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ABSTRACT

Reinforcement Learning (RL) has achieved tremendous empirical successes in real-world
decision-making problems. Along with its great empirical achievements, recently, the question of
how to design efficient RL algorithms with provable theoretical guarantees has attracted increasing
attention. To answer the above question, this thesis proposes and analyzes novel RL algorithms for
single-agent Markov Decision Processes (MDPs) and Markov games, where the Markov game is
the multi-agent extension of single-agent MDPs. This thesis covers two paradigms in RL: reward-

based online RL and reward-free RL. The reward-based online RL is a standard online learning
framework for RL. In this framework, the agents keep interacting with the unknown environment
and receiving rewards. Meanwhile, the agents continuously update the policies with the current
information obtained from the environment to achieve their goals of learning. The reward-free RL
is a different framework where the agents first aim to thoroughly explore the unknown environment
without accessing any pre-specified rewards and then, given an arbitrary extrinsic reward function,
the agents compute the target policy via a planning algorithm with data collected in the exploration
phase.

Concretely, this thesis focuses on providing a theoretical analysis of three fundamental and
challenging problems in RL: (1) online learning for constrained MDPs, (2) policy optimization for

Markov games, (3) reward-free RL with nonlinear function approximation. The first two problems
are studied in the scope of the reward-based online RL and the third one is an important problem
under the reward-free RL setting. In these three directions, the main contributions of this thesis
are summarized as follows. The first contribution is that this thesis proposes a provably efficient
upper confidence primal-dual algorithm for the single-agent MDP online learning problem with
time-varying constraints, where the transition model is unknown and the reward function is ad-

versarial. This thesis further proves the upper bounds of the regret and the constraint violation
for learning the constrained MDPs. As the second contribution, this thesis proposes new opti-
mistic policy optimization algorithms for two-player zero-sum Markov games with structured but

unknown transitions and theoretically analyzes both players’ regret bounds, which generalizes the
recent studies on policy optimization for single-agent MDPs in a stationary environment. The third
contribution is that this thesis tackles the reward-free RL problem for both single-agent MDPs and
two-player zero-sum Markov games under the context of function approximation, leveraging pow-

vi



erful nonlinear approximators: kernel and neural function approximators. Specifically, this thesis
proposes to explore the unknown environment via an optimistic variant of the value-iteration al-
gorithm incorporating kernel and neural function approximations and designs effective planning
algorithms, which are theoretically justified to be able to generate the target policies when given
an arbitrary extrinsic reward function.
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CHAPTER 1

Introduction

In view of the tremendous successes of RL algorithms on real-world decision-making problems,
the theoretical understanding of RL algorithms has been gaining increasing attention from re-
searchers. Thus, how to design sample- (and computationally) efficient RL algorithms with prov-
able theoretical guarantees becomes a core question in the recent studies of RL theory. In particular,
a higher sample efficiency indicates fewer interactions with the environments for sampling data to
achieve the desired learning accuracy. This thesis focuses on proposing and analyzing provably
efficient algorithms for both single-agent and multi-agent RL problems. The analysis of single-
agent RL algorithms is based on the single-agent MDP model, where an agent can interact with
the environment following a certain policy and the environment returns the next state and the re-
ward to the agent following a transition model and a reward function. Furthermore, this thesis
goes beyond the single-agent scenario and further investigates the multi-agent RL setting. Specifi-
cally, this thesis studies the two-player zero-sum Markov game model, where the transition model
and the reward function have a dependence on both players’ actions and their state. Under such a
setting, one player aims to learn a policy to maximize the expected cumulative rewards while the
other player, in contrast, intends to minimize them. Therefore, the two-player zero-sum Markov
game is a non-trivial extension of single-agent MDPs to a multi-agent scenario in a competitive
and non-stationary environment, where the non-stationarity results from the potentially adversarial
actions or policies of the two players.

For both single-agent MDPs and Markov games, this thesis studies two paradigms of RL:
reward-based online RL and reward-free RL. In the reward-based online RL, the agents keep in-
teracting with the environment to collect the data including the state-action trajectories and the
rewards, and meanwhile, the agents continuously update their policies with the online data. To
efficiently learn the target policies, it is necessary to design an online algorithm that can effectively
exploit the collected information from the environment and at the same time, encourage the ex-
ploration of the states and actions of high uncertainty. In the framework of reward-based online
RL, this thesis makes attempt to solve two fundamental problems: online learning for constrained
MDPs and policy optimization for Markov games.
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This thesis further investigates the reward-free RL [Jin et al., 2020a], a novel RL paradigm
motivated by the following scenario. In real-world RL applications, the reward function is often
designed by the learner based on the domain knowledge. The learner might have a set of reward
functions to choose from or use an adaptive algorithm for reward design [Laud, 2004, Grzes, 2017].
In such a scenario, it is often desirable to collect an offline dataset that has a wider coverage of
the trajectories associated with a set of reward functions and target policies. With such a benign
offline dataset, for an arbitrary reward function, the agents have sufficient information to estimate
the corresponding target policies. Thus, the reward-free RL is composed of two learning phases:
exploration phase and planning phase. In the exploration phase, the agents aim to thoroughly ex-
plore the environment without accessing any pre-specified reward function in a principled manner.
In the planning phase, when given an arbitrary extrinsic reward function, the planning algorithm
generates the target policies by effectively making use of the collected offline data. Moreover, this
thesis tackles the reward-free RL problem under the context of function approximation, leverag-
ing powerful nonlinear function approximators. Then, within the framework of reward-free RL,
this thesis studies the problem of the reward-free RL with nonlinear function approximations for
single-agent MDPs and two-player zero-sum Markov games.

The following section elaborates the aforementioned three main problems and the associated
contributions of this thesis.

1.1 Main Problems and Contributions

Online Learning for Constrained MDPs. Online learning for MDPs has been broadly studied in
previous works which pay more attention to the unconstrained MDP model. This thesis considers
online learning for single-agent MDPs with multiple constraints. Constrained MDPs play an im-
portant role in control and planning, which aim at maximizing a reward or minimizing a penalty
metric over the set of all available policies subject to constraints. The constraints can enforce the
fairness or safety of the policies so that over time the behaviors of the learned policy are under con-
trol. Previous works (e.g., Wei et al. [2018], Zheng and Ratliff [2020]) solve this problem under
the restrictive assumption that the transition model of the MDP is known a priori. This thesis con-
siders a more realistic and challenging setting that the transition model is unknown to the agent,
the loss function can vary arbitrarily across the episodes, and the constraints are stochastically
time-varying.

In this thesis, a new upper confidence primal-dual algorithm is proposed for learning con-
strained MDPs. With the trajectories of states and actions that the agent collects by interacting
with the environment, the proposed algorithm estimates the unknown transition model with main-
taining a confidence set inspired by the idea of Upper Confidence Bound (UCB), which is also
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shown effective to achieve tight regret bounds for learning unconstrained MDPs. Then, it incor-
porates the confidence set into the online primal-dual type method for learning the policies. The
proposed algorithm is proved to achieve Õ(

√
K)1 upper bounds for the regret and the constraint

violation simultaneously, which demonstrates the power of “optimism in the face of uncertainty”

[Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012]. HereK is the number of episodes. Moreover,
the regret bound nearly matches the lower bound of the regret for learning MDPs. The analysis
incorporates a new high-probability drift analysis of Lagrange multiplier processes into the regret
and constraint violation proofs for the proposed upper confidence algorithm. The study of online
learning for constrained MDPs in this thesis is based on joint work with Xiaohan Wei, Zhuoran
Yang, Jieping Ye, and Zhaoran Wang [Qiu et al., 2020].

Policy Optimization for Zero-Sum Markov Games. While single-agent Policy Optimization
(PO) in a fixed environment has attracted a lot of research attention recently in the reinforcement
learning community, much less is known theoretically when there are multiple agents playing in a
potentially competitive environment. To study such a problem, this thesis considers learning the
two-player zero-sum Markov games. In most of the recent works, the proposed algorithms for
learning zero-sum Markov games are typically value-based methods (e.g, Bai and Jin [2020]) that
can achieve tight Õ(

√
K) regrets and they assume there is a central agent available for solving

certain subproblems each step, which introduces extra computational costs. Here, K denotes the
number of episodes. As opposed to the value-based methods, the PO algorithms aim to directly
update the policies of agents via only executing a mirror descent or ascent step separately on each
agent with high computational efficiency. Although there has been great progress on understanding
single-agent PO algorithms, directly extending single-agent PO methods to the multi-agent setting
encounters the main challenge of non-stationary environments.

This thesis takes steps forward by proposing and analyzing new provable optimistic PO algo-
rithms for two-player zero-sum Markov games with structured but unknown transitions. In partic-
ular, two classes of transition structures are considered here: factored independent transition and
single-controller transition. The proposed algorithms feature a combination of UCB-type opti-
mism and policy optimization updating rules adapted to the structured transitions in a multi-agent
non-stationary environment. To handle the non-stationarity resulting from the opponent’s varying
state, both players under the factored independent transition setting and Player 2 under the single-
controller setting demand to estimate the opponent’s state reaching probability. For both transition
structures, this thesis provides Õ(

√
K) regret bounds after K episodes. The regret of each player

is measured against a potentially adversarial opponent who can choose a single best policy in hind-
sight if observing the full policy sequence. The Õ(

√
K) regret bounds in this thesis also match the

1In this thesis, we use Õ to hide the logarithmic dependence.
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regrets of the value-based methods when translating their results in terms of the regret definition
in this thesis. If both players adopt the proposed algorithms, the overall optimality gap is upper
bounded by Õ(

√
K). Moreover, this thesis proposes novel value difference decomposition by tak-

ing the transition structures and the state reaching probability estimation error into consideration.
The study of the second problem, i.e., policy optimization for zero-sum Markov games, is based
on the joint work with Xiaohan Wei, Jieping Ye, Zhaoran Wang, and Zhuoran Yang [Qiu et al.,
2021a].

Reward-Free RL with Kernel and Neural Function Approximations. The framework of the
reward-free RL consists of an exploration phase and a planning phase, which needs to efficiently
explore the underlying environment without accessing any pre-specified reward function and to
effectively generate the target policies with the collected dataset when given an arbitrary reward
function. On the other hand, when the state and action spaces are large, it is a common practice to
combine the RL algorithms with the idea of function approximation, especially the powerful non-
linear function approximators such as neural networks. Thus, this thesis considers the reward-free
RL with two classic nonlinear function approximators, i.e., kernel and neural function approxima-
tors. This further motivates us to design provably exploration and planning algorithms that can
incorporate kernel and neural function approximations into the framework of the reward-free RL.

Recently, many works focus on designing provably sample-efficient reward-free RL algorithms,
including the tabular case [Jin et al., 2020a, Kaufmann et al., 2020, Ménard et al., 2020, Zhang
et al., 2020] and the linear function approximation case [Zanette et al., 2020b, Wang et al., 2020a]
for the single-agent MDP, which can achieve Õ(1/ε2) sample complexities for obtaining an ε-
suboptimal policy. However, reward-free RL combined with nonlinear function approximators
remains not fully explored. On the other hand, reward-free RL algorithms for the multi-player
Markov games [Bai and Jin, 2020, Liu et al., 2020] in the tabular case have been studied recently,
which is shown to achieve an Õ(1/ε2) sample complexity for obtaining an ε-approximate Nash
equilibrium. Though, there is still a lack of works theoretically studying multi-agent scenarios
with function approximation.

This thesis first proposes sample- and computationally efficient reward-free RL algorithms with
kernel and neural function approximations for single-agent MDPs. The proposed exploration al-
gorithm is an optimistic variant of the least-square value iteration algorithm incorporating kernel
and neural function approximators inspired by the idea of UCB. Further with the planning phase,
which is a single-episode optimistic value iteration algorithm, the proposed method achieves an
Õ(1/ε2) sample complexity to generate an ε-suboptimal policy for an arbitrary extrinsic reward
function. Moreover, this thesis extends the proposed method from the single-agent setting to the
two-player zero-sum Markov game setting, which can achieve an Õ(1/ε2) sample complexity to
generate an ε-approximate Nash equilibrium. Particularly, in the planning phase for the Markov
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game setting, the proposed algorithm only involves finding the Nash equilibrium of matrix games
formed by Q-function that can be solved efficiently, which is of independent interest. The sample
complexities of our methods match the Õ(1/ε2) results in existing works for tabular or linear func-
tion approximation settings. To the best of our knowledge, we establish the first provably efficient
reward-free RL algorithms with kernel and neural function approximators for both single-agent
and multi-agent settings. The study of this problem, i.e., reward-free RL with kernel and neural
function approximations, is based on the joint work with Jieping Ye, Zhaoran Wang, and Zhuoran
Yang [Qiu et al., 2021b].

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides the fundamental backgrounds of
the single-agent MDP and the two-player zero-sum Markov game, which are two basic models that
the three main problems in this thesis are based on. Chapter 3 presents the first contribution of this
thesis, including the proposed learning algorithm and the theoretical analysis of the regret and the
constraint violation with detailed proofs for the online constrained MDP learning problem. The
second problem and the related contribution are presented in Chapter 4, which proposes the policy
optimization algorithms for the zero-sum Markov games with structured transitions and provides
detailed regret analysis for the proposed algorithms. Chapter 5 investigates the third problem, i.e.,
reward-free RL with kernel and neural function approximations for MDP and Markov games, and
presents the proposed algorithms along with proving their sample complexities. The last chapter,
Chapter 6, concludes this thesis by summarizing the main problems and contributions and then
suggests several potential future research directions.
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CHAPTER 2

Background

In this thesis, our works study single-agent MDPs and two-player zero-sum Markov games in an
episodic (finite-horizon) setting. In this chapter, we introduce the episodic MDPs and episodic
two-player zero-sum Markov Games in the following two sections.

Notation. Throughout this thesis, we let ‖ ·‖1, ‖ ·‖2, and ‖ ·‖∞ be `1, `2, and `∞-norm for a vector.
Let ‖ · ‖2 be the spectral norm for a matrix. We define ‖x‖A =

√
x>Ax for a vector x and a matrix

A if x>Ax ≥ 0. We let ‖f‖∞ = supx∈X |f(x)| for any function f defined on the set X . We define
[n] := {1, 2, . . . , n}. For any vectors x,y, the inner product of x and y is denoted by 〈x,y〉, which
is also written as x>y. Given a > 0, we define the operation min{x, a}+ := min{max{x, 0}, a}
for any x.

2.1 Single-Agent Markov Decision Process

An episodic single-agent MDP is defined by the tuple (S,A, H,P, r), where S denotes the state
space, A is the action space of the agent, H is the length of each episode, P = {Ph}Hh=1 is the
transition model with Ph(s′|s, a) denoting the transition probability at the h-th step from the state
s ∈ S to the state s′ ∈ S when the agent takes action a ∈ A, and r = {rh}Hh=1 with rh : S×A 7→ R
denoting the reward function at the h-step. Following a certain policy, an agent interacts with the
environment. The policy of an agent is a collection of probability distributions π = {πh}Hh=1 where
πh(a|s) is the probability of taking action a ∈ A at the state s ∈ S at the h-th step.

Value Function. For a specific policy {πh}Hh=1 and reward function {rh}Hh=1, under the transition
model {Ph}Hh=1, we define the associated value function V π

h (s, r) : S 7→ R at the h-th step as
follows

V π
h (s, r) := E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣ sh = s, π,P

]
, ∀s ∈ S.

6



The corresponding action-value function (Q-function) Qπ
h : S ×A 7→ R is then defined as follows

Qπ
h(s, a, r) := E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣ sh = s, ah = a, π,P

]
, ∀(s, a) ∈ S ×A.

Then, we have the Bellman equation as follows

V π
h (s, r) = 〈Qπ

h(s, ·, r), πh(·|s)〉A, ∀s ∈ S, (2.1)

Qπ
h(s, a, r) = rh(s, a) + 〈Ph(·|s, a), V π

h+1(·, r)〉S , ∀(s, a) ∈ S ×A, (2.2)

where we let 〈·, ·〉S , 〈·, ·〉A denote the inner product over the spaces S, A. The above Bellman
equation holds for all h ∈ [H] with setting V π

H+1(s) = 0, ∀s ∈ S.

Optimal Policy and ε-Suboptimal Policy. Without loss of generality, in this thesis, we assume
the agent starts from a fixed state s1 at h = 1. We also make the same assumption for the Markov
game setting in the next section. In an MDP learning problem, an agent aims to learn a policy to
maximize the value function V π

1 (s1, r). Then, we denote π∗r as the optimal policy w.r.t. r such that
π∗r maximizes V π

1 (s1, r), i.e.,

π∗r := argmax
π

V π
1 (s1, r).

Then, we define Q∗h(s, a, r) := Q
π∗r
h (s, a, r) as well as V ∗h (s, r) := V

π∗r
h (s, r). We say π̃ is an

ε-suboptimal policy if it satisfies

V ∗1 (s1, r)− V π̃
1 (s1, r) ≤ ε.

To simplify the notations, for the rest of this thesis, we rewrite 〈Ph(·|s, a), Vh+1(·, r)〉S =

PhVh+1(s, a, r) for any transition probability Ph and value function V (·, r). In addition, V π
h (s, r)

and Qπ
h(s, a, r) will be simplified as V π

h (s) and Qπ
h(s, a) when their dependence on the reward

function are clear from the context in a chapter.

2.2 Two-Player Zero-Sum Markov Game

The two-player zero-sum Markov game is an extension of the single-agent MDP to a multi-agent
competitive scenario. Specifically, an episodic two-player zero-sum Markov game is characterized
by the tuple (S,A,B, H,P, r), where S denotes the state space, A and B are the action spaces
for the two players, H is the length of each episode, P = {Ph}Hh=1 is the transition model with
Ph(s′|s, a, b) denoting the transition probability at the h-th step from the state s to the state s′
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when Player 1 takes action a ∈ A and Player 2 takes action b ∈ B, and r = {rh}Hh=1 with
rh : S × A × B 7→ R denoting the reward function at the h-step. The policy of Player 1 is a
collection of probability distributions π = {πh}Hh=1 with π(·|s) being the probability of taking
action a ∈ A at the state s ∈ S at the h-th step. Analogously, the policy of Player 2 is a collection
of probability distributions ν = {νh}Hh=1 with ν(b|s) being the probability of taking action b ∈ B at
the state s ∈ S at the h-th step. As we can see from the above definitions, the reward function and
the transition model for the two-player zero-sum Markov Game depends on both players’ actions
(a, b) and their state s, which introduce challenges of non-stationarity.

Value Function. For a specific policy π and ν and reward function {rh}Hh=1, under the transition
model {Ph}Hh=1, we define the value function V π,ν

h (s, r) : S 7→ R at the h-th step as follows

V π,ν
h (s, r) := E

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣ sh = s, π, ν,P

]
, ∀s ∈ S.

We further define the Q-function Qπ,ν
h : S ×A×B 7→ R for all ∀(s, a, b) ∈ S ×A×B as follows

Qπ,ν
h (s, a, b, r) := E

[
H∑

h′=h

rh′(sh′ , ah′ , bh′) | (sh, ah, bh) = (s, a, b), π, ν,P

]
.

Thus, we have the Bellman equation for all h ∈ [H] as follows

V π,ν
h (s, r) = Ea∼πh(·|s),b∼νh(·|s)[Q

π,ν
h (s, a, b, r)], ∀s ∈ S, (2.3)

Qπ,ν
h (s, a, b, r) = rh(s, a, b) + PhV π,ν

h+1(s, a, b, r), ∀(s, a, b) ∈ S ×A× B, (2.4)

where, for simplicity, we also let PhV π,ν
h+1(s, a, b, r) =

〈
Ph(·|s, a, b), V π,ν

h+1(·, r)
〉
S .

Nash Equilibrium and ε-Approximate Nash Equilibrium. In the zero-sum Markov Game learn-
ing problem, Player 1 aims to learn a policy to maximize the value function and Player 2 tries to
learn a policy to minimize the value function. Thus, each individual player faces a competitive en-
vironment which is affected by the opponent’s potentially adversarial actions and policies. Under
this setting, we define the Nash equilibrium (NE) (π†, ν†) as a solution to the following minimax
problem

max
π

min
ν
V π,ν

1 (s1),

such that we have

V π†,ν†

1 (s1, r) = max
π

min
ν
V π,ν

1 (s1) = min
ν

max
π

V π,ν
1 (s1).
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We let V †h (s, r) := V π†,ν†

h (s, r) and Q†h(s, a, b, r) := Qπ†,ν†

h (s, a, b, r) denote the value function
and Q-function under the NE (π†, ν†) at h-th step. We further define the best response br(π) for
Player 1 with the policy π and the best response br(ν) for Player 2 with the policy ν as

br(π) := argmin
ν

V π,ν
1 (s1, r), br(ν) := argmax

π
V π,ν

1 (s1, r).

Then, one can see that ν̃ = br(π̃) and π̃ = br(ν̃) for the NE (π̃, ν̃). Moreover, We say (π̃, ν̃) is an
ε-approximate NE if it satisfies

V
br(ν̃),ν̃

1 (s1, r)− V π̃,br(π̃)
1 (s1, r) ≤ ε,

where the weak duality V
br(ν̃),ν̃

1 (s1, r) ≥ V †1 (s1, r) ≥ V
π̃,br(π̃)

1 (s1, r) always holds. Similarly,
V π
h (s, r) and Qπ

h(s, a, b, r) will be simplified as V π
h (s) and Qπ

h(s, a, b) when their dependence on
the reward function are clear from the context in a chapter.

Remark 2.1. For MDPs, if a policy πh is deterministic, i.e., for a state s ∈ S, there always exists
an action a ∈ A such that πh(a|s) = 1, then for ease of analysis, we slightly abuse the notion by
letting πh : S 7→ A such that πh(s) is the deterministic action which an agent will take at the state
s at the step h. A similar notation is also defined for the Markov game setting. For the two player
Markov game, if the policy πh for Player 1 and the policy νh for Player 2 are deterministic, then
we slightly abuse their notions by letting πh : S 7→ A and νh : S 7→ B such that πh(s) and νh(s)
are the deterministic action which the players will take at the state s at the step h.
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CHAPTER 3

Constrained MDP with Adversarial Loss

3.1 Introduction

Constrained Markov Decision Processes (CMDPs) play an important role in control and planning.
It aims at maximizing a reward or minimizing a penalty metric over the set of all available policies
subject to constraints on other relevant metrics. The constraints aim at enforcing the fairness or
safety of the policies so that over time the behaviors of the chosen policy are under control. For
example, in an edge cloud serving network [Urgaonkar et al., 2015, Wang et al., 2015], one would
like to minimize the average cost of serving the moving targets subject to a constraint on the
average serving delay. In an autonomous vehicle control problem [Le et al., 2019], one might
be interested in minimizing the driving time subject to certain fuel efficiency or driving safety
constraints.

Classical treatment of CMDPs dates back to Fox [1966], Altman [1999] reformulating the prob-
lem into a linear program via stationary state-action occupancy measures. However, to formulate
such a linear program, one requires the full knowledge of the transition model, reward, and con-
straint functions, and also assumes them to be fixed. Leveraging the episodic structure of a class of
MDPs, Neely [2012] develops online renewal optimization which potentially allows the loss and
constraint functions to be stochastically varying and unknown, while still relying on the transition
model to solve the subproblem within the episode. More recently, policy-search type algorithms
have received much attention, attaining state-of-art performance in various tasks. While most of the
algorithms focus on unconstrained RL problems, there are efforts to develop policy-based methods
in CMDPs where constraints are known with limited theoretical guarantees. The work Chow et al.
[2017] develops a primal-dual type algorithm which is shown to converge to some constraint satis-
fying policy. The work Achiam et al. [2017] develops a trust-region type algorithm, which requires
solving an optimization problem with both trust-region and safety constraints during each update.
Generalizing ideas from the fitted-Q iteration, Le et al. [2019] develops a batch offline primal-dual
algorithm which guarantees only the time average primal-dual gap converges.
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The goal of this chapter is to efficiently solve constrained episodic MDPs with more general-
ity where not only transition models are unknown, but also the loss and constraint functions can
change online. In particular, the losses can be arbitrarily time-varying and adversarial. Let K be
the number of episodes and T the number of steps1. When assuming the transition model is known,
Even-Dar et al. [2009] achieves Õ(%2

√
T ) regret with % being the mixing time of MDPs, and the

work Yu et al. [2009] achieves Õ(T 2/3) regret. These two papers consider a continuous setting
(non-episodic setting) that is different to the episodic setting that we consider in this chapter. The
work Zimin and Neu [2013] further studies the episodic MDP and achieves Õ(

√
K) regret. For the

constrained case with known transitions, the work Wei et al. [2018] achieves Õ(
√
K) regret and

constraint violations, and the work Zheng and Ratliff [2020] attains Õ(T 3/4) for the non-episodic
setting.

There are several concurrent works also focusing on CMDPs with unknown transition models.
The work Efroni et al. [2020a] studies episodic tabular MDPs with unknown but fixed reward and
constraint functions. Leveraging Upper Confidence Bound (UCB) on the reward, constraints, and
transitions, they obtain an O(

√
K) regret and constraint violation via linear program as well as

primal-dual optimization. In another work, Ding et al. [2021] studies the constrained episodic
MDPs with a linear structure and adversarial losses via a primal-dual-type policy optimization
algorithm, achieving Õ(

√
K) regret and constraint violation. While their scenario is more general

than ours, their results’ dependence on the sizes of state and action spaces and the length of the
episode is worse when applied to the tabular case. Both of these two works rely on Slater condition
which is also more restrictive than that of the method in this chapter.

On the other hand, for unconstrained online MDPs, the idea of UCB is shown to be effective
and helps to achieve tight regret bounds without knowing the transition model, e.g., Jaksch et al.
[2010], Azar et al. [2017], Rosenberg and Mansour [2019a,b], Jin et al. [2019]. The main idea here
is to sequentially refine a confidence set of the transition model and choose a model in the interval
which performs the best in optimizing the current value.

The main contribution of this chapter is to show that incorporating the confidence set of the
transition model into primal-dual type approaches can achieve Õ(H|S|

√
|A|K) regret and con-

straint violation simultaneously in online CMDPs when the transition model is unknown, the loss
function is adversarial, and the constraints are stochastic. Here |S| is the state space size with S

denoting the state space as defined later. We also let |A| be the size of the action spaces and H be
the length of an episode. This result nearly matches the lower bound Ω(

√
H|S||A|K) for the re-

gret [Jaksch et al., 2010] up to an O(
√
H|S|) factor. Under the hood is a new Lagrange multiplier

1In the non-episodic setting, T denotes the total number of steps, which is different from the aforementioned K
for the episodic setting. However, we can analogously compute the total number of steps as T = KH in the episodic
setting, where H is the episode length. Thus, T and K are comparable since in the episodic setting, only an extra
constant factor H is involved in T .
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condition together with a new drift analysis on the Lagrange multipliers leading to low constraint
violation. Our setup is challenging compared to classical constrained optimization in particular
due to (1) the unknown loss and constraint functions from the online setup; (2) the time-varying
decision sets resulting from moving confidence set estimation. The decision sets can potentially
be much larger than or even inconsistent with the true decision set knowing the model, resulting in
a potentially large constraint violation. The main idea is to utilize a Lagrange multiplier condition
as well as a confidence set of the model to construct a probabilistic bound on an online dual mul-
tiplier. We then explicitly take into account the laziness nature of the confidence set estimation in
our algorithm to argue that the bound on the dual multiplier gives the Õ(

√
K) bound on constraint

violation.

Related Work. In this chapter, we are interested in a class of online MDP problems where the
loss functions are arbitrarily changing, or adversarial. With a known transition model, adversarial
losses, and full-information feedbacks (as opposed to bandit feedbacks), Even-Dar et al. [2009]
achieves Õ(%2

√
T ) regret with % being the mixing time of MDPs, and the work Yu et al. [2009]

achieves Õ(T 2/3) regret, which consider a different non-episodic setting. The work Zimin and Neu
[2013] further studies the episodic MDP and achieves an Õ(

√
K) regret.

In contrast to the aforementioned works, a more challenging setting is that the transition model
is not known a priori. Under such a setting, there are several works studying the online episodic
MDP problems with adversarial losses and full-information feedbacks. Neu et al. [2012] obtains
Õ(H|S||A|

√
K) regret by proposing a Follow the Perturbed Optimistic Policy (FPOP) algorithm.

The recent work Rosenberg and Mansour [2019a] improves the regret to Õ(H|S|
√
|A|K) by

proposing an online upper confidence mirror descent algorithm. This regret bound nearly matches
the lower bound Ω(

√
H|S||A|K) [Jaksch et al., 2010] up to O(

√
H|S|) and some logarithm

factors. This chapter is along this line of research, and further considers the setup that there exist
stochastic constraints observed at each episode during the learning process.

Besides, a number of papers also investigate online episodic MDPs with bandit feedbacks. As-
suming the transition model is known and the losses are adversarial, Neu et al. [2010] achieves
Õ(
√
K/β) regret, where β > 0 is the probability with which all states are reachable under all poli-

cies. Under the same setting, Neu et al. [2010] achieves Õ(K2/3) regret without the dependence
on β, and Zimin and Neu [2013] obtains Õ(

√
K) regret. Furthermore, with assuming the transi-

tion model is not known and the losses are adversarial, Rosenberg and Mansour [2019b] obtains
Õ(K3/4) regret and also Õ(

√
K/β). Jin et al. [2019] further achieves Õ(

√
K) regret without β

under the same setting.
On the other hand, instead of adversarial losses, extensive works have studied the setting where

the feedbacks of the losses are stochastic and have fixed expectations, e.g., Jaksch et al. [2010],
Azar et al. [2017], Ouyang et al. [2017], Jin et al. [2018], Fruit et al. [2018], Wei et al. [2020],
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Zhang and Ji [2019], Dong et al. [2019]. With assuming that the transition model is known, Zheng
and Ratliff [2020] studies online CMDPs under the non-episodic setting and attains an Õ(T 3/4)

regret in T steps which is suboptimal in terms of T . The concurrent work Efroni et al. [2020a]
studies episodic MDPs with unknown transitions and stochastic bandits feedbacks of the losses
and the constraints, and obtains an Õ(

√
K) regret and constraint violation.

In addition to the aforementioned papers, there is also a line of policy-search type works, focus-
ing on solving online MDP problems via directly optimizing policies. Along this direction, there
have been great numbers of works studying unconstrained MDPs without knowing transition mod-
els, e.g., Williams [1992], Baxter and Bartlett [2000], Konda and Tsitsiklis [2000], Kakade [2002],
Schulman et al. [2015], Lillicrap et al. [2015], Schulman et al. [2017], Sutton and Barto [2018],
Fazel et al. [2018], Abbasi-Yadkori et al. [2019a,b], Bhandari and Russo [2019], Cai et al. [2019],
Wang et al. [2019a], Liu et al. [2019], Agarwal et al. [2019], Efroni et al. [2020b]. Efforts have
also been made in several works [Chow et al., 2017, Achiam et al., 2017, Le et al., 2019] to inves-
tigate CMDP problems via policy-based methods, but with known transition models. In another
concurrent work, assuming the transition model is unknown, Ding et al. [2021] studies CMDPs
with linear function approximation and proposes a primal-dual policy optimization algorithm.

3.2 Problem Setup

To study the episodic MDP learning problem, we consider a Stochastic Shortest Path (SSP) model
[Neu et al., 2010, 2012]. This chapter is build upon the SSP model because the proposed method
in this chapter has a close connection with a line of the recent research [Rosenberg and Mansour,
2019a,b, Jin et al., 2019] studying the MDP problem based on SSP. In this chapter, we adopt the
definition of SSP presented in Rosenberg and Mansour [2019a]. The connection between the SSP
and the epsodic MDP defined in Section 2.1 of Chapter 2 is then discussed in Remark 3.2. In the
loop-free SSP, we have a finite state space S and a finite action space A at each state over a finite
horizon of K episodes. Each episode starts with a fixed initial state s0 and ends with a terminal
state sH . The transition probability is P : S×S×A 7→ [0, 1], where P (s′|s, a) gives the probability
of transition from s to s′ under an action a. This underlying transition model P is assumed to be
unknown. The state space is divided into layers with a loop-free structure, i.e., S := S0∪S1∪· · ·∪
SH with a singleton initial layer S0 = {s0} and terminal layer XH = {sH}. Furthermore, we have
Sh ∩ Sh′ = ∅ for h 6= h′, and transitions are only allowed between consecutive layers, which is
P (s′|s, a) > 0 only if s′ ∈ Sh+1, s ∈ Sh, and a ∈ A, ∀h ∈ {0, 1, . . . , H − 1}. Such an assumption
enforces that each path from the initial state to the terminal state takes a fixed length H . This is
not an excessively restrictive assumption as any loop-free MDP with bounded varying path lengths
can be transformed into one with a fixed path length (see György et al. [2007] for details).
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The loss function for each episode is fk : S×A× S 7→ R, where fk(s, a, s′) denotes the loss
received at episode k for any s ∈ Sh, s

′ ∈ Sh+1, and a ∈ A, ∀h ∈ {0, 1, 2, . . . , H − 1}. We
assume ft can be arbitrarily varying with potentially no fixed probability distribution. There are I
stochastic constraint (or budget consumption) functions: gki : S ×A × S 7→ R, ∀i ∈ [I], where
gki (s, a, s′) denotes the price to pay at episode k for any (s, a, s′). Each stochastic function gki at
episode k is sampled according to a random variable ξki ∼ Di, namely gki (s, a, s′) = gi(s, a, s

′; ξki ).
Then, we define gi(s, a, s′) := E[gki (s, a, s′)] = E[gi(s, a, s

′; ξki )] where the expectation is taken
over the randomness of ξki ∼ Di. For abbreviation, we denote gi = E[gki ]. In addition, the functions
fk and gki , ∀i ∈ [I], are mutually independent and independent of the Markov transition. Both the
loss functions and the budget consumption functions are revealed at the end of each episode.

Remark 3.1. It might be tempting to consider the more general scenario that both losses and con-
straints are arbitrarily time-varying. For such a setting, however, there exist counterexamples
[Mannor et al., 2009] in the arguably simpler constrained online learning scenario that no algo-
rithm can achieve sublinear regret and constraint violation simultaneously. Therefore, we seek to
put extra assumptions on the problem so that obtaining sublinear regret and constraint violation is
feasible, one of which is to assert constraints to be stochastic instead of arbitrarily varying.

A policy π is the conditional probability π(a|s) of choosing an action a ∈ A at any given state
s ∈ S. At the k-episode, for any policy π, letting (sh, ah, sh+1) ∈ Sh×A×Sh+1 denote a random
tuple following the transition model P and the policy π, the corresponding expected loss and the
budget costs are written as

E

[
H−1∑
h=0

fk(sh, ah, sh+1)

∣∣∣∣∣ π, P
]
, and E

[
H−1∑
h=0

gki (sh, ah, sh+1)

∣∣∣∣∣ π, P
]
, i ∈ [I], (3.1)

where the expectations are taken w.r.t. the randomness of the tuples (sh, ah, sh+1).

Remark 3.2. The above definition for the SSP problem has a close connection with the episodic
MDP (S,A, H,P, r) which is defined in Section 2.1 of Chapter 2. To show how such a relation
exists, we can let A = A and Sh = S for any h ∈ {0, . . . , H − 1} with a fixed starting state and
relaxing the restriction of Sh ∩ Sh′ = ∅ for h 6= h′. Note that the notations of P, π, fk, gki do not
need to depend on the layer (or step) h because of this restriction. We further let Ph+1(s′|s, a) =

P (s′|s, a) where s′ ∈ Sh+1, s ∈ Sh for all h ∈ {0, . . . , H − 1} and s′, s ∈ S. Based on such
the above conversion, shifting the index h by 1 and removing the dependence on sh+1 in the loss
function fk, we can view the above expected loss in (3.1) as a value function V π

1 (s1, f
k) as defined

in Section 2.1. A similar argument can also be applied to the budget costs, which corresponds to
the value function V π

1 (s1, g
k
i ) for all i ∈ [I]. Our analysis can be applied to the setting that the

loss function fk and the budget cost functions gki for all i ∈ [I] do not depend on the next state
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sh+1 with no barrier. In addition, this chapter studies the problem of minimizing the overall losses,
which can be interpreted as maximizing the overall negative losses w.r.t. the function −fk. With
the above analysis, we can convert the SSP problem to the episodic MDP defined in Chapter 2.

In this chapter, we adopt the occupancy measure θ(s, a, s′) for our analysis. In general, the
occupancy measure θ(s, a, s′) is a joint probability of the tuple (s, a, s′) ∈ S×A× S under some
certain policy and transition model. Particularly, with the true transition P , we define the set as

∆ = {θ : θ satisfies the conditions (a), (b), and (c)},

where the conditions (a) (b) (c) [Altman, 1999] are

(a)
∑

s∈Sh

∑
a∈A

∑
s′∈Sh+1

θ(s, a, s′) = 1, ∀h ∈ {0, . . . , H − 1}, and θ(s, a, s′) ≥ 0.

(b)
∑

s∈Sh

∑
a∈A θ(s, a, s

′) =
∑

a∈A
∑

s′′∈Sh+2
θ(s′, a, s′′), ∀s′ ∈ Sh+1,∀h ∈ {0, . . . , H − 2}.

(c) θ(s,a,s′)∑
s′′∈Sh+1

θ(s,a,s′′)
= P (s′|s, a), ∀(s, a, s′) ∈ Sh ×A× Sh+1,∀h ∈ {0, . . . , H − 1}.

We can further recover a policy π from an occupancy measure θ via

π(a|s) =

∑
s′∈Sh+1

θ(s, a, s′)∑
s′∈Sh+1,a∈A θ(s, a, s

′)
, ∀(s, a) ∈ Sh ×A, ∀h ∈ {0, . . . , H − 1}.

In addition, we define θ
k
(s, a, s′) to be the occupancy measure at episode k w.r.t. the true tran-

sition P , resulting from a policy πk at episode k. Given the definition of occupancy measure, we
can rewrite the expected loss and the budget cost as E[

∑H−1
h=0 f

k(sh, ah, sh+1)|πk, P ] = 〈fk, θk〉
where 〈fk, θk〉 =

∑
s,a,s′ f

k(s, a, s′)θ
k
(s, a, s′) and E[

∑H−1
h=0 g

k
i (sh, ah, sh+1)|πk, P ] = 〈gki , θ

k〉
with 〈gki , θ

k〉 =
∑

s,a,s′ f
k(s, a, s′)θ

k
(s, a, s′). We aim to solve the following constrained optimiza-

tion, and let θ
∗

be one solution which is further viewed as a reference point to define the regret:

minimize
θ∈∆

K∑
k=1

〈fk, θ〉, subject to 〈gi, θ〉 ≤ ci, ∀i ∈ [I], (3.2)

where
∑K

k=1〈fk, θ〉 =
∑K

k=1 E[
∑H−1

h=0 f
k(sh, ah, sh+1)|π, P ] is the overall loss in K episodes and

constraints are enforced on the budget cost 〈gi, θ〉 = E[
∑H−1

h=0 gi(sh, ah, sh+1)|π, P ] based on the
expected budget consumption functions gi,∀i ∈ [I]. To measure the regret and the constraint
violation respectively for solving (3.2) in an online setting, we define the following two metrics:

Regret(K) :=
K∑
k=1

〈
fk, θ

k − θ∗
〉
, and Violation(K) :=

∥∥∥∥∥
[

K∑
k=1

(
g(θ

k
)− c

)]
+

∥∥∥∥∥
2

, (3.3)
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where the notation [v]+ denotes the entry-wise application of max{·, 0} for any vector v. For
abbreviation, we let gk(θ) := [

〈
gk1 , θ

〉
, · · · ,

〈
gkI , θ

〉
]>, and c := [c1, · · · , cI ]>.

The goal is to attain a sublinear regret bound and constraint violation on this problem w.r.t. any

fixed stationary policy π, which does not change over episodes. In another word, we compare to
the best policy π∗ in hindsight whose corresponding occupancy measure θ

∗ ∈ ∆ solves problem
(3.2). We make the following assumption on the existence of a solution to (3.2).

Assumption 3.3. There exists at least one fixed policy π such that the corresponding occupancy

measure θ ∈ ∆ is feasible, i.e., 〈gi, θ〉 ≤ ci,∀i ∈ [I].

WLOG, we assume boundedness on function values for simplicity of notation.

Assumption 3.4. We assume the following quantities are bounded. For any k ≥ 1, (1)
sups,a,s′ |fk(s, a, s′)| ≤ 1, (2)

∑I
i=1 sups,a,s′ |gki (s, a, s′)| ≤ 1, (3)

∑I
i=1 |ci| ≤ H .

When the transition model P is known and Slater’s condition holds (i.e., the existence of a pol-
icy which satisfies all stochastic inequality constraints with a constant ε-slackness), this stochasti-
cally constrained online linear program can be solved via similar methods as Wei et al. [2018], Yu
et al. [2017] with a regret bound that depends polynomially on the cardinalities of state and action
spaces, which is highly suboptimal especially when the state or action space is large. The main
challenge we will address in this chapter is to solve this problem without knowing the model P , or

losses and constraints before making decisions, while tightening the dependency on both state and

action spaces in the resulting performance bound.

3.3 Proposed Algorithm

In this section, we introduce our proposed algorithm, namely, Upper Confidence Primal-Dual
(UCPD) algorithm, as presented in Algorithm 1. It adopts a primal-dual mirror descent type al-
gorithm solving constrained problems but with an important difference: we maintain a confidence
set via past sample trajectories, which contains the true MDP model P with high probability, and
choose the policy to minimize the proximal Lagrangian using the most optimistic model from the
confidence set. Such an idea, known as “optimism in the face of uncertainty”, is reminiscent of
UCB algorithms [Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012] for stochastic multi-armed
bandit (MAB) and is used by Jaksch et al. [2010] to obtain a near-optimal regret for reinforcement
learning problems.

In the algorithm, we introduce epochs, which are back-to-back time intervals that span several
episodes. We use ` ∈ {1, 2, · · · } to index the epochs and use `(k) to denote a mapping from
the episode index k to the epoch index, indicating which epoch the k-th episode lives. Next, let
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N`(s, a) and M`(s, a, s
′) be two global counters which indicate the number of times the tuples

(s, a) and (s, a, s′) appear before the `-th epoch. Let n`(s, a), m`(s, a, s
′) be two local counters

which indicate the number of times the tuples (s, a) and (s, a, s′) appear in the `-th epoch. We
start a new epoch whenever there exists (s, a) such that n`(k)(s, a) ≥ N`(k)(s, a). Otherwise, set
`(k + 1) = `(k). Such an update rule follows from Jaksch et al. [2010]. Then, we define the
empirical transition model P̂` at any epoch ` > 0 as

P̂`(s
′|s, a) :=

M`(s, a, s
′)

max{1, N`(s, a)}
, ∀s, s′ ∈ S, a ∈ A.

As shown in Remark 3.18, introducing the notion of epoch is necessary to achieve an Õ(
√
K)

constraint violation.
The next lemma shows that with high probability, the true transition model P is contained in a

confidence interval around the empirical one, which is adapted from Lemma 1 of Neu et al. [2012].

Lemma 3.5 (Lemma 1 of Neu et al. [2012]). For any ζ ∈ (0, 1), we have that with probability at

least 1− ζ , for all epoch ` ≤ `(K + 1) and any state and action pair (s, a) ∈ S×A,
∥∥P (·|s, a)−

P̂`(·|s, a)
∥∥

1
≤ εζ`(s, a), with the error εζ`(s, a) being2

εζ`(s, a) :=

√
2|Sh(s)+1| log[(K + 1)|S||A|/ζ]

max{1, N`(s, a)}
, (3.4)

where h(s) is a map from state s to the layer that s belongs to.

3.3.1 Computing Optimistic Policies

Next, we show how to compute the policy at each episode. Formally, we introduce a new oc-
cupancy measure at episode k, namely θk(s, a, s′), s, s′ ∈ S, a ∈ A. It should be emphasized
that this is different from θ

k
(s, a, s′) defined in the previous section as θk(s, a, s′) is chosen by

the decision maker at episode k to construct the policy. In particular, θk(s, a, s′) does not have to
satisfy the local balance equation (c). Once getting θk(s, a, s′) (which will be detailed below), we
construct the policy by

πk(a|s) =

∑
s′ θ

k(s, a, s′)∑
s′,a θ

k(s, a, s′)
, ∀a ∈ A, s ∈ S. (3.5)

Next, we demonstrate the proposed method computing θk(s, a, s′). First, we introduce an online
dual multiplier Qi(k) for each constraint in (3.2), which is 0 when k = 1 and is updated as follows

2We use log to denote the natural logarithm.
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Algorithm 1 Upper-Confidence Primal-Dual (UCPD) Mirror Descent

1: Input: Let V, α > 0, λ ∈ [0, 1) be some trade-off parameters. Fix ζ ∈ (0, 1).
2: Initialize: Qi(1) = 0, ∀i = 1, . . . , I . θ1(s, a, s′) = 1/(|Sh||Sh+1||A|), ∀(s, a, s′) ∈ Sh×A×

Sh+1. `(1) = 1. n1(s, a) = 0, N1(s, a) = 0, ∀(s, a) ∈ S×A. m1(s, a, s′) = 0, M1(s, a, s′) =
0, ∀(s, a, s′) ∈ S×A× S.

3: for k = 1, 2, 3, . . . do
4: Compute θk via (3.7) and the corresponding policy πk via (3.5).
5: Sample a path (sk0, a

k
0, · · · , skH−1, a

k
H−1, s

k
H) following the policy πk.

6: Update each dual multiplier Qi(k) via (3.6) and update the local counters:

n`(k)(s
k
h, a

k
h) = n`(k)(s

k
h, a

k
h) + 1, m`(k)(s

k
h, a

k
h, s

k
h+1) = m`(k)(s

k
h, a

k
h, s

k
h+1) + 1.

7: Observe the loss function fk and constraint functions {gki }Ii=1.
8: if ∃(s, a) ∈ S×A, n`(k)(s, a) ≥ N`(k)(s, a), then
9: Start a new epoch:

10: Set `(k + 1) = `(k) + 1, and update the global counters for all s, s′ ∈ S, a ∈ A by

N`(k+1)(s, a) = N`(k)(s, a) + n`(k)(s, a),

M`(k+1)(s, a, s
′) = M`(k)(s, a, s

′) +m`(k)(s, a, s
′).

11: Construct the empirical transition P̂`(k+1)(s
′|s, a) :=

M`(k+1)(s,a,s
′)

max{1,N`(k+1)(s,a)} ,∀(s, a, s
′).

12: Initialize n`(k+1)(s, a) = 0, m`(k+1)(s, a, s
′) = 0, ∀(s, a, s′) ∈ S×A× S.

