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Professor Mel Hochster
Professor Venky Nagar
Professor Karen Smith



Devlin Mallory

malloryd@umich.edu

ORCID iD: 0000-0002-6448-9314

© Devlin Mallory 2021



ACKNOWLEDGMENTS

First, I am much indebted to my advisor, Mircea Mustaţă. He has provided
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ABSTRACT

We study singularities of algebraic varieties, in particular those arising in birational

geometry, from several points of view. The first is that of arc schemes: arc schemes

parametrize “infinitesimal curves” on a variety, and their geometry reflects properties

of singularities. We show that morphisms of arc schemes (more precisely, of “local”

arc schemes) can detect local isomorphisms of varieties. More precisely, we use the

triviality of a certain ideal-closure operation to show that if a morphism induces an

isomorphism of local arc schemes then it must be an isomorphism on local rings.

We then use arc schemes, in conjunction with the theory of determinantal rings, to

verify the semicontinuity conjecture for the behavior of the minimal log discrepancy

(a subtle invariant of singularities) in the case of determinantal varieties. In particular,

we calculate the Nash ideal of a generic square determinantal variety, which then

allows us to give an explicit formula for the minimal log discrepancies of pairs of

determinantal varieties and determinantal subvarieties. This allows us to verify the

semicontinuity conjecture for such pairs.

We then take another point of view, via the study of differential operators on

singular rings. At least since [LS89], the question had been asked of whether one can

characterize singularities of rings via certain properties of their rings of differential

operators. In particular, one question is whether a ring with mild singularities is a

simple module under the action of its ring of differential operators. While an answer

in characteristic p had been provided by [Smi95], no answer had been forthcoming in

characteristic 0. We provide a counterexample showing that the expected connection

does not exist, through the study of the global geometry of Fano varieties. More

specifically, we show that certain del Pezzo surfaces do not have big tangent bundles,

and thus their homogeneous coordinate rings are not simple under the action of their

rings of differential operators, despite having “mild” singularities.

vi



CHAPTER I

Introduction

When studying the solutions of systems of polynomial equations (i.e., algebraic

varieties), one encounters certain special points, at which the local structure of the

set of solutions differs from the generic “smooth” behavior. Such points are called

“singularities,” and can be characterized in many ways; perhaps the most intuitive

(at least over C) is that a singular point is one at which the solution set fails to be a

manifold, or equivalently where the inverse function theorem fails. Singular points are

a complicated but unavoidable part of algebraic geometry: even if one is only concerned

with smooth varieties, singular varieties arise as limits, intersections, or projections of

smooth varieties. Understanding or classifying the types of singularities that occur is

beyond our grasp; indeed, by considering affine cones over projective varieties, one

sees that classifying all possible singularities in dimension n+ 1 necessitates classifying

all projective varieties of dimension n. So, we frequently restrict our attention to

certain special classes of “mild” singularities. There are more points of view than can

be described here, but a few are particularly relevant in my work:

(1) (Birational geometry) The minimal model program is a (still partially conjectural)

program, which from a complex algebraic variety produces a “simplest” model,

isomorphic to the original variety almost everywhere. In this simplification

process, however, certain singularities are inevitably introduced. The singularities

produced in this process (and its generalization to pairs consisting of a variety and

a codimension-1 subvariety) form several classes of interest: terminal, canonical,

Kawamata log terminal (or klt), log canonical, and more.

(2) (Characteristic p) When working over a field k of characteristic p > 0, a k-

algebra R has a natural map F : R → R, the p-th power, or Frobenius map.

The properties of F lead to several important classes of singularities: F -regular,
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F -split/F -pure, F -rational, etc. Not only have these classes proved natural from

the point of view of commutative algebra, but they have been shown to have

deep connections with the classes arising from birational geometry

(3) (Differential operators) Given a k-algebra R, one can define the ring of k-linear

differential operators on R, denoted DR/k, which generalizes the Weyl algebra

C〈x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn〉 of differential operators on the polynomial ring

C[x1, . . . , xn]. Properties of DR/k often reflect the singularities of R.

1.1 Singularities of birational geometry

Motivation for defining the singularities studied here comes in large part from

higher-dimensional birational geometry, where these classes appear naturally when

one attempts to find the “simplest” birational model of a variety.

We begin with a brief recollection of the surface case, which is described (for

example) in [Har77, Chapter V].

Remark 1.1.1. Let X be a smooth projective surface. If E ⊂ X is a smooth rational

curve with E2 = −1 (that is, E is a (−1)-curve), then Castelnuovo’s contractibility

theorem says that X is the blowup of another smooth projective surface X1 at a

point p, and E the exceptional divisor of this blowup. Now, one can look for smooth

rational curves E1 on X1 with E2
1 = −1, and continue in this manner blowing down

(−1)-curves. Note that ρ(X1) (the rank of the Picard group of X modulo numerical

equivalence) is ρ(X)− 1. Severi’s theorem of the base states that ρ(X) is finite, and

thus the Picard rank strictly decreases with each contraction. Thus, the process

terminates, and we obtain a smooth projective surface X̃, birational to X, with no

(−1)-curves.

Since birational morphisms of smooth projective surfaces can be factored into

blow-ups of points, there can be no birational morphism X̃ → Y that is not an

isomorphism. Thus, one can think of X̃ as being a simplest, or “minimal”, birational

model of X. Note that in this case one does not have to leave the world of smooth

projective varieties.

In higher dimensions, it is then natural to ask whether there is a similar method for

producing a “simplest” birational representative of a given smooth projective variety.

Remark 1.1.2. Two related insights were necessary to make progress in higher

dimensional algebraic geometry:
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• When studying the possible birational modifications of a variety, one should

examine the curves that are to be contracted. In the surface case, these curves are

of course also divisors, but in higher dimensions one can better find contractibility

criterion when studying curves rather than divisors.

• In the surface case, negativity of the self-intersection number allowed us to

identify the contractible curves. In higher dimension, there will quite often be

disjoint curves contracted to the same point, and so their intersection is not

particularly illuminating.

Instead, if X is a variety and C a curve on X, one should consider KX · C, the

degree of the restriction of the canonical divisor to C. Concretely, if X is smooth

one writes down a meromorphic volume form on X, and KX · C is the degree of

the restriction of this volume form to C. When X is a surface, the adjunction

formula says that KX ·C +C2 = 2g(C)− 2, where g(C) is the genus of C. If C

is a smooth rational curve, so g(C) = 0, C2 = −1 (and thus C is contractible to

a smooth point) if and only if KX · C = −1.

The key idea of the minimal model program, then, is that in higher dimensions one

should look for curves C such that KX · C < 0, and seek to contract these curves. If

there are no curves C such that KX · C < 0, KX is then a nef divisor (thought of as

some “positivity” of KX), and one can check that X has various nice “minimality”

properties.

Remark 1.1.3 (Necessity of singularities). In dimension ≥ 3, if one tries to find

a “simplest” birational model by contracting curves on which the canonical divisor

is negative, one inevitably encounters singularities. Indeed, it was precisely the

realization that such singularities were unavoidable, and in many ways tractable,

which allowed for many of the important developments of birational geometry of the

last decades.

Perhaps the simplest example of the introduction of singularities is the following:

let A be an abelian variety of dimension 3, and let i : A→ A be the involution p 7→ −p.
By standard results on abelian varieties, i has exactly 64 fixed points. If X0 is the

quotient of A under the action of i, then, X0 has exactly 64 isolated double points, each

of which is (analytically) isomorphic to the cone over the degree-2 Veronese embedding

P2 → P5. Let X → X0 be the resolution of singularities obtained by blowing up these

64 double points, with exceptional divisors E1, . . . , E64, each isomorphic to P2. Then
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one can check that OEi(Ei) = OP2(−2). Adjunction states that

OX(KX + Ei)|Ei ∼= OEi(KEi);

since OEi(KEi) = OP2(−3), we have that OX(KX)|Ei = OP2(−1), so that KX is not

nef (as KX · L = −1 for any line L ⊂ Ei.).

On the other hand, KX0 is nef: since the quotient morphism π : A→ X0 is étale in

codimension 1, we have KA = π∗KX0 . Since KA is trivial, KX0 is numerically trivial,

thus nef. Thus, from the point of view of positivity of the canonical bundle, X0 is

a “more minimal” model than X, despite its singularities. Moreover, one can check

that any attempt to contract the KX-negative curves of X will result in a singular

variety. Thus, if we truly want a nef canonical divisor, we must accept the presence of

singularities.

The singularities that appear in the process of contracting KX-negative curves

on a smooth variety are called “terminal” singularities. They will be defined more

systematically in what follows, but the original motivation for their definition arises

exactly from their appearance in this process.

Remark 1.1.4 (Canonical singularities on surfaces). There is a related class of

singularities arising in the search for a representative of a birational equivalence class,

which appears already in the study of surfaces, the canonical singularities. Their

formal definition will appear later, but here we mention how they arise. If X is a

smooth projective surface, one can consider the graded ring RX :=
⊕

H0(X,mKX).

Because the plurigenera H0(X,mKX) are birational invariants of smooth projective

varieties, the ring RX is unchanged by contracting (−1)-curves on X, and we may thus

assume that X has no (−1)-curves. There are then two possibilities: H0(X,mKX) = 0

for all m, in which case it can be shown that X is either P2 or a projective bundle

over a smooth curve, or H0(mKX) 6= 0 for some (hence infinitely many) m. In the

latter case, we assume RX is finitely generated (this is in fact automatic, because

OX(KX) can be shown to be semiample). One can then consider the dimension of

ProjRX , which may be 0, 1, or 2. When dim ProjRX = 2, we set Xcan := ProjRX

and call it the canonical model of X. Again, since the plurigenera (and more generally,

RX itself) are birational invariants of smooth projective varieties, Xcan is a birational

invariant of X.

When dim ProjRX = 2, a priori one has only a birational map X → Xcan. However,

if X contains no (−1)-curves, one can show that some multiple of |mKX | is in fact

basepointfree, and thus defines a morphism X → Xcan. One can check that this
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morphism contracts precisely those curves C for which KX · C = 0, and that these

are exactly the (−2)-curves, i.e., smooth rational curves C such that C2 = −2. The

resulting variety Xcan will not be smooth, but will have isolated singularities. These

are the so-called Du Val singularities, and can be described in several ways:

(1) They are exactly the ADE singularities, so called because they are classified by

the Dynkin diagrams of types A, D, and E, and they can be given up to analytic

isomorphism as a list of explicit hypersurface singularities.

(2) They are the rational double points.

(3) They are exactly the singularities occurring as quotients of C2 by a finite

subgroup of SL(2,C).

More generally, one can define canonical singularities as the singularities ap-

pearing on the “canonical models” of smooth projective varieties of general type.

If X is a smooth projective variety, and the canonical ring
⊕

H0(X,mKX) is

a finitely generated C-algebra1 and dimX = dim Proj
(⊕

H0(X,mKX)
)
, we set

Xcan := Proj
(⊕

H0(X,mKX)
)
, and call it the canonical model of X. The singulari-

ties that appear on Xcan are called canonical singularities. We will define them instead

more systematically, but the description above provides their initial motivation and

the use of the name itself.

Remark 1.1.5 (Motivation for pairs). More generally, over the past several decades,

the utility of studying pairs has become clear. In fact, many results are formulated

and proved most naturally in this language, particularly those depending on induction.

The technical definition appears in Chapter II, but the idea is as follows: One

considers a variety X, which for simplicity we take to be Q-factorial, and either an

R-divisor
∑
aiDi, for ai ∈ R>0 and the Di prime divisors, or a formal sum

∑
aiYi,

for Yi closed subvarieties and ai ∈ R>0. In the simplest case, when D ⊂ X is a

smooth divisor in a smooth variety, the adjunction formula relates KD and KX , by

OD(KD) ∼= OX(KX + D)|D. Thus, properties of KD (e.g., ampleness, nefness, etc.)

should be thought of as inherited not solely from X, but from the pair (X,D). It is

often necessary to quantify the “singularities” of the pair (X,D): the formal definition

for this imprecise formulation will be given shortly, but the idea is that we should study

invariants of singularities that account for the singularities of X, the singularities of

D, and their interaction all at once. For a more thorough introduction and motivation

for the language of pairs, see [Kol97].

1This is always the case when X is smooth, or merely klt, by deep results of [Bir+10, Corollary 1.1.2]
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The above techniques and examples motivate the definition of several classes

of singularities, defined by the behavior of the canonical class under resolutions of

singularities. The definitions are a bit technical, and are given in Chapter II, but we

recall the notions briefly here, and describe some related invariants and questions.

Let (X,D) be a pair consisting of a normal variety X and a divisor D such that

KX +D is Q-Cartier (that is, some multiple m(KX +D) is a Cartier divisor). Given

a proper birational morphism π : Y → X with Y normal, one can write

KY +DY = π∗(KX +D)

(precisely because of the hypotheses that KX +D is Q-Cartier). For each divisor E

on Y , we say that 1− ordE(DY ) is the log discrepancy of the divisor Ei with respect

to (X,D), and write aE(X,D) := 1− ordE(DY ). One can check that for each divisor

E over X this quantity depends only on the valuation ring OY,E ⊂ k(Y ) = k(X), and

not on the particular birational model Y on which E appears.

The idea is that one considers a log resolution π : Y → X of the pair (X,D). The

log discrepancies of the exceptional divisors appearing on Y should be thought of as

numeric invariants of the singularities of (X,D); the smaller the log discrepancies, the

more singular the pair (X,D) is.

Remark 1.1.6. The word “log” arises in the following way: one motivation for

considering pairs (X,D) is in studying a noncompact variety U . If X is a smooth

compactification of U and D = X − U a simple normal crossing boundary divisor,

then properties of U are related to properties of the pair (X,D). One studies the

logarithmic cotangent bundle ΩX(logD), so named because its local sections are

differentials with “logarithmic poles” along D. If D = V (x1 · · ·xr) in local coordinates,

then Ω(logD) is spanned by

dx1

x1

, . . . ,
dxr
xr

, dxr+1, . . . , dxn.

This is the motivation for the word “log” to describe resolutions of singularities

producing simple normal crossing divisors, and invariants of singularities of such pairs.

Definition 1.1.7. • (X,D) is called terminal if aE(X,D) > 1 for all divisors E

exceptional over X.

• (X,D) is called canonical if aE(X,D) ≥ 1 for all divisors E exceptional over X.
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• (X,D) is called Kawamata log terminal (or klt) if aE(X,D) > 0 for all divisors

E over X.

• (X,D) is called log canonical if aE(X,D) ≥ 0 for all divisors E over X.

If we take D = 0, we refer simply to X being terminal, canonical, and so on. One

can also replace a divisor D by a formal sum of subvarieties of higher codimension;

we will consider both frameworks in Chapter II.

Remark 1.1.8. What if aE(X,D) < 0 for some E? One can show that in this case

by repeatedly blowing up we can obtain a proper birational morphism Yi → X and a

divisor Ei on Yi with aEi(X,D) ≤ −i; that is, if aE(X,D) < 0 for some E, then the

log discrepancies of (X,D) becomes arbitrarily negative.

Remark 1.1.9. In fact, if aE(X,D) ≥ 0 for all divisors E on a single log resolution

f : Y → X of (X,D), then each of the above conditions can be checked only for

divisors E on Y , rather than on all birational models.

Example 1.1.10 (Surfaces). The above classification is interesting already in the

case of surfaces with no boundary divisor. Let X be a surface. One can check that:

• If X has terminal singularities, then in fact X is smooth. (This corresponds to

the fact that one can contract (−1)-curves on a variety and preserve smoothness.)

• If X has canonical singularities, then (as mentioned above) the singularities of

X are exactly the Du Val singularities, or quotients of C2 by finite subgroups of

SL(2;C).

• If X has klt singularities, then the singularities of X are quotients of C2 by finite

subgroups of GL(2;C).

• If X has log canonical singularities, then the singularities of X are quotients of

simple elliptic singularities or smooth points by finite group actions.

Example 1.1.11. Consider X = V (x2 + y2 + z2), the cone in A3 over a smooth conic

in P2. A single blowup at the singular point σX : X̃ → X, the restriction of the

blowup σ : BlpA3 → A3 to the strict transform X̃ of X, resolves the singularity. The

exceptional divisor E is isomorphic to P1. Using adjunction and the blowup formula,

one can show that aE(X) = 0, and thus X is canonical. For the full calculation, see

Example 2.1.30.
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Example 1.1.12. We may repeat the exact same calculation for V (x3 +y3 +z3) ⊂ A3,

the cone over the Fermat elliptic curve. Again, a single blowup resolves the singularity;

now the exceptional divisor is a copy of the elliptic curve. Repeating the same

calculation, we get that

KX̃ − σ
∗KX = −E,

so that X is log canonical but not canonical.

Example 1.1.13 (Cone over a hypersurface). In general, let f be a homogeneous

polynomial of degree d defining a smooth hypersurface in Pn−1. The cone X = V (f) ⊂
An then has an isolated singularity at the origin, and one can check that a single

blowup at this cone point, say X̃, resolves the singularity, with exceptional divisor E

a copy of the original hypersurface. Using adjunction and the fact that

KBlp An = σ∗KAn + (n− 1)E,

we obtain that KX̃/X = (n− 1− d)E. Thus, X is terminal for d ≤ n− 2, canonical

for d ≤ n− 1, and log canonical for d ≤ n.

For a more general treatment of cones over varieties, and examples where non-

integer discrepancies arise, see Example 2.1.31 and Example 2.1.32.

It is natural to define a single quantity capturing the “worst” possible behavior

of the log discrepancies for a given pair (X,D). Because smaller log discrepancies

correspond to worse singularities, it is natural to consider the smallest such number.

Definition 1.1.14. The minimal log discrepancy of the pair (X,D) along a subvariety

W is defined to be inf{aE(X,D) : cX(E) ⊂ W}, where cX(E) denotes the center of

the valuation corresponding to E on X, or equivalently the image of E under any

proper birational morphism π : Y → X on which E appears.

There are several important conjectures regarding the behavior of minimal log

discrepancies, and all are still open in the general case:

Conjecture 1.1.15 ([Amb99; Sho88; Sho92]). Let (X,D) be a pair consisting of a

normal variety X such that KX +D is Q-Cartier.

• (semicontinuity) The function x ∈ X 7→ mld(x;X,D) is lower-semicontinuous.

• (ACC) Fix a dimension n and a set Γ ⊂ [0, 1] satisfying the descending chain

condition. The set {mld(x;X,D) : dimX ≤ n, x ∈ X, coeff D ⊂ Γ} satisfies the
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ascending chain condition.2

• (precise inversion of adjunction) Let H an effective Cartier divisor such that

H 6⊂ SuppD. For every nonempty closed subset W ⊂ H, we have

mld(W ;X,D +H) = mld(W ;H,D|H),

where D|H is the restriction of the divisor D to H.

Partial results towards these have been proved using arc spaces, which is the first

perspective on singularities this thesis will examine. In particular, [EM04], building

on [EMY03], showed that the semicontinuity and precise inversion of adjunction

conjectures hold for X a local complete intersection variety. The semicontinuity

conjecture is also known if X has quotient singularities by [Nak16].

Remark 1.1.16. The above conjectures deal essentially with the local behavior of

singularities and their invariants. However, they have ramifications for the global

study of algebraic varieties: Shokurov [Sho04] showed that semicontinuity and the

ascending chain condition imply termination of flips, which essentially says that an

arbitrary sequence of elimination of KX-negative curves C eventually terminates, and

thus produces a minimal model (or a Mori fiber space). Thus, the behavior of minimal

log discrepancies has been intensively studied, and is both of great importance and

great subtlety.

1.2 Arc spaces

One powerful tool for understanding the above invariants of singularities is the

notion of arc and jet schemes. If X is an algebraic variety over a field k, the `-th jet

scheme J`(X) is a moduli space for morphisms Spec(k[t]/t`+1)→ X. Such morphisms

are called `-jets, should be thought of as closed immersions into X of an `-th order

thickening of a point of a curve. Thus, for example, 1-jets on X are the same as

tangent vectors on X (although one should be cautious with this intuition: the

higher-order J`(X) will not be vector bundles for ` > 1). For `′ > `, there are natural

“projection” morphisms J`′(X)→ J`(X), induced by the natural truncation morphisms

Spec k[t]/t`+1 ↪→ Spec k[t]/t`
′+1. The inverse limit J∞(X) := lim←−` J`(X) is called the

arc scheme of X. The arc scheme is never of finite type (unless dimX = 0).

2We say a partially ordered set A satisfies the ascending chain condition (respectively, the
descending chain condition) if there are is no infinite strictly increasing (respectively, strictly
decreasing) sequence of elements of A.
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Arc schemes were introduced by Nash [Nas95a], and used by Kontsevich [Kon95]

to prove the birational invariance of the Hodge numbers of a Calabi–Yau variety:

Theorem 1.2.1. Let X, Y be birationally equivalent complex Calabi–Yau varieties.

Then hp,q(X) = hp,q(Y ).

This was a generalization of the proof of Batyrev [Bat99] of the birational equiva-

lence of the Betti numbers of birationally equivalent Calabi–Yau varieties. This earlier

proof had used p-adic integration. Kontsevich’s insight was to replace the mixed

characteristic DVR Zp by C[[t]], and instead of looking at the p-adic points X(Zp) of a

variety, he considers the C[[t]]-valued points X(C[[t]]). The arc space J∞(X) is exactly

the scheme parametrizing these points. Thus, the arc scheme serves as a “measure

space” for what became known as motivic integration.

For the remainder of this section assume k = C. Using this analogy with integration,

there is a special class of subsets of the arc space, known as cylinders. By work of

[ELM04], each divisorial valuation appearing on a resolution of singularities corresponds

to an irreducible cylinders in the space of arcs, and the “codimension” (in a suitable

sense) of each cylinder corresponds to the log discrepancy of the corresponding divisor.

Thus, if one can describe or estimate the codimensions of these cylinders, one can

obtain information about the singularities of the minimal model program. As a first

example, the following theorem connects the singularities of X to properties of its jet

schemes J`(X):

Theorem 1.2.2 ([EMY03]). Let X be a normal local complete intersection variety.

Then X is:

(1) terminal if and only if J`(X) is normal for all `.

(2) canonical if and only if J`(X) is irreducible for all `.

(3) log canonical if and only if J`(X) is equidimensional for all `.

Moreover, the results of [EMY03] showing that semicontinuity and precise inversion

of adjunction hold in the local complete intersection setting were established using jet

schemes, and to our knowledge no proof is known which avoids these methods.

Jet and arc schemes thus provide a powerful technical tool for studying the

singularities of the minimal model program. At the same time, explicitly computing

jet schemes is not easy, and it can be quite difficult to analyze the particular geometry

of the jet schemes of a particular singularity. For example, even the jet schemes of the

Du Val singularities are quite intricate; see for example [Nas95b; Plé08; PS12].
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1.3 Differential operators

We turn now to another perspective on singularities, this time arising from the

theory of differential operators. On a polynomial ring over the complex numbers

C[x1, . . . , xn] (or more generally on a smooth complex variety X), there is a well-

developed theory of D-modules, or modules over the ring (or sheaf) of differential

operators (see, e.g., [HTT08]). In the case of a polynomial ring over C, the ring of

differential operators is just the Weyl algebra C〈x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn〉.
For an arbitrary field k and a k-algebra R, one can define the ring of (k-linear)

differential operators on R, denoted DR/k. The formal definition will appear in

Chapter II, but here we comment on a few key properties:

(1) DR/k =
⋃
iD

i
R/k is naturally a (noncommutative) filtered ring, with Di

R/k called

the differential operators of order ≤ i.

(2) D0
R/k = R, where r ∈ R is thought of as the “multiplication-by-r” operator.

(3) D1
R/k is spanned by D0

R/k along with Derk(R) = Hom(ΩR/k, R), the k-linear

derivations on R. When char k = 0 and R is smooth over k, D1
R/k generates

DR/k, but this is not true generally; in fact, it is conjectured that when char k = 0,

D1
R/k can generate DR/k only when R is smooth over k [Nak61; MV73].

(4) DR/k is a finitely generated k-algebra when char k = 0 and R is smooth over k;

outside of this special case, DR/k will often fail to be finitely generated or

Noetherian. As an example, if R = Fp[x1, . . . , xn], then DR/Fp is generated

over R by the “divided power” operators 1
α1!···αn!

(∂/∂x1)α1 · · · (∂/∂xn)αn , and no

finite subset of these generate over R.

Thus, when R is not smooth over k, many “nice” algebraic properties do not hold

for DR/k. Probably the earliest and most well-known example is that of the cone over

an elliptic curve:

Example 1.3.1 ([BGG72]). Let R = C[x, y, z]/(x3 + y3 + z3) be the affine cone over

a smooth elliptic curve. Then DR has no differential operators of negative degree, DR

is not a finitely generated C-algebra, and is neither left- nor right-Noetherian. Since

DR has no differential operators of negative degree, the maximal homogeneous ideal

(x, y, z) is a proper sub-DR-module of R.

Thus, one expects that when R is singular, DR/k might be quite hard to describe

explicitly. There are a variety of ways to use properties of DR to describe the
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singularities of the ring R: one can consider Noetherianity of DR, finite generation,

generation by derivations, freeness of the R-module D1
R, and more (see, for example,

[LS89; Smi95; SV97; Ish87]). In particular, [LS89] posed the following questions:

(1) If SpecR has rational singularities, when is DR simple? ([LS89, Question 0.13.1])

(2) When is R a simple DR-module? ([LS89, Question 0.13.3])

If R is a regular k-algebra, then R is DR-simple and DR is a simple ring. These

questions ask whether we can weaken this: do “mild” singularities guarantee similar

properties?

