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0.9, b̃ = 0.1, ũ0 = 1, ṽh = 0.1, Q̃ = 1 and k̃ = 0.05: (a) Contours of ũ show-
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by a distance h̃period = (3/2)λ̃. x̃ is the distance from the fixed surface. . . 72

4.7 Bifurcation diagram for Gierer-Meinhardt activator (v)-inhibitor (u) kinetics
with RD = 3/40, c̃3 = 1.0, c̃4 = 0.5 (case [B] in Figure 4.3), assuming the
domain to be fixed. Solid squares represent the stable steady-states while
hollow squares mark the unstable steady-states, obtained under zero-flux
boundary conditions. Stable patterns are obtained in the wavelength range
of 3.1 < λ̃ < 6.8 (bounds λ̃B1 , λ̃

B
2 ). H.S.S stands for the homogeneous-steady-

state solution of Equation (4.15). . . . . . . . . . . . . . . . . . . . . . . . 74
5.1 Growth of an oxide layer via diffusion of the oxidizing species (c) from the

oxide-oxygen environment interface to the metal-oxide interface. The metal-
oxide interface moves by an amount dh in time dt due to the formation of
new oxide at the metal-oxide interface. . . . . . . . . . . . . . . . . . . . . 76

5.2 Deal-Grove model of oxidation. Oxidation kinetics is limited by the reaction
kinetics in the initial stages of oxidation t̃ << 1. As the oxide layer thickens,
the process becomes limited by diffusion, leading to a parabolic behavior. . 78

5.3 Growth of an anion-deficient oxide layer by reaction with the lattice oxy-
gen at the metal-oxide interface. Positively charged anion-vacancies and
electrons diffuse to the free surface of the oxide. . . . . . . . . . . . . . . . 79

5.4 Growth kinetics of a locally-electroneutral oxide film obtained from Wagner’s
theory of electrochemical migration. Limiting behavior is observed to be
approximately parabolic. For the case of equal diffusivity of electrons and
oxygen vacancies, Dn = Dv, electric field contribution is 0 (Equation (5.16)),
reducing it to the classical diffusion model of Section 5.1.1. Weight-gain
kinetics is only shown for the case Dn = 1000Dv. . . . . . . . . . . . . . . . 81

5.5 Schematic of periodic weight-gain kinetics observed during oxidation of Zr
alloys such as Zircaloy-4 and ZIRLO (reproduced from [1]). . . . . . . . . . 82

5.6 Behavior of the modified Turing model outlined in Section 5.2.1 showing
transitions in the weight-gain kinetics, as well as in the boundary motion
kinetics, for (a) k̃ = 0.01 and (b) k̃ = 1 (refer Equation (5.19) for the
description of this constant). Other parameter values are c̃4 = 0.5, RD =
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Abstract

Zirconium alloys, widely used as the cladding material for fuel rods in pressurized-water-

reactors, undergo oxidation during service. The initial oxidation kinetics is very similar in

form to that of a classically passivating layer. However, as the oxide layer reaches a certain

critical thickness, a sudden increase in the rate of weight-gain is observed while the oxide

layer remains adhered to the substrate. This process repeats itself with an approximately

regular period in time. Microscopy images reveal a co-related periodicity in the oxide’s

microstructure as well. The acceleration in the oxidation kinetics associated with these

transitions leads to an increase in the amount of hydrogen entering the Zircaloy, limiting

the fuel burn-up in the reactors by causing hydrogen embrittlement. The aim of this thesis,

therefore, is to develop physics-based-models to understand the mechanisms which govern

this anomalous behavior. Specifics of the three major parts of this work are outlined below.

Mechanistic model for oxide growth stresses: The stresses within the oxide layer

have been postulated to play an important role in affecting its protectiveness, for example, by

allowing crack formation. Therefore, a mechanistic model for the oxide stresses is presented,

showing that the oxide deforms primarily by dislocation glide for T < 900 K, while the creep

of the substrate only becomes significant at higher temperatures. Model predictions also

suggest that the transitions in the oxidation kinetics cannot be attributed to a macroscopic

fracture of the oxide. Hence, a possible indirect influence of the oxide stresses via a phase

transformation is studied next.

Model for the martensitic phase transformation in the oxide: Tetragonal-to-

monoclinic phase transformation driven by stress-relaxation has been postulated to affect

the porosity of the oxide layer by forming micro-cracks. Therefore, a free-energy-based

xiv



framework is developed to investigate its favorability using 3-D twinning-based simulations

in ABAQUS. Results show that the loss of coherency at the grain-oxide interface plays a

crucial role in driving this phase transformation. Furthermore, the stress evolution within the

oxide is found to have a negligible effect on the transformation-energy barriers. Therefore,

alternate mathematical models for the periodic oxidation kinetics of Zircaloys are proposed

next.

Application of Turing’s pattern formation theory to oxidation-type systems:

Turing’s reaction-diffusion theory has provided crucial insights into the periodic behavior of

various physical systems. Candidate mathematical models for Zircaloy oxidation based on

the application of this theory to a moving-boundary system are proposed. These models con-

sider two species which satisfy the Turing criteria of pattern formation, and a third species

which corresponds to the oxygen ion. Model behavior shows periodic spatial distribution

of the Turing species, as well as transitions in the oxidation kinetics [hence reproducing all

of the prominent features of the experimental data]. An alternative preliminary oxidation

model is proposed, based on the stress-dependent interaction that occurs between two im-

mobile species: tetragonal phase of the oxide, and pores. Model predictions show a spatial

periodicity in the distribution of both of these species, in addition to the transitions in the

boundary kinetics, as observed experimentally.

In summary, this thesis furthers a largely experimental literature on Zircaloy oxidation

with a rigorous quantitative understanding of the underlying physical mechanisms. Fur-

thermore, to the best of our knowledge, this is the first time that mathematical models

for the oxidation behavior of Zircaloys have been proposed without using the unreasonable

assumption of oxide cracking.
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Chapter 1

Introduction

1.1 Overview

Nuclear energy plays a pivotal role in the present times, by providing an approximate

10% of world’s electricity. Nuclear reactors have been broadly classified into light-water

reactors, and heavy-water reactors, with normal water being used in the former kind and

deuterium-mixed water in the latter. Pressurized-water-reactors (PWRs), a specific type of

light-water reactors, form the most common category of nuclear reactors. In these reactors,

a primary supply of pressurized-water is used as a coolant for controlling the temperature

of the reactor core, where fission reaction in the uranium dioxide fuel pellets releases a

large amount of energy. This heated, high-pressure water supply is then directed to a heat

exchanger, where it transfers heat to a low-pressure secondary water supply, converting it to

steam. This steam is then used to drive the power turbines to produce electricity.

Reactor core of a PWR constitutes an assembly of fuel rods, each of which has pellets

of uranium dioxide fuel in a cladding tube typically made of a zirconium alloy, e.g that

of Zircaloy-4, ZIRLO etc. Zirconium alloys used for this application have low neutron-

absorption capability and resistance to high-temperature corrosion and radiation damage,

and are generally termed as Zircaloys.

The Zircaloy cladding undergoes oxidation while being exposed to the pressurized water

used as a coolant in a PWR. Notably, the oxidation of some of the Zircaloys, such as that

1



of Zircaloy-4, shows an anomalous behavior. The initial oxidation kinetics are very similar

in form to that of a classically passivating layer, with the rate decaying as the oxide layer

thickness increases. At a certain critical thickness (depending on the particular alloy and

temperature) the layer appears to lose its protective nature, and the oxidation rate resets back

to the initial rate corresponding to the absence of any protective layer [1]. This transition

occurs without any loss of thickness. As the oxide continues to grow, the kinetics associated

with a protective layer are re-established, until the transition occurs again. This cycle repeats

itself with a regular period in thickness throughout the oxidation process. Oxidation occurs

at the metal-oxide interface, with the oxidizing species diffusing through the oxide to the

interface. During the first few hundred nanometers of oxide growth, when the oxidation

rate is very rapid, the oxide grains that form at the interface are small and equiaxed. As

the oxidation rate slows down, the grains that form at the metal-oxide interface tend to

be larger and columnar. The small equiaxed grains are left as a thin layer on top of the

columnar grains within the oxide microstructure, as oxidation progresses. After the transition

to the faster oxidation kinetics occurs, the grains that form at the interface become small

and equiaxed again for the first few hundred nanometers of oxidation after the transition.

Once the oxidation rate slows down again, the relatively large columnar grains form again.

This alternating structure of a relatively thick region of large columnar grains sandwiched

between thin regions of small equiaxed grains repeats itself throughout the oxide, and is

visible in transmission-electron microscopy images [2]. The other microstructural feature

that is observed near the equiaxed grains that correspond to rapid oxidation are void-like

features running parallel to the metal-oxide interface [3].

Oxidation of zirconium is accompanied by a very high Pilling-Bedworth ratio of 1.56,

associated with the increase in molar volume upon oxidation. This results in large in-plane

compressive stresses within the oxide. In-situ measurements by XRD indicate in-plane com-

pressive stresses of magnitude 2 ∼ 4 GPa [4, 5] within the layer of oxide immediately associ-

ated with the metal interface. The magnitude of the stresses within a given element of the

2



oxide layer then relaxes as the oxidation front proceeds into the metal. While the oxide layer

remains relatively thin, this relaxation of stresses is probably associated with creep within

the oxide. Furthermore, oxide stress has been postulated to play a significant role in driv-

ing the transitions in the oxidation kinetics by allowing the formation of through-thickness

cracks. Therefore, in chapter 2 of this thesis, we propose a model for stress-relaxation within

the oxide layer and analyze if the stress-distributions allow for the possibility of formation

of such cracks.

XRD measurements have also been used to determine the phases in the oxide [6, 7]. The

monoclinic phase of zirconia is thermodynamically stable at temperatures below 1400 K,

above which the tetragonal phase is stable up to 2600 K, when the cubic phase becomes

stable. However, in the oxide layers formed on zirconium alloys, the tetragonal phase is

observed even at temperatures well below 1000 K. Studies have shown that the oxide that

first forms at the interface with the alloy substrate has a significantly higher fraction of the

tetragonal phase (60% ∼ 80%) than the monoclinic phase. The average volume fraction of

the tetragonal phase in the oxide layer drops to a limiting value of 5% ∼ 10% when the oxide

is very thick. While one set of experiments indicate this drop to occur at a rate that decreases

monotonically over time [6, 5], there are others which report a sudden increase in this rate

near the observed transitions in the oxidation kinetics [8, 9]. Due to such discrepancies in the

experimental trends, which are a possible consequence of both known and unknown factors,

e.g type of alloy, manufacturing processes, chemistry of the oxidation environment, specimen

preparation etc., it has been challenging to make rigorous conclusions on the behavior of this

phase transformation. However, an analytical understanding of this phenomenon is crucial,

as it has been postulated to affect the porosity of the oxide layer due to its ability to cause

micro-cracks [10]. Therefore, in chapter 3 of this thesis, we focus on developing a quantitative

understanding of the energetics of this phase transformation in a free-energy framework.

One of the most prominent feature of zirconium oxidation is a layered appearance of

the oxide films reported in several independent microscopy studies [1, 3, 11], wherein each
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layer is observed to be separated by periodically located void-like structures. Furthermore,

some studies also indicate a periodicity in the spatial distributions of the tetragonal and

monoclinic phase fraction [3]. We considered several candidates of pattern formation theories

to understand this behavior. Spinodal decomposition has been found to result in periodic

microstructures [12]. However, zirconium-oxygen phase diagram does not exhibit a spinodal

curve. Patterns have been found to form during dendritic growth as well. This phenomenon,

however, generates a pattern at the moving front/interface. Whereas, in case of zirconium

oxidation, pattern is observed to form in the wake of the moving metal-oxide interface.

Alan Turing’s theory of pattern formation for the type of systems that follow reaction-

diffusion type of equations has been widely used to explain patterns in developmental biology

[13, 14, 15, 16, 17, 18]. Notably, Turing patterns have been observed to form in the wake of

domain boundaries that move at a constant velocity, which makes this theory a reasonable

candidate of study to understand the oxidation of Zircaloys. However, in case of zirconium

oxidation, we observe a periodicity in the rate of the metal-oxide interface movement that

is strongly correlated with the spatial periodicity within the oxide, which hints towards an

interdependence between the two phenomenon. Therefore, we want to understand the Turing

systems where the process of pattern formation interacts with the boundary motion, which

is the focus of chapter 4 of this thesis.

Chapter 5 of this thesis focuses on the mathematical modelling of oxidation of zirconium

alloys. We propose necessary modifications to the Turing framework proposed in chapter 4,

for the purpose of application to zr alloys. However, this framework requires an extensive

list of criteria to be satisfied by the interacting species, which makes it challenging to bridge

connections with the actual physical mechanisms. Therefore, we also propose an alternative

model for oxidation in zr alloys, based on the the interaction between the tetragonal phase

of the oxide and the pores.

In the following sections, we will discuss the specifics of work presented in each of the

chapters in brief.

4



1.2 Mechanistic modelling of oxide stresses

We proposed a mechanistic model for growth stresses in the oxide layer formed on zirco-

nium alloys at the temperatures of T = 600−1000 K. We consider double-sided oxidation of

a plane sheet specimen. This model predicts the evolution of stresses as the oxide thickens,

for a given profile of the oxidation temperature with respect to time. Material parameters

for elastic deformation, linear, as well as non-linear creep, and thermal expansion are taken

from appropriate experimental studies and the resulting predictions for the evolution of the

stress distributions are compared with other experimental data. The governing differential

equations are solved using an iterative procedure implemented in MATLAB.

1.3 Martensitic phase transformation in the oxide

We developed a free-energy-based framework to investigate the favorability of the marten-

sitic transformation of the tetragonal phase of the oxide to the monoclinic phase for temper-

atures of T = 600 − 1000 K. Finite-element 3D modelling was used to estimate the strain

energy barrier for equiaxed and columnar shaped tetragonal grains transforming in a ho-

mogeneous matrix of the oxide. The grain sizes considered for the analysis are consistent

with the grain morphology observed experimentally in the oxide layers. We supplement this

continuum-based-analysis with molecular dynamics simulations to understand the effect of

various crytal defects present within the oxide layer on the relative stability of each phase,

using LAMMPS software package.

1.4 Turing model of pattern formation in oxidation-type systems

We analyze the behavior of two-species Turing systems with a moving boundary, the mo-

tion of which is assumed to be governed by the diffusing species, e.g. oxygen ions in the case

of zirconium oxidation. Turing’s pattern formation theory involves a system that follows

reaction-diffusion type of governing equations. There are two types of system which sat-
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isfy Turing’s diffusion-driven-instability criterion, activator-inhibitor systems and activator-

substrate systems, based on the nature of the reaction terms in the equations. We consider

one model of each of these categories. The system of governing PDEs is first transformed to

a fixed-domain, and then solved numerically using FlexPDE professional software package.

1.5 Candidate mathematical models for Zircaloy oxidation

Most of the oxidation studies for metals and alloys measure the weight-gain of the sample

and use that to obtain an estimate of the oxide-thickness, rather than a direct measurement of

the latter. For certain materials, including Zircaloys, the weight-gain kinetics is observed to

be periodic in nature (3 ∼ 4 cycles from the beginning of the oxidation process) [1, 19, 20, 21].

For the particular case of Zircaloys, there is a strong evidence of a correlated periodicity

in the rate of movement of the metal-oxide (M-O) interface as well, directly through the

oxide-thickness measurements [11], and indirectly through the periodic grain morphology

observed within the oxide layer [3]. Therefore, an appropriate model for the oxidation of

Zircaloys should exhibit a correlated periodicity in the weight-gain kinetics and the M-

O interface movement kinetics for at least a few initial cycles. It should also result in a

spatial periodicity that is strongly correlated with the boundary kinetics [3, 2]. We propose

modifications of the Turing models outlined in Section 1.4 to reproduce this behavior. These

modifications consider a system of 3-species, interacting in a manner that ensures that the

species that controls the rate of boundary movement is conserved. We also propose an

alternative oxidation model based on the interaction between the tetragonal phase of the

oxide and pores, both of which are observed to form periodic spatial distributions within

the oxide. This model uses a localized interaction zone at the metal-oxide interface, and

immobility of these species to generate a periodic behavior, while satisfying only a subset of

the Turing conditions.
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Chapter 2

Mechanistic Model of Stresses in the Oxide Layer Formed on

Zirconium Alloys

2.1 Introduction

Zirconium alloys are used as the cladding material for fuel rods in a Pressurized-Water

Reactor (PWR) because of their low neutron-absorption capability and their resistance to

high-temperature corrosion and radiation damage. The cladding undergoes oxidation while

being exposed to the pressurized water used as a coolant in a PWR. Oxide films formed

on zirconium alloys are subjected to in-plane compressive stresses associated with a Pilling-

Bedworth ratio of 1.56 [22]. The compressive stress and the good adherence between the

oxide and substrate make these films inherently protective in nature, because the compressive

stress prevents the formation of cracks which could provide a low resistance path for diffusion

of the oxidizing species. However, despite the compressive stress, transitions in the nature of

the oxide and its kinetics have been observed [1]. The resultant accelerated oxidation rates

lead to an increase in the amount of hydrogen entering the Zircaloy, and embrittlement by

the resultant formation of hydrides, which can place limits on the fuel burn-up in reactors.

The monoclinic phase of zirconia is thermodynamically stable below 1400 K, above which

the tetragonal phase is stable up to 2600 K. However, phase-characterization studies [5, 6,

23, 24] show that there is a high density of the tetragonal phase in the oxide film, even at

temperatures below 1000 K. It is recognized that the high compressive stresses within the
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oxide may be a contributing factor to this observation [25]. Experiments show that both the

volume fraction of the tetragonal phase and the compressive stresses in the oxide decrease

continuously with time, and this phase transformation has been postulated as a possible

trigger for a transition in the oxidation kinetics of zirconium alloys [10].

Since the oxide stresses play an important role in these processes, we would like to be able

to predict the evolution of the stress field under varying mechanical and thermal conditions.

This is the objective of this chapter.

2.2 Statement of the problem

We consider the problem illustrated in Figure 2.1 in which a plane sheet is oxidized on

both sides, since this geometry has been used in several experimental studies [5, 24, 26]. We

shall argue later that the methods developed are easily applied to other geometries more

representative of practical PWR systems. We assume that the oxide film thickness hox(t)

and the [spatially uniform] temperature T (t) are known functions of time t, and we wish to

predict the evolution of the corresponding stress field.

metal

oxide

mh

x

y

O

h
ox

Figure 2.1: Two-sided oxidation of a thin sheet specimen

We define a coordinate system such that the y-axis is perpendicular to the plate surfaces

and x and z are in-plane directions. The symmetric geometry implies that no bending occurs

and hence the in-plane strains εxx(t), εzz(t) are independent of y. The sheet is free to expand

in both x and z-directions, so these strain components must be equal and the corresponding
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stress state is also biaxial — i.e.

