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ABSTRACT 

Research shows that air pollutants such as particulate matter (PM) are associated 

with heart and lung disease and other adverse health effects. A primary way the US 

Environmental Protection Agency (EPA) reduces air pollutant concentrations is by 

setting National Ambient Air Quality Standards (NAAQS), which regulate the maximum 

pollutant levels allowed in ambient air. The EPA also establishes source-specific 

emissions standards and pollution-reduction policies. 

Currently, the NAAQS regulates PM2.5 (<2.5 μm) and PM10 particles (<10 μm). 

Importantly, however, PM10 includes PM2.5 particles. As such, the EPA would rather 

replace the PM10 standard with a standard specifically for PM10-2.5 (≤ 10 μm and >2.5). 

Yet, the EPA has not done so, deciding that there was inadequate information on the 

causal impacts of PM10-2.5 on health. The limited amount of PM10-2.5 health research is 

largely due to an insufficient availability of exposure data. However, data from National 

Aeronautics and Space Administration (NASA) satellites creates opportunities to 

estimate PM10-2.5 levels to use in assessing PM10-2.5 health impacts.   

The first two aims of this dissertation were designed to inform the science used by 

the EPA to set a PM10-2.5 NAAQS. In Aim 1, we estimated PM10-2.5 exposure using highly 

resolved satellite data and advanced spatiotemporal statistical modeling in six US 

metropolitan areas. In Aim 2, we paired these PM10-2.5 estimates with the detailed health 

data in the Multi-Ethnic Study of Atherosclerosis (MESA) to estimate cross-sectional 
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associations between long-term PM10-2.5 exposure and levels of inflammation and 

coagulation, which are subclinical markers of cardiovascular disease. 

Aim 3 was designed to inform the EPA in its setting of a source-specific 

emissions reduction program. We focused on a diesel school bus program since they 

transport more than 25 million children – a highly sensitive subpopulation – in the US 

each year. The EPA developed the Diesel Emissions Reduction Act (DERA) School Bus 

Rebate Program, which randomly awards funding to replace older, more polluting diesel 

school buses with cleaner buses. In Aim 3 I quantified the attendance impacts of this EPA 

program. 

In Aim 1, our final predictions captured the long-term spatial patterns of PM10-2.5 

very well in four of our study areas, and well to modestly in the others. Additionally, it 

outperformed two alternative exposure prediction methods spatially in all six areas. In 

Aim 2, we found no evidence that long-term PM10-2.5 exposure was associated with 

greater levels of inflammation and coagulation in the MESA cohort. In fact, contrary to 

our hypothesis, we found greater inflammation and coagulation with lower PM10-2.5, 

although results were sensitive to adjustment for chronic health conditions. In Aim 3, we 

found suggestive evidence that receiving rebate funds to replace or retrofit older school 

buses with cleaner buses was associated with increases in school district attendance. The 

attendance effects were strongest when larger proportions of students were impacted and 

when the oldest, most polluting buses were replaced. 

This dissertation provides evidence that using satellite data in spatiotemporal 

prediction modeling can successfully generate long-term average spatially resolved PM10-

2.5 estimates. It also highlights the strengths and limitations of using satellite-based 
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predictions to study the health impacts of PM10-2.5 exposure. Additionally, it provides 

evidence that a source-specific emissions reduction program, such as the EPA’s DERA 

School Bus Rebate Program, can have measurable impacts based on the suggestive 

evidence we saw of the program’s role in improving school district attendance.       
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CHAPTER 1 :  

Introduction 

 

Background: 

 

Air Pollution is Associated with Adverse Health Outcomes 

 

Air pollution has been ranked as one of the top ten risk factors for morbidity and 

mortality in the world, largely due to its impacts on cardiovascular and respiratory 

disease (US EPA 2019). Importantly, the observed exposure-response relationships with 

air pollution are near-linear (Pope et al. 2015) at levels observed in the United States 

(US) with no evidence of a threshold below which there is no impact on health (Pope et 

al. 2020). As such, even at current low levels, it is estimated that nearly 80,000 lives are 

lost prematurely each year in the US due to the cardiovascular impacts of these exposures 

(Brauer 2016) while nearly 1,000 lives are lost prematurely each year due to the 

respiratory impacts of these exposures (WHO 2016).  

One of the most ubiquitous forms of air pollution is particulate matter (PM), 

which includes a broad class of “chemically and physically diverse substances that exist 

as discrete particles (liquid droplets or solids) over a wide range of sizes” (US EPA 

2019). The most common sizes studied include PM2.5 (aerodynamic diameter ≤ 2.5 μm), 

PM10 (aerodynamic diameter ≤ 10 μm), and PM10-2.5 (aerodynamic diameter ≤ 10 μm and 

> 2.5 μm). Yet the current understanding of the population burden of airborne particles is 

driven almost exclusively by the rich literature on PM2.5 (Lim et al. 2010).   
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The US Environmental Protection Agency’s (EPA’s) most recent review of the 

science concluded that short- and long-term PM2.5 exposure is causally linked to all-cause 

mortality as well as system- and organ-specific adverse outcomes (US EPA 2019). In this 

review, the EPA concluded that short- and long-term PM2.5 exposure is causally linked to 

many cardiovascular effects, including myocardial infarction, hospital admissions or 

emergency department visits for cardiovascular disease, and cardiovascular-related 

mortality (US EPA 2019). The EPA also found likely causal relationships between short- 

and long-term PM2.5 exposure and respiratory effects, including hospital admissions or 

emergency department visits for endpoints such as asthma, chronic obstructive 

pulmonary disease (COPD), respiratory infection, and respiratory-related mortality (US 

EPA 2019). For many of these associations, there was evidence of increased risk by 

factors such as race/ethnicity, socioeconomic status, and age (US EPA 2019). While 

these heterogeneous associations by race/ethnicity and socioeconomic status might exist 

due to factors such as differences in proximity to and types of local emissions sources, 

housing quality, and occupation, heterogeneous effects by age are likely due to biological 

differences.     

In terms of PM10-2.5, the recent EPA review of the science determined that the 

evidence was suggestive of, but not sufficient to infer, a causal relationship between both 

short- and long-term PM10-2.5 exposures and cardiovascular effects, such as 

cardiovascular-related emergency department visits, hospital admissions, and mortality 

(US EPA 2019). While the mechanisms underlying relationships with PM are 

incompletely understood, local and systemic inflammation and coagulation have been 

proposed as key pathways by which PM of all different size fractions impacts health.   
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EPA Sets National Ambient Air Quality Standards (NAAQS) to Protect Health 

 

 One of the primary mechanisms by which the EPA can act to reduce ambient air 

pollution levels is by setting NAAQS for pollutants considered harmful to public health 

and the environment. The EPA derives its authority to set NAAQS from the Clean Air 

Act (US EPA 2020). The NAAQS are reviewed periodically and may be revised based on 

the state of the science at the time of each review. 

To date, the EPA has set NAAQS for six principal pollutants, including PM2.5 and 

PM10. The current 24-hour NAAQS for PM2.5 is 35 μg/m3 while the annual standard is 12 

μg/m3 (US EPA 2020). The 24-hour NAAQS for PM10 is 150 μg/m3 (US EPA 2020).   

Regulations Might Have Even Stronger Health Impacts if Targeted to Independent 

Size Fractions  

 

The rich scientific literature on the health impacts of PM2.5 and PM10 has allowed 

the EPA to set NAAQS for each of these pollutants. Yet the EPA would ideally prefer to 

regulate PM2.5 and PM10-2.5 since PM10 contains all particles with diameter ≤10 μm, 

including PM2.5. This overlapping nature of PM2.5 and PM10 makes it difficult to 

determine whether observed PM10 health effects are due to the portion of PM10 that is 

PM2.5, or if the larger size fraction of PM10-2.5 indeed has independent health impacts 

from those of PM2.5.     

PM10-2.5 is found in the US at similar concentrations to PM2.5 (US EPA 2019) and, 

like PM2.5, also penetrates into the lungs and is highly inflammatory (Brook et al. 2002). 

Yet, there are many reasons to believe that PM10-2.5 contributes additional, independent, 

health risks from those of PM2.5. For example, PM10-2.5 originates from different sources 

(US EPA 2019), has different composition (Masri et al. 2015), and deposits differently in 

the body from PM2.5 (Schulz et al. 2000). In fact, toxicology studies have shown that 
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PM10-2.5 can induce reactive oxygen species and initiate inflammatory responses in vivo 

and in vitro, possibly more strongly than PM2.5 (Monn & Becker 1999; Shi et al. 2003; 

Pozzi et al. 2003; Becker et al. 2005; Schins et al. 2004). Studies have also shown that, 

like PM2.5, PM10-2.5 may produce adverse health effects through pulmonary oxidative 

stress that leads to a systemic inflammatory cascade in the lungs, blood, and arteries 

(Tuder et al. 2006; Seaton et al. 1995; Donaldson et al. 2001).  

 While the epidemiology literature on PM10-2.5 is very small, there is suggestive 

but inconclusive evidence for independent health impacts of PM10-2.5 exposure. Using 

central-site monitors, there is a small literature that suggests that long-term exposures to 

large particles between 10 and 2.5 µm or 15 and 2.5 µm are associated with larger risks 

of all-cause mortality (HEI 2000; Lipfert et al. 2006; McDonnell et al. 2000), coronary 

heart disease (Chen et al. 2005), and non-malignant respiratory disease (McDonnell et al. 

2000), though these results were not typically distinguishable from no association. Two 

other large studies found no evidence of an association between long-term exposures to 

PM10-2.5 and total mortality (HEI 2000) and nonmalignant respiratory mortality 

(Dimakopoulou et al. 2014). This is in contrast to a national analysis of short-term 

exposures to PM10-2.5 and cause-specific mortality which found the largest effect of 

exposure on respiratory mortality, a result that was statistically significant in combined 

results across 47 cities, even adjusted for PM2.5 (Zanobetti et al. 2009).   

For non-fatal cardiovascular outcomes, there is some evidence of short-term 

associations with PM10-2.5. For example, Peters et al. (2001) found positive but not 

statistically significant associations between 2-hour and 24-hr PM10-2.5 exposure and 

myocardial infarction onset in a case-crossover study in Boston, with all exposure 
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measurements coming from a single site in South Boston. Using collocated PM10 and 

PM2.5 monitors to calculate PM10-2.5 concentrations in 108 US counties, Peng et al. (2008) 

similarly found positive but not statistically significant associations between same-day 

PM10-2.5 exposure and county-level cardiovascular hospital admission rates among 

Medicare enrollees after adjustment for PM2.5. Tolbert et al. (2007) also found positive 

but not statistically significant associations between same-day PM10-2.5 measured at a 

central monitor in Atlanta and city-wide cardiovascular related emergency department 

visit counts in a single-pollutant model.  

Fewer studies have evaluated associations of health with long-term exposures to 

PM10-2.5. Adar et al. (2015a), one of the few studies looking at subclinical disease, found 

suggestive but inconclusive associations between 5-year PM10-2.5 residential exposure 

estimated with land-use regression and summary measures of systemic inflammation and 

coagulation among participants in three of the six Multi-Ethnic Study of Atherosclerosis 

(MESA) study areas using cross-sectional analysis. A connection with inflammation 

might help to explain some of the observed associations with cardiac events. Associations 

differed by component and the analysis suffered from low power. Adhikari et al. (2016) 

also evaluated long-term PM10-2.5 exposure among the same study population and found 

similarly weak evidence of an association with lower heart rate variability. 

Recent Advances in Exposure Science May Allow for Better Regulation of PM 

 

A major challenge to epidemiologists in assessing the health risks of PM10-2.5 has 

been a lack of monitors from which PM10-2.5 exposures can be estimated. Historically, 

only 1% of US counties had collocated PM10 and PM2.5 monitors with which to estimate 

PM10-2.5 (US EPA 2019). This is especially problematic for studying the long-term health 
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effects of PM10-2.5 since PM10-2.5 is substantially more spatially variable than many other 

pollutants. For example, the longer atmospheric lifetime for PM2.5 compared to PM10-2.5 

(Wilson & Suh 1997) results in PM2.5 being more homogeneously distributed than PM10-

2.5, whose concentrations are more reflective of proximity to local sources (US EPA 

2019). Therefore, the use of only a few central monitors for PM10-2.5 is largely insufficient 

to accurately reflect the exposures of individuals across a whole region. As a result, only 

a handful of investigations have examined the health implications of long-term exposures 

to PM10-2.5 and these studies often suffer from power issues, likely due to biases towards 

the null caused by measurement error (Adar et al. 2014). 

Fortunately for the state of the science, “big data” from National Aeronautics and 

Space Administration (NASA) satellites have created opportunities to assess PM10-2.5 at 

all locations in the US. Aerosol optical depth (AOD), a measure of light extinction by 

aerosol scattering and absorption in the atmospheric column, is sampled continuously 

from space at a 1 km2 resolution using Moderate Resolution Imaging Spectroradiometer 

(MODIS) technology on the polar orbiting and sun-synchronous NASA Terra satellite 

(Nordio et al. 2013; Sorek-Hamer et al. 2016; Kloog et al. 2011). The availability of these 

daily measurements across all locations of the world, along with advancements in 

spatiotemporal prediction modeling, now allow for the estimation of air pollution levels 

at fine-scale spatial and temporal resolution even where no monitoring stations exist 

(Kloog et al. 2011). This approach adds substantial information and spatial resolution that 

are of critical importance in long-term air pollution epidemiology studies.   

Previous research has shown good predictive ability using this satellite data-based 

approach for PM2.5 (cross-validation (CV) R2: 0.7 to 0.9) and related associations with 
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health (chronic coronary heart disease mortality rate, incidence of acute myocardial 

infarction, and cardiovascular and respiratory related hospital admissions) in the US, 

Italy, and Israel (Kloog et al. 2012; Nordio et al. 2013; Kloog et al. 2011; Kloog et al. 

2015; Hu 2009; Madrigano et al. 2013; McGuinn et al. 2016; Kloog et al. 2012). More 

recently, the same methods were used to predict PM10 with similar performance (out-of-

sample R2: 0.8), even in an area with complex geographic and weather patterns (Nordio 

et al. 2013; Kloog et al. 2015). To date, however, no model for PM10-2.5 has been 

developed using satellite information and thus this modern source of data has not yet 

been used by epidemiology studies to inform the EPA regulation setting process. 

EPA Uses Source-Specific Emissions Standards and Pollution Reduction Programs to 

Protect Health 

 

Another approach the EPA takes to reduce ambient air pollution in the US is to 

set source-specific emissions standards and design pollution reduction programs. This has 

often targeted motor vehicle emissions, which typically contribute between 24%-38% to 

PM2.5 concentrations and between 27%-30% to PM10 concentrations in the US (US EPA 

2017; Karagulian et al. 2015). For example, in 2014 the EPA issued a Tier 3 regulation 

that requires the reduction of tailpipe emissions of PM from passenger cars by 70% and 

from trucks by 60% (US EPA 2014).   

The EPA has also designed non-binding air pollution reduction policies and 

programs targeted specifically at diesel engine sources since it is estimated that diesel 

engines are responsible for approximately 75% of all mobile source emissions (Fulper et 

al. 2012). For example, the voluntary diesel retrofit program encourages the installation 

of pollution-reducing technology on existing diesels through partnerships, retrofit 

technology assessment, funding and financial incentives, demonstration projects, and 
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outreach, marketing, and service (US EPA 2015). Provisions of the Diesel Emissions 

Reduction Act (DERA) of 2010 added a rebate program option, known as the National 

Clean Diesel Rebate Program. Under this program the EPA could offer funding to 

eligible applicants to reduce diesel emissions from a variety of mobile sources.   

The first round of funding under the National Clean Diesel Rebate Program was 

the 2012 School Bus Rebate Program. School buses were targeted by the EPA because 

emissions from these buses can elevate concentrations of many harmful pollutants, 

including PM, by a factor of 2 to 10 (Adar et al. 2008; Rim et al. 2008; Sabin et al. 2005; 

Behrentz et al. 2005; Zhang et al. 2010; Marshall et al. 2005; Liu et al. 2010) in a 

sensitive population of children. While the 25 million children in the US riding buses to 

school (Snyder & Dillow 2011) only spend a small fraction of their day on school buses, 

that time has been shown to contribute a disproportionately high fraction to students’ 

daily air pollution exposure (Behrentz et al. 2005). As a result, in 2012 the EPA awarded 

$1.88 million to public and private fleet owners to replace older school buses with new, 

cleaner school buses (US EPA 2012). The program has continued and through the 2017 

program year, the EPA has awarded almost $28 million for the replacement or retrofit of 

older buses (US EPA 2012 and 2014-2017).  