There is a rather nice answer in positive characteristic: [Smi95, Theorem 2.2]

showed that in characteristic p an F -pure ring R is a simple DR-module if and only

if R is strongly F -regular. Thus, one might expect a “mildly” singular ring R in

characteristic 0 to be a simple DR-module. If R is a simple DR-module, we say that

R is D-simple.

Remark 1.3.2. There are a few classes of singularities known to be D-simple in

characteristic 0:

• If T is DT -simple, and the inclusion of an T -submodule R ↪→ T splits as a map

of R-modules, then R is DR-simple [Smi95, Proposition 3.1].

• In particular, rings of invariants under finite group actions are D-simple, as are

toric varieties and invariant subrings of polynomial rings under the action of

classical algebraic groups (the latter is due originally to [LS89]).

These examples (which all have klt singularities), and analogies between strong

F -regularity in characteristic p and klt singularities in characteristic 0, motivate the

following more specific formulation:

Question 1.3.3 ([Hsi15, Question 5.1]). If R is a finitely generated Gorenstein

C-algebra such that SpecR has klt singularities, is R then a simple DR-module?

Remark 1.3.4. One reason for considering the above question is the extension

of the theory of holonomic D-modules and the Bernstein–Sato polynomial to the

singular setting. For example, if D = DC[x1,...,xn]/C, then a D-module M must have

n ≤ dimM ≤ 2n (where by dimension, we mean the dimension of the associated

graded algebra). Recent work of [Mon+21b] examines the degree to which this

generalizes to modules over the ring of differential operators of a singular ring, and

shows that for this to hold one needs D-simplicity (and more!) to hold.

12



Similarly, [MHN17; Mon+21a] extends the theory of Bernstein–Sato functional

equations and polynomials to the singular setting. However, not every ring admits a

Bernstein–Sato polynomial. For example, the cone over an elliptic curve considered

above does not, essentially for the same reason it is not D-simple: it has no differential

operators of negative degree. Thus, the failure of D-simplicity is closely related to the

existence (or lack) of Bernstein–Sato polynomials over singular rings.

Remark 1.3.5. The above question is also interesting through its converse: does a

D-simple ring with log canonical singularities have klt singularities? This is interesting

in part because of its connection to the conjectural relation between F -purity and log

canonical singularities; see Remark 5.8.5.

1.4 Main results

In this thesis, we discuss three results concerning the above topics. After Chapter II,

which consists of preliminary definitions and background results, each of the three

results will occupy its own chapter.

1.4.1 Arc closures and the local isomorphism property

Chapter III will discuss the question of whether a morphism being a local iso-

morphism can be detected via the induced map of arc schemes. More precisely, we

note that given a morphism f : X → Y of schemes, there is an induced morphism

f∞ : J∞(X) → J∞(Y ), given by sending an arc Spec k[[t]] → X to the composition

Spec k[[t]] → X → Y . Moreover, if x ∈ X is the closed point of an arc γ, that is,

the image of Spec k ↪→ Spec k[[t]]
γ−−→ X, then f(x) is the closed point of f∞(γ). If

we let J∞(X)x and J∞(Y )f(x) be the set of all arcs with closed points x and f(x),

respectively, f∞ induces a map

f̄∞ : J∞(X)x → J∞(Y )f(x).

[FEI18] stated the following question, due originally to Herwig Hauser:

Question 1.4.1 (Local isomorphism problem). If f̄∞ is an isomorphism, does f

induce an isomorphism of local rings OX,x ∼= OY,f(y)?

Note that f induces an isomorphism of local rings, for example, if f is an open

immersion, or more generally if and only if f induces an isomorphism on Zariski open

neighborhoods. Thus, the morphism f̄∞ clearly cannot determine whether f is a
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global isomorphism, and so the question can be thought of as asking how much local

information the morphism J∞(X)x → J∞(Y )y carries.

[FEI18] recast this problem in purely algebraic terms, by defining a closure operation

on ideals of a local ring, called the arc closure:

Theorem 1.4.2 ([FEI18]). Let R be a local k-algebra. There exists an ideal closure

operation a 7→ aac on R; if (0)ac = 0, then a morphism f : X → SpecR is a local

isomorphism if and only if the induced map f̄∞ is an isomorphism.

The definition of the arc closure is given in Definition 3.3.1; the intuition is that

an element f ∈ R is in the arc closure of an ideal a if the fiber of J∞(V (f)) over

Spec(R/m) contains the fiber of J∞(V (a)) over Spec(R/m).

Put another way, the theorem states that if the zero ideal of R is equal to its

arc-closure, then the local isomorphism problem has a positive answer for any map

to SpecR. Using this approach, we gave a positive answer to the local isomorphism

problem, under very mild conditions (satisfied in essentially all areas of interest):

Theorem 1.4.3. If (R,m,L) is a local k-algebra, and k ↪→ L is separable, then

(0)ac = 0, and thus the local isomorphism problem has a positive solution.

1.4.2 Arc schemes of determinantal ideals

Chapter IV is an application of jet-theoretic techniques discussed above to the

specific case of generic square determinantal ideals. Determinantal varieties are almost

never local complete intersections, and so the results of [EMY03] discussed above

do not apply. However, they possess rich combinatorial structure. Previous work of

[Doc13] used jet-theoretic methods to describe certain invariants of pairs of the form

(An2
, Dk), where Dk ⊂ An2

is the subvariety of matrices of rank ≤ k. However, these

methods did not extend to the case of pairs (Dk,
∑
aiD

k−i) where the ambient variety

is not smooth, but rather a singular determinantal variety.

In Chapter IV, we extend the jet-theoretic methods of [Doc13] to this case, obtaining

the following results:

Theorem 1.4.4. Consider the pair
(
Dk,

∑k
i=1 αiD

k−i
)

(where the αi may be zero).

(1)
(
Dk,

∑k
i=1 αiD

k−i
)

is log canonical at a matrix xq of rank q ≤ k exactly when

α1 + · · ·+ αj ≤ m− k + (2j − 1)

for all j = 1, . . . , k − q.
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(2) In this case,

mld

(
xq;D

k,
k∑
i=1

αiD
k−i
)

= q(m− k) + km−
k−q∑
i=1

(k − q − i+ 1)αi.

In particular, we obtain:

Corollary 1.4.5 (Semicontinuity). If α1, . . . , αk are nonnegative real numbers, the

function w 7→ mld
(
w;Dk,

∑k
i=1 αiD

k−i) is lower-semicontinuous on closed points.

Remark 1.4.6. The key ingredient that allows us to describe the invariants of

singularities from the codimension of certain cylinders in the space of arcs is our

computation of the Nash ideal. This ideal (defined and discussed in Chapter II)

is in general quite difficult to compute, and the difference between the Nash and

Jacobian ideals reflects in some ways the failure of a variety to be a local complete

intersection. Moreover, the Nash ideal defines the Nash blow-up, an important

birational transformation of a variety. As far as we know, this result is one of the first

nontrivial computations of this ideal. In order to perform this calculation, we make

use of the combinatorial theory of determinantal rings, and in particular the existence

and description of a straightening law on determinantal rings.

1.4.3 Differential operators on singular varieties

Chapter V is a study of differential operators on singular varieties, and in particular

gives a negative answer to Question 1.3.3:

Theorem 1.4.7. There are Gorenstein (graded) C-algebras R with rational singular-

ities such that DR/k contains no differential operators of negative degree, and thus

such that R is not a simple DR/k-module and DR/k is not simple. One example is

R = C[x, y, z, w]/(x3 + y3 + z3 + w3).

The proof is via the criterion given in [Hsi15] relating D-simplicity and bigness of

the tangent bundle. Bigness of a vector bundle E is a measure of positivity, meaning

essentially that the number of global sections of SymmE has maximal possible rate of

growth as m increases. In particular, this theorem is a corollary of:

Theorem 1.4.8 (Theorem 5.5.2). Let X be a del Pezzo surface of degree 3, i.e., a

smooth cubic surface. TX is not big; in fact, H0(X, Symm TX) = 0 for all m.
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Remark 1.4.9. This result is the first explicit example given of a Fano variety without

big tangent bundle. (Note, though, that [HLS20] gave several additional examples

shortly thereafter.) The study of the positivity of the tangent bundle has a rich history,

and in general positivity of TX imposes strong conditions on X: Mori’s celebrated

result [Mor79] proved a conjecture of Hartshorne that if TX is ample then X ∼= Pn.

Similarly, when X is Fano, nefness of TX is conjectured in [CP91] to be equivalent to

X being rational homogeneous. It has been long-known by experts (and an explicit

statement and proof given in Chapter V) that if TX is big, then X must be uniruled.

Thus, it would be of great interest to understand which uniruled varieties, or even

just which Fano varieties, have big tangent bundle.
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CHAPTER II

Preliminaries

2.1 Notions of singularity

2.1.1 Weil and Cartier divisors

We recall briefly the notion of Weil and Cartier divisors from both a geometric

and algebraic point of view.

Fix X a normal variety. By variety, we will mean a separated integral scheme of

finite type over a field k; unless otherwise mentioned, k will be algebraically closed.

Definition 2.1.1. A Weil divisor D is a Z-linear finite combination
∑
aiDi of

codimension-1 irreducible subvarieties Di ⊂ X. If ai > 0 for all i, we say D is

effective, and write D ≥ 0. The set of Weil divisors carries a group structure given by

the natural addition.

Since X is normal, and thus regular in codimension 1, the local ring OX,D at the

generic point of an irreducible subvariety D of codimension 1 is a discrete valuation

ring. We write vD for the corresponding valuation. If f ∈ k(X) is a rational function

on X, we have a corresponding Weil divisor div(f) =
∑

D vD(f)D. A Weil divisor D

is called principal if it can be written as D = div(f) for some f ∈ k(X). Two Weil

divisors D,D′ are linearly equivalent, which we write D ∼ D′, if D −D′ is principal.

A Weil divisor D is called locally principal if there is an open cover {Ui} of X such

that the restriction D|Ui is principal for each i.

Definition 2.1.2. A Cartier divisor on X is a global section of k(X)∗/O∗X , where

k(X)∗ is the sheaf of groups obtained by associating to each open affine U = SpecA

of X the multiplicative group Frac(A) r {0} (by our integrality assumption on X, A

is a domain and k(X)∗ is in fact the constant sheaf) and O∗X ⊂ OX is the subsheaf of

invertible sections. A Cartier divisor can thus be thought of as a collection {(Ui, fi)},
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with {Ui} an open cover of X and fi ∈ k(X)∗ such that fi/fj ∈ O∗X(Ui ∩ Uj) for each

i, j. The set of Cartier divisors carries a group structure, obtained by multiplication

of elements of H0(X, k(X)∗/O∗X).

Remark 2.1.3. Since X is normal, a Cartier divisor gives rise to a corresponding Weil

divisor, as follows: given s ∈ H0(X, k(X)∗/O∗X), the associated Weil divisor is then∑
D vD(s)D, where the sum is taken over the codimension-1 irreducible subvariety

D ⊂ X. This map from Cartier divisors to Weil divisors is injective, and we will often

identify Cartier divisors with their corresponding Weil divisor. A Weil divisor arises

from a Cartier divisor (or is Cartier, for short) exactly when it is locally principal. We

will say that two Cartier divisors are linearly equivalent if their corresponding Weil

divisors are.

Remark 2.1.4. To a Weil divisor D, one can associate a subsheaf OX(D) of k(X),

defined by OX(D)(U) = {f ∈ k(X) : divU(f) +D|U ≥ 0}. Two Weil divisors D,D′

are linearly equivalent if and only if OX(D) ∼= OX(D′). A Weil divisor D is Cartier if

and only if OX(D) is an invertible sheaf. Since we assume X to be integral, every line

bundle L can be written as OX(D) for a Cartier divisor D on X; see [Har77, p. II.6].

One can show that if D1, D2 are Weil divisors then

OX(D1 +D2) = (OX(D1)⊗OX(D2))∗∗;

this holds because both sides are reflexive and they agree at all smooth points, which

includes all codimension-1 points. (For background on reflexive modules and their

properties, see, e.g., [Sch])

Remark 2.1.5. An effective Cartier divisor D corresponds to the locally principal

ideal sheaf OX(−D). On a variety with an ample line bundle, any Cartier divisor is a

Z-linear finite sum of effective Cartier divisors.

Remark 2.1.6. If X = SpecR is affine, a Cartier divisor corresponds to a projective

R-module of rank 1 (and an effective Cartier divisor is simply a locally principal ideal

I ⊂ R). A Weil divisor D corresponds to the reflexive rank-1 subsheaf OX(D) inside

FracR.

We now introduce Q-divisors, a generalization of Weil divisors:

Definition 2.1.7. A Q-divisor is a Q-linear finite combination
∑
aiDi of codimension-

1 irreducible subvarieties Di ⊂ X. A Q-divisor D is Q-Cartier if mD is an integral

Cartier divisor for some m ∈ Z.
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(Note that we will often refer to integral Weil divisors being Q-Cartier as well.)

Example 2.1.8. Consider V (x2 − yz) ⊂ A3, the cone over a smooth quadric in P2.

Let L = V (x, y) ⊂ X be a line through the vertex of the cone; one can check via the

tangent space at the origin that L cannot be cut out by a single equation, so that L

is not a Cartier divisor, but 2L is cut out by y, so 2L is Cartier and thus the integral

Weil divisor L is a Q-Cartier Weil divisor.

Remark 2.1.9 (Pulling back divisors). In order to compare the behavior of divisors

under birational morphisms, we need to be able to pull them back.

• It is immediate how to pull back a Cartier divisor on a variety X under any

dominant morphism π : X̃ → X: Given a Cartier divisor on X, thought of

as {(Ui, fi)}, we obtain a Cartier divisor {(f−1(Ui), π
∗fi)}. To pull back an

effective Cartier divisor, then, one simply pulls back the defining equations.

• Given any morphism Y → X, one can pull back linear equivalence classes: if

D is a Cartier divisor on X, then OX(D) is a line bundle, which we pull back,

obtaining π∗OX(D). This then gives a linear equivalence class of Cartier divisors

on X̃.

• Finally, if π : X̃ → X is a dominant morphism, and D a Q-Cartier Q-divisor on

X, we can pull back D to a Q-divisor on X̃, by choosing m such that mD is

Cartier, pulling mD back to X̃, and dividing by m.

There is no obvious way to pull back Weil divisors under arbitrary morphisms

though. We will often work with Q-factorial varieties, where this issue does not arise:

Definition 2.1.10. A normal variety X is Q-factorial if every Weil divisor is Q-Cartier.

2.1.2 The canonical divisor

Now, we define a particular divisor on a variety X, under certain constraints on

the singularities:

Definition 2.1.11. First, let X be a smooth variety of dimension n. Recall that in

this case the cotangent sheaf ΩX/k is locally free of rank n, so that ωX :=
∧n ΩX/k

is a line bundle, the canonical bundle. We obtain a canonical divisor class via the

correspondence between isomorphism classes of line bundles and linear equivalence

classes of Cartier divisors. Although this gives us only a divisor class, we will frequently

fix a particular choice of divisor KX and refer it to the canonical divisor.
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Now, let X be a normal variety. Recall that in this case Serre’s criterion implies

that the singular locus Xsing has codimension ≥ 2. Let U = X rXsing be the smooth

locus, and fix a canonical divisor KU as above. Since Xsing has codimension > 1, there

is thus a unique Weil divisor KX on X such that KX |U = KU , called the canonical

divisor of X. We write ωX for the coherent sheaf OX(KX).

Equivalently:

(1) One can define ωX = j∗(ωU ), where U ↪→ X is the inclusion of the smooth locus.

This is a reflexive rank-1 subsheaf of k(X); take KX to be a corresponding

divisor.

(2) One can define ωX by specifying its sections on each open set W as

Γ(W,ωX) = {s ∈ Ωk(X) : s is regular on W ∩Xsm}.

(3) One may take ωX =
(∧n ΩX/k

)∗∗
.

Remark 2.1.12. For any normal domain R and finitely generated R-module M , one

may check that M∗∗ is reflexive, or equivalently torsionfree and S2. The latter, in

particular, means that if m ∈ MP for all P of height 1 in R, then m ∈ M . Thus,

the passage from
∧n ΩX/k to (

∧n ΩX/k)
∗∗ kills any torsion and then adds all rational

sections regular at all codimension-1 points.

As we have mentioned, we will often want to pull back divisors, and in particular

the canonical divisor, under morphisms. The following definition is precisely what

allows us to do so:

Definition 2.1.13. A variety X is Q-Gorenstein if KX is Q-Cartier.

Note that a Q-factorial variety is Q-Gorenstein. We will encounter Q-Gorenstein

but not Q-factorial varieties in Chapter IV.

Remark 2.1.14. Recall that on an open affine U = SpecR a Weil divisor D (or

rather its linear equivalence class) corresponds to a rank-1 reflexive module M ; to

be Q-Cartier, we must have that ((M)⊗m)∗∗ is projective (or, shrinking U , free) for

some m. Locally, if P is a height-1 prime, the condition that the prime divisor [V (P )]

defined by P is Q-Cartier is that some symbolic power P (m) is principal.

Remark 2.1.15. One may check that if f : Y → X is a proper birational morphism of

normal varieties, then f∗(KY ) is a canonical divisor on X: normality allows us to reduce
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immediately to when X, Y are smooth, and we then can note that f ∗ωX⊗OY (E) ∼= ωY ,

where E is effective and supported on Exc(f) (as argued in Example 2.1.17 below).

This implies that for any choice of KX , KY , we have that KY is linearly equivalent

to f ∗KX + E, and thus that f∗KY is linearly equivalent to KX , and thus a canonical

divisor.

Given a proper birational morphism f : Y → X of normal varieties with X

Q-Gorenstein, we are interested in comparing the pullback of KX with KY . The

following definition is then natural:

Definition 2.1.16. If X is Q-Gorenstein and f : Y → X is a proper birational

morphism from a normal variety Y , we define the relative canonical divisor of Y → X

by choosing a canonical divisor KY , taking KX = f∗(KY ), and setting KY/X :=

KY − f ∗KX .

Although KY is well-defined only up to linear equivalence, the particular choice is

of no importance when defining KY/X : one can check that KY/X is independent of the

choice of KY , and in fact KY/X is the only Weil divisor supported on the f -exceptional

locus and linearly equivalent to KY − f ∗KX (for any choice of KX , KY ). Thus, KY/X

is an actual divisor, not just a linear equivalence class.

Example 2.1.17. If f : Y → X is a proper birational morphism of smooth varieties,

given locally by some regular functions fi on Y , the cotangent sequence

f ∗ΩX/k
(∂fi/∂xj)i,j−−−−−−−−→ ΩY/k → ΩY/X → 0

is left exact (the kernel of the leftmost map is torsion, since f is an isomorphism on an

open subset, and f ∗ΩX/k is locally free, so the kernel is zero; see for example [Har77,

p. II.8.19]). Thus, taking determinants we have that KY/X is defined locally by the

determinant of the Jacobian of the morphism.

As a concrete example, if σ : BlpA2 → A2 is the blowup of A2 at a point, then

in one chart this map is given by k[x, y] → k[u, v], x 7→ uv, y 7→ v, so the Jacobian

matrix is (
v 0

u 1

)
,

and the relative canonical divisor is cut out by v, i.e., the relative canonical divisor is

just the exceptional divisor E of the blowup.

One can check this directly: a section of OA2(KA2) is given by dx∧ dy, which pulls

back to d(uv) ∧ d(v) = v du ∧ dv, which is an element of OBlp A2(KBlp A2 − E), and
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thus we have

KBlp A2 ∼ σ∗(KA2) + E,

so we again see that the relative canonical divisor is E.

Remark 2.1.18. The same calculation shows that if we blow up An at a smooth

subvariety Z of codimension r we get KBlZ An/An = (r − 1)E, and in particular if

Z = {p} is a point we get KBlp An/An = (n− 1)E.

The adjunction formula is an essential tool for calculating canonical divisors and

arguing via induction on dimension; it can be stated in various levels of generality

depending on the singularities involved (see, for example, [KM98; Kol13]), but the

below formulation will suffice for our purposes:

Theorem 2.1.19 (Adjunction). If X is a normal Q-Gorenstein variety, say with

mKX Cartier for some m, and H is a normal irreducible effective Cartier divisor,

then OH(mKH) ∼= OX(mKX +mH)|H , and in particular KH is also Q-Cartier.

2.1.3 Resolutions of singularities

In order to define many of the notions that follow, we will need resolution of

singularities in characteristic 0. First, we define what it means for a divisor to have

simple normal crossings.

Definition 2.1.20. If X is a smooth variety and D =
∑
aiDi a Q-divisor, we say

D has simple normal crossings (or that D is snc) if each Di is smooth and the Di

intersect transversely, or equivalently if the Di are smooth and at any point x ∈ X
there are algebraic coordinates x1, . . . , xn such that the divisor

∑
Di is defined by

xi1 · · ·xik

for some i1, . . . , ik ∈ {1, . . . , n}.

Definition 2.1.21. Let X be a variety.

• If D ⊂ X is a Q-divisor, a log resolution of the pair (X,D) is a proper birational

morphism π : X̃ → X, such that X̃ is smooth and π∗D ∪ Exc(π) is snc.

• If Y =
∑
aiYi a Q-linear sum of closed subschemes Yi, a log resolution of the

pair (X, Y ) is a proper birational morphism π : X̃ → X, such that X̃ is smooth,

IYiOX̃ is an effective Cartier divisor OX̃(−Fi) for each i, and
∑
Fi ∪ Exc(π) is

snc.
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Theorem 2.1.22 (Hironaka). Given a pair (X,D) consisting of a variety X and a

Q-divisor D, or a pair (X, Y ) of a variety X and a Q-linear sum of closed subschemes

Y , there is a log resolution π : X̃ → X of the pair.

2.1.4 Birational models and divisorial valuations

Let X be a normal variety. If E ⊂ X is an irreducible divisor, then since X is

regular in codimension 1, the local ring OX,E is a discrete valuation ring of k(X), and

the corresponding valuation is just the order of vanishing along E. More generally, if

Y → X is a birational morphism, with Y normal and E ⊂ Y an irreducible divisor,

then since OY,E ⊂ k(Y ) = k(X), we have a discrete valuation on X. Moreover, one

can check that this valuation depends only on OY,E, and is thus independent of the

particular birational model Y : that is, if Y ′ → Y is a proper birational morphism and

E ′ ⊂ Y ′ the strict transform of E, then OY ′,E′ ∼= OY,E, and thus they correspond to

the same valuation on X.

Valuations of the above form are called divisorial valuations. If f : Y → X is a

proper birational morphism and E ⊂ Y an irreducible divisor, we call E a divisor

over X; if f is not an isomorphism at the generic point of E, we call E an exceptional

divisor over X. If f : Y → X is a proper birational morphism and E an irreducible

divisor on Y , we write cX(E) for the closed subset f(E); this is called the center of E.

One can check via the valuative criterion for properness (see, e.g., [Har77, p. II.4.7])

that this depends only on the valuation ring of k(X) corresponding to E and not on

the particular normal birational model Y . Note also that when X is proper, every

valuation of k(X) has a center on X, again by the valuative criterion of properness.

2.1.5 Singularities of the minimal model program

Here we recall briefly the notion of log discrepancy and minimal log discrepancy.

Our approach follows that of [EM09a], to which we refer for a comprehensive treat-

ment. For this section, we will take X to be a normal Q-Gorenstein variety over an

algebraically closed field of characteristic 0; we let Y :=
∑s

i=1 aiYi ≥ 0 be a formal

R≥0-linear combination of proper closed subschemes Yi. We refer to (X, Y ) as a pair.

Definition 2.1.23. Let ordE be a divisorial valuation of k(X) with (nonempty) center

cX(E) on X. The log discrepancy of E with respect to the pair (X, Y ) is the real

number

aE(X, Y ) := 1 + ordE(KX′/X)−
∑

ai ordE(Yi),
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where X ′ → X is a birational morphism from a normal variety such that the center

cX′(E) of ordE on X ′ is a divisor. One can check that the quantity aE(X, Y ) is

independent of the choice of normal model X ′ → X.

Remark 2.1.24. It is also common in the literature (e.g., in [KM98]) to consider the

quantity aE(X, Y ) − 1 rather than aE(X, Y ) for a divisor E with respect to a pair

(X, Y ). Often this is called just the “discrepancy” rather than “log discrepancy”. This

is of course largely a matter of convention, but the log discrepancy convention has some

advantages, particularly if one wants to extend the definition of log discrepancies to

arbitrary valuations. One extends the definition to quasimonomial valuations linearly,

and so (for example) multiples of divisors with log discrepancy ≥ 0 will still have log

discrepancy ≥ 0, but the same will not be true if we used the discrepancy rather than

log discrepancy.

Definition 2.1.25. The minimal log discrepancy of the pair (X, Y ) along a closed

subset W ⊂ X, denoted mld(W ;X, Y ), is defined to be

inf
E
{aE(X, Y ) : cX(E) ⊂ W},

where the infimum is taken over all irreducible divisors E (not necessarily exceptional)

over X. If we consider a pair (X, 0), we will just write mld(W ;X) for mld(W ;X, 0).

