

Synthetic Dry Adhesives For Human-Scaled Climbing of Vertical Surfaces

William van den Bogert Honors Student Focus Area: Research Prof. John Shaw Honors Capstone Faculty Advisor

Project Goals

Demonstrate Dry Adhesive Capabilities of Composite Materials Show Feasibility For Human Climbing Using Dry Adhesives

Demonstrate Human Climbing Using Dry Adhesives

Gecko Biomimicry Overview

Gecko climbing adhesion is achieved through microstructures called setae [1]

Image Source: NISE

Several methods of mimicry have been pursued, including: Patterned synthetic setae from carbon nanotubes [1] - ~200 kPa for 16 mm² pad

Image Source: [2]

Micro-molded polyurethane synthetic setae [2] - ~40 kPa for 300 mm² pad

attractive forces.

Silicone micro-wedges for directional adhesion [3] - ~80 kPa for 650 mm² pad

van der Waals interaction into large

An Accessible Approach: No Microstructures

Pioneered by AI Crosby and Duncan J Irschick (UMass Amherst) [4]

Image Source: [4]

Simple composite materials (i.e. fiber-reinforced matrix)

Fibers are stiff, matrix is compliant

Scaling theory [5]: $F_C \sim \sqrt{G_C} \sqrt{\frac{A}{C}}$

Carbon Fiber and 60A Polyurethane

Center-loaded tendon for other loading angles [4]

My Fabrication Approach

Borosilicate glass clamping 3D-printed molds

Carbon Fiber Polyurethane Matrix

Tendon Layer

Exerted Force

Center-loaded tendon

High quality adhesive is possible but rare

Why Stanford

uses footholds:

Climbing Paddle Design

Many Assumptions:

-Multiple pads are loaded perfectly in parallel, share the load equally -Adhesive pad is loaded in the same way as in the testing setup -All adhesive pads are high quality

Minimum Measured Force Capacity of One High Quality Adhesive Pad = 293 N

Required Sustained Load of One Adhesive Pad if Three are to Share My Weight = **252 N**

Safety Factor For Design > 1.16

Multiple tendons add weak point

Multiple pads are not sharing equal load

Tipping loads the top tendon-a weak point-more

And especially:

placement leads to

about bottom contact

tipping condition

High handle

Solution: common woven tendon that is shared between pads, distributing equal load.

6

References

- [1] Ge, L., Sethi, S., Ci, L., Ajayan, P., & Dhinojwala, A. (2007). Carbon Nanotube-Based Synthetic Gecko Tapes. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10792-10795.
- [2] Aksak B, Murphy MP, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir : the ACS Journal of Surfaces and Colloids. 2007 Mar;23(6):3322-3332.
- [3] Elliot W. Hawkes, Eric V. Eason, David L. Christensen and Mark R. Cutkosky 2015 Human climbing with efficiently scaled gecko-inspired dry adhesives J. R. Soc. Interface.1220140675
- [4] Bartlett MD, Croll AB, King DR, Paret BM, Irschick DJ, Crosby AJ. Looking beyond fibrillar features to scale gecko-like adhesion. Adv Mater. 2012;24(8):1078-1083.
- [5] Bartlett, M.D., Croll, A.B., & Crosby, A.J. (2012). Designing Bio-Inspired Adhesives for Shear Loading: From Simple Structures to Complex Patterns.

Acknowledgements

Dr. John Shaw, University of Michigan Adaptive Materials and Structures Laboratory Mohammad Kazemi, University of Michigan Adaptive Materials and Structures Laboratory Rachel Armstrong-Ceron, University of Michigan Engineering Honors Program Dr. Jason McCormick, University of Michigan Engineering Honors Program, CEE