In spite of this large investment by the EPA, there has been very limited research 

evaluating the effectiveness of the National Clean Diesel Rebate Program, which 

awarded rebate funding to applicants randomly, based on the results of a lottery. Only 

one study, in Seattle, measured concentrations in buses that adopted cleaner fuels and 

technologies onto school buses as a result of EPA’s voluntary diesel retrofit program. 

This study showed that there were 10-50% reductions in PM2.5 concentrations on school 
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buses using ultralow-sulfur diesel fuel, diesel oxidation catalysts, and/or closed crankcase 

ventilation systems (Adar et al. 2015b). These pollution reductions also translated to 

improved health for the students who rode the buses, with reduced levels of exhaled nitric 

oxide, improved lung function measures and lower absenteeism rates. Another ecological 

study evaluating the impact of voluntary school bus retrofits in the Puget Sound region of 

Washington State used a difference-in-difference analysis approach and found that school 

bus retrofits induced reductions in bronchitis, asthma, and pneumonia incidence for at-

risk populations (Beatty & Shimshack 2011). A final study in Georgia showed that school 

districts that retrofitted their school buses had larger increases in aerobic capacity on 

state-required physical activity tests and significant gains on standardized testing for 

academic achievement as compared to other districts; they also observed weak and 

imprecise associations with attendance (Austin et al. 2019). While these studies have 

shown the public health successes of school bus retrofit programs in two states, this 

national EPA program has yet to be evaluated. 

EPA Action Requires Scientific Research 

 

The commonality between EPA’s NAAQS regulations and other emissions 

reduction standards, policies, and programs is that they are designed to protect health and 

are informed by scientific research (US EPA 2019; US EPA 2014). For example, prior to 

actually setting a NAAQS level, the EPA undergoes a multi-year review of the scientific 

research to determine which pollutants to set NAAQS for and what level and form those 

standards should take (US EPA 2020). Similarly, when designing source-specific 

emissions standards or pollution reduction policies, EPA considers the potential health 

benefits that could result from specific air pollution reduction programs. And, for a 
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program such as the School Bus Rebate Program that allocates funding on an annual 

basis, evaluation of the effectiveness of the program is important when deciding whether 

to re-allocate the funding in future years.  

Summary of Dissertation Aims 

 

With the following three Specific Aims, this dissertation attempts to inform the science 

that can be used by the EPA to set a PM10-2.5 NAAQS as well as to evaluate the 

effectiveness of the national EPA DERA School Bus Rebate Program:  

Specific Aim 1 

 

Predict daily concentrations of PM10-2.5 at a 1 km2 spatial resolution within six US urban 

areas using spatiotemporal prediction modeling with AOD data from the NASA Terra 

satellite and compare the prediction performance to that of three simpler alternative 

exposure prediction approaches. 

Specific Aim 2 

 

Use satellite-derived PM10-2.5 exposure estimates that were developed in Specific Aim 1 

along with detailed health information available in the Multi-Ethnic Study of 

Atherosclerosis (MESA) to quantify associations between long-term exposure to PM10-2.5 

and key subclinical markers of cardiovascular disease.  

      Hypothesis 2a: 

 

Long-term PM10-2.5 exposure will be positively associated with c-reactive protein 

(CRP) and interleukin-6 (IL-6), as markers of inflammation, and fibrinogen, factor 

VIII, D-dimer, and plasmin-antiplasmin complex (PAP), as markers of coagulation, 

over the 10 years of follow-up in MESA after adjusting for traditional risk factors as 

well as co-pollutants, including PM2.5 and NOx.  
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      Hypothesis 2b: 

 

Relationships with PM10-2.5 will be stronger for older and minority participants, and 

for participants residing in neighborhoods of lower socioeconomic status. 

Specific Aim 3 

 

Quantify the impacts of EPA funding to replace older, more polluting school buses with 

cleaner upgrades through the EPA’s DERA School Bus Rebate Program on school 

district absenteeism rates. 

      Hypothesis 3: 

 

School districts awarded funding through the EPA’s DERA School Bus Rebate 

Program lottery will see greater declines in absentee rates after receiving funding for 

school bus replacements than eligible school districts that apply but are not awarded 

funding for school bus replacement. 

 

Chapters two through four of this dissertation describe the methods and results for each 

specific aim. Chapter 2 uses advanced spatiotemporal prediction modeling approaches 

with AOD data from the NASA Terra satellite to estimate daily and long-term average 

concentrations of PM10-2.5 at a 1 km2 resolution in six US urban areas (Aim 1). Chapter 3 

uses these PM10-2.5 concentration estimates to cross-sectionally estimate associations 

between long-term PM10-2.5 and markers of inflammation and coagulation in the MESA 

cohort (Aim 2). Chapter 4 takes advantage of the EPA’s randomized allocation of rebate 

funding for school bus replacements and retrofits to causally assess the impacts of the 

EPA’s 2012-2017 DERA School Bus Rebate Programs on school district attendance rates 

(Aim 3). Chapter 5 summarizes the overall findings, strengths and limitations, and 
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implications of this dissertation, and concludes with a discussion of future directions for 

this research.  
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CHAPTER 2 : 

 Estimating Long-term PM10-2.5 Concentrations in Six US Cities Using Satellite-

Based AOD Data 

 

Introduction: 

 

Airborne particulate matter (PM) is physically diverse and is comprised of 

particles over a wide range of sizes (US EPA 2009). In the epidemiology literature, the 

most common sizes studied are PM2.5 (aerodynamic diameter ≤ 2.5 μm) and PM10 

(aerodynamic diameter ≤ 10 μm). Relatively little research has focused on PM10-2.5 

(aerodynamic diameter ≤ 10 μm and > 2.5 μm), known as coarse particulate matter. A 

major challenge to epidemiologists in assessing the health risks of PM10-2.5 has been a 

lack of monitors from which exposures can be estimated. Historically, only 1% of 

counties in the United States (US) have collocated PM10 and PM2.5 monitors with which 

to estimate PM10-2.5 (US EPA 2009). This is especially problematic for studying the long-

term health effects of PM10-2.5 since PM10-2.5 is more spatially variable than PM2.5 or PM10 

due to higher gravitational settling of larger particles (US EPA 2009; US EPA 2019; 

Wilson & Suh 1997). Therefore, there is concern that the use of only a few central 

monitors for PM10-2.5 will be insufficient to accurately reflect the exposures of individuals 

across a whole region, especially in urban areas, which often have considerable spatial 

variability in PM10-2.5 concentrations (Lagudu et al. 2011; Pakbin et al. 2010; Sawvel et 

al. 2015; Thornburg et al. 2009; US EPA 2019). As a result, only a handful of 



 

19 

 

investigations have examined the health implications of long-term exposures to PM10-2.5 

and many have suffered from power issues, likely due to biases towards the null caused 

by measurement error (Adar et al. 2014). 

Fortunately, data from National Aeronautics and Space Administration (NASA) 

satellites have created opportunities to assess PM concentrations at all locations across 

space. Aerosol optical depth (AOD) is a measure of light extinction by aerosol scattering 

and absorption in the atmospheric column, which is sampled continuously from space at a 

1 km2 resolution (Kloog et al. 2011; Nordio et al. 2013; Sorek-Hamer et al. 2016). The 

availability of these daily measurements, along with advancements in spatiotemporal 

prediction modeling, allows for the estimation of air pollution levels at fine-scale spatial 

and temporal resolution even where no monitoring stations exist (Kloog et al. 2011).  

Previous research has shown good predictive ability using satellite data-based 

prediction models for PM2.5 (cross-validation (CV) R2: 0.7 to 0.9) in the US, Italy, Israel, 

and Switzerland (Kloog et al. 2012a; Kloog et al. 2011; Kloog et al. 2015; Hu 2009; Hu 

et al. 2014; Lee et al. 2016; Madrigano et al. 2013; McGuinn et al. 2016; Kloog et al. 

2012b; de Hoogh et al. 2018). The same methods were used to predict PM10 with similar 

performance in Italy (CV R2: 0.65 to 0.79; Nordio et al. 2013; Stafoggia et al. 2017; 

Stafoggia et al. 2019) and Israel (CV R2: 0.79 to 0.92; Kloog et al. 2015; Shtein et al. 

2018). Recently, one study used the abundant number of PM10 monitoring stations in 

Italy to predict both PM2.5 and PM10-2.5 concentrations using AOD and land-use data and 

found CV R2 for annual averages ranging from 0.43 to 0.59 (Stafoggia et al. 2019). To 

date, however, no model for PM10-2.5 has been developed in the US using satellite 

information and thus this modern source of data has not yet been used in epidemiology 
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studies. Therefore, in this study, we use AOD measured on the NASA Terra satellite to 

calculate daily 1 km2 resolution PM10-2.5 predictions in six US urban areas. 

Material and Methods: 

 

Study domain: 

 

Our study domain included the six regions of the Multi-Ethnic Study of 

Atherosclerosis (MESA) (Bild et al. 2002). To capture sufficient monitoring stations in 

these regions, we focused our models on the areas within 60 km of the centroids of 

Chicago, Illinois; New York, New York; and St. Paul, Minnesota; and within 80 km of 

the centroid of Baltimore, Maryland. For Los Angeles, California our study domain was 

based on the irregular recruitment area of study participants and the unique topology of 

the region. Our area extended from just west of Santa Monica to the San Jacinto 

mountain range on the east, and from San Fernando on the north to Irvine on the south, 

excluding the Santa Ana Mountains. The Winston-Salem, North Carolina study domain 

was roughly the area within 60 km of the city’s centroid, although we extended the 

domain south to include monitoring sites in Charlotte and east to Raleigh (Figure 2.1). 

These six metropolitan areas are very diverse in terms of climate, geographical features, 

proximity to large water bodies, and urbanicity.  

PM monitoring data: 

 

We obtained daily Federal Reference Method (FRM) monitoring data for PM2.5 

and PM10 mass for the years 2000 through 2012 from the US Environmental Protection 

Agency’s (EPA) Air Quality System (AQS). We restricted our datasets to one station per 

location and to stations with at least 30 observations throughout the study period. Since 

PM10 measurements are reported to EPA at standard conditions whereas PM2.5 is reported 
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at local conditions, we used temperature and pressure data (see below) to convert 

reported PM10 to local conditions so that PM10 and PM2.5 were on the same scale prior to 

calculating PM10-2.5 concentrations (US EPA 2009).   

AOD satellite data: 

 

AOD data is sampled continuously from space at a 1 km2 resolution using 

Moderate Resolution Imaging Spectroradiometer (MODIS) technology on the polar 

orbiting and sun-synchronous NASA Terra satellite (Levy et al. 2007; Remer et al. 2005). 

The AOD data are retrieved by NASA using the Multi Angle Implementation of 

Atmospheric Correction (MAIAC) algorithm, which begins by gridding MODIS 

measurements of L1B data to a fixed 1x1 km grid so that the same gridcell is observed 

over time. The MAIAC algorithm then uses time series analysis and a combination of 

pixel and image-based processing to improve accuracy of cloud detection, aerosol 

retrievals, and atmospheric correction (Lyapustin et al. 2011a; Lyapustin et al. 2011b; 

Lyapustin et al. 2012). Although newer satellites are now available, we used 2000-2012 

AOD data collected on the Terra satellite since it was the only satellite in operation at the 

beginning of our study period. 

Spatial and temporal predictors of PM2.5 and PM10: 

 

In addition to the satellite AOD observations, we also included many spatial and 

temporal predictors as fixed effects in our linear mixed effects hybrid prediction model. 

We used R statistical software version 3.6.1 (R 2019) to generate all spatial and temporal 

predictors for each 1x1 km gridcell as detailed below.   

Elevation: 
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We estimated average gridcell elevation values using data from the USGS 3D Elevation 

Program (3DEP), which produces a satellite-based, seamless digital elevation model 

covering the conterminous US and Hawaii at a spatial resolution of 1/3 arc sec 

(approximately 10 meters) (USGS 2017).    

Land use: 

We calculated the percentage of 15 different land use classes for each gridcell using 

raster data from the USGS National Land Cover Databases (NLCD) for years 2001, 

2006, and 2011 (USGS 2001; USGS 2006; USGS 2011). These data are measured at a 

30-meter resolution. The 2001 NLCD measures were assigned to gridcells for days in 

2000 through mid-2003; 2006 NLCD measures were assigned to gridcells for days in 

mid-2003 through mid-2008, and; 2011 NLCD measures were assigned to gridcells for 

days in mid-2008 through 2012. 

Normalized Difference Vegetation Index: 

We spatially and temporally matched monthly, 1 km2 resolved vegetation data from the 

NASA Terra Moderate Resolution Imaging Spectroradiometer MOD13A3 version 6 

Normalized Difference Vegetation Index (NDVI) (Didan 2015) to study gridcells. 

Planetary boundary layer: 

Using data from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

ERA Interim Daily global atmospheric reanalysis model at a spatial resolution of 0.125 

degrees (~14 km2) and 3-hour temporal resolution (Dee et al. 2011), we estimated daily 

average planetary boundary layer (PBL) height by spatially and temporally matching 

daily averaged PBL to study gridcell centroids.  

Meteorology: 
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Meteorological data for air pressure, air temperature, evaporation, precipitable water, 

specific humidity, u-wind, v-wind, and visibility came from the National Oceanic and 

Atmospheric Administration’s National Centers for Environmental Prediction North 

American Regional Reanalysis (NARR) dataset (Mesinger et al. 2006). This modeled 

data has a spatial resolution of approximately 0.3 degrees (~32km) and 3-hour temporal 

resolution, which we averaged to the day and spatially and temporally matched to study 

gridcell centroids. 

Population: 

We obtained US Census block-group total population counts and block-group shapefiles 

for the 2000 and 2010 Decennial censuses from the IPUMS National Historical 

Geographic Information System (NHGIS) (Manson et al. 2018). We then calculated two 

block-group spatially-weighted population measures: the first applied the 2000 Census-

based population count to all days in years 2000 – 2004 and the 2010 Census-based 

population count to all days in 2005 – 2012 while the second linearly interpolated gridcell 

population for each year between the 2000 and 2010 Census values. 

Roads and railways: 

We used primary and secondary road and railway feature data from the US Census 

TIGER/Line Shapefile online download system (US Census Bureau 2010) to calculate 

the density of all primary and secondary roads (combined) in each gridcell. Additionally, 

we calculated the distance from each gridcell centroid to the nearest primary road, 

secondary road, and rail track. 

Water bodies: 
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Water feature data came from the USGS National Hydrography Dataset (USGS 2019) 

(for both waterbody and water area categories). We calculated the distance from each 

gridcell centroid to the nearest water feature of any size and large water body (where we 

defined each city’s large water body as follows: Chesapeake Bay for Baltimore; Lake 

Michigan for Chicago; Pacific Ocean for Los Angeles; Atlantic Ocean and Long Island 

Sound for New York; Lake Superior for St. Paul; and Atlantic Ocean for Winston-

Salem). 

Statistical methods: 

 

This section describes the multi-stage statistical approaches used in this study. 

Briefly, we used a previously developed spatiotemporal mixed effects modelling 

approach (Kloog et al. 2012a; Kloog et al. 2014; Kloog et al. 2015) with satellite AOD 

data to predict daily PM2.5 and, separately, PM10, at a 1 km2 spatial resolution. We then 

used these predictions to calculate 1 km2 spatially resolved daily and long-term PM10-2.5 

concentrations via subtraction across six metropolitan areas in the US. Predicting PM2.5 

and PM10 separately, as opposed to predicting PM10-2.5 directly, increased the amount of 

information used in the models since our study areas had many EPA sites that were not 

collocated. This choice also allowed for a more geographically diverse set of stations to 

inform our predictions, which will then better represent the areas where participants in 

future health analyses reside. All statistical modeling was done using R software version 

3.5.0 (R 2018) and all maps were created using R software 3.6.1 (R 2019). 