If we take W = X, we write just mld(X, Y ) for mld(X;X, Y ). (If dimX = 1 one

must make the convention that if mld(W ;X, Y ) < 0 then it is −∞; this is automatic

in higher dimension. We will not treat the 1-dimensional case at all in the following,

so this issue will not arise.)

Definition 2.1.26. If X is a variety with KX Cartier, we say X is:

(1) terminal if mld(X) > 1.

(2) canonical if mld(X) ≥ 1.

If (X, Y ) is a pair, we say (X, Y ) is:

(1) klt if mld(X, Y ) > 0.

(2) log canonical if mld(X, Y ) ≥ 0.

We say (X, Y ) is klt (respectively, log canonical) along a closed subset W ⊂ X if

(X|U , Y |U ) is klt (respectively, log canonical) for some open neighborhood U of W in X.
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Remark 2.1.27. One can define what it means for a pair (X, Y ) to be terminal or

canonical, but then one considers only divisors exceptional over X; we will not use

this in what follows and so do not cover it here.

We will also require the notion of rational singularities:

Definition 2.1.28. If X is a normal variety (not necessarily Q-Gorenstein), we say

X has rational singularities if for some resolution of singularities f : Y → SpecR we

have f∗OY = OSpecR and Rif∗OY = 0 for i > 0.

A priori, the minimal log discrepancy seems impossible to calculate: how do we

analyze all possible exceptional divisors appearing on smooth birational models of X?

However, the following allows us to actually calculate these invariants from a single

log resolution:

Lemma 2.1.29 ([EMY03, Proposition 1.4]). Let (X, Y =
∑
diYi) be a pair, W ⊂ X

a closed subset, and f : X̃ → X a log resolution of (X, Y ) such that additionally the

preimage f−1(W ) is a divisor and f−1(W ) ∪ f−1(Y ) ∪ Exc(f) is snc1. Write

KX̃/X =
∑

kiEi f−1(Y ) =
∑

aiEi

for irreducible divisors Ei ⊂ X̃.

(1) (X, Y ) is log canonical along W if and only if min{1+ki−ai : cX(Ei) ⊂ W} ≥ 0.

(2) If (X, Y ) is log canonical along W , then

mld(W ;X, Y ) = min{1 + ki − ai : cX(Ei) ⊂ W}.

(We note that the precise formulation in [EMY03, Proposition 1.4] is useful for our

purposes, but the result itself is much older and elementary.)

We will now examine several examples, which demonstrate the kind of techniques

used in calculating discrepancies.

Example 2.1.30. Consider X = V (x2 + y2 + z2), the cone in A3 over a smooth

conic in P2, which we treated briefly in Example 1.1.11. Here we give the details

of the calculation. As mentioned, a blowup at the singular point σX : X̃ → X, the

restriction of the blowup σ : BlpA3 → A3 to the strict transform X̃ of X, resolves the

1or, if W = X, just that f−1(Y ) ∪ Exc(f) is snc.
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singularity. The exceptional divisor E is the conic in P2 defined by x2 + y2 + z2, which

is isomorphic to P1. We have morphisms

X̃ = BlpX BlpA3

X A3

σX σ

To compute KX̃/X , we use adjunction for X ⊂ A3 and X̃ ⊂ BlpA3, and the blowup

formula for the blowup σ of A3 at a point:

OX(KX) = OA3(KA3 +X)|X ,

OX̃(KX̃) = OBlp A3(KBlp A3 + X̃)|X̃ ,

KBlp A3 ∼ σ∗KA3 + 2E0.

From the second and third equations and the equality (E0)|X̃ = E, we have

OX̃(KX̃) = OBlp A3(KBlp A3 + X̃)|X̃
= OBlp A3(σ∗KA3 + 2E0 + X̃)|X̃
= OX̃

(
σ∗X(KA3|X) + 2E

)
⊗OBlp A3(X̃)|X̃

= OX̃(σ∗X(KX) + 2E)⊗OBlp A3

(
−(σ∗(X)− X̃)

)
|X̃ .

where the last equality follows from adjunction on X.

Because the defining equation for X has multiplicity 2 at the singular point, we

have σ∗(X)− X̃ = multp(X)E = 2E0, so (σ∗(X)− X̃)|X̃ = 2E. We obtain that

KX̃ ∼ σ∗X(KX)− 2E + 2E ∼ σ∗X(KX),

and thus X is canonical.

Example 2.1.31. Let X0 be the Veronese embedding of P2 in P5. We know that

OP5(1)|X0 = OP2(2), and ωP2 = OP2(−3). Let X ⊂ A6 be the affine cone over X0. 2KX

is clearly Cartier, so KX is Q-Cartier. Let σ : Y → X be the blowup at the cone point,

giving us a resolution with exceptional divisor E ∼= P2. Write 2KY ∼ σ∗(2KX) + aE.

Restricting this to E and using the adjunction OY (KY + E)|E = OE(KE) (and that

σ∗(OX(2KX))|E is trivial), we get

OE(2KE) = OE((a+ 1)E)|E.
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Since OE(E) = OP2(−2) and OE(KE) = ωP2 = OP2(−3), we get that

OP2(−3) = OP2(−2(a+ 1))

so a = 1/2.

Thus the cone X is terminal but not smooth.

Example 2.1.32 (Cones). The following calculation of the singularities of the cone

over a variety will be used implicitly in Chapter V. Let X0 ⊂ Pn be a smooth variety

of positive dimension that is projectively normal (i.e., the homogeneous coordinate

ring k[x0, . . . , xn]/IX0 is normal), and let X ⊂ An+1 be the cone over X0. X thus has

an isolated normal singularity at the origin.

One can give a criteria for X to be Q-Gorenstein purely in terms of the embedding

X0 ⊂ Pn. We claim first that
⊕

mH
0(X0, ωX0(m)) is the canonical module for X.

Since X is affine, we have ωX is the sheafification of H0(X,ωX), so it suffices to find

the global sections of ωX . Let i : U = X r {(0, . . . , 0)} ↪→ X be the inclusion of

the smooth locus. Since X r U has codimension > 2 and ωX is S2, we have that

H0(X,ωX) = H0(U, ωX |U) = H0(U, ωU). Then U is an A1 r {0}-bundle over X0,

which we call π : U → X0. One can then check that π∗(ωX0) = ωU : to see this, note

that π is a smooth map and thus taking the determinant of the cotangent sequence

implies ωU = π∗(ωX0)⊗ ΩU/X0 ; one can then check that ΩU/X0 is trivial.

Since π∗(ωX0) = ωU , the projection formula says that

π∗(π
∗(ωX0)) = ωX0 ⊗ π∗OU = ωX0 ⊗

(⊕
OX0(i)

)
,

where the second equality follows since π∗OU =
⊕
OX0(i).

We then have that ωX is equal to

H0(U, ωU) = H0(X0, π
∗ωX) = H0(X0, π∗π

∗ωX) =
⊕

H0(X0, ωX0(i)).

Analogously, we have that

OX(mKX) = (ω⊗mX )∗∗ =
⊕

H0(X0, ω
⊗m
X0

(i))

(note that ω⊗mX may not be S2, so we cannot repeat the argument for m = 1 for ω⊗mX ,

but its reflexification (ω⊗mX )∗∗ is S2).

Since the coordinate ring R =
⊕

iH
0(X,OX(i)) of X is graded2, a graded module

2Note that this expression is the coordinate ring because X0 is projectively normal
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is locally free if and only if it is free, and thus OX(mKX) is locally free if and only

if (ω⊗mX )∗∗ ∼= R(−a) for some a, which occurs if and only if ω⊗mX0
= OX0(mKX0) =

OX0(l) = OPn(l)|X0 for some l, or (in terms of divisors) if and only if mKX0 ∼ lH,

where H is the hyperplane class of the embedding.

To sum up, then, the cone over X0 ⊂ Pn is Q-Gorenstein exactly when some

(nonzero) multiple of the canonical divisor on X0 is a multiple (possibly zero) of the

hyperplane section from Pn.

Now, assume that mKX0 ∼ lH, and write r = l/m. One can check that if X0 is

a smooth variety in Pn and X the cone over X0 in An+1, blowing up X at the cone

point gives a log resolution Y → X with exceptional divisor E ∼= X0; in fact, it is not

hard to check that this blowup is the total space of the line bundle OX0(1).

It then follows that KY/X = rE, and thus X is

(1) terminal if and only if r > 1.

(2) canonical if and only if r ≥ 1.

(3) Kawamata log terminal if and only if r > 0.

(4) log canonical if and only if r ≥ 0.

There are several conjectures regarding minimal log discrepancies that are of great

importance for the minimal model program. For the following discussion, we take

(X, Y ) to be a pair with X normal and Q-Gorenstein and Y =
∑
aiYi a Q-linear

sum of subschemes with coefficients ai > 0. The following conjecture is a “precise”

statement of inversion of adjunction, relating not just the inequalities of statements

about being log terminal, log canonical, etc., but the actual minimal log discrepancy:

Conjecture 2.1.33 ([Sho92]). Let H an effective Cartier divisor such that H 6⊂
SuppY . For every nonempty proper closed subset W ⊂ H, we have

mld(W ;X, Y +H) = mld(W ;H,Y |H),

where Y |H =
∑
aiYi|H is the restriction of Y to H.

The following ascending chain conjecture for minimal log discrepancies concerns

the behavior of the numbers appearing as minimal log discrepancies of pairs of a fixed

dimension with coefficients in a set satisfying the descending chain condition (e.g.,

rational numbers of the form 1− 1/n).
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Conjecture 2.1.34 ([Sho88]). Fix a dimension n and a set Γ ⊂ [0, 1] satisfying the

descending chain condition. The set

{mld(x;X, Y ) : dimX ≤ n, x ∈ X, coeff Y ⊂ Γ}

(where X is taken to be normal and Q-Gorenstein) satisfies the ascending chain

condition.

Finally, the following conjecture concerns the behavior of the log discrepancies of

divisors centered at a (closed) point as the point varies across the variety.

Conjecture 2.1.35 ([Amb99]). Let (X, Y ) be a pair. The function

x 7→ mld(x;X, Y )

is lower-semicontinuous on the closed points of X.3

2.1.6 F -singularities

In Chapter V, we will need the following notions of characteristic-p singularities.

Definition 2.1.36. Let R be a ring of characteristic p > 0. We write F for the

Frobenius F : R→ R, r 7→ rp. When R is reduced, we will also view F as an inclusion

R ↪→ R1/p, where R1/p is the set of p-th roots of elements of R in some fixed algebraic

closure of its total fraction field. (Note that F defines an isomorphism R1/p ∼= R.) We

say R is F -finite if F is a finite ring map.

Remark 2.1.37. A finite field Fp is F -finite, and more generally so are perfect or

algebraically closed fields. If R is F -finite and S is a finitely generated R-algebra, S is

F -finite. Localizations and quotients of F -finite rings are F -finite. Thus, most rings

of geometric interest will be F -finite. We will assume F -finiteness throughout the

following, although we will try to explicitly mention it.

Definition 2.1.38. Let R be an essentially finite type k-algebra, with [k : kp] <∞
(so that R is F -finite). Assume that R is reduced. Then:

(1) R is strongly F -regular if for every c ∈ R, not a zerodivisor, there is an R-linear

map R1/pe → R sending c1/pe 7→ 1 for some e� 0.

3That is, for each number t, there is an open neighborhood U ⊂ X such that mld(x;X,Y ) > t for
any closed point x ∈ U .
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(2) R is F -pure (or F -split) if there is an R-linear map R1/pe → R sending 11/pe 7→ 1

for some e� 0.

Note that strongly F -regular implies F -pure (just by taking c = 1). Besides

their intrinsic interest in commutative algebra (especially through connections to

tight closure and invariants of singularities in characteristic p), these classes are

characteristic-p analogues of klt and log canonical singularities, respectively.

Definition 2.1.39. Let R be a finitely generated C-algebra of dimension d. There

is a finitely generated Z-algebra A ⊂ C such that R is defined over A, i.e., there is

some A-algebra RA and R = RA ⊗A C. By the theorem on generic flatness, we may

localize at element one element of A and thus assume that A→ RA is a flat extension,

and thus that the fibers Rp = RA ⊗A Ap/pAp are of dimension d. We say that R is of

F -regular type if Xp is strongly F -regular for p in an open dense subset of SpecA,

and R is of dense F -pure type if Xp is F -pure for p in an dense subset of SpecA.

Theorem 2.1.40 ([Har98; HW02]). Let R be a Q-Gorenstein finitely generated C-

algebra. R has F -regular type if and only if R has klt singularities. Moreover, if R

has dense F -pure type then R is log canonical.

The following question was stated in [HW02], but was discussed previously by

experts:

Conjecture 2.1.41 ([HW02, Problem 5.1.2]). If R is log canonical, then it is of dense

F -pure type.

2.2 Arc schemes

2.2.1 The Jacobian and Nash ideals

We begin by reviewing two ideals, which are not themselves defined in terms of

arc schemes, but whose existence and properties will be important in the study of

cylinders of the arc scheme and their codimensions.

Definition 2.2.1. Let R be a finitely generated k-algebra of dimension d. The

Jacobian ideal is the d-th Fitting ideal of the module of (k-linear) Kähler differentials

ΩR/k. Equivalently, if one chooses a surjection S → R, with S a polynomial ring over

k in variables x1, . . . , xN , and chooses generators (f1, . . . , fn) for the kernel of R→ S,

then the Jacobian ideal is the ideal of (N − d)-th minors of the matrix (∂fi/∂xj) of

partial derivatives.
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The description via Fitting ideals implies that on a k-variety X, the Jacobian ideal

is canonically defined on each affine chart, independent of any choice of coordinates,

and there is thus a Jacobian ideal sheaf, which we denote JacX ⊂ OX . Note that the

Jacobian ideal is cosupported on the singular locus of X (which is the same as the

non-regular locus if k is algebraically closed or perfect).

Definition 2.2.2. We also need the notion of the Jacobian ideal of a proper birational

morphism f : X̃ → X with X̃ smooth, which we denote Jacf . This is the ideal sheaf

on X̃ defined by 0-th Fitting ideal of ΩX̃/X , or equivalently the ideal sheaf defined by

the image of the morphism

f ∗
( n∧

ΩX

)
→

n∧
ΩX̃ = ωX̃ ,

where dimX = dim X̃ = n; since X̃ is smooth, ωX̃ is a line bundle, and thus the

image of the left side defines an ideal of X̃.

There is another ideal sheaf defined on a normal Gorenstein variety X, similar to

but distinct from the Jacobian ideal, which plays an important role in the relation

between jet spaces and discrepancies: the Nash ideal.

Recall that on a normal variety X of dimension d the canonical sheaf ωX can

be defined as (
∧d ΩX)∗∗, the reflexification of the d-th exterior power of the Kähler

differentials. There is then in particular a natural map
∧d ΩX → (

∧d ΩX)∗∗ = ωX .

Definition 2.2.3. Let X be a normal Gorenstein variety of dimension d. Because X

is Gorenstein, the image of the natural morphism

∧d
ΩX →

(∧d
ΩX

)∗∗
= ωX

is a coherent subsheaf of the invertible sheaf ωX . This image then defines an ideal

sheaf of OX (obtained by tensoring the image by ω−1
X ); this ideal sheaf is called the

Nash ideal sheaf of X, which we will denote by J(X).

Note that the Nash ideal is cosupported on Xsing. If X is lci, then J(X) = JacX ,

but in general they differ, as we will see in Chapter IV. See [EM09a, Section 9.2] for

details on their relation.

Remark 2.2.4. By [SSU02, Section 2] and the references cited there, if X = SpecR

for a finitely generated N-graded k-algebra R with R0 = k, then the morphism∧d
ΩX → ωX
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is homogeneous. If X is Gorenstein as well, then we have ωX ∼= R(a) for some uniquely

determined a ∈ Z, and thus the Nash ideal will be homogeneous. For more on the

canonical modules of graded rings, see [GW78, Chapter 2.1]

Remark 2.2.5. One can also define an analogue of Nash ideals for Q-Gorenstein

varieties: consider the image of (
∧d ΩX)⊗m → ω⊗mX → (ω⊗mX )∗∗ for a positive integer m

with (ω⊗mX )∗∗ invertible; twisting by ω⊗−mX we obtain an ideal sheaf, called the m-th

Nash ideal of level m. We will not use this notion in the following.

2.2.2 Arc and jet schemes

We recall the definition of arc and jet schemes; for a comprehensive treatment see,

e.g., [Voj13]. Let X be a scheme over k, and for each ` ∈ N consider the functor from

k-schemes to sets

T 7→ Hom
(
T ×k Spec(k[t]/t`+1), X

)
.

One can show that there is a k-scheme J`(X), the scheme of l-jets of X, representing

this functor, i.e., such that

Hom
(
T ×k Spec(k[t]/t`+1), X

)
= Hom(T, J`(X));

in particular, k-points of J`(X) correspond to maps Spec k[t]/t`+1 → X. Moreover, if

X is finite-type over k then so is J`(X).

The quotient maps

k[t]/t`+1 → k[t]/t`
′+1

for `′ < ` induce morphisms

ψ`,`′ : J`(X)→ J`′(X).

It follows by construction that these maps are affine, and thus the inverse limit over

the system {J`(X)→ J`′(X) : ` > `′} exists in the category of k-schemes. We denote

this limit by J∞(X), and call it the arc scheme of X (note that J∞(X) will not be

of finite type over k in general). Since J∞(X) is by construction an inverse limit,

there are truncation maps ψ∞,` : J∞(X)→ Jl(X) for any `, arising from the quotient

morphism

k[[t]]→ k[t]/t`+1.
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Remark 2.2.6. One can check that if k ↪→ L is a field extension then

Hom(Spec(L[[t]]), X) = Hom(Spec(L), J∞(X)).

In fact, by [Bha16] it is true (but highly nonelementary) that if X is quasicompact

and quasiseparated over k and S is a k-algebra then

Hom
(
SpecS ×k Spec(k[[t]]), X

)
= Hom(SpecS, J∞(X)),

but we do not use this in the following.

In the following, we use ` to denote an element of N ∪ {∞}, and write k[[t]]/t`+1

to mean either k[[t]]/t`+1 = k[t]/t`+1 when ` is finite or k[[t]] when ` =∞.

For any ` we denote the truncation map ψ`,0 : J`(X)→ J0(X) = X simply by ψ`;

at the level of k-points, this just sends an arc Spec k[[t]]/t`+1 → SpecX to

Spec k → Spec k[[t]]/t`+1 → X,

i.e., to the image of the closed point of Spec k[[t]]/t`+1. For a point x ∈ X, not

necessarily closed, we write J`(X)x for ψ−1
` (x), the fiber over x.

Given a morphism f : X → Y of k-schemes, for any morphism

T ×k Spec(k[[t]]/t`+1)→ X

we obtain a morphism

T ×k Spec(k[[t]]/t`+1)→ X → Y,

and by functoriality we obtain morphisms f` : J`(X)→ J`(Y ) for all `. Furthermore, it

is clear that for x ∈ X these morphisms restrict to morphisms f̄` : J`(X)x → J`(Y )f(x).

Remark 2.2.7. Let G be an algebraic group. Then, for any `, by functoriality J`(G)

is also an algebraic group (for example, the multiplication map G×G→ G gives rise

to a morphism J`(G×G) = J`(G)× J`(G)→ J`(G).) Similarly, if X is a variety, and

G an algebraic group acting on X, then J`(G) acts on J`(X).

Now, we recall the construction of the arc and jet schemes of an affine scheme SpecR

(the arc and jet schemes are obtained by simply gluing the construction over affine

charts). Given a k-algebra R (not necessarily Noetherian or local), and ` ∈ N ∪ {∞},
we write R` for the ring defined as follows: take a surjection k[xα]α∈A → R, say with

33



kernel I = (fβ(xα))b∈B. For each variable xα, introduce variables x
(i)
α for i = 0, . . . , `.

Define

R` :=
k
[
x

(i)
α

]
α∈A,i=0,...,`(

fβ,i(xα) : β ∈ B, i = 0, . . . , `
)
.

where fβ,i(xα) is the coefficient of ti in the expansion of

fβ
(
x(0)
α + x(1)

α t+ · · ·+ x(`)
α t

`
)

in k[x
(i)
α ][[t]]/(t`+1) (when ` =∞, we mean simply k[x

(i)
α ][[t]]).

If ` <∞, for any k-scheme T we have

Hom(T, SpecR`) = Hom(T ×k Spec(k[[t]]/t`+1), X),

so that SpecR` is canonically isomorphic to J`(SpecR); moreover, one can check that

SpecR∞ ∼= J∞(SpecR).

The projection maps ψ`,`′ for ` > `′ give ring maps R`′ → R`, and in particular an

inclusion R = R0 ↪→ R` for any `.

2.2.3 Cylinders in the space of arcs

For an in-depth treatment of this material, see [EM09a]; we will quickly survey

the main notions. Fix an arbitrary finite-type k-scheme X.

Definition 2.2.8. A cylinder C in J∞(X) is a set of the form C = ψ−1
∞,`(S) for

S ⊂ J`(X) a constructible subset.

Remark 2.2.9. Note that cylinders are closed under finite unions, finite intersections,

and complements.

For a k-point γ ∈ J∞(X), we write ordγ(a) for the value Let a ⊂ OX be an ideal

sheaf. For a k-point γ ∈ J∞(X), we write ordγ(a) for the value obtained by pulling

back the ideal a along γ : Spec k[[t]] → X and applying the t-adic valuation (recall

that if v is a valuation and I an ideal, v(I) := min{v(f) : f ∈ I}).

Definition 2.2.10. We define the contact loci along a as

Cont≥i(a) = {γ ∈ J∞(X) : ordγ(a) ≥ i} and Conti(a) = {γ ∈ J∞(X) : ordγ(a) = i}.

Note that these are cylinders in J∞(X): we can write

Cont≥i(a) = ψ−1
∞,i−1

(
Ji−1(Spec(OX/a))

)
,
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where Ji−1(Spec(OX/a)) ⊂ Ji−1(X) is the (i − 1)-st jet scheme of the subscheme

Spec(OX/a), which is naturally a closed subscheme of Ji−1(X). Since

Conti(a) = Cont≥i(a) r Cont≥i+1(a),

it is a cylinder as well.

Given some subvarieties Y1, . . . , Ys and some s-tuple w = (w1, . . . , ws) ∈ Ns, we

write Contw(Y ) =
⋂

Contwi(Yi); we refer to such intersections of contact loci as

multicontact loci.

We now turn to the notion of codimension of a cylinder; for this, we specialize to

the case where k is a field of characteristic 0, although much of this section can be

adapted to any characteristic. Assume moreover that X is of pure dimension n over k.

The contact loci Conte(JacX) along the Jacobian ideal are of particular importance

in what follows. Given any cylinder C we will write C(e) := C ∩ Conte(JacX).

Definition 2.2.11. Let C be a cylinder. If C = ψ−1
∞,r(S) ⊂ Conte(JacX), then we

define

codim(C) := n(`+ 1)− dimψ∞,`(C)

for any ` ≥ max(e, r).

If C is an arbitrary cylinder in J∞(X), we define

codim(C) := min
e

(
codim(C(e))

)
.

Remark 2.2.12. Some comments on this definition are in order:

• By definition, we may write any cylinder as ψ−1
∞,`(S) for some r and S ⊂ J`(X).

• The codimension is a nonnegative integer. This is not trivial; for details, see

[EM09a, Section 5].

• The fact that for C = ψ−1
∞,r(S) ⊂ Conte(JacX) the quantity

n(`+ 1)− dimψ∞,`(C)

is independent of the choice of ` ≥ max(e, r) follows from the study of the

truncation morphisms on the space of jets (see [EM09a, Theorem 4.1]).

• It is clear that codim(C1 ∪ C2) = min(codim(C1), codim(C2)).
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• When X is smooth, the codimension in the above sense of a cylinder C coincides

with its topological codimension in the Zariski topology.

2.2.4 Jet schemes, birational morphisms, and minimal log discrepancies

Here we recall briefly the connection between arc schemes and minimal log discrep-

ancy. Our approach follows that of [EM09a], to which we refer for a comprehensive

treatment of this material. Recall that a pair (X, Y ) consists o a normal Q-Gorenstein

variety X over an algebraically closed field of characteristic 0, and Y :=
∑s

i=1 aiYi a

formal R≥0-linear combination of proper closed subschemes Yi.

A proper birational morphism will induce a set-theoretic bijection away from a

“measure-0” subset of the space of arcs. More precisely, we have:

Theorem 2.2.13. Let f : X̃ → X be a proper birational morphism of varieties. If

Z ⊂ X is the locus over which f is not an isomorphism, then f∞ restricts to a bijection

J̃∞(X) r (f−1(Z))∞ → J∞(X) r Z∞.

Proof. First, note that for any morphism Spec k[[t]]→ X̃ with image not contained

in f−1(Z), the composition Spec k[[t]]→ X̃ → X will have image not contained in Z.

Thus, f∞ restricts to a morphism J̃∞(X) r (f−1(Z))∞ → J∞(X) r Z∞.

Let γ : Spec k[[t]]→ X be an arc, with image not contained in Z. Since the image

of the generic point Spec k((t)) ↪→ Spec k[[t]]→ X lands in X r Z ∼= X̃ r f−1(Z), we

have a map Spec k((t))→ X̃ making the following diagram commute:

Spec k((t)) X̃

Spec k[[t]] X

f

γ

The valuative criterion for the proper morphism γ then says that there is a unique

morphism γ̃ : Spec k[[t]]→ X̃ making the diagram commute. Thus, we have that the

morphism J̃∞(X) r (f−1(Z))∞ → J∞(X) r Z∞ is bijective.