13: else
14: Set `(k + 1) = `(k).
15: end if
16: end for

for k ≥ 2,
Qi(k) = max{Qi(k − 1) +

〈
gk−1
i , θk

〉
− ci, 0}. (3.6)

At each episode, we compute the occupancy measure θk(s, a, s′) by solving an optimistic regular-
ized linear program with tuning parameters λ, V, α > 0. Specifically, we update θk for all k ≥ 2

by solving the following minimization problem

θk = argmin
θ∈∆(`(k),ζ)

〈
V fk−1 +

I∑
i=1

Qi(k − 1)gk−1
i , θ

〉
+ αD(θ, θ̃k−1), ∀k ≥ 2. (3.7)

For k = 1, we let θ1(s, a, s′) = 1/(|Sh||Sh+1||A|), ∀(s, a, s′) ∈ Sh×A×Sh+1. The above updating
rule (3.7) introduces extra notations ∆(`(k), ζ), θ̃k−1, and D(·, ·), which will be elaborated below.
Specifically, we denote by D(·, ·) the unnormalized Kullback-Leibler (KL) divergence for two
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different occupancy measures θ and θ′, which is defined as

D(θ, θ′) :=
∑
s,a,s′

[θ(s, a, s′) log
θ(s, a, s′)

θ′(s, a, s′)
− θ(s, a, s′) + θ′(s, a, s′)]. (3.8)

In addition, for ∀h = {0, . . . , H − 1} and ∀s ∈ Sh, a ∈ A, s′ ∈ Sh+1, we compute θ̃k−1 via
θ̃k−1(s, a, s′) = (1 − λ)θk−1(s, a, s′) + λ/(|Sh||Sh+1||A|), where 0 ≤ λ ≤ 1. This equation
introduces a probability mixing, pushing the update away from the boundary and encouraging
explorations.

Furthermore, since for any epoch ` > 0, we can compute the empirical transition model P̂` with
the confidence set as defined in (3.4), we let every θ ∈ ∆(`, ζ) satisfy that∥∥∥∥ θ(s, a, ·)∑

s′ θ(s, a, s
′)
− P̂`(·|s, a)

∥∥∥∥
1

≤ εζ`(s, a), ∀s ∈ S, a ∈ A, (3.9)

such that we can define the feasible set ∆(`, ζ) for the optimization problem (3.7) as follows

∆(`, ζ) := {θ : θ satisfies conditions (a), (b), and (3.9) }. (3.10)

By this definition, we know that θk ∈ ∆(`(k), ζ) at the epoch `(k). On the other hand, according
to Lemma 3.5, we have that with probability at least 1 − ζ , for all epoch `, ∆ ⊆ ∆(`, ζ) holds.
By Rosenberg and Mansour [2019a], the problem (3.7) is essentially a linear programming with a
special structure that can be solved efficiently. We present the efficient solver for the problem (3.7)
in the following subsection.

3.3.2 Efficient Solver for Subproblem

In this subsection, we provide the details on how to efficiently solve the subproblem (3.7). We can
rewrite (3.7) into the following equivalent form

θk = argmin
θ∈∆(`(k),ζ)

α−1〈ϕk−1, θ〉+D(θ, θ̃k−1),

where we let ϕk−1 := V fk−1 +
∑I

i=1Qi(k − 1)gk−1
i . According to Rosenberg and Mansour

[2019a], solving the above problem is based on the following two steps

θk = argmin
θ

α−1〈ϕk−1, θ〉+D(θ, θ̃k−1), (3.11)

θk = argmin
θ∈∆(`(k),ζ)

D(θ, θk). (3.12)
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Note that the first step, i.e., (3.11), is an unconstrained problem, which has a closed-form solution

θk(s, a, s′) = θ̃k−1(s, a, s′)e−ϕ
k−1/α, ∀(s, a, s′) ∈ Sh ×A× Sh+1, ∀h = 0, . . . , H − 1. (3.13)

The second step, i.e., (3.12), can be viewed as a projection of θk(s, a, s′) onto the feasible set
∆(`(k), ζ). With the definition of the feasible set as in (3.10), further by Theorem 4.2 of Rosenberg
and Mansour [2019a] and Lemma 7 of Jin et al. [2019], and plugging in θk computed as (3.13), we
have the following equation

θk(s, a, s′) =
θ̃k−1(s, a, s′)

Z
h(s)
k (µk, βk)

e
Bk
µk,βk

(s,a,s′)
, (3.14)

where h(s) is a mapping for state s to its associated layer index, andW k
h (µ, β) andBk

µ,β are defined
as follows

Bk
µ,β(s, a, s′) = µ−(s, a, s′)− µ+(s, a, s′) + (µ+(s, a, s′) + µ−(s, a, s′))εζ`(k)(s, a) + β(s′)

− β(s)− ϕk−1(s, a, s′)/α−
∑

s′′∈Sh(s)+1

P̂`(k)(s
′′|s, a)(µ−(s, a, s′′)− µ+(s, a, s′′)),

W k
h (µ, β) =

∑
s∈Sh

∑
a∈A

∑
s′∈Sh+1

θ̃k−1(s, a, s′)eB
k
µ,β(s,a,s′),

where β : S→ R and µ = (µ+, µ−) with µ+, µ− : S×A× S→ R≥0. Specifically, µk and βk in
(3.14) are obtained by solving a convex optimization with only non-negativity constraints, which
is

µk, βk = argmin
µ,β≥0

H−1∑
h=0

logW k
h (µ, β). (3.15)

Therefore, after solving (3.15), we can eventually compute θk by (3.14). Since (3.15) is associated
with a convex optimization with only non-negativity constraints, it can be solved much efficiently.

3.4 Main Results

Before presenting our theoretical results, we first make assumption on the existence of Lagrange
multipliers. We define a partial average function starting from any episode k as f (k,τ) :=
1
τ

∑τ−1
j=0 f

k+j . Then, we consider the following static optimization problem (recalling gi := E[gki ])

minimize
θ∈∆

〈f (k,τ), θ〉 s.t. 〈gi, θ〉 ≤ ci, ∀i ∈ [I]. (3.16)
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Denote the solution to this program as θ∗k,τ . Define the Lagrangian dual function of (3.16) as

q(k,τ)(η) := min
θ∈∆
〈f (k,τ), θ〉+

I∑
i=1

ηi(〈gi, θ〉 − ci),

where η = [η1, . . . , ηI ]
> ∈ RI is a dual variable. We are ready to state our assumption.

Assumption 3.6. For any episode k and any period τ , the set of primal optimal solution to (3.16)
is non-empty. Furthermore, the set of Lagrange multipliers, which is V∗k,τ := argmaxη∈RI+q

(k,τ)(η),

is non-empty and bounded. Any vector in V∗k,τ is called a Lagrange multiplier associated with

(3.16). Furthermore, let B > 0 be a constant such that for any k ∈ {1, . . . , K} and τ =
√
K, the

dual optimal set V∗k,τ defined above satisfies maxη∈V∗k,τ ‖η‖2 ≤ B.

We have the following simple sufficient condition which is a direct corollary of Lemma 1 in
Nedić and Ozdaglar [2009]:

Lemma 3.7. Suppose that the problem (3.16) is feasible. Then, the set of Lagrange multipliers

V∗k,τ defined in Assumption 3.6 is nonempty and bounded if the Slater condition holds, i.e., ∃θ ∈
∆, ε > 0 such that 〈gi, θ〉 ≤ ci − ε, ∀i ∈ [I].

In fact, it can be shown that some certain constraint qualification condition more general than
Slater condition can imply the boundedness of Lagrange multipliers (see, for example, Lemma 18
of Wei et al. [2019]). According to Wei et al. [2019], Assumption 3.6 is weaker than the Slater
condition commonly adopted in previous constrained online learning works. The motivation for
such a Lagrange multiplier condition is that it is a sufficient condition of a key structural property
on the dual function q(k,τ)(η), namely, the error bound condition. Formally, we have the following
definition.

Definition 3.8 (Error Bound Condition (EBC)). Let F (x) be a concave function over x ∈ C,
where the set C is closed and convex. Suppose Λ∗ := argmaxx∈C F (x) is non-empty. The function
F (x) satisfies the EBC if there exists constants ϑ, σ > 0 such that for any x ∈ C satisfying3

dist(x,Λ∗) ≥ ϑ,
F (x∗)− F (x) ≥ σ · dist(x,Λ∗) with x∗ ∈ Λ∗.

Note that in Definition 3.8, Λ∗ is a closed convex set, which follows from the fact that F (x) is a
concave function and thus all superlevel sets are closed and convex. The following lemma, whose
proof can be found in Lemma 5 of Wei et al. [2019], shows the relation between the Lagrange
multiplier condition and the dual function.

3We let dist(x,Λ∗) := minx′∈Λ∗
1
2‖x− x′‖22 as the Euclidean distance between a point x and the set Λ∗.
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Lemma 3.9. Fix K ≥ 1. Under Assumption 3.6, for any k ∈ {0, . . . , K − 1} and τ =
√
K,

the dual function q(k,τ)(η) satisfies EBC with σ > 0 and ϑ > 0, i.e., for any η ∈ RI satisfying

dist(η,V∗k,τ ) ≥ ϑ, we have

q(k,τ)(η∗k,τ )− q(k,τ)(η) ≥ σ · dist(η,V∗k,τ ), ∀ η∗k,τ ∈ V∗k,τ .

We define dist(η,V∗k,τ ) := minη′∈V∗k,τ
1
2
‖η − η′‖2

2 as Euclidean distance between a point η and the

set V∗k,τ .

Based on the above assumptions and lemmas, we present results of the regret and constraint
violation.

Theorem 3.10. Consider any fixed horizon K ≥ |S||A| with |S|, |A| > 1. Suppose Assumption

3.3, 3.4, 3.6 hold and there exist absolute constants σ and ϑ such that σ ≥ σ and ϑ ≤ ϑ for all

σ, ϑ in Lemma 3.9 over k = {0, 1, . . . , K − 1} and τ =
√
K. If setting α = KH, V = H

√
K,

λ = 1/K and ζ ∈ (0, 1/(4 + 8H/σ)] in Algorithm 1, with probability at least 1− 4ζ , we have

Regret(K) ≤ Õ
(
H|S|

√
K|A|

)
, Violation(K) ≤ Õ

(
H|S|

√
K|A|

)
,

where Õ(·) hides the logarithmic factors log3/2(K/ζ) and log(K|S||A|/ζ).

For unconstrained episodic MDPs with the unknown transition and adversarial losses, the re-
cent work Rosenberg and Mansour [2019a] achieves a tight regret bound of Õ(H|S|

√
|A|K),

almost matches the lower bound Ω(
√
H|S||A|K) [Jaksch et al., 2010] up to an O(

√
H|S|) fac-

tor. Comparing to aforementioned works, for CMDPs, our proposed algorithm can maintain the
Õ(H|S|

√
|A|K) regret bound and also achieve a constraint violation bound of Õ(H|S|

√
|A|K)

under the setting of the unknown transition model, the adversarial losses, and stochastic constraints.

3.5 Theoretical Analysis

3.5.1 Proof of Regret Bound

Lemma 3.11. The updating rules in Algorithm 1 ensure that with probability at least 1− 2ζ ,

K∑
k=1

∥∥θk − θk∥∥
1
≤ (
√

2 + 1)H|S|

√
2K|A| log

2K|S||A|
ζ

+ 2H2

√
2K log

H

ζ
.
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Lemma 3.12. The updating rules in Algorithm 1 ensure that with probability at least 1− ζ ,

K∑
k=1

〈
fk, θk − θ∗

〉
≤ 4H2K + (λT + 1)αH log |S|2|A|

V
+ 2λKH

+
KH

2α
+

1

V

K∑
k=1

〈Q(k),gk(θ
∗
)− c〉.

Here we let Q(k) := [Q1(k), Q2(k), · · · , QI(k)]>. Next, we present Lemma 3.13, which
is one of the key lemmas in our proof. Then, this lemma indicates that ‖Q(k)‖2 is bounded by
O(
√
K) with high probability when setting the parameters τ, V, α, λ as in Theorem 3.10. Thus,

introducing stochastic constraints retains the O(
√
K) regret. Moreover, this lemma will lead to

constraint violation in the level of O(
√
K). Lemma 3.13 is proved by making use of Assumption

3.6 and Lemma 3.9.

Lemma 3.13. Letting τ =
√
K and ζ satisfy σ/4 ≥ ζ(σ/2+2H), the updating rules in Algorithm

1 ensure that with probability at least 1−Kδ, the following inequality holds for all k ∈ [K + 1],

‖Q(k)‖2 ≤ ω := ψ + τ
512H2

σ
log

(
1 +

128H2

σ2 eσ/(32H)

)
+ τ

64H2

σ
log

1

δ
+ 2τH,

where we define ψ := (2τH + CV,α,λ)/σ + 2αH log(|S|2|A|/λ)/(στ) + τσ/2 and CV,α,λ :=

2(σB + σ ϑ)V + (6 + 4ϑ)V H + V H/α + 4HλV + 2αλH log |S|2|A|+ 8H2.

The upper bound of ||Q(k)||2 is a convex function w.r.t. τ , which thus indicates that there exists
a tight upper bound of ||Q(k)||2 if τ is chosen by finding the minimizer of this upper bound. In
this chapter, we directly set τ =

√
T , which suffices to give an Õ(

√
T ) upper bound.

Remark 3.14. We discuss the upper bound of the term log
(
1 + 128H2

σ2 eσ/(32H)
)

in the following
way: (1) if 128H2

σ2 eσ/(32H) ≥ 1, then this term is bounded by log
(

256H2

σ2 eσ/(32H)
)

= σ
32H

+log 256H2

σ2 ;
(2) if 128H2

σ2 eσ/(32H) < 1, then the term is bounded by log 2. Thus, combining the two cases, we
have log

(
1 + 128H2

σ2 eσ/(32H)
)
≤ log 2 + σ

32H
+ log 256H2

σ2 . This discussion shows that the log term
in the result of Lemma 3.13 will not introduce extra dependence on H except a logH term.

With the bound of ‖Q(k)‖2 in Lemma 3.13, we further obtain the following lemma.

Lemma 3.15. By Algorithm 1, if σ/4 ≥ ζ(σ/2 + 2H), then with probability at least 1− 2Kδ,

K∑
k=1

〈Q(k),gk(θ
∗
)− c〉 ≤ 2Hω

√
K log

1

Kδ
,

with ω defined as the same as in Lemma 3.13.
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Proof of Regret Bound in Theorem 3.10. Recall that θk is the probability vector chosen by the de-
cision maker, and θ

k
is the true occupancy measure at episode k while θ

∗
is the solution to the

problem (3.2). The main idea is to decompose the regret as follows

K∑
k=1

〈
fk, θ

k − θ∗
〉

=
K∑
k=1

(〈
fk, θ

k − θk
〉

+
〈
fk, θk − θ∗

〉)
≤

K∑
k=1

∥∥θk − θk∥∥
1︸ ︷︷ ︸

Term(I)

+
K∑
k=1

〈
fk, θk − θ∗

〉
︸ ︷︷ ︸

Term(II)

,
(3.17)

where we use Assumption 3.4 such that
〈
fk, θ

k − θk
〉
≤ ‖fk‖∞

∥∥θk − θk∥∥
1
≤
∥∥θk − θk∥∥

1
. Thus,

it suffices to bound the Term(I) and Term(II).
We first show the bound for Term(I). According to Lemma 3.11, by the fact that H ≤ |S| and

|S|, |A| ≥ 1, we have that with probability at least 1− 2ζ , the following holds

Term(I) ≤ O
(
H|S|

√
K|A| log

1
2 (K|S||A|/ζ)

)
. (3.18)

For Term(II), setting V = H
√
K, α = KH , τ =

√
K, and λ = 1/K, by Lemma 3.12, we obtain

Term(II) ≤ 8H
√
K|S||A|+ 1

H
√
K

K∑
k=1

〈Q(k),gk(θ
∗
)− c〉,

where we use the inequality that log |S||A| ≤
√
|S||A| with the inequality

√
x ≥ log x. Thus, we

further need to bound the last term of the above inequality. By Lemma 3.15 and Remark 3.14, with
probability at least 1− 2Kδ for all k ∈ {1, . . . , K}, we have

1

H
√
K

K∑
k=1

〈Q(k),gk(θ
∗
)− c〉 ≤ O

(
H|S|

√
K|A| log

3
2 (K/δ)

)
,

by the facts that H ≤ |S| , |S| > 1, |A| > 1, and the assumption K ≥ |S||A|, as well as the
computation of ψ as ψ = O

(
H2
√
K + H log |S||A| + H2

√
K log(K|S||A|)

)
. Therefore, with

probability at least 1− 2Kδ, the following holds

Term(II) ≤ O
(
H|S|

√
K|A| log

3
2 (K/δ)

)
. (3.19)

Combining (3.18) and (3.19) with (3.17), and letting δ = ζ/K, by the union bound, we eventually
obtain that with probability at least 1−4ζ , the regret bound Regret(K) ≤ Õ

(
H|S|

√
K|A|

)
holds,

where the notation Õ(·) hides the logarithmic factors. We further let ζ ≤ 1/(4 + 8H/σ) < 1/4
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(such that σ/4 ≥ ζ(σ/2 + 2H) is guaranteed). This completes the proof.

3.5.2 Proof of Constraint Violation Bound

Lemma 3.16. The updating rules in Algorithm 1 ensure∥∥∥∥∥
[

K∑
k=1

(gk(θk)− c)

]
+

∥∥∥∥∥
2

≤ ‖Q(K + 1)‖2 +
K∑
k=1

∥∥θk+1 − θk
∥∥

1
.

Lemma 3.17. The updating rules in Algorithm 1 ensure

K∑
k=1

∥∥θk+1 − θk
∥∥

1
≤ 3H

√
K|S||A| log

8K

|S||A|
+

2H

(1− λ)2α

K∑
k=1

‖Q(k)‖2 +
2KHV

(1− λ)2α

+
2λKH

1− λ
+

√
8λ log |S|2|A|

1− λ
KH.

Remark 3.18. The proof of Lemma 3.17 uses the fact that the confidence set of P changes only√
K|S||A| log2(8K/(|S||A|)) times as shown in Lemma 3.26, thanks to the doubling of the epoch

length in Algorithm 1. Within each epoch where the confidence set is unchanged, we further show
‖θk+1 − θk‖1 is sufficiently small. Therefore, we can show that the cumulative update difference∑K

k=1

∥∥θk+1− θk
∥∥

1
grows in the order of

√
K, which further leads to anO(

√
K) constraint viola-

tion according to Lemma 3.16.

Proof of Constraint Violation Bound in Theorem 3.10. We decompose the constraint violation as∥∥∥∥∥
[

K∑
k=1

(
gk(θ

k
)− c

)]
+

∥∥∥∥∥
2

≤
K∑
k=1

∥∥gk(θk)− gk(θ
k
)
∥∥

2
+

∥∥∥∥∥
[

K∑
k=1

(
gk(θk)− c

) ]
+

∥∥∥∥∥
2

≤
K∑
k=1

∥∥θk − θk∥∥
1︸ ︷︷ ︸

Term(III)

+

∥∥∥∥∥
[

K∑
k=1

(
gk(θk)− c

)]
+

∥∥∥∥∥
2︸ ︷︷ ︸

Term(IV)

,
(3.20)

where the second inequality is due to Assumption 3.4 that ‖gk(θk)− gk(θ
k
)‖2 = (

∑I
i=1 |〈gki , θk−

θ
k〉|2)

1
2 ≤

∑I
i=1 ‖gki ‖∞‖θk − θ

k‖1 ≤ ‖θk − θ
k‖1. Thus, it suffices to bound Terms (III) and (IV).

For Term(III), we already have its bound as (3.18). Then, we focus on proving the upper
bound of Term(IV). Set V = H

√
K, α = KH , τ =

√
K, and λ = 1/K as in the proof of

the regret bound. By Lemma 3.16, we know that to bound Term(IV) requires bounding the terms
‖Q(K + 1)‖2 and

∑K
k=1 ‖θk+1 − θk‖1. By Lemma 3.13, combining it with Remark 3.14 and

ψ = O
(
H2
√
K + H log |S||A| + H2 log(K|S||A|)/

√
K
)

as shown in the proof of the regret
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bound, letting σ/4 ≥ ζ(σ/2 + 2H), with probability 1 −Kδ, for all k ∈ [K + 1], the following
inequality holds

‖Q(k)‖2 ≤ O
(
H2
√
K log(H/δ)

)
, (3.21)

where we use log x ≤
√
x. This gives the upper bound of ‖Q(K + 1)‖2 which is ‖Q(K + 1)‖2 ≤

O
(
H2
√
K log(H/δ)

)
.

Furthermore, by Lemma 3.17, we know that the the key to bound
∑K

k=1 ‖θk+1 − θk‖1 is also
the drift bound for Q(k). Therefore, by (3.21) and the settings of the parameters α, λ, V , we have

K∑
k=1

‖θk+1 − θk‖1 ≤ O
(
H|S|

√
|A|K log(K|S||A|/δ)

)
, (3.22)

by the facts that H ≤ |S| , |S| > 1, |A| > 1 and the condition |S||A| ≤ K. Thus combining (3.21)
and (3.22) with Lemma 3.16, and letting δ = ζ/K, then with probability at least 1− ζ , we have

Term(IV) ≤ O
(
H|S|

√
|A|K log(K|S||A|/δ)

)
.

Combining results for Term(III) and Term(IV) with (3.20), by the union bound, with probability at
least 1 − 4ζ , the constraint violation Violation(K) ≤ Õ

(
H|S|

√
K|A|

)
holds. This finishes the

proof.

3.6 Conclusion

In this chapter, we propose a new upper confidence primal-dual algorithm to solve online con-
strained episodic MDPs with adversarial losses and stochastically changing constraints. In
particular, our algorithm does not require the true transition models of MDPs and achieves
Õ(H|S|

√
|A|K) regret and constraint violation.

3.7 Proofs of Lemmas for Regret Bound

3.7.1 Proof of Lemma 3.11

We first provide Lemmas 3.19 and 3.20 below. Then, we give the proof of Lemma 3.11 based on
the two lemmas.

Lemma 3.19 (Lemma 19 in Jaksch et al. [2010]). For any sequence of numbers x1, . . . , xn with
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0 ≤ xk ≤ Xk−1 := max
{

1,
∑k−1

i=1 xi
}

, the following inequality holds

n∑
k=1

xk√
Xk−1

≤ (
√

2 + 1)
√
Xn.

Lemma 3.20. Let d̂k(s) and dk(s) be the state stationary distributions associated with θk and

θ
k

respectively, and P̂`(k)(s
′|a, s) and P (s′|a, s) be the corresponding transition distributions.

Denote πk(a|s) as the policy at episode k. There are θk(s, a, s′) = d̂k(s)π
k(a|s)P̂`(k)(s

′|a, s)
and θ

k
(s, a, s) = dk(s)π

k(a|s)P (s′|a, s). On the other hand, there are also d̂k(s
′) =∑

s∈Sh

∑
a∈A θ

k(s, a, s′),∀s′ ∈ Sh+1, and dk(s′) =
∑

s∈Sh

∑
a∈A θ

k(s, a, s′),∀s′ ∈ Sh+1. Then,

we have the following inequality

‖θk − θk‖1 ≤
H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

µk(s, a)‖P̂`(k)(·|s, a)− P (·|s, a)‖1,

where we let µk(s, a) = dk(s)π
k(a|s).

Proof. By the definitions of d̂k, dk, P̂`(k), P , and πk shown in Lemma 3.20, we have

‖θk − θk‖1 =
H−1∑
h=0

∑
s∈Sh

∑
a∈A

‖θk(a, s, ·)− θk(a, s, ·)‖1

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)‖P̂`(k)(·|a, s)d̂k(s)− P (·|a, s)dk(s)‖1

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)‖P̂`(k)(·|a, s)d̂k(s)− P̂`(k)(·|a, s)dk(s)

+ P̂`(k)(·|a, s)dk(s)− P (·|a, s)dk(s)‖1.

Thus, by triangle inequality for ‖ · ‖1, we can bound the term ‖θk − θk‖1 in the following way

‖θk − θk‖1 ≤
H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)[‖P̂`(k)(·|a, s)d̂k(s)− P̂`(k)(·|a, s)dk(s)‖1

+ ‖P̂`(k)(·|a, s)dk(s)− P (·|a, s)dk(s)‖1]

≤
H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)dk(s)‖P̂`(k)(·|a, s)− P (·|a, s)‖1

+
H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)‖P̂`(k)(·|a, s)‖1 · |d̂k(s)− dk(s)|.

(3.23)
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Then we need to bound the last two terms of (3.23) respectively. For the first term on the right-hand
side of (3.23), we have

H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)dk(s)‖P̂`(k)(·|a, s)− P (·|a, s)‖1

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

µk(s, a)‖P̂`(k)(·|a, s)− P (·|a, s)‖1,

(3.24)

where µk(s, a) = πk(a|s)dk(s) denotes the joint distribution probability of (s, a).
Next, we bound the last term on the right-hand side of (3.23), which is

H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)‖P̂`(k)(·|a, s)‖1 · |d̂k(s)− dk(s)| =
H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)|d̂k(s)− dk(s)|,

since ‖P̂`(k)(·|a, s)‖1 =
∑

s′∈Sh+1
P̂`(k)(s

′|a, s) = 1. Furthermore, we can bound the last term
above as

H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)|d̂k(s)− dk(s)|

=
H−1∑
h=0

∑
s∈Sh

|d̂k(s)− dk(s)| =
H−1∑
h=1

∑
s∈Sh

|d̂k(s)− dk(s)|

=
H−1∑
h=1

∑
s∈Sh

∣∣∣ ∑
s′′∈Sh−1

∑
a∈A

θk(s′′, a, s)−
∑

s′′∈Sh−1

∑
a∈A

θ
k
(s′′, a, s)

∣∣∣,
where the first equality is due to

∑
a∈A π

k(a|s) = 1, the second equality is due to d̂k(s0) =

dk(s0) = 1, and the third equality is by the relations d̂k(s) =
∑

s′′∈Sh−1

∑
a∈A θ

k(s′′, a, s) and

dk(s) =
∑

s′′∈Sh−1

∑
a∈A θ

k
(s′′, a′, s), ∀s ∈ Sh. Further bounding the last term of the above

equation gives

H−1∑
h=1

∑
s∈Sh

∣∣∣∣ ∑
s′′∈Sh−1

∑
a∈A

θk(s′′, a, s)−
∑

s′′∈Sh−1

∑
a∈A

θ
k
(s′′, a, s)

∣∣∣∣
≤

H−1∑
h=1

∑
s∈Sh

∑
s′′∈Sh−1

∑
a∈A

∣∣∣∣θk(s′′, a, s)− θk(s′′, a, s)∣∣∣∣
=

H−1∑
h=1

∑
s′′∈Sh−1

∑
a∈A

∥∥θk(s′′, a, ·)− θk(s′′, a, ·)∥∥
1

=
H−2∑
h=0

∑
s∈Sh

∑
a∈A

∥∥θk(s, a, ·)− θk(s, a, ·)∥∥
1
,
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which eventually implies that the last term on the right-hand side of (3.23) can be bounded as

H−1∑
h=0

∑
s∈Sh

∑
a∈A

πk(a|s)‖P̂`(k)(·|a, s)‖1 · |d̂k(s)− dk(s)|

≤
H−2∑
h=0

∑
s∈Sh

∑
a∈A

∥∥θk(s, a, ·)− θk(s, a, ·)∥∥
1
.

(3.25)

Therefore, plugging the bounds (3.24) and (3.25) in (3.23), we have

‖θk − θ̄k‖1 =
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∥∥θk(a, s, ·)− θk(a, s, ·)∥∥
1

≤
H−1∑
h=0

∑
s∈Sh

∑
a∈A

µk(s, a)
∥∥P̂`(k)(·|a, s)− P (·|a, s)

∥∥
1

+
H−2∑
h=0

∑
s∈Sh

∑
a∈A

∥∥θk(s, a, ·)− θk(s, a, ·)∥∥
1
.

Recursively applying the above inequality, we obtain

‖θk − θk‖1 ≤
H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

µk(s, a)
∥∥∥P̂`(k)(·|s, a)− P (·|s, a)

∥∥∥
1
,

which completes the proof.

Now, we are in position to give the proof of Lemma 3.11.

Proof of Lemma 3.11. The proof for Lemma 3.11 adopts similar ideas in Neu et al. [2012], Rosen-
berg and Mansour [2019a]. By Lemma 3.20, one can show that

‖θk − θk‖1 ≤
H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

µk(s, a)
∥∥P̂`(k)(·|s, a)− P (·|s, a)

∥∥
1

=
H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

[
(µk(s, a)− 1{skj = s, akj = a})

∥∥P̂`(k)(·|s, a)− P (·|s, a)
∥∥

1

+ 1{skj = s, akj = a}
∥∥P̂`(k)(·|s, a)− P (·|s, a)

∥∥
1

]
,

where we denote 1{skj = s, akj = a} the indicator random variable that equals 1 with probability
µk(s, a), ∀s ∈ Xj, a ∈ A and 0 otherwise. Denote ξk(s, a) = ‖P̂`(k)(·|s, a) − P (·|s, a)‖1 for
abbreviation. We can see that ξk(s, a) ≤ ‖P̂`(k)(·|s, a)‖1 + ‖P (·|s, a)‖1 = 2. Taking summation
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over K time slots on both sides of the above inequality, we obtain

K∑
k=1

‖θk − θk‖1 ≤
K∑
k=1

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

(µk(s, a)− 1{skj = s, akj = a})ξk(s, a)

+
K∑
k=1

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

1{skj = s, akj = a}ξk(s, a).

(3.26)

Next, we bound the first term on the right-hand side of (3.26). Let Fk−1 be the system history up
to (k − 1)-th episode. Then, we have

E
{∑
s∈Sj

∑
a∈A

(µk(s, a)− 1{skj = s, akj = a})ξk(s, a)
∣∣∣ Fk−1

}
= 0,

since ξk is only associated with system randomness history up to k − 1 episodes. Thus, the term∑
s∈Sj

∑
a∈A(µk(s, a) − 1{skj = s, akj = a})ξk(s, a) is a martingale difference sequence with

respect to Fk−1. Furthermore, by ξk(s, a) ≤ 2 and
∑

s∈Sj

∑
a∈A 1{skj = s, akj = a}) = 1, there

will be ∣∣∣∣∣∑
s∈Sj

∑
a∈A

(µk(s, a)− 1{skj = s, akj = a})ξk(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣∑
s∈Sj

∑
a∈A

1{skj = s, akj = a}

∣∣∣∣∣ξk(s, a) +

∣∣∣∣∣∑
s∈Sj

∑
a∈A

µk(s, a)

∣∣∣∣∣ξk(s, a) ≤ 4.

Thus, by Hoeffding-Azuma inequality, we obtain that with probability at least 1− ζ/H ,

K∑
k=1

∑
s∈Sj

∑
a∈A

(µk(s, a)− 1{skj = s, akj = a})ξk(s, a) ≤ 4

√
2K log

H

ζ
.

According to the union bound, we further have that with probability at least 1 − ζ , the above
inequality holds for all j = 0, ..., H − 1. This implies that with probability at least 1 − ζ , the
following inequality holds

K∑
k=1

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

(µk(s, a)− 1{skj = s, akj = a})ξk(s, a) ≤ 2H2

√
2K log

H

ζ
. (3.27)

Furthermore, we adopt the same argument as the first part of the proof of Lemma 5 in Neu et al.
[2012] to show the upper bound of

∑K
k=1

∑H−1
h=0

∑h
j=0

∑
s∈Sj

∑
a∈A 1{skj = s, akj = a}ξk(s, a)

in (3.26). Recall that `(k) denotes the epoch that the k-th episode belongs to. By the definition of
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the state-action pair counter N`(s, a) and n`(s, a), we have Nq(s, a) =
∑q−1

`=0 n`(s, a). According
to Lemma 3.19, we have

`(k)∑
q=1

nq(s, a)

max{1,
√
Nq(s, a)}

≤ (
√

2 + 1)

√√√√ `(k)∑
q=1

nq(s, a). (3.28)

Since we can rewrite

K∑
k=1

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

1{skj = s, akj = a}ξk(s, a) =
K∑
k=1

H−1∑
h=0

h∑
j=0

‖P̂`(k)(·|skj , akj )− P (·|skj , akj )‖1,

then by Lemma 3.5 and K + 1 ≤ 2K, the following holds with probability at least 1− ζ ,

K∑
k=1

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

1{skj = s, akj = a}ξk(s, a)

≤
H−1∑
h=0

h∑
j=0

K∑
k=1

√
2|Sj+1| log(2K|S||A|/ζ)

max{1, N`(k)(skj , a
k
j )}

≤
H−1∑
h=0

h∑
j=0

`(K)∑
q=1

∑
s∈Sj

∑
a∈A

nq(s, a)

√
2|Sj+1| log(2K|S||A|/ζ)

max{1, Nq(s, a)}

≤
H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

(
√

2 + 1)

√√√√2

`(K)∑
q=1

nq(s, a)|Sj+1| log
2K|S||A|

ζ
,

where the first inequality is due to Lemma 3.5, the second inequality is by the definitions of the
local counter n`(s, a) and the global counter N`(s, a), and the last inequailty is by (3.28). Thus,
further bounding the last term of the above inequality yields

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

(
√

2 + 1)

√√√√2

[
`(K)∑
q=1

nq(s, a)

]
|Sj+1| log

2K|S||A|
ζ

≤
H−1∑
h=0

h∑
j=0

(
√

2 + 1)

√√√√2
∑
s∈Sj

∑
a∈A

[
`(K)∑
q=1

nq(s, a)

]
|Sj||Sj+1||A| log

2K|S||A|
ζ

≤
H−1∑
h=0

h∑
j=0

(
√

2 + 1)

√
2K|Sj||Sj+1||A| log

2K|S||A|
ζ

≤ (
√

2 + 1)H|S|

√
2K|A| log

2K|S||A|
ζ

,
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where the first inequality is due to Jensen’s inequality, the second inequality is by∑
s∈Sj

∑
a∈A

∑`(K)
q=1 nq(s, a) ≤ K, and the last inequality is by

∑H−1
h=0

∑h
j=0

√
|Sj||Sj+1| ≤∑H−1

h=0

∑h
j=0(|Sj| + |Sj+1|)/2 ≤ H|S|. The above results imply that with probability at least

1− ζ , the following inequality holds

K∑
k=1

H−1∑
h=0

h∑
j=0

∑
s∈Sj

∑
a∈A

1{skj = s, akj = a}ξk(s, a)

≤ (
√

2 + 1)H|S|

√
2K|A| log

2K|S||A|
ζ

.

(3.29)

By the union bound, combining (3.26), (3.27) and (3.29), we obtain with probability at least 1−2ζ ,

K∑
k=1

‖θk − θk‖1 ≤ (
√

2 + 1)H|S|

√
2K|A| log

2K|S||A|
ζ

+ 2H2

√
2K log

H

ζ
.

This completes the proof.

3.7.2 Proof of Lemma 3.12

We provide Lemmas 3.21, 3.22, and 3.23 first. Then, we give the proof of Lemma 3.12 based on
these lemmas.

Lemma 3.21 (Lemma 14 in Wei et al. [2019]). Let Λ and Λo denote a compact convex set and the

relative interior of the set Λ respectively. Assuming y ∈ Λo, and letting C ⊆ Λ, then the following

inequality holds

F (xopt) + αD(xopt,y) ≤ F (z) + αD(z,y)− αD(z,xopt), ∀z ∈ C,

where xopt ∈ arg minx∈C F (x) + αD(x,y), F (·) is a convex function, and D(·, ·) is the Bregman

divergence.

Lemma 3.21 is an extension of Lemma 14 in Wei et al. [2019], whose proof follows the one
in Wei et al. [2019]. We slightly abuse the notation of D in the above lemma and it becomes the
unnormalized KL divergence when we apply this lemma in our problem, which is a special case of
the Bregman divergence.

Lemma 3.22. For any θ and θ′ satisfying
∑

s∈Sh

∑
a∈A

∑
s′∈Sh+1

θ(s, a, s′) = 1, and θ(s, a, s′) ≥
0,∀h ∈ {0, . . . , H − 1} , we let θh := [θ(s, a, s′)]s∈Sh,a∈A,s′∈Sh+1

denote the vector formed by the

elements θ(s, a, s′) for all (s, a, s′) ∈ Sh×A×Sh+1. We also let θ′h := [θ′(s, a, s′)]s∈Sh,a∈A,s′∈Sh+1
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similarly denote a vector formed by θ′(s, a, s′). Then, we have

D(θ, θ′) ≥ 1

2

H−1∑
h=0

‖θh − θ′h‖2
1 ≥

1

2H
‖θ − θ′‖2

1,

where D(·, ·) is defined as in (3.8).

Proof. We prove the lemma by the following inequality

D(θ, θ′) =
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
θ(s, a, s′)

θ′(s, a, s′)
− θ(s, a, s′) + θ′(s, a, s′)

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
θ(s, a, s′)

θ′(s, a, s′)

≥ 1

2

H−1∑
h=0

‖θh − θ′h‖2
1 ≥

1

2H

(H−1∑
h=0

‖θh − θ′h‖1

)2

≥ 1

2H
‖θ − θ′‖2

1,

where the inequality is due to the Pinsker’s inequality since θh and θ′h are two probability distribu-
tions such that ‖θh‖1 = 1 and ‖θ′h‖1 = 1. This completes the proof.

Lemma 3.23. For any θ and θ′ satisfying
∑

s∈Sh

∑
a∈A

∑
s′∈Sh+1

θ(s, a, s′) = 1, and θ(s, a, s′) ≥
0,∀h ∈ {0, . . . , H − 1} , letting θ̃′(s, a, s′) = (1 − λ)θ′(s, a, s′) + λ

|A||Sh||Sh+1|
,∀(s, a, s′) ∈ Sh ×

A× Sh+1,∀h = 1, . . . , H − 1 with 0 < λ ≤ 1, then we have

D(θ, θ̃′)−D(θ, θ′) ≤ λH log |S|2|A|, D(θ, θ̃′) ≤ H log
|S|2|A|
λ

,

where D(·, ·) is defined as in (3.8).

Proof. We start our proof as follows

D(θ, θ̃′)−D(θ, θ′) =
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
(

log
θ(s, a, s′)

θ̃′(s, a, s′)
− log

θ(s, a, s′)

θ′(s, a, s′)

)
+ θ̃′(s, a, s′)− θ′(s, a, s′)

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
(

log θ′(s, a, s′)− log θ̃′(s, a, s′)
)

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
(

log θ′(s, a, s′)

− log[(1− λ)θ′(s, a, s′) + λ/(|Sh||Sh+1||A|)]
)
,
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where the last equality is by substituting θ̃′(s, a, s′) = (1−λ)θ′(s, a, s′)+ λ
|A||Sh||Sh+1|

,∀(s, a, s′) ∈
Sh ×A× Sh+1,∀h = 1, . . . , H − 1. Thus, by bounding the last term above, we further have

D(θ, θ̃′)−D(θ, θ′) ≤
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)

(
log θ′(s, a, s′)

− (1− λ) log θ′(s, a, s′)− λ log
1

|Sh||Sh+1||A|

)
=

H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

λθ(s, a, s′)
(

log θ′(s, a, s′) + log(|Sh||Sh+1||A|)
)

≤
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

λθ(s, a, s′) log(|Sh||Sh+1||A|) ≤ λH log |S|2|A|,

where the first inequality is by Jensen’s inequality and the second inequality is due to
log θ′(s, a, s′) ≤ 0 since 0 < θ′(s, a, s′) < 1, and the last inequality is due to Hölder’s inequality
that 〈x,y〉 ≤ ‖x‖1‖y‖∞ and |Sh||Sh+1| ≤ |S|2.

Moreover, we have

D(θ, θ̃′) =
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′) log
θ(s, a, s′)

θ̃′(s, a, s′)
− θ(s, a, s′) + θ′(s, a, s′)

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
(

log θ(s, a, s′)− log θ̃′(s, a, s′)
)

≤ −
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′) log θ̃′(s, a, s′)

= −
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′)
(

log[(1− λ)θ′(s, a, s′) + λ/(|Sh||Sh+1||A|)]
)

≤ −
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s∈Sh+1

θ(s, a, s′) · log
λ

|Sh||Sh+1||A|
≤ H log

|S|2|A|
λ

,

where the first inequality is due to log θ(s, a, s′) ≤ 0, the second inequality is due to the mono-
tonicity of logarithm function, and the third inequality is by as well as |Sh||Sh+1| ≤ |S|2. This
completes the proof.

Now we are ready to provide the proof of Lemma 3.12.
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Proof of Lemma 3.12. First of all, by Lemma 3.5, we know that

‖P (·|s, a)− P̂`(·|s, a)‖1 ≤ εζ`(s, a),

with probability at least 1− ζ , for all epochs ` and any state and action pair (s, a) ∈ S×A. Thus,
we have that for any epoch ` ≤ `(K + 1),

∆ ⊆ ∆(`, ζ)

holds with probability at least 1− ζ .
This can be easily proved in the following way: if any θ ∈ ∆, then for all h ∈ {0, . . . , H − 1},

s ∈ Sh, and a ∈ A, we have

θ(s, a, ·)∑
s′∈Sh+1

θ(s, a, s′)
= P (·|s, a).

Then, we obtain with probability at least 1− ζ ,

∥∥∥ θ(s, a, ·)∑
s′∈Sh+1

θ(s, a, s′)
− P̂`(·|s, a)

∥∥∥
1

=
∥∥∥P (·|s, a)− P̂`(·|s, a)

∥∥∥
1
≤ εζ`(s, a).

where the last inequality is by Lemma 3.5. Therefore, we know that θ ∈ ∆(`, ζ), which proves the
above claim.

Thus, we define the following event

Event DK : ∆ ⊆ ∩`(K+1)
`=1 ∆(`, ζ), (3.30)

by which we have

Pr(DK) ≥ 1− ζ.

For any θ
∗

which is a solution to problem (3.2), we have θ
∗ ∈ ∆. If event DK happens, then θ

∗ ∈
∩`(K+1)
`=1 ∆(`, ζ). Now we have that the updating rule of θ follows θk = arg minθ∈∆(`(k),ζ)

〈
V fk−1 +∑I

i=1 Qi(k−1)gk−1
i , θ

〉
+αD(θ, θ̃k−1) as shown in (3.7), and also θ

∗ ∈ ∩`(K+1)
`=1 ∆(`, ζ) holds with

probability at least 1 − ζ . According to Lemma 3.21, letting xopt = θk, z = θ
∗
, y = θ̃k−1 and

F (θ) =
〈
V fk−1 +

∑I
i=1Qi(k − 1)gk−1

i , θ
〉
, we have that with probability at least 1 − ζ , the
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following inequality holds for episodes 2 ≤ k ≤ K + 1

〈
V fk−1 +

I∑
i=1

Qi(k − 1)gk−1
i , θk

〉
+ αD(θk, θ̃k−1)

≤
〈
V fk−1 +

I∑
i=1

Qi(k − 1)gk−1
i , θ

∗
〉

+ αD(θ
∗
, θ̃k−1)− αD(θ

∗
, θk).

(3.31)

Thus, once given the event DK happens, the inequality (3.31) will hold.
On the other hand, according to the updating rule of Q(·) in (3.6), which is Qi(k) =

max{Qi(k − 1) + 〈gk−1
i , θk〉 − ci, 0}, we know that

Qi(k)2 =
(
max{Qi(k − 1) +

〈
gk−1
i , θk

〉
− ci, 0}

)2 ≤
(
Qi(k − 1) +

〈
gk−1
i , θk

〉
− ci

)2
,

which further leads to

Qi(k)2 −Qi(k − 1)2 ≤2Qi(k − 1)
(〈
gk−1
i , θk

〉
− ci

)
+
(〈
gk−1
i , θk

〉
− ci

)2
.

Taking summation on both sides of the above inequality from i = 1 to I , we have

1

2

(
‖Q(k)‖2

2 − ‖Q(k − 1)‖2
2

)
≤

I∑
i=1

〈
Qi(k − 1)gk−1

i , θk
〉
−

I∑
i=1

Qi(k − 1)ci +
1

2

I∑
i=1

(〈
gk−1
i , θk

〉
− ci

)2

≤
I∑
i=1

〈
Qi(k − 1)gk−1

i , θk
〉
−

I∑
i=1

Qi(k − 1)ci + 2H2,

(3.32)

where we let ‖Q(k)‖2
2 =

∑I
i=1 Q

2
i (k) and ‖Q(k− 1)‖2

2 =
∑I

i=1Q
2
i (k− 1), and the last inequality

is due to

I∑
i=1

(〈gk−1
i , θk〉 − ci)2

≤ 2
I∑
i=1

[(〈gk−1
i , θk〉)2 + c2

i ] ≤ 2
I∑
i=1

[‖gk−1
i ‖2

∞‖θk‖2
1 + c2

i ]

≤ 2
I∑
i=1

[H2‖gk−1
i ‖2

∞ + c2
i ] ≤ 2[H2(

I∑
i=1

‖gk−1
i ‖∞)2 + (

I∑
i=1

|ci|)2] ≤ 4H2

by Assumption 3.4 and the facts that
∑

s∈Sh

∑
a∈A

∑
s′∈Sh+1

θk(s, a, s′) = 1 and θk(s, a, s′) ≥ 0.

36



Thus, summing up (3.31) and (3.32), and then subtracting 〈V fk−1, θk−1〉 from both sides, we have

V
〈
fk−1, θk − θk−1

〉
+

1

2

(
‖Q(k)‖2

2 − ‖Q(k − 1)‖2
2

)
+ αD(θk, θ̃k−1)

≤ V
〈
fk−1, θ

∗ − θk−1
〉

+
I∑
i=1

Qi(k − 1)(〈gk−1
i , θ

∗〉 − ci) + αD(θ
∗
, θ̃k−1)− αD(θ

∗
, θk) + 4H2.

We further need to show the lower bound of the term V
〈
fk−1, θk − θk−1

〉
+ αD(θk, θ̃k−1) on the

left-hand side of the above inequality. Specifically, we have

V
〈
fk−1, θk − θk−1

〉
+ αD(θk, θ̃k−1)

= V
〈
fk−1, θk − θ̃k−1

〉
+ V

〈
fk−1, θ̃k−1 − θk−1〉+ αD(θk, θ̃k−1)

≥ −V ‖fk−1‖∞ · ‖θk − θ̃k−1‖1 − V ‖fk−1‖∞ · ‖θ̃k−1 − θk−1‖1 +
α

2

H−1∑
h=0

‖θkh − θ̃k−1
h ‖

2
1

≥ −V
H−1∑
h=0

‖θkh − θ̃k−1
h ‖1 − 2HλV +

α

2

H−1∑
h=0

‖θkh − θ̃k−1
h ‖

2
1

≥ −HV
2α
− 2HλV,

where the first inequality uses Hölder’s inequality and Lemma 3.22 that D(θ, θ′) =∑H−1
h=0 D(θh, θ

′
h) ≥ 1

2

∑H−1
h=0 ‖θh−θ′h‖2

1 with θh := [θ(s, a, s′)]s∈Sh,a∈A,s′∈Sh+1
, the second inequal-

ity is due to θ̃k−1
h = (1− λ)θk−1

h + λ 1
|A||Sh||Sh+1|

, the second inequality is due to ‖θ̃k−1 − θk−1‖1 =∑H−1
h=0 ‖θ̃

k−1
h −θk−1

h ‖1 = λ
∑H−1

h=0

∥∥θk−1
h − 1

|A||Sh||Sh+1|

∥∥
1
≤ λ

∑H−1
h=0

(∥∥θk−1
h

∥∥
1
+
∥∥ 1
|A||Sh||Sh+1|

∥∥
1

)
≤

2λH , and the third inequality is by finding the minimal value of a quadratic function −V x+ α
2
x2.