εxx = εzz ≡ ε(t) and σxx = σzz ≡ s(y, t) ; σyy = 0 (2.1)

which serves to define the in-plane biaxial stress s(y, t) and strain ε(t). Notice that in the

oxide, s(y, t) is a function of both y and t, since different regions of the oxide are generated

at different times, whereas in the metal, s(t) is a function of t only.

Since no forces are applied to the sheet, the mean value of s(y, t) across the thickness

must be zero for all t — i.e.

∫ h

0

s(y, t)dy = 0 , where h = hm + 2hox (2.2)

This equilibrium condition and the constitutive laws for the materials [i.e. the relations be-

tween stress, strain and temperature] are sufficient to determine s(y, t) for given hox(t), T (t).

2.3 Material behaviour

Strain components in both metal and oxide can be anticipated due to (1) elastic defor-

mation, (2) thermal strain, and (3) inelastic deformation, notably creep. We shall consider

each of these contributions separately and draw on published experimental data to decide on

appropriate functional forms and material properties. The properties of the metal substrate

are generally well-documented, though creep mechanisms can be quite complex [27]. By

contrast, oxide properties are complicated by the fact that the oxide involves a mixture of

two phases, both of which are anisotropic.

2.3.1 Elastic deformation

For Zircaloy-4, Polatidis et al. [5] quote the values Em = 96 GPa, νm = 0.34, where

E, ν are respectively Young’s modulus and Poisson’s ratio. Since elastic properties for alloys

are relatively insensitive to small changes in composition, we shall also use these values for
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ZIRLO. For the oxide the same authors give the values Eox = 253 GPa, νox = 0.282.

2.3.2 Thermal strain

Guerain et al. [28] give the value αm = 5.8 × 10−6 K−1 for the thermal expansion

coefficient of the substrate.

For monoclinic zirconia, the thermal expansion coefficient varies between 1.2× 10−6 K−1

and 12.6 × 10−6 K−1, depending on the crystal orientation [6], so the degree of uncertainty

introduced by these factors is quite large. However, these authors report XRD studies

for a sheet specimen oxidized as in Figure 2.1, after which the temperature was cycled

between T = 743 K and T = 293 K. Under these conditions, the equilibrium condition

(Equation (2.2)) and strain compatibility imply that the in-plane stress in the oxide should

change by

∆sox = (αm − αox) ∆T

/[
(1− νox)
Eox

+
2hox
hm

(1− νm)

Em

]
(2.3)

where ∆T is the change in temperature. Using this result and elastic properties from “Elastic

deformation” Section, the XRD data from [6] imply a thermal expansion coefficient αox =

5× 10−6 K−1. However, in view of the uncertainty of oxide composition and orientation, we

here use values in the range αox = 5± 2× 10−6 K−1.

2.3.3 Substrate creep

Wang et al. [27] developed a deformation-mechanism map for creep of Zircaloy-4, based

on a comprehensive survey of published experimental data. For temperatures and stress levels

in typical PWR applications, the dominant mechanisms are diffusional creep and power-law

creep.

The power-law creep mechanism exhibits a relationship between the von Mises effective

normal stress, σeq, and the effective normal strain rate ε̇eq of the form [27]

ε̇eq =
AG

T
exp

(
− Qp

RT

)(σeq
G

)5.1
(2.4)
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where Qp = 285 ± 20 kJ/mol is the activation energy, T is the absolute temperature, R

is the molar gas constant, and the shear modulus G = (39400 − 13.4T ) MPa. Wang et

al. [27] estimate the constant A as 2.1 × 1024 K MPa−1 s−1, based on a wide range of

experimental studies, though outliers in this data correspond to values with upper and lower

bounds 5.2× 1024 K MPa−1 s−1 and 7× 1023 K MPa−1 s−1 respectively. Because of the 5.1

power, the predicted stresses are rather weak functions of A, so variation within this range

has comparatively little effect on the results.

Diffusional creep is generally assumed to follow a linear relation [29]

ε̇eq =
Bσeq
T

exp

(
− Qd

RT

)
(2.5)

Data for diffusional creep parameters for Zr-4 is sparse, but using experimental data from

Kaddour et al. [30] [based on specimens with an average grain dimension of 8 µm] and

Qd = 190 kJ/mol [30], the constant B can be estimated as B = 1.76× 106 K MPa−1 s−1.

The strain-rate tensor is related to ε̇eq by

ε̇ij =
3σ′ij
2σeq

ε̇eq (2.6)

where σ′ij = σij − σkk/3 is the deviatoric component of the stress tensor. For the particular

case of in-plane biaxial stress σxx = σzz = s, σeq = |s| and the in-plane creep strain rate is

ε̇ =
3

2|s|

(
s− 2s

3

)
ε̇eq = sgn(s)

ε̇eq
2

(2.7)

where sgn(s) = s/|s| is the signum function, equal to +1 if s > 0 and −1 if s < 0.

2.3.4 Oxide creep

We are not aware of published creep data for the oxide formed on Zircaloy, so we here

assume that this can reasonably be approximated by data for other forms of zirconia [29].
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In particular, we note that diffusional creep will be of negligible significance compared with

other creep mechanisms at the compressive stresses typically exhibited in the oxide layer

[31].

Platt et al. [24] assumed the Coble-creep law proposed by Choksi et al. [31] for stabilized-

tetragonal zirconia, and showed that this mechanism had negligible impact on the oxide

stresses. However, the possibility of other creep mechanisms was not considered. In particu-

lar, it should be noted that the high compressive stresses that occur in an oxide film suppress

brittle fracture. This permits deformation mechanisms associated with dislocation motion to

occur, such as dislocation glide and power-law creep. Indeed, experimental studies [32] have

indicated that such plastic deformation occurs both in the oxide films formed on zirconium

alloys and in pure monoclinic zirconia.

Based on these arguments, we assume that deformation occurs by dislocation glide, for

which we use the generic model

ε̇eq = ε̇0 exp

[
− Qg

RT

(
1− σeq

σg

)]
(2.8)

[29]. In this equation, the yield strength at 0 K is taken to be σg = 7800 MPa, and

the activation energy is Qg = 173.5 kJ/mol, as reported for lattice-resistance-controlled

dislocation-glide in yttria-stabilized cubic zirconia by Baufeld et al. [33]. We shall estimate

the pre-exponential coefficient ε̇0 in Section “Estimation of ε̇0” below, using oxide strain

measurements at 633 K from Polatidis et al. [5], but first we need to discuss the stress state

under which the oxide is formed.

2.3.5 Oxide growth strains

Zirconium oxide has a higher molar volume than zirconium, so a biaxial compressive

stress is developed in the oxide film owing to the constraint exerted by the substrate while

the oxide forms. The Pilling-Bedworth ratio, VPB, defined as the ratio of the molar volume of
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the oxide to the molar volume of the metal. Calculation of this ratio for zirconium oxidation

is outlined in the next section.

2.3.5.1 Calculation of the Pilling-Bedworth ratio

Pilling-Bedworth ratio for oxidation is given as

VPB =
Vo
Vm

(2.9)

where Vo and Vm is the molar volume of the oxide and the metal respectively. Molar volume

of a chemical species can be calculated as follows

V =
NAVcell
Z

(2.10)

where Z is the number of formula units in the unit cell, NA is the Avogadro’s constant and

Vcell is the volume of a single unit cell. Zirconium has HPC lattice structure with unit cell

dimensions of a = 0.323 nm, c = 0.515 nm. Volume of a unit cell can then be obtained as

VZrcell =
3
√

3a2c

2
= 0.1396 nm3 (2.11)

As there are 6 atoms per unit cell, molar volume is estimated to be

VZr = 14.01 cm3/mol (2.12)

For monoclinic ZrO2, lattice parameters are a = 0.5184 nm, b = 0.5207 nm, c = 0.537 nm, β =

98.8o and it has 12 atoms or 4 formula units in a unit cell. Therefore, we obtain

VZrO2cell
= abc sin(β) = 0.1432 nm3 (2.13)

VZrO2 = 21.83 cm3/mol (2.14)
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Pilling-Bedworth ratio for zr to monoclinic zirconia is given by

VPB =
VZrO2

VZr
=

21.83

14.01
= 1.56 (2.15)

For tetragonal ZrO2, lattice parameters are a = b = 0.5141 nm, c = 0.52609 nm, β = 90o

and it has 12 atoms or 4 formula units in a unit cell.

VZrO2cell
= abc = 0.139 nm3 (2.16)

VZrO2 = 20.93 cm3/ mol (2.17)

The volumetric expansion from tetragonal to monoclinic is approximately 3 percent.

2.3.5.2 Growth strains and stresses

If the volumetric expansion during unrestrained growth is assumed to be isotropic, the

resulting compressive strain within the oxide would be given by ((VPB)1/3 − 1) = 0.16,

implying in-plane compressive stresses within the oxide of around 57 GPa. It can be seen

that substitution of such stress levels into Equation (2.8) results in huge plastic strain rates,

implying a very rapid relaxation of stresses to more reasonable levels. Previous studies

[24, 34] have assumed that the oxide forms at an in-plane compressive stress of about 2 GPa,

but stresses as high as 4 GPa have been measured experimentally [4, 35], suggesting that the

value 2 GPa is merely an arbitrary temporal point for a rapidly relaxing compressive stress.

However, the precise details of how the stresses relax from the theoretical initial value is

beyond the scope of this work.
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2.4 Calculation of stresses

Superposing strains from the various mechanisms discussed in Section “Material be-

haviour”, we obtain the in-plane strain rates

ε̇m(t) =
sgn(sm(t))

2T

[
AG exp

(
− Qp

RT

)(
|sm(t)|
G

)5.1

+B exp

(
− Qd

RT

)
|sm(t)|

]

+
ṡm(t)(1− νm)

Em

+ αmṪ (2.18)

ε̇ox(t) =
sgn(sox(y, t))ε̇0

2
exp

[
− Qg

RT

(
1− |sox(y, t)|

σg

)]
+
ṡox(y, t)(1− νox)

Eox

+ αoxṪ (2.19)

Notice that the in-plane strains and the stress in the metal substrate are functions of time

only, but the stress in the oxide is a function of both the distance, y from the oxide-air/water

interface, and time t, since oxidation at different spatial points starts at different times. The

initial condition for newly formed oxide was taken to be a compressive stress of 57 GPa, but

because initial creep is very rapid, the results are not sensitive to the precise value chosen.

To complete the problem statement, we use the compatibility condition that the lateral

strain rates in the oxide and substrate be equal for all times t [i.e. ε̇ox(t) = ε̇m(t) ≡ ε̇(t)],

and the equilibrium condition (Equation (2.2)).

2.4.1 Estimation of ε̇0

The values for the parameters required in this study were all taken directly from the

experimental literature, as described in Section “Material behaviour”, except for the pre-

exponential coefficient ε̇0 in (Equation (2.8)). To estimate this parameter, we performed a

curve fit of the average stress in the oxide layer predicted by the model to ex situ measure-

ments of residual stress reported by Polatidis et al. [5] for oxidation at a temperature of

T = 633 K. The oxide growth law hox(t) for this case was obtained by fitting a smooth curve

to the experimental data reported in [5].
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The results are shown in Figure 2.2. The points show the experimental results from

[5] and the shaded region defines the bounds of the predictions based on Equations (2.10,

2.11), with ε̇0 = 300 s−1 and a thermal expansion coefficient of the oxide (αox) in the range

5± 2× 10−6 K−1.

 Experimental data [3]

Oxidation time (days)

Current model with estimated 
      thermal stress range

|s o
x| 

(G
Pa

)

Figure 2.2: Estimation of the pre-exponential coefficient ε̇0 in (Equation (2.8)), based
on experimental data for the ex situ average in-plane compressive stress |s̄ox| in the
oxide [5] at T = 633 K. The shaded region represents predicted results for chosen
range of oxide’s thermal expansion coefficient, αox = 5± 2× 10−6 K−1.

The value of ε̇0 = 300 s−1 is much lower than that generally quoted in the literature (ε̇0 =

106 s−1) for a large set of materials [29]. Such values of ε̇0 could have been achieved if we had

chosen a higher value of activation energy (Qg ∼ 230 kJ/mol instead of Qg = 173.5 kJ/mol)

while fitting our model to the experimental data of oxide stress in Figure 2.2. It is worth

noting that Douglass [32] describes experiments showing that the hardness of cubic zirconia

is significantly more temperature sensitive than is the monoclinic phase. This suggests that

the activation energy for the oxide layer may be higher than that of cubic zirconia, used

in this study. It is clear that further progress in understanding oxide stress relaxation at
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elevated temperatures is contingent on more direct experimental investigations of the creep

behaviour of the oxide.

2.4.1.1 An approximate solution

In many applications, the oxide layer is much thinner than the metal [hox � hm], in

which case the equilibrium condition (Equation (2.2)) implies that the in-plane stresses in

the metal are low, even when those in the oxide are high. If the corresponding contributions

to the in-plane strain rate ε̇m(t) are sufficiently small to be approximated as zero, (Equation

2.10, 2.11) and the compatibility condition then reduce to

sgn(sox(y, t))ε̇0
2

exp

[
− Qg

RT

(
1− |sox(y, t)|

σg

)]
+
ṡox(y, t)(1− νox)

Eox

+ (αox − αm)Ṫ = 0 (2.20)

If the temperature T is constant and sox is always compressive, this equation can be solved

in closed form giving

exp

(
Qgsox
RTσg

)
= exp

(
Qgs0
RTσg

)
+

QgEoxε̇0 t

2RTσg(1− νox)
exp

(
− Qg

RT

)
(2.21)

where s0 = −57 GPa is the in-plane stress at the instant at which a given layer of oxide

was formed, and time t is measured from that instant. Notice that because of the extremely

rapid creep at small values of t, the predictions at practical time scales are quite insensitive

to the value of s0.
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Figure 2.3: An iterative procedure for the simultaneous solution of Equations (2.10,
2.11).

If the strains in the substrate are small but not negligible, the solution of Section 2.4.1.1

can be used as the first step of an iterative procedure. Using the approximation for sox(y, t)

from that equation, we estimate sm(t) from (Equation (2.2)) and substitute this value into

Equation 2.10 to obtain an improved estimate for the strain rate of the substrate, ε̇m(t).

Repetition of this procedure, as shown in the flowchart of Figure 2.3, allows results to be

obtained to any desired degree of accuracy.

2.5 Results

In this section, we shall compare the predictions of the model with experimental results

for oxide stresses from two previous studies.

Platt et al. [24] used synchrotron X-ray diffraction [S-XRD] to obtain the in-plane stress,

s, in situ while samples were being oxidized at two different temperatures of 923 K and 983

K. The volume fractions, fT and fM , of the tetragonal and monoclinic phases, respectively,
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and the corresponding stresses, sT and sM , were measured using S-XRD and these values

were then used to determine the average oxide stress, defined as

sox = fT sT + fMsM (2.22)

In these experiments, temperatures were reported to increase from an initial value of 563 K

at a rate of ∼ 11.2 K/min, until the required temperature was achieved. Thus, conditions

for both experiments were nominally identical until t = 32 min, after which the tempera-

ture continued to rise in the 983 K case only. The oxide growth law hox(t) for each case

was determined by interpolating smooth curves through the experimental values from [24],

including an initial transient for the initial heating phase, for which no experimental values

were reported.

Experimental data [6] 

Oxidation time (min)

     (T = 923 K)
 Current model 

Experimental data [6] 

            (T = 983 K)
       Current model 

|s o
x| 

(G
Pa

)

Figure 2.4: Comparison of predictions of average in-plane oxide compressive stress
(|s̄ox|) at T = 923 K and T = 983 K with in-situ experimental data from [24]. Error
bars show the effect of uncertainty in the model parameters.
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Experimental oxide stress values are compared with predictions from the current model in

Figure 2.4. Uncertainty in the power-law creep parameters of Zircaloy-4 and glide parameters

for the oxide, quantified in previous sections, is represented by error bars in this figure.

Figure 2.4 shows that the model predictions agree well with the experimental data, in

view of the range of uncertainty of the model parameters. In particular, the trend [slope]

of the predictions is very close to the experimental data, indicating that the assumed creep

laws and parameters describe the evolution of the system correctly.

The most significant discrepancy is the overprediction of the ‘starting’ value of stress at

t = 41 min for T = 923 K. We recall that conditions for both experiments were nominally

identical until t = 32 min, after which the temperature continued to rise in the 983 K case

only. Since creep rate is a strong function of temperature, this suggests that the stresses at

983 K should if anything be lower than those at 923 K, but the opposite was reported in

the earlier stages of measurement. We note however that similar experiments in the same

study using ZIRLO specimens [24] did not replicate this behaviour. The low intensity of

the diffracted X-ray beam from relatively thin oxide layers poses a significant constraint on

the accurate measurement of the lattice strains during the early stages of oxidation, so this

discrepancy should perhaps not be given undue weight.

2.5.1 Effect of substrate strain

As remarked in Section “An approximate solution”, if the oxide layer is sufficiently thin

[hox � hm], a good approximation can be obtained by assuming ε̇m = 0, which considerably

simplifies the calculation. This approximation [dashed lines] is compared with the more

precise calculation [solid lines] in Figure 2.5 for the same conditions as in [24] and Figure 2.4.

The results show that the approximation of Section “An approximate solution” predicts

stresses that are very close to those of the more exact calculation at T = 923 K, but that

the approximation significantly overestimates the stress at T = 983 K.
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Figure 2.5: Comparison of predictions of the present model including substrate strains
[solid line] and neglecting them [dashed line] at temperatures T = 923 K and T = 983
K. The dashed line is obtained from the approximation of Section “An approximate
solution”. Error bars represent the uncertainty in Zr-4 creep parameters.