While the morphism f∞ is a set-theoretic bijection (on a “large” subset of the arc

space at least), the codimension of a cylinder will change under f∞. The connection

between log discrepancies and jet schemes arises through the following birational

transformation rule, which expresses how this codimension changes under proper

birational morphisms:
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Theorem 2.2.14 ([Kon95; DL99]). Let X be a reduced equidimensional scheme,

f : X̃ → X a proper birational morphism with X̃ smooth, and let e, e′ be nonnegative

integers. Write

Ce,e′ := Conte(Jacf ) ∩ f−1
∞ (Conte

′
(JacX)) ⊂ J∞(X̃)

For m ≥ max 2e, e+ e′, consider the map fm : Jm(X̃) → Jm(X), and write ψm :=

ψX̃∞,m : J∞(X̃)→ Jm(X̃) for the truncation map.

• ψm(Ce,e′) is the union of fibers of fm, i.e., if γ ∈ ψm(Ce,e′) and fm(γ) = fm(γ′)

for some γ′ in Jm(X), then γ′ ∈ ψm(Ce,e′).

• The restriction ψm(Ce,e′)→ fm(ψm(Ce,e′)) is a piecewise trivial Ae-fibration.

Remark 2.2.15. The statement of this might appear somewhat technical, but the

essential content is that if one has a cylinder D ⊂ J∞(X̃) that one can partition it up

into D ∩ Ce,e′ as e, e′ varies, and that the truncation of each intersection D ∩ Ce,e′ to

a (high-enough) finite level m is a piecewise trivial Ae-fibration over its image under

fm. At the level of the arc scheme, this says that the codimension of D itself changes

under f∞ based on the codimensions of each intersection D ∩ Ce,e′ as e varies.

The relation between minimal log discrepancies and jet spaces is expressed through

the following formula of Ein and Mustaţă; the proof proceeds by the use of the above

birational transformation rule:

Theorem 2.2.16 ([EM09a, Theorem 7.4]). Let (X, Y ) be a pair and W ⊂ X a proper

closed subset. Then

mld(W ;X, Y )

= inf
n,w=(wi)

{
codim

(
Contw(Y ) ∩ Contn(J(X)) ∩ Cont≥1(W )

)
− n−

∑
i

αiwi

}
.

2.2.5 Two lemmas on arc schemes

The following two lemmas will be used in Chapter IV. The first says that the

contact loci of an ideal are unaffected by passing to the integral closure:

Lemma 2.2.17. If X is a finite-type k-scheme, J ⊂ OX an ideal sheaf, and J its

integral closure, then Cont≥i(J ) = Cont≥i(J ) and Conti(J ) = Conti(J ).
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Proof. Clearly the first claim implies the second, since Conti(I) = Cont≥i(I) r
Cont≥i+1(I) for any ideal sheaf I. The claim is local on X, so let X = SpecR and

J ⊂ R be the ideal in question. A k-point γ ∈ J∞(SpecR) corresponds to a k-algebra

homomorphism γ∗ : R→ k[[t]]. Since k[[t]] is a discrete valuation ring, we have that

γ∗(J) = γ∗(J) by the definition of integral closure. Thus, ordγ(J) = ordγ(J) for any

γ ∈ J∞(X), and thus Cont≥i(J) = Cont≥i(J).

We introduce the following lemma to facilitate computation of codimensions of

spaces of jets without having to calculate JacX or the contact loci along it explicitly:

Lemma 2.2.18. Given any cylinder C ⊂ J∞(X), not necessarily contained in some

Conte(JacX), we have

codim(C) = n(`+ 1)− dimψ∞,`(C)

for `� 0.

Note that this does not give an explicit bound on how large we must take `; in our

applications here, the quantity

n(`+ 1)− dimψ∞,`(C)

will be seen to be independent of ` for `� 0 directly.

The key ingredient in the proof of the lemma is the fact that lime→∞ codim(C(e)) =

∞; for a proof, see [EM09a, Proposition 5.11].

Proof. Take C to be a cylinder of codimension c. Using the fact that

lim
e−>∞

codimC ∩ Conte JacX︸ ︷︷ ︸
C(e)

=∞,

there is m such that for m′ > m we have codimC(m′) > c. We can write

C = C(0) ∪ · · · ∪ C(m)︸ ︷︷ ︸
C′

∪
(
C ∩ Cont≥m JacX

)︸ ︷︷ ︸
C′′

.

Then C ′′ is a cylinder, and by definition of codimension it is clear codimC ′′ > c, so

that codimC = codimC ′ = c.

By the usual properties of dimension

dim(ψ∞,`(C
′)) = max

e=0,...,m
(ψ∞,`(C

(e))),
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and so it is immediate that

codim(C ′) = min
e=0,...,m

(
n(`+ 1)− dimψ∞,`(C

(e))
)

= n(`+ 1)− dimψ∞,`(C
′)

for `� 0.

Thus, all we need to show is that for `� 0,

n(`+ 1)− dimψ∞,`(C) = n(`+ 1)− dimψ∞,`(C
′),

or equivalently that

dimψ∞,`(C
′) ≥ dimψ∞,`(C

′′).

But this is immediate, because codimC ′′ < c = codimC ′: for `� 0, we have

(`+ 1)n− dimψ∞,`(C
′) =: codimC ′ > codimC ′′ := (`+ 1)n− dimψ∞,`(C

′′),

and thus the desired inequality holds.

2.3 Differential operators

2.3.1 Definitions

Let A be a commutative ring, and R a commutative A-algebra. The (noncom-

mutative) ring DR/A of A-linear differential operators on R is defined inductively as

follows: let D0
R/A := HomR(R,R) ∼= R (thought of as multiplication by R), and

Di
R/A := {ϕ ∈ EndA(R) : [ϕ, r] ∈ Di−1

R/A for all r ∈ R}.

Then

DR/A =
⋃
i

Di
R/A.

We note DR/A is a subring of HomA(R,R) and thus R carries a canonical DR/A-module

structure.

Example 2.3.1. If R is the smooth A-algebra A[x1, . . . , xn], then DR/A is generated

as an R-algebra by the “divided power partial derivatives”

1

α1! · · ·αn!

( ∂

∂x1

)α1

◦ · · · ◦
( ∂

∂xn

)αn
.

When Q ⊂ A, then the coefficient 1
α1!···αn!

is irrelevant, and DR/A is generated as an
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R-algebra by the partial derivatives ∂/∂xi. As a result, if k is a field containing Q,

then DR/k is Noetherian, finitely generated (in fact, generated over R by derivations),

and a simple algebra [Smi86].

In characteristic p, however, we see already that even in the one-variable case,

DFp[x]/Fp is not finitely generated as an Fp-algebra, and finite generation never holds

in positive characteristic more generally (unless R is of dimension 0 over A).

Remark 2.3.2. If R = k[x1, . . . , xn]/I is the quotient of a polynomial ring, one can

describe DR/k as a subquotient of DS/k:

DR/k =
{δ ∈ DS/k : δ(I) ⊂ I}

IDS/k

.

For a proof of this, see, e.g., [MR01, Theorem 5.13], though it goes back much further.

While this is more concrete than the above inductive description, it is very hard in

practice to calculate the δ ∈ DS/k preserving I (the idealizer of I); see [BJN19] for

one such approach.

In all applications considered, we always take the base ring A to be a field k.

2.3.2 D-simplicity

Definition 2.3.3. An A-algebra R is called D-simple if R is a simple DR/A-module,

i.e., if the only proper DR/A-submodule of R is the zero ideal.

Remark 2.3.4. One can also ask when DR/A is a simple algebra (i.e., there are no

nonzero proper two-sided ideals). It is straightforward to verify that this forces R to be

a simple DR/A-module: If R were not a simple DR/A-module, let I ⊂ R be a nonzero

proper DR/A-submodule. Then R/I is a DR/A-module with nonzero annihilator (since

the annihilator includes multiplication by f for every f ∈ I), but the annihilator is

proper (since it does not include 1), and thus DR/A cannot be simple. The converse is

not true; see, e.g., [LS89, p. 0.13.3].

Remark 2.3.5. When R =
⊕

Ri is a graded A-algebra, DR/A is naturally graded as

well: (DR/A)e consists of all differential operators δ ∈ DR/A such that δ(Ri) ⊂ Ri+e.

This simple observation is key in our study of D-simplicity: if R is a graded A-algebra

(not concentrated entirely in degree 0), and DR/A has no differential operators of

negative degree, then R+ :=
⊕

i>0Ri is a nonzero proper DR/A-submodule of R, and

thus R cannot be D-simple.
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The question we will consider in Chapter V is when a k-algebra R is D-simple. In

characteristic p, this has the following satisfying answer:

Theorem 2.3.6. [Smi95, Theorem 2.2] Let (R,m) be an F -pure local ring essentially

of finite type over an F -finite field k. Then R is D-simple if and only if it is strongly

F -regular.

Outside the context of characteristic p, much less is known. For example, if R is a

D-simple ring, then:

• If R is reduced then R must be a domain.

• R is Cohen–Macaulay [Van91, Theorem 6.2.5].

As mentioned in Remark 1.3.2, few examples of D-simple rings in characteristic 0 are

known, essentially all direct summands of regular rings.
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CHAPTER III

Triviality of Arc Closures and the Local

Isomorphism Problem

We give an answer in the “geometric” setting to a question of [FEI18] asking when

local isomorphisms of k-schemes can be detected on the associated maps of local arc

or jet schemes. In particular, we show that their ideal-closure operation a 7→ aac (the

arc-closure) on a local k-algebra (R,m, L) is trivial when R is Noetherian and k ↪→ L

is separable, and thus that such a germ SpecR has the (embedded) local isomorphism

property.

3.1 Introduction

Let k be any field. Given a k-scheme X, morphisms Spec k[t]/t`+1 → X (`-jets)

are parametrized by the `-jet schemes J`(X), and morphisms Spec k[[t]]→ X (arcs)

by the arc scheme J∞(X). The arc and jet schemes encapsulate a great deal of

information about X. They are central to the theory of motivic integration, which

allowed Kontsevich to show the birational invariance of the Hodge numbers of Calabi–

Yau varieties [Kon95] and since then has been applied to the study of various motivic

invariants (see, e.g., [DL99; Loo00]). In particular, this has led to connections between

singularities of the minimal model program and arc schemes (see [EM09b]). In a

somewhat different direction, they are related further to singularities through the

study of the Nash blow-up and Mather–Jacobian discrepancy (see [IR17; FD17b]).

There are morphisms ψ∞ : J∞(X)→ X and ψ` : J`(X)→ X, given by sending an

arc Spec k[[t]]→ X to the image of the closed point of Spec k[[t]] in X, and likewise

for `-jets. Given a point x of X, one defines J∞(X)x := ψ−1
∞ (x) and J`(X)x := ψ−1

` (x),

the arcs or `-jets based at x ∈ X. Given a morphism of k-schemes f : X → Y , we

obtain morphisms f` : J`(X)→ J`(Y ) and f∞ : J∞(X)→ J∞(Y ), defined on k-points
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by sending an arc Spec k[[t]]→ X on X to the arc Spec k[[t]]→ X → Y on Y ; these

restrict to morphisms f̄` : J`(X)x → J`(Y )f(x) and f̄∞ : J∞(X)x → J∞(Y )f(x).

In [FEI18], de Fernex, Ein, and Ishii considered the question of how much lo-

cal information about f is captured by the morphisms f̄` : J`(X)x → J`(Y )f(x) or

f̄∞ : J∞(X)x → J∞(Y )f(x). More precisely, they asked the following question:

Question 3.1.1 (Local isomorphism problem). If the morphisms f̄` : J`(X)x →
J`(Y )f(x) are isomorphisms for all ` (including ` =∞), is f an isomorphism at x, i.e.,

does f induce an isomorphism of local rings OY,f(x) → OX,x?

The question is local on X and Y , so we can restrict the setting to where X, Y

are spectra of local rings and x, y = f(x) are the closed points; we call such a pair

(X, x) a germ.

The article [FEI18] also considers the following variant (and shows that this is

equivalent to the original question when X is locally Noetherian):

Question 3.1.2 (Embedded local isomorphism problem). If we assume furthermore

that f is a closed embedding of germs, does the above question have a positive answer?

In order to understand the embedded version of the question, de Fernex, Ein, and

Ishii introduce the arc closure, which is a closure operation a 7→ aac on ideals of a local

k-algebra R defined using the jet schemes of SpecR. They then show that arc-closure

of the zero ideal (the equality (0) = (0)ac) for a ring R is equivalent to a positive answer

to the embedded local isomorphism problem for morphisms to (SpecR, Spec(R/m)).

They furthermore give an example of a (non-Noetherian) k-algebra R in which the zero

ideal is not arc-closed, and thus in which the embedded local isomorphism property

does not hold, suggesting that some restrictions on R are necessary to ensure a positive

answer.

In this chapter, we show that this closure operation is trivial for Noetherian local

k-algebras (R,m, L) for which k ↪→ L is separable, and thus that such germs have the

embedded local isomorphism property:

Theorem 3.1.3. If (R,m, L) is a Noetherian local k-algebra with residue field L,

k ↪→ L is separable, and a is a proper ideal of R, then aac = a.

In particular, this holds when char k = 0, when k is perfect, or when L = k, and

thus holds in the cases of primary geometric interest.

Corollary 3.1.4. Such germs have the embedded local isomorphism property.
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The strategy is relatively simple: We proceed by reducing first to showing that

aac = a for a an m-primary ideal, and then by induction on the length of R/a to the

case where R/a is a Gorenstein Artinian local k-algebra. At that point, we obtain an

inclusion of R′-modules R/a ↪→ R′ via the Matlis dual (not an inclusion of rings!) for

a suitable graded Gorenstein Artinian local k-algebra R′. This step uses the Cohen

structure theorem, and requires that R/a has a coefficient field L0
∼= L containing k,

which is where the assumption on separability of k ↪→ L comes in. This inclusion of

modules necessitates the introduction and analysis of an arc-closure operation defined

on submodules of modules; once a few elementary properties are shown, we use that

the arc-closedness of the zero ideal of R′, as shown in [FEI18, Theorem 5.8(a)], to

conclude that the zero ideal of R/a must be arc-closed as well.

The organization of the chapter is as follows: In Section 3.2 we recall our notation

for arc and jet schemes, and describe the local isomorphism problem, and in Section 3.3

we recall the definition of arc and jet closures and their basic properties from [FEI18].

In Section 3.4 we generalize the definition of arc and jet closures to closures of

submodules of modules and prove some elementary properties about these operations

under module maps and restrictions of scalars along a ring quotient. Section 3.5

contains the core of our proof, and Section 3.6 has a few observations on further

questions on the subject.

3.2 Arc and jet schemes

Recall that for any ` ∈ N∪ {∞} we have truncation maps ψ`,0 : J`(X)→ J0(X) =

X, which we denote simply by ψ`; on k-points, this just sends an arc Spec k[[t]]/t`+1 →
SpecX to

Spec k → Spec k[[t]]/t`+1 → X,

i.e., to the image of the closed point of Spec k[[t]]/t`+1. For a point x ∈ X, not

necessarily closed, we write J`(X)x for ψ−1
` (x), the fiber over x.

Given a morphism f : X → Y of k-schemes, for any morphism

T ×k Spec(k[[t]]/t`+1)→ X

we obtain a morphism

T ×k Spec(k[[t]]/t`+1)→ X → Y,
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and by functoriality we obtain morphisms f` : J`(X)→ J`(Y ) for all `. Furthermore, it

is clear that for x ∈ X these morphisms restrict to morphisms f̄` : J`(X)x → J`(Y )f(x).

We also recall fix some notation for the arc and jet schemes of an affine scheme

SpecR: Given a k-algebra R (not necessarily Noetherian or local), and ` ∈ N ∪ {∞},
we write R` for the coordinate ring of the jet scheme J`(SpecR). If ` <∞, for any

k-scheme T we have

Hom(T, SpecR`) = Hom(T ×k Spec(k[[t]]/t`+1), X).

For an ideal I of R we write I` for the ideal of R` generated by Di(f) for 0 ≤ i < `+1

and f ∈ I, where Di are the universal Hasse–Schmidt derivations R→ R`. (For a full

treatment of Hasse–Schmidt derivations, see [Voj13].)

Example 3.2.1. If R = k[x1, . . . , xn] then

R` = k
[
x

(j)
i : i = 1, . . . , n, 0 ≤ j ≤ `

]
;

one can think of a point (a
(j)
i ) of SpecR`

∼= An(`+1) as parametrizing the arc

Spec k[t]/t`+1 → An, t 7→
(∑

a
(i)
1 t

i, . . . ,
∑

a(i)
n t

i

)
.

The Hasse–Schmidt derivations can be defined by setting

Di(xj) = x
(i)
j

and extending via the Leibniz rule Dm(fg) =
∑

i+j=mDi(f)Dj(g), so, e.g., if we write

x = x1, y = x2, we have

D2(xy) = D2(x)D0(y) + 2D1(x)D1(y) +D0(x)D2(y) = x(2)y(0) + 2x(1)y(1) + x(0)y(2).

The projection maps ψ`,`′ for ` > `′ give ring maps R`′ → R`, and in particular an

inclusion R = R0 ↪→ R` for any `.

We now have the language to state the motivating questions of [FEI18]:

Question 3.2.2 (Local isomorphism problem). Given a map f : X → Y and x ∈ X,

if all the morphisms f̄` : J`(X)x → J`(Y )f(x) are isomorphisms (including ` = ∞),

is f a local isomorphism at x, i.e., does f induce an isomorphism of local rings

OY,f(x) → OX,x?
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Question 3.2.3 (Embedded local isomorphism problem). If we assume furthermore

that f is a closed embedding, does the above question have a positive answer?

As remarked previously, these questions are local on source and target of the

morphism, so we may assume X and Y are spectra of local rings with closed points

x, y respectively; we refer to such a pair (X, x) or (Y, y) as a germ; if (R,m) is a

local ring, we will refer simply to the germ SpecR when no confusion will occur. We

say a germ (Y, y) has the local isomorphism property (respectively, the embedded

local isomorphism property) if the local isomorphism problem (respectively, the

embedded local isomorphism problem) has an affirmative answer for all maps of germs

(X, x)→ (Y, y).

Remark 3.2.4. As noted in [FEI18, Proposition 2.6, Lemma 2.7], if Y has the

embedded local isomorphism property then the local isomorphism problem has an

affirmative answer for maps (X, x)→ (Y, y) with X Noetherian; thus, for most cases

of geometric interest it suffices to consider just the embedded form of the problem.

3.3 Arc and jet closures

Now, say (R,m) is a local k-algebra, and write mR` for the expansion of m ⊂ R to

R` under the ring map R → R`. The following definition is key to the reduction in

[FEI18] of the embedded local isomorphism problem to a ring-theoretic question:

Definition 3.3.1 ([FEI18]). For an ideal a of R and ` < ∞, define a`−jc, the `-jet

closure of a, as

a`−jc :=
(
f ∈ R : (f)` ⊂ a` + mR`

)
,

and for ` =∞, define the arc closure of a as

aac =
(
f ∈ R : (f)∞ ⊂ a∞ + mR∞

)
.

The ideal a`−jc is the largest ideal of R whose higher differentials define the same

closed subscheme in J`(SpecR)SpecR/m (the fiber over the closed point of R) as that

defined by the higher differentials of a.

Example 3.3.2. It is immediately seen that the a`−jc are nontrivial closure operations;

for example, by the Leibniz rule it is easily seen that if f ∈ m`+1 then D`(f) ∈ mR`,

so that a + m`+1 ⊂ a`−jc. For an example showing that this is in general a proper

inclusion, see [FEI18, Example 3.11].
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The following shows that we can compute these closures in the quotient ring R/a:

Lemma 3.3.3 ([FEI18, Lemma 3.2]). Let a ⊂ m. For all `, if π : R→ R/a, then

a`−jc = π−1((0R/a)
`−jc),

and similarly

aac = π−1((0R/a)
ac).

Thus it suffices to know how to compute the arc or `-jet closure of the zero

ideal, for which there is a nice interpretation in terms of the “universal” `-jet: the

identity morphism SpecR` → SpecR` corresponds to the “universal” `-jet (SpecR`)×k
Spec(k[t]/t`+1)→ SpecR, given by the ring map

µR : R→ R`[t]/t
`+1;

by composing with the quotient map

R`[t]/t
`+1 →

(
R`/mR`

)
[t]/t`+1,

we obtain a map

λ` : R→
(
R`/mR`

)
[t]/t`+1.

The following statement is now clear by definition:

Lemma 3.3.4 ([FEI18, Lemma 3.3]). (0R)`−jc = kerλ` and (0R)ac = kerλ∞.

Example 3.3.5. In the case R = k[x1, . . . , xn](x1,...,xn) the universal `-jet R →
R`[t]/t

`+1 sends

xi 7→ x
(0)
i + x

(1)
i t+ x

(2)
i t2 + · · ·+ x

(`)
i t

`.

The ideal mR` is just
(
x

(0)
i : i = 1, . . . , `

)
; note that this is not the expansion of m

under the universal `-jet.

The following result linking a`−jc and aac is key to our proof below:

Proposition 3.3.6 ([FEI18, Proposition 3.12]).
⋂
`≥0 a

`−jc = aac.

The geometric interpretation following Definition 3.3.1 makes clear the motivation

for this closure operation:

Proposition 3.3.7 ([FEI18, Proposition 5.1]). Let R be a local k-algebra. The germ

SpecR has the embedded local isomorphism property if and only if (0R)ac = 0.
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Proof. This is essentially by definition: a closed embedding X → SpecR corresponds

to a quotient R → R/a for some a ⊂ R; this is an isomorphism of schemes if and

only if a = 0, and it induces an isomorphism on the fibers of the jet schemes over the

closed point if and only if (a)∞ ⊂ mR∞ if and only if a ⊂ (0)ac.

Remark 3.3.8. It is observed in [FEI18] that the two preceding propositions imply

that it is redundant in the statement of the embedded local isomorphism problem to

ask for f̄` to be an isomorphism for all ` ∈ N ∪ {∞}: f̄∞ is an isomorphism if and

only if f̄` is an isomorphism for all finite `.

Remark 3.3.9. In the non-Noetherian setting, Proposition 5.4 of [FEI18] provides

an example of an ideal a inside a power series ring in infinitely many variables such

that aac 6= a; this is proved via the observation that a`−jc ⊃ a + m`+1, and then giving

an explicit element contained in a + m`+1 for all `.

We remark here that this situation may in some sense be typical, at least for

certain classes of non-Noetherian rings: if (R,m) is a non-Noetherian valuation ring,

then one has m = m2 = . . . (see, for example, [HS06, Exercise 6.29]). Thus, for any

ideal a ⊂ m, including the zero ideal, we have a + m` = m for all `, and thus aac = m.

The last result we need from [FEI18] is that says that a graded k-algebra has

arc-closed zero ideal; we will write R[i] for the i-th graded piece of a graded ring R to

avoid confusion with the jet schemes R`.

Theorem 3.3.10 ([FEI18, Theorem 5.8(a)]). Let (R,m) be a local k-algebra with

N-grading such that m =
⊕

i≥1R[i]. Then the zero ideal of R is arc-closed.

Remark 3.3.11. The hypotheses do not demand that k be all of R[0] (which is the

residue field of R); this is important in our application later.

We recall their proof here for ease of reference:

Proof. We construct an explicit arc using the data of the grading: define an arc

ρ : R → R[[t]] by sending a homogeneous element f ∈ R[i] to fti. It is immediate

that ρ is injective. By universality of the arc R→ R∞[[t]] we get a map ϕ : R∞ → R,

inducing a map ϕ̃ : R∞[[t]]→ R[[t]] making the following diagram commute:

R∞[[t]]

R R[[t]]

ϕ̃

ρ

µR
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Now, observe that for f ∈ m we have

ρ(f) = ϕ̃(µR(f)) = ϕ̃
(
d0(f) + d1(f)t+ · · ·

)
= ϕ(d0(f)) + ϕ(d1(f))t+ · · · .

Since ρ(f) ∈ tR[[t]], however, we must have that ϕ(d0(f)) = 0 for all f ∈ m, and thus

ϕ̃ factors through R∞/mR∞[[t]], yielding a commutative diagram

R∞[[t]] (R∞/mR∞)[[t]]

R R[[t]]

ϕ̃

ρ

µR

Thus, we must have that the composite map λR : R → R∞[[t]]→ (R∞/mR∞)[[t]] is

injective since ρ is, and so (0)ac = 0.

We also require the following persistence statement:

Lemma 3.3.12. Arc closures of ideals are persistent under local ring homomorphisms;

that is, if (R,m) and (S, n) are local rings and ϕ : R→ S a local homomorphism, and

a ⊂ R, then ϕ(aac) ⊂ (ϕ(a)S)ac.

Proof. First, note that we have a commutative diagram

R S

R/a S/aS

ϕ

π π′

ϕ̃

By Lemma 3.3.3, elements r ∈ aac are precisely the elements of R such that π(r) lies

in the arc-closure of (0) in R/a; thus if we can show persistence for the map ϕ̃ we

have that π′(ϕ(r)) = ϕ̃(π(r)) lies in the arc closure of 0 in S/aS, and thus applying

Lemma 3.3.3 again we have ϕ(r) ∈ (ϕ(a)S)ac. Thus, we may assume that a = (0).