Therefore, one can show that with probability at least 1− ζ , the following inequality holds for
all k ≤ K + 1,

1

2

(
‖Q(k)‖2

2 − ‖Q(k − 1)‖2
2

)
− HV

2α
− 2HλV (3.33)

≤ V
〈
fk−1, θ

∗ − θk−1
〉

+
I∑
i=1

Qi(k − 1)(〈gk−1
i , θ

∗〉 − ci) + αD(θ
∗
, θ̃k−1)− αD(θ

∗
, θk) + 4H2.

Note that according to Lemma 3.23, we have

D(θ
∗
, θ̃k−1)−D(θ

∗
, θk) = D(θ

∗
, θ̃k−1)−D(θ

∗
, θk−1) +D(θ

∗
, θk−1)−D(θ

∗
, θk)

≤ λH log |S|2|A|+D(θ
∗
, θk−1)−D(θ

∗
, θk).
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Therefore, plugging the above inequality into (3.33) and rearranging the terms, we further get

V
〈
fk−1, θk−1 − θ∗

〉
≤ 1

2

(
‖Q(k − 1)‖2

2 − ‖Q(k)‖2
2

)
+

I∑
i=1

Qi(k − 1)(〈gk−1
i , θ

∗〉 − ci) + 4H2

+ αλH log |S|2|A|+ αD(θ
∗
, θk−1)− αD(θ

∗
, θk) +

HV

2α
+ 2HλV.

Thus, taking summation on both sides of the above inequality from 2 to K + 1, by Q(1) = 0, we
obtain that with probability at least 1− ζ ,

K+1∑
k=2

〈
fk−1, θk−1 − θ∗

〉
≤ 1

V

K+1∑
k=2

I∑
i=1

Qi(k − 1)(〈gk−1
i , θ

∗〉 − ci) +
KαλH log |S|2|A|

V

+
αD(θ

∗
, θ1) + 4H2K

V
+
KH

2α
+ 2HλK.

(3.34)

It is not difficult to compute that D(θ
∗
, θ1) ≤ H log |S|2|A| according to the initialization of θ1 by

the uniform distribution. Rearranging the terms and shifting the index, we rewrite (3.34) as

K∑
k=1

〈
fk, θk − θ∗

〉
≤ 1

V

K∑
k=1

I∑
i=1

Qi(k)(〈gki , θ
∗〉 − ci) +

4H2K + (λK + 1)αH log |S|2|A|
V

+
KH

2α
+ 2HλK.

This completes the proof.

3.7.3 Proof of Lemma 3.13

We first provide Lemmas 3.24 below. Then, we give the proof of Lemma 3.13 based on this lemma.

Lemma 3.24 (Lemma 5 of Yu et al. [2017]). Let {Z(k), k ≥ 0} be a discrete time stochastic

process adapted to a filtration {Uk, k ≥ 0} with Z(0) = 0 and U0 = {∅,Ω}. Suppose there exists

an integer τ > 0, real constants θ > 0, ρmax > 0 and 0 < κ ≤ ρmax such that

|Z(k + 1)− Z(k)| ≤ ρmax,

E[Z(k + τ)− Z(k) | Uk] ≤

{
τρmax, if Z(k) < ψ

−τκ, if Z(k) ≥ ψ

hold for all k ∈ {1, 2, ...}. Then for any constant 0 < δ < 1, with probability at least 1 − δ, we
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have

Z(k) ≤ ψ + τ
4ρ2

max

κ
log

(
1 +

8ρ2
max

κ2
eκ/(4ρmax)

)
+ τ

4ρ2
max

κ
log

1

δ
, ∀k ∈ {1, 2, ...}.

Now, we are in position to give the proof of Lemma 3.13.

Proof of Lemma 3.13. The proof of this Lemma is based on applying the lemma 3.24 to our prob-
lem. Thus, this proof mainly focuses on showing that the variable ‖Q(k)‖2 satisfies the condition
of Lemma 3.24.

According to the updating rule ofQi(k), which isQi(k+1) = max{Qi(k)+〈gki , θk+1〉−ci, 0},
we have

|‖Q(k + 1)‖2 − ‖Q(k)‖2| ≤‖Q(k + 1)−Q(k)‖2

=

√√√√ I∑
i=1

|Qi(k + 1)−Qi(k)|2 ≤

√√√√ I∑
i=1

|〈gki , θk+1〉 − ci|2,

where the first inequality is due to triangle inequality, and the second inequality is by the fact that
|max{a+ b, 0} − a| ≤ |b| if a ≥ 0. Then, by Assumption 3.4, we further have√√√√ I∑

i=1

|〈gki , θk+1〉 − ci|2 ≤
I∑
i=1

|〈gki , θk+1〉 − ci| ≤
I∑
i=1

(‖gki ‖∞‖θk+1‖1 + |ci|) ≤ 2H,

which therefore implies

|‖Q(k + 1)‖2 − ‖Q(k)‖2| ≤ 2H. (3.35)

Thus, with the above inequality, we have

‖Q(k + τ)‖2 − ‖Q(k)‖2 ≤ |‖Q(k + τ)‖2 − ‖Q(k)‖2|

≤
τ∑
τ=1

|‖Q(k + τ)‖2 − ‖Q(k + τ − 1)‖2| ≤ 2τH,
(3.36)

such that

E[‖Q(k + τ)‖2 − ‖Q(k)‖2|Fk−1] ≤ 2τH, (3.37)

where Fk−1 represents the system randomness up to the (k − 1)-th episode and Q(k) depends on
Fk−1 according to its updating rule.
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Next, we need to show that there exist ψ and κ such that E[‖Q(k + τ)‖2 − ‖Q(k)‖2|Fk−1] ≤
−τκ if ‖Q(k)‖2 ≥ ψ. Recall the definition of the event DK in (3.30). Therefore, we have that
with probability at least 1 − ζ , the event DK happens, such that for all 2 ≤ k′ ≤ K + 1 and any
θ ∈ ∩`(K+1)

`=1 ∆(`, ζ), the following holds

V
〈
fk
′−1, θk

′−1 − θ∗
〉
≤ 1

2

(
‖Q(k′ − 1)‖2

2 − ‖Q(k′)‖2
2

)
+

I∑
i=1

Qi(k
′ − 1)(〈gk′−1

i , θ〉 − ci)

+ αλH log |S|2|A|+ αD(θ, θ̃k
′−1)− αD(θ, θk

′
) + 4H2 +

HV

2α
+ 2HλV,

which adopts similar proof techniques to (3.33). Then, by rearranging the terms, the above in-
equality further leads to the following inequality

‖Q(k′)‖2
2 − ‖Q(k′ − 1)‖2

2 ≤ −2V
〈
fk
′−1, θk

′−1 − θ
〉

+ 2
I∑
i=1

Qi(k
′ − 1)(〈gk′−1

i , θ〉 − ci)

+ 2αλH log |S|2|A|+ 2αD(θ, θ̃k
′−1)− 2αD(θ, θk

′
) + 8H2 +

HV

α
+ 4HλV.

Taking summation from k+1 to τ+k on both sides of the above inequality, the following inequality
holds with probability 1− ζ for any τ > 0 and k satisfying 1 ≤ k ≤ K + 1− τ ,

‖Q(τ + k)‖2
2 − ‖Q(k)‖2

2

≤ −2V
τ+k∑

k′=k+1

〈
fk
′−1, θk

′−1 − θ
〉

+ 2
τ+k∑

k′=k+1

I∑
i=1

Qi(k
′ − 1)(〈gk′−1

i , θ〉 − ci) + 2αD(θ, θ̃k)

− 2αD(θ, θ̃τ+k) +
τ+k∑

k′=k+1

2α[D(θ, θ̃k
′−1)−D(θ, θk

′−1)] + 8τH2 +
τHV

α
+ 4τHλV.

(3.38)

Particularly, in (3.38), the term−2αD(θ, θk
′−1) ≤ 0 due to the non-negativity of unnormalized KL

divergence. By Lemma 3.23, we have

τ+k∑
τ=t+1

2α[D(θ, θ̃k
′−1)−D(θ, θk

′−1)] ≤ 2ατH log |S|2|A|.

For the term 2αD(θ, θ̃k), by Lemma 3.23, we can bound it as

2αD(θ, θ̃k) ≤ 2αH log(|S|2|A|/λ).

Moreover, we can decompose the term 2V
∑τ+k

k′=k+1〈fk
′−1, θ − θk′−1〉 + 2

∑τ+k
k′=k+1

∑I
i=1 Qi(k

′ −
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1)(〈gk′−1
i , θ

∗〉 − ci) in (3.38) as

2V
τ+k∑

k′=k+1

〈
fk
′−1, θ − θk′−1

〉
+ 2

τ+k∑
k′=k+1

I∑
i=1

Qi(k
′ − 1)(〈gk′−1

i , θ〉 − ci)

= 2V
τ+k∑

k′=k+1

〈
fk
′−1, θ − θk′−1

〉
+ 2

I∑
i=1

Qi(k)
τ+k∑

k′=k+1

(〈gk′−1
i , θ〉 − ci)

+ 2
τ+k∑

k′=k+2

I∑
i=1

[Qi(k
′ − 1)−Qi(k)](〈gk′−1

i , θ〉 − ci)

≤ 2V
τ+k∑

k′=k+1

〈
fk
′−1, θ

〉
+ 2

I∑
i=1

Qi(k)
τ+k∑

k′=k+1

(〈gk′−1
i , θ〉 − ci) + 2Hτ 2 + 2V Hτ,

where the last inequality is due to

−2V
τ+k∑

k′=k+1

〈
fk
′−1, θk

′−1
〉
≤ 2V

τ+k∑
k′=k+1

H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s′∈Sh+1

fk
′−1(s, a, s′)θk

′−1(s, a, s′) ≤ 2V Hτ

as well as

2
τ+k∑

k′=k+2

I∑
i=1

[Qi(k
′ − 1)−Qi(k)](〈gk′−1

i , θ〉 − ci)

≤ 2
τ+k∑

k′=k+2

I∑
i=1

k′−2∑
r=k

|〈gri , θr+1〉 − ci| · |〈gk
′−1
i , θ〉 − ci|

≤
τ+k∑

k′=k+2

k′−2∑
r=k

√√√√ I∑
i=1

|〈gri , θr+1〉 − ci|2 +
τ+k∑

k′=k+2

k′−2∑
r=k

√√√√ I∑
i=1

|〈gk′−1
i , θ〉 − ci|2 ≤ 2Hτ 2

byQi(k+1) = max{Qi(k)+〈gki , θk+1〉−ci, 0} and |max{a+b, 0}−a| ≤ |b| if a ≥ 0 for the first
inequality and Assumption 3.4 for the last inequality. Taking conditional expectation on both sides
of (3.38) and combining the above bounds for terms in (3.38), we have for any θ ∈ ∩`(K+1)

`=1 ∆(`, ζ),

E[‖Q(τ + k)‖2
2 − ‖Q(k)‖2

2|Fk−1,DK ]

≤ 2τ 2H + 2αH log(|S|2|A|/λ)

+ 2V τE
[

1

τ

τ+k∑
k′=k+1

〈fk′−1, θ〉+
1

τ

I∑
i=1

Qi(k)

V

τ+k∑
k′=k+1

(〈gk′−1
i , θ〉 − ci)

∣∣∣∣Fk−1,DK
]

+ 2αλτH log |S|2|A|+ 8τH2 +
τHV

α
+ 4τHλV + 2V Hτ.

(3.39)
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Thus, it remains to bound the term E[ 1
τ

∑τ+k
k′=k+1〈fk

′−1, θ〉 + 1
τ

∑I
i=1

Qi(k)
V

∑τ+k
k′=k+1(〈gk′−1

i , θ〉 −
ci)|Fk−1,DK ] so as to give an upper bound of the right-hand side of (3.39). Given the event DK
happens such that ∆ ⊆ ∩`(K+1)

`=1 ∆(`, ζ) 6= ∅, and since θ is any vector in the set ∩`(K+1)
`=1 ∆(`, ζ),

we can give an upper bound of (3.39) by bounding a term q(k,τ)
(

Q(k)
V

)
, which is due to

min
θ∈∩`(K+1)

`=1 ∆(`,ζ)

E
[1

τ

τ+k∑
k′=k+1

〈
fk
′−1, θ

〉
+

1

τ

I∑
i=1

Qi(k)

V

τ+k∑
k′=k+1

(〈gk′−1
i , θ〉 − ci)

∣∣∣Fk−1,DK
]

= min
θ∈∩`(K+1)

`=1 ∆(`,ζ)

〈
f (k,τ), θ

〉
+

I∑
i=1

Qi(k)

V
(〈gi, θ〉 − ci)

≤ min
θ∈∆

〈
f (k,τ), θ

〉
+

I∑
i=1

Qi(k)

V
(〈gi, θ〉 − ci) = q(k,τ)

(Q(k)

V

)
,

where the inequality is due to ∆ ⊆ ∩`(K+1)
`=1 ∆(`, ζ) given DK happens and the last equality is ob-

tained according to the definition of the dual function q in Section 3.4. Next, we bound q(k,τ)
(Q(k)

V

)
.

According to Assumption 3.6, we assume that one dual solution is η∗k,τ ∈ V∗k,τ . We let ϑ be the
maximum of all ϑ and σ be the minimum of all σ. Thus, when dist(Q(k)

V
,V∗k,τ ) ≥ ϑ, we have

q(k,τ)
(Q(k)

V

)
=q(k,τ)

(Q(k)

V

)
− q(k,τ)(η∗k,τ ) + q(k,τ)(η∗k,τ )

≤− σ
∥∥∥η∗k,τ − Q(k)

V

∥∥∥
2

+
〈
f (k,τ), θ∗k,τ

〉
≤− σ

∥∥∥Q(k)

V

∥∥∥
2

+ σ‖η∗k,τ‖2 +
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s′∈Sh+1

f (k,τ)(s, a, s′)θ∗k,τ (s, a, s
′)

≤− σ
∥∥∥Q(k)

V

∥∥∥
2

+ σB +H,

where the first inequality is due to the error bound condition in Lemma 3.9 and the weak duality
relation q(k,τ)(η∗k,τ ) ≤

〈
f (k,τ), θ∗k,τ

〉
for the Lagrangian duality (see, e.g., Bertsekas [2009]) with

θ∗k,τ being a primal solution, the second inequality is by triangle inequality, and the third inequality
is by Assumption 3.4 and Assumption 3.6. On the other hand, when dist(Q(k)

V
,V∗k,τ ) ≤ ϑ, we have

q(k,τ)
(Q(k)

V

)
= min

θ∈∆

〈
f (k,τ), θ

〉
+

I∑
i=1

Qi(k)

V
(〈gi, θ〉 − ci)

= min
θ∈∆

〈
f (k,τ), θ

〉
+

I∑
i=1

[η∗k,τ ]i(〈gi, θ〉 − ci) +
I∑
i=1

(Qi(k)

V
− [η∗k,τ ]i

)
(〈gi, θ〉 − ci)

≤q(k,τ)(η∗k,τ ) +
∥∥∥Q(k)

V
− η∗k,τ

∥∥∥
2
‖g(θ)− c‖2 ≤ H + 2ϑH,
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where the first inequality is by the definition of q(k,τ)(η∗k,τ ) and Cauchy-Schwarz inequality, and
the second inequality is due to weak duality relation and Assumption 3.4 such that

q(k,τ)(η∗k,τ ) ≤
〈
f (k,τ), θ∗k,τ

〉
≤
∥∥f (k,τ)

∥∥
∞‖θ

∗
k,τ‖1 ≤ H,∥∥∥Q(k)

V
− η∗k,τ

∥∥∥
2
‖g(θ)− c‖2 ≤ ϑ

√√√√ I∑
i=1

∣∣∣〈gi, θ〉 − ci∣∣∣2 ≤ ϑ
I∑
i=1

(‖gi‖∞‖θ‖1 + |ci|) ≤ 2ϑH.

Now we can combine the two cases as follows

q(k,τ)
(Q(k)

V

)
≤ −σ

∥∥∥Q(k)

V

∥∥∥
2

+ σB + 2H + 2ϑH + σϑ. (3.40)

The bound in (3.40) is due to

(1) When dist
(Q(k)

V
,V∗k,τ

)
≥ ϑ, we have

q(k,τ)

(
Q(k)

V

)
≤ −σ

∥∥∥∥Q(k)

V

∥∥∥∥
2

+ σB +H ≤ −σ
∥∥∥∥Q(k)

V

∥∥∥∥
2

+ σB + 2H + 2ϑH + σϑ.

(2) When dist
(Q(k)

V
,V∗k,τ

)
< ϑ, we have

q(k,τ)

(
Q(k)

V

)
≤ H + 2ϑH ≤ −σ

∥∥Q(k)

V

∥∥
2

+ σB + 2H + 2ϑH + σϑ,

since −σ
∥∥∥Q(k)

V

∥∥∥
2

+ σϑ + σB ≥ −σ · dist
(
Q(k)
V
,V∗k,τ

)
+ σϑ + σB − σB = σ

[
−

dist
(Q(k)

V
,V∗k,τ

)
+ ϑ
]
≥ 0.

Therefore, plugging (3.40) into (3.39), we can obtain that given the event DK happens, the
following holds

E[‖Q(τ + k)‖2
2 − ‖Q(k)‖2

2|Fk−1,DK ]

≤ 2τ 2H + τCV,α,λ + 2αH log(|S|2|A|/λ)− 2τσ‖Q(k)‖2,
(3.41)

where we define

CV,α,λ := 2(σB + σ ϑ)V + (6 + 4ϑ)V H +
V L

α
+ 4HλV + 2αλH log |S|2|A|+ 8H2

We can see that if ‖Q(k)‖2 ≥ (2τH + CV,α,λ)/σ + 2αλH log(|S|2|A|/λ)/(στ) + τσ/2, then
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according to (3.41), there is

E[‖Q(τ + k)‖2
2|Fk−1,DK ] ≤ ‖Q(k)‖2

2 − τσ‖Q(k)‖2 −
σ2τ 2

2

≤ ‖Q(k)‖2
2 − τσ‖Q(k)‖2 +

σ2τ 2

4

≤
(
‖Q(k)‖2 −

τσ

2

)2

.

Due to ‖Q(k)‖2 ≥ τσ
2

and by Jensen’s inequality, we have

E[‖Q(τ + k)‖2|Fk−1,DK ] ≤
√

E[‖Q(τ + k)‖2
2|Fk−1,DK ]

≤ ‖Q(k)‖2 −
τσ

2
.

(3.42)

Then we can compute the expectation E[‖Q(τ + k)‖2
2 − ‖Q(k)‖2

2|Fk−1] according to the law of
total expectation. With (3.36) and (3.42), we can obtain that

E[‖Q(τ + k)‖2 − ‖Q(k)‖2|Fk−1]

= P (DK)E[‖Q(τ + k)‖2 − ‖Q(k)‖2|Fk−1,DK ]

+ P (DK)E[‖Q(τ + k)‖2 − ‖Q(k)‖2|Fk−1,DK ]

≤ −τσ
2

(1− ζ) + 2ζτH

= −τ
[σ

2
− ζ
(σ

2
+ 2H

)]
≤ −σ

4
τ,

where we let σ/4 ≥ ζ(σ/2 + 2H).
Summarizing the above results, we have that if σ/4 ≥ ζ(σ/2 + 2H), then

|‖Q(k + 1)‖2 − ‖Q(k)‖2| ≤ 2H,

E[‖Q(k + τ)‖2 − ‖Q(k)‖2|Fk−1] ≤

{
2τH, if ‖Q(k)‖2 < ψ

−στ/4, if ‖Q(k)‖2 ≥ ψ
,

where we let

ψ =
2τH + CV,α,λ

σ
+

2αH log(|S|2|A|/λ)

στ
+
τσ

2
,

CV,α,λ = 2(σB + σ ϑ)V + (6 + 4ϑ)V H +
V L

α
+ 4HλV + 2αλH log |S|2|A|+ 8H2.

By Lemma 3.24, for a certain k ∈ [K + 1 − τ ] the following inequality holds with probability at
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least 1− δ,

‖Q(k)‖2 ≤ψ + τ
512H2

σ
log

(
1 +

128H2

σ2 eσ/(32H)

)
+ τ

64H2

σ
log

1

δ
. (3.43)

Further by the union bound, we have that with probability at least 1 − (K + 1 − τ)δ ≥ 1 −Kδ,
for any k ∈ [K + 1 − τ ], the above inequality (3.43) holds. Note that (3.43) only holds when
k ∈ [K + 1− τ ]. For K + 2− τ ≤ k ≤ K + 1, when (3.43) holds for k ∈ [K + 1− τ ], combining
(3.43) and (3.35), we have

‖Q(k)‖2 ≤ψ + τ
512H2

σ
log

(
1 +

128H2

σ2 eσ/(32H)

)
+ τ

64H2

σ
log

1

δ
+ 2τH. (3.44)

Thus, with probability at least 1 −Kδ, for any k satisfying 1 ≤ k ≤ K + 1, the inequality (3.44)
holds. We can discuss the upper bound of the term log

(
1 + 128H2

σ2 eσ/(32H)
)

in the following way:
(1) if 128H2

σ2 eσ/(32H) ≥ 1, then this term is bounded by log
(

256H2

σ2 eσ/(32H)
)

= σ
32H

+ log 256H2

σ2 ; (2)
if 128H2

σ2 eσ/(32H) < 1, then the term is bounded by log 2. Thus, we have

log

(
1 +

128H2

σ2 eσ/(32H)

)
≤ log 2 +

σ

32H
+ log

256H2

σ2 .

This discussion shows that the log term in (3.44) will not introduce extra dependency on H except
a logH term. This completes our proof.

3.7.4 Proof of Lemma 3.15

We first provide Lemmas 3.25 below. Then, we give the proof of Lemma 3.15 based on this lemma.

Lemma 3.25 (Lemma 9 of Yu et al. [2017]). Let {Z(k), k ≥ 0} be a supermartingale adapted to

a filtration {Uk, k ≥ 0} with Z(0) = 0 and U0 = {∅,Ω}, i.e., E[Z(k + 1) | Uk] ≤ Z(k), ∀k ≥ 0.

Suppose there exists a constant ς > 0 such that {|Z(k + 1) − Z(k)| > ς} ⊂ {Y (k) > 0}, where

Y (k) is process with Y (k) adpated to Fk for all k ≥ 0. Then, for all z > 0, we have

Pr(Z(k) ≥ z) ≤ e−z
2/(2kς2) +

k−1∑
τ=0

Pr(Y (τ) > 0),∀k ≥ 1.

We are in position to give the proof of Lemma 3.15.

Proof of Lemma 3.15. Now we compute the upper bound of the term
∑K

k=1

∑I
i=1 Qi(k)(〈gki , θ

∗〉−
ci). Note that Z(k) :=

∑k
τ=1

∑I
i=1 Qi(τ)(〈gτi , θ

∗〉 − ci) is supermartingale which can be verified
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by

E[Z(k)|Fk−1] =E
[ k∑
τ=1

I∑
i=1

Qi(τ)(〈gτi , θ
∗〉 − ci)

∣∣∣Fk−1

]

=
I∑
i=1

E[Qi(k)|Fk−1](〈E[gki |Fk−1], θ
∗〉 − ci)

+
k−1∑
τ=1

I∑
i=1

Qi(τ)(〈gτi , θ
∗〉 − ci)

≤
k−1∑
τ=1

I∑
i=1

Qi(τ)(〈gτi , θ
∗〉 − ci) = Z(k − 1),

where Qi(k) and gki are independent variables with Qi(k) ≥ 0 and 〈E[gki |Fk−1], θ
∗〉 = 〈gi, θ

∗〉 ≤
ci. On the other hand, we know that the random process has bounded drifts as

|Z(k + 1)− Z(k)| =
I∑
i=1

Qi(k + 1)(〈gk+1
i , θ

∗〉 − ci)

≤‖Q(k + 1)‖2

√√√√ I∑
i=1

∣∣〈gk+1
i , θ

∗〉 − ci
∣∣2

≤‖Q(k + 1)‖2

I∑
i=1

(‖gk+1
i ‖∞‖θ

∗‖1 + |ci|) ≤ 2H‖Q(k + 1)‖2,

where the first inequality is by Cauchy-Schwarz inequality, and the last inequality is by Assumption
3.4. This also implies that for an arbitrary ς , we have {|Z(k + 1) − Z(k)| > ς} ⊂ {Y (k) :=

‖Q(k+ 1)‖2− ς/(2H) > 0} since |Z(k+ 1)−Z(k)| > ς implies 2H‖Q(k+ 1)‖2 > ς according
to the above inequality. Thus, by Lemma 3.25, we have

Pr

( K∑
k=1

I∑
i=1

Qi(k)(〈gki , θ
∗〉 − ci) ≥ z

)

≤ e
− z2

2Kς2 +
K−1∑
k=0

Pr

(
‖Q(k + 1)‖2 >

ς

2H

)
= e

− z2

2Kς2 +
K∑
k=1

Pr

(
‖Q(k)‖2 >

ς

2H

)
,

(3.45)

where we can see that bounding ‖Q(k)‖2 is the key to obtaining the bound of∑K
k=1

∑I
i=1Qi(k)(〈gki , θ

∗〉 − ci).
Next, we will show the upper bound of the term ‖Q(k)‖2. According to the proof of Lemma
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3.13 in , if σ/4 ≥ ζ(σ/2 + 2H), setting

ψ =
2τH + CV,α,λ

σ
+

2αH log(|S|2|A|/λ)

στ
+
τσ

2
,

CV,α,λ := 2V

(
σB + 3H + 2ϑH + σϑ+

H

2α
+ 2Hλ+

αλH log |S|2|A|+ 4H2

V

)
,

we have that with probability at least 1− δ, for a certain k ∈ [K + 1− τ ],

‖Q(k)‖2 ≤ ψ + τ
512H2

σ
log[1 +

128H2

σ2 eσ/(32H)] + τ
64H2

σ
log

1

δ
+ 2τH.

Thus, combining (3.35) and the above inequality at k = K + 1− τ , with probability at least 1− δ,
for a certain k satisfying K + 2 − τ ≤ k ≤ K + 1, the above inequality also holds. The above
inequality is equivalent to

Pr

(
‖Q(k)‖2 > ψ + τ

512H2

σ
log[1 +

128H2

σ2 eσ/(32H)] + τ
64H2

σ
log

1

δ
+ 2τH

)
≤ δ.

Setting ς = 2Hψ+τ 1024H3

σ
log
[
1+ 128H2

σ2 eσ/(32H)
]
+τ 128H3

σ
log 1

δ
+4τH2 and z =

√
2Kς2 log 1

Kδ

in (3.45), then the following probability hold with probability at least 1− 2Kδ with

K∑
k=1

I∑
i=1

Qi(k)(〈gki , θ
∗〉 − ci)

≤
(

2Hψ + τ
1024H3

σ
log
[
1 +

128H2

σ2 eσ/(32H)
]

+ τ
128H3

σ
log

1

δ
+ 4τH2

)√
K log

1

Kδ
,

which completes the proof.

3.8 Proofs of Lemmas for Constraint Violation Bound

3.8.1 Proof of Lemma 3.16

Proof of Lemma 3.16. We start our proof with the updating rule of Q(·) as follows

Qi(k) = max{Qi(k − 1) + 〈gk−1
i , θk〉 − ci, 0}

≥Qi(k − 1) + 〈gk−1
i , θk〉 − ci

≥Qi(k − 1) + 〈gk−1
i , θk−1〉 − ci + 〈gk−1

i , θk − θk−1〉.
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Rearranging the terms in the above inequality futher leads to

〈gk−1
i , θk−1〉 − ci ≤Qi(k)−Qi(k − 1)− 〈gk−1

i , θk − θk−1〉.

Thus, taking summation on both sides of the above inequality from 2 to K + 1 leads to

K∑
k=1

(〈gki , θk〉 − ci) ≤ Qi(K + 1)−
K∑
k=1

〈gki , θk+1 − θk〉

≤ Qi(K + 1) +
K∑
k=1

‖gki ‖∞‖θk+1 − θk‖1,

where the second inequality is due to Hölder’s inequality. Note that Qi(K + 1) is no less than 0

according to its updating rule Qi(k) = max{Qi(k − 1) + 〈gk−1
i , θk〉 − ci, 0} ≥ 0. Thus, we have[

K∑
k=1

(〈gki , θk〉 − ci)

]
+

≤ Qi(K + 1) +
K∑
k=1

‖gki ‖∞‖θk+1 − θk‖1,

where [ · ]+ is an entry-wise application of the operation max{·, 0} for any vector.
Defining gk(θk) := [〈gk1 , θk〉, · · · , 〈gkI , θk〉]> and c := [c1, · · · , cI ]>, we would obtain

∥∥∥∥∥
[

K∑
k=1

(gk(θk)− c)

]
+

∥∥∥∥∥
2

≤‖Q(K + 1)‖2 +
K∑
k=1

√√√√ I∑
i=1

‖gki ‖2
∞‖θk+1 − θk‖1

≤‖Q(K + 1)‖2 +
K∑
k=1

I∑
i=1

‖gki ‖∞‖θk+1 − θk‖1

≤‖Q(K + 1)‖2 +
K∑
k=1

‖θk+1 − θk‖1,

where the third inequality is due to Assumption 3.4. This completes the proof.

3.8.2 Proof of Lemma 3.17

Lemma 3.26 (Proposition 18 of Jaksch et al. [2010]). The number of epochs in K episodes with

K ≥ |S||A| is upper bounded by

`(K) ≤ |S||A| log2

(
8K

|S||A|

)
≤
√
K|S||A| log2

(
8K

|S||A|

)
,

where `(·) is a mapping from a certain episode to the epoch where it lives.
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We are ready to give the proof of Lemma 3.17.

Proof of Lemma 3.17. We need to discuss the upper bound of the term ‖θk+1 − θk‖1 for k ∈ [K]

in two different cases:

(1) `(k + 1) = `(k), i.e., episodes k + 1 and k are in the same epoch;

(2) `(k + 1) > `(k), i.e., episodes k + 1 and k are in two different epochs.

We first consider case (1). According to Lemma 3.21 and the updating rule (3.7), letting xopt = θk,
y = θ̃k−1, z = θk−1 and F (θ) =

〈
V fk−1+

∑I
i=1Qi(k−1)gk−1

i , θ
〉

with k ≥ 2 and `(k) = `(k−1),
we have

〈
V fk−1 +

I∑
i=1

Qi(k − 1)gk−1
i , θk

〉
+ αD(θk, θ̃k−1)

≤
〈
V fk−1 +

I∑
i=1

Qi(k − 1)gk−1
i , θk−1

〉
+ αD(θk−1, θ̃k−1)− αD(θk−1, θk).

Rearranging the terms and dropping the last term (due to D(θk−1, θk) ≥ 0) yield

αD(θk, θ̃k−1) ≤
〈
V fk−1 +

I∑
i=1

Qi(k − 1)gk−1
i , θk−1 − θk

〉
+ αD(θk−1, θ̃k−1)

≤
(
V ‖fk−1‖∞ +

I∑
i=1

Qi(k − 1)‖gk−1
i ‖∞

)
‖θk−1 − θk‖1 + αD(θk−1, θ̃k−1)

≤

V + ‖Q(k − 1)‖2

√√√√ I∑
i=1

‖gk−1
i ‖2

∞

 ‖θk−1 − θk‖1 + αD(θk−1, θ̃k−1)

≤(V + ‖Q(k − 1)‖2)‖θk−1 − θk‖1 + αλH log |S|2|A|,

where the second inequality is by Hölder’s inequality and triangle inequality, the third inequality is
by Cauchy–Schwarz inequality and Assumption 3.4, and the last inequality is due to Assumption
3.4 and the first inequality in Lemma 3.23 with setting θ = θ′ = θk−1 and θ̃′ = θ̃k−1. Note that by
Lemma 3.22, there is

D(θk, θ̃k−1) ≥ 1

2H
‖θk − θ̃k−1‖2

1.

Thus, combining the previous two inequalities, we obtain

‖θk − θ̃k−1‖2
1 ≤

2HV + 2H‖Q(k − 1)‖2

α
‖θk−1 − θk‖1 + 2λH2 log |S|2|A|,
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which further leads to

‖θk − θ̃k−1‖1 ≤
√

2HV + 2H‖Q(k − 1)‖2

α
‖θk−1 − θk‖1 +

√
2λH2 log |S|2|A|.

Since there is

‖θk − θ̃k−1‖1 =
H−1∑
h=0

∥∥∥∥θkh − (1− λ)θk−1
h − λ 1

|S|2|A|

∥∥∥∥
1

≥ (1− λ)‖θk − θk−1‖1 − λH,

where θh := [θ(s, a, s′)]s∈Sh,a∈A,s′∈Sh+1
, combining it with the last inequality, we further have

‖θk − θk−1‖1 ≤

√
2HV + 2H‖Q(k − 1)‖2

α(1− λ)2
‖θk−1 − θk‖1 +

√
2λH2 log |S|2|A|

(1− λ)
+

λH

1− λ

≤ 2HV + 2H‖Q(k − 1)‖2

2(1− λ)2α
+

1

2
‖θk−1 − θk‖1 +

√
2λH2 log |S|2|A|

1− λ
+

λH

1− λ
,

where the last inequality is due to
√
ab ≤ |a|/2 + |b|/2. Rearranging the terms in the above

inequality gives for k ≥ 2 with `(k) = `(k − 1),

‖θk − θk−1‖1 ≤
2HV + 2H‖Q(k − 1)‖2

(1− λ)2α
+

√
8λH2 log |S|2|A|

1− λ
+

2λH

1− λ
.

Shifting the index in the above inequality, we further have for k ∈ [K] with `(k + 1) = `(k),

‖θk+1 − θk‖1 ≤
2HV + 2H‖Q(k)‖2

(1− λ)2α
+

√
8λH2 log |S|2|A|

1− λ
+

2λH

1− λ
. (3.46)

Next, we consider case (2) where `(k+ 1) > `(k) with k ∈ [K]. It is difficult to know whether the
two solutions θk+1 and θk are in the same feasible set since ∆(`(k + 1), ζ) 6= ∆(`(k), ζ). Thus,
the above result does not hold. Then, we give a bound for the term ‖θk+1 − θk‖1 as follows

‖θk+1 − θk‖1 ≤ ‖θk+1‖1 + ‖θk‖1

=
H−1∑
h=0

∑
s∈Sh

∑
a∈A

∑
s′∈Sh+1

[θk+1(s, a, s′) + θk(s, a, s′)] = 2H,
(3.47)

However, we can observe that `(k + 1) > `(k) only happens when episode k + 1 is a starting
episode for a new epoch. The number of starting episodes for new epochs in K + 1 episodes
is bounded by `(K), namely the total number of epochs in K episodes. According to Lemma
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3.26, the total number of epochs `(K) is bounded by `(K) ≤
√
K|S||A| log2[8K/(|S||A|)] ≤

1.5
√
K|S||A| log2[8K/(|S||A|)], which only grows in the order of

√
K logK.

Thus, we can decompose the term
∑K

k=1 ‖θk+1 − θk‖1 in the following way

K∑
k=1

‖θk+1 − θk‖1 =
∑

k: k≤K,
`(k+1)>`(k)

‖θk+1 − θk‖1 +
∑

k: k≤K,
`(k+1)=`(k)

‖θk+1 − θk‖1

≤2H`(K) +
∑

k: k≤K,
`(k+1)=`(k)

‖θk+1 − θk‖1,

where the inequality is due to (3.47) and the fact that
∑

k: k≤K,
`(k+1)>`(k)

1 ≤ `(K). By (3.46), we can

further bound the last term in the above inequality as

∑
k: k≤K,

`(k+1)=`(k)

‖θk+1 − θk‖1 ≤
2KHV + 2H

∑K
k=1 ‖Q(k)‖2

(1− λ)2α
+

√
8λ log |S|2|A|

1− λ
KH +

2λ

1− λ
KH,

where we relax the summation on the right-hand side to
∑K

k=1. Thus, we eventually obtain

K∑
k=1

‖θk+1 − θk‖1 ≤ 2H`(K) +
∑

k: k≤K,
`(k+1)=`(k)

‖θk+1 − θk‖1

≤ 3H
√
K|S||A| log

8K

|S||A|
+

2H

(1− λ)2α

K∑
k=1

‖Q(k)‖2 +
2KHV

(1− λ)2α

+
2λKH

1− λ
+

√
8λ log |S|2|A|

1− λ
KH,

where we use the result in Lemma 3.26 to bound the number of epoch, i.e., `(K). This completes
the proof.
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CHAPTER 4

Policy Optimization for Zero-Sum Markov Games
with Structured Transitions

4.1 Introduction

Widely applied in multi-agent reinforcement learning [Sutton and Barto, 2018, Bu et al., 2008],
Policy Optimization (PO) has achieved tremendous empirical success [Foerster et al., 2016, Leibo
et al., 2017, Silver et al., 2016, 2017, Berner et al., 2019, Vinyals et al., 2019], due to its high
efficiency and easiness to combine with different optimization techniques. Despite these empirical
successes, theoretical understanding of multi-agent policy optimization, especially the zero-sum
Markov game [Littman, 1994] via policy optimization, lags rather behind. Most recent works
studying zero-sum Markov games (e.g. Xie et al. [2020], Bai and Jin [2020]) focus on value-
based methods achieving Õ(

√
K) regrets and they assume there is a central controller available

solving for coarse correlated equilibrium or Nash equilibrium at each step, which brings extra
computational cost. Here we let K denotes the total number of episodes.1 On the other hand,
although there has been great progress on understanding single-agent PO algorithms [Sutton et al.,
2000, Kakade, 2002, Schulman et al., 2015, Papini et al., 2018, Cai et al., 2019, Bhandari and
Russo, 2019, Liu et al., 2019], directly extending the single-agent PO to the multi-agent setting
encounters the main challenge of non-stationary environments caused by agents changing their
own policies simultaneously [Bu et al., 2008, Zhang et al., 2019a]. In this chapter, we aim to
answer the following challenging question:

Can policy optimization probably solve two-player zero-sum Markov games

to achieve O(
√
K) regrets?

As an initial attempt to tackle the problem, in this chapter, we focus on two non-trivial classes of
zero-sum Markov games with structured transitions: factored independent transition and single-

1The dependence on K is equivalent to the dependence of the total number of steps T in the same order, as we
have T := KH with H denoting the episode’s length.
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controller transition. For the game with the factored independent transition, the transition model
is factored into two independent parts, and each player makes transition following their own tran-
sition model. The single-controller zero-sum game assumes that the transition model is entirely
controlled by the actions of Player 1. In both settings, the rewards received are decided jointly by
the actions of both players. These two problems capture the non-stationarity of the multi-agent
reinforcement learning in the following aspects: (1) the rewards depend on both players’ poten-
tially adversarial actions and policies in both settings; (2) the rewards further depend on both
players’ states in the factored independent transition setting; (3) Player 2 in the single-controller
transition setting faces non-stationary states determined by Player 1’s policies. In addition to the
non-stationarity, practically, the true transition model of the environment could be unknown to
players and only bandit feedback is accessible to players. Thus, the non-stationarity, as well as the
unknown transition model and reward function, poses great challenges to the design and theoretical
analysis of the multi-agent PO algorithms.

In this chapter, we propose two novel optimistic policy optimization algorithms for the games
with factored independent transition and single-controller zero-sum games respectively. Our al-
gorithms are motivated by the close connection between the multi-agent PO and Fictitious Play
(FP) framework. Specifically, FP [Robinson, 1951] is a classical framework for solving games
based on simultaneous policy updates, which includes two major steps: inferring the opponent
and taking the best response policy against the policy of the opponent. As an extension of FP to
Markov games, our proposed PO algorithms possess two phases of learning, i.e., policy evaluation
and policy improvement. The policy evaluation phase involves exchanging the policies of the pre-
vious episode2, which is motivated by the step of inferring the opponent in FP. By making use of
the policies from the previous episode, the algorithms further compute the value function and the
Q-function with the estimated reward function and transition model. By the principle of “optimism
in the face of uncertainty” [Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012], their estimations
incorporate UCB bonus terms to handle the non-stationarity of the environment as well as the un-
certainty arising from only observing finite historical data. Furthermore, the policy improvement
phase corresponds to taking the (regularized) best response policy via a mirror descent/ascent step
(where the regularization comes from KL divergence), which can be viewed as a soft-greedy step
based on the historical information about the opponent and the environment. This step resembles
the smoothed FP [Fudenberg and Levine, 1995, Perolat et al., 2018, Zhang et al., 2019a] for nor-
mal form games (or matrix games). During this phase, both players in the factored independent
transition setting and Player 2 in the single-controller setting demand to estimate the opponent’s
state reaching probability to handle the non-stationarity.

For each player, we measure the performance of its algorithm by the regret of the learned policy

2For ease of theoretical analysis, we assume there exists an oracle exchanging the players’ policies.
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sequence comparing against the best policy in hindsight after K episodes. In the two settings, our
proposed algorithms can achieve an Õ(

√
K) regret for both players, matching the regret of value-

based algorithms. Furthermore, with both players running the proposed PO algorithms, they have
Õ(
√
K) optimality gap. This chapter also partially solves one open question in Bai and Jin [2020]

that how to solve a zero-sum Markov game of multiple steps (H ≥ 2) with an Õ(
√
K) regret via

mirror descent/ascent type (policy optimization) algorithms.

Related Work. There have been a large number of classical works studying the games with
the independent transition model, e.g., Altman et al. [2005, 2008], Flesch et al. [2008], Singh
and Hemachandra [2014]. In addition, the single-controller games are also broadly investigated
in many existing works, .e.g., Parthasarathy and Raghavan [1981], Filar and Raghavan [1984],
Rosenberg et al. [2004], Guan et al. [2016]. Most of the aforementioned works do not focus on the
non-asymptotic regret analysis. Guan et al. [2016] studies the regret of the single-controller zero-
sum game but with an assumption that the transition model is known to players. In contrast, this
chapter provides a regret analysis for both transition models under a more realistic setting that the
transition model is unknown. Games with the two structured transition models are closely associ-
ated with the applications in communications. The game with the factored independent transition
[Altman et al., 2005] finds applications in wireless communications. An application example of
the single-controller game is the attack-defense modeling in communications [Eldosouky et al.,
2016].

Recently, many works are focusing on the non-asymptotic analysis of Markov games [Heinrich
and Silver, 2016, Guan et al., 2016, Wei et al., 2017, Perolat et al., 2018, Zhang et al., 2019b,
Xie et al., 2020, Bai and Jin, 2020]. Some of them aim to propose sample-efficient algorithms
with theoretical regret guarantees for zero-sum games. Wei et al. [2017] proposes an algorithm ex-
tending single-agent UCRL2 algorithm [Jaksch et al., 2010], which requires solving a constrained
optimization problem each round. Zhang et al. [2019b] also studies PO algorithms but does not
provide regret analysis, which also assumes an extra linear quadratic structure and a known tran-
sition model. In addition, recent works on Markov games [Xie et al., 2020, Bai and Jin, 2020,
Liu et al., 2020, Bai et al., 2020] propose value-based algorithms under the assumption that there
exists a central controller that specifies the policies of agents by finding the coarse correlated equi-
librium or Nash equilibrium for a set of matrix games in each episode. Bai and Jin [2020] also
makes an attempt to investigate PO algorithms in zero-sum games. However, their work shows
restrictive results where each player only plays one step in each episode. Right prior to our work,
Daskalakis et al. [2021] also studies the policy optimization algorithm for a two-player zero-sum
Markov game under an assumption of bounded distribution mismatch coefficient in a non-episodic
setting. To achieve a certain error ε for the convergence measure defined in their work, their pro-
posed algorithm requires an O(ε−12.5) sample complexity. A concurrent work [Tian et al., 2020]
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studies zero-sum games under a different online agnostic setting with PO methods and achieves
an Õ(K3/4) regret. Motivated by classical fictitious play works [Robinson, 1951, Fudenberg and
Levine, 1995, Heinrich et al., 2015, Perolat et al., 2020], for the episodic Markov game, we focus
on the setting where there is no central controller which determines the policies of the two players
and we propose a policy optimization algorithm where each player updates its own policy based
solely on the historical information at hand. Moreover, our result matches theO(

√
K) regret upper

bounds in Xie et al. [2020], Bai and Jin [2020] that are obtained by value-based methods.
Furthermore, we note that the game for each individual player can be viewed as a special case of

MDPs with adversarial rewards and bandit feedbacks due to the adversarial actions of opponents.
For such a class of MDP models in general, Jin et al. [2019] proposes an algorithm based on mirror
descent involving occupancy measures and attains an Õ(

√
K) regret. However, each update step

of the algorithm requires solving another optimization problem which is more computationally
demanding than our PO method. Besides, it is also unclear whether the algorithm in Jin et al.
[2019] can be extended to zero-sum games. Moreover, for the same MDP model, Efroni et al.
[2020b] proposes an optimistic policy optimization algorithm that achieves an Õ(K2/3) regret.
Thus, directly applying this result would yield an Õ(K2/3) regret. In fact, regarding the problem
as an MDP with adversarial rewards neglects the fact that such “adversarial reward functions” are
determined by the actions and policies of the opponent. Thus, since each player knows the past
actions taken and policies executed by the opponent under the FP framework, both players can
construct accurate estimators of the environment after a sufficiently large number of episodes. As
we will show in Sections 4.3 and 4.4, the proposed PO methods explicitly utilize the information
of the opponent in the policy evaluation step, which is critical for the methods to obtain an Õ(

√
K)

regret.

4.2 Preliminaries

In this section, we formally introduce notations and setups. Then, we describe the two transition
structures in detail.

4.2.1 Problem Setup

We consider a tabular episodic two-player zero-sum Markov game (S,A,B, H,P, r) defined as in
Section 2.2 of Chapter 2 with finite action spaces A,B and state space S. The policy for Player
1 is denoted by π and the policy for Player 2 is denoted by ν. The value function V π,ν(s) and
the Q-function Qπ,ν(s, a, b) are defined the same as in Chapter 2 with omitting the reward r in the
notation. Then, we further define the Bellman equation, NE, and ε-approximate NE the same as in
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Chapter 2.
For ease of theoretical analysis, we normalize the value of the reward function r = {rh}Hh=1 in

the range [0, 1], i.e., rh(s, a, b) ∈ [0, 1] for all (s, a, b) ∈ S × A × B. We study a practical and
challenging setting that the true transition model P = {Ph}Hh=1 and reward function r = {rh}Hh=1

are unknown to both players. And only the bandit feedbacks of the reward function are accessible
to the players. At episode k, we let πk = {πkh}Hh=1 and νk = {νkh}Hh=1 be the policies for Players
1 and 2, and the two players move simultaneously with their own policies. By the end of the k-th
episode, each player observes only the trajectory {(skh, akh, bkh, skh+1)}Hh=1 and the bandit feedbacks
along the trajectory. The bandit setting is more challenging than the full-information setting, where
only the reward values {rkh(skh, akh, bkh)}Hh=1 on the trajectory are observed rather than the exact value
function rh(s, a, b) for all (s, a, b) ∈ S × A × B. Moreover, the rewards rkh(·, ·, ·) ∈ [0, 1] is time-
varying with an expectation rh = E[rkh] which can be adversarially affected by the opponent’s
action or policy, indicating the non-stationarity of the environment.