The theoretical model of Platt et al. [24] attributes stress relaxation entirely to creep in

the metal substrate. However, this leads to plausible predictions of oxide stresses only if (i)

the initial stress in the oxide is assumed to be ∼ 2 GPa, which is lower than the measured

stress magnitudes of Ref. [4, 35] and (ii) the creep rate is assumed to be much more rapid than

reported data [36, 37]. Platt et al. [24] estimated substrate creep parameters using oxide

strain measurements from experiments at T = 633 K [5], but our simulations recognizing

the role of plastic deformation in the oxide show that creep in the substrate has a negligible

effect at this temperature for the entire range of possible power-law creep strain rates of

Zr-4. This is consistent with oxidation strain measurements of Ref [36, 37] at T = 633 K,

which are in a range where only elastic behaviour is to be anticipated in the substrate.
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2.5.2 Stress distributions

Preuss et al. [26] measured the stresses ex situ at various depths within a 78 µm thick

oxide layer that was formed on a ZIRLO sheet oxidized at 688 K for 600 days. Even though

the stresses were measured only in the monoclinic phase (sM), reported tetragonal content

was less than 5% in the oxide layer, so these results can reasonably be compared with the

current numerical model. In the absence of oxide growth data for intermediate points, a

linear law (giving hox = 78 µm at t = 600 days) was assumed.

s o
x (

G
Pa

)

Distance from oxide surface ( m)

Current model with estimated
        thermal stress range

Experimental data [9]

Figure 2.6: Comparison of predictions of in-plane oxide stress (sox) distribution across
its thickness at T = 688 K with ex-situ experimental data for ZIRLO from [26]. The
shaded region represents predicted results for the range αox = 5± 2× 10−6 K−1.

Figure 2.6 compares the predicted stress distribution with the experimental data from

[26]. The shaded region defines the bounds of the predictions for αox in the range 5±2×10−6

K−1 (see Section “Thermal strain”), and ε̇0 = 300 s−1 and nominal values of the creep rates

of Zr-4 were assumed, in the absence of suitable data for Zirlo. The predicted range of the

ex situ oxide stress and the form of the distribution agree well with the experimental results.
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2.5.2.1 Evolution of the stress distribution over time

In view of the good agreement in Figure 2.6, we performed additional simulations to

track how the oxide stress distribution is predicted to evolve over time. Figure 2.7a shows

the evolution of the in-plane compressive stress distribution in the oxide as oxidation proceeds

at 633 K, for which we used oxide growth data from [5]. The vertical straight lines represent

the location of the metal-oxide interface at that particular instant of time. In each case the

oxide is formed at very high compressive stress, but this relaxes rapidly to a value in the

range 2 ∼ 3 GPa. Subsequent stress relaxation at any given point is then comparatively

slow.
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Figure 2.7: Predicted in-plane stress distribution in the oxide layer at various times t for
(a) T = 633 K , and (b) T = 973 K. Vertical lines represent location of the metal-oxide
interface at time t.

Figure 2.7(b) shows corresponding stress distributions at a temperature of 973 K, using

oxide growth data from [38]. The higher temperature leads to faster rates of stress relaxation,

resulting in larger stress gradients across the film. Note that XRD estimates of the average

stress across the film may be weighted towards shallower depths in the oxide due to the

partial absorption of rays coming from relatively deeper locations. With stress distributions

of the form of Figure 2.7, this would lead to an underestimate of the average stress. XRD
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penetration depends on tilt angle, incident angle and the respective phase of the oxide [39],

but in the absence of such detailed data, the theoretical results discussed in this chapter

were all plotted using an unweighted [uniform] average.

Figure 2.7 also shows that the stresses remain predominantly compressive up to the oxide-

water interface for oxidation of 150 days at T = 633 K and 100 minutes at T = 973 K. These

are approximately the times at which a transition in the oxidation kinetics is reported to

occur at these temperatures [1, 5, 38]. Hence, there seems to be no possibility of formation of

through-thickness vertical cracks that could provide a barrier-free path for oxidizing species

to diffuse to the metal-oxide interface. This result is consistent with the SEM observations

by Nakamura et al. [40], which show that no vertical cracks exist in the oxide film either

before or immediately after the observed transition in the oxidation kinetics at T = 773 K.

2.6 Other geometries

The discussion so far has mainly centered around the symmetric plate geometry of

Figure 2.1, but the constitutive behaviour for metal and oxide outlined in Section 2.3 could

in principle be applied to any geometry, using a finite element implementation. Also, the

solution of Section “An approximate solution” can be used in any situation where the oxide

film thickness is sufficiently small compared with any other linear dimensions of the body.

The cladding tube used in PWRs is 570 µm thick and has a mean radius of 4.4 mm. It

can therefore reasonably be treated as a thin-walled tube, implying (i) that hoop stresses

will be approximately uniform through the substrate thickness, and (ii) that the mean hoop

stress across substrate and oxide will be much larger than the pressures applied on the curved

surfaces. Thus, conditions approximate quite closely to those in Figure 2.1 and based on

Figure 2.5, (Equation (2.21)) provides a very convenient and quick estimate for the stress

field provided the temperature is not too high.
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2.7 Conclusions

In this chapter, we have developed a stress evolution model for the oxide layers formed on

zirconium alloys. Dislocation glide in the oxide layer and power-law creep in the substrate

are proposed as the most significant deformation mechanisms for the temperature range of

T = 600 − 1000 K. Our thesis is that the oxide deforms primarily by dislocation glide for

T < 900 K, while creep of the substrate only becomes significant at higher temperatures.

This result is also consistent with the oxidation strain data reported in the literature [36, 37],

which indicates that the substrate behaves elastically at T = 633 K.

All the model parameters were taken from the literature except the glide parameters

(Qg, σg), which were assumed to be the same as for for yttria-stabilized cubic zirconia. We

used experimental data for ex situ oxide stresses to curve-fit for the pre-exponential glide

constant, ε̇0. Direct experimental investigations of creep parameters for monoclinic and

tetragonal zirconia are needed to validate applicability of these parameters to the oxide film

as well, as to predict the stresses for T > 1000 K.

If the oxide film thickness is small compared with that of the substrate, a simple approx-

imation to the stress field can be quickly obtained by assuming the in-plane strain rate to

be zero.
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Chapter 3

Energetic Analysis of Constrained Tetragonal-to-Monoclinic

Phase Transformation in Polycrystalline Zirconia Films

3.1 Introduction

The monoclinic phase of zirconia is thermodynamically stable at temperatures below 1400

K, above which the tetragonal phase is stable up to 2600 K, when the cubic phase becomes

stable. However, in the oxide layers formed on zirconium alloys, the tetragonal phase is

observed at temperatures that are well below 1000 K. In-plane compressive stress in the oxide

film, and small grain size at the metal-oxide interface have been considered as the dominant

contributing factors favoring the high-density tetragonal phase at such temperatures [25, 41].

This metastable tetragonal phase formed in polycrystalline oxide films is observed to undergo

a transformation to the monoclinic phase as oxidation proceeds [5, 24, 7]. Some experimental

studies [6, 5] show a smooth curve of the average fraction of the tetragonal phase in the oxide

layer dropping over time throughout the oxidation process, while few others [8, 9] indicate

a sudden increase in this drop rate near a transition in the oxidation kinetics. It should be

noted that all the above mentioned studies use XRD technique, and measurements are carried

out ex-situ except in [6] which is in-situ XRD in oxygen environment. Trends observed in

the spatial distribution of the tetragonal phase across the oxide film also shows variability

across different studies. Most of the XRD-studies [6, 26, 42] show a continuous decrease

in tetragonal fraction from the metal-oxide interface to the oxide-water interface. However,
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synchrotron X-ray diffraction (SXRD) study by Yilmazbayhan et al. [3] indicates a spatial

periodicity in the variation of t-fraction (which is more prominent is Zirlo than Zy-4), with

a period that is approximately the same as the transition thickness. However, the average

tetragonal percentage content shows a drop away from the metal-oxide interface in this study

as well. As SXRD technique provides better resolution, signal-to-noise ratio, and texture

correction capabilities as compared to conventional XRD, we are inclined to assign more

significance to the SXRD data for the purpose of this thesis.

Transformation of the tetragonal phase to the monoclinic phase has been proposed as

a possible mechanism of reduced protectiveness in the oxide, in view of its ability to cause

micro-cracks [10]. These defects are suggested to form due to the anisotropic nature of the ex-

pansion eigen-strains associated with this phase change (see Section 3.1.1 below). Therefore,

a large body of experimental evidence has been developed to understand this phenomenon,

as outlined in the first paragraph of this chapter [6, 24, 26, 42]. However, drawing general

conclusions about the energetics of this phase transformation has remained a challenge due

to an insufficient, physics-based, quantitative understanding of the process.

Since a mathematical understanding of the tetragonal-to-monoclinic phase transforma-

tion of the oxide is crucial in understanding the oxidation behavior of Zircaloys, in this chap-

ter, we present a continuum-based analysis of a grain in the tetragonal phase transforming to

the monoclinic phase in a matrix of the oxide film. We also present a supplementary atom-

istic analysis to analyze the effect of various crystal defects on the relative thermodynamic

stability of the two phases.

3.1.1 Crystallography of tetragonal and monoclinic zirconia

Figure 3.1 shows a schematic of the tetragonal and the monoclinic lattice structures. In

tetragonal crystal structure, two of the crystal axes are equal in length and all of the three

axis are perpendicular to each other. In the lower-symmetry monoclinic crystal structure,

all of the crystal axes are of different length (a 6= b 6= c) and only two of them are orthogonal
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to each other (β > 90o).

Figure 3.1: Crystal structures of the tetragonal and the monoclinic phases.

For the particular case of zirconium oxide (zirconia), the crystal parameters of Figure 3.1

are given in Table 3.1 [22]

Crystal parameter a [Å] b [Å] c [Å] β

Tetragonal 5.141 5.141 5.261 90o

Monoclinic 5.184 5.207 5.37 98.8o

Table 3.1: Crystal structure parameters for tetrgonal and monoclinic zirconia

Calculation of transformation eigen-trains

The eigen-strain for the phase transformation depends on the particular transformation

variant considered [22]. For the purpose of this study, we consider the variant (at, bt, ct) →

(am, bm, cm), chosen as to minimize the strain energy barrier during the transformation [43].

For this variant, crystal axis a of the tetragonal phase (at) transforms to the crystal axis a of

the monoclinic phase (am), crystal axis bt transforms to the crystal axis bm and so on. Note

that the variant (at, bt, ct) → (bm, am, cm) will also have the same strain energy barrier as

at = bt. Also, each variant has its self-accommodating variant (or twin) which is its mirror

image.
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Figure 3.2: 2D representation of the deformation required for the tetragonal-to-
monoclinic phase transformation, in the plane containing crystal axes a and c.

Figure 3.2 represents this variant formation in a plane containing crystal axes a and c.

The deformation gradient F can be decomposed into a stretch tensor U and a rotation tensor

R and can be written as

F = RU

Assuming x-direction along crystal axis a, y-direction along crystal axis c, we can write the

rotation matrix R of Figure 3.2 as

R =


cos(α

2
) sin(α

2
) 0

− sin(α
2
) cos(α

2
) 0

0 0 1


where α = β − 90o. We can write the deformation gradient tensor as

F =


am
at

cm sin(α)
ct

0

0 cm cos(α)
ct

0

0 0 bm
bt


29



Using the crystal parameters of Table 3.1 and the relation F = RU , we can find the right

stretch tensor U . Using a small strain approximation ε = U−I, we obtain the transformation

strain as

εT−M1 =


0.0054 0.07785 0

0.07785 0.0177 0

0 0 0.01284


where M1 refers to the first monoclinic variant. It should be noted that for negative shear

strains, we get another variant of the monoclinic phase.

εT−M2 =


0.0054 −0.07785 0

−0.07785 0.0177 0

0 0 0.01284


which implies an engineering shear strain of ∼ 16% (or 2ε12), and an anisotropic volume

expansion of 3.6% calculated as follows

∆V

V
× 100 = {[(1 + ε11)× (1 + ε22)× (1 + ε33)]− 1} × 100 = 3.6% (3.1)

3.2 Free-energy continuum framework

Tetragonal-to-monoclinic phase change is generally assumed to be martensitic in nature.

Energetics of a martensitic transformation can be analyzed using a free-energy criterion.

A decrease in the free energy indicates favorability of the phase transformation. As this

transformation is associated with ≈ 16% engineering shear strain, and an anisotropic volume

change of ≈ 3% (refer Section 3.1.1), there is a strain energy barrier for a tetragonal oxide

grain to transform to the monoclinic phase, as it is constrained by the surrounding oxide

(matrix). Therefore, twinning is observed in polycrystalline oxide films [44] that helps to

reduce this energy barrier by reducing the macroscopic shear strains.
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Figure 3.3: Geometric representation of the system analyzed in this phase transforma-
tion study, considering a tetragonal oxide grain transforming in homogeneous oxide.

In this study, we present a 3-dimensional analysis of a tetragonal grain transforming in

a homogeneous and isotropic mixture of the tetragonal and monoclinic phases of zirconia

Figure 3.3, in the temperature range of 600 K< T < 1000 K. At these temperatures, tetrago-

nal phase is meta-stabilized in the oxide films while the monoclinic is the thermodynamically

stable phase. Free energy change during the process can then be expressed as

∆GT→M = −|∆Gch|+ ∆U + ∆Ggb +Gtw (3.2)

∆GT→M is the total change in the free energy per unit volume of the grain during the

phase transformation, and its value should be negative in order for it to be favorable. |∆Gch|

is the absolute change in the chemical free energy per unit volume (or the thermodynamic

driving force). A negative sign preceding it implies that it reduces the overall change in free

energy (i.e the monoclinic phase is thermodynamically favored at temperatures considered

in this study). ∆U is the strain energy barrier per unit volume of the transforming grain

for the transformation, corresponding to the eigen-strain obtained in Section 3.1.1. ∆Ggb is

the contribution from the change in the grain boundary energy and Gtw is that from the

formation of twin boundaries. Equation (3.2) can also be written as follows,
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∆GT→M = −|∆Gch|+ ∆U +
∆γgbAgb
Vgrain

+
γtwAtw
Vgrain

(3.3)

where ∆γgb is the change in grain boundary energy per unit area during transformation and

γtw is the twin boundary energy per unit area. Agb and Atw are grain boundary area and twin

boundary area respectively. Vgrain is the volume of the grain undergoing transformation.

From Equation (3.3), we note that the only term favoring transformation to the mon-

oclinic phase is the chemical free energy term ∆Gch. Therefore, its value should be large

enough to overcome the strain and the surface energy barrier contributions obtained from

the rest of the three terms in the equation.

3.2.1 Calculation of free-energy change (∆GT→M)

In this section, we will provide details of the finite element simulations, and published

experimental data used to estimate each term in the free energy-criterion of Equation (3.3).

3.2.1.1 Strain energy barrier (∆U)

Strain energy barrier is computed using 3D finite-element simulations with a geometry

as shown in Figure 3.3 of a tetragonal grain transforming in a matrix of homogeneous oxide

in ABAQUS. Transformation eigen-strains of Section 3.1.1 are applied as pseudo-thermal

strains on the grain. Elastic properties of both the phases as well as the matrix is taken as

E = 200 GPa, ν = 0.3. In the following sections, we discuss various factors which affect the

model geometry and input parameters.

3.2.1.2 Grain Morphology

The grain structure of the oxide layer formed on Zircaloy-4 at T = 633 K is fairly

well known to be periodic, with a wavelength that is approximately equal to the transition

thickness. Figure 3.4 shows the schematic of this grain structure. We define one oxidation

cycle as the time period between two transitions in the oxidation kinetics. First oxidation
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Grain type Grain shape Dimensions (nm × nm × nm)

Equiaxed grain Ellipsoidal grain 15× 15× 16

Columnar grain Hexagonal cross-section column 40× 40× 200

Table 3.2: Grain shapes and sizes analyzed in this study

cycle is from the beginning of the oxidation process up to the first transition. Equiaxed

grains of diameter ≈ 30 nm are developed during the initial stages of each oxidation cycle

(because of the higher oxidation rate), and larger columnar grains (diameter of 30 ∼ 40 nm,

length of 100 ∼ 200 nm) during the later stages, possibly because of the in-plane compression

in the oxide. Columnar grains at the metal-oxide interface appear to be longer than the ones

formed previously during that cycle (as the oxidation rate slows down).

Equiaxed grains which form the outermost part of the oxide, as well as the columnar

grains, are observed to undergo transformation [7]. In this study, we choose two represen-

tative grain types for analysis, outlined in Table 3.2. The selected cases correspond to the

smallest equiaxed grain and the longest columnar grain observed in the oxide layer, and

they present the two extremes of the least and the maximum energy barriers for the phase

transformation respectively. We provide explanations for this in the next section.
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Figure 3.4: Schematic of the grain structure in the oxide film formed on zirconium
alloys. Arrows indicate the oxidation stage at which that particular grain structure is
observed.

Grain size data for temperatures above standard PWR operating temperatures could

not be obtained from the literature. Increased oxidation rate at high temperatures should

result in smaller grain size. However, higher temperatures also result in higher rate of grain

growth. Therefore, no definite conclusion can be made even about the trend of grain sizes

with temperature. In this study, therefore, we assume grain morphology to be the same for

temperatures up to 1000 K.

Previous analytical calculation of energy barrier [45] is only valid for equiaxed grains

and cannot capture the interaction of biaxial stress state with anisotropic volume expansion

during the transformation.

3.2.1.3 Oxide texture

Tetragonal grains are observed to have a texture in oxide layers, where crystal axis c aligns

with the direction of the oxide growth [44]. Note that crystal data of Table 3.1 indicates that
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this orientation will provide the least area in the plane parallel to the metal-oxide interface.

Therefore, it will minimize the strain energy in these oxide layers, which are under in-plane

compression, and hence forms the preferred orientation. Other crystal directions (a and b)

are observed to be randomly distributed in the two in-plane directions. Recall that this

phase transformation is associated with a shear eigen-strain in the plane containing crystal

axes a and c. Furthermore, for a particular transformation variant, there are two possible

orientations with the same eigen-strain. Therefore, based on the observed texture, there

are two possible transformation configurations for the variant described in Section 3.1.1, as

shown in Figure 3.5. In case (a), crystal axis c of the transformed monoclinic phase remains

parallel to the untransformed tetragonal phase, i.e [001]t//[001]m. For case (b), crystal axes a

of both the phases remains parallel to each other [100]t//[100]m. However, from a mechanics

point of view, we can say that with the given direction of the in-plane compression shown in

the figure, configuration (a) will offer lower strain energy barrier and hence will be preferred

over (b). Therefore, we perform finite element simulations only for case (a).

Figure 3.5: Two possible configurations for phase transformation in a plane perpendic-
ular to the metal-oxide interface.

Transformation eigen-strain as well as the cross-section is anisotropic in the two in-
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plane directions, therefore different orientations may have different strain energy barriers

associated with it. While for equiaxed grain the strain energy barrier for each of these

random distributions is the same due to symmetry, columnar grains with hexagonal cross-

section exhibit a variation of energy barrier with respect to angle θ of Figure 3.6 that is

periodic (with a period of 60o). Therefore, we need to analyze only the orientations between

0o < θ < 30o to understand the complete picture.