We have an (S∞/nS∞)-arc from R, i.e., the map R → S → (S∞/nS∞)[[t]]; by

universality of the arc R→ R∞[[t]] this induces a ring map R∞ → S∞/nS∞. Since ϕ

is local, this descends to a ring map R∞/mR∞ → S∞/nS∞, and thus we have a ring

map

(R∞/mR∞)[[t]]→ (S∞/nS∞)[[t]],
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fitting into the commutative diagram

R S

(R∞/mR∞)[[t]] (S∞/nS∞)[[t]]

λR

ϕ

λS

Commutativity of this diagram then implies immediately that since (0R)ac = kerλR,

we have λS
(
ϕ((0R)ac)

)
= 0, so that ϕ((0R)ac) ⊂ (0S)ac, yielding the result.

3.4 Arc closures of submodules

The key to our proof is to introduce the notion of arc-closure of an R-module:

Definition 3.4.1. For an R-module M , define

(0M)ac = ker

(
M

1M⊗λ∞−−−−−−→M ⊗R
(
R∞/mR∞

)
[[t]]

)
.

For a submodule N ⊂M , define (N)ac
M = π−1

N

(
(0M/N)ac

)
, where πN : M →M/N .

Lemma 3.4.2. Arc closures of R-submodules are persistent under R-linear maps;

that is, if N ⊂ M is a submodule and ϕ : M → M ′ is an R-module map, then

ϕ((N)ac
M) ⊂ (ϕ(N))ac

M ′.

Proof. Considering the commutative diagram

M M ′

M/N M ′/ϕ(N)

ϕ

π π′

ϕ̄

we see that m ∈ (N)ac
M exactly when π(m) ∈ (0)ac

M/N , and thus it suffices to show

persistence under ϕ̄ to obtain it for ϕ, i.e., it suffices to show persistence of arc closure

of the zero submodule.

In this case, we have a commutative diagram

M M ′

M ⊗
(
R∞/mR∞

)
[t]/t`+1 M ′ ⊗

(
R∞/mR∞

)
[t]/t`+1

ϕ
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Note that m ∈M lies in the arc closure of 0 exactly when it is in the kernel of the left

vertical map; when this occurs, commutativity of the diagram immediately implies

that ϕ(m) is in the kernel of the right vertical map, so that ϕ(m) ∈ (0)ac
M ′ .

We also need a comparison for closures as R-modules versus R/I-modules:

Lemma 3.4.3. Let R be a local ring and I an ideal. Let M be an R/I-module,

N ⊂M an R/I-submodule. Then

(N)ac
M ⊂ (RN)ac

RM
,

where the right side is the closure of N viewed as an R-submodule of the R-module M .

In fact, we will need this result only for the arc closure of 0 in R/I itself, but we

present the proof in the general case:

Proof. It suffices to show this for N = 0, since the quotient map M → M/N is the

same whether viewed as an R-module map or an R/I-module map. Writing

λR : R→ (R∞/mR∞)[[t]],

λR/I : R/I → ((R/I)∞/m(R/I)∞)[[t]],

we have a commutative diagram of ring maps

R/I ⊗R (R∞/mR∞)[[t]]

R/I ((R/I)∞/m(R/I)∞)[[t]]

idR/I ⊗RλR

λR/I

where the right vertical side is induced by the universality of the arc λR/I . Tensoring

over R with M , we obtain

M⊗RR/I⊗R (R∞/mR∞)[[t]] M⊗R (R∞/mR∞)[[t]]

M M⊗R ((R/I)∞/m(R/I)∞)[[t]] M⊗R/I ((R/I)∞/m(R/I)∞)[[t]]

idM ⊗RλR

idM ⊗RλR/I

Thus we see that since

idM ⊗R λR : M →M ⊗R (R∞/mR∞)[[t]]
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factors through

idM ⊗R λR/I = idM ⊗R/I λR/I : M →M ⊗R/I ((R/I)∞/m(R/I)∞)[[t]],

we must have that

ker
(
idM ⊗R/I λR/I

)︸ ︷︷ ︸
(N)acM

⊂ ker
(
idM ⊗R λR

)︸ ︷︷ ︸
(RN)ac

RM

,

yielding the result.

3.5 The main result

Given a local k-algebra (R,m, L) with residue field L, we say L is separable over

k to mean that the field extension k ⊂ R → R/m ∼= L is separable (not necessarily

algebraic).

Theorem 3.5.1. Let (R,m) be a Noetherian local k-algebra with residue field L

separable over k, and a a proper ideal of R. Then aac = a.

As stated in Section 3.1, the condition on separability of k ↪→ L is just to ensure

that for a complete local k-algebra with residue field L we may choose a coefficient

field containing k; this is sufficient but not necessary, as can be seen by taking L to be

an inseparable extension of k and setting R = L[[x]]; k ⊂ L is inseparable, but clearly

R has a coefficient field containing k.

We note that the assumption on k ↪→ L is satisfied in particular when k has

characteristic 0 or is perfect of positive characteristic, or when k = L, and thus in the

primary case of geometric interest for the embedded local isomorphism question.

Proof of Theorem 3.5.1. The first step is to reduce to the case where a is m-primary:

Lemma 3.5.2. Let (R,m) be a local k-algebra. Then

a`−jc =
⋂
n

(a + mn)`−jc

for any `, and thus

aac =
⋂
n

(a + mn)ac.

Proof. The second statement follows from the first due to the equality
⋂
` a

`−jc = aac
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(see Proposition 3.3.6), since then⋂
n

(a + mn)ac =
⋂
n

⋂
`

(a + mn)`−jc =
⋂
`

⋂
n

(a + mn)`−jc =
⋂
`

a`−jc = aac.

Fix `. Clearly a`−jc ⊂ (a + mn)`−jc for all n by monotonicity of the closure operation.

To see the other inclusion, note (a + mn)`−jc = a`−jc + (mn)`−jc. For n > l, though,

the Leibniz rule says that (mn)`−jc ⊂ mRn, so that

a`−jc + mR` = (a + mn)`−jc + mR`.

Thus a`−jc = (a + mn)`−jc for n > `, and the result follows.

In the Noetherian case, then, to see that aac = a it suffices to show that (a+mn)ac =

a + mn, since then

aac =
⋂
n

(a + mn)ac =
⋂
n

a + mn = a,

where the last equality follows by Krull’s intersection theorem. Equivalently by

Lemma 3.3.3, we must show that the zero ideal is closed in any Artinian local k-

algebra. By induction, we may reduce further to the case of a Gorenstein Artinian

local k-algebra:

Lemma 3.5.3. If (0R)ac = 0R for any Gorenstein Artinian local k-algebra R, the

same is true for any Artinian local k-algebra.

Proof. We induct on length(R). Say f ∈ (0R)ac.

Case 1: Say there is g ∈ SocR with f /∈ (g) = L · g, and consider the map π : R →
R/(g). Then by persistence of arc-closure under ring maps (Lemma 3.3.12) we

have that π
(
(0R)ac

)
⊂ (0R/(g))

ac; since g ∈ SocR, though, we have length(R/(g)) =

length(R)− 1, and thus by induction we know (0R/(g))
ac = 0R/(g). But then π(f) = 0,

so f ∈ (g), contradicting our assumption, and thus (0R)ac = 0.

Case 2: There is no such g ∈ SocR, in which case we must have that f itself generates

the socle of R, and thus R must be Gorenstein. In this case though f = 0, by the

assumption of the lemma.

We are thus reduced to showing the zero ideal is arc-closed in a Gorenstein Artinian

local k-algebra R with residue field L (since taking the quotient by an m-primary

ideal did not change the residue field).

By our assumption that k ↪→ L is separable and R is an Artinian (hence complete)

k-algebra with residue field L, there is a coefficient field L0
∼= L contained in R
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containing k (see [Mat89, Theorem 28.3]). By the Cohen structure theorem, such a

ring R can be written as the quotient of S = L0[[x1, . . . , xn]] by an (x1, . . . , xn)-primary

ideal I ⊂ S, and the k-algebra structure on R is the same as the k-algebra structure

on this quotient induced by the inclusion k ↪→ L0. From now on, we omit the subscript

on L0 and simply write L.

Since I is (x1, . . . , xn)-primary, there exists N such that mN := (xN1 , . . . , x
N
n ) ⊂

I. Taking the surjection S/mN → S/I and applying the Matlis duality functor

HomS(−, ES(L)), where ES(L) is the injective hull of the residue field of S, we obtain

an inclusion

HomS(S/I, ES(L))︸ ︷︷ ︸
ES/I(L)

↪→ HomS(S/mN , ES(L))︸ ︷︷ ︸
ES/mN (L)

.

Now, since S/I is assumed to be Gorenstein we have that ES/I(L) is isomorphic as

an S-module to S/I; likewise for the complete intersection S/mN
∼= ES/mN (L), so we

have an inclusion of S-modules

S/I ↪→ S/mN ;

note that this is in fact an inclusion of S/mN -modules. Since S/mN is a graded local

k-algebra, Theorem 5.8(a) of [FEI18] (appearing above as Theorem 3.3.10) implies

that the zero ideal, viewed as a S/mN -submodule is arc-closed. But via our comparison

lemma (Lemma 3.4.3) we have that the arc-closure of (0S/I) as an S/I-module is

contained in the arc-closure of (0S/I) as an S/mN -module under the restriction of

scalars along S/(xN1 , . . . , x
M
n ) → S/I. Thus it suffices to show that this latter arc-

closure is the zero ideal; persistence of arc closure for the inclusion of S/mN -modules

S/I ↪→ S/mN gives

(0S/I)
ac ⊂

(
0S/mN

)ac
= 0

(with both sides taken as S/mN -modules) and thus 0ac
S/I = 0.

Corollary 3.5.4. Noetherian germs over perfect fields have the embedded local iso-

morphism property; likewise for local k-algebras with residue field k.

3.6 Further questions

Despite the triviality of the arc-closures of ideals in this case, there are related

questions:

Remark 3.6.1. There is another family of jet-theoretic closure operations appearing
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in [FEI18], the jet support closures, defined in terms of the reduced structure of the

jet schemes. Explicitly, one can define a “reduced” universal `-jet or arc via

λ̄` : R→ (R`/mR`)[t]/t
`+1 → (R`/mR`)red[t]/t`+1

or

λ̄∞ : R→ (R∞/mR∞)red[[t]].

One then defines (0)`−jsc = ker λ̄`, (0)jsc =
⋂

ker λ̄`, and (0)asc = ker λ̄∞; one can then

set a`−jsc = π−1((0R/a)
jsc) and likewise for ajsc and aasc. For any ideal a there are

inclusions

aac ⊂ ajsc ⊂ aasc

and

ajsc ⊂ ā,

where ā is the integral closure of a. It is shown in [FEI18] that ā = ajsc for ideals

inside a regular ring R, but that in a nonregular ring (even for a complete intersection)

we may have ajsc ( ā.

In contrast to the case for arc-closures, we note the inclusion ajsc ⊂ aasc can in fact

be proper: for example, if R = k[x]/x2, then one can check explicitly that

R∞/mR∞ = k[x1, x2, . . . ]/(x
2
1, 2x1x2, 2x1x3 + 2x2

2, . . . ),

and the quotient by the nilradical is just k. Thus, the kernel of R→ (R∞/mR∞)[[t]]

is the maximal ideal (x), i.e., (0)asc = (x). In contrast, one can check that x /∈ (0)`−jsc

for any `, and thus (0)jsc ( (x) = (0)asc.

This suggests that ajsc may still be an interesting (and definitely nontrivial) closure

operation in the Noetherian case, and provide a geometrically-motivated closure

operation tighter than the integral closure in a nonregular ring.

Remark 3.6.2. In this chapter, we introduced arc-closures of submodules to show

that arc-closures of ideals are trivial, but it is possible such arc-closures of submodules

are nontrivial and interesting. In particular, base-change ΩR/k 7→ ΩR/k ⊗R R∞[[t]]

along the universal arc is used in [FD17a] as part of the description of the Kähler

differentials of the arc scheme; thus, examination of the map M →M ⊗R R∞[[t]] may

have an interpretation in similar contexts.

Remark 3.6.3. For any Artinian k-algebra A, there is a scheme of A-jets JA(X),

which represents the functor T 7→ Hom(T ×k A,X) on k-schemes. Given a k-algebra
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R, JA(SpecR) will be affine, say SpecRA; functoriality then gives a universal A-jet

λA : R → RA ⊗k A → RA/mRA ⊗k A. For more on this construction, see [Mus14].

Given a complete local ring (C,m), we can consider a family of Artinian rings {Aλ}
given by quotients of C by various m-primary ideals {Iλ}; one can then consider

the ideal
⋂

kerλA of R, thought of as the {Aλ}-jet closure of (0R), and ask if for

some suitably chosen C and family of quotients Aλ we obtain an interesting closure

operation in this way.
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CHAPTER IV

Minimal Log Discrepancies of Determinantal

Varieties via Jet Schemes

We compute the minimal log discrepancies of determinantal varieties of square

matrices, and more generally of pairs
(
Dk,

∑
αiD

ki
)

consisting of a determinantal

variety (of square matrices) and an R-linear sum of determinantal subvarieties. Our

result implies the semicontinuity conjecture for minimal log discrepancies of such

pairs. For these computations, we use the description of minimal log discrepancies

via codimensions of cylinders in the space of jets; this necessitates the computations

of an explicit generator for the canonical differential forms and the Nash ideal of

determinantal varieties, which may be of independent interest.

4.1 Introduction

Let X be a normal Q-Gorenstein complex algebraic variety and Y =
∑
qiYi a formal

R-linear sum of subvarieties Yi ⊂ X. The minimal log discrepancy mld(W ;X, Y ) is

a measure of the singularities of the pair (X, Y ) along a subvariety W ⊂ X, and its

behavior, although subtle, is quite important for the minimal model program. In

particular, one expects mld(x;X, Y ) to be a lower-semicontinuous function of x ∈ X.

Semicontinuity is not known in general, but has been shown in the following

situations:

• For varieties of dimension at most 3 and toric varieties of arbitrary dimension

[Amb99].

• If the ambient variety is smooth or lci [EM04; EMY03].

• If X has only quotient singularities [Nak16].
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The latter two results were both proved using jet schemes, and as far as we know no

proofs are known which avoid the use of jet schemes.

In this chapter, we use jet schemes to compute minimal log discrepancies on

determinantal varieties of square matrices, which fall outside the aforementioned cases

(see the beginning of Section 4.2). Let Dk ⊂ Am2
be the locus of m×m-matrices of

rank ≤ k. We obtain the following description of the minimal log discrepancies of Dk:

Theorem 4.1.1. If w ∈ Dk is a matrix of rank exactly q ≤ k, then

mld(w;Dk) = q(m− k) + km.

Moreover, we have

mld(Dk−1;Dk) = m− k + 1.

Note that this recovers the fact that Dk ⊂ Am2
has terminal singularities for any

k ≤ m.

Remark 4.1.2. We restrict our attention to the case of square matrices because it is

the only setting in which Dk is Q-Gorenstein (see Section 4.2).

More generally, we consider pairs of the form
(
Dk,

∑k
i=1 αiD

k−i) for αi ∈ R
(possibly zero). We compute when these pairs are log canonical, and moreover

compute their minimal log discrepancies:

Theorem 4.1.3. Consider the pair
(
Dk,

∑k
i=1 αiD

k−i
)

(where the αi may be zero).

(1)
(
Dk,

∑k
i=1 αiD

k−i
)

is log canonical at a matrix xq of rank q ≤ k exactly when

α1 + · · ·+ αj ≤ m− k + (2j − 1)

for all j = 1, . . . , k − q.

(2) In this case,

mld

(
xq;D

k,

k∑
i=1

αiD
k−i
)

= q(m− k) + km−
k−q∑
i=1

(k − q − i+ 1)αi.

(3)
(
Dk,

∑k
i=1 αiD

k−i
)

is log canonical along Dk−j (for j > 0) exactly when

α1 + · · ·+ αj ≤ m− k + (2j − 1)

for all j = 1, . . . , k.
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(4) In this case,

mld

(
Dk−j;Dk,

k∑
i=1

αiD
k−i
)

= j(m− k + j)−
j∑
i=1

(j − i+ 1)αi

This immediately implies semicontinuity of the minimal log discrepancy for such

pairs (when the coefficients are nonnegative):

Corollary 4.1.4 (Semicontinuity). If α1, . . . , αk are nonnegative real numbers, the

function w 7→ mld
(
w;Dk,

∑k
i=1 αiD

k−i) is lower-semicontinuous on closed points.

Our work is by no means the first application of jet schemes to the calculation of

invariants of determinantal varieties: Docampo [Doc13] uses jet schemes to compute

the log canonical threshold of pairs (Am2
, Dk), the irreducible components of the

truncated jet schemes Dk
` , and the topological zeta function of the Dk. Our application

of jet schemes to the minimal log discrepancies of the determinantal varieties draws

heavily from his methods there. Similarly, Johnson [Joh03] used explicit resolutions

of singularities to calculate the multiplier ideals and log canonical thresholds of

determinantal ideals in the ambient space Amn.

To calculate these minimal log discrepancies, we use the characterization of [EM09a]

of minimal log discrepancies in terms of codimensions of various “multicontact” loci

in the space of jets. To apply this characterization we need two main ingredients:

• Our computation of the Nash ideal of Dk (up to integral closure).

• Our calculation of the codimension of the J∞(GLm×GLm)-orbits in the jet

scheme J∞(Dk).

The decomposition of the arc scheme J∞(Dk) into orbits of the natural group

action of J∞(GLm×GLm) is due to [Doc13], and our calculation of the codimension

of these orbits in J∞(Dk) is inspired by the methods of his chapter.

This chapter is organized as follows: We review some basic properties of determi-

nantal rings in Section 4.2, as well as the straightening law on a determinantal ring. In

Section 4.3 we describe the Nash ideal of a determinantal ring, and in Section 4.4 we

actually compute minimal log discrepancies and prove the consequences noted above.

4.2 Determinantal rings

In this section we work over a field K of arbitrary characteristic. Let X = (xij) be

an m × n matrix of indeterminates, and let R := K[xij] be the polynomial ring on
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these indeterminates. For k = 1, . . . ,min(m,n) we define the k-th determinantal ideal

Ik to be the ideal generated by all k × k minors of (xij). We write Rk = R/Ik+1 for

the corresponding quotient ring (note the difference in index here), so that Rk is the

coordinate ring of the m× n matrices of rank ≤ k; we write Dk for SpecRk. In what

follows we will assume k > 0, since D0 is just a point.

We record here some of the known properties of Rk:

• Rk has dimension k(m+n−k), and thus Ik+1 has codimension mn−k(m+n−k).

• [HE71] Rk is normal. In fact, Ik+1 is a prime ideal, and thus Rk is a Cohen–

Macaulay domain.

• [BV88, Section 8] Rk is Gorenstein if and only if either m = n or k = min(m,n)

(note that in this last case Rk = K); Rk is Q-Gorenstein if and only if it is

Gorenstein.

• Rk is lci only when k = 0 or k = min(m,n): this follows easily by comparing

the codimension of Ik+1 and the number of (k + 1)× (k + 1) minors (which are

homogeneous and thus by linear independence form a minimal generating set

for Ik+1).

• The singular locus of SpecRk is defined by Ik.

Since the (usual) notions of log discrepancies are specific to the Q-Gorenstein case,

after this section we will assume that m = n, i.e., we work with square matrices only.

4.2.1 The straightening law and an elementary consequence

We recall the straightening law on R = K[xij ] and Rk = K[xij ]/Ik+1 from [CEP80],

and then use it to prove an elementary proposition we will make use of later. This

material will be used only for the calculation of the Nash ideal in Section 4.3.

Definition 4.2.1. A Young diagram σ corresponds to a nonincreasing sequence of

integers (σ1, . . . , σt), and should be visualized as a set of left-justified rows of boxes of

lengths σ1, σ2, . . . . We consider only Young diagrams with σ1 ≤ m. A Young tableaux

T is a filling of a Young diagram σ with the integers {1, . . . ,m}. We write |T | = σ to

indicate the underlying diagram has shape σ. The filling is standard if the filling is

nondecreasing column-wise and strictly increasing row-wise. The content of a tableaux

T is the function {1, . . . ,m} → N taking a number n to the number of times n appears

60



in T . A double tableaux (S|T ) is a pair of Young tableaux with |S| = |T |; we say

(S|T ) is standard if and only if S and T are both standard.

We partially order Young diagrams via the dominance order : σ ≤ τ if and only if

j∑
i=1

σi ≤
j∑
i=1

τi

for all j.

We partially order Young tableaux as follows: given tableaux T, T ′ we say T ≤ T ′

when for any p, q the first p rows of T contain fewer integers ≤ q than the first p rows

of T ′. By [CEP80, Lemma 1.5], this refines the ordering on Young diagrams. We

partially order the double tableaux by saying that (S|T ) ≤ (S ′|T ′) when S ≤ T and

S ′ ≤ T ′.

To a double tableaux (S|T ) with the rows of S and T having no repeated entries,

we can associate a monomial in the minors of (xij) as follows: for each row of S and

T , say of length e, we view the entries in that row as the row and column indices

specifying an e× e minor of (xij). We then multiply the resulting minor from each

row to obtain a monomial in the minors, which we will write x(S|T ) (this notation is

nonstandard). When we write x(S|T ), we will implicitly assume that S and T have no

repeated entries in any row. We will refer to x(S|T ) as a double tableaux, but note that

the same monomial can arise from different double tableaux (i.e., any permutation of

the rows gives the same monomial).

Example 4.2.2. Say m = 3. The double tableaux

(S|T ) =

213

23

1

1 2 3

1 2

2

corresponds to the monomial

x(S|T ) = det

(
x11 x12 x13
x21 x22 x23
x31 x32 x33

)
· (x21x32 − x22x31) · x12.

We will make use of the following straightening law ; for context and a proof see

[CEP80, Section 2]:

Theorem 4.2.3 (Straightening law). If x(S|T ) is a double tableaux we can write

x(S|T ) =
∑

nix(Si|Ti)
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with each (Si|Ti) standard, ni ∈ Z, Si ≥ S, Ti ≥ T , and with the content of each

(Si|Ti) equal to that of (S|T ). Moreover, the double standard tableaux form a free

K-basis for R = K[xij].

It is then a standard corollary (see, e.g., [Bae06, Proposition 1.0.2]) that Rk also

has a straightening law, induced by the one on R. We will abuse notation and write

x(S|T ) for the image in Rk of the monomial x(S|T ) ∈ R; note that given a nonzero

monomial x(S|T ) ∈ R, we have x(S|T ) 6= 0 in Rk exactly when no row of |S| = |T | is of

length > k. We say the image of x(S|T ) in Rk is standard if (S|T ) is.

Corollary 4.2.4. If x(S|T ) is a nonzero double tableaux in Rk (so no row of |S| = |T |
has length > j) we can write

x(S|T ) =
∑

nix(Si|Ti)

with each (Si|Ti) standard, ni ∈ Z, Si ≥ S, Ti ≥ T , and with the content of each (Si|Ti)
equal to that of (S|T ), and with no row of any |Si| = |Ti| of length > k. Moreover, the

double standard tableaux with no row of length > k form a free K-basis for R = K[xij ].

We now establish an elementary consequence of the straightening law on Rk, which

we will need for our calculation of the Nash ideal in Section 4.3. We write Sk ⊂ Rk for

the K-subalgebra generated by images of the k × k minors, and give Sk the grading

induced by Rk (so Sk is generated in degree k). Let ∆ ∈ Sk ⊂ Rk be the image of the

k × k minor arising as the determinant of the first k rows and first k columns.

Proposition 4.2.5. If F is a homogeneous element of Rk with ∆ · F ∈ Sk, then

F ∈ Sk.

We’ll set G := ∆ ·F . Since G ∈ Sk, we have that k | degG. Say degG = k(d0 + 1)

for some d0; note that degF = kd0 then.

We prove the following lemma first:

Lemma 4.2.6. Let G ∈ Sk be of degree k(d0 + 1). If we expand G in the standard

basis on Rk, say G =
∑
λix(Si|Ti), then each (Si|Ti) has shape (k, . . . , k) (with d0 + 1

entries).

Proof. By assumption, G ∈ Sk is a K-linear sum of monomials of shape

(k, k, . . . , k)︸ ︷︷ ︸
d0+1

,
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that is, corresponding to (double) Young diagrams of shape︸ ︷︷ ︸
k

d0 + 1

It thus suffices to show the result for such monomials. The only issue is that they may

not be standard monomials. If some monomial x(S|T ) is not standard, we apply the

straightening law (in Rk) to write

x(S|T ) =
∑
±x(Sj |Tj),

with (Sj|Tj) ≥ (S|T ) having the same content (and thus the same degree). Let σ = |S|,
σj = |Sj|. Note that for σj to dominate σ, it would have to have at least k entries in

each row; however, if it had k + 1 entries in any row it would be zero in Rk, and thus

we must instead have σj = σ.

Proof of Proposition 4.2.5. Expand F in the basis of standard monomials, say F =∑
λi x(Ui|Vi) with µi ∈ K, x(Ui|Vi) standard of degree k with no row of any |Vi| of length

> k. The key observation is that each product of monomials

∆ · x(Ui|Vi)

occurring in ∆ · F will again be standard. We take the standard-basis expansion of G,

say G =
∑
µi x(Ui|Vi), as well, obtaining∑

λi ∆ · x(Ui|Vi) = ∆ · F = G =
∑

µi x(Si|Ti).