Throughout this chapter, we let 〈·, ·〉S , 〈·, ·〉A, and 〈·, ·〉B denote the inner product over S,
A, and B respectively. At the h-th step in an episode, for any policy pair (π, ν), we denote
πh(·|s) and νh(·|s) as column vectors over the space A and the space B respectively. We also
denote Qπ,ν

h (s, ·, ·) as a matrix over the space A× B for any Q-function Q. Then, the expectation
Ea∼πh(·|s),b∼νh(·|s)[Q

π,ν
h (s, a, b)] can be equivalently rewritten as [πh(·|s)]>Qπ,ν

h (s, ·, ·)νh(·|s).

Basic Learning Framework. At the beginning of the k-th episode, each player observes the
opponent’s policy during the (k − 1)-th episode. For simplicity of theoretical analysis, we assume
there exists an oracle which can exchange players’ policies in the last episode. Then, they take
regularized best response policies via a mirror descent/ascent step for the current episode and
make simultaneous moves.

Regret and Optimality Gap. The goal for Player 1 is to learn a sequence of policies, {πk}k>0, to
have a small regret as possible in K episodes, which is defined as

Regret1(K) :=
K∑
k=1

[
V π∗,νk

1 (s1)− V πk,νk

1 (s1)
]
. (4.1)

Here {νk}Kk=1 is any possible and potentially adversarial policy sequence of Player 2. The policy
π∗ is the best policy in hindsight, which is defined as π∗ := argmaxπ

∑K
k=1 V

π,νk

1 (s1) for any
specific {νk}Kk=1. Similarly, Player 2 aims to learn a sequence of policies, {νk}k>0, to have a small
regret defined as

Regret2(K) :=
K∑
k=1

[
V πk,νk

1 (s1)− V πk,ν∗

1 (s1)
]
, (4.2)
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where {πk}Kk=1 is any possible policy sequence of Player 1. The policy ν∗ is also the best policy

in hindsight which is defined as ν∗ := argminν
∑K

k=1 V
πk,ν

1 (s1) for any specific {πk}Kk=1. Note
that π∗ and ν∗ depend on opponents’ policy sequence and is non-deterministic, and we drop such a
dependency in the notation for simplicity. We further define the optimality gap Gap(K) as follows

Gap(K) :=Regret1(K) + Regret2(K). (4.3)

Our definition of the optimality gap is consistent with a certain form of the regret to measure the
learning performance of zero-sum games defined in Bai and Jin [2020, Definition 8]. Specifi-
cally, when the two players executes their algorithms to have small regrets, i.e., Regret1(K) and
Regret2(K) are small, then their optimality gap Gap(K) is small as well.

On the other hand, letting the uniform mixture policies π̂ ∼ Unif(π1, . . . , πK) and ν̂ ∼
Unif(ν1, . . . , νK) be random policies sampled uniformly from the learned policies, then (π̂, ν̂)

can be viewed as an ε-approximate NE if Regret(K)/K ≤ ε. This build a connection between the
approximate NE and the optimality gap.

4.2.2 Structured Transition Models

Factored Independent Transition. Consider a two-player Markov game where the state space is
factored as S = S1 × S2 such that a state can be represented as s = (s1, s2) with s1 ∈ S1 and
s2 ∈ S2. Then, S1 and S2 are the state spaces for Player 1 and Player 2 respectively. Under this
setting, the transition model is factored into two independent components, i.e.,

Ph(s′ | s, a, b) = P1
h(s

1′ | s1, a)P2
h(s

2′ | s2, b), (4.4)

where we also have s′ = (s1′, s2′), and Ph(s1′ | s1, a) is the transition model for Player 1 and
Ph(s2′ | s2, b) for Player 2. Additionally, we consider the case where the policy of Player 1 only
depends on its own state s1 such that we have π(a|s) = π(a|s1) and meanwhile Player 2 similarly
has the policy of the form ν(b|s) = ν(b|s2). Though the transitions, policies, and state spaces
of two players are independent of each other, the reward function still depends on both players’
actions and states, i.e., rh(s, a, b) = rh(s

1, s2, a, b).

Single-Controller Transition. In this setting, we consider that the transition model is controlled
by the action of one player, e.g., Player 1, which is thus characterized by

Ph(s′ | s, a, b) = Ph(s′ | s, a). (4.5)

In addition, the policies remain to be π(a|s) and ν(b|s). The reward rh(s, a, b) is determined by
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both players’ actions and the state s decided by the transition model controlled by Player 1.

Remark 4.1 (Misspecification). When the above models are not ideally satisfied, one can poten-
tially consider scenarios that the transition model satisfies, for example, maxs′ |Ph(s′ | s, a, b) −
P1
h(s

1′ | s1, a)P2
h(s

2′ | s2, b)| ≤ % or maxs′ |Ph(s′ | s, a, b) − Ph(s′ | s, a)| ≤ %, ∀(s, a, b, h), with a
misspecification error %. One can still follow the techniques in this chapter to analyze such mis-
specified scenarios and obtain regrets with an extra bias term depending on the misspecification
error %. When % is small, it implies that the MG has approximately factored independent transition
or single-controller transition structures, and then the bias term depending on % should be small.

4.3 Markov Game with Factored Independent Transition

In this section, we propose and analyze optimistic policy optimization algorithms for both players
under the setting of the factored independent transition.

Algorithm for Player 1. The algorithm for Player 1 is illustrated in Algorithm 2. Assume that
the game starts from a fixed state s1 = (s1

1, s
2
1) each round. We also assume that the true transition

model P is not known to Player 1, and Player 1 can only access the bandit feedback of the rewards
along this trajectory instead of the full information. Thus, Player 1 needs to empirically estimate
the reward function and the transition model for all (s, a, b, s′) and h ∈ [H] via

r̂kh(s, a, b) =

∑k
τ=1 1{(s, a, b) = (sτh, a

τ
h, b

τ
h)}rkh(s, a, b)

max{Nk
h (s, a, b), 1}

,

P̂1,k
h (s1′|s1, a) =

∑k
τ=1 1{(s1, a, s1′) = (s1,τ

h , aτh, s
1,τ
h+1)}

max{Nk
h (s1, a), 1}

,

P̂2,k
h (s2′|s2, b) =

∑k
τ=1 1{(s2, b, s2′) = (s2,τ

h , bτh, s
2,τ
h+1)}

max{Nk
h (s2, b), 1}

,

P̂kh(s′|s, a, b) = P̂1,k
h (s1′|s1, a)P̂2,k

h (s2′|s2, b),

(4.6)

where we denote 1{·} as an indicator function, and Nk
h (s, a, b) counts the empirical number of

observation for a certain tuple (s, a, b) at step h until the k-th iteration as well as Nk
h (s1, a) for

(s1, a) and Nk
h (s2, b) for (s2, b). For simplicity of presentation, in this chapter, we let s = (s1, s2)

and we use s1, s2 separately when necessary.
Based on the estimations of the transition model and reward function, we further estimate the

Q-function and value-function as shown in Lines 7 and 8 in Algorithm 2. In terms of the principle
of “optimism in the face of uncertainty”, bonus terms are introduced to construct an estimated
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Q-function as shown in Line 7 of Algorithm 2. We set the bonus term as

βkh(s, a, b) = βr,kh (s, a, b) + βP,k
h (s, a, b), (4.7)

where we define

βr,kh (s, a, b) :=

√
4 log(|S1||S2||A||B|HK/δ)

max{Nk
h (s, a, b), 1}

,

βP,k
h (s, a, b) :=

√
2H2|S1| log(2|S1||A|HK/δ)

max{Nk
h (s1, a), 1}

+

√
2H2|S2| log(2|S2||B|HK/δ)

max{Nk
h (s2, b), 1}

,

with δ ∈ (0, 1). Here, we decompose βkh(s, a, b) into two terms where βr,kh (s, a, b) is the bonus
term for the reward and βP,k

h (s, a) for the transition estimation. As shown in Lemmas 4.10 and
4.11, the bonus terms βr,kh (s, a, b) and βP,k

h (s, a, b) are obtained by using Hoeffding’s inequality.
Note that the two terms in the definition of βP,k

h stem from the uncertainties of estimating both
transitions P1

h(s
1′ | s1, a) and P2

h(s
2′ | s2, b).

Next, we introduce the notion of the state reaching probability qνk,P2
(s2) for any state s2 ∈ S2

under the policy νk and the true transition P2, which is defined as

qν
k,P2

h (s2) := Pr(s2
h = s2 | νk,P2, s2

1),∀h ∈ [H].

To handle non-stationarity of the opponent, as in Line 10, Player 1 needs to estimate the state
reaching probability of Player 2 by the empirical reaching probability under the empirical transition
model P̂2,k for Player 2, i.e.,

dν
k,P̂2,k

h (s2) = Pr(s2
h = s2 | νk, P̂2,k, s2

1), ∀h ∈ [H].

The empirical reaching probability can be simply computed dynamically from h = 1 to H by
dν

k,P̂2,k

h (s2) =
∑

s2′∈S2
∑

b′∈B d
νk,P̂2,k

h−1 (s2′)νkh−1(b′|s2′)P̂2,k
h−1(s2|s2′, b′). Based on the estimated state

reaching probability, the policy improvement step is associated with solving the following opti-
mization problem (denoting by DKL the KL divergence)

maximize
π

H∑
h=1

[G
k−1

h (πh)− η−1DKL(πh(·|s1), πk−1
h (·|s1))], (4.8)

where G
k−1

h (πh) := 〈πh(·|s1) − πk−1
h (·|s1),

∑
s2∈S2 F

1,k−1
h (s1, s2, ·)dν

k−1,P̂2,k−1

h (s2)〉A with letting
F 1,k−1
h (s1, s2, a) = 〈Qk−1

h (s1, s2, a, ·), νk−1
h (·|s2)〉B. One can see that (4.8) is a mirror ascent step
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Algorithm 2 Optimistic Policy Optimization for Player 1

1: Initialize: For all h ∈ [H], (s1, s2, a, b) ∈ S1×S2×A×B: π0
h(·|s1) = 1/|A|, P̂1,0

h (·|s1, a) =

1/|S1|, P̂2,0
h (·|s2, b) = 1/|S2|, r̂0

h(·, ·, ·) = β0
h(·, ·, ·) = 0.

2: for episode k = 1, . . . , K do
3: Observe Player 2’s policy {νk−1

h }Hh=1.
4: Start from state s1 = (s1

1, s
2
1), set V

k−1

H+1(·) = 0.
5: for step h = H,H − 1, . . . , 1 do
6: Estimate the transition and reward function by P̂k−1

h (·|·, ·) and r̂k−1
h (·, ·, ·) as (4.6).

7: Update Q-function ∀(s, a, b) ∈ S ×A× B:

Q
k−1

h (s, a, b) = min{(r̂k−1
h + P̂k−1

h V
k−1

h+1 + βk−1
h )(s, a, b), H − h+ 1}+.

8: Update value-function ∀s ∈ S:

V
k−1

h (s) =
[
πk−1
h (·|s)

]>
Q
k−1

h (s, ·, ·)νk−1
h (·|s).

9: end for
10: Estimate the state reaching probability of Player 2 by dν

k−1,P̂2,k−1

h (s2), ∀s2 ∈ S2, h ∈ [H].
11: Update policy πkh(a|s1) by solving (4.8), ∀(s1, a) ∈ S1 ×A, h ∈ [H].
12: Take actions following akh ∼ πkh(·|s1,k

h ), ∀h ∈ [H].
13: Observe the trajectory {(skh, akh, bkh, skh+1)}Hh=1, and rewards {rkh(skh, akh, bkh)}Hh=1.
14: end for

and admits a closed-form solution for all (h, s1, a) ∈ [H]× S1 ×A as follows

πkh(a|s1) = (Y
k−1

h )−1πk−1
h (a | s1) · exp

{
η
∑
s2∈S2

F 1,k−1
h (s1, s2, a)dν

k−1,P̂2,k−1

h (s2)
}
,

where Y
k−1

h is a probability normalization term.

Algorithm for Player 2. For the setting of MG with factored independent transition, the algorithm
for Player 2 is trying to minimize the expected cumulative reward w.r.t. rh(·, ·, ·). In another word,
Player 2 is maximizing the expected cumulative reward w.r.t. −rh(·, ·, ·). From this perspective,
one can view the algorithm for Player 2 as a ‘symmetric’ version of Algorithm 2. The algorithm
for Player 2 is summarized in Algorithm 3. Specifically, in this algorithm, Player 2 also estimates
the transition model and the reward function the same as (4.10). Since Player 2 is minimizing the
expected cumulative reward, the bonus terms as (4.7) are subtracted in the Q-function estimation
step by the optimism principle. The algorithm further estimates the state reaching probability of
Player 1, qπ

k,P1

h (s1), by the empirical one dπ
k,P̂1,k

h (s1), which can be dynamically computed. For
the policy improvement step, Algorithm 3 performs a mirror descent step based on the empirical
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Algorithm 3 Optimistic Policy Optimization for Player 2

1: Initialize: For all h ∈ [H], (s1, s2, a, b) ∈ S1×S2×A×B: π0
h(·|s1) = 1/|A|, P̂1,0

h (·|s1, a) =

1/|S1|, P̂2,0
h (·|s2, b) = 1/|S2|, r̂0

h(·, ·, ·) = β0
h(·, ·, ·) = 0.

2: for episode k = 1, . . . , K do
3: Observe Player 1’s policy {πk−1

h }Hh=1.
4: Start from state s1 = (s1

1, s
2
1), set V

k−1

H+1(·) = 0.
5: for step h = H,H − 1, . . . , 1 do
6: Estimate the transition and reward function by P̂k−1

h (·|·, ·) and r̂k−1
h (·, ·, ·) as (4.6).

7: Update Q-function ∀(s, a, b) ∈ S ×A× B:

Qk−1

h
(s, a, b) = min{(r̂k−1

h + P̂k−1
h V k−1

h+1 − β
k−1
h )(s, a, b), H − h+ 1}+.

8: Update value-function ∀s ∈ S:

V k−1
h (s) =

[
πk−1
h (·|s)

]>
Qk−1

h
(s, ·, ·)νk−1

h (·|s).

9: end for
10: Estimate the state reaching probability of Player 1 by dπ

k−1,P̂1,k−1

h (s1), ∀s1 ∈ S1, h ∈ [H].
11: Update policy νkh(b|s2) by solving (4.9), ∀(s2, b) ∈ S2 × B, h ∈ [H]).
12: Take actions following bkh ∼ νkh(·|s2,k

h ), ∀h ∈ [H].
13: Observe the trajectory {(skh, akh, bkh, skh+1)}Hh=1, and rewards {rkh(skh, akh, bkh)}Hh=1.
14: end for

reaching probability, which is associated with solving the following optimization problem

minimize
π

H∑
h=1

[Gk−1
h (νh) + γ−1DKL(νh(·|s2), νk−1

h (·|s2))], (4.9)

where Gk−1
h (πh) := 〈νh(·|s2) − νk−1

h (·|s2),
∑

s1∈S1 F
2,k−1
h (s1, s2, ·)dπ

k−1,P̂1,k−1

h (s1)〉B with letting
F 2,k−1
h (s1, s2, b) = 〈Qk−1

h
(s1, s2, ·, b), πk−1

h (·|s1)〉A. Here (4.9) is a standard mirror descent step
and admits a closed-form solution for all (h, s2, b) ∈ [H]× S2 × B as follows

νkh(b|s2) = (Y k−1
h )−1νk−1

h (b | s2) · exp
{
− γ

∑
s1∈S1

F 2,k−1
h (s1, s2, b)dπ

k−1,P̂1,k−1

h (s1)
}
,

where Y k−1
h is a probability normalization term.

4.3.1 Main Results

In this subsection, we show our main results of the upper bounds of the regrets for each player
under the setting of the factored independent transition model.
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Theorem 4.2. By setting η =
√

log |A|/(KH2), with probability at least 1 − 4δ, Algorithm

2 ensures the sublinear regret bound for Player 13 i.e., Regret1(K) ≤ Õ
(
C
√
T
)
, where

T = KH is the number of steps, and the constant factor is C =
√

(|S1|2|A|+ |S2|2|B|)H3 +√
|S1||S2||A||B|H .

Theorem 4.2 shows that Player 1 can obtain an Õ(
√
K) regret by Algorithm 2, when the oppo-

nent, Player 2, takes actions following potentially adversarial policies.

Theorem 4.3. By setting γ =
√

log |B|/(KH2), with probability at least 1− 4δ, Algorithm 3 en-

sures the sublinear regret bound for Player 2, i.e., Regret2(K) ≤ Õ
(
C
√
T
)
, where T = KH is the

number of steps, and the constant factor is C =
√

(|S1|2|A|+ |S2|2|B|)H3 +
√
|S1||S2||A||B|H .

Theorem 4.3 shows that Regret2(K) admits the same Õ(
√
K) regret as Theorem 4.2 given any

arbitrary and adversarial policies of the opponent Player 1, due to the symmetric nature of the two
algorithms.

From the perspective of each individual player, the game can be viewed as a special case of
an MDP with adversarial bandit feedback due to the potentially adversarial actions or policies of
the opponent. For MDPs with adversarial bandit feedback, Jin et al. [2019] attains an Õ(

√
K)

regret via an occupancy measure based method, which requires solving a constrained optimization
problem in each update step that is more computationally demanding than PO. Efroni et al. [2020b]
proposes a PO method for the same MDP model, achieving an Õ(K2/3) regret. Thus, directly
applying this result would yield an Õ(K2/3) regret. However, for the problem of zero-sum games,
regarding the problem faced by one player as an MDP with adversarial rewards neglects the fact
that such “adversarial reward functions” are determined by the actions and policies of the opponent.
Thus, under the FP framework, by utilizing the past actions and policies of the opponent, Algorithm
2 and 3 obtain an Õ(

√
K) regret.

In particular, if Player 1 runs Algorithm 2 and Player 2 runs Algorithm 3 simultaneously, then
we have the following corollary of Theorems 4.2 and 4.3.

Corollary 4.4. By setting η and γ as in Theorem 4.2 and Theorem 4.3, letting T = KH , with

probability at least 1 − 8δ, Algorithm 2 and Algorithm 3 ensures the following optimality gap

Gap(K) ≤ Õ
(√

T
)
.

4.4 Markov Game with Single-Controller Transition

In this section, we propose and analyze optimistic policy optimization algorithms for the single-
controller game.

3Hereafter, we use Õ to hide the logarithmic factors on |S|, |A|, |B|, H,K, and 1/δ.
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Algorithm for Player 1. The algorithm for Player 1 is illustrated in Algorithm 4. Since transi-
tion model is unknown and only bandit feedback of the rewards is available, Player 1 needs to
empirically estimate the reward function and the transition model for all (s, a, b, s′) and h ∈ [H]

via

r̂kh(s, a, b) =

∑k
τ=1 1{(s, a, b) = (sτh, a

τ
h, b

τ
h)}rkh(s, a, b)

max{Nk
h (s, a, b), 1}

,

P̂kh(s′|s, a) =

∑k
τ=1 1{(s, a, s′) = (sτh, a

τ
h, s

τ
h+1)}

max{Nk
h (s, a), 1}

.

(4.10)

Based on the estimations, Algorithm 4 further estimates the Q-function and value-function for
policy evaluation. In terms of the optimism principle, the bonus term is added to construct an
estimated Q-function as shown in Line 7 of Algorithm 4. The bonus terms are computed as

βkh(s, a, b) = βr,kh (s, a, b) + βP,k
h (s, a), (4.11)

where the two bonus terms above are expressed as

βr,kh (s, a, b) :=

√
4 log(|S||A||B|HK/δ)

max{Nk
h (s, a, b), 1}

, βP,k
h (s, a) :=

√
2H2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

,

for δ ∈ (0, 1). Here we also decompose βkh(s, a, b) into two terms with βr,kh (s, a, b) denoting the
bonus term for the reward and βP,k

h (s, a) for the transition estimation. Note that the transition bonus
are only associated with (s, a) due to the single-controller structure. The bonus terms are derived
in Lemmas 4.23 and 4.24.

Different from Algorithm 2, in this algorithm for Player 1, there is no need to estimate the
state reaching probability of the opponent as the transition only depends on Player 1. The policy
improvement step is then associated with solving the following optimization problem

maximize
π

H∑
h=1

[L
k−1

h (πh)− η−1DKL

(
πh(·|s), πk−1

h (·|s))], (4.12)

where we define the function L
k−1

h (πh) :=
[
πh(·|s) − πk−1

h (·|s)
]>
Q
k−1

h (s, ·, ·)νk−1
h (·|s). This is a

mirror ascent step and admits the closed-form solution for all (h, s, a) ∈ [H]× S ×A as follows

πkh(a|s) = (Z
k−1

h )−1πk−1
h (a | s) exp{η

〈
Q
k−1

h (s, a, ·), νk−1
h (· | s)

〉
B},

where Z
k−1

h is a probability normalization term.
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Algorithm 4 Optimistic Policy Optimization for Player 1

1: Initialize: π0
h(·|s) = 1/|A| for all s ∈ S and h ∈ [H]. P̂0

h(·|s, a) = 1/|S| for all (s, a) ∈ S×A
and h ∈ [H]. r̂0

h(·, ·, ·) = β0
h(·, ·, ·) = 0 for all h ∈ [H].

2: for episode k = 1, . . . , K do
3: Observe Player 2’s policy {νk−1

h }Hh=1.
4: Start from sk1 = s1, and set V

k−1

H+1(·) = 0.
5: for step h = H,H − 1, . . . , 1 do
6: Estimate the transition and reward function by P̂k−1

h (·|·, ·) and r̂k−1
h (·, ·, ·) as (4.10).

7: Update Q-function ∀(s, a, b) ∈ S ×A× B:

Q
k−1

h (s, a, b) = min{r̂k−1
h (s, a, b) + P̂k−1

h V
k−1

h+1(s, a) + βk−1
h (s, a, b), H − h+ 1}+.

8: Update value-function ∀s ∈ S:

V
k−1

h (s) =
[
πk−1
h (·|s)

]>
Q
k−1

h (s, ·, ·)νk−1
h (·|s).

9: end for
10: Update policy πkh(a|s) by solving (4.12), ∀(s, a) ∈ S ×A, h ∈ [H].
11: Take actions following akh ∼ πkh(·|skh), ∀h ∈ [H].
12: Observe the trajectory {(skh, akh, bkh, skh+1)}Hh=1, and rewards {rkh(skh, akh, bkh)}Hh=1.
13: end for

Algorithm for Player 2. The algorithm for Player 2 is illustrated in Algorithm 5. Player 2 also
estimates the transition model and the reward function the same as (4.10). However, due to the
asymmetric nature of the single-controller transition model, Player 2 has a different way to learn-
ing the policy. The main differences to Algorithm 4 are summarized in the following three aspects:
First, according to our theoretical analysis shown in Lemma 4.21, no transition model estimation
is involved. Instead, only a reward function estimation is considered in Line 7 of Algorithm 5.
Second, in the policy improvement step, Player 2 needs to approximate the state reaching proba-
bility qπ

k,P
h (s) := Pr(sh = s | πk,P, s1) under πk and true transition P by the empirical reaching

probability dπ
k,P̂k
h (s) = Pr(sh = s |πk, P̂k, s1) with the empirical transition model P̂k, which can

be computed dynamically from h = 1 to H . Third, we subtract a reward bonus term βr,k−1
h in Line

7 instead of adding the bonus. Similar to our discussion in Section 4.3, it is still a UCB estimation
if viewing Player 2 is maximizing the cumulative reward w.r.t. a negative reward function −r.

Particularly, the policy improvement step of Algorithm 5 is associated with solving the follow-
ing minimization problem

minimize
ν

H∑
h=1

{Lk−1
h (νh) + γ−1DKL

(
νh(·|s), νk−1

h (·|s)
)
}, (4.13)
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Algorithm 5 Optimistic Policy Optimization for Player 2

1: Initialize: ν0
h(·|s) = 1/|B| for all s ∈ S and h ∈ [H]. P̂0

h(·|s, a) = 1/|S| for all (s, a) ∈ S×A
and h ∈ [H]. r̂0

h(·, ·, ·) = βr,0h (·, ·, ·) = 0 for all h ∈ [H].
2: for episode k = 1, . . . , K do
3: Observe Player 1’s policy {πk−1

h }Hh=1.
4: Start from the initial state sk1 = s1.
5: for step h = 1, 2, . . . , H do
6: Estimate the transition and reward function by P̂k−1

h and r̂k−1
h as (4.10).

7: Update r̃k−1
h , ∀(s, a, b) ∈ S ×A× B:

r̃k−1
h (s, a, b) = max

{
r̂k−1
h (s, a, b)− βr,k−1

h (s, a, b), 0
}
.

8: Estimate the state reaching probability by dπ
k−1,P̂k−1

h (s), ∀s ∈ S, h ∈ [H].
9: end for

10: Update policy νkh(b|s) by solving (4.13), ∀(s, b) ∈ S × B, h ∈ [H].
11: Take actions following bkh ∼ νkh(·|skh),∀h ∈ [H].
12: Observe the trajectory {(skh, akh, bkh, skh+1)}Hh=1, and rewards {rkh(skh, akh, bkh)}Hh=1.
13: end for

where we define Lk−1
h (νh) := dπ

k−1,P̂k−1

h (s)[πk−1
h (·|s)]> · r̃k−1

h (s, ·, ·)[νh(·|s)− νk−1
h (·|s)]. This is a

mirror descent step with the closed-form solution for all (h, s, b) ∈ [H]× S × B as

νkh(b|s) = (Zk−1
h )−1 · νk−1

h (b | s) exp{−γdπ
k−1,P̂k−1

h (s)〈r̃k−1
h (s, ·, b), πk−1

h (· | s)〉A},

with the denominator Zk−1
h being a normalization term.

4.4.1 Main Results

Next, we present the main results of the regrets for the single-controller transition model.

Theorem 4.5. By setting η =
√

log |A|/(KH2), with probability at least 1 − 3δ, Algorithm 4

ensures the following regret bound for Player 1 Regret1(K) ≤ Õ
(
C
√
T
)
, where T = KH is the

total number of steps, and the constant factor is C =
√
|S|2|A|H3 +

√
|S||A||B|H .

Theorem 4.5 shows that Regret1(K) is in the level of Õ(
√
K), for arbitrary policies of Player

2. Similar to the discussion after Theorem 4.3, from the perspective of Player 1, the game can also
be viewed as a special case of an MDP with adversarial bandit feedback. Under the FP framework,
by utilizing the past policies of Player 2, Algorithm 4 can achieve an Õ(

√
K) regret, comparing to

Õ(K2/3) regret by the PO method [Efroni et al., 2020b] and Õ(
√
K) regret by a computationally

demanding non-PO method [Jin et al., 2019] for MDP with adversarial rewards.
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Theorem 4.6. By setting γ =
√
|S| log |B|/K, with probability at least 1−2δ, Algorithm 5 ensures

the sublinear regret bound for Player 2, i.e., Regret2(K) ≤ Õ(C
√
T ), where T = KH is the total

number of steps, and the constant factor is C =
√
|S|2|A|H3 +

√
|S||A||B|H .

Interestingly, Theorem 4.6 also shows that Regret2(K) has the same bound (including the con-
stant factor C) as Regret1(K) given any opponent’s policy, though the transition model bonus is
not involved in Algorithm 5 and the learning process for two players are essentially different. In
fact, although the bonus term for estimating the transition is not involved in this algorithm, approx-
imating the state reaching probability of Player 1 implicitly reflects the gap between the empirical
transition P̂k and the true transition P, which can explain the same upper bound in Theorems 4.5
and 4.6.

Moreover, if Player 1 runs Algorithm 4 and Player 2 runs Algorithm 5 simultaneously, we have
the following corollary of the above two theorems.

Corollary 4.7. By setting η and γ as in Theorem 4.5 and Theorem 4.6, letting T = KH , with

probability at least 1 − 5δ, Algorithm 4 and Algorithm 5 ensures the optimality gap Gap(K) ≤
Õ(
√
T ).

4.5 Theoretical Analysis

4.5.1 Proofs of Theorems 4.2 and 4.3

Proof. To bound Regret1(K) , we need to analyze the value function difference for the instanta-
neous regret at the k-th episode, i.e., V π∗,νk

1 (s1) − V πk,νk

1 (s1). By Lemma 4.8, we decompose the
difference between V π∗,νk

1 (s1) and V πk,νk

1 (s1) into four terms

V π∗,νk

1 (s1)− V πk,νk

1 (s1)

≤ V
k

1(s1)− V πk,νk

1 (s1)︸ ︷︷ ︸
Errk(I.1)

+
H∑
h=1

Eπ∗,P,νk{[π∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh) | s1}︸ ︷︷ ︸
Errk(I.2)

+
H∑
h=1

Eπ∗,P1{〈π∗h(·|s1
h)− πkh(·|s1

h),M
k
h (s1

h, ·)〉A | s1}︸ ︷︷ ︸
Errk(I.3)

+ 2H
H∑
h=1

∑
s2h∈S2

|qν
k,P2

h (s2
h)− d

νk,P̂2,k

h (s2
h)|︸ ︷︷ ︸

Errk(I.4)

,

where Mk
h (s1

h, ·) :=
∑

s2h∈S2
F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h). Here we define the model prediction error

of Q-function as ιkh(s, a, b) = rh(s, a, b) + PhV
k

h+1(s, a, b) − Q
k

h(s, a, b). Let s1
h, s

2
h, ah, bh be

random variables for states and actions.
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Specifically, Errk(I.1) is the difference between the estimated value function and the true value
function, Errk(I.2) is associated with the model prediction error ιkh(s, a, b) of Q-function, Errk(I.3)

is the error from the policy mirror ascent step, and Errk(I.4) is the error related to the reaching
probability estimation. According to Lemmas 4.9, 4.13, 4.15, we have that

∑K
k=1 Errk(I.1) ≤

Õ(
√
|S1|2|A|H4K +

√
|S2|2|B|H4K +

√
|S1||S2||A||B|H2K), the third error term is bounded

as
∑K

k=1 Errk(I.3) ≤ O(
√
H4K log |A|), and the last error term is bounded as

∑K
k=1 Errk(I.4) ≤

Õ(H2|S2|
√
|B|K). Moreover, as shown in Lemma 4.12, since the estimated Q-function is a UCB

estimate, then we have that the model prediction error ιkh(s, a, b) ≤ 0 with high probability, which
leads to

∑K
k=1 Errk(I.2) ≤ 0. This shows the significance of the principle of “optimism in the face

of uncertainty”. By the union bound, all the above inequalities hold with probability at least 1−4δ .
Therefore, letting T = KH , by the relation that Regret1(K) =

∑K
k=1[V π∗,νk

1 (s1)− V πk,νk

1 (s1)] ≤∑K
k=1[Errk(I.1) + Errk(I.2) + Errk(I.3) + Errk(I.4)], we can obtain the result in Theorem 4.2.
Due to the symmetry of Algorithm 2 and Algorithm 3 as we discussed in Section 4.3, the proof

for Theorem 4.3 exactly follows the proof of Theorem 4.3. This completes the proof.

4.5.2 Proofs of Theorems 4.5 and 4.6

Proof. We first show the proof of Theorem 4.5. By lemma 4.20, we have

V π∗,νk

1 (s1)− V πk,νk

1 (s1) ≤ V
k

1(s1)− V πk,νk

1 (s1)︸ ︷︷ ︸
Errk(II.1)

+
H∑
h=1

Eπ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
︸ ︷︷ ︸

Errk(II.2)

+
H∑
h=1

Eπ∗,P[〈π∗h(·|sh)− πkh(·|sh), Uk
h (sh, ·)〉A | s1]︸ ︷︷ ︸

Errk(II.3)

,

where sh, ah, bh are random variables for states and actions, Uk
h (s, a) := 〈Qk

h(s, a, ·), νkh(· | s)〉B,
and we define the model prediction error ofQ-function as ςkh(s, a, b) = rh(s, a, b)+PhV

k

h+1(s, a)−
Q
k

h(s, a, b).
Particularly, Errk(II.1) is the difference between the estimated value function and the true value

function, Errk(II.2) is associated with the model prediction error ςkh(s, a, b) for Q-function, and
Errk(II.3) characterizes the error from the policy mirror ascent step. As shown in Lemma 4.26,∑K

k=1 Errk(II.1) ≤ Õ(
√
|S|2|A|H4K +

√
|S||A||B|H2K) with probability at least 1 − δ. In

addition, we have
∑K

k=1 Errk(II.2) ≤ 0 with probability at least 1 − 2δ as shown in Lemma
4.25, which is due to the UCB estimation of the Q-function. Furthermore, Lemma 4.22 shows the
cumulative error for the mirror ascent step is

∑K
k=1 Errk(II.3) ≤ O(

√
H4K log |A|) with setting

η =
√

log |A|/(KH2). Therefore, letting T = KH , further by the relation that Regret1(K) ≤
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∑K
k=1[Errk(II.1)+Errk(II.2)+Errk(II.3)], we can obtain the result in Theorem 4.5 with probability

at least 1− 3δ by the union bound.
Next, we show the proof of Theorem 4.6. By Lemma 4.21, we can decompose the difference

between V πk,νk

1 (s1) and V πk,ν∗

1 (s1) into four terms

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

≤ 2
H∑
h=1

Eπk,P,νk [βr,kh (sh, ah, bh) | s1]︸ ︷︷ ︸
Errk(III.1)

+
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
ςk
h
(s, ·, ·)ν∗h(·|s)︸ ︷︷ ︸

Errk(III.2)

+
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B︸ ︷︷ ︸

Errk(III.3)

+ 2
H∑
h=1

∑
s∈S

|qπ
k,P

h (s)− dπ
k,P̂k
h (s)|︸ ︷︷ ︸

Errk(III.4)

,

with W k
h (s, b) = 〈r̃kh(s, ·, b), πkh(· | s)〉A and ιkh(s, a, b) = r̃kh(s, a, b) − rh(s, a, b). The above in-

equality holds for all k ∈ [K] with probability at least 1 − δ. Due to the single-controller
structure, distinct from the value function decomposition above for Theorem 4.5, here we
have that Errk(III.1) is the expectation of reward bonus term, Errk(III.2) is associated with
the reward prediction error ςk

h
, Errk(III.3) is the error from the policy mirror descent step,

and Errk(III.4) is the difference between the true state reaching probability and the empirical
one. Technically, in the proof of this decomposition, we can show V πk,νk

1 (s1) − V πk,ν∗

1 (s1) =∑H
h=1

∑
s∈S q

πk,P
h (s)[πkh(·|s)]>rh(s, ·, ·)(νkh − ν∗h)(·|s), where the value function difference is only

related to the reward function rh(s, ·, ·) instead of the Q-function. This is the reason why only the
reward bonus and reward-based mirror descent appear in Algorithm 5.

As shown in Lemmas 4.27, 4.30, and 4.31, we can obtain upper bounds that
∑K

k=1 Errk(III.1) ≤
Õ(
√
|S||A||B|H2K),

∑K
k=1 Errk(III.3) ≤ O(

√
H2|S|K log |B|), and also

∑K
k=1 Errk(III.4) ≤

Õ(H2|S|
√
|A|K) by taking summation from k = 1 to K for the three error terms Errk(III.1),

Errk(III.2), Errk(III.3). For Errk(III.2), by Lemma 4.28, with probability at least 1 − δ, we have
that

∑K
k=1 Errk(III.1) ≤ 0, which is due to the UCB estimation of the reward function, i.e., r̃.

The above inequalities hold with probability at least 1− 2δ by the union bound. Therefore, letting
T = KH , further by Regret1(K) ≤

∑K
k=1[Errk(III.1) + Errk(III.2) + Errk(III.3) + Errk(III.4)],

we can obtain the result in Theorem 4.6. This completes the proof.

4.6 Conclusion

In this chapter, we propose and analyze new optimistic policy optimization algorithms for two-
player zero-sum Markov games with structured but unknown transitions. We consider two classes
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of transition structures: factored independent transition and single-controller transition. For both
scenarios, we prove Õ(

√
T ) regret bounds for each player after T steps in a two-agent competitive

game scenario. When both players adopt the proposed algorithms, their overall optimality gap is
Õ(
√
T ).

4.7 Proofs for Markov Game with Factored Independent Tran-
sition

Lemma 4.8. At the k-th episode of Algorithm 2, the difference between value functions V π∗,νk

1 (s1)

and V πk,νk

1 (s1) is bounded as

V π∗,νk

1 (s1)− V πk,νk

1 (s1)

= V
k

1(s1)− V πk,νk

1 (s1) +
H∑
h=1

Eπ∗,P,νk
{

[π∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eπ∗,P1

{〈
π∗h(·|s1

h)− πkh(·|s1
h),
∑
s2h∈S2

F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

+ 2H
H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− d

νk,P̂2,k

h (s2
h)
∣∣∣ ,

where sh, ah, bh are random variables for state and actions, F 1,k
h (s1, s2, a) :=

〈Qk

h(s
1, s2, a, ·), νkh(·|s2)〉B, and we define the model prediction error of Q-function as

ιkh(s, a, b) = rh(s, a, b) + PhV
k

h+1(s, a, b)−Qk

h(s, a, b). (4.14)

Proof. The proof of this lemma starts with decomposing the value function difference as

V π∗,νk

1 (s1)− V πk,νk

1 (s1) = V π∗,νk

1 (s1)− V k

1(s1) + V
k

1(s1)− V πk,νk

1 (s1). (4.15)

Here the term V
k

1(s1) − V πk,νk

1 (s1) is the bias between the estimated value function V
k

1(s1) gen-
erated by Algorithm 2 and the value function V πk,νk

1 (s1) under the true transition model P at the
k-th episode. We first analyze the term V π∗,νk

1 (s1) − V
k

1(s1). For any h and s, we consider to
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decompose the term V π∗,νk

h (s)− V k

h(s), which gives

V π∗,νk

h (s)− V k

h(s)

= [π∗h(·|s)]>Q
π∗,νk

h (s, ·, ·)νkh(·|s)−
[
πkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [π∗h(·|s)]>Q
π∗,νk

h (s, ·, ·)νkh(·|s)− [π∗h(·|s)]>Q
k

h(s, ·, ·)νkh(·|s)

+ [π∗h(·|s)]>Q
k

h(s, ·, ·)νkh(·|s)−
[
πkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [π∗h(·|s)]>
[
Qπ∗,νk

h (s, ·, ·)−Qk

h(s, ·, ·)
]
νkh(·|s)

+
[
π∗h(·|s)− πkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s),

(4.16)

where the first inequality is by the definition of V π∗,νk

h in (2.3) and the definition of V
k

h in Line 8 of
Algorithm 2. In addition, by the definition of Qπ∗,νk

h (s, ·, ·) in (2.4) and the definition of the model
prediction error ιkh for Player 1 in (4.14), we have

[π∗h(·|s)]>
[
Qπ∗,νk

h (s, ·, ·)−Qk

h(s, ·, ·)
]
νkh(·|s)

=
∑
a∈A

∑
b∈B

π∗h(a|s)
[∑
s′∈S

Ph(s′|s, a, b)
[
V π∗,νk

h+1 (s′)− V k

h+1(s′)
]

+ ιkh(s, a, b)

]
νkh(b|s)

=
∑
a∈A

∑
b∈B

π∗h(a|s)
[∑
s′∈S

Ph(s′|s, a, b)
[
V π∗,νk

h+1 (s′)− V k

h+1(s′)
]]
νkh(b|s)

+
∑
a∈A

∑
b∈B

π∗h(a|s)ιkh(s, a, b)νkh(b|s).

Combining this equality with (4.16) gives

V π∗,νk

h (s)− V k

h(s) =
∑
a∈A

∑
b∈B

π∗h(a|s)
[∑
s′∈S

Ph(s′|s, a, b)
[
V π∗,νk

h+1 (s′)− V k

h+1(s′)
]]
νkh(b|s)

+
∑
a∈A

∑
b∈B

π∗h(a|s)ιkh(s, a, b)νkh(b|s)

+
∑
a∈A

∑
b∈B

[
π∗h(a|s)− πkh(a|s)

]
Q
k

h(s, a, b)ν
k
h(b|s).

(4.17)

The inequality (4.17) indicates a recursion of the value function difference V π∗,νk

h (s)− V k

h(s). As
we have defined V π∗,νk

H+1 (s) = 0 and V
k

H+1(s) = 0, by recursively applying (4.17) from h = 1 to
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H , we obtain

V π∗,νk

1 (s1)− V k

1(s1) =
H∑
h=1

Eπ∗,P,νk
{

[π∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eπ∗,P,νk
{[
π∗h(·|sh)− πkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
︸ ︷︷ ︸

Term(I)

,
(4.18)

where sh are a random variables denoting the state at the h-th step following a distribution
determined jointly by π∗,P, νk. Note that we have the factored independent transition model
structure Ph(s′|s, a, b) = P1

h(s
1′|s1, a)P2

h(s
2′|s2, b) with s = (s1, s2) and s′ = (s1′, s2′), and

πh(a|s) = πh(a|s1) as well as νh(b|s) = νh(b|s2). Here we also have the state reaching probability
qν

k,P2
(s2) =

{
qν

k,P2

h (s2)
}H
h=1

under νk and true transition P2 for Player 2, and define the empirical

reaching probability dνk,P̂2,k
(s2) = {dν

k,P̂2,k

h (s2)}Hh=1 under the empirical transition model P̂2,k for
Player 2, where we let P̂kh(s′|s, a, b) = P̂1,k

h (s1′|s1, a)P̂2,k
h (s2′|s2, b). Then, for Term(I), we have

Term(I) =
H∑
h=1

Eπ∗,P,νk
{[
π∗h(·|sh)− πkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
=

H∑
h=1

Eπ∗,P1,P2,νk
{[
π∗h(·|s1

h)− πkh(·|s1
h)
]>
Q
k

h(s
1
h, s

2
h, ·, ·)νkh(·|s2

h)
∣∣ s1

1, s
2
1

}
(4.19)

=
H∑
h=1

Eπ∗,P1

{ ∑
s2h∈S2

[
π∗h(·|s1

h)− πkh(·|s1
h)
]>
Q
k

h(s
1
h, s

2
h, ·, ·)νkh(·|s2

h)︸ ︷︷ ︸
=:E

k
h(s1h,s

2
h)

qν
k,P2

h (s2
h)
∣∣ s1

1, s
2
1

}
.

The last term of the above inequality (4.19) can be further bounded as

H∑
h=1

Eπ∗,P1

{ ∑
s2h∈S2

E
k

h(s
1
h, s

2
h)q

νk,P2

h (s2
h)
∣∣ s1

1, s
2
1

}
=

H∑
h=1

Eπ∗,P1

{ ∑
s2h∈S2

E
k

h(s
1
h, s

2
h)[d

νk,P̂2,k

h (s2
h) + qν

k,P2

h (s2
h)− d

νk,P̂2,k

h (s2
h)]
∣∣ s1

1, s
2
1

}
≤

H∑
h=1

Eπ∗,P1

{ ∑
s2h∈S2

E
k

h(s
1
h, s

2
h)d

νk,P̂2,k

h (s2
h)
∣∣ s1

1, s
2
1

}
+ 2H

H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− d

νk,P̂2,k

h (s2
h)
∣∣∣ ,

where the factorH in the last term is due to |Qk

h(s
1
h, s

2
h, ·, ·)| ≤ H . Combining the above inequality
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with (4.19), we have

Term(I) ≤
H∑
h=1

Eπ∗,P1

{[
π∗h(·|s1

h)− πkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s
1
h, s

2
h, ·, ·)νkh(·|s2

h)d
νk,P̂2,k

h (s2
h)
∣∣ s1

1, s
2
1

}
+ 2H

H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− d

νk,P̂2,k

h (s2
h)
∣∣∣ . (4.20)

Further combining (4.20) with (4.15), we eventually have

V π∗,νk

1 (s1)− V πk,νk

1 (s1)

≤ V
k

1(s1)− V πk,νk

1 (s1) +
H∑
h=1

Eπ∗,P,νk
{

[π∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eπ∗,P1

{〈
π∗h(·|s1

h)− πkh(·|s1
h),
∑
s2h∈S2

F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

+ 2H
H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− d

νk,P̂2,k

h (s2
h)
∣∣∣ ,

where F 1,k
h (s1

h, s
2
h, a) := 〈Qk

h(s
1
h, s

2
h, a, ·), νkh(·|s2

h)〉B for any a ∈ A. This completes our proof.

Lemma 4.9. With setting η =
√

log |A|/(KH2), the mirror ascent steps of Algorithm 2 lead to

K∑
k=1

H∑
h=1

Eπ∗,P1

{〈
π∗h(·|s1

h)− πkh(·|s1
h),
∑
s2h∈S2

F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}
≤ O

(√
H4K log |A|

)
.

Proof. As shown in (4.8), the mirror ascent step at the k-th episode is to solve the following
maximization problem

maximize
π

H∑
h=1

〈
πh(·|s1)− πkh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A

− 1

η

H∑
h=1

DKL

(
πh(·|s1), πkh(·|s1)

)
,

with F 1,k
h (s1, s2, a) := 〈Qk

h(s
1, s2, a, ·), νkh(·|s2)〉B. We equivalently rewrite this maximization
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problem to a minimization problem as

minimize
π

−
H∑
h=1

〈
πh(·|s1)− πkh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A

+
1

η

H∑
h=1

DKL

(
πh(·|s1), πkh(·|s1)

)
.

Note that the closed-form solution πk+1
h (·|s1),∀s1 ∈ S1, to this minimization problem is guaran-

teed to stay in the relative interior of a probability simplex if initializing π0
h(·|s1) = 1/|A|. Thus,

we apply Lemma 4.16 and obtain that for any π = {πh}Hh=1, the following inequality holds

− η
〈
πk+1
h (·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A

+ η
〈
πh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A

≤ DKL

(
πh(·|s1), πkh(·|s1)

)
−DKL

(
πh(·|s1), πk+1

h (·|s1)
)
−DKL

(
πk+1
h (·|s1), πkh(·|s1)

)
.

Then, by rearranging the terms and letting πh = π∗h, we have

η
〈
π∗h(·|s1)− πkh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2
h)
〉
A

≤ DKL

(
π∗h(·|s1), πkh(·|s)

)
−DKL

(
π∗h(·|s), πk+1

h (·|s)
)
−DKL

(
πk+1
h (·|s), πkh(·|s)

)
+ η
〈
πk+1
h (·|s1)− πkh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2
h)
〉
A
.

(4.21)

Due to Pinsker’s inequality, we have

−DKL

(
πk+1
h (·|s1), πkh(·|s1)

)
≤ −1

2

∥∥πk+1
h (·|s1)− πkh(·|s1)

∥∥2

1
.