Figure 3.6: Crystal orientation in a plane parallel to the metal-oxide interface for (a)
a hexagonal grain and (b) an equiaxed grain. Hexagonal grain shows a 60o symmetry
with respect to the grain geometry while the equiaxed grain shows a 180o symmetry.

In the next section, we will describe how we select the optimum orientation from twinning-

based simulations.

3.2.1.4 Optimized twinned structure

Twinning plays a crucial role in lowering the strain energy barriers by reducing the

macroscopic deformation caused by shear eigen-strain. We model twinning by applying

alternating nature of shear strains in adjacent twin bands perpendicular to the crystal axis

a using USDFLD subroutine in ABAQUS. Twin density is number of alternating variant

bands in one grain. Note that free energy ∆GT→M constitutes twin boundary energy as well

as a strain energy contribution. While the former increases with increasing twin density, the

latter drops because of decrease in macroscopic shear. Therefore, there exists an optimum
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value of twin density that minimizes the free energy barrier for the transformation. This

calculation for an equiaxed grain is shown in Figure 3.7 giving an optimum twin density of

4 or 6.

Figure 3.7: Variation of free energy with twin density for an equiaxed grain.

A similar calculation for columnar grains gave an optimum twin density of 6. As dis-

cussed in the previous section, the effect of crystal orientation was studied by analysing

varying orientations of twin planes (normal to crystal axes a) with respect to any one of the

longitudinal surface of the hexagonal grain, i.e cases corresponding to 0o < θ < 30o (refer

Figure 3.6 for the description of angle θ). Figure 3.8 shows the contours of shear strain

obtained by the finite element simulations of the two limiting scenarios. Regions of positive

shear (red/orange) are separated by the ones in negative shear (blue/green) by twin bound-

aries. In case (a), twin boundaries are parallel to the right face of the grain (θ = 0o), and in

case (b), twin boundaries make an angle of θ = 30o with the right face of the hexagonal grain.

By analyzing various orientations between these two scenarios (0o < θ < 30o in Figure 3.6),

we find orientation (a) to offer the minimum energy barrier, and orientation (b) to offer the

maximum energy barrier against the phase transformation. We will only present the results
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of case (a) in further analysis.

Figure 3.8: Finite element simulation of two specific orientations of the hexagonal grain.
Case (a) is for θ = 0o and case (b) is for θ = 30o. Refer Figure 3.6(a) for the description
of angle θ.

3.2.1.5 Grain-matrix interface conditions

Garvie et al. [46] suggested that loss in coherency or cracking may increase the favora-

bility of this transformation, by reducing the strain energy barrier associated with the shear

component of the eigen-strain. As the oxide layer is in compression in the two in-plane

directions and stress-free in the third (see chapter 2), we assume that macroscopic cracks

cannot form within the oxide. Therefore, in this study, we instead explore the effect of loss

in coherency on the energy barriers. As the exact coherency conditions are not known, we

consider the idealized scenario of a completely frictionless interface between the grain and

the oxide. Under these conditions, there will be no transfer of the shear strain across the

interface, and hence it presents the case of least strain energy barrier, while a completely

bonded interface presents the other extreme of the maximum strain energy barrier.
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3.2.1.6 In-plane compressive stress

The oxide matrix is considered to be in a state of biaxial compression, as observed in the

films formed on zirconium (see C:ch2). We apply this stress as a predefined uniform stress

field at the beginning of the simulation. As the simulation proceeds, transformation eigen-

strains alter the stress field within the grain and in the adjacent regions of the matrix. Based

on the evolution of stress obtained in thesis for the temperatures of 600 K < T < 1000 K

(refer Figure 2.7), we consider this bulk oxide compressive stress to vary in the range of

0 < |sox| < 2000 MPa.

3.2.1.7 Grain and twin boundary energy (∆Ggb, Gtw)

In the view of randomness in the crystal orientation in the two in-plane directions (refer

Section 3.2.1.3), we assume that the average grain boundary energy between the transformed

monoclinic grain and the surrounding grains is the same as that between the untransformed

tetragonal grain and the surrounding grains, i.e ∆γgb = 0.

Twin boundary energy value for zirconia, γtw = 0.44 J/m2, is taken directly from pub-

lished data [46].

3.2.1.8 Chemical energy difference (∆Gch)

We use published data from caloriemetric studies to estimate the chemical energy differ-

ence term, ∆Gch. Coughlin et al. report an enthalpy difference of, ∆H = 5941 J/mol and

an entropy difference of ∆S = 4 J/mol-K between the two phases. Therefore, we can write

∆Gch = ∆H − T∆S ≈ (6000− 4T ) J/mol. (3.4)
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To calculate the contribution of this term per unit volume, we divide it by the molar volume

of zirconia, which is 21.8 cm3/mol. We can then write

∆Gch = [45846× (6000− 4T )] J/m3. (3.5)

3.3 Results

Deformed equiaxed and columnar grains under optimized twinning conditions are shown

in Figure 3.9. Twin planes are parallel to the direction of the oxide growth in this configu-

ration.

Figure 3.9: Deformed grain shapes post-transformation under optimized twinning con-
ditions. Deformations are magnified by a factor of 10. Color contour indicates shear
strain in the grain (red/yellow and blue regions have positive and negative shear strains
respectively).

3.3.1 Effect of grain type and interface conditions

In this section, we show the effect of grain morphology and loss of coherency at the

oxide-grain interface on the energy barrier to the phase transformation. Figure 3.10 shows

the energy barrier for the phase transformation in grains at T = 633 K. This energy barrier

has to be negative (i.e, free energy should reduce) in order to make this transformation

favorable. We analyze the following three scenarios of interface conditions and twinning
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1. Bonded grain-oxide interface+Twinning

2. Frictionless grain-oxide interface

3. Frictionless grain-oxide interface+Twinning

The results in Figure 3.10 show that the effect of twinning in reducing the energy barrier

is more prominent in equiaxed grains than the columnar grains, while the effect of loss in

coherency has similar effect on both the grain types. Furthermore, it shows that the columnar

grains have a significantly lower strain energy as compared to the equiaxed grains. This is

because grains with a larger aspect ratio, i.e the ones with a larger dimension along the

direction of the oxide growth as compared to those along the in-plane directions, offer lower

strain energy barriers due to a better accommodation of the shear eigen-strain. In the oxide

layer, the width of different columnar grains does not show a significant variation. Therefore,

among all columnar grain sizes, the longest one, with the highest aspect ratio shows the least

energy barrier. Among all equiaxed grains, as the aspect ratio is the same and is ≈ 1, the

smallest one offers the highest barrier due to a high value of twin boundary area per unit

volume, the quantity Atw/Vgrain in Equation (3.3). All the other grain shapes and sizes

observed within the oxide layer have energy barriers lying between these two extremes of

Figure 3.4.

Values of the free energy barrier in Figure 3.10 indicates that loss in coherency can drive

a martensitic phase transformation from tetragonal to monoclinic zirconia in the longest

columnar grains of the oxide, however, such transformation is not feasible in equiaxed grains

or relatively shorter columnar grains. In the next section, we will explore if elevated tem-

peratures make it favorable for these grains to transform.
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Figure 3.10: Free energy of transformation for all grains for different interface and grain
twinning conditions at T = 633 K. Smallest equiaxed grain and largest columnar grains
provide the maximum and minimum limits on the energy barrier respectively.

3.3.2 Effect of oxide stress and temperature

In this section, we show the effect of the stress-state within the oxide on the energetics of

this phase transformation. We then use these results to analyze its favorability at elevated

temperatures (T > 633 K).

The in-plane compressive state of stress within the oxide only influences the strain energy

contribution in the free energy of Equation (3.3). Therefore, in Figure 3.11, we show the

variation of the strain energy barrier ∆U with the magnitude of this stress, for an equiaxed

grain with bonded interface undergoing twinning. The results show a rather weak dependence

of the phase transformation energetics on the stress. Note that this behavior is replicated
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for other grain structures and grain-oxide interface conditions as well. This behavior is in

contradiction with the previous claims in the literature, of stress-relaxation within the oxide

driving the phase transformation.

Figure 3.11: Effect of the in-plane compressive stress in the oxide on the strain energy
barrier (∆U) for the phase transformation. The results presented are for an equiaxed
grain bonded with the oxide matrix and undergoing twinning.

In Figure 3.12, we show the effect of temperature on the energetics of the phase trans-

formation in twinned grains forming a frictionless interface with the oxide. The drop in the

strain energy barrier, ∆U , with increase in temperature is due to a lower average compres-

sive stress within the oxide at high temperatures. The estimate of the stress near the first

transition is used and its value is obtained using the analysis presented in C:ch2 of this thesis.

This drop however is marginal in view of the results presented in Figure 3.11. The chemical

driving force, ∆Gch drops linearly as temperature rises (see Equation (3.5)). This is because

tetragonal is the thermodynamically stable phase at higher temperatures. Therefore, the

driving force for it to transform to monoclinic reduces as the temperature increases. The

necessary condition for this phase transformation to occur is
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|∆Gch| > ∆U. (3.6)

Figure 3.12: Variation of the chemical driving force |∆Gch| and the strain energy barrier
∆U with temperature for a frictionless (or completely incoherent) grain-oxide interface
undergoing twinning.

The results in Figure 3.12 show that the drop in driving force is faster than the drop in

the strain energy barrier. Therefore, for equiaxed grains, it remains infeasible to transform

even at elevated temperatures of T > 633 K. For columnar grains, such a transformation

can be shown as favorable for a certain range of variability in the value of twin boundary

energy (γtw), as discussed in the next section.

3.3.3 Proposed range for twin boundary energy value (γtw)

Figure 3.13 shows the free-energy change during transformation columnar grains trans-

forming with twinning and a frictionless grain-oxide interface in the temperature range of

600 K < T < 1000 K. The top curve is for twin boundary energy value proposed by Evans
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et al. (γtw = 0.44 J/m2). However, we find that its value should at least be reduced to

γtw = 0.24 J/m2 to reduce the energy barrier below 0 at these temperatures. Therefore, we

need

γtw ≤ 0.24 J/m2 (3.7)

for columnar tetragonal grains to undergo transformation for temperatures up to 1000 K.

Figure 3.13: Free energy of transformation of columnar grains with incoherent interface,
showing that a twin boundary energy value of γtw < 0.24 J/m2 is required for it to be
favorable in the temperature range of T = 633− 1000 K.

3.4 Comparison with experimental observations

Most of the experimental studies only report the reduction in the average fraction of

the tetragonal phase over time. For such cases, it is difficult to comment on which type of

grains are undergoing transformation. However, Swan et al. [7] report the time evolution of

tetragonal phase distribution across the oxide layer for oxidation temperature of T = 623 K.

In these results, the tetragonal content at the oxide-water interface is observed to drop with

time. Recall that the grains at this location are predominantly equiaxed (refer Figure 3.4).

This is in contradiction with the results presented above in Figure 3.10 showing that it is
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not feasible. This inconsistency is possibly a result of improper estimation of the chemical

driving force (∆Gch) for the oxide layer formed on zirconium alloys. The value used in the

continuum-analysis above [47] is obtained from caloriemetric studies on powdered zirconia.

The oxide films will likely have a different chemical composition than these. However, to

understand these effects, one needs to carry out atomistic simulations. In the next section,

we present a preliminary molecular dynamics framework developed for that purpose.

3.5 Molecular dynamics analysis

In this section, we focus on understanding the effect of various crystallographic defects on

the enthalpy difference between the two phases, the most significant component of the energy

barrier, using molecular dynamics analysis. In our continuum-based model, we used a value

of the enthalpy change during phase change from tetragonal to monoclinic to be ∆H = −6000

J/mol [47]. However, experimental observation of transformation in equiaxed grains indicate

towards a significantly larger drop in the enthalpy value during the transformation. Our aim

is to analyze whether crystallographic defects present in the oxide film will likely cause this

effect.

3.5.1 Modelling framework

LAMMPS Molecular Dynamics Simulator was used for the purpose of this study. Born-

Mayer-Buckingham model of the following form was used to capture the interatomic inter-

action between various atoms of zirconia [48, 49]

Eij =
qiqj
rj

+ Aijexp

(
−rij
ρ

)
− Cij
r6ij

. (3.8)

This model is a commonly used for ionic solids in which the interaction is broken down into

short and long-range components. While the first term constitutes the long-range coulombic

interaction, the last two terms capture the short-range interaction and hence have a much
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stronger dependence on the interatomic distances (rij). We used the same model parameters

as Zhang et al. [48] in their study of zirconia, in the view that these set of parameters more

accurately reproduce the experimentally measured properties of elastic constants, lattice

energy, and oxygen diffusion.

We specified Ewald summation method of computing long-range forces (e.g the electro-

static forces) in LAMMPS. This method computes the long-range forces in a Fourier space

and the short-range forces in the real space leading to a faster convergence. We used the

periodic boundary conditions in all three directions for both the tetragonal and monoclinic

simulation cells. Energy minimization of the cells is then carried out at T = 0 K. As the

free energy difference between the two phases can be written as

∆G = ∆H − TS, (3.9)

the value of energy difference computed from the molecular dynamics at T = 0 K will be

equal to the enthalpy of the transformation (∆H). We compute this value for the following

crystal defects

1. Anion/oxygen-ion interstitial: The regions near the oxide-water interface can have

a high concentration of oxygen ion interstitial during oxidation due to an abundant

supply.

2. Cation/tin atom substitutional defect: Tin is a dopant atom used in zirconium alloys

like Zircaloy-4, Zirlo etc. As it can exhibit an electrovalence of +4, same as that of

zirconium, it can form a substitutional defect when incorporated in the oxide film

during oxidation.

3.6 Preliminary results

In this section, we discuss the relative behavior of the tetragonal and monoclinic phases

in the presence of various defects.
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The relaxed monoclinic and tetragonal lattice structures are shown in Figure 3.14. As

expected from the thermodynamics of these two phases, monoclinic was found to be sig-

nificantly more stable than the tetragonal phase at T = 0 K. The difference in energy was

computed giving transformation enthalpy as follows

∆H = Em − Et = −8881.6 J/mol (3.10)

(a) Monoclinic lattice structure

(b) Tetragonal lattice structure

Figure 3.14: Relaxed lattice structures of the two phases of zirconia at T = 0 K in
absence of any crystallographic defects. Bigger spheres represent the oxygen atoms
and the smaller ones represent the zirconium atoms.

3.6.1 Effect of an anion interstitial

We introduce an oxygen interstitial into the two lattice structures and the relaxed struc-

tures are shown in Figure 3.15. The atoms are colored based on the coordination number,

with blue being the lowest and red the highest. Tetragonal structure has approximately 3%

lower volume than the monoclinic, implying that the atoms are more closely packed in the

former. As a result, tetragonal shows a significantly higher distortion of surrounding atoms

due to the oxygen interstitial. The interstitial formation energy are obtained as follows
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(Ef
i )m = 27.31 eV ; (Ef

i )t = 28.18 eV (3.11)

Though energy needs to be provided to create an interstitial in both the phases, it favors

the monoclinic phase significantly more than the tetragonal phase.

(a) Monoclinic lattice structure (b) Tetragonal lattice structure

Figure 3.15: Relaxed lattice structures of the two phases of zirconia at T = 0 K in the
presence of an oxygen interstitial. The atoms are colored based on the coordination
number, with blue being the lowest and red the highest. Bigger spheres represent the
oxygen atoms and the dots represent the zirconium atoms.

We also note that the system in not charge-neutral (net charge = −2) and the Ewald-

summation method may not be very accurate for such cases. However, even though the

energy values may not be very accurate with charged systems, the qualitative trends and

comparisons between the two phases can still provide a useful insight into the inconsistencies

between our continuum-based model and the experimental data.

3.6.2 Effect of a cation substitutional defect

Tin (Sn) is used as an alloying element in many commercial zirconium alloys. Therefore,

we substituted a zirconium atom with a tin atom of the same valency (+4). This system

is therefore charge neutral. The relaxed structures are shown in Figure 3.16. The energy

change associated with this substitution are as follows
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(Es)m = −8.45 eV ; (Es)t = −6.63 eV (3.12)

While replacement of Zr with tin reduces the system of the energy in both the phases.

Some of the oxygen atoms (blue spheres) are observed to be displaced significantly from their

perfect lattice position around the tin atom (pink) in tetragonal zirconia in Figure 3.16. It

might be because of this that the substitution is not favored in this phase as much as the

monoclinic zirconia.

(a) Monoclinic lattice structure (b) Tetragonal lattice structure

Figure 3.16: Relaxed lattice structures of the two phases of zirconia at T = 0 K with
substitution of a zirconium atom (green) with tin atom (pink). The atoms are colored
based on the their type. Blue spheres represent the oxygen atoms.

The table below summarizes the results of molecular dynamic analysis and compares

the enthalpy difference between the two phases under individual defects, against the perfect

lattice structure. Effect of an oxygen interstitial and a tin (Sn) substitutional defect was

studied on the tetragonal and the monoclinic phase of zirconia. While both of these defects

are found to favor monoclinic phase, effect of oxygen interstitial is relatively more significant.

∆H = (Hm −Ht)(J/mol)

Perfect lattice -8882

oxygen interstitial -11354

Sn substitutional -10538
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Though the transformation enthalpy value obtained for the case of interstitial defect is

sufficient to bridge the inconsistencies between the continuum-based model and the experi-

mental data, the compromise on accuracy by using the ewald summation method for systems

with a net charge (in the interstitial defect case) makes us give less importance to the actual

numbers. The qualitative comparison still provides a useful insight into the qualitative effect

of crystal defects on the energetics of this phase transformation.

3.7 Conclusions

In this chapter, we studied the energetics of the martensitic transformation of the meta-

stable tetragonal phase of the oxide formed on zirconium alloys, to the thermodynamically

stable monoclinic phase for temperatures of 600 K < T < 1000 K. Loss in coherency at

the grain-oxide interface is observed to play a crucial role in reducing the energy barrier for

the phase transformation. Phase transformation is found to be significantly more favorable

in columnar grains (i.e shapes with aspect ratio> 1) as compared to the equiaxed grains.

Based on the continuum-based analysis, previous claims in the literature of stress-relaxation

driving a bulk phase transformation, and hence a transition in oxidation kinetics does not

seem reasonable.

The continuum analysis results obtained in this study are found to be contradictory to the

experimental observation of equiaxed grains undergoing phase transformation in the oxide

film. To understand this inconsistency, we studied the effect of crystallographic defects on

the transformation enthalpies using molecular dynamics analysis. This study indicated that

some of the common defects present within the oxide layer, such as oxygen ion interstitial,

and Tin dopant substitutional defect, can increase the driving force to the transformation

and hence explain the above mentioned inconsistency in the continuum-based analysis.