Since by our preceding lemma the right side has all monomial terms of shape |Si| =
(k, . . . , k), the same must be true for the left side as well, i.e., each ∆ · x(Ui|Vi) is of

shape (k, . . . , k) (with d0 + 1 entries). But this implies immediately that x(Ui|Vi) is of

shape (k, . . . , k) (with d0 entries) as well, and thus F is a degree-d0 monomial in the

k × k minors.
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4.2.2 J∞(GLm×GLm)-orbits action on the jet spaces J∞(Dk)

For now, we specialize to the case where charK = 0. We briefly recall here from

[Doc13] the induced action of GLm×GLm on the jet spaces of determinantal varieties.

Recall from Remark 2.2.7 that if an algebraic group G acts on a variety X, there

is an induced action of the algebraic group J`(G) on J`(X), and likewise J∞(G) on

J∞(X). One can think of jets on Am2
as m×m-matrices of power series, and jets on

Dk as m×m-matrices of power series whose (k + 1)× (k + 1) minors are zero, and

the action of J∞(G) on J∞(Dk) is again by conjugation.

For the rest of the paper, we set G := GLm×GLm. For each k, G acts on Dk by

conjugation, so there is an induced action of J∞(G) on J∞(Dk) and J`(G) on J`(D
k)

for all ` = 1, . . . ,∞. We need one notion before we continue:

Definition 4.2.7. An extended partition λ = (λ1, . . . , λm) of length m is a nonin-

creasing m-tuple of elements of N ∪ {∞}.

The following gives an explicit description of the J∞(G)-orbits of Dm
∞, and of those

which lie in J∞(Dk):

Theorem 4.2.8 ([Doc13, Proposition 3.2]). J∞(G)-orbits in Dm
∞ are in bijective

correspondence with extended partitions of length m, under the correspondence sending

λ = (λ1, . . . , λm) to the J∞(G)-orbit Cλ of the jet corresponding to the diagonal matrix

δλ :=


tλ1

tλ2

. . .

tλm

 .

An orbit Cλ is contained in J∞(Dk) if and only if λ1 = · · · = λm−k = ∞, and

has finite codimension in J∞(Dk) if and only if λm−k+1 < ∞. More generally,

ordδλ(Ik) = λm−k+1 + · · ·+ λm.

Remark 4.2.9. For any ` ∈ N and any extended partition λ = (λ1, . . . , λm) we write

λ̄` = (λ̄1,`, . . . , λ̄m,`) for the partition defined by λ̄i,` = min(`, λi). We write δλ̄,` for

the `-jet corresponding to the matrix
tλ̄1

. . .

tλ̄m


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and Cλ̄,` for its orbit under the natural J`(GLm×GLm)-action. Note that compatibility

of the truncation maps ψ∞,` with the group action implies that ψ∞,`(Cλ) = Cλ̄,`.

4.3 The Nash ideal of a determinantal ring

For this section, there is no restriction on charK. To apply Theorem 2.2.16 to

the determinantal variety Dk we need to know J(Dk), its Nash ideal; actually, by

Lemma 2.2.17 it suffices to know J(Dk) only up to integral closure. In this section,

we show the following:

Theorem 4.3.1. J(Dk) has the same integral closure in Rk as Im−kk .

In fact, we suspect that the equality J(Dk) = Im−kk holds: we show below that

J(Dk) ⊂ Im−kk , and the need to pass to integral closures would be avoided if one can

show that this is an equality. It might be possible to prove this combinatorially by

extending our approach below.

We begin by analyzing the relations on ΩDk :

Proposition 4.3.2. If ∆ = ∆A,B is a (k + 1)× (k + 1) minor, corresponding to a set

A of k + 1 rows and a set B of k + 1 columns, then the image of ∆ under the map

d : k[xij]→ ΩAm2

is ∑
(i,j)∈A×B

sgn(i, j) ·∆Ar{i},Br{j} dxij,

where sgn(i, j) is 1 if the entry (i, j) lies on the first, third, etc. antidiagonal of the

submatrix formed by the entries in the rows A and columns B, and is −1 if it lies on

the second, fourth, etc. antidiagonal.

Proof. Without loss of generality we may assume A = B = {1, . . . , k + 1}, so

∆ = det


x1,1 · · · x1,k+1

...
. . .

...

xk+1,1 · · · xk+1,k+1

 .

If we take the cofactor expansion along the top row, we get

∆ = x1,1∆[2,...,k+1|2,...,k+1] − x1,2∆[2,...,k+1|1,3,...,k+1 + · · ·+ (−1)k+1x1,k+1∆[2,...,k+1|1,...,k],
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where we write ∆[i1,...,ik|j1,...,jk] for the minor corresponding to rows i1, . . . , ik and

columns j1, . . . , jk. Now, applying d, we see that we get

d∆ = dx1,1 ·∆[2,...,k+1|2,...,k+1] + · · ·+ (−1)k+1dx1,k+1 ·∆[2,...,k+1|1,...,k].

+x1,1 · d∆[2,...,k+1|2,...,k+1] − · · ·+ (−1)k+1x1,k+1 · d∆[2,...,k+1|1,...,k].

Note that none of the k × k minors appearing on the right side of the above formula

involve x1,1, so the only term where dx1,1 can appear is in the term

dx1,1 ·∆[2,...,k+1|2,...,k+1].

The same reasoning applies to the other dx1,j, which then have coefficients

(−1)j+1∆[2,...,k+1|1,...,j−1,j+1,...,k+1].

Moreover, our choice of the top row to expand upon was arbitrary; repeating the

same analysis for another row, we find the desired expression for the coefficients of

the dxij.

The smooth locus of Dk is covered by the open sets D(∆IJ) where a k × k minor

∆IJ does not vanish. In fact, as is well-known, if we invert ∆IJ , we can use the cofactor

expansion of a (k + 1)× (k + 1) minor involving ∆IJ to eliminate the variables not

occurring in the same row or column of ∆IJ , obtaining that D(∆IJ) ∼= Ak(2m−k); thus

certainly each D(∆IJ) is contained in the smooth locus. Conversely, it is well-known

that Dk
sing = Dk−1 = V (Ik) (see e.g., [BV88, Theorem 6.10]). We write SIJ for the

set {xij : i ∈ I or j ∈ J} of the k(2m − k) variables occurring in the same row or

column as ∆IJ . The variables occurring in the gray region in the following diagram

are exactly those contained in SIJ (where the darker region denotes the minor ∆IJ

itself): 
∆IJ

eliminate

these vari-

ables


Thus, the variables in SIJ give coordinates on D(∆IJ) ∼= Ak(2m−k), and thus on
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each D(∆IJ) we have that

(∧k(2m−k)
ΩDk

)
|D(∆IJ )

∼= OD(∆IJ ) ·
〈 ∧
xij∈SIJ

dxij

〉
.

(When we write the exterior product over some set of variables, if we do not specify

we will implicitly mean that we consider the variables in lexicographic ordering on

{1, . . . ,m} × {1, . . . ,m}, i.e., from left to right over those appearing in the first row,

then in the second, and so on.)

Thus, to give a k(2m − k)-form on the smooth locus of Dk (that is, a global

canonical differential form), it suffices to define it on each D(∆IJ) and demonstrate

the compatibility of these definitions:

Proposition 4.3.3. The rational k(2m− k)-form defined on D(∆[1,...,k|1,...,k]) by

1

∆m−k
[1,...,k|1,...,k]

∧
xij∈S[1,...,k|1,...,k]

dxij

extends to a global canonical differential form w ∈ H0(Dk, ωDk) = H0(Dk, i∗ωDksm),

whose restriction to each D(∆IJ) is

w|D(∆IJ ) = ± 1

∆m−k
IJ

∧
xij∈SIJ

dxij.

Moreover, w generates ωDk .

The sign of the above expression for w|D(∆IJ ) depends on the position of the

columns and rows appearing in I and J relative to the entire matrix, but will be

unimportant for our purposes.

Proof. It is clear that if w is indeed compatibly defined then it is a global generator

of ωDk ; this can be verified locally, and on each D(∆IJ) it is immediate that w is a

unit times a generator of ω|D(∆IJ ).

We thus just need to verify that the definitions on each D(∆IJ) agree. Because

Dk is irreducible, we may ignore the question of the sign: the rational k(2m− k)-form

we defined on D(∆[1,...,k|1,...,k]) will be defined on a dense open subset of each D(∆IJ),

and thus we just need to show that it extends to a regular k(2m− k)-form on D(∆IJ)

(which we will see will be of the form ± 1

∆m−k
IJ

∧
xij∈SIJ dxij). If it does, then this

rational k(2m − k)-form defined on D(∆[1,...,k|1,...,k]) extends to the entirety of each

D(∆IJ) and thus gives a regular k(2m− k)-form on Dk.
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It suffices to show the definitions on D(∆[1,...,k|1,...,k]) and D(∆[1,...,i−1,i+1,...,k,i′|1,...,k])

agree, i.e., that we can change one row; by symmetry we can then change one column

as well, and by making one change at a time go from D(∆[1,...,k|1,...,k]) to any D(∆I′,J ′).

So, fix I = J = {1, . . . , k} and I ′ = {1, . . . , i− 1, i+ 1, . . . , k, i′}.
So, consider the rational k(2m− k)-forms∧

xij∈SIJ

dxij and
∧

xij∈SI′J

dxij.

The first involves the variables occurring in the shaded region on the left below, the

second involves those occurring in the shaded region on the right (where the darker

region in each denotes the minor ∆ being localized at):

xi,k+1· · · xi,j · · · xi,m




xi′,k+1· · · xi′,j · · · xi′,m


To go from

∧
xij∈SIJ dxij to

∧
xij∈SI′J

dxij then, we need only replace the m − k

variables xi,k+1, . . . , xi,m by xi′,k+1, . . . , xi′,m. For each j = k+ 1, . . . ,m, then, consider

the (k + 1)× (k + 1) minor 

x11 · · · x1k x1j

x21 · · · x2k x2j

...
. . .

...
...

xk1 · · · xkk xkj

xi′1 · · · xi′k xi′j


.

By Proposition 4.3.2, this yields the relation

∆[2,...,k,i′|2,...,k,j] dx11 − · · ·+ ∆[1,...,k|1,...,k] dxi′j = 0 (4.1)

on Ω1
Dk

. Now, we take the exterior product of this relation with the ((k+ 1)2−2)-form

Λj :=
∧

(p,q)∈{1,...,k,i′}×{1,...,k,j}r{(i,j),(i′,j)}

dxpq,
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i.e., the product over all the indices appearing in the minor except dxij and dxi′j. We

have highlighted in darker gray below the variables in Λj, in relation to each of the

shaded regions in question:

xi,k+1· · · xi,j · · · xi,m




xi′,k+1· · · xi′,j · · · xi′,m


The only terms surviving on the left side of relation (4.1) then are then the wedge

product with these missing indices, so we have that

Λj ∧
(

(−1)i+j∆[1,...,i−1,i+1,...,k,i′|1,...,k]dxij + ∆[1,...,k|1,...,k]dxi′j

)
= 0,

or equivalently

(−1)i+j+1 ∆[1,...,i−1,i+1,...,k,i′|1,...,k]︸ ︷︷ ︸
∆I′J

·Λj ∧ dxij = ∆[1,...,k|1,...,k]︸ ︷︷ ︸
∆IJ

·Λj ∧ dxi′j. (4.2)

Note that the minors ∆I′J = ∆[1,...,i−1,i+1,...,k,i′|1,...,k] and ∆IJ = ∆[1,...,k|1,...,k] appearing

on each side are independent of the column j under consideration. We have switched

one xij for xi′j.

Since any Λj appears as a wedge factor of each of
∧
xpq∈SIJ dxpq and

∧
xpq∈SI′J

dxpq,

we can use the above relation for each j = m− k + 1, . . . ,m to obtain

1

∆m−k
IJ

∧
xpq∈SIJ

dxpq = ± 1

∆m−k
I′J

∧
xpq∈SI′J

dxpq

(where the sign is determined by the (m−k)-fold product of (−1)m+i and the repeated

use of skew-commutativity), giving the result.

We now prove Theorem 4.3.1 above, which states that the Nash ideal J(Dk) and

Im−kk have the same integral closure. The proof will occupy the rest of this section.

Proof. We have just seen that ωDk ∼= ODk〈w〉, with w the k(2m−k)-form we defined in

Proposition 4.3.3. Since
∧k(2m−k) ΩDk is generated by the restriction of k(2m−k)-forms
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from Am2
, it suffices to consider how these forms restrict to Dk.

Lemma 4.3.4. {∆m−k : ∆ ∈ Ik} ⊂ J(Dk).

Proof. For any k × k minor ∆ = ∆IJ , consider the k(2m− k)-form ρ :=
∧
xij∈SIJ dxij .

By definition, on D(XIJ) we have ρ = ∆m−k
IJ · w. Thus, we deduce that

∆m−k
IJ ∈ J(Dk),

giving the lemma.

Recalling that for arbitrary elements fi of any ring R, (fd1 , . . . , f
d
m) and (f1, . . . fm)d

have the same integral closure, we obtain:

Corollary 4.3.5. The integral closure of Im−kk is contained in the integral closure of

J(Dk).

Now, we need the reverse inclusion, for which it suffices to show that J(Dk) is

contained in Im−kk .

Proposition 4.3.6. Let ∂ =
∧
xij∈I,|I|=k(2m−k) dxij. Then the image of ∂ in ωDk is

F · w for some F ∈ Im−kk ; in fact, F is a degree-(m − k) polynomial in the k × k
minors.

Proof. We think of the given set I as corresponding to a filling of the m×m-matrix

by k(2m − k) entries. We want to use the relations of Corollary 4.3.2 to move the

filled entries to those corresponding to some SIJ . For convenience’s sake, we choose

I = J = {1, . . . , k}; we write ∆ = ∆[1,...,k|1,...,k]. Let (i, j) ∈ I be a “filled” entry with

i, j both ≥ k + 1. That is, (i, j) lies in the “bad” region.

Consider the (k + 1)× (k + 1) minor formed by the first k rows and columns and

the i-th row and j-th column; in the following diagram this minor is marked in gray: •
(i, j)


All entries of this minor except the (i, j)-th entry lie in the “good” region corre-

sponding to SIJ . The relation from Proposition 4.3.2 corresponding to this minor can
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be written as

∆[1,...,k|1,...,k] · dxij = −
∑

(p,q)6=(i,j)

(−1)p+q ∆[1,...,p−1,p+1,...,k,i|1,...,q−1,q+1,...,k,j]︸ ︷︷ ︸
∆pq

·dxpq.

The entries (p, q) appearing on the right side are all “good”, so we can localize at

∆[1,...,k|1,...,k] and use this equation to eliminate the “bad” entry dxij in the k(2m− k)-

form ∂ in favor of good entries (and this creates no new “bad” entries). Note that the

coefficients we pick up are all of the form ∆KL/∆.

The goal now is to show that F lies in Im−kk ; in fact, we will show the stronger

claim that it is a degree-(m − k) polynomial in the k × k minors. We induce on

the number of “bad” entries as follows: Note that when we eliminate dxij from the

k(2m− k)-form ∂, we express ∂ as a linear combination (with coefficients of the form

∆i/∆) of k(2m− k)-forms ∂i with fewer “bad” entries. When we rewrite each of these

k(2m− k)-forms ∂i as an element Fi times w, by induction we get

∂i = Fiω

for Fi a degree-(m− k) polynomial in the k × k minors (and thus in Im−kk ). Thus, we

have

∆[1,...,k|1,...,k] · F =
∑

∆iFi,

or, collecting the terms on the right-hand side,

∆[1,...,k|1,...,k] · F = G({∆pq}),

where G({∆pq}) is a degree-(m− k + 1) polynomial in the k × k-minors (and thus in

Sk ⊂ Rk).

This equality implies that F is homogeneous of degree (m− k)k; since G({∆pq})
is a degree-(m− k + 1) polynomial in the ∆IJ , we can simply apply Proposition 4.2.5

to conclude that F ∈ Sk (i.e., F is a degree-(m− k) polynomial in the ∆IJ), and thus

F ∈ Im−kk .

Having just shown that J(Dk) ⊂ Ikm−k, we have that J(Dk) and Ikm−k have the

same integral closure, concluding the proof of Theorem 4.3.1.

71



4.4 Computing minimal log discrepancies

For the remainder of the chapter we work over a field of characteristic 0. Our aim

is to compute minimal log discrepancies on determinantal varieties via the formula of

Theorem 2.2.16. Specifically, we consider the case of a pair
(
Dk,

∑k
i=1 αiD

k−i), with

αi ∈ R (possibly 0); our goal is to compute

mld(w;Dk,
∑

αiD
k−i)

for w a closed point of Dk; by the same process, we also will compute

mld(Dk−j;Dk,
∑

αiD
k−i)

for any j.

Via the GLm×GLm-action on Dk we may assume that w is the point

xq :=



0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0︸ ︷︷ ︸
m−q

0 . . . 0
...

. . .
...

0 . . . 0

1 . . . 0
...

. . .
...

0 . . . 1


︸ ︷︷ ︸

q

for some 0 ≤ q ≤ k.

Note that the multicontact loci

Conti(J(Dk)) ∩ Contw1(Dk−1) ∩ · · · ∩ Contwk(D0)

are J∞(GLm×GLm)-invariant, so they are disjoint unions of J∞(GLm×GLm)-orbits,

say
⊔
Cλ. Thus, we have that the multicontact loci

Conti(J(Dk)) ∩ Contw1(Dk−1) ∩ · · · ∩ Contwk(D0) ∩ Cont≥1(xq)

appearing in the calculation of mld(xq;X, Y ) via Theorem 2.2.16 will decompose as⊔
(Cλ ∩ Cont≥1(xq)).
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(Note that Cont≥1(xq) is not J∞(GLm×GLm)-invariant, since xq is not GLm×GLm-

invariant.)

We now need to do the following:

• Analyze which of the Cλ ∩ Cont≥1(xq) appear in a given multicontact locus.

• Calculate the codimension of Cλ ∩ Cont≥1(xq) in J∞(Dk).

To answer the former, we have the following:

Proposition 4.4.1. Fix q ≤ k and let λ = (λ1, . . . , λm).

(1) Cλ ⊂ J∞(Dk) if and only if λ1 = · · · = λm−k =∞.

(2) The codimension of Cλ in J∞(Dk) is finite if and only if λm−k+1 <∞.

(3) Cλ∩Cont≥1(xq) 6= ∅ if and only if λ1, . . . , λm−q > 0 and λm−q+1 = · · · = λm = 0.

(4) Cλ ⊂ Contwi(Dk−i) if and only if λm−k−i+1 + · · ·+ λm = wi.

(5) Cλ ⊂ Conti(J(Dk)) if and only if λm−k+1 + · · ·+ λm = i/(m− k).

Note that (5) implies in particular that Conti(J(Dk)) is empty if m− k does not

divide i.

Proof. (1), (2), and (4) are just Propositions 3.2, 3.4, and 3.3 of [Doc13], respectively.

(3) follows by noting that the matrix

δλ :=


tλ1

tλ2

. . .

tλm


(which generates the J∞(GLm×GLm)-orbit Cλ) is mapped to xq under the map

induced by the truncation k[[t]]→ k if and only if the first m− q entries are positive

powers of t and the rest are 1 = t0.

Finally, to see (5), note that by Lemma 2.2.17 and Theorem 4.3.1 we have

Conti(J(Dk)) = Conti(Im−kk );

since ordγ(I
m−k
k ) = (m− k) ordγ(Ik), we have immediately that Conti(Im−kk ) is empty

if m − k does not divide i, and is Conti/(m−k)(Ik) when it does; we can then apply

part (4) to obtain the desired conclusion.
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Proposition 4.4.2. (1) If the conditions in statements (1)–(2) of Proposition 4.4.1

hold (so that Cλ is in Dk
∞ and has finite codimension), then the codimension of

Cλ in Dk
∞ is

(2(m− k + 1)− 1)λm−k+1 + · · ·+ (2m− 1)λm.

(2) If the conditions in statements (1)–(3) of Proposition 4.4.1 hold (so that Cλ ∩
Cont≥1(xq) is in Dk

∞, nonempty, and has finite codimension), then the codimen-

sion of Cλ ∩ Cont≥1(xq) in Dk
∞ is

q(2m− q) + (2(m− k + 1)− 1)λm−k+1 + · · ·+ (2m− 1)λm.

Remark 4.4.3. Note that since λm−q+1 = · · · = λm = 0 in part (2) of the theorem,

we can just as well write the codimension of Cλ ∩ Cont≥1(xq) in Dk
∞ as

q(2m− q) + (2(m− k + 1)− 1)λm−k+1 + · · ·+ (2(m− q)− 1)λm−q.

In what follows, we will write G for GLm×GLm to lighten notation. Our proof of

the proposition is exactly parallel to the proof of Proposition 5.3 of [Doc13].

Proof of Proposition 4.4.2. First, note that it suffices to prove (1), at which point

(2) follows immediately: the J∞(G)-action on J∞(Dk) and the G-action on Dk are

compatible with the truncation morphisms ψ∞,` and ψ`,0, so we have a commutative

diagram

J∞(G)× J∞(Dk) J∞(Dk)

G×Dk Dk

Thus, we have that δ` lies over xq if and only if Cλ = J∞(G) · δ` lies over G · xq, and

the fibers Cλ → g · xq are constant for g ∈ G. But note that G · xq is the matrices of

rank exactly q, and thus dim(G · xq) = q(2m− q). Thus, if the codimension of Cλ is c,

say, then we must have that codim(Cλ ∩ Cont≥1) = codim(Cλ) + q(2m− q), so that

the formula in (1) implies (2).

By Proposition 2.2.18, it suffices to calculate (`+ 1) · dimX − dim(ψ∞,`(Cλ)) for

`� 0. As noted in Remark 4.2.9, the image of Cλ under ψ∞,` is exactly Cλ̄,`, where

(λ̄)i = min(λi, `). We thus are led to calculating the dimensions of Cλ̄,` for ` � 0.

Choose ` > λm−k+1 (by assumption λm−k+1 < ∞). To know dimCλ̄,` it suffices to

know the codimension of the stabilizer of δλ̄,` in G`.

74



Consider the condition of an element((
gij =

∑̀
n=0

gnijt
n
)
i,j
,
(
hij =

∑̀
n=0

hnijt
n
)
i,j

)

of G` stabilizing δλ̄,`, which is the equality of matrices
0 · · · 0 tλm−k+1g1,m−k+1 . . . tλmg1,m

0 · · · 0 tλm−k+1g2,m−k+1 . . . tλmg2,m

...
. . .

...
...

. . .
...

0 · · · 0 tλm−k+1gm,m−k+1 . . . tλmgm,m



=



0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

tλm−k+1hm−k+1,1 tλm−k+1hm−k+1,2 . . . tλm−k+1hm−k+1,m

...
. . . . . .

...

tλmhm,1 tλmhm,2 . . . tλmhm,m


.

For max(i, j) < m − k + 1, equality of the (i, j)-th entries is trivial, since both

entries are just 0. If i < m− k + 1 but j ≥ m− k + 1, equality of the (i, j)-th entries

gives the equation

tλjgi,j = 0,

i.e., that

tλjg0
i,j + tλj+1g1

i,j + · · ·+ t`g
`−λj
i,j = 0.

This gives `−λj + 1 equations gni,j = 0 for n = 0, . . . , `−λj . Likewise, if j < m− k+ 1

but i ≥ m− k + 1 we get `− λi + 1 equations hni,j = 0 for n = 0, . . . , `− λi.
For min(i, j) ≥ m− k + 1, equality of the (i, j)-th entries gives the equation

tλjgi,j = tλihi,j.

Say i ≤ j, so λi ≥ λj. Writing out the condition above, we have

tλjg0
i,j + tλj+1g1

i,j + · · ·+ t`g
`−λj
i,j = 0 + · · ·+ 0 + tλih0

i,j + tλj+ih1
i,j + · · ·+ t`h`−λii,j .

This gives `− λj + 1 equations

(1) gni,j = 0 for n = 0, . . . , λi − λj.
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(2) gni,j = h
n−λi+λj
i,j for n = λi − λj + 1, . . . , `− λj.

For each of the 2k(m− k) + k2 indices (i, j) with max(i, j) ≥ m− k + 1, we thus

obtain

`+ 1−min(λi, λj)

independent linear conditions. To see how many entries contribute a given `+ 1− λi
linear conditions, consider the filling of the matrix where the (i, j)-th entry with

max(i, j) ≥ m− k + 1 is filled with min(λi, λj):

λm−k+1 λm−k+2 · · · λm

λm−k+1 λm−k+2 · · · λm
...

...
. . .

...

λm−k+1 λm−k+2 · · · λm

λm−k+1 λm−k+1 · · · λm−k+1 λm−k+1 λm−k+2 · · · λm

λm−k+2 λm−k+2 · · · λm−k+2 λm−k+2 λm−k+2 · · · λm
...

...
. . .

...
...

...
. . .

...

λm λm · · · λm λm λm · · · λm


.

We see that there are 2(m−k+1)−1 entries with λm−k+1, 2(m−k+2)−1 entries with

λm−k+1, and so on, up to 2m− 1 entries with λm. This implies that the codimension

of the stabilizer in G` is

(`+ 1)(2k(m− k) + k2)−
(
(2(m− k + 1)− 1)λm−k+1 + · · ·+ (2m− 1)λm

)
,

which is thus the dimension of Cλ̄,`.