PM predictions: 
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In the first stage of our analysis, we fit calibration model (2.1), which predicts measured 

PM as a function of AOD for all PM observations with an available AOD value within 

1.1 km. We constructed individual models for each city and pollutant (PM2.5 and PM10): 

𝑃𝑀𝑖𝑗 = (𝛼 + 𝜇𝑗) + (𝛽1 + 𝜈𝑗)𝐴𝑂𝐷𝑖𝑗 + ∑ 𝛾1𝑚
𝑋1𝑚𝑖𝑗

10
𝑚=1 + ∑ 𝛾2𝑚

𝑋2𝑚𝑖

24
𝑚=1 + 𝜀𝑖𝑗            (2.1) 

Where: 𝑃𝑀𝑖𝑗 is the measured PM2.5 or PM10 concentration in a city at site i on day j; 𝛼 is 

the fixed intercept and 𝜇𝑗 is the day-specific random intercept; 𝛽1 is the fixed slope for 

AOD while 𝜈𝑗 is the day-specific random slope for AOD. 𝐴𝑂𝐷𝑖𝑗 is the AOD value for the 

gridcell corresponding to site i on day j; 𝑋1𝑚𝑖𝑗
 is the mth spatiotemporal predictor in the 

gridcell corresponding to site i on day j (i.e., vegetation, eight meteorology predictors, 

and PBL height) and 𝛾1𝑚
 is the slope of the mth spatiotemporal predictor; 𝑋2𝑚𝑖

 is the mth 

spatial predictor in the gridcell corresponding to site i (i.e., elevation, two population 

measures, fifteen land use categories, road density, and proximity to: primary road, 

secondary road, railroad, any water body, and large water body) and 𝛾2𝑚
 is the slope of 

the mth spatial predictor. 

 

Since AOD data can be unreliable due to cloud contamination, snow-cover, surface 

brightness, and other factors, we excluded observations with an AOD uncertainty value ≤ 

0 or ≥ 0.04, per MAIAC guidelines. Observations where the gridcell included ≥ 5% open 

water (based on the land use data) were also excluded since AOD data can be similarly 

unreliable near water surfaces. We additionally excluded observations where the AOD 

and/or the PM value was at or below the city-specific 1st percentile or at or above the 

city-specific 99th percentile to reduce the potential influence of outlier values on these 
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first stage calibration models1. Since many of the land use categories had little variation 

within the modeling domains, we excluded predictors where the value of the 25th 

percentile was equal to the 75th percentile2.  

Within this cleaned dataset, AOD can be missing not-at-random and can be missing for 

reasons that are correlated with PM levels (e.g., levels of cloud and snow coverage that 

are not excluded based on the AOD uncertainty value, described above). This could 

impact the calibration stage regression coefficients in equation 2.1 and therefore the 

calibration model-based predictions. To address this potential bias, we created inverse 

probability weights (IPW) to up-weight observed gridcell-days that share characteristics 

with days that have more missing AOD data. The weights were calculated by fitting the 

following logistic regression model (2.2) separately for each year and each city for the 

probability, p, of having a non-missing AOD value for gridcell i on day j: 

𝑙𝑛 (
𝑝

1−𝑝
) = 𝛽0 + 𝛽1𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽2𝑃𝐵𝐿𝑖𝑗 + 𝛽3𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 + ∑ 𝛽𝑘

14
𝑘=4 𝐼(𝑀𝑜𝑛𝑡ℎ)𝑗      (2.2) 

Using weights of 
1

𝑝
 derived from (2.2), we then used backward selection with the Akaike 

Information Criterion (AIC) to select the fixed effects used in each calibration model 

(2.1). This generated city- and pollutant-specific calibration models which we used to 

predict PM for gridcell-days with available AOD data (including the IPW weighting). 

Finally, to predict PM in gridcell-days without available AOD data, we fit the following 

generalized additive mixed model, which uses average regional measured PM and a 

 
1 The St. Paul PM10 analysis used thresholds of 2.5th and 97.5th percentiles to improve the model fit. 
2 The calibration model for Chicago PM2.5 excluded predictors where the value of the 1st percentile was 

equal to the 99th percentile to improve model fit. 
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smooth function of the gridcell centroid coordinates, to predict the AOD-based PM 

estimates that were calculated with the model (2.1) fit: 

𝑃𝑟𝑒𝑑𝑃𝑀𝑖𝑗 = (𝛼 + 𝜇𝑖 ) + (𝛽1 + 𝑣𝑖)𝑀𝑃𝑀𝑖𝑗 + 𝑠(𝑙𝑎𝑡𝑖, 𝑙𝑜𝑛𝑖)𝑘(𝑗) + 𝜀𝑖𝑗           (2.3) 

𝑃𝑟𝑒𝑑𝑃𝑀𝑖𝑗 is the predicted PM calculated with calibration model (2.1) for gridcell-days 

with available AOD data; 𝛼 is the fixed intercept and 𝜇𝑖 is the gridcell-specific random 

intercept; 𝑀𝑃𝑀𝑖𝑗 is the mean PM from all EPA sites within 60 km of the centroid of 

gridcell i on day j; 𝛽1 is the fixed slope on MPM while 𝜈𝑖  is the gridcell-specific random 

slope for MPM; 𝑠(𝑙𝑎𝑡𝑖, 𝑙𝑜𝑛𝑖)𝑘(𝑗) is a thin plate spline of the latitude and longitude of the 

centroid of gridcell i for the two-month period, k(j), in which day j falls (i.e., we fit a 

separate thin plate spline smoothing function for each two month period in the study 

period).  

Our final PM2.5 and PM10 predictions were created by selecting – by day and gridcell – 

the ‘best’ available PM measure, where the daily gridcell-average EPA measured PM 

value was selected first, followed by the calibration-based model predictions, and then 

the smoothing model PM predictions. This approach results in a full-coverage prediction 

dataset for each city for each PM size fraction for days with and without AOD 

measurements. We then estimated PM10-2.5 concentrations as the difference between PM10 

and PM2.5 concentrations. 

Model Evaluation: 

We performed ‘leave-one-station-out’ (LOSO) cross-validation (CV) to assess the 

performance of our models. Specifically, to generate the calibration model CV 

predictions, we repeatedly left out one of the N total PM monitors in each city and re-fit 
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the AIC-chosen calibration model on only data from the N-1 remaining PM stations. We 

then used the model fit from the N-1 sites to predict PM at the held-out site. 

Conceptually, this approach assesses the performance of the calibration models vs. 

observed values at an unobserved location. The smoothing model CV predictions were 

generated by recursively fitting the smoothing model on the predicted values from the 

calibration model fit from the N-1 sites.  

We separately evaluated the calibration CV predictions and our final CV predictions, 

where the latter were selected from the ‘best’ of either the calibration model CV or 

smoothing model CV predictions. Both were evaluated for all three pollutants and against 

all available EPA PM monitoring data throughout the study period (i.e., for PM with and 

without paired available AOD data, as appropriate). Since the EPA does not provide 

publicly available PM10-2.5 data, we created a validation dataset of daily and long-term 

average PM10-2.5 concentrations by subtracting PM2.5 from PM10 measured at EPA FRM 

monitoring stations with collocated monitors.   

To evaluate our CV predictions, we regressed the spatially and temporally paired daily 

observed concentrations on the daily CV predicted concentrations and summarized the 

R2, intercept, and slope; we also calculated the root mean square error (RMSE) of the 

predictions. To examine the ability of our models to estimate the spatial variation in PM 

concentrations, we regressed our CV predictions against observed concentrations 

averaged over the full study-period and again summarized the R2, intercept, and slope, 

and again calculated the RMSE. To isolate and assess the temporal performance of the 

models, we calculated the overall R2 for our CV predictions separately for each EPA 

monitoring site. We then generated summary statistics (i.e., mean and standard deviation) 
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of monitor-specific R2, intercept, slope, and RMSE values, separately for each city and 

pollutant.  

Alternative modeling approaches: 

In secondary analyses, we evaluated three alternate approaches for estimation of PM10-2.5: 

two alternatives to compare to our model’s spatial performance and one to compare to 

our model’s temporal performance. For the spatial comparisons we first conducted a 

nearest monitor analysis to determine whether our PM10-2.5 prediction approach 

performed better spatially than a simpler method used in some of the PM10-2.5 long-term 

health effects literature (Lipsett et al. 2006; Miller et al. 2007; Chen et al. 2015). We then 

performed inverse distance weighting (IDW) using weights of squared inverse distance as 

a second comparison to our spatial performance. Specifically, for both alternative 

approaches, we left out one collocated PM2.5 and PM10 site in each study area at a time 

and assigned it – by day – the PM10-2.5 concentration from the collocated PM2.5 and PM10 

EPA site that was geographically closest to the held-out site (for the nearest monitor 

approach) or the PM10-2.5 prediction at the location of the held-out site from the IDW 

interpolation of all other collocated PM2.5 and PM10 EPA sites in the study area (for the 

IDW approach). This was done repeatedly so that each site was held out once in each 

analysis. We then compared the study-period average PM10-2.5 concentrations at the held-

out sites, separately, to the nearest observed PM10-2.5 concentrations (for the nearest 

monitor approach) and to the IDW interpolated PM10-2.5 concentrations (for the IDW 

approach) and reported spatial Rs2, intercepts, slopes, and RMSE values, separately for 

each city and alternative approach.  
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We similarly determined whether our PM10-2.5 prediction approach performed better 

temporally than a regional average PM10-2.5 measurement, which is an alternative method 

commonly used in the PM10-2.5 health effects time series literature (Chen et al. 2004; Lin 

et al. 2005; Malig et al. 2013; Peng et al. 2008; Rodopoulou et al. 2014; Stafoggia et al. 

2013; US EPA 2019; Zhao et al. 2016). Specifically, for each daily measured PM10-2.5 

concentration at a given collocated PM2.5 and PM10 site, we calculated the daily average 

PM10-2.5 value from all other collocated PM2.5 and PM10 sites in the study area except 

itself for that day. We then compared the daily PM10-2.5 concentrations at the held-out site 

to the daily region-average PM10-2.5 concentrations, separately for each held-out 

monitoring site and reported the mean and standard deviation of monitor-specific 

reported Rs2, intercepts, slopes, and RMSE values, separately for each city and pollutant. 

Results: 

 

Figure 2.1 shows the study area for each of the six study regions, including the 

locations of the PM2.5, PM10, and collocated PM2.5 and PM10 EPA monitoring stations 

used in the analysis. Notably, each city had a higher frequency of PM2.5 sampling 

(roughly one out of three days for PM2.5 and one out of six days for PM10) and a larger 

number of PM2.5 samplers (Table 2.1). The number of PM sites used in this analysis 

differed by city, with New York having the most PM2.5 samplers (N=37) and Los 

Angeles having the most PM10 samplers (N=19). St. Paul had the fewest PM2.5 (N=17) 

and PM10 (N=8) samplers. The number of unique collocated PM10-2.5 sites in each city 

throughout the study period ranged from 4 in St. Paul to 12 in Los Angeles (Table 2.1); 

however, there were no collocated sites in St. Paul in the last three years of our study 

period and only one collocated site in New York for the last eight years of the study 
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period. Based on monitoring data, we observed that the Los Angeles study region had the 

highest mean concentrations for both PM2.5 (16.7 µg/m3) and PM10 (35.6 µg/m3) of all 6 

areas. In contrast, St. Paul had the lowest mean PM2.5 concentration (8.6 µg/m3) and 

Baltimore had the lowest mean PM10 concentration (20.4 µg/m3). Mean PM10-2.5 

concentrations at collocated sites throughout the study period ranged from 6.3 µg/m3 in 

Winston-Salem to 20.7 µg/m3 in Los Angeles.  

In our calibration models that predicted PM based on AOD measurements, we 

found that AOD was consistently and strongly positively associated with PM2.5 in all 6 

areas and with PM10 in 3 of the cities but not in the more northern cities of Chicago, St. 

Paul, and New York. Meteorological factors, elevation, land use development level, and 

daily average PBL were the predictors most commonly selected in the PM2.5 models, 

while the vertical wind component, population, and humidity were the predictors most 

commonly selected in the PM10 models (Table 2.A2)3. As shown in Table 2.2, we had 

strong performance for predicting long-term average PM10-2.5 – our pollutant of primary 

interest – based on measured AOD. Our spatial CV R2 was greater than 0.6 in four of our 

six cities (i.e., Baltimore, Los Angeles, New York, and St. Paul). The spatial CV R2 was 

also good in Chicago at 0.57 but poor for Winston-Salem at 0.25. These PM10-2.5 spatial 

R2 were consistent with, if not better than, PM2.5 or PM10 alone, which ranged from 0.46 

in Chicago to 0.93 in Winston-Salem for PM2.5 and from 0.52 in Chicago to 0.95 in New 

York for PM10. In contrast, we had poor predictive performance overall due to poor 

predictive power of PM10-2.5 temporal variation. In fact, the model performance was much 

 
3 Although elevation was a selected fixed effect in the Baltimore PM10 calibration model, given the 

topological characteristics of that region compared to the locations of PM10 monitors, using elevation in the 

AOD-based predictions resulted in a large fraction of negative PM10 predictions. We therefore re-

performed AIC backward selection after excluding elevation as a predictor for consideration. 
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worse temporally for PM10-2.5 (average temporal CV R2s from 0.10 to 0.43) than for 

either PM2.5 (average temporal CV R2s from 0.69 to 0.83) or PM10 (average temporal CV 

R2s from 0.52 to 0.69) in all six cities.  

Validation results of our final predictions for all three pollutants are shown in 

Table 2.3. As with our calibration models, our final PM10-2.5 models had excellent spatial 

performance in Baltimore, Los Angeles, New York, and St. Paul, with CV R2s ranging 

from 0.70 to 0.97. Chicago again had moderate PM10-2.5 spatial performance (CV R2: 

0.51) and Winston-Salem had a low spatial CV R2 of 0.31. Temporal performance 

remained low for our final PM10-2.5 predictions, with mean CV R2 ranging from 0.12 to 

0.41. These AOD-based models all validated substantially better than both alternate 

spatial approaches, both of which performed poorly in all six cites (Table 2.4). In 

contrast, the alternate temporal approach of a city mean performed slightly better than our 

AOD based predictions across the study areas (based on mean CV R2) although in 

general, the results were still poor. 

Maps of our final PM2.5, PM10, and PM10-2.5 predictions averaged over the study 

period are shown in Figure 2.2 for each area. In general, PM2.5 predicted concentrations 

were highest along major roadways and in the downtown areas of all six cities, while 

PM10 and PM10-2.5 predictions exhibited similar but weaker roadway and downtown 

spatial patterns. Summary statistics for the final long-term average predictions, by city 

and pollutant, are shown in Table 2.5. Mean study area long-term average PM2.5 ranged 

from 8.0 µg/m3 in Chicago to 12.0 µg/m3 in Winston-Salem while PM10 ranged from 

11.6 µg/m3 in Baltimore to 37.6 µg/m3 in New York. As with measured levels, Baltimore 
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had the lowest mean long-term average PM10-2.5 predictions (2.1 µg/m3) while New York 

had the highest (28.3 µg/m3).  

Discussion: 

 

We used spatiotemporal mixed effects models with satellite AOD data to predict 

PM10-2.5 at a 1km2 resolution in six metropolitan areas across the US. This extends earlier 

work which successfully developed and applied this approach throughout the eastern US, 

Italy, and Israel for PM2.5 (Kloog et al. 2012a; Kloog et al. 2011; Kloog et al. 2015; Hu 

2009; Madrigano et al. 2013; McGuinn et al. 2016; Kloog et al. 2012b) and in Italy and 

Israel for PM10 (Nordio et al. 2013; Stafoggia et al. 2017; Stafoggia et al. 2019; Kloog et 

al. 2015; Shtein et al. 2018). Overall, our final predictions captured the long-term spatial 

patterns of PM10-2.5 very well in four of our study areas (CV R2 ranging from 0.7 in Los 

Angeles to 0.97 New York), well in one area (CV R2 of 0.51 in Chicago), and modestly 

in one area (CV R2 of 0.31 in Winston-Salem). In all six study areas, our predictions had 

substantially better spatial performance than both a simple nearest-monitor approach and 

an IDW approach. Given that urban areas often have considerable spatial variability in 

PM10-2.5 concentrations (Lagudu et al. 2011; Pakbin et al. 2010; Sawvel et al. 2015; 

Thornburg et al. 2009; US EPA 2019), our results show the benefits of using satellite-

based AOD data for long-term PM10-2.5 epidemiological health studies. 

This research adds to the literature as one of only a handful of models to predict 

PM10-2.5 concentrations for use in long-term air pollution epidemiological studies. This is 

particularly true for the US where – to our knowledge – only two groups have generated 

PM10-2.5 exposure predictions that have been used in health studies (US EPA 2019). 