51



Chapter 4

Application of Turing’s Pattern Formation Theory to

Oxidation-Type Systems

4.1 Introduction

Alan Turing proposed his pioneering theory for pattern formation in biological systems in

1952 [50]. It relies on the existence of a system of biochemical species he called morphogens

(in view of their possible role in determining the structure of living organisms), reacting

and diffusing within a tissue. He suggested that the development of patterns in an initially

homogeneous embryo, e.g, leaves arranging periodically on a plant stem, can correspond to

the stable stationary waves of the concentration of morphogens generated as the result of

an instability of the homogeneous equilibrium state. The simplicity of the theory, and its

capability to produce a wide range of distinctive patterns, has triggered significant efforts to

find specific applications. Murray’s [13] extension of this work, in a paper titled “How the

leopard gets its spots”, shows striking similarities between simulated Turing patterns and the

stripes/spots observed on various mammalian coats. Kondo et al. [14] used this framework

to simulate stripes on the marine angelfish, Pomacanthus, showing that it can explain the

observation that the stripe spacing remains constant as the fish grows. Meinhardt et al.

[15] proposed a reaction-diffusion model that accurately reproduces the diverse patterns

observed on the shells of molluscs. A recent study [16] has indicated that the skin denticles

on sharks, the structures that allow them to swim swiftly, could also be a result of an
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underlying Turing mechanism. Though originally developed and applied extensively to the

field of developmental biology, as discussed above [13, 14, 15, 16, 17, 18], the mathematical

formalism of the theory has also been found to be applicable to a much broader range of

scientific problems, including the study of geological and demographic patterns [51, 52].

4.1.1 Mathematical structure

A Turing system is typically characterized by the evolution of spatial patterns in the

concentrations or values u(x, t), v(x, t) of two interacting species, where x and t correspond

to spatial and temporal coordinates respectively. Such a system with linear diffusion can be

described by the differential equations

∂u

∂t
= Du

∂2u

∂x2
+ f(u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v) , (4.1)

where Du and Dv are the diffusion coefficients for u and v respectively. The functions

f(u, v) and g(u, v) define the influence of each concentration on its own growth rate, and

also the coupling between the two concentrations. Instabilities can occur, leading to pattern

formation, if one species (the activator) has a promoting effect on itself, whilst the other

suppresses itself. Here we shall take v to represent the activator, in which case the inequalities

∂g(u, v)

∂v
> 0 ;

∂f(u, v)

∂u
< 0 ;

∂g(u, v)

∂u

∂f(u, v)

∂v
< 0 ; Du > Dv (4.2)

define a necessary but not sufficient condition for pattern formation. The inequality Du > Dv

requires that the activator should be less mobile than u.

The third inequality in (Equation (4.2)) implies that u and v have opposite effects on

each other and it can be satisfied in two different ways — i.e.

∂g(u, v)

∂u
< 0 and

∂f(u, v)

∂v
> 0 (4.3)
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or

∂g(u, v)

∂u
> 0 and

∂f(u, v)

∂v
< 0 . (4.4)

The conditions (Section 4.2) define an activator-inhibitor system, since v activates both itself

and u, whilst the inhibitor u suppresses both itself and v. By contrast, (Equation (4.4))

defines an activator-substrate system, in which u suppresses itself but promotes v, whilst v

promotes itself and suppresses u. In this case u is called the substrate, since it is consumed

whilst producing the activator v.

4.1.2 Moving boundary problems

Several forms have been proposed for the interaction functions f(u, v), g(u, v), and have

been shown to be capable of predicting the development of Turing patterns in appropriate

parameter ranges [53, 54, 55]. Many of these studies have focussed on fixed spatial domains,

but the results have proved useful in interpreting the experimentally observed behaviour of

physical systems where the domain grows in time [56, 16]. Crampin et al. [57] developed a

rigorous analytical framework for problems of this class, and demonstrated the significance

of domain growth as a possible mechanism for reliability in pattern selection. In particular,

the long-time pattern is then independent of the initial conditions, in contrast to results for

fixed domains [57, 58]. This framework has been applied to systems where all elements of

the spatial domain grow either at a prescribed growth rate [57, 58, 59, 60], or at a rate that

is controlled by the species/reactants [61, 62]. Recently, the analysis of such systems was

extended to include the effect of anisotropy in growth rates and the curvature of growing

ellipsoidal surfaces [63]. This case of bulk growth is appropriate for a wide variety of biological

systems, where each tissue within the domain grows in size. However, there is another class

of spatially-patterned systems where the domain grows only locally, at a domain boundary

or interface — for example, apically growing biological systems [64], oxide layers formed on

certain alloys [1] and cloud patterns [65].

Crampin et al. [59] simulated Turing systems with a moving domain boundary, and
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observed the development of a stationary periodic structure behind the moving front. Similar

results were obtained by other authors [66, 67, 68], but all these investigations were restricted

to systems in which the boundary was prescribed to move at a constant rate. However,

we are interested in physical systems for which the boundary or interface motion is not

prescribed by an external agent, but results from the physics within the domain, such as

local concentrations of species. For example, pollen tubes, which exhibit localized growth

at a tip [69], are observed to have oscillatory growth rates [70] and periodic depositions

of certain pectins [71]. In oxide films formed on zirconium alloys, periodic increases from

an approximately parabolic rate of the metal-oxide interface movement (which, like many

other oxidation processes [72], is controlled by the local concentration of the oxygen ions)

are observed [1]. Additionally, the oxide film exhibits a layered structure that is directly

correlated with this periodicity [1]. To the best of our knowledge, there are no existing

theories which provide a rigorous explanation of the phenomena discussed above.

In this chapter, we investigate the interaction between a pattern-causing Turing instabil-

ity and the motion of a domain boundary for cases where the instantaneous boundary velocity

is driven by a local concentration. In particular, we shall document the nature of this inter-

action in the context of Gierer-Meinhardt’s activator-inhibitor model, and Schnakenberg’s

activator-substrate model, as shown in the next section.

4.2 Activator-inhibitor system

Gierer and Meinhardt [53] define their activator-inhibitor model through the equations

∂u

∂t
= Du

∂2u

∂x2
+ c1v

2 − c2u ;
∂v

∂t
= Dv

∂2v

∂x2
+
c3v

2

u
− c4v . (4.5)

In this chapter, we consider the domain defined by 0 < x < h(t), where x = 0 is a

fixed boundary, and x = h(t) is a moving boundary whose motion is determined by local
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concentrations. In particular, we assume

dh

dt
= ku(h, t) (4.6)

where k is a constant that might represent a reaction constant if the boundary motion is

associated with a chemical reaction [72]. At the fixed boundary x = 0, we assume

u(0, t) = u0 ;
∂v

∂x
(0, t) = 0 ; (4.7)

and at the moving boundary,

v(h, t) = vh ; −Du
∂u

∂x
(h, t) = [u(h, t) +Q]

dh

dt
. (4.8)

The last condition represents a flux balance for the species u, with the constant Q repre-

senting the amount of u consumed per unit area in moving the boundary through a unit

distance. If the species u acts only as a catalyst for the process that drives the boundary

motion, Q may be taken as zero.

Non-dimensionalization of equations

A dimensionless form of Equation (4.5)-Equation (4.8) can be obtained by defining

ũ =
c1u

c2
; ṽ =

c1v

c2
; x̃ = x

√
c2
Du

; t̃ = c2t ; h̃ = h

√
c2
Du

. (4.9)

Using these expressions in the governing (Equation (4.5)) and the boundary conditions

(Equation (4.6)-Equation (4.8)) we obtain the following governing differential equations

∂ũ

∂t̃
=

∂2ũ

∂x̃2
− ũ+ ṽ2

∂ṽ

∂t̃
= RD

∂2ṽ

∂x̃2
+ c̃3

ṽ2

ũ
− c̃4ṽ (4.10)
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and the following boundary conditions

dh̃

dt̃
= k̃ũ(h̃, t̃) , (4.11)

ũ(0, t̃) = ũ0 and
∂ṽ

∂x̃
(0, t̃) = 0 , (4.12)

ṽ(h̃, t̃) = ṽh̃ and − ∂ũ

∂x̃
(h̃, t̃) =

[
ũ(h̃, t̃) + Q̃

] dh̃
dt̃

. (4.13)

where

RD =
Dv

Du

; c̃3 =
c3
c2

; c̃4 =
c4
c2

; ũ0 =
c1u0
c2

; ṽh =
c1vh
c2

; Q̃ =
c1Q

c2
; k̃ =

k

c1

√
c2
Du

(4.14)

are the independent dimensionless parameters defining the system.

Stability in an infinite spatial domain

Section 5.2.1 have a homogeneous steady-state solution

ṽ =
c̃3
c̃4

; ũ =

(
c̃3
c̃4

)2

(4.15)

in an infinite spatial domain. Nesterenko et al. [71] derived the condition

Du

Dv

>
c2

(3− 2
√

2) c4
(4.16)

for the homogeneous solution of (Equation (4.5)) to be unstable, leading to the formation of

Turing patterns. Using the notation (Equation (4.14)), this can be expressed in the form

c̃4
RD

>
1

(3− 2
√

2)
≈ 5.82 . (4.17)

This instability results in the formation of the stationary, periodic concentration profiles in

an infinite spatial domain, associated with Turing patterns [53]. In a finite fixed domain,
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the periodicity may be modified near the boundaries, in order to adjust to the boundary

conditions.

4.2.1 Numerical procedure

For the numerical solution of these equations, it is convenient to use the coordinate

transformation x̃ = ζh̃(t̃) to convert the problem to one on the fixed domain 0 < ζ < 1. The

governing equations then take the form

∂ũ

∂t̃
=

ζ

h̃

dh̃

dt̃

∂ũ

∂ζ
+

1

h̃2
∂2ũ

∂ζ2
− ũ+ ṽ2 (4.18)

∂ṽ

∂t̃
=

ζ

h̃

dh̃

dt̃

∂ṽ

∂ζ
+
RD

h̃2
∂2ṽ

∂ζ2
+ c̃3

ṽ2

ũ
− c̃4ṽ (4.19)

dh̃

dt̃
= k̃ũ(1, t̃) , (4.20)

with boundary conditions

ũ(0, t̃) = ũ0 ;
∂ṽ

∂ζ
(0, t̃) = 0 ; ṽ(1, t̃) = ṽh ; −∂ũ

∂ζ
(1, t̃) = h̃

[
ũ(1, t̃) + Q̃

] dh̃
dt̃

. (4.21)

This system of equations was solved using the finite-element-based software package FlexPDE

Professional version 7.15.

To start the solution procedure, we needed to define a finite initial domain size h̃(0) ≡ h̃0

and the corresponding initial spatial distributions ũ(ζ, 0), ṽ(ζ, 0). Here we used h̃0 = 1 and

simple linear distributions, with parameters chosen to satisfy (Equation (4.20), Equation (4.21)).

In general, the numerical results were found to be insensitive to initial conditions once the

domain size was large compared with h̃0.

4.2.2 Characterization of the model response

The response of the model can be periodic or non-periodic depending on the values of

the dimensionless parameters c̃3, c̃4, RD, k̃, Q̃ and the boundary values ũ0 and ṽh̃. In this
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section, we shall give illustrations of several kinds of behaviour, and some indication of the

parameter ranges in which they are to be expected.

The simplest class of behaviour is that where the inequality (Equation (4.17)) is not

satisfied, so that the homogeneous solution is stable. In this case, the moving boundary

may advance at a constant rate, or it may show periodic variations depending on param-

eter values, but the distributions of ũ, ṽ eventually converge on the homogeneous solution

(Equation (4.15)), except in regions adjacent to the instantaneous domain boundaries.

If the homogeneous solution is unstable, the distributions far from the moving front

should be unaffected by it, and hence must converge on a steady state that is stable in an

infinite domain. In Appendix 4.A, we determine both stable and unstable periodic steady-

state solutions of Section 5.2.1, using the MATLAB package pde2path [73, 74]. For given

parameter values satisfying (Equation (4.17)), stable periodic solutions exist in a finite range

of wavelengths, the upper bound of which is significantly higher than that obtained by linear

perturbation of the homogeneous solution. For systems not satisfying (Equation (4.17)), no

periodic solutions are obtained.

4.2.2.1 Periodic behavior

Figure 4.1 shows (a) Contours of ũ and the motion of the domain boundary h̃(t̃), and

(b) the spatiotemporal distributions of ũ (following the work of Crampin et al. [57]), for

the parameter values c̃3 = 1, c̃4 = 0.6, RD = 3/40, k̃ = 1, Q̃ = 1 and boundary values ũ0 =

1, ṽh = 0.3. In Figure 4.1(a), segments of ‘convex-upward’ boundary kinetics are separated

by rapid changes of velocity, which we refer to as ‘transitions’. Each transition corresponds

to the formation of a peak in the concentrations of both ũ (as shown in Figure 4.1(b)), and

ṽ. After the passage of the moving boundary, the spatial distributions rapidly converge on

a stationary periodic pattern [except near the fixed boundary] in which the peaks of ũ and

ṽ coincide.
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(a)

(b)

Figure 4.1: Periodic Behaviour : (a) Contours of ũ showing periodic transitions be-
tween convex-upward segments of the boundary kinetics, each caused by a peak in ũ
at the moving front. The distance traversed between two transitions, h̃period, is equal
to the wavelength (λ̃) of the stationary pattern left behind the moving front. (b) Spa-
tiotemporal concentration profile for the species ũ showing development of peaks at
the moving front. x̃ is the distance from the fixed surface. Results are obtained using
Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with c̃4 = 0.6, RD = 3/40, c̃3 = 1,
ũ0 = 1, ṽh̃ = 0.3, Q̃ = 1 and k̃ = 1.
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In Figure 4.1, each transition corresponds to a peak at the moving boundary and these

peaks persist so that the resulting stationary pattern has dimensionless wavelength, λ̃, equal

to the advance, h̃period, of the moving front between successive transitions. However, if c̃4 is

increased to 1.4, keeping the other parameters unchanged, the function h̃(t̃) has a periodic

form similar to that in Figure 4.1(a), but behind the moving front every second peak starts

to decay, and the pattern eventually evolves to one with a wavelength λ̃ = 2h̃period.

Fixed-domain simulations (see Appendix 4.A) using these parameter values show that

steady-state periodic solutions do exist with a wavelength λ̃ = h̃period, but they are unstable.

Thus, the moving front imposes a certain periodicity on the pattern, but its persistence as a

steady state or its subsequent evolution depend on features of the equation system that are

independent of the domain size or its evolution in time.
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(a)

(b)

Figure 4.2: Random behaviour: (a) Contours of ũ showing erratic boundary kinetics.
(b) Spatiotemporal evolution of the species ũ showing random development of peaks
at the moving boundary, and the following erratic fluctuations in the amplitude for
Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with c̃4 = 1.8, RD = 3/40, c̃3 = 1,
ũ0 = 1, ṽh̃ = 0.3, Q̃ = 1 and k̃ = 1. Homogeneous initial conditions consistent with the
boundary conditions are used.
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4.2.2.2 Random behaviour

If c̃4 is increased further to 1.8 whilst keeping the other parameters unchanged from

those used in Figure 4.1, the boundary velocity exhibits essentially random perturbations

from an otherwise linear trend as shown in Figure 4.2(a). The corresponding concentrations

of ũ at the moving boundary also fluctuate randomly, but as the boundary recedes, the

distributions evolve into relatively isolated peaks as shown in Figure 4.2(b). The amplitudes

of these peaks fluctuate erratically, with some decaying eventually to zero. The others

stabilize at a more or less reproducible maximum value, which for these parameter values

is ũmax ≈ 0.64, ṽmax ≈ 1.56. Throughout this transient process, peaks in ũ and ṽ remain

spatially coincident.

4.2.2.3 Periodic boundary motion without patterns

If c̃4 in the above case is increased beyond about 1.9, the boundary motion reverts to a

convex-upward periodic form like that in Figure 4.1(a), but the distributions of ũ and ṽ then

decay asymptotically to zero, so that regions away from the boundaries eventually become

completely devoid of both species. At first sight, this appears to be inconsistent with the

presence of the term c̃4ṽ
2/ũ in (Section 5.2.1). However, if we assume that ũ, ṽ are spatially

homogeneous and that ṽ � ũ, these equations can be approximated as

dũ

dt̃
+ ũ = 0 ;

dṽ

dt̃
+ c̃4ṽ = 0 , (4.22)

with solution ũ = C exp(−t̃), ṽ = D exp(−c̃4t̃) where C,D are constants. The condition

ṽ � ũ then reduces to

D

C
exp

[
(1− c̃4)t̃

]
� 1 , (4.23)

which will be satisfied for all t̃ if c̃4 > 1 and the initial conditions are chosen such that

D/C � 1. Thus c̃4 > 1 is a necessary but not sufficient condition for ũ and ṽ to decay

towards zero, as is shown by the results described above for c̃4 = 1.4 and 1.8.
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4.2.3 Dependence of Turing-pattern wavelength on boundary kinetics

For the Gierer-Meinhardt model, Turing patterns correspond to stable time-invariant pe-

riodic solutions of (Section 5.2.1). The results described above show that boundary kinetics

have a significant effect on the distributions generated immediately behind the moving front,

but the resulting patterns persist only if they lie in the appropriate stable wavelength range

(see Appendix 4.A), or if they can evolve to such a wavelength.

Figure 4.3: Turing pattern wavelength as a function of the growth-rate parameter k̃
in (Equation (4.11)). Hollow symbols [A] are for RD = 1/16, c̃3 = 0.83, ṽh = 0.3 and
solid symbols [B] are for RD = 3/40, c̃3 = 1.0, ṽh = 0.1. In both cases, c̃4 = 0.5, ũ0 = 1
and Q̃ = 1. Triangles identify cases leading to peak decay, whilst circles identify cases
of peak splitting. Dashed lines represent bounds on wavelengths of stable patterns (see
Appendix 4.A).

Figure 4.3 shows the wavelength of the resulting steady-state pattern as a function of the

growth-rate parameter k̃ in (Equation (4.11)) for two sets of parameter values, A: [RD =

1/16, c̃3 = 0.83, ṽh = 0.3] and B: [RD = 3/40, c̃3 = 1.0, ṽh = 0.1]. The remaining parameters

c̃4 = 0.5, ũ0 = 1 and Q̃ = 1 are common to both cases. The dashed lines in Figure 4.3

represent the lower (λ̃1) and upper (λ̃2) bounds of the range of wavelengths of stable periodic
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patterns obtained numerically, as discussed in Appendix 4.A. Notice that the upper bound

for case [A] is approximately λ̃A2 ≈ 21 so does not appear in Figure 4.3.