Finally, this says that the codimension of Cλ in J∞(Dk) is

k(2m− k)(`+ 1)−(
(2k(m− k) + k2)m2(`+ 1)− (2(m− k + 1)− 1)λm−k+1 + · · ·+ (2m− 1)λm

)
,

or

(2(m− k + 1)− 1)λm−k+1 + · · ·+ (2m− 1)λm,

giving the theorem.

Theorem 4.4.4. Consider the pair
(
Dk,

∑k
i=1 αiD

k−i
)

(where the αi may be zero).
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(1)
(
Dk,

∑k
i=1 αiD

k−i
)

is log canonical at a matrix xq of rank q ≤ k exactly when

α1 + · · ·+ αj ≤ m− k + (2j − 1)

for all j = 1, . . . , k − q.

(2) In this case,

mld

(
xq;D

k,
k∑
i=1

αiD
k−i
)

= q(m− k) + km−
k−q∑
i=1

(k − q − i+ 1)αi.

(3)
(
Dk,

∑k
i=1 αiD

k−i
)

is log canonical along Dk−j (for j > 0) exactly when

α1 + · · ·+ αj ≤ m− k + (2j − 1)

for all j = 1, . . . , k.

(4) In this case,

mld

(
Dk−j;Dk,

k∑
i=1

αiD
k−i
)

= j(m− k + j)−
j∑
i=1

(j − i+ 1)αi

Before proving the theorem, we mention a few corollaries:

Corollary 4.4.5 (Semicontinuity). If α1, . . . , αk are nonnegative real numbers, the

function w 7→ mld
(
w;Dk,

∑k
i=1 αiD

k−i) is lower-semicontinuous on closed points.

Proof. The quantity

mld
(
w;Dk,

∑
αiD

k−i
)

is constant on each locus of rank-q matrices, so we only need to check that it decreases

when we go from q to q − 1. Note that part (1) of the theorem guarantees that if

mld
(
xq;D

k,
∑
αiD

k−i) is −∞ then the same is true of mld
(
xq−1;Dk,

∑
αiD

k−i), so

we may assume that both mld
(
xq;D

k,
∑
αiD

k−i) and mld
(
xq−1;D

k,
∑
αiD

k−i) are

nonnegative, and thus we may apply the formula in part (2) of the theorem.

This formula implies that

mld
(
xq;D

k,
∑

αiD
k−i
)
−mld

(
xq−1;Dk,

∑
αiD

k−i
)

=(m−k)+α1+· · ·+αk−q+1 > 0,

yielding the result.
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Corollary 4.4.6. Determinantal varieties (of square matrices) have terminal singu-

larities.

This follows easily from the fact determinantal varieties have a small resolution

(see, e.g., [Har92, Example 16.18]), but this gives a proof avoiding the use of an explicit

resolution. It also gives explicitly the log discrepancy along the singular locus.

Proof. We consider just the singularities of Dk, i.e., all αi are 0. Since Dm ∼=
Am2

, we may assume k < m. Recall from Definition 2.1.26 it suffices to show that

mld(Dk−1, Dk) > 1. By part (3) of Theorem 4.4.4, this is m− k + 1, and this is > 1

except in the excluded case k = m. In particular, determinantal varieties of square

matrices have terminal singularities.

Now, we prove the theorem itself:

Proof of Theorem 4.4.4. We begin by proving parts (1) and (2): By Proposition 4.4.1,

we can decompose the multicontact loci

Cn,w1,...,wk := Contn(J(Dk)) ∩ Contw1(Dk−1) ∩ · · · ∩ Contwk(D0) ∩ Cont≥1(xq)

as the disjoint union of

Cλ ∩ Cont≥1(xq),

with λ = (λ1, . . . , λm) ranging over all m-tuples satisfying:

• λ1 = · · · = λm−k =∞.

• λm−k+1 <∞.

• λm−q > 0 (and thus λm−k+1, . . . , λm−q are all > 0) and λm−q+1 = · · · = λm = 0.

Again by Proposition 4.4.1, it’s immediate that a cylinder Cλ ∩ Cont≥1(xq) will lie in

Contλm−k+···+λm−q(Ik) = Cont(m−k)(λm−k+···+λm−q)(J(Dk))

and in

Contλm−k−j+1+···+λm−q(Dk−j)

for each i.

Equivalently, a given cylinder Cλ ∩ Cont≥1(xq) is contained in Cn,w1,...,wk for

n = (m− k)(λm−k+1 + · · ·+ λm−q)
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and

wi = λm−k−i+1 + · · ·+ λm−q.

Finally, by part (2) of Proposition 4.4.2, we know that

codim(Cλ ∩ xq) = q(2m− q) + (2(m− k+ 1)− 1)λm−k+1 + · · ·+ (2(m− q)− 1)λm−q.

The infimum in Theorem 2.2.16 can then be rewritten as

q(2m− q) + (2(m− k + 1)− 1)λm−k+1

+ · · ·+ (2(m− q)− 1)λm−q − (m− k)(λm−k+1 + · · ·+ λm−q)

−α1(λm−k+1 + · · ·+ λm−q)− α2(λm−k+2 + · · ·+ λm−q)− · · · − αk−q(λm−q)

over λm−k+1, . . . , λm−q > 0.

Grouping terms by the λi, we can rewrite this quantity as

q(2m− q) + λm−k+1(m− k + 1− α1) + λm−k+2(m− k + 3− (α1 + α2))

+ · · ·+ λm−q(m− k + (2(k − q)− 1)− (α1 + · · ·+ αk−q)).

Now, set

β1 = m− k + 1− α1,

...

βk−q = m− k + (2(k − q)− 1)− (α1 + · · ·+ αk−q),

so βi is the coefficient of λm−k+i in the above quantity. It is clear that if any βi is

negative then simply by taking λm−k+i � 0 we can make the quantity in question

arbitrarily negative, and thus (Dk,
∑
αiD

k−i) will not be log canonical, proving part

(1) of the theorem.

If all βi are nonnegative, then it is clear that the quantity

q(2m− q) + λm−k+1β1 + · · ·+ λm−qβk−q

is minimized by taking λm−k+1 = · · · = λm−q = 1. Taking these values and simplifying,

we see that the minimum value is

q(m− k) + km− α1(k − q)− α2(k − q − 1)− · · · − 2αk−q−1 − αk−q,

giving the claim in (2).
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The proof of (3) and (4) follows in exactly the same fashion, except that one

imposes the condition that λm−k+1, . . . , λm−k+j > 0 instead of the conditions that

λm−k+1, . . . , λm−q > 0 and λm−q+1 = · · · = λm = 0, and uses the formula from part

(1) of Proposition 4.4.2 instead of part (2).
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CHAPTER V

Bigness of the Tangent Bundle of

Del Pezzo Surfaces and D-Simplicity

We consider the question of simplicity of a ring R under the action of its ring of

differential operators DR. We give examples to show that even when R is Gorenstein

and has rational singularities R need not be a simple DR-module; for example, this is

the case when R is the homogeneous coordinate ring of a smooth cubic surface. Our

examples are homogeneous coordinate rings of smooth Fano varieties, and our proof

proceeds by showing that the tangent bundle of such a variety need not be big. We

also give a partial converse showing that when R is the homogeneous coordinate ring

of a smooth projective variety X, embedded by some multiple of its canonical divisor,

then simplicity of R as a DR-module implies that X is Fano and thus R has rational

singularities.

5.1 Introduction

Given a k-algebra R, let DR/k be the ring of k-linear differential operators on R.

When R = k[x1, . . . , xn] (or when R is a smooth k-algebra), DR/k is well-studied and

has several nice properties; however, when R is not a smooth k-algebra, DR/k is quite

mysterious. For example, [BGG72] showed that if R = C[x, y, z]/(x3 + y3 + z3), then

DR/C is not finitely generated over C, not left- or right-Noetherian, and that R is not

a simple DR/C-module.

We consider the following questions:

(1) [LS89, Question 0.13.1]: If SpecR has rational singularities, when is DR/k simple?

(2) [LS89, Question 0.13.3]: When is R a simple DR/k-module?
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In the setting of finite-type C-algebras, [Hsi15, Question 5.1] asked whether in (2)

above it is sufficient for R to have Gorenstein rational singularities. This criteria was

motivated in part by [Smi95, Theorem 2.2], which showed that in characteristic p an

F -pure ring R is a simple DR-module if and only if R is strongly F -regular; thus, one

might expect a “mildly” singular ring R in characteristic 0 to be a simple DR-module.

In this chapter, we give a negative answer to Hsiao’s question, illustrating the

differing behavior of differential operators in characteristic p and characteristic 0.

Theorem 5.1.1. There are Gorenstein (graded) C-algebras R with rational singular-

ities such that DR/k contains no differential operators of negative degree, and thus

such that R is not a simple DR/k-module and DR/k is not simple. One example is

R = C[x, y, z, w]/(x3 + y3 + z3 + w3).

We also show a partial converse: the necessity of the klt condition for D-simplicity

in the special case where R is the homogeneous coordinate ring of a smooth projective

variety embedded by a multiple of its canonical divisor:

Theorem (Theorem 5.7.4). Let R be a normal Q-Gorenstein graded C-algebra, gen-

erated in degree 1, with an isolated singularity. If R is a simple DR-module, or merely

admits a differential operator of negative degree, then R has klt singularities, and thus

rational singularities.

Both main theorems are proved by working with the smooth complex variety

X = ProjR, and using the following observation of [Hsi15]:

Theorem 5.1.2 ([Hsi15, Theorem 1.2]). Let X be a smooth complex projective variety

and L an ample line bundle. Set R = S(X,L) =
⊕

mH
0(X,Lm). If R is a simple

DR-module then TX is big.

In Section 5.3 we discuss the notion of bigness of vector bundles; in the context of

this theorem, bigness of TX is equivalent to, for any e > 0, the existence of a nonzero

global section of H0(Symm TX ⊗ L−e) for some m� 0.

The singularities of rings of the form R = S(X,L) =
⊕

mH
0(X,Lm) (i.e., rings

that are section rings of polarized smooth complex projective varieties) translate to

properties of the embedding X ↪→ PN determined by H0(X,Lm) for some m large

enough. Recall from Example 2.1.32 that:

(1) R is always normal.

(2) R is Gorenstein if and only if L = OX(aKX) for some a ∈ Z, and Q-Gorenstein

if and only if L⊗b = OX(aKX) for a, b ∈ Z.
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(3) R is klt if and only if it is Q-Gorenstein and a < 0, i.e., if and only if it is

Q-Gorenstein and −KX is ample.

If R is klt then it has rational singularities, and the converse is true if R is

Gorenstein. Thus, to give a counterexample to the sufficiency of Gorenstein rational

singularities for DR-simplicity, we find a variety X with −KX ample (i.e., X is Fano)

and TX not big. Thus, Theorem 5.1.1 will follow from

Theorem (Theorem 5.5.2). Let X be a del Pezzo surface of degree 3, i.e., a smooth

cubic surface. Then TX is not big; in fact, H0(X, Symm TX) = 0 for all m.

Remark 5.1.3. After the first version of these results was made public, the author

realized that Theorem 5.5.2 also follows from [BD08, Theorem B]. The proof we give

is distinct, and more direct but less general; see Section 5.6 for a discussion of their

results.

Similarly, to show that R klt implies that R is D-simple, if R = S(X,L) is the

homogeneous coordinate ring of a smooth projective variety embedded by a power of

its canonical divisor (i.e., such that either KX or −KX is ample), we show that TX

big implies that −KX ample. In fact, we note the following statement (likely known

to experts), which immediately implies our statement on necessity:

Proposition 5.1.4. Let X be a smooth complex projective variety. If TX is big, then

X is uniruled.

We begin by discussing differential operators and D-simplicity in Section 5.2. We

then recall the definition and properties of big vector bundles in Section 5.3, and

discuss the connection between D-simplicity and bigness of the tangent bundle in

Section 5.4. In Section 5.5, we show that a Fano variety need not have big tangent

bundle, by examining the tangent bundles of some del Pezzo surfaces. We show that if

X is a del Pezzo surface of degree ≤ 4, then TX is not big (and thus in particular the

tangent bundle of a smooth cubic surface is not big). Section 5.6 discusses how the

results discussed in Section 5.5 also follows from work of [BD08; DL19]. In Section 5.7,

we prove Theorem 5.7.4 by showing that, if R = S(X,L) for some smooth complex

projective X with L very ample and a multiple of KX , then DR-simplicity of R forces

X to be Fano and thus R to have klt (thus rational) singularities. Sections 5.8 and

5.9 contain no new results, but compare and contrast our results with known results

in positive characteristic and characteristic 0 respectively.
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Remark 5.1.5. Recently, there has been additional progress via work of [HLS20]:

they completely classify which del Pezzo surfaces have big (or pseudoeffective) tangent

bundle via different methods, and in particular recover the two examples we treat here

(the del Pezzos of degrees 3 and 4). In addition, they are able to treat also the case of

a hypersurface in Pn, as well as certain del Pezzo threefolds. For further discussion,

see Remark 5.9.5.

5.2 Differential operators and singularities

For the rest of the chapter, we consider a field k, most often C, and a finitely

generated k-algebra R. We will write simply DR for DR/k. Recall from Example 1.3.1

the following example:

Example 5.2.1 ([BGG72]). Let R = C[x, y, z]/(x3 + y3 + z3) be the affine cone over

a smooth elliptic curve. Then DR has no differential operators of negative degree, DR

is not a finitely generated C-algebra, and is neither left- nor right-Noetherian. We

note here that since DR has no differential operators of negative degree, the maximal

homogeneous ideal (x, y, z) is a proper sub-DR-module of R.

There are a variety of ways to use properties of DR to describe the singularities of

the ring R: one can consider Noetherianity of DR, finite generation, generation by

derivations, freeness of the R-module D1
R, and more (see, for example, [LS89; Smi95;

SV97; Ish87]). In particular, [LS89] posed the following questions:

(1) If SpecR has rational singularities, when is DR simple? ([LS89, Question 0.13.1])

(2) When is R a simple DR-module? ([LS89, Question 0.13.3])

Remark 5.2.2. We will also use the notion of klt singularities of R (by which we

mean of SpecR), which are of importance in the minimal model program. For the

definition and properties of klt singularities, see Definition 2.1.26. (We do note that

klt singularities are by definition Q-Gorenstein.) We assemble here the only facts we

will need in this chapter:

• If R has klt singularities then it has rational singularities [Elk81].

• If R is Gorenstein and has rational singularities then it has klt singularities (see,

for example, [ST08, Proposition 3.1]).
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• Let X be a smooth projective variety and L a very ample line bundle. Then

S(X,L) :=
⊕

H0(X,L⊗m) is Q-Gorenstein if and only if L⊗b ∼= OX(aKX) for

some a, b ∈ Z, and has klt singularities if and only if −KX is ample (see, for

example, [Kol13, Lemma 3.1]).

The property in (2) above is called D-simplicity:

Definition 5.2.3. A k-algebra R is called D-simple if R is a simple DR-module.

For clarity, we will sometimes say R is DR-simple.

Remark 5.2.4. We note the following:

• If DR is a simple ring, then R is D-simple (for a proof, see Remark 2.3.4).

• If R is an N-graded ring with R0 = k, and R is D-simple, then the graded ring

DR must contain differential operators of negative degree, i.e., (DR)e 6= 0 for

some e < 0.

The examples of D-simple rings listed in Remark 1.3.2, as well as analogies between

strong F -regularity in characteristic p and klt singularities in characteristic 0, motivate

the following more specific formulation:

Question 5.2.5 ([Hsi15, Question 5.1]). If R is a finitely generated Gorenstein

C-algebra such that SpecR has rational singularities, is R then D-simple?

This proposes one potential solution to the question asked by [LS89] and considered

in following work (e.g., [Smi95; SV97]) on what conditions beyond rational singularities

ensure D-simplicity.

We note that since R is assumed to be Gorenstein it is equivalent to ask whether

SpecR has klt singularities,

Remark 5.2.6. [LS89] gives an example of a ring with rational singularities which is

not D-simple; the ring in question is obtained as the quotient of C[x, y, z]/(x3 +y3 +z3)

under a Z/3Z-action, which is a 2-dimensional normal isolated rational singularity.

This example is why one must impose the Gorenstein condition in the phrasing of

[Hsi15, Question 5.1].

Our Theorem 5.1.1 exhibits a klt hypersurface ring R which is not D-simple (and

thus such that DR is not a simple ring). This indicates that one must impose fairly

strong conditions on R to obtain a sufficient condition for Question 0.13.1 of [LS89]

on the simplicity of DR.

85



5.3 Positivity of vector bundles

The rest of the chapter will use various notions of positivity for vector bundles.

We recall some definitions and properties here, largely following [Laz04b, Chapter 6].

Let X be any variety and E a locally free sheaf of rank r on X. We write

π : PE → X for the projective bundle of 1-dimensional quotients of E. The variety

PE carries a tautological line bundle OPE(1), such that π∗OPE(m) = SymmE for

m ≥ 0.

Definition 5.3.1. The vector bundle E is said to be ample, nef or big if the line

bundle OPE(1) is ample, nef, or big respectively.

Remark 5.3.2. There are conflicting conventions for defining bigness of vector bundles.

The definition we take here is elsewhere called “L-big” (for “Lazarsfeld-big”). There

is also the stronger notion of “V-big” (for “Viehwig-big”). These differ even in quite

simple cases: for example, OP1 ⊕ OP1(1) is L-big but not V-big. For a detailed

discussion of the different notions of positivity generally and bigness specifically, see

[Bau+15; Jab07].

Remark 5.3.3. A line bundle L on a variety X of dimension N is big if and only if

lim
m→∞

h0(X,L⊗m)

mN
> 0.

We can give a similar characterization for bigness of vector bundles:

Say E is a rank-r vector bundle on a variety X of dimension n. Because π∗OPE(1) =

SymmE, we have that

H0(PE,OPE(m)) = H0(X, SymmE).

Since PE has dimension n+ r − 1, we have that E is big if and only if

lim
m→∞

h0(X, SymmE)

mn+r−1
> 0.

The following characterization of bigness will be crucial in Section 5.4:

Proposition 5.3.4 ([Hsi15]). Let L be an ample line bundle on X. The bundle E is

big if and only if for all e > 0 there exists m ≥ 0 such that H0(X, SymmE⊗L−e) 6= 0.

We reproduce the proof of [Hsi15] here for convenience (note that just the “only if”

implication is stated there, although the converse direction is straightforward).
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Proof. Say H0(X, SymmE ⊗L−e) = H0(OPE(m)⊗ π∗L−e) 6= 0, i.e., OPE(m)⊗ π∗L−e

is effective (and thus so are all its positive tensor powers). Since OPE(1) is π-ample,

we have that OPE(1)⊗ π∗Lj is ample for j � 0; choosing j = Ne for N � 0, we have

OPE(mN + 1) = (OPE(1)⊗ π∗LNe)︸ ︷︷ ︸
ample

⊗ (OPE(mN)⊗ L−Ne)︸ ︷︷ ︸
effective

Thus, we have that OPE(mN + 1) can be decomposed as the product of an ample line

bundle and an effective line bundle, and is thus big; hence OPE(1) is big as well.

Conversely, if E is big, then Kodaira’s lemma (Lemma 5.3.5 below) implies that

for any e such that Le is effective, there exists m such that OPE(m) ⊗ π∗L−e has a

section for some m� 0. Then

0 6= H0(PE,OPE(m)⊗ π∗L−e) = H0(X, SymmE ⊗ L−e),

concluding the proof.

Lemma 5.3.5 (Kodaira’s lemma). Let Y be a normal variety, A a big divisor and D

an effective divisor. Then

H0(Y,OY (mA−D)) 6= 0

for all m sufficiently large and divisible.

For a proof, see [Laz04a, Proposition 2.2.6].

Finally, we note here a fact we will use throughout:

Lemma 5.3.6. Let k be a field and X a k-scheme, and let

0→ L→ E → F → 0

be a short exact sequence of vector bundles, with L a line bundle. Then for any m > 0

we have a short exact sequence

0→ L⊗ Symm−1E → SymmE → Symm F → 0.

If k has characteristic 0, and we have a short exact sequence of vector bundles

0→ E → F → L→ 0
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with L again a line bundle, then for any m > 0 we have a short exact sequence

0→ SymmE → Symm F → Symm−1 F ⊗ L→ 0.

For the first fact see [Eis95, Proposition A2.2]; the second follows dualizing

0 → E → F → L → 0, applying the first fact, and then dualizing again, and using

the identifications (SymE∨)∨ ∼= SymmE, which holds only in characteristic 0.

5.4 D-simplicity of section rings and bigness of the tangent

bundle

In this section, we recall [Hsi15, Theorem 1.2]:

Theorem 5.4.1. Let X be a smooth complex projective variety of dimension ≥ 2, let

L be an ample line bundle on X, and let R = S(X,L) :=
⊕

H0(X,OX(mL)) be the

section ring of X with respect to L. If R has a differential operator of negative degree

(e.g., if R is DR-simple), then TX is big.

We recall the proof from [Hsi15] for the reader’s convenience:

Proof. We first recall the connection between the tangent bundle of a smooth variety

and the differential operators on its section ring from [Ish87].

Let X be a smooth projective variety and L an ample line bundle. We will assume

for simplicity here that R = S(X,L) is generated in degree 1. [Hsi15] and [Ish87]

treat the general case; we note for our purposes here that we can also replace R by a

Veronese subring while preserving the existence of a differential operator of negative

degree (and thus reduce to the case here) and assume that ProjR is embedded in

some Pn by |L|.
By Proposition 5.3.4, TX is big if and only if for any e < 0 there exists m > 0 such

that H0(X, Symm TX ⊗ Le) 6= 0. We claim the vanishing H0(X, Symm TX ⊗ Le) = 0

for all e < 0 and all m implies on the other hand that Dm
e := (Dm

R )e = 0 for all e < 0

and all m, i.e., that R has no differential operators of negative degree. This then

shows that R cannot be D-simple as the homogeneous maximal ideal will be a proper

DR-submodule.

Write Dm for the differential operators on R of order ≤ m; write Dm
l ⊂ Dm for

the homogeneous differential operators of degree l. Let X̂ = SpecR be the affine cone

over X, which embeds naturally in An+1 = Spec k[x0, . . . , xn], and let U = X̂ r {m}
be the punctured cone, so π : U → X is an A1-bundle.
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Let

I =
n+1∑
i=0

xi
∂

∂xi
∈ D1

0

be the Euler operator on R induced from that on k[x0, . . . , xn]. Write Diffm for the

sheaf of differential operators of order ≤ m on U . Note that by reflexivity of Dm we

have that

Dm = H0(U,Diffm).

Thus I gives a global section of Diff1, and let Diffme ⊂ Diffm be the subsheaf of

differential operators δ with [I, δ] = eδ. The global sections of Diffme are exactly those

homogeneous differential operators δ on R such that for any homogeneous polynomial

f we have

deg δ(f)− deg f = e.

For any m, e, write ∆m
e = π∗(Diffme ); note then that

H0(X,∆m
e ) = H0(U,Diffme ) = Dm

e .

One can then check:

(1) ∆m
e = ∆m

0 ⊗ Le for any m ≥ 1 and any e ∈ Z.

(2) Let σ1 = ∆1
0 and let σm = ∆m

0 /∆
m−1
0 for m ≥ 2. Then σm = Symm σ1 and we

have a short exact sequence

0→ OX → σ1 → TX → 0, (5.1)

and thus by Lemma 5.3.6 short exact sequences

0→ σm−1 → σm → Symm TX → 0. (5.2)

Now, let e < 0. Twisting (5.1) by Le and taking global sections we get

0→ H0(X,Le)→ H0(X, σ1 ⊗ Le)→ H0(X,TX ⊗ Le)→ H1(X,Le).

By Kodaira vanishing, H1(X,Le) = 0, while clearly H0(X,Le) = 0. Thus, if

H0(X,TX ⊗ Le) = 0, then H0(X, σ1 ⊗ Le) = 0. Moreover, since by definition

σ1 ⊗ Le = π∗(Diff1
e), we have that

0 = H0(X, σ1 ⊗ Le) = H0(U,Diff1
e) = D1

e
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for e < 0. Thus, if H0(X,TX ⊗ Le) = 0 for e < 0, then R has no derivations of

negative degree.

Now, we handle the higher order differential operators by induction on m. Again,

let e < 0. Twisting (5.2) by Le and taking global sections we get

0→ H0(X, σm−1 ⊗ Le)→ H0(X, σm ⊗ Le)→ H0(X, Symm TX ⊗ Le)

Vanishing of H0(X, Symm TX⊗Le) for all m and all e < 0 will imply that H0(X, σm⊗
Le) = H0(X, σm−1 ⊗ Le) for all m and all e < 0, and we have seen already that

H0(X, σ1 ⊗ Le) = 0 for e < 0, and thus we obtain H0(X, σm ⊗ Le) = 0 for all m and

all e < 0.

By definition we have

0→ ∆m−1
e → ∆m

e → σm ⊗ Le → 0

and thus

0→ H0(X,∆m−1
e )︸ ︷︷ ︸

Dm−1
e

→ H0(X,∆m
e )︸ ︷︷ ︸

Dme

→ H0(X, σm ⊗ Le).

Since the rightmost term vanishes, we know that Dm
e = Dm−1

e for all e < 0, and we

know already that D1
e = 0 for e < 0, and thus the result is shown.