Notably, neither has taken advantage of the additional information AOD provides when 
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conducting PM10-2.5 spatiotemporal pollution prediction modeling. Previously, our group 

used intensive PM10-2.5 monitoring campaigns as part of the MESA Coarse study (Zhang 

et al. 2014) to predict spatial patterns of PM10-2.5 using land use regression methods in 

three of the six cities studied here. While our model performance using the intensive 

sampling data was largely better than these new AOD-models, they were not 

substantially or consistently so. For example, we previously had CV R2s of 0.68 (RMSE: 

1.16 µg/m3) and 0.41 (RMSE: 1.09 µg/m3) in Chicago and Winston-Salem, respectively, 

as compared to CV R2s of 0.51 (RMSE: 3.43 µg/m3) and 0.31 (RMSE: 1.85 µg/m3) for 

our current models. In contrast, our new St. Paul models have a CV R2 of 0.84 (RMSE: 

2.54 µg/m3) as compared to our earlier models of 0.51 (RMSE 2.33 µg/m3). Given that 

monitoring field studies are very expensive to conduct and cannot capture the temporal 

variability in PM10-2.5 concentrations, this AOD-informed approach offers important 

benefits over predictions derived from spatially intensive ground monitoring.  

Another study of the whole conterminous US used generalized additive mixed 

models with geographic, meteorological, and visibility data to predict PM2.5 and PM10 

concentrations at the monthly scale based on EPA monitoring data (Yanosky et al. 2008; 

Yanosky et al. 2009; Yanosky et al. 2014). Over the period from 1999-2007 they found a 

spatial CV R2 of 0.61 for their predictions, with performance that varied across 

geographical regions from 0.33 in the Southcentral US to 0.64 in the Southwest. 

Importantly, Yanosky et al. (2014) hypothesized that the inclusion of AOD measures in 

spatiotemporal models might improve model predictive accuracy, especially in areas 

distant from air quality monitors. In fact, this did appear to be the case as our final long-

term average CV predictions had much better spatial performance in Baltimore, New 
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York, and St. Paul (0.75 to 0.97 vs. 0.49 to 0.53), better performance in Los Angeles 

(0.70 vs. 0.64), and marginally better performance in Chicago (0.51 vs. 0.49). Only in 

Winston-Salem did their models have better predictive ability, although they also had 

only modest performance (0.31 vs. 0.36).  

Differences in our Winston-Salem PM10-2.5 results as compared to those in the 

Southeast region in Yanosky et al. (2014) highlights one of the key challenges of 

predicting concentrations for localized areas as we have done in this work. Unlike many 

other studies that have predicted PM levels across larger regions or nations, our study 

focused on smaller metropolitan areas. While predicting over smaller areas has the 

potential to increase accuracy if there is effect modification of predictors by place, it can 

come at the cost of lost variation in exposures. Notably, there was only a 5 µg/m3 range 

in the long-term average PM10-2.5 concentrations in Winston-Salem across the eleven 

collocated PM10-2.5 sites during our study period. In contrast, our other cities had monitor 

level averages with ranges closer to 10 to 20 µg/m3. This lack of variation surely 

contributed to our inability to model the spatial variability in PM10-2.5 levels well.   

Figure 2.1 and Figure 2.2 highlight a second limitation of studying a smaller area, 

which is that the models can be informed by relatively few monitoring sites and thus 

there is often less variation in the types of places where air quality stations are sited. For 

example, in the New York region all of the PM10 monitors were sited in low elevation, 

urban areas that were near the coast. This resulted in the areas west of the city having 

many predictor values outside of the design space of the data used to fit the calibration 

model. This, in combination with the coefficients for these predictors, resulted in high 

predicted concentrations of PM10 (and subsequently PM10-2.5) in the area west of New 
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York City. A similar phenomenon is visible in Winston-Salem where the PM10 stations 

are all sited in close proximity to the major highways and areas distant to the highways 

have very low predicted values.  

Finally, we note that our models were not fit directly on PM10-2.5 measurements, 

but rather on PM2.5 and PM10 separately. In such models, the error from two models 

contributes to the performance of the predictions. Although this is common for PM10-2.5 

modeling due to a lack of size-fraction specific sampling, its impact is highlighted by the 

strong performance of our PM2.5 and PM10 models (final model CV R2 0.93 and 0.77, 

respectively) in Winston-Salem but not PM10-2.5 (CV R2 was 0.31).  

Overall, however, we had strong performance of our models to characterize the 

spatial variability of PM10-2.5. In addition, our AOD-based predictions dramatically out-

performed the alternative IDW and nearest monitor approaches that have been used in 

other epidemiology studies to date, showing the potential improvement this approach can 

offer to environmental epidemiological research. In contrast, the temporal performance of 

our PM10-2.5 estimates was very poor, with final model mean CV R2 ranging from 0.12 in 

Baltimore to 0.41 in Los Angeles, suggesting that this approach does not adequately 

capture the daily variation in PM10-2.5 concentrations in these six areas. Importantly, 

though, our poor temporal performance was largely the same as results from the city 

mean approach (mean temporal R2 ranged from 0.20 in New York to 0.59 in Los 

Angeles) that has been frequently deployed in epidemiological studies. This demonstrates 

that PM10-2.5 has more spatiotemporal variability than the current set of EPA monitoring 

stations can capture, even with the addition of satellite-based information. It further raises 
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questions about the impacts of measurement error in the epidemiology on short-term 

exposures to PM10-2.5 in the United States. 

Conclusion: 

 

We have demonstrated that the use of satellite AOD data is an effective method 

for characterizing spatial, but not temporal variations, in PM10-2.5 concentrations in six 

cities in the US. Given the high costs of field sampling, this methodology is a strong 

option for estimating long-term PM10-2.5 concentrations, especially in areas with sufficient 

numbers of air quality monitors and spatial variability in concentrations.  
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Figure 2.1 Modeling domains and EPA monitor station locations for six US study 

areas. 

 
 

Figure 2.1 shows the study areas and EPA monitor station locations for A) Baltimore, Maryland; 

B) Chicago, Illinois; C) Los Angeles, California; D) New York, New York; E) St. Paul, 

Minnesota; and F) Winston-Salem, North Carolina. 
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Figure 2.2 Maps of long-term average PM predictions (2000-2012), by pollutant and study area. 
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Table 2.1 Summary statistics of daily PM2.5, PM10, and PM10-2.5 concentrations 

(µg/m3) used in calibration models, measured at EPA air quality monitoring stations 

in six US metropolitan areas for the period 2000-2012. 
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Table 2.2 Cross-validated performance of calibration models for PM2.5, PM10, and PM10-2.5 predictions by study area and 

pollutant. 

 
      a Shown as parameter estimate ± standard error from a linear regression of observations versus predictions 
      b Root of the mean squared error 
      c Shown as the mean (standard deviation) of the statistic, across all monitor-level results from linear regressions of observations versus predictions 
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Table 2.3 Cross-validated performance of final 'best' models for PM2.5, PM10, and PM10-2.5 predictions by study area and 

pollutant. 

 
    a Shown as parameter estimate ± standard error from a linear regression of observations versus predictions 
    b Root of the mean squared error 
    c Shown as the mean (standard deviation) of the statistic, across all monitor-level results from linear regressions of observations versus prediction
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Table 2.4 Comparison of PM10-2.5 model evaluation using AOD-based approach versus alternative approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Shown as parameter estimate ± standard error from a linear regression of observations versus predictions 
b Root of the mean squared error 

 

 

 

 

 

 

 

 

 
 

 

 

 

          a Shown as the mean (standard deviation) of the statistic, across all monitor-level results from linear regressions of observations versus predictions 

 
 

Table 2.4 shows the PM10-2.5 model evaluation by study area using A) our AOD-based approach (final model CV) vs. two alternative spatial approaches 
(nearest monitor and inverse distance weighting); B) our AOD-based approach (final model CV) vs. an alternative temporal approach (city-average).

A 

B 
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Table 2.5 Summary statistics of final long-term average (2000-2012) PM2.5, PM10, 

and PM10-2.5 predictions (µg/m3), by study area and pollutant. 
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Appendix: 

 

Table 2.A1 Summary statistics of all daily PM2.5, PM10, and PM10-2.5 concentrations 

(µg/m3) measured at EPA air quality monitoring stations in six US metropolitan 

areas for the period 2000-2012, independent of paired AOD data (i.e., validation 

dataset).a 

 
a These data are, however, restricted to only EPA sites that are used in the calibration model  

(i.e., sites with > 30 observations throughout the study period and only one station per location). 
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Table 2.A2 Calibration model coefficients of AIC-selected spatial and temporal 

predictors (fixed effects), by study area and pollutant. 
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CHAPTER 3 :  

Cross-Sectional Associations between Long-Term Satellite AOD Predicted PM10-2.5 

and Markers of Inflammation and Coagulation in the Multi-Ethnic Study of 

Atherosclerosis (MESA) Population  

 

Introduction: 

 

Air pollution has been ranked as one of the top ten risk factors for morbidity and 

mortality in the world, largely due to its impacts on cardiovascular disease (Lim et al. 

2012). Even at the current low levels of air pollution observed in the United States (US), 

it is estimated that nearly 80,000 lives are lost prematurely each year in the US due to the 

cardiovascular impacts of these exposures (Brauer et al. 2016). The mechanisms 

underlying these relationships are incompletely understood, though inflammation and 

coagulation have been proposed as some of the key pathways by which particulate matter 

(PM) air pollution can impact health (Brook et al. 2010; US EPA 2019; van Eeden et al. 

2004). Together, these  responses can initiate chronic cardiovascular disease processes 

such as atherosclerosis (Kaufman et al. 2016) and other adverse cardiac events such as 

myocardial infarctions and strokes (Brook et al. 2010; van Eeden et al. 2004).  

Importantly, inflammation and coagulation are considered plausible biological 

mechanisms for the observed associations between cardiovascular health effects and PM 

of all sizes. However, to date, most research on the impacts of PM has focused on the 

smaller size fraction of PM2.5 (aerodynamic diameter ≤ 2.5 μm) (Hajat et al. 2015; 
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Viehmann et al. 2015; Hennig et al. 2014; Ostro et al. 2014; Lanki et al. 2015; Dabass et 

al. 2016; Bind et al. 2012), with only a few studies evaluating the long-term inflammation 

and coagulation from larger particles such as PM10-2.5 (aerodynamic diameter ≤ 10 μm 

and > 2.5 μm) (Adar et al. 2015; Lanki et al. 2015; Forbes et al. 2009). This gap is 

noteworthy since the US EPA has determined that there is suggestive evidence of an 

association between long-term PM10-2.5 and adverse cardiovascular events but notes that 

there are gaps in the proposed pathways that might link these (US EPA 2019).  

A major challenge that has contributed to the small body of literature on the long-

term inflammatory and coagulation impacts of PM10-2.5 is the limited measurement data 

available to estimate PM10-2.5 exposure for use in epidemiologic studies (Adar et al. 

2014). One of only two studies of this relationship used data from the Multi-Ethnic Study 

of Atherosclerosis (MESA) to investigate associations with PM10-2.5  (Adar et al. 2015). 

That study used detailed estimates of exposure predicted using measurements from a 

spatially intensive field substudy (Zhang et al. 2014). Those predictions were, however, 

only available for three of the six MESA sites and as a result that research was largely 

underpowered to find associations.  

In the present study, we aimed to extend and validate the work of Adar et al. 

(2015) by using new PM10-2.5 estimates which we generated using spatiotemporal models 

with satellite measures for all six MESA sites. Specifically, we used our PM10-2.5 

predictions in the full MESA cohort to assess the impacts of PM10-2.5 with two markers of 

inflammation (interleukin-6 (IL-6) and C-reactive protein (CRP)) and four markers of 

coagulation (fibrinogen, factor VIII, D-dimer, and plasmin-antiplasmin complex (PAP)). 

This work increases statistical power and allowed us to study these relationships within 
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the largest and most geographically diverse US population to date and without the need 

for intensive PM10-2.5 sampling. 

Methods: 

 

Study population:  

 

We conducted this analysis using data from participants of MESA. Briefly, 

MESA recruited 6,814 White, Black, Hispanic, and Chinese women and men between 

July 2000 and September 2002 who were aged 45 to 84 years and who were free from 

clinical cardiovascular disease (Bild et al. 2002). Participants were recruited from 

Baltimore, Maryland; Chicago, Illinois; Forsyth County, North Carolina; Los Angeles 

County, California; northern Manhattan, New York; and St. Paul, Minnesota. 

Inflammation and coagulation biomarkers: 

 

Fasting blood samples were collected from all participants at baseline (2000-

2002) and analyzed at the University of Vermont Laboratory for Clinical Biochemistry 

Research (Bild et al. 2002; Cushman et al. 1995). Our analysis considered six 

biomarkers, which were determined a priori based on previous research showing links 

with air pollution and their hypothesized roles in inflammatory and coagulation processes 

(Adar et al. 2015; Lanki et al. 2015; Hajat et al. 2015; US EPA 2009; US EPA 2019): IL-

6, CRP, fibrinogen, factor VIII, D-dimer, and PAP. IL-6 was measured using 

ultrasensitive enzyme-linked immunosorbent assay (ELISA) (Quantikine HS Human IL-6 

Immunoassay; R&D Systems, Minneapolis, MN) with a lower detection limit of < 0.094 

pg/mL [coefficient of variation (CV): 6.3%]. CRP and fibrinogen were measured using 

the BNII nephelometer (N High Sensitivity CRP, N Antiserum to Human Fibrinogen; 

Dade Behring, Inc. Deerfield, IL). CRP intra-assay CVs ranged from 2.3 to 4.4% and 
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interassay CVs ranged from 2.1 to 5.7%. Fibrinogen intra-assay and interassay CVs were 

2.7 and 2.6%, respectively. D-dimer was measured using an immuno-turbidimetric 

method on the Sta-R analyzer (Liatest D-DI; Diagnostica Stago, Parsippany, NJ) 

[analytical CV: 8%]. Factor VIII coagulant activity was determined as the clot time in 

factor VIIIc deficient plasma in the presence of activators utilizing the Sta-R analyzer 

(STA-Deficient VIII; Diagnostica Stago, Parsippany, NJ) [CV: 10%]. PAP was measured 

by a two-site enzyme-linked immunosorbent assay (ELISA) that utilizes two monoclonal 

antibodies (Holvoet et al. 1986).  

Air pollution: 

 

PM10-2.5 concentration predictions are described in Chapter 2 of this dissertation. 

Briefly, we used measurements of Aerosol Optical Depth (AOD) from the National 

Aeronautics and Space Administration’s (NASA) Terra satellite along with land-use 

regression and spatial smoothing to estimate long-term PM10-2.5 within the six areas 

where MESA participants resided. In this multi-staged approach we first calibrated AOD 

(1 km2 resolution) with daily EPA measurements of PM10 and PM2.5 using an area-

specific mixed-modelling approach with land-use regression. Spatial and temporal 

predictors included elevation, land use, vegetation, planetary boundary layer, population, 

distance to roads, rails, large water bodies, and meteorological terms (air pressure, air 

temperature, evaporation, precipitable water, specific humidity, u-wind, and v-wind). We 

then used spatial smoothing in generalized additive mixed-models to predict daily PM10 

and PM2.5 when AOD was missing. Finally, we estimated PM10-2.5 by taking the 

difference of spatially matched PM10 and PM2.5 daily predictions. Our long-term PM10-2.5 

predictions were well correlated with measured levels estimated from collocated PM2.5 
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and PM10 sites, with spatial cross validated (CV) R2 ranging from 0.31 in Winston-Salem, 

North Carolina to 0.97 in New York, and mean and median spatial CV R2 across all six 

sites of 0.68 and 0.72, respectively.  

Our exposure of interest in this work is long-term PM10-2.5 levels (i.e., 5-year and 

1-year PM10-2.5 averages). However, the inflammation and coagulation biomarkers were 

measured in blood samples taken at the MESA baseline examination (2000-2002), which 

did not perfectly align with the satellite data used to generate our PM10-2.5 predictions 

(AOD was first collected on the Terra satellite in late February 2000). Given this 

temporal misalignment, we elected to use PM10-2.5 predictions for the mid-year of the 

baseline examination period (i.e., 2001) to reflect spatial contrasts during our exposure 

periods of interest. Our primary exposure therefore paired participants’ 5-year residential 

address histories prior to their baseline exam with 2001 predictions, which assumes the 

spatial contrasts in PM10-2.5 levels did not change over time. This assumption is supported 

by recent work (Colmer et al. 2020), which found that spatial contrasts in PM2.5 levels 

across all US census tracts have remained consistent over 36 years and is similar to the 

exposure assignment approach used by others (Adar et al. 2015; Lanki et al. 2015). In 

sensitivity analyses we also estimated 1-year average PM10-2.5 concentrations for each 

participant, again using 2001 air pollution predictions paired with 1-year prior to baseline 

exam residential address history. Participants located in grid-cells with >5% open water 

were linked to their closest neighboring grid-cell since we did not have PM10-2.5 predicted 

concentrations for grid-cells with >5% open water. 