Case [A] corresponds to the ratio c̃4/RD = 8, which is well above the boundary for

instability defined in (Equation (4.17)). At lower values of k̃, the wavelength generated

at the moving front is retained in the steady state, and it decreases monotonically as k̃ is

increased over five orders of magnitude. However, for k̃ > 1 some of the peaks generated

decay, leading to a larger steady-state wavelength, as discussed in Section 4.2.2.1 above.

These results are indicated by triangles in Figure 4.3.

Case [B] corresponds to c̃4/RD = 6.7, for which a narrower range of wavelengths is stable

in the steady state. The actual wavelength increases with decreasing k̃ down to k̃ ≈ 0.1 ,

below which some of the generated peaks split into two through a transient process that we

describe in more detail in Section 4.2.3.1, below. Steady-state patterns generated by peak

splitting are indicated by circles in Figure 4.3. Notice that peak splitting occurs before h̃period

reaches values for which steady-state patterns are unstable. To elucidate this behaviour, we

performed numerical simulations on a large fixed domain with periodic initial conditions

of wavelength close to the upper boundary in Figure 4.3. Results show that the pattern

converges on the steady state only if the initial distributions are very close to those in the

steady state. With all other initial conditions, the system preferentially evolves towards a

pattern with a different wavelength.

4.2.3.1 Peak-splitting

In the previous section, we noted that peak splitting causes the wavelength of the final

pattern for case [B] to differ from that generated at the moving front as this wavelength

approaches the upper boundary of the range of stable Turing patterns for certain parameter

values. Figure 4.4 shows this evolutionary process for ũ(x̃, t̃) with k̃ = 1. For instance,

Figure 4.4(a) shows that at t̃ ≈ 1475, a peak develops rapidly near x̃ = 41. The shape of

this peak changes relatively slowly until t̃ ≈ 1620, at which time it starts to split into two
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peaks. As these new peaks develop, they also move apart. The right peak moves to the

right, and eventually stabilizes at x̃ ≈ 40, whilst the left peak moves a larger distance to the

left, reaching the location x̃ ≈ 47.5. Such an event is observed to occur periodically. The

corresponding influence on the motion of the boundary is shown in Figure 4.4(b). The initial

peak development is associated with a large increase in boundary velocity ˙̃h labelled ‘strong

transition’ whilst the peak-splitting event gives only a minor perturbation in the velocity.

Strong transitions are separated by a distance 2λ̃, where λ̃ is the wavelength of resulting

Turing pattern.
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(a)

(b)

Figure 4.4: Periodic behaviour with peak-splitting: (a) Spatiotemporal evolution of the
species ũ showing each peak formed at the boundary splitting once. (b) Contours of
ũ showing a strong transition in the boundary kinetics for each peak formed at the
boundary. The peaks farther away from the moving front are observed to be stationary
with a wavelength of λ̃. Strong transitions are separated by a distance h̃period = 2λ̃.
Results are obtained using Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with
c̃4 = 0.5, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.01, Q̃ = 1 and k̃ = 1.
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The number of peaks that split in case [B] depends on the value of k̃ and appears to self-

select a value that results in a wavelength well within the steady-state bounds. For example,

the points shown in Figure 4.3 for case [B] as k̃ is decreased in the range 0.01 < k̃ < 0.05

include cases where (i) one out of four, or (ii) two out of every five peaks split, or (iii) each

newly generated peak splits four times. In each case, the resulting pattern then adjusts as

in Figure 4.4 to give a uniform spacing in the steady state.

At even lower values of k̃, a single peak is generated at the moving boundary when the

process starts; thereafter, all subsequent peaks are generated by splitting the peak nearest

the moving boundary. In this case, there are no strong transitions of the form shown in

Figure 4.4(b), and the boundary kinetics are only slightly perturbed from linear.

These results are obtained using numerical simulations, and, hence, we can only investi-

gate cases with particular parameter values. However, to give a broader picture of the system

behaviour, Figure 4.5 presents a map in showing the dependence of qualitative features of

the behaviour as functions of ṽh and c̃4.
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Figure 4.5: The solid symbols in this map indicate numerical simulations that resulted
in pattern formation, and the open symbols indicate numerical simulations that did not
result in pattern formation. The triangular symbols indicate conditions under which the
boundary moved in a linear fashion, rather than in a periodic fashion. The lower shaded
area, and the corresponding circular points, represent a region in which peak-splitting
was observed. The upper shaded region represents where chaotic, random behavior was
observed that was very sensitive with respect to small changes in the values of input
parameters. The lower dotted line corresponds to the condition c̃4 = 5.8RD, which
is the instability condition of (Equation (4.17)). These results were obtained using
Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with RD = 0.075, c̃3 = 1, ũ0 = 1,
Q̃ = 1 and k̃ = 1.

Figure 4.5 shows that while non-linear boundary kinetics of convex-up segments (as

shown in Figure 4.1a) are observed for lower values of the activator concentration ṽh̃, in-

creasing it beyond ∼ 1 results in a local build-up of the inhibitor concentration (ũ) at the

moving front, which then moves linearly in response. For regions not satisfying the instabil-

ity condition of (Equation (4.17)), i.e for c̃4 < 5.8RD, no patterns are observed. However,

boundary kinetics still shows a periodicity for some of such cases. As we move away from

this region by increasing c̃4, a general trend of pattern formation, chaotic concentration
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distribution, followed by no pattern formation, is observed. Notice that as the solution is

numerical, this map does not provide any general conclusions for all parameter ranges, as

opposed to a linear stability analysis [75, 76, 77]. However, as shown in Appendix 4.A, a

linear stability analysis only provides a subset of wavelengths which form stable patterns in

reaction-diffusion systems of Section 5.2.1 and Equation (4.26).

4.3 Activator-substrate system

We next consider Schnakenberg’s activator-substrate the governing differential equations

for which are as follows [54]

∂u

∂t
= Du

∂2u

∂x2
− c1v2u+ a ;

∂v

∂t
= Dv

∂2v

∂x2
+ c1v

2u− c2v + b . (4.24)

We use the same boundary conditions and growth law (Equation (4.6)) as in the Geirer-

Meinhardt model. A dimensionless formulation can then be obtained by defining

ũ = µu ; ṽ = µv ; x̃ = x

√
c2
Du

; h̃ = h

√
c2
Du

; t̃ = c2t (4.25)

[59], where µ =
√
c1/c2. Substituting these relations in (Equation (4.24)), we obtain the

dimensionless governing (Equation (4.26)). [54], which can be described in the following

dimensionless form

∂ũ

∂t̃
=
∂2ũ

∂x̃2
+ ã− ṽ2ũ

∂ṽ

∂t̃
= RD

∂2ṽ

∂x̃2
+ b̃+ ṽ2ũ− ṽ , (4.26)

where ũ, ṽ act as substrate and activator respectively, and RD � 1. As in Section 2, we

assume that the velocity of the moving front is determined by (Equation (4.11)), and the

remaining boundary conditions by (Equation (4.12), Equation (4.13)). In this case, the
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independent dimensionless parameters defining the system comprise

RD =
Dv

Du

; ã =
µa

c2
; b̃ =

µb

c2
; ũ0 = µu0 ; ṽh = µvh ; Q̃ = µQ ; k̃ =

k√
Duc1

. (4.27)

Figure 4.6 shows the response of the system for parameter values RD = 3/400, ã =

0.9, b̃ = 0.1, ũ0 = 1, ṽh = 0.1, Q̃ = 1 and k̃ = 0.05. Troughs in the substrate concentration ũ

(Figure 4.6(a)), and simultaneous peaks in the activator concentration ṽ (Figure 4.6(b)), are

developed periodically at the moving boundary. These events are associated with a transient

reduction in domain growth rate, leading to the concave-upwards boundary kinetics, in

contrast to the convex-upwards kinetics of the Gierer-Meinhardt model in Figure 4.1(a).

Figure 4.6 also shows that for these set of parameters, every second peak generated at

the moving boundary splits. Also, the splitting process initiates when this peak is two peaks

away from the boundary. The distribution, therefore, eventually converges on a stationary

periodic pattern, with λ̃ = (2/3)h̃period.
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(a)

(b)

Figure 4.6: Behavior of Schnakenberg’s activator-substrate model for RD = 3/400,
ã = 0.9, b̃ = 0.1, ũ0 = 1, ṽh = 0.1, Q̃ = 1 and k̃ = 0.05: (a) Contours of ũ show-
ing troughs developed at the boundary causing periodic transitions between concave-
upward segments, in contrast with the convex-upwards behaviour in Fig. 1(b). (b)
Contours of ṽ show every second peak formed at the boundary splitting. The peaks
farther away from the moving front are observed to be stationary. Peaks in ṽ coincide
with troughs in ũ. Transitions are separated by a distance h̃period = (3/2)λ̃. x̃ is the
distance from the fixed surface. 72



4.4 Conclusions

In this chapter, we have examined the interaction between pattern-forming Turing insta-

bilities and a domain boundary whose motion is governed by the local concentration of one

of the species. Results for both the Gierer-Meinhardt activator-inhibitor model [53] and the

Schnakenberg activator-substrate model [54] show parameter ranges in which the velocity

of the boundary is periodic, with the former exhibiting convex-upward segments and the

latter concave-upward segments, in each case separated by rapid changes in velocity [transi-

tions]. Both convex-upward [1, 70] and concave-upward kinetics [21] have been observed in

experimental systems.

Periodic boundary motion leaves behind a spatially-periodic pattern, whose wavelength

is determined by the mean velocity and the frequency of transitions. If this wavelength is one

for which stable Turing patterns can exist in an infinite domain, the pattern will generally

persist, but in other cases it may evolve through peak decay or peak splitting to a different

[and stable] wavelength, or it may decay to a homogeneous state.

Appendix

4.A: Stationary solutions of the Gierer-Meinhardt model in fixed-domains

In this appendix, we discuss the numerical procedure for determining stable and unstable

steady-states of the Gierer-Meinhardt model of Section 5.2.1 in a fixed domain. We achieve

this using MATLAB’s continuation and bifurcation package - pde2path [73, 74].

We use h̃ as the bifurcation parameter for analyzing the PDEs in Section 4.2.1 and

Section 4.2.1, while neglecting the advection terms containing dh̃/dt̃ (i.e in a fixed domain

0 < ζ < 1 where ζ = x̃/h̃). Zero-flux boundary conditions are used. For the purpose of

demonstration, we show results for parameters of case [B] of Section 4.2.3 (RD = 3/40, c̃3 =

1.0, c̃4 = 0.5) in Figure 4.7.

The trajectory of concentration of species ũ is represented by its maximum absolute value,
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Figure 4.7: Bifurcation diagram for Gierer-Meinhardt activator (v)-inhibitor (u) kinet-
ics with RD = 3/40, c̃3 = 1.0, c̃4 = 0.5 (case [B] in Figure 4.3), assuming the domain to
be fixed. Solid squares represent the stable steady-states while hollow squares mark the
unstable steady-states, obtained under zero-flux boundary conditions. Stable patterns
are obtained in the wavelength range of 3.1 < λ̃ < 6.8 (bounds λ̃B1 , λ̃

B
2 ). H.S.S stands

for the homogeneous-steady-state solution of Equation (4.15).

max(|ũ|). Solid and hollow squares represent the stable and unstable solutions, respectively.

The horizontal branch at max(|ũ|) = 4 corresponds to the homogeneous steady-state of

Equation (4.15). The other two branches, λ̃ = 2h̃ and λ̃ = h̃, correspond to stationary

periodic solutions, found to be stable in the range 3.1 < λ̃ < 6.8. Notice that the boundary

conditions support solutions with an integer number of half-waves in the domain. Note

that for this case, the homogeneous-steady-state is unstable to small perturbations with

wavelengths in a significantly smaller range of 3.1 < λ̃ < 4.8. This shows that a linear

stability analysis about the homogeneous solution gives only an imperfect guide to the range

of wavelengths to be expected in a transient simulation.

For case [A] of Section 4.2.3, stable patterns in the range 2.6 < λ̃ < 21 were obtained

using a similar procedure. Note that pde2path permits fairly general dependence of the

coefficients on ũ, ṽ and ζ but not on time t̃, so it cannot be applied to the moving-boundary

problem of Section 4.2.1,Section 4.2.1, even if the domain growth h̃(t̃) were specified or

approximated.
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Chapter 5

Candidate Mathematical Models for Zircaloy Oxidation

5.1 Introduction

Oxidation behavior of adherent oxides formed on majority of material systems is observed

to follow an approximately parabolic oxidation kinetics. The oxidation rate drops contin-

uously with time as the thickness of the protective oxide increases. Mathematical models

for understanding this behavior are fairly well established and are discussed in the following

sections.

5.1.1 Diffusion model of oxide growth

In this section, we present the classical understanding of the oxide growth based on

Fickian diffusion. There are generally two types of oxidation systems, one in which the

diffusivity of the metal ion is significantly larger than that of the oxidizing species (oxygen

ion, hydroxide ion etc.) and therefore the new oxide forms primarily at the oxide-oxygen

environment interface. In the second category, the oxidizing species diffuses faster and hence

the new oxide is predominantly formed at the metal-oxide interface. Zirconium oxidation

belongs to the second type, and therefore, we will only discuss this category in this chapter.

Figure 5.1 shows the schematic of an oxidation process, where the oxidizing species c

diffuses from the oxygen environment side of the oxide to the metal side. Let us assume that

the surface area of the metal-oxide interface is A. c0, cs is the concentration of the oxidizing
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species on the oxide-oxygen environment interface and the metal-oxide interface respectively.

c0 is assumed to be constant. Also, constant B is the concentration of the oxidizing species

in the metal oxide. h is the thickness of the oxide at time t. If the oxide grows by an amount

dh in time dt, mass conservation at the moving metal-oxide interface is then given as

−D∂c

∂x
Adt = (cs +B)Adh (5.1)

where csAdh is the advection term. This can be simplified to

−D∂c

∂x
= (cs +B)

dh

dt
(5.2)

Also, the rate of formation of the oxide is proportional to the rate of reaction between the

oxidizing species and metal at the metal-oxide interface. At this location, the concentration

of the metal is constant, we have

dh

dt
= kcs (5.3)

where k is a constant. Equations (5.2) and (5.3) can be solved simultaneously for unknowns

h and cs. In the next section, we will discuss the approximations which lead to the Deal-

Grove model of oxidation [72].

Figure 5.1: Growth of an oxide layer via diffusion of the oxidizing species (c) from
the oxide-oxygen environment interface to the metal-oxide interface. The metal-oxide
interface moves by an amount dh in time dt due to the formation of new oxide at the
metal-oxide interface.
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5.1.1.1 Deal-Grove model of oxidation

In the model proposed by Deal and Grove for oxidation of silicon [72], there are two main

assumptions of (i) steady-state within the oxide and (ii) a negligible value of the advection

term in Equation (5.2). These approximations simplify this equation to

D
c0 − cs
h

= B
dh

dt
(5.4)

Substituting Equation (5.3) into the above equation, we get

cs =
c0

1 + Bkh
D

(5.5)

We can solve for the oxide thickness by substituting this expression in Equation (5.3) to get

(
1 +

Bkh

D

)
dh = kc0dt (5.6)

Integrating this equation and assuming 0 oxide thickness at time t = 0, we have

h = − D

Bk

[
−1 +

√
1 +

2Bk2c0
D

t

]
(5.7)

If we non-dimensionalize h and t as follows

h̃ =
Bkh

D
; t̃ =

2Bk2c0
D

t, (5.8)

the growth kinetics can be written as

h̃ = (1 + t̃)
1
2 − 1 (5.9)
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and is plotted in Figure 5.2. We observe two regimes of kinetics for the Deal-Grove model.

For shorter times, t̃ << 1, we have the following approximation

h̃ = t̃/2 (5.10)

which corresponds to a linear growth kinetics. For significantly larger times, t̃ >> 1, we get

h̃ = t̃1/2 (5.11)

which is the parabolic rate of growth. Therefore, the growth kinetics is initially linear,

controlled by the reaction kinetics, and transitions to a diffusion-limited parabolic regime

which is its limiting behavior. From the non-dimensionalization in Equation (5.8), it follows

that higher the value of the reaction constant k is with respect to the diffusion coefficient

D, the sooner this transition occurs on actual time scale.

Figure 5.2: Deal-Grove model of oxidation. Oxidation kinetics is limited by the reaction
kinetics in the initial stages of oxidation t̃ << 1. As the oxide layer thickens, the process
becomes limited by diffusion, leading to a parabolic behavior.
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5.1.2 Wagner’s electrochemical-migration model of oxide growth

In Wagner’s theory, the oxidation process is considered to be controlled by the migration

of charged species through the oxide layer, under the effect of concentration gradients and

an electric field. The oxide layer formed on Zircaloys is generally considered to be anion-

deficient [1], with diffusion of oxygen controlled by the diffusion of anion (oxygen) vacancies.

Figure 5.3 shows the schematic of interface reactions and the diffusion of charged species

through the oxide. At the metal-oxide interface, zr metal reacts with the lattice oxygen of

the sub-stoichiometric zirconia to form new oxide, positively charged oxygen vacancies and

electrons. The doubly-charged vacancies and electrons then diffuse to the other side of the

oxide, where they react with free oxygen to form neutral lattice oxygen (Oo
××).

Figure 5.3: Growth of an anion-deficient oxide layer by reaction with the lattice oxygen
at the metal-oxide interface. Positively charged anion-vacancies and electrons diffuse
to the free surface of the oxide.

Governing differential equations for oxygen-vacancy concentration (v) and electron den-

sity (n) can be written as

∂v

∂t
= Dv

∂2v

∂x2
− µv

∂

∂x
(vE) ;

∂n

∂t
= Dn

∂2n

∂x2
− µn

∂

∂x
(nE) . (5.12)

where E is the electric field, µv, µn is the electric mobility of the vacancies and the elec-

trons respectively, while Dv, Dn are the corresponding diffusivity values. Coupled-current
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condition requires the net current to be 0 at every point within the film, i.e

2
∂v

∂t
− ∂n

∂t
= 0 (5.13)

Substituting Equation (5.12) into this equations and integrating it, we can obtain an expres-

sion for the electric field as

E =
2Dv

∂v
∂x
−Dn

∂n
∂x

2µvv − µnn
(5.14)

If we assume local electroneutrality, i.e, n = 2v, the system can be reduced to one

independent governing equation

∂v

∂t
= Dv

∂2v

∂x2
− Dv(Dv −Dn)

Dv + Dn

2

∂2v

∂x2
(5.15)

which is equivalent to Fick’s second law of diffusion with a modified diffusion coefficient of

Decm
v = Dv −

Dv(Dv −Dn)

Dv + Dn

2

(5.16)

for electrochemical migration of oxygen vacancies in an electroneutral oxide film. A con-

sequence of reducing to a Fickian form is that it results in an oxidation kinetics that has

a parabolic limiting behavior (same as in the classical diffusion model of previous section).