Further by Cauchy-Schwarz inequality, we have

η
〈
πk+1
h (·|s1)− πkh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A
≤ ηH

∥∥πk+1
h (·|s1)− πkh(·|s1)

∥∥
1
.

since we have∥∥∥∥∥ ∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)

∥∥∥∥∥
∞

= max
a∈A

∑
s2∈S2

〈Qk

h(s
1, s2, a, ·), νkh(·|s2)〉B · dν

k,P̂2,k

h (s2)

≤
∑
s2∈S2

H · dν
k,P̂2,k

h (s2) = H.
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Thus, we further obtain

−DKL

(
πk+1
h (·|s1), πkh(·|s1)

)
+ η
〈
πk+1
h (·|s1)− πkh(·|s1),

∑
s2h∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A

≤ −1

2

∥∥πk+1
h (·|s1)− πkh(·|s1)

∥∥2

1
+ ηH

∥∥πk+1
h (·|s1)− πkh(·|s1)

∥∥
1
≤ 1

2
η2H2,

(4.22)

where the last inequality is by viewing
∥∥πk+1

h (·|s1) − πkh(·|s1)
∥∥

1
as a variable x and finding the

maximal value of −1/2 · x2 + ηHx to obtain the upper bound 1/2 · η2H2.
Thus, combing (4.22) with (4.21), the policy improvement step in Algorithm 2 implies

η
〈
π∗h(·|s1)− πkh(·|s1),

∑
s2∈S2

F 1,k
h (s1, s2, ·)dν

k,P̂2,k

h (s2)
〉
A

≤ DKL

(
π∗h(·|s1), πkh(·|s1)

)
−DKL

(
π∗h(·|s1), πk+1

h (·|s1)
)

+
1

2
η2H2,

which further leads to

H∑
h=1

Eπ∗,P1

{〈
π∗h(·|s1

h)− πkh(·|s1
h),
∑
s2h∈S2

F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

≤ 1

η

H∑
h=1

Eπ∗,P1

[
DKL

(
π∗h(·|s1

h), π
k
h(·|s1

h)
)
−DKL

(
π∗h(·|s1

h), π
k+1
h (·|s1

h)
)]

+
1

2
ηH3.

Taking summation from k = 1 to K of both sides, we obtain

K∑
k=1

H∑
h=1

Eπ∗,P1

{〈
π∗h(·|s1

h)− πkh(·|s1
h),
∑
s2h∈S2

F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

≤ 1

η

H∑
h=1

Eπ∗,P1

[
DKL

(
π∗h(·|s1

h), π
1
h(·|s1

h)
)
−DKL

(
π∗h(·|s1

h), π
K+1
h (·|s1

h)
)]

+
1

2
ηKH3

≤ 1

η

H∑
h=1

Eπ∗,P1

[
DKL

(
π∗h(·|s1

h), π
1
h(·|s1

h)
)]

+
1

2
ηKH3,

where the last inequality is by non-negativity of KL divergence. With the initialization in Algo-
rithm 2, it is guaranteed that π1

h(·|s1) = 1/|A|, which thus leads to DKL (π∗h(·|s1), π1
h(·|s1)) ≤

log |A| for any s1. Then, with setting η =
√

log |A|/(KH2), we bound the last term as

1

η

H∑
h=1

Eπ∗,P1

[
DKL

(
π∗h(·|s1

h), π
1
h(·|s1

h)
)]

+
1

2
ηKH3 ≤ O

(√
H4K log |A|

)
,
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which gives

K∑
k=1

H∑
h=1

Eπ∗,P1

{〈
π∗h(·|s1

h)− πkh(·|s1
h),
∑
s2h∈S2

F 1,k
h (s1

h, s
2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}
≤ O

(√
H4K log |A|

)
.

This completes the proof.

Lemma 4.10. For any k ∈ [K], h ∈ [H] and all (s, a, b) ∈ S × A × B, with probability at least

1− δ, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)∣∣ ≤
√

4 log(|S||A||B|HK/δ)
max{Nk

h (s, a, b), 1}
.

Proof. The proof for this theorem is a direct application of Hoeffding’s inequality. For k ≥ 1,
the definition of r̂kh in (4.10) indicates that r̂kh(s, a, b) is the average of Nk

h (s, a, b) samples of the
observed rewards at (s, a, b) if Nk

h (s, a, b) > 0. Then, for fixed k ∈ [K], h ∈ [H] and state-action
tuple (s, a, b) ∈ S × A × B, when Nk

h (s, a, b) > 0, according to Hoeffding’s inequality, with
probability at least 1− δ′ where δ′ ∈ (0, 1], we have

∣∣r̂kh(s, a, b)− rh(s, a, b)∣∣ ≤
√

log(2/δ′)

2Nk
h (s, a, b)

,

where we also use the facts that the observed rewards rkh ∈ [0, 1] for all k and h, and E
[
r̂kh
]

= rh

for all k and h. For the case where Nk
h (s, a, b) = 0, by (4.10), we know r̂kh(s, a, b) = 0 such that

|r̂kh(s, a, b) − rh(s, a, b)| = |rh(s, a, b)| ≤ 1. On the other hand, we have
√

2 log(2/δ′) ≥ 1 >

|r̂kh(s, a, b) − rh(s, a, b)|. Thus, combining the above results, with probability at least 1 − δ′, for
fixed k ∈ [K], h ∈ [H] and state-action tuple (s, a, b) ∈ S ×A× B, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)∣∣ ≤
√

2 log(2/δ′)

max{Nk
h (s, a, b), 1}

.

Moreover, by the union bound, letting δ = |S||A||B|HKδ′/2, assuming K > 1, with probability
at least 1− δ, for any k ∈ [K], h ∈ [H] and any state-action tuple (s, a, b) ∈ S ×A× B, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)∣∣ ≤
√

4 log(|S||A||B|HK/δ)
max{Nk

h (s, a, b), 1}
.

This completes the proof.
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In (4.7), we factor the state as s = (s1, s2) such that we have |S| = |S1||S2|. Thus, we set
βr,kh (s, a, b) =

√
4 log(|S||A||B|HK/δ)

max{Nk
h (s,a,b),1} =

√
4 log(|S1||S2||A||B|HK/δ)

max{Nk
h (s1,s2,a,b),1} , which equals the bound in Lemma

4.10. The counter Nk
h (s, a, b) is equivalent to Nk

h (s1, s2, a, b).

Lemma 4.11. For any k ∈ [K], h ∈ [H] and all (s, a) ∈ S × A, with probability at least 1 − δ,
we have

∥∥∥P̂kh(· | s, a, b)− Ph(· | s, a, b)
∥∥∥

1
≤

√
2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

,

where we have a factored state space s = (s1, s2), s′ = (s1′, s2′), and an independent state transi-

tion Ph(s′ | s, a, b) = P1
h(s

1′ | s1, a)P1
h(s

2′ | s2, b) and P̂kh(· | s, a, b) = P̂1,k
h (s1′ | s1, a)P̂2,k

h (s2′ | s2, b).

Proof. Since the state space and the transition model are factored, we need to decompose the term
as follows ∥∥∥P̂kh(· | s, a, b)− Ph(· | s, a, b)

∥∥∥
1

=
∑
s1′,s2′

∣∣∣P̂1,k
h (s1′ | s1, a)P̂2,k

h (s2′ | s2, b)− P1
h(s

1′ | s1, a)P2
h(s

2′ | s2, b)
∣∣∣

=
∑
s1′,s2′

∣∣∣ [P̂1,k
h (s1′ | s1, a)− P1

h(s
1′ | s1, a)

]
P̂2,k
h (s2′ | s2, b)

+ P1
h(s

1′ | s1, a)
[
P̂2,k
h (s2′ | s2, b)− P2

h(s
2′ | s2, b)

] ∣∣∣.
We can further bound the last term in the above equality as follows∑

s1′,s2′

∣∣∣ [P̂1,k
h (s1′ | s1, a)− P1

h(s
1′ | s1, a)

]
P̂2,k
h (s2′ | s2, b)

+ P1
h(s

1′ | s1, a)
[
P̂2,k
h (s2′ | s2, b)− P2

h(s
2′ | s2, b)

] ∣∣∣
≤
∑
s1′,s2′

{ ∣∣∣P̂1,k
h (s1′ | s1, a)− P1

h(s
1′ | s1, a)

∣∣∣ P̂2,k
h (s2′ | s2, b)

+ P1
h(s

1′ | s1, a)
∣∣∣P̂2,k

h (s2′ | s2, b)− P2
h(s

2′ | s2, b)
∣∣∣ }

≤
∑
s1′

∣∣∣P̂1,k
h (s1′ | s1, a)− P1

h(s
1′ | s1, a)

∣∣∣+
∑
s2′

∣∣∣P̂2,k
h (s2′ | s2, b)− P2

h(s
2′ | s2, b)

∣∣∣
=
∥∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥∥
1

+
∥∥∥P̂2,k

h (· | s2, b)− P2
h(· | s2, b)

∥∥∥
1
,

where the last inequality is due to
∑

s2′ P̂
2,k
h (s2′ | s2, b) = 1 and

∑
s1′ P1

h(s
1′ | s1, a) = 1. Thus, we

need to bound the two terms ‖P̂1,k
h (· | s1, a) − P1

h(s
1′ | s1, a)‖1 and ‖P̂2,k

h (· | s2, b) − P2
h(· | s2, b)‖1

separately.
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For k ≥ 1, we have ‖P̂1,k
h (· | s1, a) − P1

h(· | s1, a)‖1 = max‖z‖∞≤1 〈P̂1,k
h (· | s1, a) −

P1
h(s

1′ | s1, a), z〉S1 by the duality. We construct an ε-cover for the set {z ∈ R|S1| : ‖z‖∞ ≤ 1} with
the distance induced by ‖ · ‖∞, denoted as C∞(ε), such that for any z ∈ R|S1|, there always exists
z′ ∈ C∞(ε) satisfying ‖z− z′‖∞ ≤ ε. The covering number is N∞(ε) = |C∞(ε)| = 1/ε|S1|. Thus,
we know that for any (s1, a) ∈ S1×A and any z with ‖z‖∞ ≤ 1, there exists z′ ∈ C∞(ε) such that
‖z′ − z‖∞ ≤ ε and

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z
〉
S1

=
〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1

+
〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z− z′
〉
S1

≤
〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1

+ ε
∥∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥∥
1
,

such that we further have∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1

= max
‖z‖∞≤1

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a)), z
〉
S1

≤ max
z′∈C∞(ε)

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1

+ ε
∥∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥∥
1
.

(4.23)

By Hoeffding’s inequality and the union bound over all z′ ∈ C∞(ε), when Nk
h (s1, a) > 0, with

probability at least 1− δ′ where δ′ ∈ (0, 1],

max
z′∈C∞(ε)

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1
≤

√
|S1| log(1/ε) + log(1/δ′)

2Nk
h (s1, a)

. (4.24)

Letting ε = 1/2, by (4.23) and (4.24), with probability at least 1− δ′, we have

∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1
≤ 1

√
|S| log 2 + log(1/δ′)

2Nk
h (s1, a)

.

When Nk
h (s1, a) = 0, we have

∥∥P̂1,k
h (· | s1, a) − P1

h(· | s1, a)
∥∥

1
= ‖P1

h(· | s1, a)‖1 = 1 such that

2
√
|S| log 2+log(1/δ′)

2
> 1 =

∥∥P̂1,k
h (· | s1, a) − P1

h(· | s1, a)
∥∥

1
always holds. Thus, with probability at

least 1− δ′,

∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1
≤ 2

√
|S1| log 2 + log(1/δ′)

2 max{Nk
h (s1, a), 1}

≤

√
2|S1| log(2/δ′)

max{Nk
h (s1, a), 1}

.

Then, by the union bound, assuming K > 1, letting δ′′ = |S1||A|HKδ′/2, with probability at least
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1− δ′′, for any (s1, a) ∈ S1 ×A and any h ∈ [H] and k ∈ [K], we have

∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1
≤

√
2|S1| log(|S1||A|HK/δ′′)

max{Nk
h (s1, a), 1}

.

Similarly, we can also obtain that with probability at least 1− δ′′, for any (s2, a) ∈ S2×B and any
h ∈ [H] and k ∈ [K], we have

∥∥∥P̂2,k
h (· | s2, b)− P2

h(· | s2, b)
∥∥∥

1
≤

√
2|S2| log(|S2||B|HK/δ′′)

max{Nk
h (s2, b), 1}

.

Further by the union bound, we have with probability at least 1− δ where δ = 2δ′′,

∥∥∥P̂kh(· | s, a, b)− Ph(· | s, a, b)
∥∥∥

1
≤

√
2|S1| log(2|S1||A|HK/δ)

max{Nk
h (s1, a), 1}

+

√
2|S2| log(2|S2||B|HK/δ)

max{Nk
h (s2, b), 1}

.

This completes the proof.

In (4.7), we set βP,k
h (s, a, b) =

√
2H2|S1| log(2|S1||A|HK/δ)

max{Nk
h (s1,a),1} +

√
2H2|S2| log(2|S2||B|HK/δ)

max{Nk
h (s2,b),1} , which equals

the product of the upper bound in Lemma 4.11 and the factor H .

Lemma 4.12. With probability at least 1− 2δ, Algorithm 2 ensures that

K∑
k=1

H∑
h=1

Eπ∗,P,νk
[
ιkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

Proof. We prove the upper bound of the model prediction error term. As defined in (4.14), we
have the instantaneous prediction error at the h-step of the k-th episode as

ιkh(s, a, b) = rh(s, a, b) +
〈
Ph(· | s, a, b), V

k

h+1(·)
〉
S −Q

k

h(s, a, b), (4.25)

where the equality is by the definition of the prediction error in (4.14). By plugging in the definition
of Q

k

h in Line 7 of Algorithm 2, for any (s, a, b), we bound the following term as

rh(s, a, b) +
〈
Ph(· | s, a, b), V

k

h+1(·)
〉
S −Q

k

h(s, a, b)

≤ rh(s, a, b) +
〈
Ph(· | s, a, b), V

k

h+1(·)
〉
S

−min
{
r̂kh(s, a, b) +

〈
P̂kh(·|s, a, b), V

k

h+1(·)
〉
S − β

k
h, H − h+ 1

}
≤ max

{
rh(s, a, b)− r̂kh(s, a, b) +

〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V

k

h+1(·)
〉
S − β

k
h, 0
}
,

(4.26)
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where the inequality holds because

rh(s, a, b) +
〈
Ph(· | s, a, b), V

k

h+1(·)
〉
S

≤ rh(s, a, b) +
∥∥Ph(· | s, a, b)∥∥1

‖V k

h+1(·)‖∞ ≤ 1 + max
s′∈S

∣∣V k

h+1(s′)
∣∣ ≤ 1 +H − h,

since
∥∥Ph(· | s, a, b)∥∥1

= 1 and also the truncation step as shown in Line 7 of Algorithm 2 forQ
k

h+1

such that for any s′ ∈ S∣∣V k

h+1(s′)
∣∣ =

∣∣∣[πkh+1(·|s′)
]>
Q
k

h+1(s′, ·, ·)νkh+1(·|s′)
∣∣∣

≤
∥∥πkh+1(·|s′)

∥∥
1

∥∥Qk

h+1(s′, ·, ·)νkh+1(·|s′)
∥∥
∞

≤ max
a,b

∣∣Qk

h+1(s′, a, b)
∣∣ ≤ H.

(4.27)

Combining (4.25) and (4.26) gives

ιkh(s, a, b) ≤ max
{
rh(s, a, b)− r̂kh(s, a, b)

+
〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V

k

h+1(·)
〉
S − β

k
h, 0
}
.

(4.28)

Note that as shown in (4.7), we have

βkh(s, a, b) = βr,kh (s, a, b) + βP,k
h (s, a, b).

Then, with probability at least 1− δ, we have

rh(s, a, b)− r̂kh(s, a, b)− β
r,k
h (s, a, b)

≤
∣∣rh(s, a, b)− r̂kh(s, a, b)∣∣− βr,kh (s, a, b)

≤ βr,kh (s, a, b)− βr,kh (s, a, b) = 0,

where the last inequality is by Lemma 4.10 and the setting of the bonus for the reward. Moreover,
with probability at least 1− δ, we have

〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V

k

h+1(·)
〉
S − β

P,k
h (s, a, b)

≤
∥∥Ph(· | s, a, b)− P̂kh(·|s, a, b)

∥∥
1

∥∥V k

h+1(·)
∥∥
∞ − β

P,k
h (s, a, b)

≤ H
∥∥Ph(· | s, a, b)− P̂kh(·|s, a)

∥∥
1
− βP,k

h (s, a, b)

≤ βP,k
h (s, a, b)− βP,k

h (s, a, b) = 0,

where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to
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maxs′∈S
∥∥V k

h+1(s′)
∥∥
∞ ≤ H as shown in (4.27), and the last inequality is by the setting of βP,k

h

in (4.7) and also Lemma 4.11. Thus, with probability at least 1−2δ, the following inequality holds

rh(s, a, b)− r̂kh(s, a, b) +
〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V

k

h+1(·)
〉
S − β

k
h(s, a, b) ≤ 0.

Combining the above inequality with (4.28), we have that with probability at least 1− 2δ, for any
h ∈ [H] and k ∈ [K], the following inequality holds

ιkh(s, a, b) ≤ 0, ∀(s, a, b) ∈ S ×A× B,

which leads to

K∑
k=1

H∑
h=1

Eπ∗,P,νk
[
ιkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

This completes the proof.

Lemma 4.13. With probability at least 1− δ, Algorithm 2 ensures that

K∑
k=1

V
k

1(s1)−
K∑
k=1

V πk,νk

1 (s1) ≤ Õ(
√
|S1|2|A|H4K +

√
|S2|2|B|H4K +

√
|S1||S2||A||B|H2K).

Proof. We assume that a trajectory {(skh, akh, bkh, skh+1)}Hh=1 for all k ∈ [K] is generated following
the policies πk, νk, and the true transition model P. Thus, we expand the bias term at the h-th step
of the k-th episode, which is

V
k

h(s
k
h)− V

πk,νk

h (skh)

=
[
πkh(·|skh)

]>[
Q
k

h(s
k
h, ·, ·)−Q

πk,νk

h (skh, ·, ·)
]
νkh(·|skh)

= ζkh +Q
k

h(s
k
h, a

k
h, b

k
h)−Q

πk,νk

h (skh, a
k
h, b

k
h)

= ζkh +
〈
Ph(· | skh, akh, bkh), V

k

h+1(·)− V πk,νk

h+1 (·)
〉
S − ι

k
h(s

k
h, a

k
h, b

k
h)

= ζkh + ξkh + V
k

h+1(skh+1)− V πk,νk

h+1 (skh+1)− ιkh(skh, akh, bkh),

(4.29)

where the first equality is by Line 8 of Algorithm 4 and (2.3), the third equality is by plugging
in (2.4) and (4.14). Specifically, in the above equality, we introduce two martingale difference
sequence, namely, {ζkh}h≥0,k≥0 and {ξkh}h≥0,k≥0, which are defined as

ζkh :=
[
πkh(·|skh)

]>[
Q
k

h(s
k
h, ·, ·)−Q

πk,νk

h (skh, ·, ·)
]
νkh(·|skh)−

[
Q
k

h(s
k
h, a

k
h, b

k
h)−Q

πk,νk

h (skh, a
k
h, b

k
h)
]
,

ξkh :=
〈
Ph(· | skh, akh, bkh), V

k

h+1(·)− V πk,νk

h+1 (·)
〉
S −

[
V
k

h+1(skh+1)− V πk,νk

h+1 (skh+1)
]
,
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such that

Eakh∼πkh(·|skh),bkh∼ν
k
h(·|skh)

[
ζkh
∣∣Fkh ] = 0,

Eskh+1∼Ph(· | skh,a
k
h,b

k
h)

[
ξkh
∣∣ F̃kh] = 0,

with Fkh being the filtration of all randomness up to (h− 1)-th step of the k-th episode plus skh, and
F̃kh being the filtration of all randomness up to (h− 1)-th step of the k-th episode plus skh, a

k
h, b

k
h.

The equality (4.29) forms a recursion for V
k

h(s
k
h)− V

πk,νk

h (skh). We also have V
k

H+1(·) = 0 and
V πk,νk

H+1 (·) = 0. Thus, recursively apply (4.29) from h = 1 to H leads to the following equality

V
k

1(s1)− V πk,νk

1 (s1) =
H∑
h=1

ζkh +
H∑
h=1

ξkh −
H∑
h=1

ιkh(s
k
h, a

k
h, b

k
h). (4.30)

Moreover, by (4.14) and Line 7 of Algorithm 2, we have

−ιkh(skh, akh, bkh) = −rh(skh, akh, bkh)−
〈
Ph(· | sh, ah, bh), V

k

h+1(·)
〉
S

+ min
{
r̂kh(s

k
h, a

k
h, b

k
h) +

〈
P̂kh(·|sh, ah, bh), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h), H

}
.

Then, we can further bound −ιkh(skh, akh, bkh) as follows

−ιkh(skh, akh, bkh) ≤ −rh(skh, akh, bkh)−
〈
Ph(· | skh, akh, bkh), V

k

h+1(·)
〉
S + r̂kh(s

k
h, a

k
h, b

k
h)

+
〈
P̂kh(·|skh, akh, bkh), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h)

≤
∣∣r̂kh(skh, akh, bkh)− rh(skh, akh, bkh)∣∣
+
∣∣∣〈Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh), V

k

h+1(·)
〉
S

∣∣∣+ βkh(skh, a
k
h, b

k
h),

where the first inequality is due to min{x, y} ≤ x. Additionally, we have∣∣∣〈Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh), V
k

h+1(·)
〉
S

∣∣∣
≤
∥∥V k

h+1(·)
∥∥
∞

∥∥Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh)
∥∥

1

≤ H
∥∥Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh)

∥∥
1
,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (4.54).
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Thus, putting the above together, we obtain

−ιkh(skh, akh, bkh) ≤
∣∣r̂kh(skh, akh, bkh)− rh(skh, akh, bkh)∣∣
+H

∥∥Ph(· | skh, akh, bkh)− Ph(· | skh, akh, bkh)
∥∥

1
+ βkh(skh, a

k
h, b

k
h)

≤ 2βr,kh (skh, a
k
h, b

k
h) + 2βP,k

h (skh, a
k
h, a

k
h),

where the second inequality is by Lemma 4.10, Lemma 4.11, and the decomposition of the bonus
term βkh as (4.7). Due to Lemma 4.10 and Lemma 4.11, by union bound, for any h ∈ [H], k ∈ [K]

and (sh, ah, bh) ∈ S ×A×B, the above inequality holds with probability with probability at least
1− 2δ. Therefore, by (4.30), with probability at least 1− 2δ, we have

K∑
k=1

[
V
k

1(s1)− V πk,νk

1 (s1)
]

≤
K∑
k=1

H∑
h=1

ζkh +
K∑
k=1

H∑
h=1

ξkh + 2
K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) + 2

K∑
k=1

H∑
h=1

βP,k
h (skh, a

k
h, b

k
h).

(4.31)

By Azuma-Hoeffding inequality, with probability at least 1− δ, the following inequalities hold

K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ

)
,

K∑
k=1

H∑
h=1

ξkh ≤ O

(√
H3K log

1

δ

)
,

where we use the facts that |Qk

h(s
k
h, a

k
h, b

k
h) − Qπk,νk

h (skh, a
k
h, b

k
h)| ≤ 2H and |V k

h+1(skh+1) −
V πk,νk

h+1 (skh+1)| ≤ 2H . Next, we need to bound
∑K

k=1

∑H
h=1 β

r,k
h (skh, a

k
h, b

k
h) and∑K

k=1

∑H
h=1 β

P,k
h (skh, a

k
h, b

k
h) in (4.31). We show that

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) = C

K∑
k=1

H∑
h=1

√
log(|S1||S2||A||B|HK/δ)

max{Nk
h (s1,k

h , s2,k
h , akh, b

k
h), 1}

= C

K∑
k=1

H∑
h=1

√
log(|S1||S2||A||B|HK/δ)
Nk
h (s1,k

h , s2,k
h , akh, b

k
h)

≤ C
H∑
h=1

∑
(s1,s2,a,b)∈S1×S2×A×B

NK
h (s1,s2,a,b)>0

NK
h (s1,s2,a,b)∑

n=1

√
log(|S1||S2||A||B|HK/δ)

n
,

where the second equality is because (s1,k
h , s2,k

h , akh, b
k
h) is visited such that Nk

h (s1,k
h , s2,k

h , akh, b
k
h) ≥
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1. In addition, we have

H∑
h=1

∑
(s1,s2,a,b)∈S1×S2×A×B

NK
h (s1,s2,a,b)>0

NK
h (s1,s2,a,b)∑

n=1

√
log(|S1||S2||A||B|HK/δ)

n

≤
H∑
h=1

∑
(s1,s2,a,b)∈S1×S2×A×B

O

(√
NK
h (s1, s2, a, b) log

|S1||S2||A||B|HK
δ

)

≤ O

(
H

√
K|S1||S2||A||B| log

|S1||S2|A||B|HK
δ

)
,

where the last inequality is based on the consideration that∑
(s1,s2,a,b)∈S1×S2×A×BN

K
h (s1, s2, a, b) = K such that

∑
(s1,s2,a,b)∈S1×S2×A×B

√
NK
h (s1, s2, a, b) ≤

O
(√

K|S1||S2||A||B|
)

when K is sufficiently large. Putting the above together, we obtain

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) ≤ O

(
H

√
K|S1||S2||A||B| log

|S1||S2|A||B|HK
δ

)
.

Similarly, we have

K∑
k=1

H∑
h=1

βP,k
h (skh, a

k
h, b

k
h)

=
K∑
k=1

H∑
h=1

(√
2H2|S1| log(2|S1||A|HK/δ)

max{Nk
h (s1,k

h , akh), 1}
+

√
2H2|S2| log(2|S2||B|HK/δ)

max{Nk
h (s2,k

h , bkh), 1}

)

≤ O

(
H

√
K|S1|2|A|H2 log

2|S1||A|HK
δ

+H

√
K|S2|2|B|H2 log

2|S2||B|HK
δ

)
.

Thus, by (4.31), with probability at least 1− δ, we have

K∑
k=1

V
k

1(s1)−
K∑
k=1

V πk,νk

1 (s1) ≤ Õ(
√
|S1|2|A|H4K +

√
|S2|2|B|H4K +

√
|S1||S2||A||B|H2K),

where Õ hides logarithmic terms. This completes the proof.

Before presenting the next lemma, we first show the following definition of confidence set for
the proof of the next lemma.

Definition 4.14 (Confidence Set for Player 2). Define the following confidence set for transition
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models for Player 2

Υ2,k :=
{
P̃ :
∣∣∣P̃h(s2′|s2, b)− P̂2,k

h (s2′|s2, b)
∣∣∣ ≤ ε2,kh , ‖P̃h(·|s2, b)‖1 = 1,

and P̃h(s2′|s2, b) ≥ 0, ∀(s2, b, s2′) ∈ S2 × B × S2,∀k ∈ [K]
}

where we define

ε2,kh := 2

√
P̂2,k
h (s2′|s2, b) log(|S2||B|HK/δ′)

max{Nk
h (s2, b)− 1, 1}

+
14 log(|S2||B|HK/δ′)

3 max{Nk
h (s2, b)− 1, 1}

with Nk
h (s2, b) :=

∑k
τ=1 1{(s2, b) = (s2,τ

h , bτh)}, and P̂2,k being the empirical transition model for
Player 2.

Lemma 4.15. With probability at least 1− δ, the difference between qν
k,P2

h and dν
k,P̂2,k

h is bounded

as

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ ≤ Õ (H2|S2|

√
|B|K

)
.

Proof. By the definition of state distribution for Player 2, we have

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣

=
K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣∣∣∑
b∈B

w2,k
h (s2, b)−

∑
b∈B

ŵ2,k
h (s2, b)

∣∣∣∣∣
≤

K∑
k=1

H∑
h=1

∑
s2∈S2

∑
b∈B

∣∣w2,k
h (s, a)− ŵ2,k

h (s2, b)
∣∣.

where ŵ2,k
h (s2, b) is the occupancy measure under the empirical transition model P̂2,k and the policy

νk. Then, since P̂2,k ∈ Υ2,k always holds for any k, by Lemma 4.19, we can bound the last term of
the bound inequality such that with probability at least 1− 6δ′,

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ ≤ E1 + E2.
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Then, we compute E1 by Lemma 4.18. With probability at least 1− 2δ′, we have

E1 = O

 H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s
2, b)

(√
|S2| log(|S2||B|HK/δ′)

max{Nk
h (s2, b), 1}

+
log(|S2||B|HK/δ′)
max{Nk

h (s2, b), 1}

)
= O

[
H∑
h=2

h−1∑
h′=1

√
|S2|

(√
|S2||B|K + |S2||B| logK + log

H

δ′

)
log
|S2||B|HK

δ′

]

= O
[(
H2|S2|

√
|B|K +H2|S2|3/2|B| logK +H2

√
|S2| log

H

δ′

)
log
|S2||B|HK

δ′

]
= Õ

(
H2|S2|

√
|B|K

)
,

where we ignore logK when K is sufficiently large such that
√
K dominates, and Õ hides log-

arithm dependence on |S2|, |B|, H , K, and 1/δ′. In addition, E2 depends on ploy(H, |S2|, |B|)
except the factor log |S2||B|HK

δ′
as shown in Lemma 4.19. Thus, E2 can be ignored comparing to E1

if K is sufficiently large. Therefore, we obtain that with probability at least 1− 8δ′, the following
inequality holds

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ ≤ Õ (H2|S2|

√
|B|K

)
.

We further let δ = 8δ′ such that log |S2||B|HK
δ′

= log 8|S2||B|HK
δ

which does not change the or-
der as above. Then, with probability at least 1 − δ, we have

∑K
k=1

∑H
h=1

∑
s2∈S2 |q

νk,P2

h (s2) −
dν

k,P̂2,k

h (s2)| ≤ Õ(H2|S2|
√
|B|K). This completes the proof.

4.7.1 Other Supporting Lemmas

Lemma 4.16. Let f : Λ 7→ R be a convex function, where Λ is the probability simplex defined as

Λ := {x ∈ Rd : ‖x‖1 = 1 and xi ≥ 0,∀i ∈ [d]}. For any α ≥ 0, z ∈ Λ, and y ∈ Λo where

Λo ⊂ Λ with only relative interior points of Λ, supposing xopt = argminx∈Λ f(x) + αDKL(x,y),

then the following inequality holds

f(xopt) + αDKL(xopt,y) ≤ f(z) + αDKL(z,y)− αDKL(z,xopt).

This lemma is for mirror descent algorithms, whose proof can be obtained by slight modification
from existing works [Tseng, 2008, Nemirovski et al., 2009, Wei et al., 2019].

The following lemmas are adapted from the recent papers [Efroni et al., 2020b, Jin et al., 2019],
where we can find their detailed proofs.
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Lemma 4.17. With probability at least 1 − 4δ′, the true transition model P2 satisfies that for any

k ∈ [K],

P ∈ Υ2,k.

This lemma indicates that the estimated transition model P̂2,k
h (s2′|s2, b) for Player 2 by (4.10)

is closed to the true transition model P2
h(s

2′|s2, b) with high probability. The upper bound is by
empirical Bernstein’s inequality and the union bound.

The next lemma is adapted from Lemma 10 in Jin et al. [2019].

Lemma 4.18. We let w2,k
h (s2, b) denote the occupancy measure at the h-th step of the k-th episode

under the true transition model P2 and the current policy νk. Then, with probability at least 1−2δ′

we have for all h ∈ [H], the following results hold

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s
2, b)

max{Nk
h (s2, b), 1}

= O
(
|S2||B| logK + log

H

δ′

)
,

and

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s
2, b)√

max{Nk
h (s2, b), 1}

= O
(√
|S2||B|K + |S2||B| logK + log

H

δ′

)
.

By Lemma 4.17 and Lemma 4.18, we have the following lemma to show the difference of two
occupancy measures, which is modified from parts of the proof of Lemma 4 in Jin et al. [2019].

Lemma 4.19. For Player 2, we let w2,k
h (s2, b) be the occupancy measure at the h-th step of the

k-th episode under the true transition model P2 and the current policy νk, and w̃2,k
h (s2, b) be the

occupancy measure at the h-th step of the k-th episode under any transition model P̃2,k ∈ Υ2,k and

the current policy νk for any k. Then, with probability at least 1− 6δ′ we have for all h ∈ [H], the

following inequality holds

K∑
k=1

K∑
h=1

∑
s∈S2

∑
b∈B

∣∣w̃2,k
h (s2, b)− w2,k

h (s2, b)
∣∣ ≤ E1 + E2,

where E1 and E2 are in the level of

E1 = O

 H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s
2, b)

(√
|S2| log(|S2||B|HK/δ′)

max{Nk
h (s2, b), 1}

+
log(|S2||B|HK/δ′)
max{Nk

h (s2, b), 1}

)
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and

E2 = O
(

poly(H, |S2|, |B|) · log
|S2||B|HK

δ′

)
,

where poly(H, |S2|, |B|) denotes the polynomial dependency on H, |S2|, |B|.

4.8 Proofs for Markov Game with Single-Controller Transition

Lemma 4.20. At the k-th episode of Algorithm 4, the difference between value functions V π∗,νk

1 (s1)

and V πk,νk

1 (s1) is

V π∗,νk

1 (s1)− V πk,νk

1 (s1)

= V
k

1(s1)− V πk,νk

1 (s1) +
H∑
h=1

Eπ∗,P
[〈
π∗h(·|sh)− πkh(·|sh), Uk

h (sh, ·)
〉
A

∣∣∣ s1

]
+

H∑
h=1

Eπ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
.

where sh, ah, bh are random variables for state and actions, Uk
h (s, a) := 〈Qk

h(s, a, ·), νkh(· | s)〉B,

and we define the model prediction error of Q-function as

ςkh(s, a, b) = rh(s, a, b) + PhV
k

h+1(s, a)−Qk

h(s, a, b). (4.32)

Proof. We start the proof by decomposing the value function difference as

V π∗,νk

1 (s1)− V πk,νk

1 (s1) = V π∗,νk

1 (s1)− V k

1(s1) + V
k

1(s1)− V πk,νk

1 (s1). (4.33)

Note that the term V
k

1(s1) − V πk,νk

1 (s1) is the bias between the estimated value function V
k

1(s1)

generated by Algorithm 4 and the value function V πk,νk

1 (s1) under the true transition model P at
the k-th episode.

We focus on analyzing the other term V π∗,νk

1 (s1) − V k

1(s1) in this proof. For any h and s, we
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have the following decomposition

V π∗,νk

h (s)− V k

h(s)

= [π∗h(·|s)]>Q
π∗,νk

h (s, ·, ·)νkh(·|s)−
[
πkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [π∗h(·|s)]>Q
π∗,νk

h (s, ·, ·)νkh(·|s)− [π∗h(·|s)]>Q
k

h(s, ·, ·)νkh(·|s)

+ [π∗h(·|s)]>Q
k

h(s, ·, ·)νkh(·|s)−
[
πkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [π∗h(·|s)]>
[
Qπ∗,νk

h (s, ·, ·)−Qk

h(s, ·, ·)
]
νkh(·|s)

+
[
π∗h(·|s)− πkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s),

(4.34)

where the first inequality is by the definition of V π∗,νk

h in (2.3) and the definition of V
k

h in Line 8 of
Algorithm 4. Moreover, by the definition of Qπ∗,νk

h (s, ·, ·) in (2.4) and the model prediction error
ςkh for Player 1 in (4.32), we have

[π∗h(·|s)]>
[
Qπ∗,νk

h (s, ·, ·)−Qk

h(s, ·, ·)
]
νkh(·|s)

=
∑
a∈A

∑
b∈B

π∗h(a|s)
[∑
s′∈S

Ph(s′|s, a)
[
V π∗,νk

h+1 (s′)− V k

h+1(s′)
]

+ ςkh(s, a, b)

]
νkh(b|s)

=
∑
a∈A

∑
s′∈S

π∗h(a|s)Ph(s′|s, a)
[
V π∗,νk

h+1 (s′)− V k

h+1(s′)
]

+
∑
a∈A

∑
b∈B

π∗h(a|s)ςkh(s, a, b)νkh(b|s).

where the last equality holds due to
∑

b∈B ν
k
h(b | s) = 1. Combining this equality with (4.34) gives

V π∗,νk

h (s)− V k

h(s) =
∑
a∈A

∑
s′∈S

π∗h(a|s)Ph(s′|s, a)
[
V π∗,νk

h+1 (s′)− V k

h+1(s′)
]

+
∑
a∈A

∑
b∈B

π∗h(a|s)ςkh(s, a, b)νkh(b|s)

+
∑
a∈A

∑
b∈B

[
π∗h(a|s)− πkh(a|s)

]
Q
k

h(s, a, b)ν
k
h(b|s).

(4.35)

Note that (4.35) indicates a recursion of the value function difference V π∗,νk

h (s) − V
k

h(s). Since
we define V π∗,νk

H+1 (s) = 0 and V
k

H+1(s) = 0, by recursively applying (4.35) from h = 1 to H , we
obtain

V π∗,νk

1 (s1)− V k

1(s1) =
H∑
h=1

Eπ∗,P
{

[π∗h(·|sh)]>ςkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eπ∗,P
{[
π∗h(·|sh)− πkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
,

(4.36)
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where sh are a random variables denoting the state at the h-th step following a distribution deter-
mined jointly by π∗,P. Further combining (4.36) with (4.33), we eventually have

V π∗,νk

1 (s1)− V πk,νk

1 (s1)

= V
k

1(s1)− V πk,νk

1 (s1) +
H∑
h=1

Eπ∗,P
{

[π∗h(·|sh)]>ςkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eπ∗,P
{[
π∗h(·|sh)− πkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
,

which is equivalent to the result in this lemma. This completes our proof.

Lemma 4.21. At the k-th episode of Algorithm 5, with probability at least 1 − δ, the difference

between the value functions V πk,νk

1 (s1) and V πk,ν∗

1 (s1) for all k ∈ [K] is decomposed as

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

≤ 2
H∑
h=1

Eπk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
+

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
ςk
h
(s, ·, ·)ν∗h(·|s)

+
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B + 2

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ ,
where sh, ah, bh are random variables for state and actions, W k

h (s, b) = 〈r̃kh(s, ·, b), πkh(· | s)〉A,

and we define the error term as

ςk
h
(s, a, b) = r̃kh(s, a, b)− rh(s, a, b). (4.37)

Proof. We start our proof by decomposing the value difference term for any h and s as follows

V πk,νk

h (s)− V πk,ν∗

h (s)

=
[
πkh(·|s)

]>
Qπk,νk

h (s, ·, ·)νkh(·|s)−
[
πkh(·|s)

]>
Qπk,ν∗

h (s, ·, ·)ν∗h(·|s)

=
[
πkh(·|s)

]>
Qπk,νk

h (s, ·, ·)
[
νkh(·|s)− ν∗h(·|s)

]
+
[
πkh(·|s)

]>[
Qπk,νk

h (s, ·, ·)−Qπk,ν∗

h (s, ·, ·)
]
ν∗h(·|s),

(4.38)

where the first equality is by the Bellman equation for V π,ν
h (s) in (2.3) and the second equality

is obtained by subtracting and adding the term
[
πkh(·|s)

]>
Qπk,νk

h (s, ·, ·)ν∗h(·|s) in the first equality.
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Moreover, by the Bellman equation for Qπ,ν
h in (2.4), we can expand the last term in (4.38) as[

πkh(·|s)
]>[

Qπk,νk

h (s, ·, ·)−Qπk,ν∗

h (s, ·, ·)
]
ν∗h(·|s)

=
∑
a∈A

∑
b∈B

πkh(a|s)
∑
s′∈S

Ph(s′|s, a)
[
V πk,νk

h+1 (s′)− V πk,ν∗

h+1 (s′)
]
ν∗h(b|s)

=
∑
a∈A

∑
s′∈S

πkh(a|s)Ph(s′|s, a)
[
V πk,νk

h+1 (s′)− V πk,ν∗

h+1 (s′)
]
.

(4.39)

where the last equality holds due to
∑

b∈B ν
∗
h(b | s) = 1. Combining (4.39) with (4.38) gives

V πk,νk

h (s)− V πk,ν∗

h (s) =
∑
a∈A

∑
b∈B

πkh(a|s)Qπk,νk

h (s, a, b)
[
νkh(b|s)− ν∗h(b|s)

]
+
∑
a∈A

∑
s′∈S

πkh(a|s)Ph(s′|s, a)
[
V πk,νk

h+1 (s′)− V πk,ν∗

h+1 (s′)
]
.

(4.40)

Note that (4.40) indicates a recursion of the value function difference V πk,νk

h (s)−V πk,ν∗

h (s). Since
we define V π,ν

H+1(s) = 0 for any π and ν, by recursively applying (4.40) from h = 1 toH , we obtain

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

=
H∑
h=1

Eπk,P
{[
πkh(·|sh)

]>
Qπk,νk

h (sh, ·, ·)
[
νkh(·|sh)− ν∗h(·|sh)

] ∣∣ s1

}
,

(4.41)

where sh are a random variables following a distribution determined jointly by πk,P. Note that
since we have defined the distribution of sh under πk and P as

qπ
k,P

h (s) = Pr
(
sh = s

∣∣ πk,P, s1

)
,

we can rewrite (4.41) as

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

=
H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qπ
k,P

h (s)πkh(a|s)Qπk,νk

h (s, a, b)
[
νkh(b|s)− ν∗h(b|s)

]
.

(4.42)
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By plugging the Bellman equation for Q-function as (2.4) into (4.42), we further expand (4.42) as

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

=
H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qπ
k,P

h (s)πkh(a|s)
[
rh(s, a, b) +

〈
Ph(·|s, a), V πk,νk

h+1 (·)
〉]

[νkh(b|s)− ν∗h(b|s)]

=
H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qπ
k,P

h (s)πkh(a|s) [rh(s, a, b)] [νkh(b|s)− ν∗h(b|s)]

=
H∑
h=1

∑
s∈S

qπ
k,P

h (s)[πkh(·|s)]>rh(s, ·, ·)
[
νkh(·|s)− ν∗h(·|s)

]
,

where the second equality by

H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qπ
k,P

h (s)πkh(a|s)
〈
Ph(·|s, a), V πk,νk

h+1 (·)
〉
S [νkh(b|s)− ν∗h(b|s)]

=
H∑
h=1

∑
s∈S

∑
a∈A

qπ
k,P

h (s)πkh(a|s)
〈
Ph(·|s, a), V πk,νk

h+1 (·)
〉
S

∑
b∈B

[νkh(b|s)− ν∗h(b|s)]

= 0.

In particular, the last equality above is due to∑
b∈B

[
νkh(b|s)− ν∗h(b|s)

]
= 1− 1 = 0.

Thus, we have

V πk,νk

1 (s1)− V πk,ν∗

1 (s1) =
H∑
h=1

∑
s∈S

qπ
k,P

h (s)
[
πkh(·|s)

]>
rh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
. (4.43)

Recall that we also define the estimate of the state reaching probability qπ
k,P

h (s) as

dπ
k,P̂k
h (s) = Pr

(
sh = s

∣∣ πk, P̂k, s1

)
.

Now we define the following term associated with P̂k, r̂k, πk, νk, and the initial state s1 as

V k
1 :=

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s),
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with r̃ defined in Line 7 of Algorithm 5, which is

r̃kh(s, a, b) = max
{
r̂kh(s, a, b)− β

r,k
h (s, a, b), 0

}
.

Thus, by (4.43), we have the following decomposition

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

= V πk,νk

1 (s1)− V πk,ν∗

1 (s1)− V k
1 + V k

1

=
H∑
h=1

∑
s∈S

{
qπ

k,P
h (s)

[
πkh(·|s)

]>
rh(s, ·, ·)νkh(·|s)− dπ

k,P̂k
h (s)

[
πkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

}
︸ ︷︷ ︸

Term(I)

+
H∑
h=1

∑
s∈S

{
dπ

k,P̂k
h (s)

[
πkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)− qπ

k,P
h (s)

[
πkh(·|s)

]>
rh(s, ·, ·)ν∗h(·|s)

}
︸ ︷︷ ︸

Term(II)

.

(4.44)

We first bound Term(I) as

Term(I) =
H∑
h=1

∑
s∈S

{
qπ

k,P
h (s)

[
πkh(·|s)

]>
rh(s, ·, ·)νkh(·|s)− dπ

k,P̂k
h (s)

[
πkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

}
=

H∑
h=1

∑
s∈S

qπ
k,P

h (s)
[
πkh(·|s)

]>[
rh(s, ·, ·)− r̃kh(s, ·, ·)

]
νkh(·|s)

+
H∑
h=1

∑
s∈S

[
qπ

k,P
h (s)− dπ

k,P̂k
h (s)

][
πkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

≤ 2
H∑
h=1

Eπk,P,νk
[
βr,kh (s, a, b)

]
+

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ , (4.45)

where the inequality is due to |r̂kh(s, a, b)− rh(s, a, b)| ≤ βr,kh (s, a, b) with probability at least 1− δ
by Lemma 4.23 such that we have

rh(s, a, b)− r̃kh(s, a, b) = rh(s, a, b)−max
{
r̂kh(s, a, b)− β

r,k
h (s, a, b), 0

}
= min

{
rh(s, a, b)− r̂kh(s, a, b) + βr,kh (s, a, b), rh(s, a, b)

}
≤ rh(s, a, b)− r̂kh(s, a, b) + βr,kh (s, a, b) ≤ 2βr,kh (s, a, b)
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and then ∑
s∈S

qπ
k,P

h (s)
[
πkh(·|s)

]>[
rh(s, ·, ·)− r̃kh(s, ·, ·)

]
νkh(·|s) ≤ 2Eπk,P,νk

[
βr,kh (s, a, b)

]
.

In addition, the inequality in (4.45) is also due to∣∣∣∣[πkh(·|s)
]>
r̃kh(s, ·, ·)νkh(·|s)

∣∣∣∣ ≤ ∣∣∣∣∑
a

∑
b

πkh(a|s)r̃kh(s, a, b)νkh(b|s)
∣∣∣∣

≤
∑
a

∑
b

πkh(a|s) ·
∣∣r̃kh(s, a, b)∣∣ · νkh(b|s) ≤ 1,

because of 0 ≤ r̃kh(s, a, b) = max
{
r̂kh(s, a, b)− β

r,k
h (s, a, b), 0

}
≤ r̂kh(s, a, b) ≤ 1. Therefore, with

probability at least 1− δ, we have

Term(I) ≤ 2
H∑
h=1

Eπk,P,νk
[
βr,kh (sh, ah, bh)

]
+

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ . (4.46)

Next, we bound Term(II) in the following way

Term(II) =
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
r̃kh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
+

H∑
h=1

∑
s∈S

[
dπ

k,P̂k
h (s)− qπ

k,P
h (s)

][
πkh(·|s)

]>
rh(s, ·, ·)ν∗h(·|s)

+
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
ςk
h
(s, ·, ·)ν∗h(·|s),

where ςk
h
(s, a, b) is defined in (4.37). Here the first term in the above equality is associated

with the mirror descent step in Algorithm 5. The second term can be similarly bounded by∑H
h=1

∑
s∈S |q

πk,P
h (s)− dπ

k,P̂k
h (s)|. Thus, we have

Term(II) ≤
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
r̃kh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
(4.47)

+
H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣+
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
ςk
h
(s, ·, ·)ν∗h(·|s).