Covariates: 
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 Our analyses used additional data collected via technician administered 

questionnaire at the baseline exam, including the personal characteristics of age, sex, 

race/ethnicity, education, income, employment status, home ownership status, and marital 

status. Technicians also recorded information on participant medication use and health 

behaviors, including alcohol consumption, passive and active exposure to cigarette 

smoke, and weekly physical activity level. Hypertension and diabetes disease status were 

assessed at baseline, with hypertension defined by a measured systolic blood pressure > 

140 mm Hg, diastolic blood pressure > 90 mm Hg, or use of anti-hypertensive 

medications (JNC VI 1997), and with diabetes defined by measured fasting serum 

glucose levels and medication use consistent with the 2003 American Diabetes 

Association guidelines (Genuth et al. 2003). Height and weight (which were used to 

calculate body mass index (BMI)), high-density lipoprotein (HDL), and creatinine were 

additionally measured during the baseline clinical examination.  

To evaluate area-level confounding, we also created a neighborhood 

socioeconomic score (NSES) developed using principal components analysis (PCA) with 

sixteen census tract-level variables related to income, wealth, education, and 

employment, and linked to each participant’s baseline address (Hajat et al. 2013). 

Similarly, we used predictions of the co-pollutants, PM2.5 and NOX from the Multi-Ethnic 

Study of Atherosclerosis and Air Pollution (MESA Air) spatiotemporal model, which 

was available after 1999 (Kaufman et al. 2012; Szpiro et al. 2010). We also obtained 

meteorological data (temperature and relative humidity) from the National Oceanic and 

Atmospheric Administration’s (NOAA) National Climatic Data Center and Normalized 

Difference Vegetation Index (NDVI) values collected on the NASA Terra satellite.  
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Statistical analyses: 

 

 We performed multivariable linear regression to estimate the cross-sectional 

associations between long-term PM10-2.5 exposure and our two inflammation (IL-6 and 

CRP) and four coagulation (fibrinogen, factor VIII, D-dimer, and PAP) outcomes. Prior 

to modeling all markers were log transformed due to non-linearity. We conducted these 

analyses in staged fashions to understand the influence of the various confounders on our 

association of interest. Our first model adjusted for age (continuous), sex (binary), and 

race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, Chinese). Our second 

model additionally adjusted for characteristics about person and place likely to reflect 

confounding by SES or place including education (high school or less, some college, 

technical school certificate or associates/bachelors degree, graduate degree), current 

employment status (binary), current marital status (binary), home ownership status 

(binary), study site, NSES (continuous) by site, meteorology (temperature and relative 

humidity on the day of the baseline exam), and vegetation levels (the 25th and 75th 

percentiles of monthly 2001 levels within approximately 1km of a participant’s baseline 

address). We also adjusted for the lifestyle factors of alcohol consumption (never, former, 

current), active and passive smoke exposure (never smoker/no passive smoke, never 

smoker/passive smoke, former smoker/no passive smoke, former smoker/passive smoke, 

current smoker), and level of physical activity (tertiles). We did not adjust for individual 

income because it was missing in a large portion of the cohort and sensitivity analyses 

demonstrated that our models as specified did not change with additional adjustment. Our 

third and a priori defined primary model also adjusted for PM2.5 and NOX concentrations. 
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We reported all associations per 10 µg/m3 along with their 95% confidence intervals 

(CIs). 

In sensitivity analyses, we included further adjustment for health outcomes that 

may confound or mediate the association of interest (i.e., diabetes and hypertension 

status, BMI, HDL, creatinine, use of non-steroidal anti-inflammatory agents, use of oral 

steroids, current aspirin use, and use of oral anti-inflammatory asthma medication). We 

also assessed whether results differed by duration of residential stability by limiting our 

analysis of the primary models to only participants who had resided at their baseline 

exam residence for at least 5, and, separately, 10 years before their baseline exam. 

Similarly, to test the sensitivity of our results to our selected exposure averaging time, we 

looked at all primary model associations using one-year PM10-2.5 averages rather than 

five-year averages. Finally, we evaluated the potential for effect modification by sex, 

race/ethnicity, study site, diabetes status, age (>70 vs. <= 70 years), and NSES (above vs. 

below the median), by including interaction terms of each potential modifier with PM10-

2.5 exposure in our primary model.  

Participant addresses were linked to PM10-2.5 grid-cell concentrations using R 

statistical software version 3.6.1 (R 2019) while all statistical modeling was performed 

using SAS software version 9.4 (SAS Institute Inc. Cary, NC).  

Results: 

 

Table 3.1 shows summary statistics for the exposures, outcomes, and covariates 

used in our analyses. Values are presented for the whole cohort as well as within quartiles 

of PM10-2.5. Across all participants, the mean age was 62 years and 53% of the 

participants were female. Overall, 38% of participants were non-Hispanic White, 28% 
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were non-Hispanic Black, 22% were Hispanic, and 12% were Chinese. These 

race/ethnicity frequencies differed – by design – across the six cities (results not shown) 

and by quartiles of exposure, with the lowest quartile having much higher fractions of 

non-Hispanic White and non-Hispanic Black participants (44% and 52%, respectively) 

and much lower fractions of Chinese and Hispanic participants (1% and 3%, 

respectively) than the overall cohort. Participants in the highest exposure quartile had 

much lower mean NSES than the overall cohort while mean NSES among participants in 

each of the lowest three quartiles of exposure was greater than in the overall cohort. 

Vegetation levels were highest in the lowest exposure quartile and the levels decreased 

monotonically with increasing PM10-2.5 exposure. Participants in the highest quartile of 

exposure also appeared to be generally healthier with the lowest fraction of current 

smokers (11%), highest fraction of participants reporting an ideal level of physical 

activity (63%), lowest prevalence of hypertension (39%), and the lowest average BMI 

(27 km/m2).  

Mean levels of PM10-2.5 were 16.5 µg/m3 overall though there were notable 

differences across study site. For example, nearly all participants in the lowest quartile of 

exposure resided in Baltimore (47%) and Winston-Salem (45%) while the highest 

exposure quartile was made up almost exclusively of participants in Chicago (47%), Los 

Angeles (35%), and New York (18%). Three of the biomarkers (IL-6, D-Dimer, and 

PAP) showed very little variation in mean levels across quartiles of PM10-2.5 exposure. In 

contrast, mean levels of CRP decreased uniformly across the four exposure quartiles 

while mean levels of factor VIII decreased, although not monotonically, with increasing 
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exposure; mean levels of fibrinogen increased across the first three exposure quartiles, 

but were lowest in the highest quartile of exposure.  

Using our primary model specification, which adjusted for demographic and 

socioeconomic factors, vegetation, meteorology, health behaviors (i.e., alcohol, smoking, 

and physical activity), co-pollutants, and study site, we found, counter to hypothesized, 

that higher levels of PM10-2.5 were associated with lower levels of the inflammation and 

coagulation biomarkers (Table 3.2). The largest association with inflammation was for 

CRP which showed a 4.6% decrease in CRP per 10 µg/m3 PM10-2.5 (95% CI: -8.0, -1.0). 

For coagulation, the strongest association was for factor VIII which showed a 1.6% 

decrease per 10 µg/m3 PM10-2.5 (95% CI: -2.9, -0.3). Results from sensitivity analyses 

(Table 3.A1) that considered residential stability and used one rather than five-year 

average exposure were largely unchanged from our primary model results. Adjustment 

for characteristics of chronic health, however, eliminated almost all associations (Table 

3.2). In analyses of potential effect modification by sex, age, study site, race/ethnicity, 

and NSES, we found some evidence of consistent heterogeneity of effects for three of the 

biomarkers (IL-6, fibrinogen, and PAP) with NSES and noted some differences for the 

IL-6 outcome with sex and age (Figure 3.1). In general the associations in St. Paul were 

also the largest in magnitude, and negative (with the exception of PAP), although very 

imprecise. 

Discussion: 

 

In this cross-sectional analysis we found no evidence that long-term exposures to 

PM10-2.5 are associated with greater levels of inflammation and coagulation in the full 

MESA cohort. In fact, our findings indicated the presence of greater inflammation and 



 

62 

 

coagulation with lower PM10-2.5 levels, which is counter to what we had hypothesized. 

These findings were, however largely eliminated by further adjustment for chronic health 

conditions, which could either suggest residual confounding or mediation of the 

associations by these conditions. Our results indicate that the biological mechanisms by 

which PM10-2.5 might impact health are still being elucidated and that more evidence is 

needed to determine if PM10-2.5 is detrimental to health.   

Although our observed associations between long-term PM10-2.5 concentrations 

and markers of inflammation and coagulation in participants of the MESA cohort 

indicated that PM10-2.5 exposure was associated with less inflammation, biologically there 

is evidence that PM10-2.5 exposures may initiate an inflammatory pathway. For example, 

an in vitro study that measured the PM2.5 and PM10-2.5 impacts on inflammatory mediators 

found that both size fractions induced IL-6 production and, importantly, that IL-6 

production was more elevated in mouse macrophages after activation with PM10-2.5 than 

PM2.5 (Pozzi et al. 2003). Becker et al. (2005) similarly observed that PM10-2.5 induced 

more IL-6 production than smaller PM size fractions in an in vitro study with human 

alveolar macrophages. Levels of fibrinogen – a marker of coagulation – in the blood of 

rats also increased in an in vivo study after exposure to urban PM10-2.5 and PM2.5, again 

with stronger effects in rats exposed to PM10-2.5 than PM2.5 (Gerlofs-Nijland et al. 2007). 

Collectively these toxicology studies suggest that inflammation might play a key role in 

the process by which PM10-2.5 impacts health.  

In contrast, the findings of the few epidemiological studies that have evaluated the 

impact of PM10-2.5 on inflammation markers are less consistent and largely imprecise. For 

example, one of the only two other studies to look at cross-sectional relationships 



 

63 

 

between long-term PM10-2.5 and CRP found a 6.1% increase (95% CI: -1.4, 14.1) in CRP 

for a 10 µg/m3 increase in PM10-2.5 within six European cohorts (Lanki et al. 2015). The 

other study found a 3.1% – although largely null – decrease in CRP for a 10 µg/m3 

increase in PM10-2.5 within three of the six sites in MESA (Adar et al. 2015). The 

magnitude of this result within three of the six cities in MESA was similar to what we 

observed in the present study within all six cities (3.1% vs. 4.6% decrease per 10 µg/m3 

increase in PM10-2.5), although the previous result was less precise than what we observed 

in this work. The only longitudinal analysis of the inflammation impacts of PM10-2.5 

found a 10.6% increase (95% CI: -0.2, 22.9) in high-sensitivity CRP for a 10 µg/m3 

increase in PM10-2.5 within a cohort of midlife women in six US study sites (Davis et al. 

2020). Another earlier study that looked at associations of CRP with larger PM10 

(aerodynamic diameter ≤ 10 μm) particles in an English cohort observed a 1.4% increase 

(95% CI: -9.6 to 13.8) in CRP per 10 µg/m3 increase in PM10 (Forbes et al. 2009). While 

none of those relationships were distinguishable from a null association, the larger body 

of research on long-term exposures to smaller particles, PM2.5, and CRP has shown 

evidence of positive associations (Viehmann et al. 2015; Hennig et al. 2014; Ostro et al. 

2014), although only within longitudinal studies; cross-sectional studies of the PM2.5 and 

CRP relationship have found positive, although largely null relationships (Lanki et al. 

2015; Dabass et al. 2016). Notably, one additional longitudinal study which, like ours, 

was also conducted within the full MESA cohort, found little support for an association 

between PM2.5 and CRP (2% increase in CRP per 10 µg/m3 increase in PM2.5, 95% CI: 

−7.8%, 12.4%) (Hajat et al. 2015).  
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In terms of coagulation, the only marker that was examined in all three earlier 

studies looking at long-term PM10-2.5 exposure was fibrinogen and all three found inverse, 

although nearly null, associations with PM10-2.5 (Lanki et al. 2015; Adar et al. 2015; 

Davis et al. 2020). Specifically, Lanki et al. (2015) observed a 0.2% decrease (95% CI: -

2.4, 1.8) in fibrinogen for a 10 µg/m3 increase in PM10-2.5, while Adar et al. (2015) 

observed a 2.8% decrease (95% CI: -7.5, 2.2) in fibrinogen for a 10 µg/m3 increase in 

PM10-2.5. In longitudinal analyses, Davis et al. (2020) found that a 10 µg/m3 increase in 

PM10-2.5 was associated with a 0.2% decrease in fibrinogen (95% CI: -2.5, 2.0). Results 

looking at the impacts of PM2.5 on fibrinogen have been mixed and similarly imprecise 

(Hajat et al. 2015; Viehmann et al. 2015; Lanki et al. 2015; Dabass et al. 2016; Bind et al. 

2012). Within this work, we saw the strongest coagulation results for factor VIII (1.6% 

decrease (95% CI: -2.9, -0.3) for a 10 µg/m3 increase in PM10-2.5), which was also studied 

in Adar et al. (2015) and Davis et al. (2020). Similar to our results but counter to what we 

had hypothesized, both of these studies also found that increased levels of PM10-2.5 were 

associated with reductions in fibrinogen, although unlike ours, both had very imprecise 

estimates of association.  

It is notable that the associations we observed in our – a priori determined – 

primary model specification were largely eliminated after adjustment for chronic health 

conditions and medication use. This may suggest that the inverse association we found in 

our primary analysis suffered from residual confounding by these health and medication 

factors. Alternatively, these health and medication factors could be consequences of 

PM10-2.5 exposure, thereby making them intermediates on the pathway between PM10-2.5 

exposure and inflammation. Given the cross-sectional nature of this analysis, however, 
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we are unable to distinguish between these two possibilities. The cross-sectional aspect of 

this study is one clear limitation of this work. Interestingly, previous cross-sectional 

studies on the inflammatory impacts of PM have also not provided strong evidence for a 

positive association whereas longitudinal analyses have (US EPA 2019). While blood 

samples were taken from MESA participants at later exams, the baseline exam is the only 

one at which all participants have measures for all six biomarkers used in our analysis. 

One possible explanation for the inverse associations that we observed between 

PM10-2.5 and inflammation and coagulation biomarkers is that there is selection bias. In 

general, the MESA cohort is older and healthy since participants were age 45 to 84 and 

free of cardiovascular disease at baseline. If selection into the study also tracked with 

PM10-2.5 exposure such that people with higher levels of exposure were more likely to be 

selected, then you could observe a blunting of an association that could result in counter 

to hypothesized results.  

A second explanation for the inverse associations that we observed and the few 

differences between our results and others is that the chemical components of PM10-2.5 in 

the MESA study areas are different from those found in the locations of other research 

studies that have found positive associations between PM and inflammation markers. 

This hypothesis is supported by the work in Adar et al. (2015), which found different 

associations with different PM10-2.5 particle components within the three MESA study 

sites in their analysis. Specifically, endotoxin – a component of PM10-2.5 that is found in 

bacterial cell membranes – was the PM10-2.5 component most strongly associated with 

inflammation and, importantly, it was inversely associated with PM10-2.5 mass. In 

contrast, copper – which originates from traffic – was the component most strongly 
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associated with increased markers of coagulation. Notably, these individual component 

results were much stronger and more precise than results with overall PM10-2.5 mass, and 

they were positive, with increased levels of each component associated with increased 

levels of the biomarker. Unlike Adar et al. (2015), however, we did not have information 

on particle components of PM10-2.5 with which to assess similar component-specific 

associations. As an alternative, we adjusted for vegetation since endotoxin can be higher 

in areas with more vegetation (Menetrez et al. 2009). Similarly we adjusted for NOx as an 

alternate measure of traffic. These adjustments suggest that this might not be the 

underlying explanation for our counter-to-hypothesized observed associations. Our 

results were also relatively consistent across these six study sites, which have varying 

levels of urbanicity. This combination of variation in urbanicity and geographical 

diversity present in our study may suggest that our observed associations do not depend 

on particular pollution sources. Nonetheless, it is a limitation of using satellite-based 

exposure predictions that are calibrated to regulatory monitoring data that we are unable 

to directly investigate component-specific effects.   