Also notice that if Dn = Dv, the electric field E = 0 and the model reduces to the classical

diffusion model of Section 5.1.1. A numerical simulation with a less restrictive condition of

only the interfaces specified to be charge-neutral also results in a local state of electroneu-

trality in its limiting behavior.
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Figure 5.4: Growth kinetics of a locally-electroneutral oxide film obtained from Wag-
ner’s theory of electrochemical migration. Limiting behavior is observed to be approx-
imately parabolic. For the case of equal diffusivity of electrons and oxygen vacancies,
Dn = Dv, electric field contribution is 0 (Equation (5.16)), reducing it to the classi-
cal diffusion model of Section 5.1.1. Weight-gain kinetics is only shown for the case
Dn = 1000Dv.

5.1.3 Zircaloy oxidation: Departing from classical models

For oxidation in zirconium alloys, the initial growth kinetics follows the classical behavior

of an approximately parabolic oxidation kinetics outlined in previous sections. However, as

the oxide layer reaches a critical thickness, the weight-gain kinetics shows a sudden acceler-

ation (a transition) as shown in Figure 5.5, while the oxide layer remains adherent and no

through-thickness cracking is observed. Transition in the oxidation kinetics is also associated

with the formation of void-like structures at the metal-oxide interface. After a transition,

oxidation rate starts dropping again following an approximately parabolic kinetics, until an-

other transition occurs when oxide layer reaches double of the critical thickness. This process

is observed to repeat itself a few times. The microscopic analysis of thick oxide layers shows

a periodic structure of the oxide, wherein each sub-layer is of the size that is equal to the

critical thickness for transition. These sub-layers are observed to be separated by void-like
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structures.

Figure 5.5: Schematic of periodic weight-gain kinetics observed during oxidation of Zr
alloys such as Zircaloy-4 and ZIRLO (reproduced from [1]).

The peculiarity observed in the behavior of zirconium alloys is a significant departure from

the predictions of classical oxidation models outlined in the previous sections. Therefore, in

this chapter, we aim to present mathematical models which can further our understanding

of mechanisms which cause this anomaly.

5.2 Turing models for periodic oxidation behavior

Detailed studies of observed periodicity in the grain structure of oxide formed on Zircaloys

indicate that the boundary kinetics should replicate the behavior simulated in Figure 4.1 of

chapter C:ch4. Furthermore, there is some literature on direct thickness measurement in

zirconium alloys, showing periodicity in the oxidation kinetics during the initial stages of the

oxidation [11]. However, there is a large set of studies in the literature for alloys oxidation

(including zirconium, Ni-Cr and titanium alloys), which only monitor the weight of the

sample during oxidation and report at least a few initial periodic occurrences of transitions

(rapid acceleration) in the weight-gain kinetics [19, 20, 21]. Furthermore, transitions observed

in the weight-gain [at least for the case of Zircaloys] exhibit a strong correlation with the

ones observed in the boundary kinetics, as well as with the periodicity in the grain structure.

Turing models presented in the previous chapter exhibited a periodicity only in the rate of
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the boundary movement, but not in the weight-gain kinetics. This is because the activator-

inhibitor and the activator-substrate models considered there do not ensure conservation of

either of the species involved in forming patterns. Therefore, in this section, we propose two

modifications of these models, which exhibit transitions in the weight-gain kinetics as well as

the boundary kinetics. In the first class of proposed systems, transitions in the weight-gain

kinetics are due to a reaction that occurs at the metal-oxide interface, while in the second

category, it is due to a reaction that takes place at the free surface (or the oxide-oxygen

environment interface). These models also ensure conservation of the species that controls

the rate of boundary movement.

5.2.1 Weight-gain controlled by metal-oxide interface reaction

For this category of systems, we modify the activator-inhibitor model of eqns. G-M to

include a third diffusing species p which corresponds to the concentration of the species

responsible for oxidation (e.g oxygen ion). The system is then governed by the following

dimensionless equations

∂p̃

∂t̃
= R2D

∂2p̃

∂x̃2
(5.17)

∂ũ

∂t̃
=

∂2ũ

∂x̃2
− ũ+ ṽ2

∂ṽ

∂t̃
= RD

∂2ṽ

∂x̃2
+ c̃3

ṽ2

ũ
− c̃4ṽ (5.18)

where R2D = Dp/Du. Dp is the diffusion coefficient of the species p. u and v are the

species which form Turing patterns same as in C:ch4. Species u is assumed to act as a

catalytic substance for the chemical reaction that occurs between the corrosive species p and

the underlying metal at the metal-oxide interface. For example, there is some evidence of

interface crystal defects causing an improved reactivity in the oxide films [78]. The rate of
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movement of this interface can then be written as

dh̃

dt̃
= k̃ũ(1, t̃)p̃(1, t̃) . (5.19)

Boundary conditions for species u and v are taken as

∂ũ

∂ζ
(0, t̃) = 0 ;

∂ṽ

∂ζ
(0, t̃) = 0 ; ṽ(1, t̃) = ṽh ; −∂ũ

∂ζ
(1, t̃) = h̃

[
ũ(1, t̃)

] dh̃
dt̃

. (5.20)

and the corrosive species p has the following boundary conditions

p̃(0, t̃) = p0 ; −∂p̃
∂ζ

(1, t̃) = h̃
[
p̃(1, t̃) + Q̃

] dh̃
dt̃

. (5.21)

Here, we have assumed that the flux of species u and v is zero at the free surface of the

oxide, i.e, these species neither enter nor leave the system. Q̃ represents the amount of p̃

consumed per unit area in moving the boundary through a unit distance. Notice that the

species ũ acts only as a catalyst for the process that drives the boundary motion and hence

does not get consumed in this process. Also, we assume that the weight-gain in the system

is only because of the influx of the corrosive species p at the free surface, i.e

∆W̃ =

∫ t̃

0

−1

h̃

∂p̃

∂ζ
(0, t̃)dt̃, (5.22)

where

∆W̃ =
Dp

c1

√
c2
Du

∆W. (5.23)

If p is assumed to be the mass of the oxidizing species per unit volume of the oxide, ∆W will

be the weight gain per unit area of the oxidation surface. Figure 5.6 shows the boundary

movement and weight-gain kinetics of this model for two values of the reaction constant

k̃ = 0.01 for case (a) and k̃ = 1 for case (b), keeping all the other parameters the same

and equal to c̃4 = 0.5, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.1, Q̃ = 1 and k̃ = 1, R2D =
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100. Peaks in the concentration of u develop periodically, in a similar way as discussed

in Section 4.2.2.1. This results in periodic acceleration of the rate of boundary movement

(refer Equation (5.19)). Consequently, there are periodic increases in the consumption of

species p (see Equation (5.21)). If the diffusivity of p is significantly higher as compared to

the reactivity constant (k), this will lead to almost immediate corresponding transitions in

the weight-gain kinetics as well, as shown in Figure 5.6(a). For relatively smaller diffusivity

values, transitions in the weight-gain kinetics will follow the transitions in the boundary

kinetics with a larger time delay, as shown in Figure 5.6(b). The underlying kinetics follows

the physics of the Deal-Grove model of oxidation [72], wherein the initial kinetics is linear

(reaction-limited) and the long-term kinetics is parabolic (diffusion-limited). Higher values

of the reaction constant k̃ will make the transition from the linear to parabolic regime to

occur on a relatively shorter timescale, as observed in Figure 5.6. Species u and v will form

stationary patterns as shown in Section 4.2.2.1.

5.2.1.1 Comparison with Zircaloy oxidation behavior

For oxidation in zirconium alloys, the weight-gain kinetics has been observed to exhibit

only 2−3 initial transitions, whereas the structure of the oxide has been found to be periodic

even up to ≈ 20 sublayers [3] (or ≈ 20 transitions in the boundary kinetics given that the

new oxide forms at the metal-oxide interface). In that view, behavior shown in Figure 5.6(b)

seems more appropriate for this particular application. Notably, the weight-gain kinetics is

never observed to become parabolic in the experiments, and is rather observed to remain

linear, unlike the behavior shown in Figure 5.6(b). However, this might just be a consequence

of significantly high diffusivity of oxygen ions through the oxide layer keeping the oxidation

kinetics in the linear regime for an extended duration of time. As the oxide layer formed

on zirconium alloys remains intact, devoid of any through-thickness cracks, the kinetics is

expected to be limited by diffusion or parabolic in nature for a large enough oxide thickness.
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(a) (b)

Figure 5.6: Behavior of the modified Turing model outlined in Section 5.2.1 showing
transitions in the weight-gain kinetics, as well as in the boundary motion kinetics, for
(a) k̃ = 0.01 and (b) k̃ = 1 (refer Equation (5.19) for the description of this constant).
Other parameter values are c̃4 = 0.5, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.1, Q̃ = 1 and

k̃ = 1, R2D = 100.

5.2.2 Weight-gain controlled by oxide-oxygen environment interface reaction

For this category of models, species u, v, and the oxidation species p are assumed to be

governed by the same differential equations as in Section 5.2.1. Boundary conditions for

species ũ and ṽ are

∂ũ

∂ζ
(0, t̃) = hA ; ṽ(0, t̃) = ṽ0 ;

∂ṽ

∂ζ
(1, t̃) = h̃

[
ṽ(1, t̃)

] dh̃
dt̃

; ũ(1, t̃) = ũh . (5.24)

and the corrosive species p has the following boundary conditions

− ∂p̃

∂ζ
(0, t̃) = k2ũ ; −∂p̃

∂ζ
(1, t̃) = h̃

[
p̃(1, t̃) + Q̃

] dh̃
dt̃

. (5.25)

where k2 is a reaction constant. Species ũ affects the rate of reaction that controls the influx

of oxygen ion at the oxide-environment interface. This species also has a sink of constant

strength A at the oxide-oxygen environment interface. If the oxide layer is anion-deficient,
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the influx of oxygen at this location will likely be controlled by the following chemical reaction

(see Figure 5.3)

VO
2++2e−+1/2O2→ OO

××

where VO
2+ is positively charged oxygen vacancies and OO

×× is the lattice oxygen in zirconia.

Therefore, species ũ can be oxygen vacancies, electrons, or other interface defects [78]. We

assume the form of rate of boundary movement as follows

dh̃

dt̃
= k̃ṽ(1, t̃)p̃(1, t̃) , (5.26)

where species ṽ catalyzes the reaction responsible for the movement of the metal-oxide in-

terface. Weight-gain is calculated same as in Equation (5.22).

The results for this model for parameter values of c̃4 = 0.5, RD = 0.009, c̃3 = 1, A = 0.1,

ṽ0 = 2, ũh = 4, Q̃ = 1 k̃ = 0.1, k̃2 = 2, R2D = 1 are shown in Figure 5.7. In this

system, peaks in ũ and ṽ develop at the oxide-water interface, causing a strong transition

in the weight-gain kinetics as shown in Figure 5.7(a) and a weak transition in the boundary

kinetics Figure 5.7(b). This is because transition in the boundary kinetics requires diffusion

of ṽ from this newly formed peak. This is shortly followed by the formation of peak in ṽ

and ũ at the moving front, causing a strong transition in the boundary kinetics and a slight

deceleration of the weight-gain rate. However, it is only the peaks formed at the metal-oxide

interface which persist. Therefore, transitions in the weight-gain kinetics are not equally

spaced in time.

5.2.2.1 Comparison with Zircaloy oxidation behavior

For the model presented above, the time interval between two successive transitions in

the weight-gain kinetics does not remain constant, instead it increases as the time proceeds.

The underlying kinetics remains linear though, as observed during oxidation of Zircaloys.

Consequently, the weight gain between two successive transitions remains proportional to
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the time between two transitions. Notably, unlike the behavior observed for this model, only

a few initial transitions are observed in the weight-gain kinetics of zirconium oxidation. The

boundary kinetics shows an underlying parabolic kinetics, where each transition is succes-

sively delayed, but the distance traversed between two transitions remains approximately the

same. Therefore, it can still result in a spatially periodic grain structure within the oxide.

(a)

(b)

Figure 5.7: Behavior of the modified Turing model of Section 5.2.2 for parameter values
of c̃4 = 0.5, RD = 0.009, c̃3 = 1, A = 0.1, ṽ0 = 2, ũh = 4, Q̃ = 1 k̃ = 0.1, k̃2 = 2,
R2D = 1, showing transitions in the (a) weight-gain kinetics, as well as in the (b)
boundary motion kinetics.
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5.2.3 Proposed activator-inhibitor species in oxide films

Notice that species ṽ is a self-activator or an auto-catalytic substance. Dislocations form

one of the obvious candidate for this species, due to their capability for self-multiplication

(through Frank-read sources). However, presence of dislocations in the oxide layers is not

unique to zirconium alloys, and is hence unlikely to be the cause of the peculiar oxidation

behavior of these materials. Notably, martenstic phase transformations are postulated to

be auto-catalytic in nature when they occur via an isothermal mode [79]. This is because

the shear strain induced by a transforming cell reduces the strain-energy barrier for the

transformation in the adjacent regions. In the oxide films formed on zirconium, tetragonal

phase of the oxide undergoes a transformation to the monoclinic phase. Though this trans-

formation is generally assumed to be athermal (independent of thermal motion) in nature,

it is difficult to make a definitive claim about the effect of temperature in driving this phase

transformation in the zirconium oxide layers. Therefore, in this section we will assume the

phase transformation to occur via thermal nucleation and explore the auto-catalytic features

of the corresponding system.

5.2.3.1 Thermal nucleation of monoclinic oxide

In this section, we will assume that nuclei of the monoclinic oxide develop in the tetragonal

grains of the oxide due to thermal fluctuations. The shape of these nuclei is assumed to be an

oblate-spheroid, with one of the dimensions equal to the length of the grain in the direction

of the oxide-growth. The in-plane dimension is a, as shown in Figure 5.8. The choice of the

shape of the nuclei is motivated by the strain-energy barrier analysis of this transformation

in C:ch3, i.e shapes with their larger dimension across the direction of oxide growth offer an

energetic advantage by reducing the macroscopic deformation due to the shear eigen-strain.
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Figure 5.8: Assumed shape of a thermally-nucleated monoclinic oxide in a grain of the
tetragonal oxide.

Critical size of the nuclei can be obtained by minimizing the total change in free energy

with respect to this parameter by setting

d∆G

da
=
d(∆GT→MVnucleus)

da
= 0 (5.27)

where term ∆GT→M is the free energy change per unit volume of Equation (3.3). Vnucleus

is the volume of the nucleus. The critical size of nuclei hence obtained is referred to as ac.

The number of nuclei formed per unit time, per unit volume of the parent (tetragonal) phase

is then given as

I = K(T ) exp−∆G∗ + ∆Gm

kT
(5.28)

where ∆G∗ is the net change in free energy for a critical size nuclei, as shown in Figure 5.9.

∆Gm is the migration barrier.
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Figure 5.9: Energy landscape with respect to the size of the nucleus.

The rate of formation of new nuclei with this energy barrier is then given as

dn

dt
= K(T )Vgrain(1− f) exp−∆G∗ + ∆Gm

kT
(5.29)

where f is the current volume fraction of the already transformed material. However, this

expression is only valid for the case when the energy barrier of all the nuclei forming at a

given time is the same. For tetragonal-to-monoclinic phase transformation in zirconia, the

shear deformation associated with the formation of one nuclei will reduce the strain energy

barrier for new nuclei forming in its immediate vicinity. Therefore, we assume a scenario

outlined in Figure 5.10.

Figure 5.10: 2D view of a tetragonal grain in a plane parallel to the metal-oxide inter-
face.
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Figure 5.10 shows a planar view of a tetragonal grain parallel to the metal-oxide inter-

face, with a length of lgrain into the plane of the paper. Inner smaller circles represent the

transformed monoclinic. Red circles are the already transformed monoclinic up to time t.

Green circles are the nuclei forming at time t in the immediate vicinity of the transformed

monoclinic, and thus have a reduced strain energy barrier (and their critical nuclei size is

acf ). The nuclei forming far away (purple circles) form at the original energy barrier of

(∆G∗ + ∆Gm). Assuming that the already transformed monoclinic will reduce the energy

barrier in the f fraction of the parent phase volume, and that the contribution of growth is

negligible in increasing the monoclinic phase fraction, its rate of increase can be written as

df

dt
=
Vo

dno

dt
+ Vr

dnr

dt

Vgrain
(5.30)

where Vo is the volume of the critical nuclei forming far away from the existing monoclinic

and no is their number. Vr is the volume of the critical nuclei forming in the vicinity and nr

is their number. This can also be written as

df

dt
=

2

3
πlgrainK(T )

[
(1− f)a2c + fa2cf exp

∆Gr

kT

]
exp−∆G∗ + ∆Gm

kT
(5.31)

∆Gr is the reduction in the transformation barrier for the green nuclei of Figure 5.10 as

compared to the purple nuclei. Note that acf < ac due to the reduced energy barrier for the

former. Therefore, the auto-catalytic effect is present if

exp
∆Gr

kT
>

(
ac
acf

)2

(5.32)

Therefore, based on Equation (5.31)-Equation (5.32), we can say that the monoclinic phase

is a reasonable candidate for an auto-catalytic species. Oxygen vacancies tend to favor the

tetragonal phase and will naturally provide the effect of cross-inhibition on the monoclinic

phase by increasing the energy barrier for the transformation (∆G∗). They can also self-
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inhibit by reacting with the oxygen ions. However, we cannot make any definitive claims

on the presence of a cross-activation effect, i.e, an increase in the monoclinic phase fraction

accelerating the rate of production of vacancies. Also, application of the above Turing models

to Zircaloy oxidation requires that an increase in at least one of these species (monoclinic

phase content or vacancy concentration) to cause an increase in the rate of the reactions

which occur at the two interfaces of the oxide layer. Identifying such mechanisms requires a

detailed understanding of the chemistry of the oxide layers and is beyond the scope of this

thesis.

5.3 An alternative model for Zircaloy oxidation

Turing models proposed in the previous section are fairly restrictive, requiring a long

list of criterion to be satisfied (refer Equation (4.2)). In this section, we will discuss an

alternative mathematical model which requires only a subset of the Turing conditions to be

satisfied in order to reproduce a periodic oxidation behavior. However, there are certain

limitations of this model which we will discuss later.

5.3.1 Mathematical structure

We consider a system of three variables corresponding to the concentration of the sub-

stoichiometric tetragonal phase (u, moles of tetragonal zirconia per unit volume of the oxide),

pore density (v, number of pores per unit volume of the oxide), and grain boundary oxygen

ions (p, moles of oxygen ions present in the grain boundaries per unit volume of the oxide).