Combining (4.46), (4.47) with (4.44), we obtain that with probability at least 1− δ, the following
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inequality holds

V πk,νk

1 (s1)− V πk,ν∗

1 (s1)

≤ 2
H∑
h=1

Eπk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
+

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

[
πkh(·|s)

]>
ςk
h
(s, ·, ·)ν∗h(·|s)

+
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B + 2

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ ,
where W k

h (s, b) = 〈r̃kh(s, ·, b), πkh(· | s)〉A. This completes our proof.

Lemma 4.22. With setting η =
√

log |A|/(KH2), the mirror ascent steps of Algorithm 4 lead to

K∑
k=1

H∑
h=1

Eπ∗,P
[〈
π∗h(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

]
≤ O

(√
H4K log |A|

)
,

where Uk
h (s, a) = 〈Qk

h(s, a, ·), νkh(·|s)〉B, ∀(s, a) ∈ S ×A.

Proof. As shown in (4.12), the mirror ascent step at the k-th episode is to solve the following
maximization problem

maximize
π

H∑
h=1

〈
πh(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A −

1

η

H∑
h=1

DKL

(
πh(·|s), πkh(·|s)

)
,

with Uk
h (s, a) = 〈Qk

h(s, a, ·), νkh(·|s)〉B. We can further equivalently rewrite this maximization
problem as a minimization problem as

minimize
π

−
H∑
h=1

〈
πh(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A +

1

η

H∑
h=1

DKL

(
πh(·|s), πkh(·|s)

)
.

Note that the closed-form solution πk+1
h (·|s), ∀s ∈ S, to this minimization problem is guaranteed

to stay in the relative interior of a probability simplex when initialize π0
h(·|s) = 1/|A|. Thus, we

can apply Lemma 4.16 and obtain that for any π = {πh}Hh=1, the following inequality holds

− η
〈
πk+1
h (·|s), Uk

h (s, ·)
〉
A + η

〈
πh(·|s), Uk

h (s, ·)
〉
A

≤ DKL

(
πh(·|s), πkh(·|s)

)
−DKL

(
πh(·|s), πk+1

h (·|s)
)
−DKL

(
πk+1
h (·|s), πkh(·|s)

)
.
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Then, by rearranging the terms, we have

η
〈
π∗h(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

≤ DKL

(
π∗h(·|s), πkh(·|s)

)
−DKL

(
π∗h(·|s), πk+1

h (·|s)
)
−DKL

(
πk+1
h (·|s), πkh(·|s)

)
+ η
〈
πk+1
h (·|s)− πkh(·|s), Uk

h (s, ·)
〉
A.

(4.48)

Due to Pinsker’s inequality, we have

−DKL

(
πk+1
h (·|s), πkh(·|s)

)
≤ −1

2

∥∥πk+1
h (·|s)− πkh(·|s)

∥∥2

1
.

Moreover, by Cauchy-Schwarz inequality, we have

η
〈
πk+1
h (·|s)− πkh(·|s), Uk

h (s, ·)
〉
A ≤ ηH

∥∥πk+1
h (·|s)− πkh(·|s)

∥∥
1
.

Thus, we have

−DKL

(
πk+1
h (·|s), πkh(·|s)

)
+ η
〈
πk+1
h (·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

≤ −1

2

∥∥πk+1
h (·|s)− πkh(·|s)

∥∥2

1
+ ηH

∥∥πk+1
h (·|s)− πkh(·|s)

∥∥
1
≤ 1

2
η2H2,

(4.49)

where the last inequality is by viewing
∥∥πk+1

h (·|s) − πkh(·|s)
∥∥

1
as a variable x and finding the

maximal value of −1/2 · x2 + ηHx to obtain the upper bound 1/2 · η2H2.
Thus, combing (4.49) with (4.48), the policy improvement step in Algorithm 4 implies

η
〈
π∗h(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

≤ DKL

(
π∗h(·|s), πkh(·|s)

)
−DKL

(
π∗h(·|s), πk+1

h (·|s)
)

+
1

2
η2H2,

which further leads to

H∑
h=1

Eπ∗,P
[〈
π∗h(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

]
≤ 1

η

H∑
h=1

Eπ∗,P
[
DKL

(
π∗h(·|s), πkh(·|s)

)
−DKL

(
π∗h(·|s), πk+1

h (·|s)
)]

+
1

2
ηH3.
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Moreover, we take summation from k = 1 to K of both sides and then obtain

K∑
k=1

H∑
h=1

Eπ∗,P
[〈
π∗h(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

]
≤ 1

η

H∑
h=1

Eπ∗,P
[
DKL

(
π∗h(·|s), π1

h(·|s)
)
−DKL

(
π∗h(·|s), πK+1

h (·|s)
)]

+
1

2
ηKH3

≤ 1

η

H∑
h=1

Eπ∗,P
[
DKL

(
π∗h(·|s), π1

h(·|s)
)]

+
1

2
ηKH3,

where the last inequality is non-negativity of KL divergence. By the initialization in Algorithm 4,
it is guaranteed that π1

h(·|s) = 1/|A|, which thus leads to DKL (π∗h(·|s), π1
h(·|s)) ≤ log |A|. Then,

with setting η =
√

log |A|/(KH2), we bound the last term as

1

η

H∑
h=1

Eπ∗,P
[
DKL

(
π∗h(·|s), π1

h(·|s)
)]

+
1

2
ηKH3 ≤ O

(√
H4K log |A|

)
,

which gives

K∑
k=1

H∑
h=1

Eπ∗,P
[〈
π∗h(·|s)− πkh(·|s), Uk

h (s, ·)
〉
A

]
≤ O

(√
H4K log |A|

)
,

This completes the proof.

Lemma 4.23. For any k ∈ [K], h ∈ [H] and all (s, a, b) ∈ S × A × B, with probability at least

1− δ, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)∣∣ ≤
√

4 log(|S||A||B|HK/δ)
max{Nk

h (s, a, b), 1}
.

This lemma is the same as Lemma 4.10. We rewrite it here for the completeness of the proofs
in this section. In (4.11), we set βr,kh (s, a, b) =

√
4 log(|S||A||B|HK/δ)

max{Nk
h (s,a,b),1} , which equals the bound in

Lemma 4.23.

Lemma 4.24. For any k ∈ [K], h ∈ [H] and all (s, a) ∈ S × A, with probability at least 1 − δ,
we have

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤

√
2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

.

Proof. For k ≥ 1, we have ‖P̂kh(· | s, a)−Ph(· | s, a)‖1 = max‖z‖∞≤1 〈P̂kh(· | s, a)−Ph(· | s, a), z〉S
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by the duality. We construct an ε-cover for the set {z ∈ R|S| : ‖z‖∞ ≤ 1} with the distance
induced by ‖ · ‖∞, denoted as C∞(ε), such that for any z ∈ R|S|, there always exists z′ ∈ C∞(ε)

satisfying ‖z− z′‖∞ ≤ ε. The covering number is N∞(ε) = |C∞(ε)| = 1/ε|S|. Thus, we have for
any (s, a) ∈ S ×A and any z with ‖z‖∞ ≤ 1, there exists z′ ∈ C∞(ε) such that ‖z′− z‖∞ ≤ ε and

〈
P̂kh(· | s, a)− Ph(· | s, a), z

〉
S

=
〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S +

〈
P̂kh(· | s, a)− Ph(· | s, a), z− z′

〉
S

≤
〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S + ε

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
,

such that we further have∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1

= max
‖z‖∞≤1

〈
P̂kh(· | s, a)− Ph(· | s, a), z

〉
S

≤ max
z′∈C∞(ε)

〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S + ε

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
.

(4.50)

By Hoeffding’s inequality and the union bound over all z′ ∈ C∞(ε), when Nk
h (s, a) > 0, with

probability at least 1− δ′ where δ′ ∈ (0, 1],

max
z′∈C∞(ε)

〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S ≤

√
|S| log(1/ε) + log(1/δ′)

2Nk
h (s, a)

. (4.51)

Letting ε = 1/2, by (4.50) and (4.51), with probability at least 1− δ′, we have

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤ 1

√
|S| log 2 + log(1/δ′)

2Nk
h (s, a)

.

When Nk
h (s, a) = 0, we have

∥∥P̂kh(· | s, a) − Ph(· | s, a)
∥∥

1
= ‖Ph(· | s, a)‖1 = 1 such that

2
√
|S| log 2+log(1/δ′)

2
> 1 =

∥∥P̂kh(· | s, a) − Ph(· | s, a)
∥∥

1
always holds. Thus, with probability at

least 1− δ′,

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤ 2

√
|S| log 2 + log(1/δ′)

2 max{Nk
h (s, a), 1}

≤

√
2|S| log(2/δ′)

max{Nk
h (s, a), 1}

.

Then, by the union bound, assuming K > 1, letting δ = |S||A|HKδ′/2, with probability at least
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1− δ, for any (s, a) ∈ S ×A and any h ∈ [H] and k ∈ [K], we have

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤

√
2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

,

This completes the proof.

In (4.11), we set βP,k
h (a, b) =

√
2H2|S| log(|S||A|HK/δ)

max{Nk
h (s,a),1} , which equals the product of the upper

bound in Lemma 4.24 and the factor H .

Lemma 4.25. With probability at least 1− 2δ, Algorithm 4 ensures that

K∑
k=1

H∑
h=1

Eπ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

Proof. We prove the upper bound of the model prediction error term. We can decompose the
instantaneous prediction error at the h-step of the k-th episode as

ςkh(s, a, b) = rh(s, a, b) +
〈
Ph(· | s, a), V

k

h+1(·)
〉
S −Q

k

h(s, a, b), (4.52)

where the equality is by the definition of the prediction error in (4.32). By plugging in the definition
of Q

k

h in Line 7 of Algorithm 4, for any (s, a, b), we bound the following term as

rh(s, a, b) +
〈
Ph(· | s, a), V

k

h+1(·)
〉
S −Q

k

h(s, a, b)

≤ rh(s, a, b) +
〈
Ph(· | s, a), V

k

h+1(·)
〉
S

−min
{
r̂kh(s, a, b) +

〈
P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h, H − h+ 1

}
≤ max

{
rh(s, a, b)− r̂kh(s, a, b) +

〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h, 0
}
,

(4.53)

where the inequality holds because

rh(s, a, b) +
〈
Ph(· | sh, ah), V

k

h+1(·)
〉
S

≤ rh(s, a, b) +
∥∥Ph(· | sh, ah)∥∥1

‖V k

h+1(·)‖∞ ≤ 1 + max
s′∈S

∣∣V k

h+1(s′)
∣∣ ≤ 1 +H − h,

since
∥∥Ph(· | sh, ah)∥∥1

= 1 and also the truncation step as shown in Line 7 of Algorithm 4 forQ
k

h+1
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such that for any s′ ∈ S∣∣V k

h+1(s′)
∣∣ =

∣∣∣[πkh+1(·|s′)
]>
Q
k

h+1(s′, ·, ·)νkh+1(·|s′)
∣∣∣

≤
∥∥πkh+1(·|s′)

∥∥
1

∥∥Qk

h+1(s′, ·, ·)νkh+1(·|s′)
∥∥
∞

≤ max
a,b

∣∣Qk

h+1(s′, a, b)
∣∣ ≤ H − h.

(4.54)

Combining (4.52) and (4.53) gives

ςkh(s, a, b) ≤ max
{
rh(s, a, b)− r̂kh(s, a, b)

+
〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h, 0
}
.

(4.55)

Note that as shown in (4.11), we have

βkh(s, a, b) = βr,kh (s, a, b) + βP,k
h (s, a).

Then, with probability at least 1− δ, we have

rh(s, a, b)− r̂kh(s, a, b)− β
r,k
h (s, a, b)

≤
∣∣rh(s, a, b)− r̂kh(s, a, b)∣∣− βr,kh (s, a, b)

≤ βr,kh (s, a, b)− βr,kh (s, a, b) = 0,

where the last inequality is by Lemma 4.23 and the setting of the bonus for the reward. Moreover,
with probability at least 1− δ, we have

〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

P,k
h (s, a)

≤
∥∥Ph(· | s, a)− P̂kh(·|s, a)

∥∥
1

∥∥V k

h+1(·)
∥∥
∞ − β

P,k
h (s, a)

≤ H
∥∥Ph(· | s, a)− P̂kh(·|s, a)

∥∥
1
− βP,k

h (s, a)

≤ βP,k
h (s, a)− βP,k

h (s, a) = 0,

where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to
maxs′∈S

∥∥V k

h+1(s′)
∥∥
∞ ≤ H as shown in (4.54), and the last inequality is by the setting of βP,k

h

and also Lemma 4.24. Thus, with probability at least 1− 2δ, the following inequality holds

rh(s, a, b)− r̂kh(s, a, b) +
〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h(s, a, b) ≤ 0.

Combining the above inequality with (4.55), we have that with probability at least 1− 2δ, for any
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h ∈ [H] and k ∈ [K], the following inequality holds

ςkh(s, a, b) ≤ 0, ∀(s, a, b) ∈ S ×A× B,

which leads to

K∑
k=1

H∑
h=1

Eπ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

This completes the proof.

Lemma 4.26. With probability at least 1− δ, Algorithm 4 ensures that

K∑
k=1

V
k

1(s1)−
K∑
k=1

V πk,νk

1 (s1) ≤ Õ
(√
|S|2|A|H4K +

√
|S||A||B|H2K

)
.

Proof. We assume that a trajectory {(skh, akh, bkh, skh+1)}Hh=1 for all k ∈ [K] is generated following
the policies πk, νk, and the true transition model P. Thus, we expand the bias term at the h-th step
of the k-th episode, which is

V
k

h(s
k
h)− V

πk,νk

h (skh) =
[
πkh(·|skh)

]>[
Q
k

h(s
k
h, ·, ·)−Q

πk,νk

h (skh, ·, ·)
]
νkh(·|skh)

= ζkh +Q
k

h(s
k
h, a

k
h, b

k
h)−Q

πk,νk

h (skh, a
k
h, b

k
h)

= ζkh +
〈
Ph(· | skh, akh), V

k

h+1(·)− V πk,νk

h+1 (·)
〉
S − ς

k
h(s

k
h, a

k
h, b

k
h)

= ζkh + ξkh + V
k

h+1(skh+1)− V πk,νk

h+1 (skh+1)− ςkh(skh, akh, bkh),

(4.56)

where the first equality is by Line 8 of Algorithm 4 and (2.3), the third equality is by plugging
in (2.4) and (4.32). Specifically, in the above equality, we introduce two martingale difference
sequence, namely, {ζkh}h≥0,k≥0 and {ξkh}h≥0,k≥0, which are defined as

ζkh :=
[
πkh(·|skh)

]>[
Q
k

h(s
k
h, ·, ·)−Q

πk,νk

h (skh, ·, ·)
]
νkh(·|skh)−

[
Q
k

h(s
k
h, a

k
h, b

k
h)−Q

πk,νk

h (skh, a
k
h, b

k
h)
]
,

ξkh :=
〈
Ph(· | skh, akh), V

k

h+1(·)− V πk,νk

h+1 (·)
〉
S −

[
V
k

h+1(skh+1)− V πk,νk

h+1 (skh+1)
]
,

such that

Eakh∼πkh(·|skh),bkh∼ν
k
h(·|skh)

[
ζkh
∣∣Fkh ] = 0, Eskh+1∼Ph(· | skh,a

k
h)

[
ξkh
∣∣ F̃kh] = 0,

with Fkh being the filtration of all randomness up to (h− 1)-th step of the k-th episode plus skh, and
F̃kh being the filtration of all randomness up to (h− 1)-th step of the k-th episode plus skh, a

k
h, b

k
h.

We can observe that the equality (4.56) construct a recursion for V
k

h(s
k
h)−V

πk,νk

h (skh). Moreover,
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we also have V
k

H+1(·) = 0 and V πk,νk

H+1 (·) = 0. Thus, recursively apply (4.56) from h = 1 to H
leads to the following equality

V
k

1(s1)− V πk,νk

1 (s1) =
H∑
h=1

ζkh +
H∑
h=1

ξkh −
H∑
h=1

ςkh(s
k
h, a

k
h, b

k
h). (4.57)

Moreover, by (4.32) and Line 7 of Algorithm 4, we have

−ςkh(skh, akh, bkh) = −rh(skh, akh, bkh)−
〈
Ph(· | sh, ah), V

k

h+1(·)
〉
S

+ min
{
r̂kh(s

k
h, a

k
h, b

k
h) +

〈
P̂kh(·|sh, ah), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h), H − h+ 1

}
.

Then, we can further bound −ςkh(skh, akh, bkh) as follows

−ςkh(skh, akh, bkh) ≤ −rh(skh, akh, bkh)−
〈
Ph(· | skh, akh), V

k

h+1(·)
〉
S + r̂kh(s

k
h, a

k
h, b

k
h)

+
〈
P̂kh(·|skh, akh), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h)

≤
∣∣r̂kh(skh, akh, bkh)− rh(skh, akh, bkh)∣∣
+
∣∣∣〈Ph(· | skh, akh)− P̂kh(· | skh, akh), V

k

h+1(·)
〉
S

∣∣∣+ βkh(skh, a
k
h, b

k
h),

where the first inequality is due to min{x, y} ≤ x. Additionally, we have∣∣∣〈Ph(· | skh, akh)− P̂kh(· | skh, akh), V
k

h+1(·)
〉
S

∣∣∣ ≤ ∥∥V k

h+1(·)
∥∥
∞

∥∥Ph(· | skh, akh)− P̂kh(· | skh, akh)
∥∥

1

≤ H
∥∥Ph(· | skh, akh)− P̂kh(· | skh, akh)

∥∥
1
,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (4.54).
Thus, putting the above together, we obtain

−ςkh(skh, akh, bkh) ≤
∣∣r̂kh(skh, akh, bkh)− rh(skh, akh, bkh)∣∣+H

∥∥V k

h+1(·)− V k

h+1(·)
∥∥

1
+ βkh(skh, a

k
h, b

k
h)

≤ 2βr,kh (skh, a
k
h, b

k
h) + 2βP,k

h (skh, a
k
h),

where the second inequality is by Lemma 4.23, Lemma 4.24, and the decomposition of the bonus
term βkh as (4.11). Due to Lemma 4.23 and Lemma 4.24, by the union bound, for any h ∈ [H], k ∈
[K] and (sh, ah, bh) ∈ S × A × B, the above inequality holds with probability at least 1 − 2δ.
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Therefore, by (4.57), with probability at least 1− 2δ, we have

K∑
k=1

[
V
k

1(s1)− V πk,νk

1 (s1)
]

≤
K∑
k=1

H∑
h=1

ζkh +
K∑
k=1

H∑
h=1

ξkh + 2
K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) + 2

K∑
k=1

H∑
h=1

βP,k
h (skh, a

k
h).

(4.58)

By Azuma-Hoeffding inequality, with probability at least 1− δ, the following inequalities hold

K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ

)
,

K∑
k=1

H∑
h=1

ξkh ≤ O

(√
H3K log

1

δ

)
,

where we use the facts that |Qk

h(s
k
h, a

k
h, b

k
h) − Qπk,νk

h (skh, a
k
h, b

k
h)| ≤ 2H and |V k

h+1(skh+1) −
V πk,νk

h+1 (skh+1)| ≤ 2H . Next, we need to bound
∑K

k=1

∑H
h=1 β

r,k
h (skh, a

k
h, b

k
h) and∑K

k=1

∑H
h=1 β

P,k
h (skh, a

k
h) in (4.58). We show that

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) = C

K∑
k=1

H∑
h=1

√
log(|S||A||B|HK/δ)

max{Nk
h (skh, a

k
h, b

k
h), 1}

= C
K∑
k=1

H∑
h=1

√
log(|S||A||B|HK/δ)

Nk
h (skh, a

k
h, b

k
h)

≤ C
H∑
h=1

∑
(s,a,b)∈S×A×B
NK
h (s,a,b)>0

NK
h (s,a,b)∑
n=1

√
log(|S||A||B|HK/δ)

n
,

where the second equality is because (skh, a
k
h, b

k
h) is visited such that Nk

h (skh, a
k
h, b

k
h) ≥ 1. In addi-

tion, we have

H∑
h=1

∑
(s,a,b)∈S×A×B
NK
h (s,a,b)>0

NK
h (s,a,b)∑
n=1

√
log(|S||A||B|HK/δ)

n

≤
H∑
h=1

∑
(s,a,b)∈S×A×B

O

(√
NK
h (s, a, b) log

|S||A||B|HK
δ

)

≤ O

(
H

√
K|S||A||B| log

|S||A||B|HK
δ

)
,
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where the last inequality is based on the consideration that
∑

(s,a,b)∈S×A×BN
K
h (s, a, b) = K such

that
∑

(s,a,b)∈S×A×B

√
NK
h (s, a, b) ≤ O

(√
K|S||A||B|

)
when K is sufficiently large. Putting the

above together, we obtain

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) ≤ O

(
H

√
K|S||A||B| log

|S||A||B|HK
δ

)
.

Similarly, we have

K∑
k=1

H∑
h=1

βP,k
h (skh, a

k
h) =

K∑
k=1

H∑
h=1

√
H2|S| log(|S||A|HK/δ)

max{Nk
h (skh, a

k
h), 1}

≤
H∑
h=1

∑
(s,a)∈S×A

O

(√
NK
h (s, a)H2|S| log

|S||A|HK
δ

)

≤
H∑
h=1

∑
(s,a)∈S×A

O

(√∑
b∈B

NK
h (s, a, b)H2|S| log

|S||A|HK
δ

)

≤ O

(
H

√
K|S|2|A|H2 log

|S||A|HK
δ

)
,

where the second inequality is due to
∑

b∈BN
K
h (s, a, b) = NK

h (s, a), and the last in-
equality is based on the consideration that

∑
(s,a,b)∈S×A×BN

K
h (s, a, b) = K such that∑

(s,a)∈S×A

√∑
b∈BN

K
h (s, a, b) ≤ O(

√
K|S||A|) when K is sufficiently large.

Thus, by (4.58), with probability at least 1− δ, we have

K∑
k=1

V
k

1(s1)−
K∑
k=1

V πk,νk

1 (s1) ≤ Õ(
√
|S|2|A|H4K +

√
|S||A||B|H2K)

where Õ hides logarithmic terms. This completes the proof.

Lemma 4.27. With setting γ =
√
|S| log |B|/K, the mirror descent steps of Algorithm 5 lead to

K∑
k=1

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
≤ O

(√
H2|S|K log |B|

)
,

where W k
h (s, b) = 〈r̃kh(s, ·, b), πkh(· | s)〉A.

Proof. Similar to the proof of Lemma 4.22, and also by Lemma 4.16, for any ν = {νh}Hh=1 and
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s ∈ S, the mirror descent step in Algorithm 5 leads to

γdπ
k,P̂k
h (s)

〈
W k
h (s, ·), νk+1

h (·|s)
〉
B − γd

πk,P̂k
h (s)

〈
W k
h (s, ·), νh(·|s)

〉
B

≤ DKL

(
νh(·|s), νkh(·|s)

)
−DKL

(
νh(·|s), νk+1

h (·|s)
)
−DKL

(
νk+1
h (·|s), νkh(·|s)

)
,

according to (4.13), where W k
h (s, b) =

〈
πkh(·|s), r̃kh(s, ·, b)

〉
. Then, by rearranging the terms, we

have

γdπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)
−DKL

(
νk+1
h (·|s), νkh(·|s)

)
− γdπ

k,P̂k
h (s)

〈
W k
h (s, ·), νk+1

h (·|s)− νkh(·|s)
〉
B.

(4.59)

Due to Pinsker’s inequality, we have

−DKL

(
νk+1
h (·|s), νkh(·|s)

)
≤ −1

2

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥2

1
. (4.60)

Moreover, we have

− γdπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− νk+1

h (·|s)
〉
B

≤ γdπ
k,P̂k
h (s)

∥∥W k
h (s, ·)

∥∥
∞

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥
1

≤ γdπ
k,P̂k
h (s)

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥
1
,

(4.61)

where the last inequality is by

‖W k
h (s, ·)‖∞ = max

b∈B
W k
h (s, b) ≤ max

s∈S,b∈B
W k
h (s, b)

≤ max
s∈S,b∈B

〈
r̃k−1
h (s, ·, b), πkh(· | s)

〉
≤ max

s∈S,b∈B

∥∥r̃k−1
h (s, ·, b)

∥∥
∞

∥∥πkh(· | s)
∥∥

1
≤ 1.

due to the definition of W k
h and 0 ≤ r̃kh(s, a, b) = max{r̂kh(s, a, b) − βr,kh , 0} ≤ r̂kh(s, a, b) ≤ 1.

Combining (4.60) and (4.61) gives

−DKL

(
νk+1
h (·|s), νkh(·|s)

)
− γdπ

k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− νk+1

h (·|s)
〉

≤ −1

2

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥2

1
+ γdπ

k,P̂k
h (s)

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥
1

≤ 1

2

[
dπ

k,P̂k
h (s)

]2
γ2 ≤ 1

2
dπ

k,P̂k
h (s)γ2,
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where the second inequality is obtained via solving maxx{−1/2 · x2 + γdπ
k,P̂k
h (s) · x} if letting

x = ‖νk+1
h (·|s)− νkh(·|s)‖1. Plugging the above inequality into (4.59) gives

γdπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)

+
1

2
dπ

k,P̂k
h (s)γ2.

Thus, the policy improvement step implies

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ 1

γ

H∑
h=1

∑
s∈S

[
DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)]

+
1

γ

H∑
h=1

∑
s∈S

1

2
dπ

k,P̂k
h (s)γ2

≤ 1

γ

H∑
h=1

∑
s∈S

[
DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)]

+
1

2
Hγ.

Further taking summation from k = 1 to K on both sides of the above inequality gives

K∑
k=1

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ 1

γ

H∑
h=1

∑
s∈S

[
DKL

(
ν∗h(·|s), ν1

h(·|s)
)
−DKL

(
ν∗h(·|s), νK+1

h (·|s)
)]

+
1

2
HKγ

≤ 1

γ

H∑
h=1

∑
s∈S

DKL

(
ν∗h(·|s), ν1

h(·|s)
)

+
1

2
HKγ.

Note that by the initialization in Algorithm 5, it is guaranteed that ν1
h(·|s) = 1/|B|, which thus

leads to DKL (π∗h(·|s), π1
h(·|s)) ≤ log |B|. By setting γ =

√
|S| log |B|/K, we further bound the

term as

1

γ

H∑
h=1

∑
s∈S

DKL

(
ν∗h(·|s), ν1

h(·|s)
)

+
1

2
HKγ ≤ O

(√
H2|S|K log |B|

)
,

which gives

K∑
k=1

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B ≤ O

(√
H2|S|K log |B|

)
.

This completes the proof.
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Lemma 4.28. With probability at least 1− δ, Algorithm 5 ensures that

K∑
k=1

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)[πkh(·|s)]>ςk

h
(s, ·, ·)ν∗h(·|s) ≤ 0,

where ςk
h
(s, a, b) = r̃kh(s, a, b)− rh(s, a, b).

Proof. With probability at least 1− δ, for any (s, a, b) ∈ S ×A× B, h ∈ [H], k ∈ [K], we have

ςk
h
(s, a, b) = r̃kh(s, a, b)− rh(s, a, b)

= max
{
r̂k−1
h (s, a, b)− rh(s, a, b)− βr,k−1

h ,−rh(s, a, b)
}

≤ max
{

0,−rh(s, a, b)
}

= 0,

where r̃kh(s, a, b) is computed as in Algorithm 5 and the inequality is by r̂k−1
h (s, a, b)−rh(s, a, b)−

βr,k−1
h ≤ 0 with probability at least 1 − δ by Lemma 4.23. The above result reflects the optimism

of r̃kh. Therefore, with probability at least 1− δ, we have

K∑
k=1

H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)[πkh(·|s)]>ςk

h
(s, ·, ·)ν∗h(·|s)

=
H∑
h=1

∑
s∈S

dπ
k,P̂k
h (s)

∑
a,b

πkh(a|s)
[
r̃kh(s, a, b)− rh(s, a, b)

]
ν∗h(b|s)

≤ 0.

This completes the proof.

Before giving the next lemma, we first present the following definition for the proof of the next
lemma.

Definition 4.29 (Confidence Set). Define the following confidence set for transition models

Υk :=
{
P̃ :
∣∣∣P̃h(s′|s, a)− P̂kh(s′|s, a)

∣∣∣ ≤ εkh, ‖P̃h(·|s, a)‖1 = 1,

and P̃h(s′|s, a) ≥ 0, ∀(s, a, s′) ∈ S ×A× S,∀k ∈ [K]
}

where we define

εkh := 2

√
P̂kh(s′|s, a) log(|S||A|HK/δ′)

max{Nk
h (s, a)− 1, 1}

+
14 log(|S||A|HK/δ′)

3 max{Nk
h (s, a)− 1, 1}

with Nk
h (s, a) :=

∑k
τ=1 1{(s, a) = (sτh, a

τ
h)} and P̂k being the empirical transition model.
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Lemma 4.30. With probability at least 1− δ, the difference between qπ
k,P and dk are bounded as

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ ≤ Õ (H2|S|
√
|A|K

)
.

Proof. By the definition of state distribution, we first have

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣
=

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣∣∣∑
a∈A

wkh(s, a)−
∑
a∈A

ŵkh(s, a)

∣∣∣∣∣
≤

K∑
k=1

H∑
h=1

∑
s∈S

∑
a∈A

∣∣wkh(s, a)− ŵkh(s, a)
∣∣.

where ŵkh(s, a) is the occupancy measure under the empirical transition model P̂k and the policy
πk. Then, since P̂k ∈ Υk always holds for any k, by Lemma 4.34, we can bound the last term of
the bound inequality such that with probability at least 1− 6δ′,

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ ≤ E1 + E2.

Next, we compute the order of E1 by Lemma 4.33. With probability at least 1− 2δ′, we have

E1 = O

[
H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)

(√
|S| log(|S||A|HK/δ′)

max{Nk
h (s, a), 1}

+
log(|S||A|HK/δ′)
max{Nk

h (s, a), 1}

)]

= O

[
H∑
h=2

h−1∑
h′=1

√
|S|
(√
|S||A|K + |S||A| logK + log

H

δ′

)
log
|S||A|HK

δ′

]

= O
[(
H2|S|

√
|A|K +H2|S|3/2|A| logK +H2

√
|S| log

H

δ′

)
log
|S||A|HK

δ′

]
= Õ

(
H2|S|

√
|A|K

)
,

where we ignore logK terms when K is sufficiently large such that
√
K dominates, and Õ hides

logarithm dependence on |S|, |A|, H , K, and 1/δ′. On the other hand, E2 also depends on
ploy(H, |S|, |A|) except the factor log |S||A|HK

δ′
as shown in Lemma 4.34. Thus, E2 can be ignored

comparing to E1 if K is sufficiently large. Therefore, we eventually obtain that with probability at
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least 1− 8δ′, the following inequality holds

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qπk,Ph (s)− dπ
k,P̂k
h (s)

∣∣∣ ≤ Õ (H2|S|
√
|A|K

)
.

We let δ = 8δ′ such that log |S||A|HK
δ′

= log 8|S||A|HK
δ

without changing the order as shown
above. Then, with probability at least 1 − δ, we have

∑K
k=1

∑H
h=1

∑
s∈S |q

πk,P
h (s) − dπ

k,P̂k
h (s)| ≤

Õ(H2|S|
√
|A|K). This completes the proof.

Lemma 4.31. With probability at least 1− δ, the following inequality holds

K∑
k=1

H∑
h=1

Eπk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
≤ Õ

(√
|S||A||B|H2K

)
.

Proof. Since we have

K∑
k=1

H∑
h=1

Eπk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
=

K∑
k=1

H∑
h=1

Eπk,P,νk

[
C

√
log(|S||A||B|HK/δ)

Nk
h (s, a, b)

]

= C

√
log
|S||A||B|HK

δ

K∑
k=1

H∑
h=1

Eπk,P,νk

[√
1

Nk
h (s, a, b)

]
,

then we can apply Lemma 4.35 and obtain

K∑
k=1

H∑
h=1

Eπk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
≤ Õ

(√
|S||A||B|H2K

)
,

with probability at least 1−δ. Here Õ hides logarithm dependence on |S|, |A|, |B|, H,K, and 1/δ.
This completes the proof.

4.8.1 Other Supporting Lemmas

Lemma 4.32. With probability at least 1 − 4δ′, the true transition model P satisfies that for any

k ∈ [K],

P ∈ Υk.

This lemma implies that the estimated transition model P̂kh(s′|s, a) by (4.10) is closed to the
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true transition model Ph(s′|s, a) with high probability. The upper bound for their difference is by
empirical Bernstein’s inequality and the union bound.

The next lemma is modified from Lemma 10 in Jin et al. [2019].

Lemma 4.33. We let wkh(s, a) denote the occupancy measure at the h-th step of the k-th episode

under the true transition model P and the current policy πk. Then, with probability at least 1− 2δ′

we have for all h ∈ [H], the following results hold

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)

max{Nk
h (s, a), 1}

= O
(
|S||A| logK + log

H

δ′

)
,

and

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)√
max{Nk

h (s, a), 1}
= O

(√
|S||A|K + |S||A| logK + log

H

δ′

)
.

Furthermore, by Lemma 4.32 and Lemma 4.33, we give the following lemma to characterize
the difference of two occupancy measures, which is modified from parts of the proof of Lemma 4
in Jin et al. [2019].

Lemma 4.34. Let wkh(s, a) be the occupancy measure at the h-th step of the k-th episode under

the true transition model P and the current policy πk, and w̃kh(s, a) be the occupancy measure at

the h-th step of the k-th episode under any transition model P̃k ∈ Υk and the current policy πk for

any k. Then, with probability at least 1− 6δ′ we have ∀h ∈ [H], the following inequality holds

K∑
k=1

K∑
h=1

∑
s∈S

∑
a∈A

∣∣w̃kh(s, a)− wkh(s, a)
∣∣ ≤ E1 + E2,

where E1 and E2 are in the level of

E1 = O

[
H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)

(√
|S| log(|S||A|HK/δ′)

max{Nk
h (s, a), 1}

+
log(|S||A|HK/δ′)
max{Nk

h (s, a), 1}

)]

and

E2 = O
(

poly(H, |S|, |A|) · log
|S||A|HK

δ′

)
,

where poly(H, |S|, |A|) denotes the polynomial dependency on H, |S|, |A|.
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Lemma 4.35. With probability at least 1− δ, the following inequality holds

K∑
k=1

H∑
h=1

Eπk,P,νk

[√
1

max{Nk
h (s, a, b), 1}

]
≤ Õ

(√
|S||A||B|H2K + |S||A||B|H

)
,

where Õ hides logarithmic terms.

Proof. The zero-sum Markov game with single-controller transition can interpreted as a regu-
lar MDP learning problem with policies wkh(a, b | s) = πkh(a|s)νkh(b|s) and a transition model
Ph(s′|s, a, b) = Ph(s′|s, a) with a joint action (a, b) in the action space of size |A||B|. Thus, we
apply Lemma 19 of Efroni et al. [2020b], which extends lemmas in Zanette and Brunskill [2019],
Efroni et al. [2019] to MDP with non-stationary dynamics by adding a factor of H , to obtain our
lemma. This completes the proof.
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CHAPTER 5

Reward-Free RL with Kernel and Neural Function
Approximations

5.1 Introduction

While RL with function approximations has achieved great empirical success [Mnih et al., 2015,
Silver et al., 2016, 2017, Vinyals et al., 2019], its application is mostly enabled by massive in-
teractions with the unknown environment, especially when the state space is large and function
approximators such as neural networks are employed. To achieve sample efficiency, any RL algo-
rithm needs to accurately learn the transition model either explicitly or implicitly, which brings the
need for efficient exploration.

Under the setting of offline RL, agents aim to learn the target policy only from an offline dataset
collected a priori, without any interactions with the environment. Thus, the collected offline dataset
should have sufficient coverage of the trajectory generated by the optimal policy. However, in
real-world RL applications, the reward function is often designed by the learner based on domain
knowledge. The learner might have a set of reward functions to choose from or use an adaptive
algorithm for reward design [Laud, 2004, Grzes, 2017]. In such a scenario, it is often desirable
to collect an offline dataset that covers all the possible trajectories associated with a set of reward
functions and the target policies. With such a benign offline dataset, for any arbitrary reward
function, the RL agents have sufficient information to estimate the corresponding policy.

To study such a problem in a principled manner, we focus on the framework of reward-free
RL, which consists of an exploration phase and a planning phase. Specifically, in the exploration
phase, the agents interact with the environment without accessing pre-specified rewards and collect
empirical trajectories for the subsequent planning phase. During the planning phase, using the
offline data collected in the exploration phase, the agents compute the target policy when given an
extrinsic reward function, without further interactions with the environment.

Recently, many works focus on designing provably sample-efficient reward-free RL algo-
rithms. For the single-agent tabular case, Jin et al. [2020a], Kaufmann et al. [2020], Ménard
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et al. [2020], Zhang et al. [2020] achieve Õ(poly(H, |S|, |A|)/ε2) sample complexity for obtain-
ing ε-suboptimal policy, where |S|, |A| are the sizes of state and action space, respectively. In
view of the large action and state spaces, the works Zanette et al. [2020b], Wang et al. [2020a]
theoretically analyze reward-free RL by applying the linear function approximation for the single-
agent Markov decision process (MDP), which achieve Õ(poly(H, d)/ε2) sample complexity with
d denoting the dimension of the feature space. However, RL algorithms combined with nonlinear
function approximators such as the kernel and neural function approximators have shown great
empirical successes in a variety of application problems (e.g., Duan et al. [2016], Silver et al.
[2016, 2017], Wang et al. [2018], Vinyals et al. [2019]), thanks to their expressive power. On the
other hand, although reward-free RL algorithms for the multi-player Markov games in the tabu-
lar case have been studied in Bai and Jin [2020], Liu et al. [2020], there is still a lack of works
theoretically studying multi-agent scenarios with the function approximation. Thus, the following
question remains open:

Can we design provably efficient reward-free RL algorithms with kernel and neural function

approximations for both single-agent MDPs and Markov games?

The main challenges of answering the above question lie in how to appropriately integrate nonlin-
ear approximators into the framework of reward-free RL and how to incentivize the exploration by
designing exploration rewards and bonuses that fit such approximation. In this chapter, we provide
an affirmative answer to the above question by tackling these challenges. Our contributions are
summarized as follows:

Contributions. In this chapter, we first propose provable sample and computationally efficient
reward-free RL algorithms with kernel and neural function approximations for the single-agent
MDP setting. Our exploration algorithm is an optimistic variant of the least-squares value iteration
algorithm, incorporating kernel and neural function approximators, which adopts the associated
(scaled) bonus as the exploration reward. Further with the planning phase, our method achieves an
Õ(1/ε2) sample complexity to generate an ε-suboptimal policy for an arbitrary extrinsic reward
function. Moreover, we extend the proposed method for the single-agent setting to the zero-sum
Markov game setting such that the algorithm can achieve an Õ(1/ε2) sample complexity to gener-
ate a policy pair which is an ε-approximate Nash equilibrium. Particularly, in the planning phase
for Markov games, our algorithm only involves finding the Nash equilibrium of matrix games
formed by Q-function that can be solved efficiently, which is of independent interest. The sample
complexities of our methods match the Õ(1/ε2) results in existing works for tabular or linear func-
tion approximation settings. To the best of our knowledge, we establish the first provably efficient
reward-free RL algorithms with kernel and neural function approximators for both single-agent
and multi-agent settings.
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Related Work. There have been a lot of works focusing on designing provably efficient reward-
free RL algorithms for both single-agent and multi-agent RL problems. For the single-agent sce-
nario, Jin et al. [2020a] formalizes the reward-free RL for the tabular setting and provide theoret-
ical analysis for the proposed algorithm with an Õ(poly(H, |S|, |A|)/ε2) sample complexity for
achieving ε-suboptimal policy. The sample complexity for the tabular setting is further improved
in several recent works [Kaufmann et al., 2020, Ménard et al., 2020, Zhang et al., 2020]. Recently,
Zanette et al. [2020b], Wang et al. [2020a] study the reward-free RL from the perspective of the
linear function approximation, which inspire us to design reward-free RL algorithms with more
powerful nonlinear function approximators. For the multi-agent setting, Bai and Jin [2020] studies
the reward-free exploration for the zero-sum Markov game for the tabular case. Liu et al. [2020]
further proposes provable reward-free RL algorithms for multi-player general-sum games.

Our work in this chapter is also closely related to a line of works that study RL algorithms
with function approximations. There are many works [Yang and Wang, 2019, 2020, Cai et al.,
2019, Zanette et al., 2020a, Jin et al., 2020b, Wang et al., 2019b, Ayoub et al., 2020, Zhou et al.,
2020, Kakade et al., 2020] studying different RL problems with the (generalized) linear function
approximation. Furthermore, Wang et al. [2020b] studies an optimistic LSVI algorithm for general
function approximation. Our work is most closely related to the recent work Yang et al. [2020],
which studies optimistic LSVI algorithms with kernel and neural function approximations. How-
ever, this chapter studies an online single-agent RL problem where the exploration is executed with
reward feedbacks, which cannot be directly applied to the reward-free RL problem. Inspired by
Yang et al. [2020], this chapter extends the idea of kernel and neural function approximations to
the reward-free RL setting and Markov games.

5.2 Preliminaries

In this section, we introduce the basic notations and problem backgrounds for this chapter.

5.2.1 Problem Setup

In this chapter, we first consider a tabular episodic MDP characterized by (S,A, H,P, r) as defined
in Section 2.1 of Chapter 2. The policy for the agent is denoted by π. For any reward function
r, the value function V π(s, r) and the Q-function Qπ(s, a, r) are defined the same as in Chapter
2. We can further define the Bellman equation, optimal policy π∗r for a certain reward function
r, and ε-suboptimal policy as in Chapter 2. The value function and Q-function associated with
the optimal policy π∗r is then denoted as Q∗ and V ∗. Thus, we have V ∗h (s, r) = V

π∗r
h (s, r) and

Q∗h(s, a, r) = Q
π∗r
h (s, a, r). Here we consider the practical and challenging setting that the true
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transition model P = {Ph}Hh=1 is unknown to the agent. At the k-step of the exploration phase,
we let πk = {πkh}Hh=1 be the exploration policy of the agent. And in the planning phase, given an
arbitrary reward function r = {rh}Hh=1, we let π = {πh}Hh=1 be the output (the learned policy) the
algorithm. For ease of theoretical analysis, we assume the function value of r is normalized in the
range [0, 1], i.e., rh(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A.

Furthermore, we study the reward-free RL for the two-player zero-sum Markov game, which
is defined by (S,A,B, H,P, r) as in Section 2.2 of Chapter 2. The policies for Player 1 and
Player 2 are denoted by π and ν respectively. The value function V π,ν(s, r) and the Q-function
Qπ,ν(s, a, b, r) are defined the same as in Chapter 2 for any reward function r. Therefore, we
further define the Bellman equation, NE, best response, and ε-approximate NE as in Chapter 2.
Similarly, we consider the practical and challenging setting that the true transition model P =

{Ph}Hh=1 is unknown to both players. At the k-step of the exploration phase, we let πk = {πkh}Hh=1

and νk = {νkh}Hh=1 be the exploration policies for the players. In the planning phase, given an
arbitrary reward function r = {rh}Hh=1, we let π = {πh}Hh=1 and ν = {νh}Hh=1 be the learned
policy pair. In addition, we make an assumption that the function value of r is normalized in
the range [0, 1], i.e., rh(s, a, b) ∈ [0, 1] for all (s, a, b) ∈ S × A × B. By slightly abusing the
notation, we define π∗r and ν∗r as the solution to the maximization problem maxπ,ν V

π,ν
1 (s1) such

that we let V ∗h (s, r) = V
π∗r ,ν

∗
r

h (s, r) and Q∗h(s, a, b, r) = Q
π∗r ,ν

∗
r

h (s, a, b, r). Moreover, for simplicity
of notation, the notation rule in this chapter also follows Remark 2.1 in Chapter 2.

5.2.2 Reproducing Kernel Hilbert Space

We study the kernel function approximation based on the reproducing kernel Hilbert space
(RKHS). With slight abuse of notion, we let Z = S × A for the single-agent MDP setting and
Z = S × A × B for the zero-sum game setting, such that z = (s, a) ∈ Z or z = (s, a, b) ∈ Z
for different cases. We assume that the space Z is the input space of the approximation function,
where Z is a compact space on Rd. This can also be achieved if there is a preprocessing method
to embed (s, a) or (s, a, b) into the space Rd. We let H be a RKHS defined on the space Z with
the kernel function ker : Z × Z 7→ R. We further define the inner product on the RKHS H as
〈·, ·〉H : H ×H 7→ R and the norm ‖ · ‖H : H 7→ R. We have a feature map φ : Z 7→ H on the
RKHSH and define the function f(z) := 〈f, φ(z)〉H for f ∈ H. Then the kernel is defined as

ker(z, z′) := 〈φ(z), φ(z′)〉H, ∀z, z′ ∈ Z.

We assume that supz∈Z ker(z, z) ≤ 1 such that ‖φ(z)‖H ≤ 1 for any z ∈ Z .
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5.2.3 Overparameterized Neural Network

This chapter further considers a function approximator utilizing the overparameterized neural net-
work. Overparameterized neural networks have drawn a lot of attention recently in both theory and
practice [Neyshabur et al., 2018, Allen-Zhu et al., 2018, Arora et al., 2019, Gao et al., 2019, Bai and
Lee, 2019]. Specifically, in this chapter, we have a two-layer neural network f(·; b,W ) : Z 7→ R
with 2m neurons and weights (v,W ), which can be represented as

f(z;v,W ) =
1√
2m

2m∑
i=1

vi · act(W>
i z), (5.1)

where act is the activation function, and v = [v1, · · · , v2m]> and W = [W1,W2, · · · ,W2m].
Here, we assume that z = (s, a) or z = (s, a, b) with z ∈ Z satisfies ‖z‖2 = 1, i.e., z is normalized
on a unit hypersphere in Rd. Let W (0) be the initial value of W and v(0) be the initialization of
v. The initialization step for the above model is performed as follows: we let vi ∼ Unif({−1, 1})
and W (0)

i ∼ N(0, Id/d) for all i ∈ [m], where Id is an identity matrix in Rd×d, and v(0)
i = −v(0)

i−m,
W

(0)
i = W

(0)
i−m for all i ∈ {m+1, 2m}. Here we letN(0, Id/d) denote Gaussian distribution. In this

chapter, we let v be fixed as v(0) and we only learnW for the ease of theoretical analysis. Thus, we
represent f(z; ,v,W ) by f(z;W ) to simplify the notation. This neural network model is widely
studied in recent papers on the analysis of neural networks, e.g., Gao et al. [2019], Bai and Lee
[2019]. When the model is overparameterized, i.e., m is sufficiently large, we can characterized
the dynamics of the training such neural network by neural tangent kernel (NTK) [Jacot et al.,
2018]. Here we define

ϕ(z;W ) := [∇W1f(z;W )>, · · · ,∇W2mf(z;W )>]>, (5.2)

where we let ∇Wi
f(z;W ) be a column vector such that ϕ(z;W ) ∈ R2md. Thus, conditioned on

the randomness in the initialization of W by W (0), we further define the kernel

kerm(z, z′) = 〈ϕ(z;W (0)), ϕ(z′;W (0))〉,∀z, z′ ∈ Z.