In spite of this particular limitation, our use of finely resolved satellite-based 

PM10-2.5 predicted concentrations to estimate exposure is a major strength of this work as 

it allowed us to estimate exposures at a 1 km2 resolution across all of the MESA cities 

even where there are no ground-level measurements. This enabled us to include all 

participants from the MESA study in our analysis, more than doubling the study 

population of our earlier work. As a result, this study of PM10-2.5, inflammation, and 

coagulation is the largest and most geographically diverse of its kind in the US 

population to date. This advancement of using satellite-based models is not uncommon 
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for PM2.5 (Kloog et al. 2012; Kloog et al. 2015) and yet to date, few epidemiological 

studies on the health effects of PM10-2.5 exposure have taken advantage of these type of 

predictions to estimate exposure. For example, one of the only three other studies to look 

at inflammation and long-term PM10-2.5 exposure relied on data from a participant’s 

nearest EPA PM10 and PM2.5 monitors within 20km to assign exposure (Davis et al. 

2020). While this is not an uncommon approach used to assign air pollution exposure, it 

greatly limits the amount of exposure variation available in a health analyses and can lead 

to exposure misclassification since it doesn’t capture all of the spatial variation in air 

pollution levels across an area.  

One other weakness of the satellite-based models, in addition to lacking 

information on species, was the lack of predictions before 2000. This resulted in a 

temporal mismatch between our PM10-2.5 exposure estimates and the exposure time of 

interest before the baseline exam given that we used 2001 PM10-2.5 concentrations to 

represent exposure from approximately 1996-2002 (depending on a participant’s date of 

baseline exam). However, our analysis using 1-year average exposures which were much 

more temporally aligned with the exposure period of interest (i.e., the time before the 

baseline exam) did not show any differences compared to our base analysis, indicating 

that the temporal mismatch of our exposure likely did not meaningfully impact our 

results. Notably, we did include residential address histories for all participants to capture 

the spatial dimension of participants’ exposure. A final limitation of our work is that our 

results may not be generalizable to the whole population given that we conducted this 

study within MESA, which included only participants aged 45 and older at the time of 

recruitment. 



 

68 

 

Conclusion: 

 

In this cross-sectional assessment we did not find evidence that long-term PM10-2.5 

exposure results in increased inflammation or coagulation, as we had hypothesized. 

Rather we found some evidence that increased levels of PM10-2.5 were associated with 

lower levels of inflammation and coagulation, counter to our hypotheses. While these 

findings may be partially explained by confounding, it may be that more research is 

needed to determine if these pathway(s) are as important in humans as they have been 

shown to be in toxicology studies. 
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Table 3.1 Summary statistics [mean ± SD, percent, or geometric mean (GSD)] for 

the complete MESA population ("All") and by quartile of PM10-2.5 5-year average 

exposure. 
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Table 3.2 Percent change (95% CI) in inflammation and coagulation markers per 10 

µg/m3 of PM10-2.5, by outcome measure and model. 

 
a Adjusted for: age, sex, race/ethnicity. 
b Further adjusted for: education, current employment, current marital status, home ownership, site, NSES*site, temperature, relative 

humidity, NDVI, alcohol consumption, active and passive smoke exposure, and physical activity level. 
c Primary model further adjusted for: PM2.5 and NOX. 
d Extended model further adjusted for: diabetes and hypertension status, BMI, HDL, creatinine, use of non-steroidal anti-inflammatory 

agents, use of oral steroids, current aspirin use, and use of oral anti-inflammatory asthma medication. 

 

  



 

71 

 

Figure 3.1 Effect modification of the percent change in markers of inflammation and coagulation per 10 µg/m3 of PM10-2.5 by 

sex, age, site, race/ethnicity, and NSES. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1 shows associations of PM10-2.5 with interleukin-6 (A), C-reactive protein (B), fibrinogen (C), factor VIII (D), D-dimer (E), and plasmin-antiplasmin 

complex (F) by sex, age, site, race/ethnicity, and NSES. Abbreviations: NSES, neighborhood socioeconomic status. Associations are for the percent change per 

10 µg/m3. Asterisk (*) indicates significant interactions. 
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Appendix: 

 

Table 3.A1 Percent change (95% CI) in inflammation and coagulation markers per 

10 µg/m3 of PM10-2.5 in primary and sensitivity analyses, by outcome measure. 

 
a Adjusted for: age, sex, race/ethnicity, education, current employment, current marital status, home ownership, site, NSES*site, 

temperature, relative humidity, NDVI, alcohol consumption, active and passive smoke exposure, physical activity level, PM2.5, and 

NOX. 
b Primary model restricted to participants who resided at their baseline exam address for 5 or more years prior to baseline exam. 
c Primary model restricted to participants who resided at their baseline exam address for 10 or more years prior to baseline exam. 
d Primary model using 1-year average PM10-2.5 before baseline exam as the main exposure. 
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CHAPTER 4 :  

Assessing National Attendance Benefits of the EPA’s Diesel Emissions Reduction 

Act (DERA) School Bus Rebate Program: A Randomized Controlled Trial Design 

 

Introduction: 

 

Approximately 25 million children ride buses to school each day in the United 

States (US) (Snyder & Dillow 2011). While school buses remain the safest means to 

transport children to school from a traffic accident perspective (TRB 2002), the use of 

older school buses often means students experience high exposures to diesel exhaust 

during their commutes since exhaust can enter school buses indirectly via leaky cabins or 

directly through open windows or doors. With exposures to pollutants inside school buses 

reaching levels as high as ten times the levels found in ambient air (Adar et al. 2008), 

even relatively short commutes on dirty school buses can contribute a disproportionately 

high fraction to students’ daily air pollution exposures (Behrentz et al. 2005). This is of 

great concern given that exposures to traffic-related pollutants are known to result in 

adverse health effects including inflammation, poor lung function, and increased risk of 

asthma attacks (HEI 2010), which can lead to missed days of school for students 

(Silverstein et al. 2001; Akinbami et al. 2011).  

Importantly, however, not all school buses generate the same exposures to diesel 

exhaust. The EPA finds that buses equipped with diesel particulate matter filters, for 

example, have 60 to 90% lower emissions of particulate matter compared to non-
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retrofitted vehicles (US EPA 2003). Similarly, testing of in-cabin air in Washington 

(Adar et al. 2015) and Alabama (Hammond et al. 2007) school buses has shown that 

clean air technologies, such as diesel oxidation catalysts (DOCs) that reduce toxic 

emissions from the tailpipe and closed crankcase ventilation systems (CCVs) that 

minimize emissions from the engine block, can result in 50 to 60% reductions in particle 

concentrations inside of bus cabins relative to older, non-retrofitted buses. While this 

work suggests that school districts should replace older school buses with newer buses 

that incorporate these technologies, new buses are very costly at approximately $100,000 

to $300,000 per bus (Noel & McCormack 2014). As a result, the average school bus is on 

the road for 16 years before being decommissioned (McMahon 2017) and most children 

ride school buses with older technologies that are highly polluting. 

To help hasten the transition of school districts to cleaner vehicles, the US 

Environmental Protection Agency (EPA) set aside funding to help public and private fleet 

owners replace or retrofit old, highly polluting school buses under the National Clean 

Diesel Rebate Program, which was authorized by the Diesel Emissions Reduction Act 

(DERA) of 2010 (US EPA 2012). Using a random lottery approach to allocate funds, this 

EPA program (referred to here as the DERA School Bus Rebate Program) has awarded 

over $56 million dollars to replace or retrofit school buses since the program began in 

2012, and the program continues to distribute funds (US EPA 2012; US EPA 2014; US 

EPA 2015; US EPA 2016; US EPA 2017; US EPA 2018; US EPA 2019; US EPA 2020). 

Although there are three published studies that have shown the public health and school 

attendance successes of school bus retrofit programs in two states (Adar et al. 2015; 
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Beatty & Shimshack 2011; Austin et al. 2019), the effectiveness of the EPA’s national 

DERA School Bus Rebate Program has yet to be evaluated.  

In this study, we take advantage of the randomized allocation of funding for 

school bus replacements and retrofits to causally assess the impacts of the EPA’s DERA 

School Bus Rebate Program on student attendance at the national level. In secondary 

analyses we evaluate the potential for heterogeneity of effects by quartiles of estimated 

ridership on applicant buses as well as by the difference in model year for the 

replacement buses relative to the older buses, since EPA emissions standards have 

strengthened over time.  

Material and Methods: 

 

Program to be evaluated: 

 

Starting in 2012, the EPA’s DERA School Bus Rebate Program provided funding 

to replace diesel-powered school buses with older engines with new diesel, alternate fuel, 

battery, hybrid, or electric school buses (US EPA 2012; US EPA 2014; US EPA 2015; 

US EPA 2016; US EPA 2017). In 2015-2017 funding was added for retrofits of school 

buses with DOCs and CCVs (US EPA 2015; US EPA 2016; US EPA 2017). Additional 

funding was added in 2016 and 2017 for EPA-verified fuel operated heaters onboard 

buses to reduce idling for heat (US EPA 2016; US EPA 2017) (Table 4.1). 

The EPA’s eligibility criteria allowed school districts and private bus 

transportation companies who serviced school districts to apply for funding. Each 

applicant could apply for funding for up to 5 or 10 buses, depending on program year, 

and could enter up to two applications depending on fleet size and program year. There 

were also specific age requirements for the engines eligible to be replaced in each 
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funding cycle and for the type and age of eligible replacement engines (see Table 4.1 and 

Table 4.A1 for details).  

The deadline for each of the rebate programs was the end of the calendar year, at 

which point the EPA entered all eligible applicants into a lottery and randomly selected 

applicants for funding using a random number generator. The number of buses requested 

by an applicant played no factor in the selection process. Rather, the EPA selected 

applications for funding until all available funds were exhausted. However, in recent 

program years, some EPA Regional offices had additional funding for school bus 

replacements. In these cases, regional offices awarded funding to additional applicants 

based on the randomized rank of applicants who did not receive funding from the EPA 

national program (Table 4.A2). No restrictions were placed on the number of years that 

an applicant could enter the lottery. 

The EPA notified all applicants in the spring (i.e., at the end of the school year) if 

they were selected for funds. Winners then purchased their replacement buses or installed 

retrofits in the summer following the lottery and used their new buses for the first time in 

the fall (i.e., at the start of the next school year). For example, all 2012 applicants that 

won the lottery replaced their buses in the summer of 2013 and began using the new 

buses at the start of the 2013-2014 school year, which we refer to throughout this analysis 

as the ‘after’ lottery year. For 2012 applicants, the 2012-2013 school year would then be 

the ‘before’ year. The same convention holds for all years of the EPA funding lottery. All 

awardees are required to submit proof of new bus purchases and of scrappage of their old 

buses.  

EPA funding applicant data: 
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 We obtained data on all applicants for each lottery program year from the EPA 

under a Freedom of Information Act (FOIA) request. The data for all applicants included: 

lottery selection status, applicant name and district served (in the case where the applicant 

was a private bus transportation company), address, the number of buses requested to be 

replaced, and the amount of funding requested. For districts that were awarded funding, 

we additionally received information on the number of buses/engines replaced or 

retrofitted, the amount of funding received, the fuel type for replaced buses, and the type 

of upgrade purchased. We also received data on the annual miles traveled and engine 

model year of the replaced (i.e., baseline) buses, although this information was most 

often averaged across all replaced buses in a district.  

School district information: 

 

School district descriptive information for each entrant’s baseline school year 

came from the US Department of Education’s (ED) yearly Local Education Agency 

(School District) Universe Survey Data. These publicly available data include the number 

of students (total, and by grade and race/ethnicity), number of schools, and urbanicity 

(i.e., city, suburb, town, rural) of each district. The geographical size (i.e., land area of 

each school district) was provided in the National Center for Education Statistics School 

District Geographic Relationship files for the school years of 2013-2014, 2015-2016, and 

2017-2018. As a proxy for district socioeconomic status, we used data on the number of 

students in a school who were eligible for the free and/or reduced price lunch program 

during the baseline school year from the US ED yearly Public Elementary/Secondary 

School Universe Survey Data, which we aggregated to the district level.  

School district attendance data:  
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We collected 2012-2013 through 2018-2019 school year annual attendance rates 

for school districts that applied for funding from each state’s Department of Education, 

either from public websites or through individual data requests with a state. Annual 

attendance rates reflect the average number of students present at all schools in a district 

across all days of a school year divided by the number of students serviced by that 

district. We linked annual attendance rate data for both the school year before and after 

the purchase of new buses to EPA entrants by name to have the most proximate data to 

an entrant’s lottery selection status inform the analysis and to reduce the influence of 

trends.  

Data exclusions: 

 

We restricted our analyses to entrants that served individual school districts since 

they can be linked to school attendance records. For similar reasons, we excluded 

entrants from Puerto Rico and Hawaii since these areas report on the aggregate level and 

cannot be linked to individual district data, DOE descriptive information, or attendance 

data. Finally, we excluded entrants that represented private schools, non-traditional (e.g., 

special education and technology centers), and tribal schools since attendance data was 

not consistently available across states. Finally, in order to prevent outliers from 

impacting our findings we restricted our analysis to entrants with changes in attendance 

rates of 5 percentage points or less across the before and after lottery school years. This 

cutoff was consistent with the literature for reasonable levels and seemed to be consistent 

with errors (Guryan et al. 2020; Rogers & Feller 2018; Adar et al. 2015). 

Statistical design and analysis: 
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We first compared means (for continuous variables) and proportions (for 

categorical variables) of baseline measured characteristics of the winning and losing 

districts in our analytical dataset to check for balance among the funding applicants by 

selection status. Then, to evaluate the impact of the EPA’s DERA School Bus Rebate 

Program on attendance, we used the classical intent-to-treat (ITT) analyses for 

randomized controlled trials since the EPA awarded funding randomly to applicants.  

Our primary analysis used model (4.1), where Attendanceit+1 is the continuous 

attendance rate for each applicant school district i in the school year after the year t 

lottery (i.e., the 2012, or 2014-2017 lotteries) at which time the new buses were in use. 

Winnerit is an indicator equal to 1 if school district i was selected to receive funding in 

lottery year t and 0 if not. To account for any time-invariant differences that occurred by 

chance between winning and losing districts, we adjusted for Attendanceit, which is the 

attendance rate for school district i in the school year of lottery t prior to when the new 

buses were in use. This adjustment supports causal conclusions with the greatest 

efficiency by focusing on within-area differences between the pre- and post- 

randomization levels (Vickers 2001; Vickers & Altman 2001). We also adjusted for 

applicants who submitted more than one application within a lottery year using the 

indicator MultiEntrantit since the later lottery years allowed districts with large fleets to 

submit up to two applications. Given that some EPA regions provided funding to 

additional districts for the purchase of clean buses in the later lottery years, we included 

fixed effects for the EPA regions (Regioni). To maximize power, we combined data from 

all lottery years but included fixed effects for lottery year (Timeit) to adjust for any 

potential confounding over time that may have occurred since the percentages of lottery 
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winners changed by year. Since school districts are not limited to entering the lottery in 

only one year, we estimated associations and 95% confidence intervals using general 

estimating equations (GEE) with robust standard errors clustered at the state level to 

account for any potential correlation in the data. β1 is the model outcome of interest, the 

ITT effect. 

𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑖𝑡+1 = 𝛽0 + 𝛽1𝑊𝑖𝑛𝑛𝑒𝑟𝑖𝑡 + 𝛽2𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑖𝑡 + 𝛽3𝑀𝑢𝑙𝑡𝑖𝐸𝑛𝑡𝑟𝑎𝑛𝑡𝑖𝑡 + 𝛽𝑅𝑒𝑔𝑖𝑜𝑛𝑖 + 𝛽𝑇𝑖𝑚𝑒𝑖𝑡 + 𝜀𝑖𝑡        (4.1) 

 

Our primary analysis used overall district attendance rates since rates were not 

available for only school-bus riders. This level of aggregation likely dilutes the treatment 

effect even though school bus emissions may impact non-riders when buses idle in close 

proximity to where students play, study, or wait for other transportation. Therefore, we 

evaluated effect modification of our main association by estimated fractions of children 

who are likely to ride the buses requested for replacement (i.e. the fraction that would be 

impacted by the treatment). Since there are no databases of school bus ridership rates at 

the district level, we estimated this fraction by multiplying the number of buses requested 

for replacement (1 to 10) by 72, which is the capacity for a standard school bus,4 and 

dividing by the total student enrollment for a district at baseline. We evaluated quartiles 

of this fraction as interaction terms in our model. In secondary analyses we also 

examined this fraction as a continuous exposure of interest, although in this specification 

the fraction would be set to 0 for losing entrants. Since bus usage can vary from 1 route 

per day per bus to 3 or more (e.g., if a bus transported students to an elementary school 

and then separately to a middle school and/or high school), we additionally considered 

 
4 https://www.trackschoolbus.com/blog/how-many-seats-are-there-in-a-school-bus/ 
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alternative specifications of the percent of impacted students by varying the number of 

bus routes per funded bus for entrants in suburbs and cities to two or three.  

