193.4°| 0.00568 V | 181.0pF | 21.6% | 180.5pF | 0.61pF
193.4° | 0.00571V | 180.0pF | 22.2%
193.2° | 0.00568 V | 180.8pF [ 21.7%
200.9° 1 0.003666 V | 292.0pF | 13.0%
Trial | 100p 200.9° 1 0.003678 V | 291.0pF [ 13.4%
10 F 330pF | 200.9° [ 0.003690 V | 290.1pF | 13.8% | 291.7pF | 1.26pF
201.1° 1 0.003654 V | 293.pF [ 12.5%
200.9° 1 0.003660 V | 292.5pF | 13.8%
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Our frequency sweeps yielded the following plots:
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Discussion & Conclusions

The capacitance measurements seemed to demonstrate a wide variety of error values, with no
clear correlation between the reference capacitor and the measured capacitor. The capacitors we
used were only rated for +/-2.5pF or +/- 5% of their listed value, depending on the material they
were made of and their capacitance rating, so some error is to be expected. Additionally, the
accuracy of the phase was only determined to the tenths place, so the Y-channel of the lock-in
amplifier never went totally to zero and thus the bridge was never totally balanced, which will
also lead to some error in the measurements. However, most of the measurements had very low
standard deviations on the order of the rating of the capacitors, which means that the
measurements are fairly precise if not accurate. Also, the high error measured in Trial 2 was due
to the fact that the standard capacitor was less than one-tenth of the value of the measured
capacitor, and the amplitude range we chose to sweep was only one-tenth of V to ten times Vs,
meaning the correct amplitude was never reached but it correctly saturated the amplitude value
down to the lower bound of the constraint. The much higher error in the measurements of trial 4
is likely due to an issue with the 48pF capacitor we were measuring, since they were soldered on
to header pins for placement on the breadboard which left a lot of room for the burning of the
capacitor or some other related source of error.

Additionally, we did not quite see the exact behavior that we expected to see during the
frequency sweep measurements. Our prediction for the tangent of the phase based on Kirchoftf’s

laws of the real circuit is

R+rl
— R2 CX ; — ”I“CXLL)
So at lower frequencies, we should see a very fast drop-off proportional to w™ and at high
frequencies we should see a linear increase with respect to w. The first trial, though at very low
resolution and with relatively few data points, shows a rapid drop-off at low frequency and
increases with increasing frequency. The second trial using a 100pF standard capacitor and
330pF measured capacitor does not show the sharp drop-off for low frequencies, though it shows

a relatively linear increase up to about 500kHz before it begins to decrease, which was not

tan(p) =

expected. The final trial using uF capacitors shows a very clear o™ for low frequencies, but does
not increase at all with higher frequencies. These unexpected behaviors could be due to errors in
the programming, lack of precision of measurements, or due to non-linear features of the
capacitors and resistors for high-frequencies or high voltage amplitudes. Additionally, when a
series inductance L is considered in the real model of the capacitor, the prediction for the tangent
of the phase becomes

tan(gp) _ —Cs(R + 7“) — w2rRQC'gC§(

W(LCS + RQCSCX) + ngCSRQCg(

This means that a high enough inductance can suppress the linear proportionality, so it may have
been the case that our model did not take enough into account.




Future work on this system will work to make the measurements of the phase and amplitude
more precise, as well as integrate the Python function into a LabVIEW UI once the
measurements become more accurate.
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