5.5 The tangent bundle of degree-3 del Pezzo surfaces

In this section, we will treat the case of del Pezzo surfaces of degree 3, and show

that their tangent bundles are not big. In the next section, we will treat those of

degree 4. While our results for degree-4 del Pezzos actually imply the results for

those of degree-3, the argument is simpler in the degree-3 case, and the statement

actually slightly stronger. By [Hsi15, Corollary 1.3], toric del Pezzo surfaces (i.e.,

those of degree ≥ 6) have big tangent bundles, while combining the results of this

section and the next implies those of degree ≤ 4 do not have big tangent bundles (see

Corollary 5.6.3).

The del Pezzo surfaces of degrees 3 embed as surfaces in P3. If one attempts to

use the resulting short exact sequences for their tangent bundles, however, one runs

into difficulties. Instead, the key is to study the cotangent bundles, via the following

elementary fact:

Lemma 5.5.1. For any smooth surface Y , TY ∼= ΩY (−KY ).
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Proof. The nondegenerate pairing ΩY × ΩY → OY (KY ) induces an isomorphism

(ΩY )∨ ∼= ΩY (−KY ), and (ΩY )∨ is simply TY .

For the rest of this section we work over an arbitrary ground field of characteristic 0.

We will prove:

Theorem 5.5.2. Let X be a del Pezzo surface of degree 3, i.e., a smooth cubic surface.

TX is not big; in fact, H0(X, Symm TX) = 0 for all m.

This theorem immediately implies Theorem 5.1.1: Set R = S(X,OX(1)) =⊕
mH

0(X,OX(m)). Combining Theorem 5.4.1 and Theorem 5.5.2, we have that

R has no differential operators of negative degree, and thus R is not a simple DR-

module and DR is itself not a simple ring. On the other hand, note that X is Fano

(since by adjunction ωX = OX(−1)). Thus R has klt (thus also rational) singularities;

since X is a hypersurface R is Gorenstein, and thus we have obtained the counterex-

ample to Question 5.2.5 promised in Theorem 5.1.1. We note here that nothing in our

results is specific to C[x, y, z, w]/(x3 +y3 +z3 +w3), but applies also to C[x, y, z, w]/(F )

for any homogeneous cubic F defining a smooth projective surface in P3.

Remark 5.5.3. Recent work of [HIM19] has considered positivity properties of the

tangent bundle of del Pezzo surfaces, and in particular of TX . The notions of positivity

they examine are analytic in nature, and in particular the definitions of “big” for

vector bundles they consider is not the same as the bigness of OPTX (1). Thus, our

result in Theorem 5.5.2 does not follow from their results, and the methods we use

here are much more algebraic in nature.

Lemma 5.5.4. Let n ≥ 3 and m ≥ 1. Then:

(1) H0(Pn, Symm ΩPn(e)) = 0 for e < m+ 1.

(2) H1(Pn, Symm ΩPn(e)) = 0 for e < m− 1.

(3) H i(Pn, Symm ΩPn(e)) = 0 for 1 < i < n and any e.

Proof. The Euler sequence for ΩPn is

0→ ΩP 3 → OPn(−1)⊕n+1 → OPn → 0.

Since all terms are locally free and the rightmost term has rank 1, by Lemma 5.3.6 we

have a short exact sequence of symmetric powers

0→ Symm ΩPn → Symm(OPn(−1)⊕n+1)︸ ︷︷ ︸⊕
OPn (−m)

→ Symm−1(OPn(−1)⊕n+1)︸ ︷︷ ︸⊕
OPn (−m+1)

→ 0
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(the ranks are unimportant and we suppress them). Twisting by some OPn(e) yields

0→ Symm ΩPn(e)→
⊕
OPn(−m+ e)→

⊕
OPn(−m+ e+ 1)→ 0.

Claim (1) of the lemma for e < m follows (in any characteristic) by taking global

sections, obtaining

0→ H0(Pn, Symm ΩPn(e))→ H0
(
Pn,
⊕
OP 3(−m+ e)

)
,

and noting that the right term vanishes for −m+ e < 0, but for e = m we must take a

slightly different approach, for which a slight change in notation will be helpful: Write

Pn = P(V ) for a vector space V of dimension n. We twist the Euler sequence for the

tangent bundle by OP(V )(1), obtaining

0→ OP(V )(−1)→ V ∨ ⊗OP(V ) → TP(V )(−1)→ 0.

Taking symmetric powers we obtain

0→ Symm−1(V ∨ ⊗OP(V ))(−1)︸ ︷︷ ︸
Symm−1(V ∨)⊗OP(V )(−1)

→ Symm(V ∨ ⊗OP(V ))︸ ︷︷ ︸
Symm(V ∨)⊗OP(V )

→ Symm(TP(V )(−1))→ 0.

Dualizing this sequence we have

0→
(
Symm(TP(V )(1))

)∨ → Symm(V ∨)∨ ⊗OP(V ) → Symm−1(V ∨)∨ ⊗OP(V )(1)→ 0.

Now, using that we are in characteristic 0, we know that

(
Symm(TP(V )(1))

)∨ ∼= Symm(ΩP(V )(1)) = Symm ΩP(V )(m).

Thus, to see that H0(Pn, Symm ΩP(V )(m)) = 0, it suffices to show that the map

H0(Pn, Symm(V ∨)∨ ⊗OP(V ))→ H0
(
Pn, Symm−1(V ∨)∨ ⊗OP(V )(1)

)
(5.3)

is injective. But this is just the canonical map of vector spaces

Symm(V ∨)∨ → Symm−1(V ∨)∨ ⊗ V.
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which is dual to the canonical multiplication

Symm−1(V ∨)⊗ V ∨ → Symm(V ∨),

which is obviously surjective, and thus (5.3) is injective and the e = m case of claim

(1) is shown.

For claim (2), the relevant terms of the long exact sequence are

H0
(
Pn,
⊕
OPn(−m+ e+ 1)

)
→ H1(Pn, Symm ΩPn(e))→ H1

(
Pn,
⊕
OPn(−m+ e)

)
.

The right term vanishes always, while the left term is zero if −m+ e+ 1 < 0.

Finally, claim (3) follows by examining the terms

H i−1
(
Pn,
⊕
OPn(−m+e+1)

)
→ H i(Pn, Symm ΩPn(e))→ H i

(
Pn,
⊕
OPn(−m+e)

)
and noting that the first and last terms vanish for any e and 1 < i < n.

Lemma 5.5.5. Let m ≥ 1. Then:

(1) H0(X, Symm ΩP3|X(m)) = 0.

(2) H1(X, Symm ΩP3|X(m− 3)) = 0.

Proof. We start with (1): Twisting the short exact sequence 0→ OP3(−3)→ OP3 →
OX → 0 by Symm ΩP3(m), we have

0→ Symm ΩP3(m− 3)→ Symm ΩP3(m)→ Symm ΩP3|X(m)→ 0.

Taking the long exact sequence in cohomology we get

H0(X, Symm ΩP3(m))→ H0(X, Symm ΩP3 |X(m))→ H1(X, Symm ΩP3(m−3)). (5.4)

By Lemma 5.5.4 the first and last terms vanish, and thus H0(X, Symm ΩP3|X(m)) = 0,

as desired.

For (2), we twist 0→ OP3(−3)→ OP3 → OX → 0 by Symm ΩP3(m− 3) and take

the long exact sequence, yielding relevant terms

H1(P3, Symm ΩP3(m−3))→ H1(X, Symm ΩP3|X(m−3))→ H2(P3, Symm ΩP3(m−6)).

Again, Lemma 5.5.4 says that the outer terms vanish and thus H1(X, Symm ΩP3 |X(m−
3)) = 0.
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Proof of Theorem 5.5.2. By 5.5.1, we have that

Symm(TX) = Symm(ΩX(1)) = Symm(ΩX)(m),

and so it suffices to show that

H0(X, Symm(ΩX)(m)) = 0

for all m.

We have a presentation

0→ OX(−3)→ ΩP3|X → ΩX → 0

for ΩX ; taking symmetric powers and twisting by OX(m), we have

0→ Symm−1(ΩP3|X)(m− 3)→ Symm ΩP3|X(m)→ Symm ΩX(m)→ 0.

Taking the long exact sequence in cohomology we have

H0(X, Symm ΩP3|X(m))→ H0(X, Symm ΩX(m))→ H1(X, Symm−1 ΩP3 |X(m− 3)).

But Lemma 5.5.5 implies immediately that the outer terms vanish, and thus so does

the middle term, proving the theorem.

5.6 An alternate proof, and the case of degree-4 del Pezzos

In this section, we give an alternate proof of Theorem 5.5.2 as a corollary of [BD08].

We then use related work of [DL19] to treat the case of del Pezzos of degree 4.

We recall first:

Theorem 5.6.1 ([BD08, Theorem B]). If X ⊂ Pn is a smooth hypersurface, then for

any m > 1,

H0(X, Symm ΩX(m)) 6= 0

if and only if X is a hyperquadric in Pn.

Recall that if X is a smooth cubic surface in P3, then we have an isomorphism

TX ∼= ΩX(1), and thus applying the theorem we have immediately that

H0(X, Symm TX) = H0(X, Symm ΩX(m)) = 0,
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thus recovering Theorem 5.5.2.

We note that the proof of [BD08, Theorem B] involves a detailed study of the

tangent map and the tangent 2-trisecant variety of the embedding X ⊂ Pn, and thus

the proof we gave in the preceding section is significantly more elementary, although

correspondingly less general.

We now turn to the proof of the following theorem, using results of [DL19]:

Theorem 5.6.2. Let X be a del Pezzo surface of degree 4. Then TX is not big.

Proof. Let X ⊂ P4 is the anticanonical embedding of X as a complete intersection

of two quadrics in P4, say Q1, Q2. Let f :
⋃
x∈X TxX → P4 be the tangent map of X,

which associates to a point in a tangent plane to x ∈ X the corresponding point of P4.

Combining Corollaries 2.1 and 3.1 of [DL19], we have that if:

f is surjective with connected fibers (∗)

then there is a graded isomorphism
⊕

H0(X, Symm ΩX(m)) = Sym•H0(X, IX(2)) =

C[Q1, Q2] (where degQ1 = degQ2 = 2). Assuming (1) and (2), then, we have that

H0(X, Sym2m ΩX(2m)) has as basis the set of degree-m monomials in the Qi, and

thus grows like m rather than m3, and thus ΩX(m) is not big. Since we already know

that TX = ΩX(m) (using that X is a surface embedded by its anticanonical divisor),

this implies that TX is not big.

So, all that remains is to show that (∗) holds. First, note that
⋃
x∈X TxX has

dimension 4, so to obtain surjectivity of the tangent map f it suffices to check that it

is generically finite. Since the tangent map is injective on each tangent plane TxX, it

suffices to check that a general point of P4 lies on only finitely many tangent planes to X.

This follows immediately, however, from the fact that the Gauss map γ : X → Gr(2,P4)

associating to a point x ∈ X the tangent hyperplane TxX ∈ Gr(2,P4) is not just

generically finite, but birational (see [Zak93, Corollary 2.8]).

Note that this implies that f itself is generically injective and dominant, and thus

f is in fact birational. This immediately gives connectivity of the fibers f−1(p) for

p ∈ P4: Since the tangent map f is a birational morphism onto the smooth variety

P4, Zariski’s main theorem implies that f has connected fibers, and thus the proof is

complete.

Corollary 5.6.3. Let Xi be a del Pezzo surface of degree i. Then TXi is not big for

i < 5.
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Proof. First consider X4, which is the blowup of P2 at five general points. −KX4

embeds X4 as the intersection of two smooth quadrics in P4, which we have just seen

does not have big tangent bundle. If i < 4, we can view Xi as the blowup of X4 at

i− 4 general points, say µ : Xi → X4. We have an injection

TXi ↪→ µ∗TX4 ;

taking the m-th symmetric power yields a morphism

Symm TXi ↪→ Symm µ∗TX4 = µ∗ Symm TX4 .

This must be an injection, since TXi ↪→ µ∗TX4 is generically an isomorphism, so

Symm TXi → Symm µ∗TX4 is generically an isomorphism well and thus has torsion

kernel, but Symm TXi is locally free and thus cannot have a torsion subsheaf. Tak-

ing global sections and noting that H0(Xi, µ
∗ Symm TX4) = H0(X4, Symm TX4) since

µ∗OXi = OX4 , we thus have a containment

H0(Xi, Symm TXi)→ H0(X4, Symm TX4),

and thus H0(Symm TXi) cannot grow like m3.

Remark 5.6.4. In particular, as mentioned at the beginning of this section, once

we know that TX4 is not big, TX3 cannot be big either; however, our result above

actually shows that H0(X3, Symm TX3) = 0 for all m, which does not follow from our

treatment of TX4 , as we saw above that H0(X4, Sym2 TX4) is 2-dimensional.

5.7 A partial converse

The preceding section showed that given a Fano variety X and an ample line bundle

L, the section ring S(X,L) may not be D-simple, even though it has only a Gorenstein

rational singularity. Even though this is not true, however, one can formulate a partial

converse (Theorem 5.7.4), which imposes conditions on the singularities of a D-simple

ring.

Proposition 5.7.1. Let X be a smooth complex projective variety. If TX is big then

X is uniruled.

Proof. First, we recall the following theorem of Miyaoka:
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Theorem 5.7.2 ([Miy87, Corollary 8.6]). If a smooth complex projective variety X

is not uniruled then ΩX is generically nef, i.e., ΩX |C is nef for a general complete

intersection curve C ⊂ X.

Now, say X is not uniruled but TX is big. Take L to be an ample line bundle

on X and consider a nonzero global section s ∈ H0(X, Symm TX ⊗ L−1). Choosing

a general complete intersection curve C ⊂ X, which by generality will not lie in the

zero locus of s, we obtain a nonzero global section s|C ∈ H0(C, Symm TX |C ⊗ L|−1
C ).

We can view this nonzero global section equivalently as an injection

OC ↪→ Symm TX |C ⊗ L|−1
C ,

or as an injection

L|C ↪→ Symm TX |C .

Moreover, we note that (Symm TX |C)∨ = Symm ΩX |C , and that since ΩX |C is nef so is

Symm ΩX |C (by [Laz04b, Theorem 6.2.12(iii)]).

Lemma 5.7.3. If C is a smooth curve, L a line bundle on C of positive degree (thus

ample), and E a vector bundle on C with E∨ nef, then there is no injection L ↪→ E.

Proof. Say we have L ↪→ E. The cokernel Q := E/L may not be torsionfree, but we

may consider the surjection

E → Q→ Q/torsion.

Since C is a smooth curve, Q′ := Q/torsion is locally free, and thus so is the kernel of

the surjection

E → Q′.

Call this locally free kernel L′; it is clear L′ is a line bundle containing L, and thus

degL′ ≥ degL > 0. The short exact sequence of locally free sheaves

0→ L′ → E → Q′ → 0

dualizes to

0→ (Q′)∨ → E∨ → (L′)∨ → 0.

However, E∨ was supposed to be nef, yet the quotient (L′)∨ is not, and we thus have

a contradiction, so there can be no injection L ↪→ E.
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Applying this lemma with E = Symm TX and L = L|C , we obtain Theorem 5.7.1.

The following theorem recovers and extends [BJN19, Corollary 4.49], which treated

the Gorenstein case.

Theorem 5.7.4. Let R be a normal Q-Gorenstein graded C-algebra, generated in

degree 1, with an isolated singularity. If R is D-simple, then Proj(R) is Fano, and

thus R has klt singularities, and thus rational singularities.

Proof. Let X = ProjR, with L = OX(1) the corresponding ample line bundle. Thus,

we have that R = S(X,L) is the section ring of the smooth projective variety X under

the projectively normal embedding defined by L. Since R is Q-Gorenstein, we must

have that KX ∼ r ·L for r ∈ Q. D-simplicity of R forces TX to be big. Thus, applying

Theorem 5.7.1, we have that X must be uniruled.

Since X is uniruled, we must have H0(X,mKX) = 0 for all m > 0. But for m

sufficiently large and divisible we have mKX ∼ a · L for a = mr ∈ Z, |a| � 0. Thus

H0(X, aL) = 0 for a� 0, and by ampleness of L we must have that a < 0, so r < 0

and −KX is ample. Thus X is Fano and embedded by a multiple of its canonical

divisor, so S(X,L) has klt singularities by [Kol13, Lemma 3.1].

5.8 Relationship to differential operators in characteristic p

As mentioned in Section 5.2, part of the motivation for the conjectural relationship

between klt singularities and D-simplicity is the equivalence of D-simplicity and F -

regularity for F -pure varieties, and the analogy between F -regularity in characteristic

p and klt singularities in characteristic 0. In this section, we give a brief discussion of

these analogies.

Remark 5.8.1. By [SS10, Theorem 5.1], a smooth (or klt) Fano variety X over C
has globally F -regular type; this means that if one looks at various models Xp of

X over finite fields Fp, then Xp is globally F -regular for almost all p; this in turn is

equivalent to the section ring S(Xp, Lp) being strongly F -regular for any ample line

bundle Lp on Xp. We avoid giving a formal definition here, but the following example

is indicative of the general process, at least in the case where X can be defined over

the subring Z ⊂ C:

Example 5.8.2. Let X = ProjC[x, y, z, w]/(x3 + y3 + z3 + w3) be a smooth cubic

surface. Then for each prime p, we have Xp = ProjFp[x, y, z, w]/(x3+y3+z3+w3); then
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we have a natural choice of section ring S(Xp, Lp) = Fp[x, y, z, w]/(x3 + y3 + z3 +w3).

For p ≥ 5, this is strongly F -regular (by Fedder’s criteria [Fed83]). Thus, X has

F -regular type.

Remark 5.8.3. For any p ≥ 5, since Fp[x, y, z, w]/(x3 + y3 + z3 + w3) is strongly

F -regular (and F -pure), it is D-simple, and in particular has differential operators of

negative degree. However, our above results showed that C[x, y, z, w]/(x3+y3+z3+w3)

is not D-simple, as it has no differential operators of negative degree. That is, there is

no hope in general to “lift” differential operators of negative degree from characteristic

p to characteristic 0. This offers another example of the phenomena discussed in

[Smi95], where the ring Rp = (Z/pZ)[x, y, z]/(x3 + y3 + z3) is shown to have a degree-0

differential operator for p ≡ 1 mod 3 (i.e., those p such that Rp is F -split) that does

not arise as the image of a differential operator on Z[x, y, z]/(x3 + y3 + z3). As

is noted there, this shows that there are “more” differential operators in positive

characteristic. The example of this chapter is further evidence for this heuristic: in

positive characteristic p ≥ 5, Fp[x, y, z, w]/(x3 +y3 +z3 +w3) has differential operators

of arbitrarily negative degree, while C[x, y, z, w]/(x3 + y3 + z3 +w3) has no differential

operators of negative degree.

Remark 5.8.4. Recent work of [BJN19] introduced an invariant s(R) of a ring R,

called the differential signature. One always has 0 ≤ s(R) ≤ 1, and if s(R) > 0 then

R is DR-simple. We will not recall the definition of this invariant here, but want to

note briefly that our results give an example of the contrasting behavior of s(R) in

positive characteristic and characteristic 0:

Let Rp = Fp[x, y, z, w]/(x3 +y3 +z3 +w3) and R = C[x, y, z, w]/(x3 +z3 +z3 +w3).

Since R is not DR-simple, the differential signature of R (over C) must be zero. On the

other hand, Rp is strongly F -regular for each p, so it has positive F -signature; moreover,

one can calculate using [Shi18] the limit of the F -signatures as p goes to infinity to

be 1/8. By [BJN19, Lemma 5.15], this bounds the limit of the differential signatures

of Rp (over Z) away from 0. Thus, one cannot expect to calculate the differential

signature in characteristic 0 as a limit of differential signatures in characteristic p as

p→∞. For further discussion on this question, see [BJN19, Section 5.3].

Remark 5.8.5. Although the main result of this chapter is that the characteristic-0

analogue of “strongly F -regular implies D-simple and F -pure” is false, another interest-

ing connection to characteristic p arises from considering the potential characteristic-0

converse, that is, does a D-simple ring with log canonical singularities necessarily have

klt singularities?
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We note that this follows from the conjectural relation between F -purity and

log canonical singularities, as follows: Let R be a D-simple Q-Gorenstein essentially

finite-type C-algebra and assume that R has log canonical singularities. One can

choose a finite-type Z-algebra A and an essentially finite-type A-algebra RA such that

RA ⊗A C = R, and consider the reductions of RA modulo the expansion of various

maximal ideals of A. For simplicity, we assume that we can take A to be Z, although

the general case proceeds in the same way.

Conjecturally (see, e.g., [Tak13, Conjecture 2.4]), since R is log canonical there is

a dense (but likely not open) subset of Z such that the reduction Rp is F -pure (i.e., R

is of dense F -pure type) for p in this subset. By [SV97, Theorem 5.2.1], D-simplicity

of R descends to D-simplicity of Rp for p in an open dense subset of Z as well. An

open dense set and an arbitrary dense set intersect in a dense subset, and thus over a

dense subset of Z, Rp is F -pure and D-simple, and thus strongly F -regular by [Smi95,

Theorem 2.2]. Thus, R is of (dense) strongly F -regular type. Theorem 3.3 of [HW02]

then implies that R is klt (and thus also has rational singularities).

It would be interesting to have a proof that D-simple plus log canonical implies

klt that does not rely on reduction to positive characteristic.

5.9 Big tangent bundles in characteristic 0

In this section, we briefly review what is known about bigness of the tangent

bundle for smooth complex projective varieties; throughout, X will denote such a

variety.

Remark 5.9.1. By [Wah83], if X is a smooth projective variety and L an ample

line bundle, then H0(X,TX ⊗ L−1) 6= 0 forces X to be be projective space Pn, and

additionally L = OPn(1) (except if n = 1 in which case L might be OP1(2)). That is,

if dimX ≥ 2 and R = S(X,L) has a derivation of negative degree, then X must be

the projective n-space, and R just a polynomial ring.

It appears that less is known about the potential nonvanishing of global sections of

the higher symmetric powers H0(X, Symm TX ⊗ Le). The following result is as much

as is known to us:

Theorem 5.9.2 ([ADK08, Theorem 6.3]). Let X be a smooth complex projective

variety of Picard number 1 and L an ample line bundle. If H0(X,T⊗mX ⊗ L−m) 6= 0,

then either X = Pn and L = OPn(1) or Q is a quadric hypersurface and L is the

restriction of the hyperplane class from the ambient projective space.
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Since in characteristic 0 we can embed Symm TX ↪→ T⊗mX , this implies that if X is as

above, and not a projective space or a hyperquadric, then H0(X, Symm TX⊗L−m) = 0.

That is, for such X we can rule out differential operators on R = S(X,L) of order

m and degree −m. We do not know if one can extend this theorem to varieties with

higher Picard number.

We emphasize that results of the above form are very specific to characteristic 0;

for example, [Wah83] gives the example of the ring R = (Z/2Z)[x0, x1, x2]/(x2
0 +x1x2);

ProjR is a smooth quadric, but ∂/∂x0 is a differential operator on R of order 1 and

degree −1.

Remark 5.9.3. Bigness of the tangent bundle of a smooth projective variety is known

in the following cases:

• projective spaces.

• quadrics (of any dimension).

• varieties X admitting an ample line bundle L such that the section ring S(X,L)

is a split summand of a polynomial ring, and thus in particular:

• smooth toric varieties.

• Grassmannians and (partial) flag varieties.

• when TX is nef (conjecturally, by [CP91] this is equivalent to X being rational

homogeneous) and dimX ≤ 3.

• products of the above varieties.

Note that while many of these are Fano varieties, not all are (e.g., many toric

varieties). However, by [Hsi15], if TX is big and nef then X is Fano. Nefness of TX is

quite a restrictive condition though, and as already mentioned, it is conjectured in

[CP91] to be equivalent to X being rational homogeneous (the quotient of a semisimple

algebraic group by a parabolic subgroup).

We note here that other positivity properties of TX are well-studied, and appear

to be quite restrictive: Beyond the aforementioned conjecture on nefness, there is the

celebrated result of Mori [Mor79] proving a conjecture of Hartshorne that if TX is

ample then X ∼= Pn. It is thus natural to ask about the following question:

Question 5.9.4. What conditions on a smooth complex variety X, beyond uniruled-

ness, are imposed by bigness of the tangent bundle TX?
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Remark 5.9.5 (Recent work). There has been additional progress recently towards

this question through work of [HLS20]. There, the authors prove the following results:

(1) ([HLS20, Theorem 1.2]) Let Xi be a del Pezzo surface of degree i. Then TX is

big if and only if i ≥ 5.

(2) ([HLS20, Theorem 1.4]) Let X be a hypersurface of degree d in Pn for n ≥ 3.

Then TX is big if and only if d = 2.

We note that the missing case that (1) settles is that of the del Pezzo of degree

5, as those of degree 6 or higher are toric (and hence have big tangent bundle) and

those degree 4 or lower are covered by the results here. However, their methods are

able to treat all the non-toric del Pezzos in a uniform way, via the study of the dual

variety of minimal rational tangents. The case of the del Pezzo of degree 5 illustrates

the subtlety of the question of when a Fano variety has big tangent bundle: the del

Pezzo of degree 5 is not toric, and in fact has finite automorphism group, and yet

has big tangent bundle, while the del Pezzos of lower degree do not have big tangent

bundle. (2) sheds further light on our question above, and indicates that one may

expect bigness of TX to be quite restrictive, as it implies that projective space and

hyperquadrics are the only smooth hypersurfaces to have big tangent bundle.
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