In addition, we consider the linearization of the model f(z,W ) at the initial value W (0), which
is defined as flin(z;W ) := f(z;W (0)) + 〈ϕ(z;W (0)),W − W (0)〉. Moreover, flin(z;W ) can
be rewritten as flin(z;W ) = 〈ϕ(z;W (0)),W −W (0)〉 since f(z;W (0)) = 0 by the initialization
scheme. We can see that the linearized function flin(z;W ) is a function on RKHS with the kernel
kerm(z, z′). When the model is overparameterized with m→∞, the kernel kerm(z, z′) converges
to an NTK kernel, which is defined as kerntk = Eω∼N(0,Id/d)[act′(ω>z) · act′(ω>z′) · z>z′],
where act′ is the derivative of the activation function act.
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Algorithm 6 Exploration Phase for Single-Agent MDP
1: Initialize: δ > 0 and ε > 0.
2: for episode k = 1, . . . , K do
3: Let V k

H+1(·) = 0 and Qk
H+1(·, ·) = 0.

4: for step h = H,H − 1, . . . , 1 do
5: Construct bonus term ukh(·, ·).
6: Compute exploration reward rkh(·, ·) = ukh(·, ·)/H .
7: Compute approximation function fkh (·, ·).
8: Qk

h(·, ·) = Π[0,H][(f
k
h + rkh + ukh)(·, ·)].

9: V k
h (·) = maxa∈AQ

k
h(·, a).

10: πkh(·) = argmaxa∈AQ
k
h(·, a).

11: end for
12: Take actions following akh ∼ πkh(skh), ∀h ∈ [H].
13: end for
14: Return: {(skh, akh)}(h,k)∈[H]×[K].

5.3 Single-Agent MDP Setting

In this section, we introduce our method under the single-agent MDP setting with kernel and neural
function approximations. Then, we present our theoretical results.

5.3.1 Kernel Function Approximation

Our proposed method is composed of the reward-free exploration phase and planning phase with
the given extrinsic reward function. The exploration phase and planning phase are summarized in
Algorithm 6 and Algorithm 7.

Specifically, the exploration algorithm is an optimistic variant of the value-iteration algorithm
with the function approximation. In Algorithm 6, we use Qk

h and V k
h to denote the optimistic

Q-function and value function for the exploration rewards. During the exploration phase, the
agent does not access the true reward function and explore the environment for K episodes
based on the policy {πkh}(h,k)∈[H]×[K] determined by the value function V k

h , and collects the tra-
jectories {skh, akh}(h,k)∈[H]×[K] for the subsequent planning phase. Thus, instead of approximating
the Q-function directly, we seek to approximate PhV k

h+1 by a clipped function fkh (s, a) for any
(s, a) ∈ S × A, where fkh (·, ·) is estimated by solving a regularized kernel regression problem as
below. Based on this kernel approximation, we construct an associated Upper Confidence Bound
(UCB) bonus term ukh to facilitate exploration, whose form is specified by the kernel function
approximator. Moreover, although the true reward is not available to the agent, to guide the explo-
ration, we construct the exploration reward by scaling the bonus ukh, guiding the agent to explore
state-action pairs with high uncertainties characterized by ukh. Then, the Q-function Qk

h is a com-
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Algorithm 7 Planning Phase for Single-Agent MDP

1: Initialize: Reward function {rh}h∈[H] and exploration data {(skh, akh)}(h,k)∈[H]×[K].
2: for step h = H,H − 1, . . . , 1 do
3: Compute bonus term uh(·, ·).
4: Compute approximation function fh(·, ·).
5: Qh(·, ·) = Π[0,H][(fh + rh + uh)(·, ·)].
6: Vh(·) = maxa∈AQh(·, a).
7: πh(·) = argmaxa∈AQh(·, a).
8: end for
9: Return: {πh}h∈[H].

bination of rkh(s, a), fkh (s, a), and ukh(s, a) as shown in Line 5 of Algorithm 6. In this chapter, we
define a clipping operator as Π[0,H][x] := min{x,H}+ = min{max{x, 0}, H}. Note that the ex-
ploration phase in Algorithm 6 is not restricted to the kernel case and can be combined with other
approximators, e.g., neural networks, as will be shown later.

At the k-th episode, given the visited trajectories {(sτh, aτh)}k−1
τ=1, we construct the approximator

for each h ∈ [H] by solving the following regularized kernel regression problem

f̂kh = min
f∈H

k−1∑
τ=1

[V k
h+1(sτh+1)− f(zτh)]2 + λ‖f‖2

H,

where f(zτh) = 〈f, φ(zτh)〉H with zτh = (sτh, a
τ
h), and λ is a hyperparameter to be determined

later. As we will discuss in Lemma 5.10, the closed form solution to the above problem is f̂kh (z) =

〈f̂kh , φ(z)〉H = ψkh(z)>(λ ·I+Kkh)−1ykh, where we define ψkh(z) := [ker(z, z1
h), · · · , ker(z, zk−1

h )]>,
ykh := [V k

h+1(s1
h+1), · · · , V k

h+1(sk−1
h+1)]>, and also Kkh := [ψkh(z1

h), · · · , ψkh(zk−1
h )] (recalling that z =

(s, a)).
We let fkh (z) = Π[0,H][f̂

k
h (z)] by clipping operation to guarantee fkh (z) ∈ [0, H] such that in

Algorithm 6, we let

fkh (z) = Π[0,H][ψ
k
h(z)>(λ · I +Kkh)−1ykh], (5.3)

In addition, the associated bonus term is defined as

ukh(z) := min{β · wkh(z), H} (5.4)

where β is a hyperparameter to be determined and we set

wkh(z) = λ−
1
2 [ker(z, z)− ψkh(z)>(λI +Kkh)−1ψkh(z)]

1
2 .
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The planning phase can be viewed as a single-episode version of optimistic value iteration
algorithm. Using all the collected trajectories {skh, akh}(h,k)∈[H]×[K], we can similarly construct the
approximation of PhVh+1 by solving

f̂h = argmin
f∈H

K∑
τ=1

[Vh+1(sτh+1)− f(zτh)]2 + λ‖f‖2
H. (5.5)

Thus, the kernel approximation function can be estimated as

fh(z) = Π[0,H][f̂h(z)] = Π[0,H][ψh(z)>(λ · I +Kh)−1yh],

and the bonus term is

uh(z) := min{β · wh(z), H}

with setting

wh(z) = λ−
1
2 [ker(z, z)− ψh(z)>(λI +Kh)−1ψh(z)]

1
2 ,

where we define ψh(z) := [ker(z, z1
h), · · · , ker(z, zKh )]>, yh := [Vh+1(s1

h+1), · · · , Vh+1(sKh+1)]>,
and also Kh := [ψh(z

1
h), · · · , ψh(zKh )]. Given an arbitrary reward function rh, with the kernel ap-

proximator fh and the bonus uh, one can compute the optimistic Q-function Qh and the associated
value function Vh. The learned policy πh is obtained by value iteration based on the optimistic Q-
function. Algorithm 7 is also a general planning scheme that can be generalized to other function
approximator, for example, the neural function approximator.

Remark 5.1. Note that in the kernel function approximation setting, we directly define the kernel
ker(z, z′) for the algorithms instead of the feature map φ(z) which potential lies in an infinite
dimensional space.

5.3.2 Neural Function Approximation

For the neural function approximation setting, the agent also runs Algorithm 6 for exploration and
Algorithm 7 for planning. Different from the kernel function approximation, in the exploration
phase, at the k-th episode, given the visitation history {sτh, aτh}k−1

τ=1, we construct the approximation
for each h ∈ [H] by solving the following regularized regression problem

W k
h = argmin

W∈R2md

k−1∑
τ=1

[V k
h+1(sτh+1)− f(zτh;W )]2 + λ‖W −W (0)‖2

2, (5.6)
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where we assume that there exists an optimization oracle that can return the global optimizer of the
above problem. The initialization of W (0) and v(0) for the function f(z;W ) follows the scheme
as we discussed in Section 5.2.3. As shown in many recent works [Du et al., 2019, 2018, Arora
et al., 2019], when m is sufficiently large, with random initialization, some common optimizers,
e.g., gradient descent, can find the global minimizer of the empirical loss efficiently with a linear
convergence rate. Once we obtain W k

h , the approximation function is constructed as fkh (z) =

Π[0,H][f(z;W k
h )]. The related exploration bonus ukh is of the form ukh(z) := min{β · wkh(z), H}

where

wkh(z) = [ϕ(z;W k
h )>(Λk

h)
−1ϕ(z;W k

h )]
1
2 . (5.7)

Here we define the invertible matrix Λk
h := λI2md +

∑k−1
τ=1 ϕ(zτh;W k

h )ϕ(zτh;W k
h )>with ϕ(zτh;W )

as (5.2).
In the planning phase, given the collection of trajectories in K episodes of exploration phase,

we construct the neural approximation of PhVh+1(z) as solving a least square problem, i.e., Wh is
the global optimizer of

min
W∈R2md

K∑
τ=1

[Vh+1(sτh+1)− f(zτh;W )]2 + λ‖W −W (0)‖2
2,

such that fh(z) = Π[0,H][f(z;Wh)]. Analogously, the bonus term for the planning phase is of the
form uh(z) := min{β · wh(z), H} where

wh(z) = [ϕ(z;Wh)
>(Λh)

−1ϕ(z;Wh)]
1
2 ,

where we define the invertible matrix Λh := λI2md +
∑K

τ=1 ϕ(zτh;Wh)ϕ(zτh;Wh)
>.

5.3.3 Main Results for Single-Agent MDP

Kernel Function Approximation. In this subsection, we first present the result for the kernel
function approximation setting. We make the following assumptions.

Assumption 5.2. For any value function V : S 7→ R, we assume that PhV (z) is in a form of

〈φ(z),wh〉H for some wh ∈ H. In addition, we assume there exists a fixed constant RQ such that

‖wh‖H ≤ RQH .

One example for this assumption is that the transition model is in a form of Ph(s′|z) =

〈φ(z),w′h(s
′)〉H such that PhV (z) =

∫
S Vh+1(s′)〈φ(z),w′h(s

′)〉Hds′ where we can write wh =
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∫
S Vh+1(s′)w′h(s

′)ds′. This example can be viewed as a generalization of the linear transition
model [Jin et al., 2020b] to the RKHS.

In this chapter, we use maximal information gain [Srinivas et al., 2009] to measure the function
space complexity, i.e.,

Γ(C, σ; ker) = sup
D⊆Z

1/2 · log det(I +KD/σ),

where the supremum is taken over all possible sample sets D ⊆ Z with |D| ≤ C, and KD is the
Gram matrix induced by D based on some kernel ker of RKHS. The value of Γ(C, σ; ker) reflects
how fast the the eigenvalues of H decay to zero and can be viewed as a proxy of the dimension of
H whenH is infinite-dimensional. To characterize the complexity, we define a Q-function classQ
of the form

Q(c, R,B) = {Q : Q satisfies the form of Q]}. (5.8)

where we define Q] in the following form Q](z) = min{c(z) + Π[0,H][〈w, φ(z)〉H] + g(z), H}+

with some w satisfying ‖w‖H ≤ R, ‖φ(z)‖H ≤ 1, and also g(z) = B ·min{‖φ(z)‖Λ−1
D
, H/β}+.

Here ΛD is an adjoint operator with the form ΛD = λIH +
∑

z′∈D φ(z′)φ(z′)> with IH denoting
identity mapping on H and D ⊆ Z with |D| ≤ K. Here we define the ς-covering number of
the class Q w.r.t. the `∞-norm as N∞(ς;R,B) with an upper bound N∞(ς;R,B). As formally
discussed in Section 5.7, we compute the covering number upper bound N∞(ς;R,B). As we can
see in Algorithms 6 and 7, we have Qk

h ∈ Q(0, R, (1 + 1/H)β) and Qh ∈ Q(rh, R
′, β) for some

R and R′. Based on the above assumptions and definitions, we have the following result.

Theorem 5.3. Suppose that β satisfies the condition that 16H2
[
R2
Q + logN∞(ς∗;RK , 2β) +

2Γ(K,λ; ker) + 6 log(2KH) + 5
]
≤ β2. Under the kernel function approximation setting with

a kernel ker, letting λ = 1 + 1/K, RK = 2H
√

Γ(K,λ; ker), and ς∗ = H/K, with probability

at least 1 − (2K2H2)−1, the policy generated via Algorithm 7 satisfies V ∗1 (s1, r) − V π
1 (s1, r) ≤

O(β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K), after exploration for K episodes with Algorithm 6.

The covering numberN∞(ς∗;RK , 2β) and the information gain Γ(K,λ; ker) reflect the function
class complexity. To understand the result in Theorem 5.3, we consider kernels ker with two
different types of eigenvalue decay conditions: (i) γ-finite spectrum and (ii) γ-exponential spectral
decay.

For the case of γ-finite spectrum with γ ∈ Z+, we have β = O(γH
√

log(γKH)),
logN∞(ς∗;RK , 2β) = O(γ2 log(γKH)), and Γ(K,λ; ker) = O(γ logK), which further implies
that to achieve V ∗1 (s1, r)− V π

1 (s1, r) ≤ ε, it requires Õ(H6γ3/ε2) rounds of exploration, where Õ
hides the logarithmic dependence on γ and 1/ε.
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Therefore, when the problem reduces to the setting of linear function approximation, the above
result becomes Õ(H6d3/ε2) by letting γ = d, where d is the feature dimension. This is consistent
with the result in Wang et al. [2020a], which studies the linear approximation setting for reward-
free RL. Furthermore, the sample complexity becomes Õ(H6|S|3|A|3/ε2) by setting γ = |S||A|,
when the problem reduces to the tabular setting.

For the case of γ-exponential spectral decay with γ > 0, we have logN∞(ς∗;RK , 2β) =

O((logK)1+2/γ + (log logH)1+2/γ), β = O(H
√

log(KH)(logK)1/γ), and also Γ(K,λ; ker) =

O((logK)1+1/γ). Therefore, to obtain an ε-suboptimal policy, it requires O(H6Cγ ·
log4+6/γ(ε−1)/ε2) = Õ(H6Cγ/ε

2) rounds of exploration, where Cγ is some constant depending
on 1/γ. Please see Section 5.7 for detailed definitions and discussions.
Neural Function Approximation. Next, we present the result for the neural function approxima-
tion setting.

Assumption 5.4. For any value function V , we assume that PhV (z) can be represented as

PhV (z) =
∫
Rd act

′(ω>z) · z>αh(ω)dp0(ω) for some αh(ω) with α : Rd 7→ Rd and

supω ‖α(ω)‖ ≤ RQH/
√
d. Here p0 is the density of Gaussian distribution N(0, Id/d).

As discussed in Gao et al. [2019], Yang et al. [2020], the function class characterized by
f(z) =

∫
Rd act

′(ω>z) · z>αh(ω)dp0(ω) is an expressive subset of RKHS. One example is that
the transition model can be written as Ph(s′|z) =

∫
Rd act

′(ω>z) · z>α′h(ω; s′)dp0(ω) such that
we have αh(ω) =

∫
S α

′
h(ω; s′)Vh+1(s′)ds′. This example also generalizes the linear transition

model [Jin et al., 2020b] to the overparameterized neural network setting. Similar to (5.8), we
also define a Q-function class based on a normalized version of ϕ(z,W (0)), which further can be
analyzed using the same notations Q and N∞ (See Lemma 5.19 for details).

Theorem 5.5. Suppose that β satisfies the condition that 8H2[R2
Q(1+

√
λ/d)2 +4Γ(K,λ; kerm)+

10 + 4 logN∞(ς∗;RK , 2β) + 12 log(2KH)] ≤ β2 with m = Ω(K19H14 log3m). Under

the overparameterized neural function approximation setting, letting λ = C(1 + 1/K) for

some constant C ≥ 1, RK = H
√
K, and ς∗ = H/K, with probability at least 1 −

(2K2H2)−1 − 4m−2, the policy generated via Algorithm 7 satisfies V ∗1 (s1, r) − V π
1 (s1, r) ≤

O(β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K + H2βι) with ι = 5K7/12H1/6m−1/12 log1/4m, after

exploration for K episodes with Algorithm 6.

In Theorem 5.5, there is an error term H2βι that depends on m−1/12. In the regime of overpa-
rameterization, when m is sufficiently large, this term can be extremely small and ι→ 0, kerm →
kerntk if m → ∞. Here Γ(K,λ; kerm) and N∞(ς∗;RK , 2β) characterize the intrinsic complexity
of the function class. In particular, when m is large, the overparamterized neural function setting
can be viewed as a special case of RKHS with a misspecification error. If the eigenvalues of the
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kernel kerm satisfy finite spectrum or exponential spectral decay, we know that β, Γ(K,λ; kerm),
and logN∞(ς∗;RK , 2β) are of the same orders to the ones in the discussion after Theorem 5.3.
Moreover, if m is sufficiently large such that H2βι ≤ ε, we obtain an Õ(1/ε2) sample complexity
to achieve an O(ε)-suboptimal policy.

Overall, the above results show that with the kernel function approximation and overparameter-
ized neural function approximation, Algorithms 8 and 9 guarantee Õ(1/ε2) sample complexity for
achieving ε-suboptimal policy, which matches existing Õ(1/ε2) results for the single-agent MDP
for the tabular case or with linear function approximation in terms of ε.

5.4 Markov Game Setting

In this section, we introduce the algorithms under the Markov game setting with kernel and neural
function approximations. We further present their theoretical results on the sample complexity.

5.4.1 Kernel Function Approximation

The exploration phase and planning phase for the zero-sum game are summarized in Algorithm 8
and Algorithm 9.

Specifically, in the exploration phase, the exploration policy for both players is obtained by tak-
ing maximum on Q-function over both action spaces. Thus, Algorithm 8 in essence is an extension
of Algorithm 6 and performs the same exploration steps, if we view the pair (a, b) as an action
a = (a, b) on the action space A × B and regard the exploration policy pair (πkh(s), νkh(s)) as a
product policy (πkh ⊗ νkh)(s). Thus, the approximator fkh (z) and the bonus term ukh(z) share the
same forms as (5.3) and (5.4) if we slightly abuse the notation by letting z = (s, a, b).

In the planning phase, the algorithm generates the policies for two players in a separate
manner. While maintaining two optimistic Q-functions, their policies are generated by find-
ing NE of two games with payoff matrices Q and Q respectively, namely (πh(·|s), D0(·|s))
is the solution to maxπ′ minν′ Ea∼π′,b∼ν′ [Qh(s, a, b)] and (D0(·|s), νh(·|s)) is the solution to
maxπ′ minν′ Ea∼π′,b∼ν′ [Qh

(s, a, b)], which can be solved efficiently in computation by many ex-
isting algorithms (e.g., Koller et al. [1994]).

Moreover, we construct the approximation functions for Player 1 and Player 2 similarly via
(5.5) by letting z = (s, a, b) and placing the value function with V and V separately such that we
have

fh(z) = Π[0,H][ψh(z)>(λ · I +Kh)−1yh],

f
h
(z) = Π[0,H][ψh(z)>(λ · I +Kh)−1y

h
],
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Algorithm 8 Exploration Phase for Zero-Sum Markov Game
1: Initialize: δ > 0 and ε > 0.
2: for episode k = 1, . . . , K do
3: Let V k

H+1(·) = 0 and Qk
H+1(·, ·, ·) = 0.

4: for step h = H,H − 1, . . . , 1 do
5: Construct bonus term ukh(·, ·, ·).
6: Exploration reward rkh(·, ·, ·) = ukh(·, ·, ·)/H .
7: Compute approximation function fkh (·, ·, ·).
8: Qk

h(·, ·, ·) = Π[0,H][(f
k
h + rkh + ukh)(·, ·, ·)].

9: V k
h (·) = maxa∈A,b∈BQ

k
h(·, a, b).

10: (πkh(·), νkh(·)) = argmaxa∈A,b∈BQ
k
h(·, a, b).

11: end for
12: Take actions following akh ∼ πkh(skh) and also bkh ∼ νkh(skh), ∀h ∈ [H] .
13: end for
14: Return: {(skh, akh, ukh)}(h,k)∈[H]×[K].

where yh := [V h+1(s1
h+1), · · · , V h+1(sKh+1)]> and y

h
:= [V h+1(s1

h+1), · · · , V h+1(sKh+1)]>. Then,
for the bonus term, Players 1 and 2 share the one of the same form, i.e., uh(z) = uh(z) := uh(z) =

min{β · wh(z), H} with

wh(z) = λ−
1
2 [ker(z, z)− ψh(z)>(λI +Kh)−1ψh(z)]

1
2 .

5.4.2 Neural Function Approximation

For the neural function approximation, the exploration and planning phases follow Algorithm 8
and 9. In the exploration phase, following the same discussion for the exploration algorithm with
kernel function approximation, Algorithm 8 with the neural approximator is intrinsically the same
as Algorithm 6. Thus, one can follow the same approaches to construct the neural function ap-
proximator fkh (z) = Π[0,H][f(z;W k

h )] and the bonus ukh(z) as in (5.6) and (5.7) with only letting
z = (s, a, b).

For the planning phase, letting z = (s, a, b), we construct approximation functions separately
for Player 1 and Player 2 via solving two regression problems

W h = argmin
W∈R2md

K∑
τ=1

[V h+1(sτh+1)− f(zτh;W )]2 + λ‖W −W (0)‖2
2,

W h = argmin
W∈R2md

K∑
τ=1

[V h+1(sτh+1)− f(zτh;W )]2 + λ‖W −W (0)‖2
2,

such that we let fh(z) = Π[0,H][f(z;W h)] and f
h
(z) = Π[0,H][f(z;W h)]. The bonus terms uh and
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Algorithm 9 Planning Phase for Zero-Sum Markov Game

1: Initialize: Reward function {rh}h∈[H] and exploration data {(skh, akh, ukh)}(h,k)∈[H]×[K].
2: for step h = H,H − 1, . . . , 1 do
3: Compute bonus term uh(·, ·, ·) and uh(·, ·, ·).
4: Compute approximations fh(·, ·, ·) andf

h
(·, ·, ·).

5: Qh(·, ·, ·) = Π[0,H][(fh + rh + uh)(·, ·, ·)].
6: Q

h
(·, ·, ·) = Π[0,H][(fh + rh − uh)(·, ·, ·)].

7: Let (πh(·|s), D0(·|s)) be NE for Qh(s, ·, ·), ∀s ∈ S.
8: Let (D0(·|s), νh(·|s)) be NE for Q

h
(s, ·, ·), ∀s ∈ S.

9: V h(s) = Ea∼πh(·|s),b∼D0(·|s)[Qh(s, a, b)], ∀s ∈ S.
10: V h(s) = Ea∼D0(·|s),b∼νh(·|s)[Qh

(s, a, b)], ∀s ∈ S.
11: end for
12: Return: {πh}h∈[H], {νh}h∈[H].

uh for Players 1 and 2 are uh(z) := min{β · wh(z), H} and uh(z) := min{β · wh(z), H} with

wh(z) = [ϕ(z;W h)
>(Λh)

−1ϕ(z;W h)]
1
2 ,

wh(z) = [ϕ(z;W h)
>(Λh)

−1ϕ(z;W h)]
1
2 ,

where we define the invertible matrices Λh := λI2md +
∑K

τ=1 ϕ(zτh;W h)ϕ(zτh;W h)
> and Λh :=

λI2md +
∑K

τ=1 ϕ(zτh;W h)ϕ(zτh;W h)
>.

5.4.3 Main Results for Markov Game

In this subsection, we present the results for the zero-sum Markov game setting. Particularly,
we make the same assumptions as in Section 5.3.3 with only letting z = (s, a, b). Moreover,
we also use the same Q-function class Q as (5.8), such that we can see in Algorithms 8 and 9,
Qk
h ∈ Q(0, R, (1 + 1/H)β) for some R, and Qh ∈ Q(rh, R

′, β) for some R′. To characterize the
space which Q

h
lies in, we define a specific Q-function class Q of the form

Q(c, R,B) = {Q : Q satisfies the form of Q[}, (5.9)

where Q[(z) = min{c(z) + Π[0,H][〈w, φ(z)〉H] − g(z), H}+ for some w satisfying ‖w‖H ≤ R

and also g(z) = B ·max{‖φ(z)‖Λ−1
D
, H/β}+. Thus, we have Q

h
∈ Q(rh, R

′, β). As we show in
Section 5.7, Q(c, R,B) and Q(c, R,B) have the same covering number upper bound w.r.t ‖ · ‖∞.
Then, we can use the same notationN∞ to denote such upper bound. Thus, we have the following
result for kernel approximation.

Theorem 5.6. Suppose that β satisfies the condition that 16H2
[
R2
Q + logN∞(ς∗;RK , 2β) +
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2Γ(K,λ; ker) + 6 log(4KH) + 5
]
≤ β2. Under the kernel function approximation setting with

a kernel ker, letting λ = 1 + 1/K, RK = 2H
√

Γ(K,λ; ker), and ς∗ = H/K, with probabil-

ity at least 1 − (2K2H2)−1, the policy pair generated via Algorithm 9 satisfies V br(ν),ν
1 (s1, r) −

V
π,br(π)

1 (s1, r) ≤ O(β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K), after exploration for K episodes

with Algorithm 8.

We further obtain the result for the neural function approximation scenario.

Theorem 5.7. Suppose that β satisfies the condition that 8H2[10 + 12 log(4K/δ) + R2
Q(1 +√

λ/d)2 + 4 logN∞(ς∗;RK , 2β) + 4Γ(K,λ; kerm)] ≤ β2 with m = Ω(K19H14 log3m). Under

the overparameterized neural function approximation setting, letting λ = C(1 + 1/K) for some

constant C ≥ 1, RK = H
√
K, and ς∗ = H/K, with probability at least 1 − (2K2H2)−1 −

4m−2, the policy pair generated via Algorithm 9 satisfies V br(ν),ν
1 (s1, r) − V

π,br(π)
1 (s1, r) ≤

O(β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K + H2βι) with ι = 5K7/12H1/6m−1/12 log1/4m, after

exploration for K episodes with Algorithm 8.

Following the same discussion as in Section 5.3.3, the above results show that with the kernel
function approximation and overparameterized neural function approximation, Algorithms 8 and 9
guarantee an Õ(1/ε2) sample complexity to achieve an ε-approximate NE. In particular, when our
problem reduces to the Markov game with linear function approximation, the algorithm requires
Õ(H6d3/ε2) sample complexity to achieve an ε-approximate NE, where d is the feature dimen-
sion. This also complements the result of the reward-free RL for the Markov game with the linear
function approximation. For the tabular case, Bai and Jin [2020] gives an Õ(H5|S|2|A||B|) sample
complexity and Liu et al. [2020] gives an Õ(H4|S||A||B|) sample complexity. Our analysis gives
an Õ(H6|S|3|A|3|B|3/ε) sample complexity by simply letting d = |S||A||B|, which matches the
existing results in terms of ε. Though the dependence on H, |S|, |A|, |B| is not as tight as existing
results, our work in this chapter presents a more general analysis for the function approximation
setting which is not fully studied in previous works.

5.5 Theoretical Analysis

5.5.1 Proof Sketches of Theorem 5.3 and Theorem 5.5

We first show the proof sketches for Theorem 5.3. Our goal is to bound the term V ∗1 (s1, r) −
V π

1 (s1, r). By the optimistic updating rule in the planning phase, according to Lemma 5.16, we
have V ∗1 (s1, r) ≤ V1(s1) such that V ∗1 (s1, r)−V π

1 (s1, r) ≤ V1(s1)−V π
1 (s1, r). Then we only need
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to consider to upper bound V1(s1)− V π
1 (s1, r). Further by this lemma, for any h ∈ [H], we have

Vh(s)− V π
h (s, r)

≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))−Qπ
h(s, πh(s), r)

= PhVh+1(s, πh(s))− PhV π
h+1(s, πh(s), r) + 2uh(s, πh(s)).

(5.10)

where we use the fact that Qπ
h(s, πh(s), r) = rh(s, πh(s)) + PhV π

h+1(s, πh(s), r). Recursively
applying the above inequality and also using V π

H+1(s, r) = VH+1(s) = 0 give

V1(s1)− V π
1 (s1, r) ≤ EP[

∑H
h=12uh(sh, πh(sh))|s1] = 2H · V π

1 (s1, u/H).

Moreover, by Lemma 5.17, we build a connection between the exploration and planing phase,
which is V π

1 (s1, u/H) ≤ K−1
∑K

k=1 V
∗

1 (s1, r
k). Therefore, combining the above results together,

we eventually obtain

V ∗1 (s1, r)− V π
1 (s1, r) ≤ 2H/K ·

∑K
k=1V

∗
1 (s1, r

k) ≤ O
(
β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K
)
,

where the last inequality is by Lemma 5.14 and the fact that β ≥ H . This completes the proof of
Theorem 5.3. Please see detailed proof in Section 5.8.2.

Next, we show the proof sketches of Theorem 5.5. By Lemma 5.22, we have V ∗1 (s1, r) ≤
V1(s1)+Hβι by optimism, such that V ∗1 (s1, r)−V π

1 (s1, r) ≤ V1(s1)−V π
1 (s1, r)+Hβι. Note that

different from the proof of Theorem 5.3, there is an extra bias term Hβι introduced by the neural
function approximation. Further by Lemma 5.22, and using the same argument as (5.10), we have

Vh(s)− V π
h (s, r) ≤ 2uh(s, πh(s)) + βι+ PhVh+1(s, πh(s))− PhV π

h+1(s, πh(s), r),

which introducing another bias βι. Recursively applying the above inequality with V π
H+1(s, r) =

VH+1(s) = 0 gives

V1(s1)− V π
1 (s1, r) = 2H · V π

1 (s1, u/H) +Hβι.

Thus, with Lemma 5.23 connecting the exploration and planning such that V π
1 (s1, u/H) ≤

K−1
∑K

k=1 V
∗

1 (s1, r
k) + 2βι, combining all the above results eventually yields

V ∗1 (s1, r)− V π
1 (s1, r)

≤ 2H/K ·
∑K

k=1V
∗

1 (s1, r
k) + 4Hβι

≤ O(β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K +H2βι),
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where the second inequality and the last inequality is by Lemma 5.20 and the fact that β ≥ H .
This completes the proof. Please see detailed proof in Section 5.9.2.

5.5.2 Proof Sketches of Theorem 5.6 and Theorems 5.7

In the proofs of Theorem 5.6 and Theorems 5.7 and the corresponding lemmas, to simply the
notations, we let Ea∼πh,b∼νh,s′∼Ph to denote the expectation with a ∼ πh(·|s), b ∼ νh(·|s), s′ ∼
Ph(·|s, a, b) given the current state s and arbitrary policies πh, νh at the h-th step.

For the proof sketch of Theorem 5.6, we decompose V br(ν),ν
1 (s1, r) − V π,br(π)

1 (s1, r) into two
terms V †1 (s1, r) − V

π,br(π)
1 (s1, r) and V br(ν),ν

1 (s1, r) − V †1 (s1, r) and bound them separately. To
bound the first term, by Lemma 5.27, we have V †1 (s1, r)−V π,br(π)

1 (s1, r) ≤ V 1(s1)−V π,br(π)
1 (s1, r).

Note that by the updating rule for V h in Algorithm 9, we have

V h(s) = min
ν′

Ea∼πh,b∼ν′ [Qh(s, a, b)] ≤ Ea∼πh,b∼br(π)h [Qh(s, a, b)],

such that further by Lemma 5.27, there is

V h(sh)− V π,br(π)
h (sh, r)

≤ Eah∼πh,bh∼br(π)h [(PhV h+1 + rh + 2uh)(sh, ah, bh)]− V π,br(π)
h (sh, r)

= Eah∼πh,bh∼br(π)h,sh+1∼Ph [V h+1(sh+1)− V π,br(π)
h+1 (sh+1, r) + 2uh(sh, ah, bh)].

where the equality uses V π,br(π)
h (sh, r) = Eah∼πh,bh∼br(π)h [rh(sh, ah, bh)+PhV π,br(π)

h+1 (sh, ah, bh, r)].
Recursively applying the above inequality yields

V 1(s1)− V π,br(π)
1 (s1, r)

≤ Eπ,br(π),P[
∑H

h=12uh(sh, ah, bh)|s1]

= 2H · V π,br(π)
1 (s1, u/H).

Combining the above results eventually gives

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ 2H · V π,br(π)

1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ O(β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K),

where the second inequality is due to Lemma 5.28 and the last inequality is by
Lemma 5.25. The upper bound of the difference V †1 (s1, r) − V

π,br(π)
1 (s1, r) is also

O(β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K) with the similar proof idea. This completes the proof
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of Theorem 5.6. Please see Section 5.10.2 for details.
The proof of Theorem 5.7 follows the same argument as above. The only difference is that the

neural function approximation introduces bias terms depending on ι as we discussed in the proof
sketch of Theorem 5.5. Thus, the final bound is O(β

√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K +

H2βι). Please see Section 5.11.2 for the detailed proof.

5.6 Conclusion

In this chapter, we study the reward-free RL algorithms with kernel and neural function approxima-
tors for both single-agent MDPs and zero-sum Markov games. We propose efficient exploration
and planning algorithms incorporating the kernel and neural function approximators. We prove
that our methods can achieve Õ(1/ε2) sample complexity for generating an ε-suboptimal policy
or ε-approximate NE.

5.7 Discussion of Function Space Complexity

To characterize the function space complexity, we first introduce the notions for the eigenvalues
of the RKHS. Define L2(Z) as the space of square-integrable functions on Z w.r.t. Lebesgue
measure and define 〈·, ·〉L2 as the inner product on the space L2(Z). According to Mercer’s The-
orem [Steinwart and Christmann, 2008], the kernel function ker(z, z′) has a spectral expansion
as ker(z, z′) =

∑∞
i=1 σi%i(z)%i(z

′) where {%i}i≥1 are a set of orthonormal basis on L2(Z) and
{σi}i≥1 are positive eigenvalues. In this chapter, we consider two types of eigenvalues’ properties
and make the following assumptions.

Assumption 5.8. Assume {σi}i≥1 satisfies one of the following eigenvalue decay conditions for

some constant γ > 0:

(a) γ-finite spectrum: we have σi = 0 for all i > γ;

(b) γ-exponential spectral decay: there exist constants C1 > 0 and C2 > 0 such that σi ≤
C1 exp(−C2 · iγ) for all i ≥ 1.

Covering Numbers. Next, we characterize the upper bound of the covering numbers of the Q-
function sets Q(c, R,B) and Q(c, R,B). For any Q1, Q2 ∈ Q(c, R,B), we have

Q1(z) = min
{
c(z) + Π[0,H][〈w1, φ(z)〉] +B ·max{‖φ(z)‖Λ−1

D1

, H/β}+, H
}+

,

Q2(z) = min
{
c(z) + Π[0,H][〈w2, φ(z)〉] +B ·max{‖φ(z)‖Λ−1

D2

, H/β}+, H
}+

,
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for some w1,w2 satisfying ‖w1‖H ≤ R and ‖w2‖H ≤ R. Then, due to the fact that the truncation
operator is non-expansive, we have

‖Q1(·)−Q2(·)‖∞ ≤ sup
z
|〈w1 −w2, φ(z)〉H|+B sup

z

∣∣∣‖φ(z)‖Λ−1
D1

− ‖φ(z)‖Λ−1
D2

∣∣∣ .
The above inequality shows that it suffices to bound the covering numbers of of the RKHS norm
ball of radius R and the set of functions of the form ‖φ(z)‖Λ−1

D
. Thus, we define the function class

Fλ := {‖φ(·)‖Υ : ‖Υ‖op ≤ 1/λ} since ‖Λ−1
D ‖op ≤ 1/λ according to the definition of ΛD. Let

N∞(ε;R,B) be the ε-covering number of Q w.r.t. ‖ · ‖∞, N∞(ε,H, R) be the ε-covering number
of RKHS norm ball of radius R w.r.t. ‖ · ‖∞, and N∞(ε,F , 1/λ) be the ε-covering number of Fλ
w.r.t. ‖ · ‖∞. Thus, we have

N∞(ε;R,B) ≤ N∞(ε/2,H, R) · N∞(ε/(2B),F , 1/λ).

We define the upper bound

N∞(ε;R,B) := N∞(ε/2,H, R) · N∞(ε/(2B),F , 1/λ).

Then, we know

logN∞(ε;R,B) = logN∞(ε/2,H, R) + logN∞(ε/(2B),F , 1/λ).

Moreover, for any Q1, Q2 ∈ Q(c, R,B), we have

Q1(z) = min
{
c(z) + Π[0,H][〈w1, φ(z)〉]−B ·max{‖φ(z)‖Λ−1

D1

, H/β}+, H
}+

,

Q2(z) = min
{
c(z) + Π[0,H][〈w2, φ(z)〉]−B ·max{‖φ(z)‖Λ−1

D2

, H/β}+, H
}+

,

which also implies

‖Q1(·)−Q2(·)‖∞ ≤ sup
z
|〈w1 −w2, φ(z)〉H|+B sup

z

∣∣∣‖φ(z)‖Λ−1
D1

− ‖φ(z)‖Λ−1
D2

∣∣∣ .
Thus, we can bound the covering number N∞(ε;R,B) of Q(c, R,B) in the same way, i.e.,
N∞(ε;R,B) ≤ N∞(ε;R,B).

According to Yang et al. [2020], we have the following covering number upper bounds
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(a) γ-finite spectrum:

logN∞(ε/2,H, R) ≤ C3γ[log(2R/ε) + C4],

logN∞(ε/(2B),F , 1/λ) ≤ C5γ
2[log(2B/ε) + C6];

(b) γ-exponential spectral decay:

logN∞(ε/2,H, R) ≤ C3[log(2R/ε) + C4]1+1/γ,

logN∞(ε/(2B),F , 1/λ) ≤ C5[log(2B/ε) + C6]1+2/γ.

Maximal Information Gain. Here we give the definition of maximal information gain and discuss
its upper bounds based on different kernels.

Definition 5.9 (Maximal Information Gain [Srinivas et al., 2009]). For any fixed integer C and any
σ > 0, we define the maximal information gain associated with the RKHSH as

Γ(C, λ; ker) = sup
D⊆Z

1

2
log det(I +KD/λ),

where the supremum is taken over all discrete subsets of Z with cardinality no more than C, and
KD is the Gram matrix induced by D ⊆ Z based on the kernel ker.

According to Theorem 5 in Srinivas et al. [2009], we have the maximal information gain char-
acterized as follows

(a) γ-finite spectrum:

Γ(K,λ; ker) ≤ C7γ logK;

(b) γ-exponential spectral decay:

Γ(K,λ; ker) ≤ C7(logK)1+1/γ.

Sample Complexity. Given the above results, for the kernel approximation setting, according to
the discussion in the proof of Corollary 4.4 in Yang et al. [2020], under the parameter settings in
Theorem 5.3 or Theorem 5.6, we have that for γ-finite spectrum setting,

β = O(γH
√

log(γKH)), logN∞(ς∗;RK , 2β) = O(γ2 log(γKH)),

Γ(K,λ; ker) = O(γ logK),
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which implies after K episodes of exploration, the upper bound in Theorem 5.3 or Theorem 5.6 is

O
(√

H6γ3 log2(γKH)/K

)
.

This result further implies that to obtain an ε-suboptimal policy or ε-approximate NE, it requires
Õ(H6γ3/ε2) rounds of exploration. In addition, for the γ-exponential spectral decay setting, we
have

β = O(H
√

log(KH)(logK)1/γ), logN∞(ς∗;RK , 2β) = O((logK)1+2/γ + (log logH)1+2/γ),

Γ(K,λ; ker) = O((logK)1+1/γ),

which implies that after K episodes of exploration, the upper bound in Theorem 5.3 or Theorem
5.6 is

O
(√

H6 log2+3/γ(KH)/K

)
.

Then, to obtain an ε-suboptimal policy or ε-approximate NE, it requires
O(H6Cγ log4+6/γ(ε−1)/ε2) = Õ(H6Cγ/ε

2) episodes of exploration, where Cγ is some
constant depending on 1/γ.

The above results also hold for the neural function approximation under both single-agent MDP
and Markov game setting if the kernel kerm satisfies the γ-finite spectrum or γ-exponential spectral
decay and the network width m is sufficiently large such that the error term H2βι ≤ ε. Then, we
can similarly obtain the upper bounds in Theorems 5.5 and 5.7.
Linear and Tabular Cases. For the linear function approximation case, we have a feature map
φ(s) ∈ Rd, where d is the feature dimension. Therefore, the associated kernel can be represented
as ker(s, s′) = φ(s)>φ(s′) =

∑d
i=1 φi(s)φi(s

′). Thus, we know that under the linear setting, the
kernel ker has d-finite spectrum. Thus, letting γ = d in the γ-finite spectrum case, we have

β = O(dH
√

log(dKH)), logN∞(ς∗;RK , 2β) = O(d2 log(dKH)),

Γ(K,λ; ker) = O(d logK),

which further implies that to achieve V ∗1 (s1, r) − V π
1 (s1, r) ≤ ε, it requires Õ(H6d3/ε2) rounds

of exploration. This is consistent with the result in Wang et al. [2020a] for the single-agent MDP.
This result also hold for the Markov game setting.

For the tabular case, since φ(z) = ez is the canonical basis in R|Z|, we have γ = |Z| for the
above γ-finite spectrum case. Therefore, for the single-agent MDP setting, we have |Z| = |S||A|,
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which implies

β = O(H|S||A|
√

log(|S||A|KH)), Γ(K,λ; ker) = O(|S||A| logK),

logN∞(ς∗;RK , 2β) = O(|S|2|A|2 log(|S||A|KH)).

Then, the sample complexity becomes Õ(H6|S|3|A|3/ε2) to obtain an ε-suboptimal policy. For
the two-player Markov game setting, we have |Z| = |S||A||B|, which implies

β = O(H|S||A||B|
√

log(|S||A||B|KH)), Γ(K,λ; ker) = O(|S||A||B| logK),

logN∞(ς∗;RK , 2β) = O(|S|2|A|2|B|2 log(|S||A||B|KH)).

Then, the sample complexity becomes Õ(H6|S|3|A|3|B|3/ε2) to obtain an ε-approximate NE.

5.8 Proofs for Single-Agent MDP with Kernel Function Ap-
proximation

5.8.1 Lemmas

Lemma 5.10 (Solution of Kernel Ridge Regression). The approximation vector f̂kh ∈ H is ob-

tained by solving the following kernel ridge regression problem

minimize
f∈H

k−1∑
τ=1

[V k
h+1(sτh+1)− f(zτh)〉H]2 + λ‖f‖2

H,

such that we have

f̂kh (z) = 〈φ(z), f̂kh 〉H = ψkh(z)>(λ · I +Kkh)−1ykh,

where we define

ψkh(z) := Φk
hφ(z) = [ker(z, z1

h), · · · , ker(z, zk−1
h )]>,

Φk
h = [φ(z1

h), φ(z2
h), · · · , φ(zk−1

h )]>,

ykh = [V k
h+1(s1

h+1), V k
h+1(s2

h+1), · · · , V k
h+1(sk−1

h+1)]>,

Kkh := Φk
h(Φ

k
h)
> =


ker(z1

h, z
1
h) . . . ker(z1

h, z
k−1
h )

... . . . ...

ker(zk−1
h , z1

h) . . . ker(zk−1
h , zk−1

h )

 ,
(5.11)
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with denoting z = (s, a) and zτh = (sτh, a
τ
h), and ker(x, y) = 〈φ(z), φ(z′)〉H,∀z, z′ ∈ Z = S ×A.

Proof. We seek to solve the following kernel ridge regression problem in the RKHS

f̂kh = argmin
f∈H

k−1∑
τ=1

[V k
h+1(sτh+1)− f(sτh, a

τ
h)〉H]2 + λ‖f‖2

H,

which is equivalent to

f̂kh = argmin
f∈H

k−1∑
τ=1

[V k
h+1(sτh+1)− 〈f, φ(sτh, a

τ
h)〉H]2 + λ〈f, f〉H.

By the first-order optimality condition, the above kernel ridge regression problem admits the fol-
lowing closed-form solution

f̂kh = (Λk
h)
−1(Φk

h)
>ykh, (5.12)

where we define

Λk
h =

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)
> + λ · IH = λ · IH + (Φk

h)
>Φk

h,

with IH being the identity mapping in RKHS. Thus, by (5.12), we have

〈f̂kh , φ(z)〉H = 〈(Λk
h)
−1(Φk

h)
>ykh, φ(s, a)〉H, ∀(z) ∈ S ×A,

which can be further rewritten in terms of kernel ker as follows

〈f̂kh , φ(z)〉H = 〈(Λk
h)
−1(Φk

h)
>ykh, φ(z)〉H

= φ(z)>[λ · IH + (Φk
h)
>Φk

h]
−1(Φk

h)
>ykh

= φ(z)>(Φk
h)
>[λ · I + Φk

h(Φ
k
h)
>]−1ykh

= ψkh(z)>(λ · I +Kkh)−1ykh.

(5.13)

The third equality is by

(Φk
h)
>[λ · I + Φk

h(Φ
k
h)
>] = [λ · IH + (Φk

h)
>Φk

h](Φ
k
h)
>,

such that

[λ · IH + (Φk
h)
>Φk

h]
−1(Φk

h)
> = (Φk

h)
>[λ · I + Φk

h(Φ
k
h)
>]−1,
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where I is an identity matrix in R(k−1)×(k−1). The last equality in (5.13) is by the definitions of
ψkh(z) and Kkh in (5.11). This completes the proof.

Lemma 5.11 (Boundedness of Solution). When λ ≥ 1, for any (k, h) ∈ [K] × [H], f̂kh defined in

(5.12) satisfies

‖f̂kh‖H ≤ H
√

2/λ · log det(I +Kkh/λ) ≤ 2H
√

Γ(K,λ; ker),

where Kkh is defined in (5.11) and Γ(K,λ; ker) is defined in Definition 5.9.

Proof. For any vector f ∈ H, we have

|〈f, f̂kh 〉H| = |f>(Λk
h)
−1(Φk

h)
>ykh|

=

∣∣∣∣∣f>(Λk
h)
−1

k−1∑
τ=1

φ(sτh, a
τ
h)V

k
h+1(sτh+1)

∣∣∣∣∣ ≤ H
k−1∑
τ=1

∣∣f>(Λk
h)
−1φ(sτh, a

τ
h)
∣∣ ,

where the last inequality is due to |V k
h+1(sτh+1)| ≤ H . Then, with Lemma 5.36, the rest of the proof

is the same as the proof of Lemma C.5 in Yang et al. [2020], which finishes the proof.

Lemma 5.12. With probability at least 1− δ′, we have ∀(h, k) ∈ [H]× [K],∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V

k
h+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

∥∥∥∥∥
2

(Λkh)−1

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′),

where we set ς∗ = H/K and λ = 1 + 1/K.