Note that the remaining matter in the oxide is assumed to be comprised of monoclinic

zirconia and dopant/impurity atoms. 0 < x < h(t) and t correspond to spatial and temporal

coordinates respectively. h(t) is the thickness of the oxide layer at time t, and x = 0 is

the free surface (oxide/oxygen environment interface). Their evolution is assumed to be
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governed by the following differential equations

du

dt
= f(u, v) = σ(aCO − k1v) (5.33)

dv

dt
= g(u, v) = σk2(u− u0) (5.34)

∂p

∂t
= Dp

∂2p

∂x2
+ ω(u, v) = Dp

∂2p

∂x2
− σk3p (5.35)

σ = exp
[
−st

(
1−

(x
h

)n)]
(5.36)

Dp is the diffusion coefficient for the grain boundary oxygen ions. Parameters a, k1, k2, k3,

s, u0 and (n > 1) are system constants. CO is the concentration of oxygen that reacts with zr.

Though the physics requires the diffusion coefficients of u (tetragonal oxide) and v (pores) to

be 0, a negligibly small value of these needs to be specified during simulations for numerical

stability. Parameters a, k1, k2, k3, A, u0 and (n > 1) are system constants. σ represents the

normalized compressive stress which has a maximum value of 1 at the metal-oxide interface

(corresponding to the theoretical Pilling-Bedworth stress of 56 GPa). It quickly reduces

away from the interface and replicates the stress-relaxation behavior observed in the oxide

layers C:ch2. This quantity is used as a simple mathematical multiplier as an approximation

to capture the physical effects of compressive stress promoting the lower volume tetragonal

phase (refer Equation (5.33)), as well as the formation of pores (refer Equation (5.34)). Its

presence in Equation (5.35) ensures an oxygen consumption (or formation of new oxide)

primarily in the high-stress regions near the metal-oxide interface. Nature of interaction

between the tetragonal phase of the oxide (u) and the pores (v) results in a time-oscillatory

behavior in their concentrations near the metal-oxide interface. In the next section, we will

present a mathematical analysis of Equations (5.33) and (5.34) understand this process.
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5.3.1.1 Simplified analysis

In Equations (5.33) and (5.34), spatial dependence is introduced by the stress multiplier

σ. For simplicity, we will assume it to be uniform to understand the behavior of these

equations with respect to time. These equation then reduce to

du

dt
= (c1 − c2v) (5.37)

dv

dt
= c3(u− u0) (5.38)

where c1, c2, c3 are constants. Note that these equations require the species to satisfy the

criterion of cross-activation and cross-inhibition, which is only a subset of the Turing in-

stability conditions listed in Equation (4.2). Taking time derivative of Equation (5.37) and

substituting Equation (5.38) in it, we get

d2u

dt2
= −c2c3(u− u0) (5.39)

We then have

u = B sin(ωt) + u0 (5.40)

v =
c1 −Bω cos(ωt)

c2
(5.41)

where

ω =
√
c2c3 ; u0 = ut=0 (5.42)

u and v are therefore oscillate periodically in time with the same frequency (ω). Notice

that Equations (5.33) and (5.34) indicate that the time-derivatives in u and v are signifi-

cantly more dominant in the regions adjacent to the metal-oxide interface. As a result, the

oscillatory behavior is also limited to this region. If the rate of formation of the oxide is

dependent on either u or v, it will also show a time-periodic behavior. Furthermore, as u, v
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do not diffuse, a moving metal-oxide interface causes a time-periodic behavior to result in a

spatially periodic distribution of these species.

5.3.2 Model details

Details of the model physics are discussed in this section.

The metal-oxide front is assumed to move at a rate that is proportional to the lattice

oxygen (within the already formed oxide grains) as well as the oxygen that arrives diffusing

through grain boundaries (see Figure 5.11). As the lattice structure of the tetragonal phase

favors the presence of vacancies in it, we assume that the vacancy concentration in the oxide

is proportional to concentration of this phase (u). Therefore, the rate of reaction or the rate

of increase of oxide thickness can be written as

dh

dt
= k((A− bu) + p) (5.43)

where A is a constant corresponding to the concentration of oxygen lattice sites in stoichio-

metric zirconia. The term [bu] represents the vacancy concentration (b is a proportionality

constant). p is the concentration of the grain boundary oxygen ions.

Next, we would discuss the physics of the form of function f(u, v) in Equation (5.33).

First term in the bracket (aCo) represents the increase in tetragonal concentration due to

the formation of the new oxide upon reaction of zr with oxygen. The second term (−k1v)

represents the transformation of tetragonal to the monoclinic phase with pores (v) acting as a

sink for tetragonal stabilizing vacancies. As both of these effects are enhanced by compressive

stress, we use that as a multiplier here. Also, we approximate the oxygen concentration as

CO = (A− bu) + p ≈ p (5.44)

Keeping the first term in the above expression leads to a behavior with only a few initial

transitions in the oxidation kinetics, followed by a constant rate of motion. Notably, such
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Figure 5.11: Oxide structure considered for the mathematical model outlined in
Section 5.3.

behavior has been reported in certain zirconium oxidation experimental studies. However,

in this study, we focus on cases exhibiting with a periodic oxidation kinetics for t → ∞ for

the purpose of demonstrating the key physics of the transitions. The argument for including

grain boundary oxygen in this model is also the same, i.e, if we consider only the first term

[A− bu], the system does not exhibit a periodicity.

Now, we would discuss the physics of form of function g(u, v) in Equation (5.34). As the

tetragonal concentration (u) [or the vacancy concentration in the oxide which is assumed to

be proportional to u] increases beyond a certain value, it results in pore formation by vacancy

condensation, and destruction of pores below it. Condensation of vacancies is promoted by

the compressive stress, and hence the use of multiplier σ.

In Equation (5.35), the function ω(u, v) represents consumption of grain boundary oxy-

gen in forming the new oxide. Recall that formation of new oxide in zr results in a theoretical

stress of 56 GPa at the metal-oxide interface which quickly relaxes away from it. Further-

more, due to significantly low diffusivity of zr ions, the oxidation happens primarily near the

metal-oxide interface. σ is therefore used as a multiplier to capture this effect. Evolution

of stress-multiplier σ is shown in Figure 5.12. Sharp gradients at the metal-oxide interface
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correspond to a quick stress-relaxation from the Pilling-Bedworth stress of 56 GPa, via plas-

tic deformation (dislocation glide). The rate of stress-relaxation decreases with time. Note

that we could have directly used the creep-based equations outlined in C:ch2 to model the

effect of the oxide stress. However, using an expression such as in Equation (5.36) allows for

a relatively simple framework while capturing the basic characteristics of stress-relaxation

observed in the oxide films.

Figure 5.12: Evolution of stress-multiplier σ used in Equations (5.33), (5.34) and (5.36)

The boundary conditions are as follows

∂u

∂x
(0, t) = 0 ;

∂v

∂x
(0, t) = 0 ; p(0, t) = p0 (5.45)

and

∂u

∂x
(h(t), t) = 0 ;

∂v

∂x
(h(t), t) = 0 ;

∂p

∂x
(h(t), t) = 0. (5.46)

5.3.3 Model predictions

In this section, we will discuss the predictions of the oxidation model for zirconium alloys

presented above. We will also draw comparisons with experimental observations wherever

relevant.
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5.3.3.1 Pore distribution and oxidation kinetics

Figure 5.13 shows a periodic behavior in the oxidation kinetics for the parameter values

of a = 0.5, k1 = 1, k2 = 1, u0 = 1, Dp = 1, k3 = 1, s = 1, n = 6, A = 2, b = 1 and

k = 0.005 in Equations (5.33)–(5.36), (5.43), (5.45) and (5.46). Also, each transition in the

boundary kinetics is observed to approximately correlate with a peak in the pore density.

This feature is observed in the microscopic images of the oxide layers formed in zirconium

alloys as well. In these observations, the void-like structures tend to dominate in regions

where the grain structure changes from columnar to equiaxed. This implies an increased

pore density overlaps with transitions in the boundary kinetics (faster rate leads to smaller

grain size). If the diffusivity of the grain boundary oxygen p is significantly high, transitions

in boundary kinetics will result in a few transitions in the weight-gain kinetics as well. It

will however, exhibit a parabolic limiting behavior.

Figure 5.13: Contours of pore density (v) obtained from the model of section
Section 5.3. Parameter values of a = 0.5, k1 = 1, k2 = 1, u0 = 1, Dp =
1, k3 = 1, s = 1, n = 6, A = 2, b = 1 and k = 0.005 are used in
Equations (5.33)–(5.36), (5.43), (5.45) and (5.46). The results show a spatial period-
icity in pore distribution correlated with the transitions in the boundary kinetics (as
observed experimentally in zr oxide layers)
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5.3.3.2 Phase distribution and oxidation kinetics

Figure 5.14 shows the contours of the tetragonal phase distribution (u). Note that a

negative peak in u increases the rate of boundary movement by reducing the vacancy con-

centration. This also agrees well with the experimental observation of a drop in the tetragonal

content near a transition.

Figure 5.14: Phase distribution obtained from the model of section Section 5.3. Pa-
rameter values of a = 0.5, k1 = 1, k2 = 1, u0 = 1, Dp = 1, k3 = 1, s = 1, n = 6, A = 2,
b = 1 and k = 0.005 are used in Equations (5.33)–(5.36), (5.43), (5.45) and (5.46). It
shows a spatial periodicity that is approximately correlated with the transitions in the
boundary kinetics (as observed experimentally in Zr oxide layers). Also, after initial
transients, the phase content does not change away from the interface.

5.3.4 Limitations

Model presented in this section is less restrictive as compared to the Turing models, in

terms of the criterion which need to be satisfied in order to reproduce the periodic oxidation

behavior of zirconium alloys. That allowed us to identify underlying the physical processes

which could lead to the mathematical structure that produces the desired behavior. However,

there are some limitations to this model. The choice of boundary conditions used in the

model for vacancies and the grain-boundary oxygen are not particularly applicable for an

oxidation system. Our attempts to reproduce this behavior with more reasonable boundary
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conditions were not successful. Also, the power-law exponent for each oxidation cycle is

super-parabolic in this model whereas experiments indicate it to be slightly sub-parabolic

(approximately cubic). The weight-gain kinetics for this model will be limited by diffusion

and hence will show a parabolic behavior for long enough time duration. However, weight

measurements have only shown it to remain linear and never transitioning to a parabolic

kinetics. This could also just be a consequence of significantly large diffusivity and not

running the experiments long enough. Lastly, though the physical mechanisms identified

here may qualitatively satisfy the main characteristics of Equations (5.33) and (5.34), the

exact mathematical forms may be different.

5.4 Conclusions

In this chapter, we proposed several candidate mathematical models which reproduce

the oxidation behavior of zirconium alloys. One set of such models is obtained by extending

the Turing framework of C:ch4 to three-species models which exhibit transitions not only

in the boundary kinetics, but also in the weight-gain kinetics, as observed experimentally

for oxidation of several material systems including Zircaloys [19, 20, 21]. We proposed a

simplified mathematical model that only requires a subset of Turing conditions to be satisfied.

Underlying physical mechanisms could thus be identified for this model with reasonable

confidence, unlike the Turing models. We also discussed the limitations of this model in its

physical arguments as well as its agreement with the experimental observations in Zircaloys.
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Chapter 6

Conclusions and Future Work

We started this work with the aim of developing a mathematical understanding of the

physical mechanisms which govern the oxidation behavior of zr alloys. The peculiar ob-

servations of periodic accelerations in the oxidation kinetics (transitions) and a correlated

layered appearance of the oxide formed on these alloys is well documented in the literature.

Mode-I (or through-thickness) cracking and micro-porosity caused by the martensitic phase

transformation of the tetragonal phase of the oxide to the monoclinic phase are postulated

to be the primary causes of this behavior. In chapter 2 of this thesis, we developed a creep-

based mechanistic model to understand the evolution of stresses within the oxide for a given

time versus temperature profile. The aim was to predict if the stress-state within the oxide

can allow for through-thickness cracks to form near an observed transition in the oxida-

tion kinetics. We use experimental data in the literature to estimate the elastic, thermal,

oxide-growth, and creep components of the strain and the model predictions were compared

against a different set of experimental data for the purpose of validation. Dislocation glide in

the oxide and power-law creep in the Zircaloy substrate are shown to be the most significant

creep-mechanisms. Further analysis shows that the creep of the oxide remains the dominant

factor in driving the stress-relaxation for temperatures up to ∼ 900 K, while the creep of

the substrate becomes significant only at higher temperatures. Stress-distribution across the

oxide layer was also studied. For a temperature of 633 K, the model predicts the oxide to

be under large in-plane compressive stress near the first observed transition, ruling out any
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possibility of formation of through-thickness crack within the oxide which could have allowed

an unrestricted access to the metal-oxide interface by the oxidizing species.

In chapter 3 of thesis, we developed a free-energy framework to understand the energet-

ics of the martensitic transformation of the tetragonal phase of the oxide to the monoclinic

phase. Using 3D finite-element simulations to obtain the strain energy barrier, we show that

loss in coherency at the interface between the transforming grain and the oxide matrix plays

a significant role in reducing the transformation energy barrier. We also observed that the

columnar grains offered a lower energy barrier for transformation than equiaxed grains due to

a better accommodation of the shear eigen-strain. Stress-relaxation is shown to have a negli-

gible influence on the strain-energy barrier, presenting a contradiction with previous claims in

the literature that reduction of the stress to a critical value drives a bulk-transformation that

results in a transition in the oxidation kinetics. However, we cannot rule out the possibility

of a bulk-phase-transformation due to a sudden change in the concentration of a chemical

species based on a continuum-based analysis. The free-energy change for transformation

obtained from the continuum analysis for equiaxed grains was highly positive, indicating

that it is unfavorable. However, experimental data indicates to the contrary. Therefore, we

carry out molecular-dynamics simulations to analyze the effect of crystal defects present in

the oxide layer on the relative stability of these phases. We show that oxygen ion interstitial

and tin substitutional defect significantly increase the driving force for transformation to

the monoclinic phase. As tin is one of the primary alloying element in Zircaloys and also

that the probability of having oxygen interstitials defects near the free surface of the oxide

(where equiaxed grains are located) is high, these atomistic level simulations can explain the

inconsistency between the continuum-analysis and the experimental observation mentioned

above.

As a periodic structure of the oxide is a dominant feature of Zircaloy oxidation, in Chapter

4 of this thesis, we focused on the interaction between pattern-forming Turing instability

and a moving boundary. We assume that the rate of boundary movement is controlled by
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the species involved in forming patterns. The results show behavioral regimes where the

boundary-kinetics is observed to be periodic. The transitions observed in the boundary

kinetics are found to be a result of periodic development of peaks in concentration of the

species at the moving boundary. These peaks leave a transient pattern in the wake which may

settle into a stationary pattern of the same wavelength, or it may evolve to a different and

stable wavelength through peak-splitting or peak-decay, or settle to a stable homogeneous

state. It is in the first scenario that we get a correlated periodicity between the boundary-

kinetics and the pattern left behind the moving front, a behavior experimentally observed for

the oxidation in zr alloys. Furthermore, two kinds of periodic boundary kinetics behaviors

are obtained for the two mathematical models considered in this study. One shows convex-

up segments of the boundary kinetics separated by transitions (as observed in Zr, Ti alloys),

while the second category shows periodic concave-up segments (as observed in some Ni-

Cr alloys). Therefore, this work has potential applications to oxidation behavior in other

materials as well.

Chapter 5 of this thesis concentrated on the mathematical modelling of periodic oxidation

behavior in Zircaloys. We proposed modifications of Turing models proposed in C:ch4 which

exhibit a periodicity in the weight-gain kinetics along with the boundary kinetics. The

primary oxidizing species (e.g oxygen ion) was considered to be independent of the pattern

forming process. However, by assuming a dependence of rate of reaction at the interfaces

to be controlled by the activator (v), inhibitor species (u), transitions are observed in the

oxidation kinetics, while u, v form stationary periodic concentration distributions. We also

proposed an alternative oxidation model which gives transitions in the boundary kinetics,

due to the transients in the tetragonal phase of the oxide and pores producing oscillations

in the local vacancy concentration at the metal-oxide interface. A high diffusivity of the

oxidizing species will then result in a few transitions in the weight-gain kinetics as well. These

transients scale with the magnitude of the in-plane compressive stress within the oxide, and

hence the oscillations are also localized near the highly-stressed metal-oxide interface region.
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Also, because both the tetragonal oxide and the pores can’t diffuse, the local oscillations at

the M-O interface then settle into stationary periodic spatial distributions of the tetragonal

phase content and pores. This is in agreement with the experimental observations in Zr

alloys.

In summary, the work presented in this thesis furthers a largely experimental literature of

oxidation in Zr alloys with a detailed quantitative understanding of the underlying physical

mechanisms. The models proposed for stress-relaxation and phase transformation can be

easily incorporated in large-scale simulations of the pressurized-water-reactors. Previous

studies modelled the transitions in the oxidation kinetics using through-thickness cracking,

which we show to be a non-reasonable assumption in C:ch2 of this thesis. To the best of

our knowledge, this is the first time rigorous mathematical models for periodic oxidation

behavior of Zr alloys have been proposed without making the assumption of oxide cracking.

Due to the lack of appropriate experimental data, we had to use creep properties of

commercially manufactured zirconia (yttria-stabilized-cubic zirconia) to obtain certain pa-

rameters in the stress-relaxation model presented in this thesis. Validation of these model

parameters requires direct experimental investigation to obtain the creep data for the oxide

layers formed on zr alloys. Furthermore, understanding the chemistry of oxide layer, e.g,

interaction between various crystal defects, oxide phases, ions, and electrons, both in the

bulk and interface is critical to modelling of oxidation in zr alloys. Certain experimental

studies indicate that the bulk of the oxide layer may be stoichiometric to slightly super-

stoichiometric in oxygen, in contrary to the general assumption of an anion-deficient oxide.

To understand such systems, one needs a clear understanding of the behavior of interstitial

oxygen in zirconia, corresponding solubility limit, and the form it exists in after it reaches

saturation. This region of the phase diagram of zirconium-oxygen is not well explored. How-

ever, it can play a significant role in understanding the physical mechanisms which drive

transitions in the oxidation kinetics. Atomistic calculations or experimental studies of dif-

fussivity of various sub-oxides of zr can be useful in understanding the role of the metal-oxide
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interface in controlling the oxidation behavior of these alloys. Elemental composition profil-

ing of the void-like regions that are observed to form in the oxide layer near every transition

can improve our understanding on their possible connection with the observed acceleration

in the oxidation kinetics.
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