Origami Solar-Tracking Concentrators

Tainon Chen Prof. Pei-Cheng Ku

Introduction: Solar Cell Semiconductors

- Conventional solar cells use crystalline silicon
 ~\$5.7 / m² for Si
- Newer semiconductors are more efficient, but more expensive
 - □ ~\$8,200 / m² for GaAs

- Kirigami Solar Module Cost Analysis, U-M EECS Department

- Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map, National Renewable Energy Laboratory

National Renewable Energy Laboratory (NREL)

Introduction: Solar Cell Tracking Array

- Increases effectiveness of light collection by modifying tilt of concentrator
- Can tilt concentrator ±60° relative to normal

Fixed-Tilt Flat Panels Based on Origami Micro-Concentrators

Introduction: Simple Parabolic Concentrators

- Composed of a single parabola
- All incoming rays parallel to axis are reflected to focus
- Nonparallel rays are reflected unpredictably

- Parabolic Reflector, Wikipedia

Introduction: Compound Parabolic Concentrators

- Abbreviation: CPC
- Rotate two parabolas by angles +θ and -θ
- Overlap parabolas so that focus of each parabola intersects shape of the other

- Nonimaging Optics, Wikipedia

Compound Parabolic Concentrator Creation

Compound Parabolic Concentrator Creation

Compound Parabolic Concentrator Creation

Introduction: CPC Variations

- Ideal 3D CPC has circular base
 - Difficult to manufacture
- CPCs with polygonal bases are more easily created
 - Trade-off due to decrease in ray collection effectiveness

- Nonimaging Optics, Wikipedia

- A Comparison of Compound Parabolic and Simple Parabolic Concentrating Solar Collectors, Los Alamos Scientific Laboratory

3D Concentrator Sides

3D Concentrator Sides and Corners

3D CPC Concentrator

Introduction: Project Scope

- Optimize origami concentrator design
 - Use two overlapping (compound) parabolas to generate 2D shape
 - Combine 2D models for 3D square-based concentrator
 - Determine limitations of dimensions imposed by tracking array
 - Simulate light collection

Methods: 2D Concentrator Creation

- Use parabola coefficient to generate two parabolas
- Rotate parabolas in opposite directions by angle
- Horizontally translate parabolas by separation
- Shift concentrator base according to base position
- Find the maximum height factor, and adjust concentrator height accordingly

Parabolas with Coefficients 0.01:0.01:1

Parabolas with Separation Distance 0:0.01:1

Concentrators with Angles 1:1:45

Concentrators with Base Positions 0:0.01:1

Concentrators with Height Factors 1:-0.01:0

Methods: Determining Optimal Height

- All five parameters, except height factor, are set arbitrarily
 - Other four parameters: parabola coefficient, parabola separation, angle, base position
- Increasing height factor always increases CF
- Concentrators are placed in close proximity on tracking array
 - Too tall: concentrators collide within ±60°
 - Too short: lower CF

Binary Search for Optimal height

Methods: Determining Light Collection

- Simulated light follows law of reflection, assuming sidewalls were perfect reflectors
- All incident rays perpendicular to base
- Delaunay triangulation to determine slope of 3D concentrator

Determining 2D Ray Collection

Methods: Concentration Factor

- Concentration factor (CF): measure of effectiveness of light collection
 - Also reflective of cost-saving of concentrator

• $CF = \frac{Rays \ Collected}{Total \ Rays} * \frac{Top \ Area}{Base \ Area}$

Methods: CF Cases - No Concentrator

• $CF = \frac{Rays \ Collected}{Total \ Rays} * \frac{Top \ Area}{Base \ Area}$

- No concentrator
 - Rays Collected == Total Rays
 - Top Area == Base Area
 - $\square \quad CF = 1$

"Base case": No cost savings

Methods: CF Cases - Example Concentrator

- Less semiconductor is used, but not all the light can be collected
 - Still more effective than base case

Results

Parameters

- Parabola coefficient
- Angle
- Parabola separation
- Base position
- Height factor

Outputs

- Light collection ratio
- Top-to-base ratio
- Concentration factor

Results: Parabola Coefficient

- Parabola coefficient did not affect concentration factor
- All parabolas are geometrically similar

Results: Light Collection

As angle increases, changes in parabola separation lead to greater changes in light collection

Light collection approaches a constant 1 as base position approaches 1

Results: Top-to-Base Ratio

As angle increases, changes in parabola separation lead to greater changes in topto-base ratio

Top-to-base ratio increases exponentially as base position decreases exponentially

Results: Concentration Factor

 As angle increases, changes in parabola separation lead to greater changes in concentration factor

 At higher angles, CF is less sensitive to changes in separation

Results: Concentration Factor

As angle increases, changes in parabola separation lead to greater changes in concentration factor

 At higher angles, CF is less sensitive to changes in separation

Discussion

- Proposed a square-based concentrator design to increase ease of manufacturability
- Analyzed effects of different parameters on 2D concentration factor
- Convert promising 2D concentrator designs to 3D
- Measure concentration factor, and verify using Multiphysics software

Thank you for listening!