We further compared the difference in attendance based on the median age 

difference in the model year of the replacement and original bus using an indicator for 

winners whose difference in the model year of the replacement and original buses was 

greater than the median (i.e., >15 years) and a separate indicator for winners whose 

difference in the model year of the replacement and original buses was at the median or 

lower (i.e., ≤15 years). We also tested for effect modification by urbanicity since students 

in rural districts are more likely to ride the school bus more than 30 minutes in each 

direction (Howley et al. 2001). Effect modification for urbanicity was conducted using an 

interaction term with the lottery selection status indicator in (4.1). Finally, we tested the 

sensitivity of our primary results to alternatively modeling the difference in attendance 

rates before and after the lottery rather than controlling for the prior year’s attendance 

rate to ensure that our findings were robust to our analytic choices. 

Results: 

 

Across all five lottery years, there were a total of 3,153 entrants to the DERA 

School Bus Rebate Program. District-level attendance data were not available for Hawaii 

(N=8), Puerto Rico (N=9), Pennsylvania (N=71), and Washington (N=86) for any years 

of the analysis. Data were similarly missing for Alabama (N=18), Arizona (N=11), and 

Montana (N=14) in the 2015-2016 through 2018-2019 school years; New Jersey (N=44) 

from 2012-2013 and 2013-2014; and North Dakota (N=16) between 2012 and 2013. We 

further excluded 31 private bus transportation company entrants whose buses are used 

across multiple school districts and 13 school district consortium entrants who represent 
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multiple school districts as well as 5 private, 22 non-traditional (e.g., special education 

and technology centers), and 5 tribal schools whose attendance data was not comparable 

to other schools. Additionally, we excluded 18 districts with improbable changes in 

attendance over a one year period. Ultimately, we  were able to evaluate associations 

using attendance data from 87% of the EPA applicants.  

Of the 2,731 entrants in our final analytical sample, 2,360 were not selected for 

funding and 371 were selected for funding (Table 4.2). When comparing the districts in 

terms of size, demographic make-up, and a proxy for socioeconomic status (i.e., free or 

reduced price lunch eligibility) at baseline, we found no statistical differences between 

the winning and losing districts. That said, the districts not selected for funding were 

slightly larger geographically (284 square miles versus 247 square miles for selected 

districts), included more schools (15 schools versus 13 schools for selected districts), had 

more students (9,355 versus 8,369 for selected districts), and had slightly higher rates of 

students eligible for free or reduced price lunch (48% versus 46% for selected districts) 

than districts selected for funding. Importantly, however, the baseline attendance rate was 

very similar between the two sets of applicants, at 94.9% for the losing districts and 

94.8% for the winning districts. 

In our primary analysis, we found that districts that were selected for the DERA 

School Bus Rebate funding had a 0.053 percentage point (pp) higher attendance rate in 

the year after the lottery (95% CI: -0.023, 0.128) as compared to districts that were not 

selected for funding (Table 4.3). For an average size district of 10,000 students, this 

translates to approximately 5 additional students attending school each day in districts 

that won funding in the lottery as compared to non-winning districts. We also observed 
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evidence of greater impacts of winning the lottery with increasing levels of ridership on 

the buses requested for replacement. Effect modification results by quartiles of expected 

ridership on buses (Q1: 0.05 – 3.8%; Q2: 3.8 – 8.3%; Q3: 8.3 – 16.2%; Q4: 16.3 – 100%) 

requested for replacement showed a near dose-response relationship with attendance, 

with impacts reaching as high as a 0.12 pp (95% CI: -0.068, 0.307) improvement in 

attendance after winning the lottery in the highest estimated ridership group. This is 

consistent with our secondary analysis, which showed that a 1 pp increase in the fraction 

of students impacted by the new buses was associated with a 0.004 pp (95% CI: -0.0005, 

0.009) increase in the district’s attendance rate (Table 4.3). Results were nearly identical 

for the alternative specifications of our individual-level estimate, which used different 

assumptions of the number of routes driven by replaced buses according to a district’s 

urbanicity level (results not shown). 

In other analyses, we observed that changes in attendance were largely driven by 

the replacement of older buses. Applicants that replaced buses more than 15 years old 

had a statistically significant 0.095 pp improvement in attendance (95% CI: 0.005, 0.184) 

as compared to districts who were not selected for funding. The results were nearly null 

for the set of applicants that replaced buses less than 15 years old (-0.016 pp; 95% CI: -

0.15, 0.118) (Table 4.3). Similarly, results by urbanicity classification showed the 

strongest impacts in districts located in areas designated as towns (0.128 pp; 95% CI: -

0.025, 0.28), and near null results in rural (0.015 pp; 95% CI: -0.108, 0.138) and city 

(0.014 pp; 95% CI: -0.406, 0.434) designated districts. 

When we tested the sensitivity of our primary analysis to using the change in 

attendance rate as the dependent variable rather than the attendance rate after the lottery, 
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adjusted for attendance before the lottery, we found a slightly larger funding effect of 

0.068 pp (95% CI: -0.022, 0.159).  

Discussion: 

 

In this national analysis of the impacts of the US EPA’s DERA School Bus 

Rebate Program, we found suggestive evidence that receiving rebate funds to replace or 

retrofit older, more polluting school buses with newer, cleaner buses was associated with 

an increase in school district attendance rates. Districts that were selected for school bus 

rebate funding had a 0.053 pp higher attendance rate in the year after the lottery (95% CI: 

-0.023, 0.128) as compared to districts that were not selected for funding. In districts that 

won funding, this translates to approximately 5 additional students attending school each 

day in an average size district of 10,000 students. The attendance effects were strongest 

when larger proportions of students were impacted by the program and when the oldest, 

most polluting buses were replaced, with applicants who replaced buses more than 15 

years old having a 0.095 pp improvement in attendance (95% CI: 0.005, 0.184) compared 

to districts who were not selected for funding  

Our findings are noteworthy given that nearly 8 million students (16%) missed 

more than 15 days of school in the 2015-2016 school year (Chang et al. 2018) and that 

school attendance has repeatedly been associated with student achievement (Aucejo & 

Romano 2016; Gershenson et al. 2015; Gottfried 2010; Gottfried 2011; Gottfried 2014; 

Humm Patnode et al. 2018). Excessive school absenteeism has also been linked to 

substance use, grade retention, and school dropout (Henry & Huizinga 2007; Kearney 

2008; Rocque et al. 2016), the latter of which can have economic and health 

consequences in adulthood (Cutler & Lleras-Muney 2008). This work suggests that the 
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DERA School Bus Rebate Program has had an important impact on children’s health in 

our nation. Importantly, the impacts of this program are likely to continue since 

approximately 25 million children ride buses to school each day in the US (Snyder & 

Dillow 2011) and the average US school bus fleet decommissions buses after 16 years 

(McMahon 2017). Given our findings of greater improvements in absenteeism with 

replacement of older buses, this program is furthermore likely to be of the greatest 

significance in lower income areas since school districts likely have fewer resources 

available to replace or retrofit older buses in the absence of programs such as this one. 

This work has direct relevance to public policy as it is the first to evaluate the 

effectiveness of the national EPA DERA School Bus Rebate Program. Although the 

program was designed to reduce diesel emissions from school buses given the known 

health impacts of diesel exhaust, its effectiveness has yet to be evaluated. This study is 

also unique in that it leveraged the randomized allotment of clean bus funding to school 

districts to estimate the causal impact on school districts of switching to cleaner school 

buses. While the existing literature has found similar results to ours and has provided 

some evidence for causality of these associations, none of the technologies studied by 

previous research were randomly assigned. This raises the possibility that the school 

districts that adopted cleaner buses or times when cleaner school buses were used are 

fundamentally different from districts or times without cleaner buses due to some other 

characteristics that are important to health and student attendance. Our design, however, 

reduces concerns of confounding by measured or unmeasured school district-related 

characteristics.  
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Interestingly, our results are consistent with what has been seen in the one cohort 

study that has evaluated the impacts of bus retrofits on the health and school attendance 

of individual riders. That intensive examination of 275 students demonstrated that when 

children were riding newer, cleaner buses they were less likely to experience 

inflammation in their lungs and miss school than when they were riding older, dirtier 

school buses (Adar et al. 2015). They also found that individual students experienced a 5 

to 15% reduction in the risk of absenteeism after switching to buses with cleaner 

technologies (Adar et al. 2015).  

Our findings are also consistent with two additional observational studies that 

have evaluated the benefits of cleaner school buses on the state level using ecological 

designs. Beatty & Shimshack (2011) evaluated the impact of voluntary school bus 

retrofits using a difference-in-difference analysis approach of community hospitalization 

records in Washington State. While they did not study the impact of the retrofits on 

attendance, they reported that school bus retrofits were associated with reduced 

community-wide hospitalizations for bronchitis, asthma, and pneumonia in at-risk 

populations, all of which can lead to missed days of school. A second study showed that 

children in Georgia school districts that retrofitted their school buses had larger increases 

in aerobic capacity on state-required physical activity tests and significant gains on 

standardized testing for academic achievement as compared to other districts (Austin et 

al. 2019). They also estimated a 0.15 pp increase in school district attendance if all buses 

in a fleet fully adopted clean air technologies, though their findings were not 

distinguishable from no association. This translates to a 0.03 pp increase in attendance for 
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a district that retrofitted 19% of its fleet, which was the average percent of buses in a fleet 

that were retrofitted in their study.   

One other, non-published, study has looked at national level impacts of clean 

school buses based on a different and separate, EPA competitive grant program, which 

also funds school bus retrofits and replacements (Austin 2019). In contrast to the Rebate 

program studied here, selection for that funding is not awarded randomly and among 

other evaluation criteria, applicants from areas with poor air quality are given preference. 

In that work, the author reported very small improvements in county level air quality and 

similar gains on standardized testing for academic achievement as reported in Austin et 

al. (2019). Attendance was not studied.  

In spite of the notable improvements in attendance observed in this work, our 

results are for the school district level and thus include both bus riders and non-bus riders. 

As a result, our findings likely underestimate the true impacts to students who were 

directly affected by the change to new, cleaner buses. To partially address this, we 

attempted to estimate the impacts of the EPA’s DERA School Bus Rebate Program based 

on the fraction of individuals riding the replaced buses and found that every 1 pp increase 

in the fraction of students riding the new buses was associated with a 0.004 pp (95% CI: -

0.0005, 0.009) increase in the district’s attendance rate. We also evaluated effect 

modification of our results by bus ridership. The near dose-response relationship we 

observed across quartiles of estimated bus ridership levels on the buses requested for 

replacement suggests, logically, that the larger the fraction of students that switch to 

riding a cleaner school bus, the greater the attendance improvement. The districts with 

the highest levels of estimated bus ridership on the buses requested for replacement had 
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an order of magnitude greater increase in attendance compared to districts in the lowest 

quartile of estimated bus ridership (0.12 pp (95% CI: -0.068, 0.307) vs. 0.01 pp (95% CI: 

-0.114, 0.135)). For an average size district of 10,000 students, this translates to 

approximately 12 additional students attending school each day in districts with high 

rates of ridership on new clean buses compared to only 1 additional student attending 

school each day in districts with low rates of ridership on new clean buses.  

Like our findings regarding the rates of bus ridership, our effect modification 

results by the improvement in model years also provide support for our findings and 

strengthen our conclusions. We found that applicants who replaced buses more than 15 

years old had a 0.095 pp improvement in attendance (95% CI: 0.005, 0.184) compared to 

districts who were not selected for funding, while the set of applicants that replaced buses 

less than 15 years old had a negligible impact (-0.016; 95% CI: -0.15, 0.118) (Table 4.3). 

Model years of the replaced buses ranged from 1986 to 2001 (average of 1996) for 

districts who replaced buses more than 15 years old and from 1997 to 2006 (average of 

2002) for districts who replaced buses less than 15 years old. For context, US EPA 

exhaust emissions standards for PM from buses had an approximate six-fold 

improvement for 1991-1997 model year buses compared to 1990 and older model year 

buses, with smaller improvements beginning in 1998 and 2004 (US EPA 2016b). Our 

results are therefore unsurprising given that only entrants with the largest model year 

improvement replaced buses of model year 1997 and older, which had the weakest 

emissions standards. These findings suggest that as emissions standards strengthen and 

the dirtiest buses are retired from use, the overall attendance impacts of this program 

would decline if there is not further improvement in clean bus technologies.  
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 As with all studies, our work has some limitations. The first of which is the 

relatively small number of entrants who were ultimately awarded funding, which reduced 

power for this analysis. We had previously intended to include an additional year of the 

EPA program in our analysis (i.e., the 2018 lottery). However, the ‘after’ year for that 

lottery was the 2019-2020 school year which included the global COVID-19 pandemic. 

Given the impacts of the pandemic on public schooling, we concluded that including this 

year of attendance data in our analysis would be too disruptive to our results and 

therefore excluded it. Similarly, there was some unavailability of attendance data for 

some states in some years of the analysis that decreased our analytical sample size by 

approximately 10 percent. While this likely reduced our study’s power, it should not bias 

the results given the randomized nature of lottery selection status. Another limitation is 

that there were 29 districts who were selected for funding but ultimately did not purchase 

a clean bus. Per conversations with EPA, that occurred when an applicant was not able to 

acquire the matching funds needed to purchase a clean replacement bus. Consistent with 

our decision to use an intention-to-treat rather than an as-treated approach, these 

applicants were treated as lottery funding winners in our analysis. Similarly, districts that 

were not selected for funding ultimately could have replaced or retrofitted buses outside 

of this program, yet they were treated as having lost the lottery in our analysis. These 

specifications retain the benefits of randomization but have the result that we have 

estimated a lower bound for the true association between being selected to receive rebate 

funding for clean buses and school district attendance rates. 

Conclusion: 
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Overall, we find suggestive evidence that the EPA’s DERA School Bus Rebate 

Program has improved student attendance, especially in the districts that removed the 

oldest buses and those with high levels of bus ridership on the impacted buses. Given the 

importance of attendance to student educational success, our results suggest that this 

program is both successful at increasing the pace at which older, highly polluting buses 

are removed from use and that those actions have positive impacts on student attendance 

levels. 
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Table 4.1 Summary of the EPA DERA School Bus Rebate Program, by year. 
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Table 4.2 Characteristics of school district entrantsa at baseline, by lottery status. 

 

   a For entrants ultimately included in the analytical sample.
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Table 4.3 Impact of clean buses on attendance overall and by ridership and 

difference in the replaced and replacement bus model years. 

 

a Dependent variable is the attendance rate in the year after the lottery. Model is adjusted for attendance rate in the year 
before the lottery, as well as EPA Region, lottery year, and an indicator for having more than one application in a given 
lottery year. 
b p-value for Bus Ridership on Requested Buses is from the interaction term. 
c Dependent variable is the attendance rate in the year after the lottery. Independent variable of interest is the estimated 
percent of students who ride the replaced buses, assuming all replaced buses drive 1 route. 
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Appendix: 
 

Table 4.A1 EPA DERA School Bus Rebate Program details, by year. 
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Table 4.A2 Number of entrants receiving EPA DERA School Bus Rebate Program 

funding, by source of funding and year.a 

 

 a This table only summarizes the entrants who were ultimately awarded funding (i.e., it does not include the entrants       
(N=41) who were selected to receive funding but ultimately did not).  
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CHAPTER 5 : 

Discussion 

 

Summary and Implications of Main Findings:  

 

The collective aim of this dissertation was to contribute to the science needed by 

the EPA to support effective air pollution regulations, policies, and programs designed to 

reduce exposures and protect health. From an exposure assessment perspective, it 

provides evidence that the use of satellite data paired with advanced spatiotemporal 

prediction modeling techniques can successfully generate long-term average spatially 

resolved PM10-2.5 exposure estimates, even where no monitoring stations exist. From an 

environmental epidemiologic standpoint, it highlights the strengths and limitations of 

using these satellite-based PM10-2.5 predictions to study the health impacts of PM10-2.5 

exposure to inform the science used to set air pollution regulations. Additionally, from a 

policy perspective, it provides evidence that a source-specific emissions reduction 

program, such as the EPA’s DERA School Bus Rebate Program, can have measurable 

impacts based on the suggestive evidence we saw of the program’s role in improving 

school district attendance levels.    

In Chapter 2, we newly used AOD measured on the NASA Terra satellite to 

calculate daily 1 km2 spatially resolved PM10-2.5 predictions in six US urban areas. To do 

this, we used advanced spatiotemporal multi-stage statistical modeling approaches which 

have previously been used to predict daily PM2.5 and, separately, PM10, at the same 
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spatial resolution (Kloog et al. 2015; Madrigano et al. 2013; McGuinn et al. 2016; Nordio 

et al. 2013; Stafoggia et al. 2017; Stafoggia et al. 2019; Shtein et al. 2018). However, this 

approach had not previously been used to predict PM10-2.5, which has proven more 

difficult to study epidemiologically given the limited availability of PM10-2.5 

measurements, especially in the US (Adar et al. 2014). Overall, our final predictions were 

able to capture the long-term spatial patterns of PM10-2.5 very well in four of our study 

areas, well in one area, and modestly in one area. In all six study areas, our predictions 

had substantially better spatial performance than both a simple nearest-monitor approach 

and an inverse distance weighting approach, which are both alternative methods used in 

the environmental epidemiology literature to assign air pollution exposure. Given that 

urban areas, especially, often have considerable spatial variability in PM10-2.5 

concentrations, our results show the potential benefits of using spatiotemporal modeling 

methods with satellite-based AOD data to predict long-term PM10-2.5 levels for use in 

epidemiological health studies.  

Our work in Chapter 2 add to the literature as one of only a handful of exposure 

models to predict PM10-2.5 concentrations for use in long-term air pollution 

epidemiological studies. This is particularly true for the US where – to our knowledge – 

only two groups have generated PM10-2.5 exposure predictions that have been used in 

health studies (US EPA, 2019). Notably, neither has taken advantage of the additional 

information AOD provides when conducting PM10-2.5 spatiotemporal pollution prediction 

modeling. In the first, members of the MESA Coarse study used intensive PM10-2.5 

monitoring campaigns to predict spatial patterns of PM10-2.5 using land use regression 

methods in three of the six cities studied here (Zhang et al. 2014). While model 
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performance using the intensive sampling data was largely better than these new AOD-

models, they were not substantially or consistently so. Given that monitoring field studies 

are very expensive to conduct and cannot capture the temporal variability in PM10-2.5 

concentrations, our AOD-informed approach offers important benefits over predictions 

derived from spatially intensive ground monitoring. In the second study to have predicted 

PM10-2.5 exposure in the US, researchers used generalized additive mixed models with 

geographic, meteorological, and visibility data to predict PM2.5 and PM10 concentrations 

for the whole conterminous US at the monthly scale based on EPA monitoring data 

(Yanosky et al. 2008; Yanosky et al. 2009; Yanosky et al. 2014). While they had good 

overall performance, their results varied across geographical regions. Importantly, 

Yanosky et al. (2014) hypothesized that the inclusion of AOD measures in 

spatiotemporal models might improve model predictive accuracy, especially in areas 

distant from air quality monitors.   

The poor prediction performance we observed in one of our study areas highlights 

a key challenge of predicting concentrations for localized areas as we have done. Unlike 

many other studies that have predicted PM levels across larger regions or nations, our 

study focused on smaller metropolitan areas. While predicting over smaller areas has the 

potential to increase accuracy if there is effect modification of predictors by place, it can 

come at the cost of lost variation in exposures. This lack of variation in measured PM10-2.5 

in our city with poor prediction performance surely contributed to our inability to model 

the spatial variability in PM10-2.5 levels well.   

In Chapter 3, we used the PM10-2.5 exposure predictions generated in Chapter 2 to 

study cross-sectional associations between long-term average PM10-2.5 exposure and six 
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biomarkers for inflammation and coagulation within the full MESA cohort. We found, 

counter to hypothesis, that higher levels of PM10-2.5 were associated with lower levels of 

the inflammation and coagulation biomarkers. We hypothesized that these findings could 

be due to the specific PM10-2.5 components that made up PM10-2.5 in our study areas since 

an earlier study that was able to measure associations with individual components of 

PM10-2.5 mass found varying results by particle component. For example, in Adar et al. 

(2015), endotoxin – which is found in bacterial cell membranes – was most strongly 

associated with inflammation and, importantly, was inversely associated with PM10-2.5 

mass. In contrast, copper – which originates from traffic – was most strongly associated 

with coagulation (Adar et al. 2015). This might suggest that differences in the 

relationship between PM10-2.5 and inflammation could be due to aspects of nature; 

however, adjustment for vegetation did not verify this line of reasoning. Given the PM10-

2.5 component-specific differences that have been observed between PM10-2.5 exposure 

and inflammation and coagulation markers, it is therefore unsurprising that our 

associations of PM10-2.5 mass with inflammation and coagulation markers would differ 

from previous work, since the component make-up of PM10-2.5 can differ by location. 

This work expands the limited literature that has evaluated the long-term 

inflammation and coagulation impacts of larger particles such as PM10-2.5, although the 

results were ultimately confusing and/or inconclusive. Importantly, inflammation and 

coagulation are considered plausible biological mechanisms for the observed associations 

between adverse health effects and PM of all sizes yet only a few studies evaluating the 

long-term inflammation and coagulation impacts from larger particles such as PM10-2.5. 

This gap is noteworthy since the US EPA has determined that there is suggestive 
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evidence of an association between long-term PM10-2.5 and adverse cardiovascular events 

but notes that there are gaps in the proposed pathways that might link these.   

The US EPA has many programs and policies in place that aim to reduce 

emissions from diesel engines, given the large contribution diesel engine emissions make 

to total US PM emissions and the known health impacts from the inhalation of diesel 

engine exhaust. In Chapter 4 we evaluated the attendance impacts of one of these such 

programs: the EPA’s DERA School Bus Rebate Program, which was designed to hasten 

the transition of the fleet to newer, cleaner vehicles. To do so, we took advantage of the 

EPA’s randomized allocation of rebate funding for school bus replacements and retrofits 

to causally assess the impacts of the EPA’s 2012-2017 DERA School Bus Rebate 

Programs on school district attendance rates. Using classical intent-to-treat analyses for 

randomized controlled trials to evaluate the school district attendance impacts of being 

selected for clean bus rebate funding, we found suggestive evidence that the EPA’s 

DERA School Bus Rebate Program improved student attendance, especially in districts 

that removed the oldest buses and those with high levels of ridership on the applicant 

buses.  

An important contribution Chapter 4 is that it leveraged the randomized allotment 

of clean bus funding to school districts to estimate the causal impact on school districts of 

switching to cleaner school buses. This design reduces concerns of confounding by 

measured or unmeasured school district-related characteristics. Interestingly, our results 

are consistent with what has been seen in the few observational studies on this topic, 

including one cohort study, which is the only study to date that has evaluated the impacts 

of bus retrofits on the health and school attendance of individual riders. Given the 
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importance of attendance to student educational success, our results suggest that this EPA 

program is both successful at increasing the pace at which older, highly polluting buses 

are removed from use and that those actions have positive impacts on student attendance 

levels. Given the many competing priorities for federal funding, our findings on the 

attendance impacts of the EPA’s DERA School Bus Rebate Program can help inform 

decision makers when deciding whether to continue funding this voluntary emissions 

reduction program.   

Collectively, the results of this dissertation contribute to the science needed by the 

EPA to support effective air pollution regulations and policies designed to reduce 

exposures and protect health.  

Strengths and Limitations: 

 

The work shown in this dissertation has many strengths. First and foremost, we 

newly used advanced spatiotemporal multi-stage statistical modeling approaches along 

with AOD data to predict PM10-2.5 concentrations in six US urban areas. One of the 

primary reasons for the paucity of epidemiologic research on the health effects of PM10-2.5 

exposure is the limited availability of measurement data with which to estimate PM10-2.5 

exposure. By successfully showing the ability of this approach to predict long-term PM10-

2.5 concentrations in areas with a sufficient amount of and variability in measured data 

with which to build an exposure model, we have provided a proof of concept for other 

researchers to use similar approaches to estimate PM10-2.5 concentrations for use in air 

pollution epidemiology studies. This is important given the limited, and often 

inconclusive, nature of the PM10-2.5 health literature.  
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Another strength was our ability to evaluate the inflammation and coagulation 

impacts of PM10-2.5 exposure within a large, prospective cohort study. This work extends 

the only other paper on PM10-2.5 and inflammation in the United States by using our 

satellite-based exposure estimates to investigate the full MESA cohort, which was not 

previously possible given the lack of PM10-2.5 estimates for all six cities. Also, by 

conducting Aim 2 within the MESA cohort, we were able to take advantage of the rich 

data available for the participants for confounder adjustment and evaluation of effect 

modification including individual-level exposure predictions for the co-pollutants of 

PM2.5 and NOx. 

In Aim 3, we importantly were able to leverage the randomized method by which 

clean bus funding was allocated in order to estimate the causal impact of the EPA’s 

DERA School Bus Rebate Program on attendance, thereby reducing concerns of 

confounding by measured or unmeasured school district-related characteristics. While the 

existing literature has found similar results and has provided some evidence for causality 

of these associations, none of the technologies studied by previous research were 

randomly assigned. Our use of a randomized design limits the possibility that the school 

districts that adopted cleaner buses or times when cleaner school buses were used are 

fundamentally different from districts or times without cleaner buses due to some other 

characteristics that are important to health and student attendance.  

In spite of the many strengths of this dissertation, there are some limitations. In 

terms of Aim 1, unlike many other studies that have predicted PM levels across larger 

regions or nations, our study focused on smaller metropolitan areas. While predicting 

over smaller areas has the potential to increase accuracy if there is effect modification of 
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predictors by place, it can come at the cost of lost variation in exposures. In Aim 1, for 

example, the study area where we had the worst PM10-2.5 predictive performance was the 

study area with a very small range in measured long-term average PM10-2.5 levels; this 

surely contributed to our inability to model the spatial variability in PM10-2.5 levels in that 

area well.  

A limitation of our work in Aim 2 is that the satellite AOD data was first collected 

beginning in 2000. The consequence of this to our work is that there is a temporal 

mismatch in Aim 2 between our PM10-2.5 exposure estimates and the exposure time of 

interest before the baseline exam given that we used 2001 PM10-2.5 concentrations to 

represent exposure from approximately 1996-2002 (depending on the date of a 

participant’s baseline exam). Another limitation is that our analysis in Aim 2 was cross-

sectional, which is especially noteworthy given that previous cross-sectional studies on 

the inflammatory impacts of PM have not provided evidence for an association while 

longitudinal analyses have. Also, although conducting our Aim 2 analysis within the 

MESA cohort enabled us to use the rich set of covariate data that has been collected on 

MESA participants, using the MESA cohort means our results may not be generalizable 

to the whole population since MESA included only participants aged 45 and older at the 

time of recruitment.    

A limitation in Aim 3 is the relatively small number of entrants who were 

ultimately awarded clean bus replacement rebate funding from the EPA, which reduced 

power for this analysis. We had previously intended to include an additional year of the 

EPA program in our analysis (i.e., the 2018 lottery). However, the ‘after’ year for that 

lottery was the 2019-2020 school year which included the global COVID-19 pandemic. 
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Given the impacts of the pandemic on public schooling, we concluded that including this 

year of attendance data in our analysis would be too disruptive to our results and 

therefore excluded it. Similarly, there was some unavailability of attendance data for 

some states in some years of the analysis that decreased our analytical sample size by 

approximately 10 percent. While this likely reduced our study’s power, it should not bias 

the results given the randomized nature of lottery selection status. 

Future Directions: 

 

For  each of my aims there are several directions to pursue for future research. In 

terms of Aim 1, future work might focus on replicating this spatiotemporal modeling 

approach with AOD data to other locations – specifically to areas with a sufficient 

amount of and variability in measured PM10 and PM2.5 data. Another line of inquiry that 

could be examined relates to our finding that the locations of many EPA monitoring sites 

can differ in terms of geography, land use, urbanicity, and demography from the locations 

where some populations reside. This can become an important consideration if the 

predictions at the locations of interest necessarily rely on extrapolating beyond the 

domain space of the variables that are used to build the model. In the spirit of the primary 

goal of this dissertation – to contribute to the science needed by the EPA to support 

effective air pollution regulations and policies designed to reduce exposures and protect 

health – we plan as a next step to compare and contrast the locations of monitoring sites 

to the areas where different populations live in terms of factors such as geography, land 

use, urbanicity, and demography. This could inform the EPA as to whether the current 

national monitoring network is sufficiently representative of the areas where the 

population lives. It could also inform other researchers conducting prediction modeling in 
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terms of things like variable selection if, for example, there are some factors that have 

smaller differences between monitor and population locations than others, then the 

former could be treated preferentially in prediction modeling variable selection.  

 Future directions related to our work in Aim 2 include conducting longitudinal 

analyses for the two biomarkers (CRP and fibrinogen) that we studied which have 

repeated measures among some participants in subsequent MESA exams. There are also 

other cardiovascular health measures for MESA participants, including two markers of 

atherosclerosis: carotid artery intima-media thickness (IMT) and coronary artery calcium 

(CAC) scores, which could be studied using our PM10-2.5 predictions. Both IMT and CAC 

are considered possible downstream consequences of chronic systemic inflammation, 

therefore determining what association they have with PM10-2.5 exposure could potentially 

inform our understanding of our results in Aim 2.  

In future work related to Aim 3, we intend to evaluate the association between 

being selected for clean bus rebate funding from the EPA’s School Bus Rebate Program 

and other outcomes. For example, we hypothesize that adoption of cleaner school buses 

will be associated with greater educational achievement. This is a natural extension of our 

findings in Aim 3 since the general educational literature has repeatedly demonstrated 

higher educational achievement with better attendance rates (Gottfried 2010; Lamdin 

1996; Roby 2003). In addition, two other studies that have looked at the impact of clean 

bus funding have found associations with student achievement on standardized tests. We 

are currently planning to conduct this analysis using standardized math and 

English/Language Arts (ELA) scores, which are available in the Stanford Education Data 

Archive (SEDA). We additionally intend to evaluate the impact of the EPA’s School Bus 
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Rebate Program on health, given the known health effects of diesel engine exhaust. 

Specifically, will investigate differences in emergency department visits for respiratory 

causes among Medicaid beneficiaries aged 5-18 between districts that were awarded 

funding vs. those that were not. We plan to use emergency department visits as our health 

measure of concern given that a previous study documented fewer emergency department 

visits by children for bronchitis, asthma, pneumonia, and pleurisy among Washington 

State school districts that retrofitted their school buses as compared to those that did not 

(Beatty & Shimshack, 2011).  

Conclusion: 

 

This dissertation showed that using satellite-based AOD data within an advanced 

spatiotemporal prediction modeling approach can successfully generate long-term 

average PM10-2.5 concentrations, even in locations without monitoring data. The success 

of this approach depends necessarily on having a sufficient amount of and variability in 

available measurement data with which to build the model. However, in cases where 

those conditions are met, this approach can successfully expand the locations at which 

researchers can study the health impacts of PM10-2.5 exposure. This is an important 

finding given that one of the main inhibitors to studying the health impacts of PM10-2.5 

exposure is the limited amount of measured data available for assigning PM10-2.5 exposure 

levels to study participants. While our use of these newly estimated PM10-2.5 predictions 

in Aim 2 did not yield conclusive or expected results in terms of the inflammation and 

coagulation impacts of PM10-2.5 exposure, our results were largely consistent with 

previous research on this topic, which further confirms that our exposure prediction 

approach can be successful in generating PM10-2.5 exposure estimates. In Aim 3, we find 
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suggestive evidence that the EPA’s DERA School Bus Rebate Program has improved 

student attendance, especially in the districts that removed the oldest buses and those with 

high levels of bus ridership on the impacted buses. Given the importance of attendance to 

student educational success, our results suggest that this program is both successful at 

increasing the pace at which older, highly polluting buses are removed from use and that 

those actions have positive impacts on student attendance levels. 
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