Proof. We first define a value function class as follows

V(0, R,B) = {V : V (·) = max
a∈A

Q(·, a) with Q ∈ Q(0, R,B)},

where Q is defined in (5.8). We denote the covering number of V(0, R,B) w.r.t. the distance
dist asN Vdist(ε;R,B), where the distance dist is defined by dist(V1, V2) = sups∈S |V1(s)− V2(s)|.
Specifically, for any k×h ∈ [K]×[H], we assume that there exist constantsRK andBK that depend
on the number of episodes K such that any V k

h ∈ V(0, RK , BK) with RK = 2H
√

Γ(K,λ; ker)

and BK = (1 + 1/H)β since Qk
h(z) = Π[0,H][(r

k
h + ukh + fkh )(z)] = Π[0,H][Π[0,H][〈f̂kh , φ(z)〉H] +

(1 + 1/H)β · min{‖φ(z)‖(Λkh)−1 , H/β}] (See the next lemma for the reformulation of the bonus
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term). By Lemma 5.35 with δ′/K, we have∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V

k
h+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

∥∥∥∥∥
2

(Λkh)−1

≤ sup
V ∈V(0,RK ,BK)

∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V (sτh+1)− PhV (sτh, a

τ
h)]

∥∥∥∥∥
2

(Λkh)−1

≤ 2H2 log det(I +Kk/λ) + 2H2k(λ− 1) + 4H2 log(KN Vdist(ε;RK , BK)/δ′) + 8k2ε2/λ

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′),

where the last inequality is by setting λ = 1 + 1/K and ε = ς∗ = H/K. Moreover, the last
inequality is also due to

dist(V1, V2) = sup
s∈S
|V1(s)− V2(s)| = sup

s∈S

∣∣∣∣max
a∈A

Q1(s, a)−max
a∈A

Q2(s, a)

∣∣∣∣
≤ sup

(s,a)∈S×A
|Q1(s, a)−Q2(s, a)| = ‖Q1 −Q2‖∞,

which indicates thatN Vdist(ς
∗;RK , BK) upper bounded by the covering number of the classQ w.r.t.

‖ · ‖∞, such that

N Vdist(ς
∗;RK , BK) ≤ N∞(ς∗;RK , BK).

Here N∞(ε;R,B) denotes the upper bound of the covering number of Q(h,R,B) w.r.t. `∞-
norm, which is characterized in Section 5.7. Further by the union bound, we know that the above
inequality holds for all k ∈ [K] with probability at least 1− δ′. This completes the proof.

Lemma 5.13. We define the event E as that the following inequality holds ∀z = (s, a) ∈ S ×
A,∀(h, k) ∈ [H]× [K],

|PhV k
h+1(z)− fkh (z)| ≤ ukh(z),

where fkh (z) = Π[0,H][f̂
k
h (z)] and ukh(z) = min{wkh(z), H} with wkh(z) = βλ−1/2[ker(z, z) −

ψkh(z)>(λI +Kkh)−1ψkh(z)]1/2. Thus, setting β = BK/(1 + 1/H), if BK satisfies

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(K/δ′)

]
≤ B2

K ,∀h ∈ [H],
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then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(E) ≥ 1− δ′.

Proof. We assume that PhV k
h+1(s, a) = 〈f̃kh , φ(s, a)〉H for some f̃kh ∈ H. Then, we bound the

difference between fkh (z) and PhV k
h+1(s, a) in the following way

|PhV k
h+1(s, a)− fkh (s, a)|

≤ |〈f̃kh , φ(s, a)〉H − ψkh(s, a)>(λ · I +Kkh)−1ykh|

= |λφ(s, a)>(Λk
h)
−1f̃kh + ψkh(s, a)>(λ · I +Kkh)−1Φk

hf̃
k
h − ψkh(s, a)>(λ · I +Kkh)−1ykh|

= |λφ(s, a)>(Λk
h)
−1f̃kh + ψkh(s, a)>(λ · I +Kkh)−1(Φk

hf
k

h − ykh)|,

where the first inequality is due to 0 ≤ PhV k
h+1(s, a) ≤ H , non-expansiveness of the operator

Π[0,H][·] := min{·, H}+, and the definition of f̂kh (z) in Lemma 5.10, and the first equality is due to

φ(s, a) = (Λk
h)
−1Λk

hφ(s, a) = (Λk
h)
−1(λ · I + (Φk

h)
>Φk

h)φ(s, a)

= λ(Λk
h)
−1φ(s, a) + (Λk

h)
−1(Φk

h)
>Φk

hφ(s, a)

= λ(Λk
h)
−1φ(s, a) + (Φk

h)
>(λ · I +Kkh)−1Φk

hφ(s, a)

= λ(Λk
h)
−1φ(s, a) + (Φk

h)
>(λ · I +Kkh)−1ψkh(s, a).

(5.14)

Thus, we have

|PhV k
h+1(s, a, rk)− fkh (s, a)| ≤ λ‖φ(s, a)>(Λk

h)
−1‖H · ‖f̃kh‖H︸ ︷︷ ︸

Term(I)

+ |ψkh(s, a)>(λ · I +Kkh)−1(Φk
hf̃

k
h − ykh)|︸ ︷︷ ︸

Term(II)

.
(5.15)

For Term(I), we have

Term(I) ≤
√
λRQH

√
φ(s, a)>(Λk

h)
−1 · λI · (Λk

h)
−1φ(s, a)

≤
√
λRQH

√
φ(s, a)>(Λk

h)
−1 · Λk

h · (Λk
h)
−1φ(s, a)

≤
√
λRQH

√
φ(s, a)>(Λk

h)
−1φ(s, a) =

√
λRQH‖φ(s, a)‖(Λkh)−1 ,

(5.16)

where the first inequality is due to Assumption 5.2 and the second inequality is by θ>(Φk
h)
>Φk

hθ =

‖Φk
hθ‖H ≥ 0 for any θ ∈ H.
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For Term(II), we have

Term(II) =

∣∣∣∣∣φ(s, a)>(Λk
h)
−1

{
k−1∑
τ=1

φ(sτh, a
τ
h)[V

k
h+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

}∣∣∣∣∣
=

∣∣∣∣∣φ(s, a)>(Λk
h)
−1/2(Λk

h)
−1/2

{
k−1∑
τ=1

φ(sτh, a
τ
h)[V

k
h+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

}∣∣∣∣∣
≤ ‖φ(s, a)‖(Λkh)−1

∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V

k
h+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

∥∥∥∥∥
(Λkh)−1

(5.17)

By Lemma 5.12, we have that with probability at least 1− δ′, the following inequality holds for all
k ∈ [K]∥∥∥∥∥

k−1∑
τ=1

φ(sτh, a
τ
h)[V

k
h+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

∥∥∥∥∥
(Λkh)−1

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)]1/2.

Thus, Term(II) can be further bounded as

Term(II) ≤ H
[
4Γ(K,λ; ker) + 10 + 4 logN∞(ς∗;RK , BK) + 4 log(K/δ′)

]1/2‖φ(s, a)‖(Λkh)−1 .

Plugging the upper bounds of Term(I) and Term(II) into (5.15), we obtain

|PhV k
h+1(s, a, rk)− fkh (s, a)|

≤ H
[√
λRQ + [4Γ(K,λ; ker) + 10 + 4 logN∞(ς∗;RK , BK) + 4 log(K/δ′)]1/2

]
‖φ(s, a)‖(Λkh)−1

≤ H
[
2λR2

Q + 8Γ(K,λ; ker) + 20 + 4 logN∞(ς∗;RK , BK) + 8 log(K/δ′)
]1/2‖φ(s, a)‖(Λkh)−1

≤ β‖φ(s, a)‖(Λkh)−1 = βλ−1/2[ker(z, z)− ψkh(s, a)>(λI +Kkh)−1ψkh(s, a)]1/2,

where ς∗ = H/K, and λ = 1+1/K as in Lemma 5.12. In the last equality, we also use the identity
that

‖φ(s, a)‖2
(Λkh)−1 = λ−1φ(s, a)>φ(s, a)− λ−1ψkh(s, a)>(λ · I +Kkh)−1ψkh(s, a)

= λ−1 ker(z, z)− λ−1ψkh(s, a)>(λI +Kkh)−1ψkh(s, a).
(5.18)
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This is proved by

‖φ(s, a)‖2
H = φ(s, a)>[λ(Λk

h)
−1φ(s, a) + (Φk

h)
>(λ · I +Kkh)−1Φk

hφ(s, a)]

= λφ(s, a)>(Λk
h)
−1φ(s, a) + ψkh(s, a)>(λ · I +Kkh)−1ψkh(s, a),

where the first equality is by (5.14).
According to Lemma 5.11, we know that f̂kh satisfies ‖f̂kh‖H ≤ H

√
2/λ · log det(I +Kkh/λ) ≤

2H
√

Γ(K,λ; ker). Then, one can setRK = 2H
√

Γ(K,λ; ker). Moreover, as we set (1+1/H)β =

BK , then β = BK/(1 + 1/H). Thus, we let

[
2λR2

QH
2 + 8H2Γ(K,λ; ker) + 20H2 + 4H2 logN∞(ς∗;RK , BK) + 8H2 log(K/δ′)

]1/2
≤ β = BK/(1 + 1/H),

which can be further guaranteed by

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(K/δ′)

]
≤ B2

K

as (1 + 1/H) ≤ 2 and λ = 1 + 1/K ≤ 2.
According to the above result, letting wkh = β‖φ(s, a)‖(Λkh)−1 = βλ−1/2[ker(z, z) −

ψkh(s, a)>(λI + Kkh)−1ψkh(s, a)]1/2, we have −wkh ≤ PhV k
h+1(s, a) − fkh (s, a) ≤ wkh. Note that

we also have |PhV k
h+1(s, a)− fkh (s, a)| ≤ H due to 0 ≤ fkh (s, a) ≤ H and 0 ≤ PhV k

h+1(s, a) ≤ H .
Thus, there is |PhV k

h+1(s, a)− fkh (s, a)| ≤ min{wkh, H}. This completes the proof.

Lemma 5.14. Conditioned on the event E defined in Lemma 5.13, with probability at least 1− δ′,
we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k
1 (s1) ≤ O

(√
H3K log(1/δ′) + β

√
H2K · Γ(K,λ; ker)

)
.

Proof. We first show the first inequality in this lemma, i.e.,
∑K

k=1 V
∗

1 (s1, r
k) ≤

∑K
k=1 V

k
1 (s1). To

show this inequality holds, it suffices to show V ∗h (s, rk) ≤ V k
h (s) for all s ∈ S, h ∈ [H]. We prove

it by induction.
When h = H + 1, we know V ∗H+1(s, rk) = 0 and V k

H+1(s) = 0 such that V ∗H+1(s, rk) =

V k
H+1(s1). Now we assume that V ∗h+1(s, rk) ≤ V k

h+1(s). Then, conditioned on the event E defined
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in Lemma 5.13, for all s ∈ S, (h, k) ∈ [H]× [K], we further have

Q∗h(s, a, r
k)−Qk

h(s, a)

= rkh(s, a) + PhV ∗h+1(s, a, rk)−min{rkh(s, a) + fkh (s, a) + ukh(s, a), H}+

≤ max{PhV ∗h+1(s, a, rk)− fkh (s, a)− ukh(s, a), 0}

≤ max{PhV k
h+1(s, a)− fkh (s, a)− ukh(s, a), 0}

≤ 0

(5.19)

where the first inequality is due to 0 ≤ rkh(s, a) + PhV ∗h+1(s, a, rk) ≤ H and min{x, y}+ ≥
min{x, y}, the second inequality is by the assumption that V ∗h+1(s, rk) ≤ V k

h+1(s), the last inequal-
ity is by Lemma 5.13 such that PhV k

h+1(s, a) − fkh (s, a) ≤ ukh(s, a) holds for any (s, a) ∈ S × A
and (k, h) ∈ [K]× [H]. The above inequality (5.19) further leads to

V ∗h (s, rk) = max
a∈A

Q∗h(s, a, r
k) ≤ max

a∈A
Qk
h(s, a) = V k

h (s).

Therefore, we obtain that conditioned on event E , we have

K∑
k=1

V ∗1 (s, rk) ≤
K∑
k=1

V k
1 (s).

Next, we prove the second inequality in this lemma, namely the upper bound of
∑K

k=1 V
k

1 (s1).
Specifically, conditioned on E defined in Lemma 5.13, we have

V k
h (skh) = Qk

h(s
k
h, a

k
h) ≤ fkh (skh, a

k
h) + rkh(s

k
h, a

k
h) + ukh(s

k
h, a

k
h)

≤ PhV k
h+1(skh, a

k
h) + ukh(s

k
h, a

k
h) + rkh(s

k
h, a

k
h) + ukh(s

k
h, a

k
h)

≤ PhV k
h+1(skh, a

k
h) + (2 + 1/H)wkh

= ζkh + V k
h+1(skh+1) + (2 + 1/H)β‖φ(skh, a

k
h)‖(Λkh)−1 ,

where the second inequality is due to Lemma 5.13 and in the last equality, we define

ζkh := PhV k
h+1(skh, a

k
h)− V k

h+1(skh+1).

Recursively applying the above inequality gives

V k
1 (s1) ≤

H∑
h=1

ζkh + (2 + 1/H)β
H∑
h=1

‖φ(skh, a
k
h)‖(Λkh)−1 ,

139



where we use the fact that V k
H+1(·) = 0. Taking summation on both sides of the above inequality,

we have

K∑
k=1

V k
1 (s1) =

K∑
k=1

H∑
h=1

ζkh + (2 + 1/H)β
K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λkh)−1 .

By Azuma-Hoeffding inequality, with probability at least 1− δ′, the following inequalities hold

K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ′

)
.

On the other hand, by Lemma 5.36, we have

K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λkh)−1 =

K∑
k=1

H∑
h=1

√
φ(skh, a

k
h)
>(Λk

h)
−1φ(skh, a

k
h)

≤
H∑
h=1

√√√√K
K∑
k=1

φ(skh, a
k
h)
>(Λk

h)
−1φ(skh, a

k
h)

≤
H∑
h=1

√
2K log det(I + λKKh ) = 2H

√
K · Γ(K,λ; ker).

where the first inequality is by Jensen’s inequality. Thus, conditioned on event E , we obtain that
with probability at least 1− δ′, there is

K∑
k=1

V k
1 (s1) ≤ O

(√
H3K log(1/δ′) + β

√
H2K · Γ(K,λ; ker)

)
,

which completes the proof.

Lemma 5.15. We define the event Ẽ as that the following inequality holds ∀z = (s, a) ∈ S ×
A,∀h ∈ [H],

|PhVh+1(z)− fh(z)| ≤ uh(z),

where uh(z) = min{wh(z), H}+ with wh(z) = βλ−1/2[ker(z, z)− ψh(z)>(λI +Kh)−1ψh(z)]1/2.

Thus, setting β = B̃K , if B̃K satisfies

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(K/δ′)

]
≤ B̃2

K , ∀h ∈ [H],
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then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(Ẽ) ≥ 1− δ′.

Proof. The proof of this lemma is nearly the same as the proof of Lemma 5.13. We provide the
sketch of this proof below.

We assume that the true transition is formulated as PhVh+1(z) = 〈f̃h, φ(z)〉H =: f̃h(z). We
have the following definitions

Φh = [φ(s1
h, a

1
h), φ(s2

h, a
2
h), · · · , φ(sKh , a

K
h )]>,

Λh =
K∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)
> + λ · IH = λ · IH + (Φh)

>Φh,

yh = [Vh+1(s1
h+1), Vh+1(s2

h+1), · · · , Vh+1(sKh+1)]>, Kh = ΦhΦ
>
h , ψh(s, a) = Φhφ(s, a).

Then, we bound the following term

|PhVh+1(s, a)− fh(s, a)|

≤ |〈f̃h, φ(s, a)〉H − ψh(s, a)>(λ · I +Kh)−1yh|

= |λφ(s, a)>Λ−1
h f̃h + ψh(s, a)>(λ · I +Kh)−1Φhf̃h − ψh(s, a)>(λ · I +Kh)−1yh|

= |λφ(s, a)>Λ−1
h f̃h + ψkh(s, a)>(λ · I +Kh)−1(Φhf̃h − yh)|,

where the first inequality is due to 0 ≤ PhVh+1(s, a) ≤ H , the non-expansiveness of the operator
Π[0,H], and the definition of f̂h(s, a) in (5.5), and the first equality is by the same reformulation as
(5.14) such that

φ(s, a) = λΛ−1
h φ(s, a) + (Φh)

>(λ · I +Kh)−1ψh(s, a).

Thus, we have

|PhVh+1(s, a)− fh(s, a)| ≤ λ‖φ(s, a)>Λ−1
h ‖H · ‖f̃h‖H︸ ︷︷ ︸

Term(I)

+ |ψh(s, a)>(λ · I +Kh)−1(Φhf̃h − yh)|︸ ︷︷ ︸
Term(II)

.
(5.20)

Analogous to (5.16), for Term(I) here, we have

Term(I) ≤
√
λRQH‖φ(s, a)‖Λ−1

h
.
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Similar to (5.17), for Term(II), we have

Term(II) ≤ ‖φ(s, a)‖Λ−1
h

∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[Vh+1(sτh+1)− PhVh+1(sτh, a

τ
h)]

∥∥∥∥∥
Λ−1
h

.

Then, we need to bound the last factor in the above inequality. Here we apply the similar argument
as Lemma 5.12. We have the function class for Vh is

V(rh, R̃K , B̃K) = {V : V (·) = max
a∈A

Q(·, a) with Q ∈ Q(rh, R̃K , B̃K)}.

By Lemma 5.35 with δ′, we have∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[Vh+1(sτh+1)− PhVh+1(sτh, a

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ sup
V ∈V(rh,R̃K ,B̃K)

∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[V (sτh+1)− PhV (sτh, a

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ 2H2 log det(I +K/λ) + 2H2K(λ− 1) + 4H2 log(N Vdist(ε; R̃K , B̃K)/δ′) + 8K2ε2/λ

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(1/δ′),

where the last inequality is by setting λ = 1 + 1/K and ε = ς∗ = H/K, and also due to

N Vdist(ς
∗; R̃K , B̃K) ≤ N∞(ς∗; R̃K , B̃K).

We have that with probability at least 1− δ′, the following inequality holds for all k ∈ [K]∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[Vh+1(sτh+1)− PhV k

h+1(sτh, a
τ
h)]

∥∥∥∥∥
Λ−1
h

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(K/δ′)]1/2.

Thus, Term(II) can be further bounded as

Term(II) ≤ H
[
4Γ(K,λ; ker) + 10 + 4 logN∞(ς∗; R̃K , B̃K) + 4 log(K/δ′)

]1/2‖φ(s, a)‖(Λkh)−1 .
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Plugging the upper bounds of Term(I) and Term(II) into (5.20), we obtain

|PhVh+1(s, a)− fh(s, a)|

≤ uh(s, a) ≤ β‖φ(s, a)‖Λ−1
h

= βλ−1/2[ker(z, z)− ψh(s, a)>(λI +Kh)−1ψh(s, a)]1/2,

where we let z = (s, a), ς∗ = H/K, and λ = 1 + 1/K. In the last equality, similar to (5.18), we
have

‖φ(s, a)‖2
Λ−1
h

= λ−1φ(s, a)>φ(s, a)− λ−1φ(s, a)>(Φh)
>[λI + Φh(Φh)

>]−1Φhφ(s, a)

= λ−1 ker(z, z)− λ−1ψh(s, a)>(λI +Kh)−1ψh(s, a).
(5.21)

Similar to Lemma 5.11, we know that the function f̂h satisfies ‖f̂h‖H ≤
H
√

2/λ · log det(I +Kkh/λ) ≤ 2H
√

Γ(K,λ; ker). Then, one can set R̃K = 2H
√

Γ(K,λ; ker).
Moreover, as we set β = B̃K . Thus, we let

H
[
2λR2

Q + 8Γ(K,λ; ker) + 20 + 4 logN∞(ς∗; R̃K , B̃K) + 8 log(K/δ′)
]1/2 ≤ β = B̃K ,

which can be further guaranteed by

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(K/δ′)

]
≤ B̃2

K

as (1 + 1/H) ≤ 2 and λ = 1 + 1/K ≤ 2. This completes the proof.

Lemma 5.16. Conditioned on the event Ẽ as defined in Lemma 5.15, we have

V ∗h (s, r) ≤ Vh(s) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)),∀s ∈ S,∀h ∈ [H],

where πh(s) = argmaxa∈AQh(s, a).

Proof. We first prove the first inequality in this lemma. We prove it by induction. For h = H + 1,
by the planning algorithm, we have V ∗H+1(s, r) = VH+1(s) = 0 for any s ∈ S. Then, we assume
that V ∗h+1(s, r) ≤ Vh+1(s). Thus, conditioned on the event Ẽ as defined in Lemma 5.15, we have

Q∗h(s, a, r)−Qh(s, a)

= rh(s, a) + PhV ∗h+1(s, a, r)−min{rh(s, a) + fh(s, a) + uh(s, a), H}+

≤ max{PhV ∗h+1(s, a, r)− fh(s, a)− uh(s, a), 0}

≤ max{PhVh+1(s, a)− fh(s, a)− uh(s, a), 0}

≤ 0
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where the first inequality is due to 0 ≤ rh(s, a) + PhV ∗h+1(s, a, r) ≤ H and min{x,H}+ ≥
min{x,H}, the second inequality is by the assumption that V ∗h+1(s, a, r) ≤ Vh+1(s, a), the last
inequality is by Lemma 5.15 such that |PhVh+1(s, a)− fh(s, a)| ≤ uh(s, a) holds for any (s, a) ∈
S ×A and (k, h) ∈ [K]× [H]. The above inequality further leads to

V ∗h (s, r) = max
a∈A

Q∗h(s, a, r) ≤ max
a∈A

Qh(s, a) = Vh(s).

Therefore, we have

V ∗h (s, r) ≤ Vh(s), ∀h ∈ [H],∀s ∈ S.

In addition, we prove the second inequality in this lemma. We have

Qh(s, a) = min{rh(s, a) + fh(s, a) + uh(s, a), H}+

≤ min{rh(s, a) + PhVh+1(s, a) + 2uh(s, a), H}+

≤ rh(s, a) + PhVh+1(s, a) + 2uh(s, a),

where the first inequality is also by Lemma 5.15 such that |PhVh+1(s, a) − fh(s, a)| ≤ uh(s, a),
and the last inequality is because of the non-negativity of rh(s, a) + PhVh+1(s, a) + 2uh(s, a).
Therefore, we have

Vh(s) = max
a∈A

Qh(s, a) = Qh(s, πh(s))

≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)).

This completes the proof.

Lemma 5.17. With the exploration and planning phases, we have the following inequality

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Proof. As shown in (5.21), we know that

wh(s, a) = β‖φ(s, a)‖Λ−1
h

= β

√√√√φ(s, a)>

[
λIH +

K∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)
>

]−1

φ(s, a).
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On the other hand, by (5.18), we similarly have

wkh(s, a) = β‖φ(s, a)‖(Λkh)−1 = β

√√√√φ(s, a)>

[
λIH +

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)
>

]−1

φ(s, a).

Since k − 1 ≤ K and f>φ(sτh, a
τ
h)φ(sτh, a

τ
h)
>f = [f>φ(sτh, a

τ
h)]

2 ≥ 0 for any τ , then we know that

Λh = λIH +
K∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)
> < λIH +

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)
> = Λk

h.

We use A < B (or A � B) to denote f>Af ≥ f>Bf (or f>Af > f>Bf ), ∀f ∈ H, for two
self-adjoint operators A and B. Moreover, if a linear operator A satisfies A � 0, we say A is a
positive operator.

The above relation further implies that (Λk
h)
−1 < Λ−1

h such that φ(s, a)>Λ−1
h φ(s, a) ≤

φ(s, a)>(Λk
h)
−1φ(s, a), where (Λk

h)
−1 and Λ−1

h are the inverse of Λk
h and Λh respectively. Here

we use the fact that Λh < Λk
h implies (Λk

h)
−1 < Λ−1

h , which can be proved by extending the
standard matrix case to the self-adjoint operator. For completeness, we give a short proof below.

Let λ > 0 be a fixed constant. Since Λh < Λk
h < λIH � 0, then there exist the inverse Λ−1

h ,
(Λk

h)
−1 and square root Λ

1/2
h , (Λk

h)
1/2, which are also positive self-adjoint and invertible opera-

tors. We also have Λ
−1/2
h := (Λ

1/2
h )−1 = (Λ−1

h )1/2 and (Λk
h)
−1/2 := [(Λk

h)
1/2]−1 = [(Λk

h)
−1]1/2.

Thus, for any f ∈ H, we have f>f = f>Λ
−1/2
h Λ

1/2
h Λ

1/2
h Λ

−1/2
h f = f>Λ

−1/2
h ΛhΛ

−1/2
h f ≥

f>Λ
−1/2
h Λk

hΛ
−1/2
h f where the inequality is due to Λh < Λk

h and Λ
−1/2
h = (Λ

−1/2
h )>. Then,

we further have f>f ≥ f>Λ
−1/2
h Λk

hΛ
−1/2
h f = f>Λ

−1/2
h (Λk

h)
1/2(Λk

h)
1/2Λ

−1/2
h f = f>A>Af if

we let A = (Λk
h)

1/2Λ
−1/2
h , where we use the fact that (Λk

h)
1/2 and Λ

−1/2
h are self-adjoint oper-

ators. Then, we know that ‖f‖H ≥ ‖Af‖H holds for all f ∈ H, indicating that ‖A‖op :=

supf 6=0 ‖Af‖H/‖f‖H ≤ 1, where ‖ · ‖op denotes the operator norm. Since ‖A‖op = ‖A>‖op,
we have ‖A>‖op ≤ 1 or equivalently ‖f‖H ≥ ‖A>f‖H,∀f ∈ H, which gives f>f ≥
f>(Λk

h)
1/2Λ

−1/2
h Λ

−1/2
h (Λk

h)
1/2f = f>(Λk

h)
1/2Λ−1

h (Λk
h)

1/2f . For any g ∈ H, letting f = (Λk
h)
−1/2g,

by f>f ≥ f>(Λk
h)

1/2Λ−1
h (Λk

h)
1/2f , we have g>(Λk

h)
−1g ≥ g>Λ−1

h g, which gives (Λk
h)
−1 < Λ−1

h .
The above derivation is based on the basic properties of the linear operator, the (self-)adjoint op-
erator, the inverse, and the square root of an operator. See Kreyszig [1978], Schechter [2001],
MacCluer [2008] for the details.

Thus, by the above result, we have

wh(s, a) ≤ wkh(s, a).

Since rkh = 1/H · ukh(s, a) = 1/H ·min{wkh(s, a), H} and uh(s, a) = min{wh(s, a), H}, then we
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have

uh(s, a)/H ≤ rkh(s, a),

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k),

and thus

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

This completes the proof.

5.8.2 Proof of Theorem 5.3

Proof. Conditioned on the event E defined in Lemma 5.13 and the event Ẽ defined in Lemma 5.15,
we have

V ∗1 (s1, r)− V π
1 (s1, r) ≤ V1(s1)− V π

1 (s1, r), (5.22)

where the inequality is by Lemma 5.16. Further by this lemma, we have

Vh(s)− V π
h (s, r) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))−Qπ

h(s, πh(s), r)

= rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))

− rh(s, πh(s))− PhV π
h+1(s, πh(s), r)

= PhVh+1(s, πh(s))− PhV π
h+1(s, πh(s), r) + 2uh(s, πh(s)).

Recursively applying the above inequality and making use of V π
H+1(s, r) = VH+1(s) = 0 gives

V1(s1)− V π
1 (s1, r) ≤ E∀h∈[H]: sh+1∼Ph(·|sh,πh(sh))

[
H∑
h=1

2uh(sh, πh(sh))

∣∣∣∣∣s1

]
= 2H · V π

1 (s1, u/H).
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Combining this inequality with (5.22) gives

V ∗1 (s1, r)− V π
1 (s1, r) ≤ 2H · V π

1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
= O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
,

where the second inequality is due to Lemma 5.17 and the third inequality is by Lemma 5.14.
By the union bound, we have P (E ∧ Ẽ) ≥ 1 − 2δ′ . Therefore, by setting δ′ = δ/2, we obtain

that with probability at least 1− δ

V ∗1 (s1, r)− V π
1 (s1, r) ≤ O

(
[
√
H5 log(2/δ) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
.

Note that E ∧ Ẽ happens when the following two conditions are satisfied, i.e.,

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(2K/δ)

]
≤ B̃2

K ,

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(2K/δ)

]
≤ B2

K ,∀h ∈ [H],

where β = B̃K , (1 + 1/H)β = BK , λ = 1 + 1/K, R̃K = RK = 2H
√

Γ(K,λ; ker), and
ς∗ = H/K. The above inequalities hold if we further let β satisfy

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , 2β) + 2 log(2K/δ)

]
≤ β2,∀h ∈ [H],

since 2β ≥ (1 + 1/H)β ≥ β such that N∞(ς∗;RK , 2β) ≥ N∞(ς∗;RK , BK) ≥ N∞(ς∗; R̃K , B̃K).
Since the above conditions imply that β ≥ H , further setting δ = 1/(2K2H2), we obtain that

V ∗1 (s1, r)− V π
1 (s1, r) ≤ O

(
β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K
)
,

with further letting

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , 2β) + 6 log(2KH)

]
≤ β2, ∀h ∈ [H].

This completes the proof.
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5.9 Proofs for Single-Agent MDP with Neural Function Ap-
proximation

5.9.1 Lemmas

Lemma 5.18 (Lemma C.7 of Yang et al. [2020]). With KH2 = O(m log−6m), then there exists

a constant z ≥ 1 such that the following inequalities hold with probability at least 1 − 1/m2 for

any z ∈ S ×A and any W ∈ {W : ‖W −W (0)‖2 ≤ H
√
K/λ},

|f(z;W )− ϕ(z;W (0))>(W −W (0))| ≤ zK2/3H4/3m−1/6
√

logm,

‖ϕ(z;W )− ϕ(z;W (0))‖2 ≤ z(KH2/m)1/6
√

logm, ‖ϕ(z;W )‖2 ≤ z.

Lemma 5.19. We define the event E as that the following inequality holds ∀(s, a) ∈ S ×
A,∀(h, k) ∈ [H]× [K],

|PhV k
h+1(s, a)− fkh (s, a)| ≤ ukh(s, a) + βι,∣∣∣‖ϕ(z;W k

h )‖(Λkh)−1 − ‖ϕ(z;W (0))‖(Λ̃kh)−1

∣∣∣ ≤ ι,

where ι = 5K7/12H1/6m−1/12 log1/4m and we define

Λk
h =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W

k
h )ϕ(sτh, a

τ
h;W

k
h )> + λI, Λ̃k

h =
k−1∑
τ=1

ϕ(sτh, a
τ
h;W

(0))ϕ(sτh, a
τ
h;W

(0))> + λI.

Setting (1 + 1/H)β = BK , RK = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we

set

β2 ≥ H2[8R2
Q(1 +

√
λ/d)2 + 32Γ(K,λ; kerm) + 80 + 32 logN∞(ς∗;RK , BK) + 32 log(K/δ′)],

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event E happens, i.e.,

Pr(E) ≥ 1− 2/m2 − δ′.
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Proof. Recall that we assume PhVh+1 for any V can be expressed as

PhVh+1(z) =

∫
Rd
act′(ω>z) · z>α(ω)dp0(ω),

which thus implies that we have

PhV k
h+1(z) =

∫
Rd
act′(ω>z) · z>αkh(ω)dp0(ω),

for some αkh(ω). Our algorithm suggests to estimate PhV k
h+1(s, a) via learning the parameters W k

h

by solving

W k
h = argmin

W

k−1∑
τ=1

[V k
h+1(sτh+1)− f(sτh, a

τ
h;W )]2 + λ‖W −W (0)‖2

2, (5.23)

such that we have the estimate of PhV k
h+1(s, a) as fkh (z) = Π[0,H][f(z;W k

h )] with

f(z;W k
h ) =

1√
2m

2m∑
i=1

vi · act([W k
h ]>i z).

Furthermore, we have

‖W k
h −W (0)‖2

2 ≤
1

λ

(
k−1∑
τ=1

[V k
h+1(sτh+1)− f(sτh, a

τ
h;W

k
h )]2 + λ‖W k

h −W (0)‖2
2

)

≤ 1

λ

(
k−1∑
τ=1

[V k
h+1(sτh+1)− f(sτh, a

τ
h;W

(0))]2 + λ‖W (0) −W (0)‖2
2

)

=
1

λ

k−1∑
τ=1

[V k
h+1(sτh+1)]2 ≤ H2K/λ,

where the second inequality is due to W k
h is the minimizer of the objective function.

We also define a linearization of the function f(z;W ) at the point W (0), which is

flin(z;W ) = f(z;W (0)) + 〈ϕ(z;W (0)),W −W (0)〉 = 〈ϕ(z;W (0)),W −W (0)〉, (5.24)

where

ϕ(z;W ) = ∇Wf(z;W ) = [∇W1f(z;W ), · · · ,∇W2mf(z;W )].

Based on this linearization formulation, we similarly define a parameter matrix W k
lin,h that is
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generated by solving an optimization problem with the linearied function flin, such that

W k
lin,h = argmin

W

k−1∑
τ=1

[V k
h+1(sτh+1)− flin(sτh, a

τ
h;W )]2 + λ‖W −W (0)‖2

2. (5.25)

Due to the linear structure of flin(z;W ), one can easily solve the above optimization problem and
obtain the closed form of the solution W k

lin,h, which is

W k
lin,h = W (0) + (Λ̃t

h)
−1(Φ̃k

h)
>ykh, (5.26)

where we define Λt
h, Φk

h, and ykh as

Φ̃k
h = [ϕ(s1

h, a
1
h;W

(0)), · · · , ϕ(sk−1
h , ak−1

h ;W (0))]>,

Λ̃k
h =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W

(0))ϕ(sτh, a
τ
h;W

(0))> + λ · I = λ · I + (Φ̃k
h)
>Φ̃k

h,

ykh = [V k
h+1(s1

h+1), V k
h+1(s2

h+1), · · · , V k
h+1(sk−1

h+1)]>.

Here we also have the upper bound of ‖W k
lin,h −W (0)‖2 as

‖W k
lin,h −W (0)‖2

2 ≤
1

λ

(
k−1∑
τ=1

[V k
h+1(sτh+1)− flin(sτh, a

τ
h;W

k
lin,h)]

2 + λ‖W k
lin,h −W (0)‖2

2

)

≤ 1

λ

(
k−1∑
τ=1

[V k
h+1(sτh+1)− flin(sτh, a

τ
h;W

(0))]2 + λ‖W (0) −W (0)‖2
2

)

=
1

λ

k−1∑
τ=1

[V k
h+1(sτh+1)]2 ≤ H2K/λ,

where the second inequality is due to W k
lin,h is the minimizer of the objective function. Based on

the matrix W k
lin,h, we define the function

fklin,h(z) := Π[0,H][flin(z;W k
lin,h)],

where Π[0,H][·] is short for min{·, H}+.
Moreover, we further define an approximation of PhV k

h+1 as

f̃(z) = Π[0,H]

[
1√
m

m∑
i=1

act′(W (0)
i
>z)z>αi

]
,
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where ‖αi‖ ≤ RQH/
√
dm. According to Gao et al. [2019], we have that with probability at least

1− 1/m2 over the randomness of initialization, for any (h, k) ∈ [H]× [K], there exists a constant
Cact such that ∀z = (s, a) ∈ S ×A, we have∣∣∣∣∣PhV k

h+1(z)− 1√
m

m∑
i=1

act′(W (0)
i
>z)z>αi

∣∣∣∣∣ ≤ 10CactRQH
√

log(mKH)/m.

which further implies that

|PhV k
h+1(z)− f̃(z)| ≤ 10CactRQH

√
log(mKH)/m, ∀z = (s, a) ∈ S ×A. (5.27)

This indicates that f̃(z) is a good estimate of PhV k
h+1(z) particularly when m is large, i.e., the

estimation error 10CactRQH
√

log(mKH)/m is small.
Now, based on the above definitions and descriptions, we are ready to present our proof of this

lemma. Overall, the basic idea of proving the upper bound of |PhV k
h+1(z)− fkh (z)| is to bound the

following difference terms, i.e.,

|fkh (z)− fklin,h(z)| and |fklin,h(z)− f̃(z)|. (5.28)

As we already have known the upper bound of the term |PhV h
h+1(z) − f̃(z)| in (5.27), one can

immediately obtain the upper bound of |PhV k
h+1(z)− fkh (z)| by decomposing it into the two afore-

mentioned terms and bounding them separately.
We first bound the first term in (5.28), i.e., |fkh (z)− flin(z;W k

lin,h)|, in the following way

|fkh (z)− fklin,h(z)|

≤ |f(z;W k
h )− 〈ϕ(z;W (0)),W k

lin,h −W (0)〉|

≤ |f(z;W k
h )− 〈ϕ(z;W (0)),W k

h −W (0)〉|+ |〈ϕ(z;W (0)),W k
h −W k

lin,h〉|

≤ zK2/3H4/3m−1/6
√

logm+ z ‖W k
h −W k

lin,h‖2︸ ︷︷ ︸
Term(I)

,

(5.29)

where the first inequality is due to the non-expansiveness of projection operation Π[0,H], the third
inequality is by Lemma 5.18 that holds with probability at least 1 − m−2. Then, we need to
bound Term(I) in the above inequality. Specifically, by the first order optimality condition for the
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objectives in (5.23) and (5.25), we have

λ(W k
h −W (0)) =

k−1∑
τ=1

[V k
h+1(sτh+1)− f(zτh;W k

h )]ϕ(zτh;W k
h ) = (Φk

h)
>(ykh − fkh ),

λ(W k
lin,h −W (0)) =

k−1∑
τ=1

[V k
h+1(sτh+1)− 〈ϕ(zτh;W (0)),W k

lin,h −W (0)〉]ϕ(zτh;W (0))

= (Φ̃k
h)
>ykh − (Φ̃k

h)
>Φ̃k

h(W
k
lin,h −W (0)),

where we define

Φk
h = [ϕ(s1

h, a
1
h;W

k
h ), · · · , ϕ(sk−1

h , ak−1
h ;W k

h )]>,

Λk
h =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W

k
h )ϕ(sτh, a

τ
h;W

k
h )> + λ · I = λ · I + (Φk

h)
>Φk

h,

fkh = [f(z1
h;W

k
h ), f(z2

h;W
k
h ), · · · , f(zk−1

h ;W k
h )]>.

Thus, we have

Term(I) = λ−1‖(Φk
h)
>(ykh − fkh )− (Φ̃k

h)
>ykh + (Φ̃k

h)
>Φ̃k

h(W
k
lin,h −W (0))‖2

= λ−1‖(Φk
h)
>(ykh − fkh )− (Φ̃k

h)
>ykh + (Φ̃k

h)
>Φ̃k

h(W
k
lin,h −W (0))‖2

≤ λ−1‖((Φk
h)
> − (Φ̃k

h)
>)ykh‖+ λ−1‖(Φk

h)
>[fkh − Φ̃k

h(W
k
lin,h −W (0))]‖2

+ λ−1‖((Φk
h)
> − (Φ̃k

h)
>)Φ̃k

h(W
k
lin,h −W (0))‖2.

According to Lemma 5.18, we can bound the last three terms in the above inequality separately as
follows

λ−1‖((Φk
h)
> − (Φ̃k

h)
>)ykh‖2 ≤ λ−1K max

τ∈[k−1]
|[ϕ(zτh;W k

h )− ϕ(zτh;W (0))] · [ykh]τ |

≤ zλ−1K7/6H4/3m−1/6
√

logm,

and similarly,

λ−1‖(Φk
h)
>[fkh − Φ̃k

h(W
k
lin,h −W (0))]‖2 ≤ λ−1z2K5/3H4/3m−1/6

√
logm,

λ−1‖((Φk
h)
> − (Φ̃k

h)
>)Φ̃k

h(W
k
lin,h −W (0))‖2 ≤ λ−3/2z2K5/3H4/3m−1/6

√
logm.
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Thus, we have

Term(I) ≤ λ−1(zK7/6 + 2z2K5/3)H4/3m−1/6
√

logm ≤ 3K5/3H4/3m−1/6
√

logm.

where we set λ = z2(1 + 1/K), and use the fact that λ ≥ 1 as z ≥ 1 as well as z2/λ ∈ [1/2, 1]

and z/λ ∈ [1/2, 1]. Combining the above upper bound of Term(I) with (5.29), we obtain

|fkh (z)− fklin,h(z)| ≤ 4zK5/3H4/3m−1/6
√

logm. (5.30)

Next, we bound the second term in (5.28), namely |fklin,h(z)− f̃(z)|. Note that we have

1√
m

m∑
i=1

act′(W (0)
i
>z)z>αi

=
1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi +

1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi

=
1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi +

1√
2m

2m∑
i=m+1

(v
(0)
i−m)2

√
2

act′(W (0)
i
>z)z>αi−m

=
1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi +

1√
2m

2m∑
i=m+1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi

=
1√
2m

2m∑
i=1

v
(0)
i act′(W (0)

i
>z)z>(W̃i −W (0)

i ) = 〈ϕ(z;W (0)), W̃ −W (0)〉,

where we define

W̃i =

 W
(0)
i +

v
(0)
i√
2
αi, if 1 ≤ i ≤ m,

W
(0)
i +

v
(0)
i√
2
αi−m, if m+ 1 ≤ i ≤ 2m.

Then, we can reformulate f̃(z) as follows

f̃(z) = Π[0,H][〈ϕ(z;W (0)), W̃ −W (0)〉].

Since ‖αi‖2 ≤ RQH/
√
d, then there is ‖W̃ −W (0)‖2 ≤ RQH/

√
d. Equivalently, we further have

〈ϕ(z;W (0)), W̃ −W (0)〉 = 〈ϕ(z;W (0)), (Λ̃k
h)
−1Λ̃k

h(W̃ −W (0))〉

= 〈ϕ(z;W (0)), λ(Λ̃k
h)
−1(W̃ −W (0))〉

+ 〈ϕ(z;W (0)), (Λ̃k
h)
−1(Φ̃k

h)
>Φ̃k

h(W̃ −W (0))〉,

(5.31)
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since Λk
h = λI + (Φ̃k

h)
>Φ̃k

h. Thus, by the above equivalent form of f̃(z) in (5.31), and further with
the formulation of fklin,h(z) according to (5.24) and (5.26), we have

|fklin,h(z)− f̃(z)|

≤ |〈ϕ(z;W (0)),W k
lin,h − W̃ 〉|

≤ |〈ϕ(z;W (0)), λ(Λ̃k
h)
−1(W̃ −W (0))〉|︸ ︷︷ ︸

Term(II)

+ |〈ϕ(z;W (0)), (Λ̃t
h)
−1(Φ̃k

h)
>[ykh − Φ̃k

h(W̃ −W (0))]〉|︸ ︷︷ ︸
Term(III)

.

The first term Term(II) can be bounded as

Term(II) = |〈ϕ(z;W (0)), λ(Λ̃k
h)
−1(W̃ −W (0))〉|

≤ λ‖ϕ(z;W (0))‖(Λ̃kh)−1‖W̃ −W (0)‖(Λ̃kh)−1

≤
√
λ‖ϕ(z;W (0))‖(Λ̃kh)−1‖W̃ −W (0)‖2

≤
√
λRQH/

√
d · ‖ϕ(z;W (0))‖(Λ̃kh)−1 ,

where the first inequality is by ‖W̃ − W (0)‖(Λ̃kh)−1 =

√
(W̃ −W (0))>(Λ̃k

h)
−1(W̃ −W (0)) ≤

1/
√
λ‖W̃ − W (0)‖2 since (Λ̃k

h)
−1 4 1/λ · I and the last inequality is due to ‖W̃ − W (0)‖2 ≤

RQH/
√
d.

Next, we prove the bound of Term(III) in the following way

Term(III) = |〈ϕ(z;W (0)), (Λ̃t
h)
−1(Φ̃k

h)
>[ykh − Φ̃k

h(W̃ −W (0))]〉|

≤ |〈ϕ(z;W (0)), (Λ̃t
h)
−1(Φ̃k

h)
>[ỹkh − Φ̃k

h(W̃ −W (0))]〉|

+ |〈ϕ(z;W (0)), (Λ̃t
h)
−1(Φ̃k

h)
>[ykh − ỹkh]〉|

≤ ‖ϕ(z;W (0))‖(Λ̃kh)−1 · ‖(Φ̃k
h)
>[ỹkh − Φ̃k

h(W̃ −W (0))]‖(Λ̃kh)−1

+ ‖ϕ(z;W (0))‖(Λ̃kh)−1 · ‖(Φk
h)
>[ykh − ỹkh]‖(Λ̃kh)−1

≤ 10CactRQH
√
K log(mKH)/m‖ϕ(z;W (0))‖(Λ̃kh)−1

+ ‖ϕ(z;W (0))‖(Λ̃kh)−1 · ‖(Φ̃k
h)
>[ykh − ỹkh]‖(Λ̃kh)−1︸ ︷︷ ︸

Term(IV)

,

where we define ỹkh = [PhV k
h+1(s1

h+1),PhV k
h+1(s2

h+1), · · · ,PhV k
h+1(sk−1

h+1)]>. Here, the last inequal-
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ity is by

‖(Φk
h)
>[ỹkh − Φ̃k

h(W̃ −W (0))]‖(Λ̃kh)−1

=

√
[ỹkh − Φ̃k

h(W̃ −W (0))]>Φ̃k
h[λI + (Φ̃k

h)
>Φ̃k

h]
−1(Φ̃k

h)
>[ỹkh − Φ̃k

h(W̃ −W (0))]

=

√
[ỹkh − Φ̃k

h(W̃ −W (0))]>Φ̃k
h(Φ̃

k
h)
>[λI + Φ̃k

h(Φ̃
k
h)
>]−1[ỹkh − Φ̃k

h(W̃ −W (0))]

≤
√

[ỹkh − Φ̃k
h(W̃ −W (0))]>[λI + Φ̃k

h(Φ̃
k
h)
>][λI + Φ̃k

h(Φ̃
k
h)
>]−1[ỹkh − Φ̃k

h(W̃ −W (0))]

= ‖ỹkh − Φ̃k
h(W̃ −W (0))‖2 ≤ 10CactRQH

√
K log(mKH)/m,

where the second equality is by Woodbury matrix identity, the first inequality is due to [λI +

Φ̃k
h(Φ̃

k
h)
>]−1 � 0, and the second inequality is by (5.27) such that

‖ỹkh − Φ̃k
h(W̃ −W (0))‖2 ≤

√
k − 1‖ỹkh − Φ̃k

h(W̃ −W (0))‖∞
=
√
k − 1 sup

τ∈[k−1]

|PhV k
h+1(sτh, a

τ
h)− f̃(sτh, a

τ
h)|

≤ 10CactRQH
√
K log(mKH)/m.

In order to further bound Term(IV), we define a new Q-function based on W k
lin,h, which is

Qk
lin,h(z) := Π[0,H][r

k
lin,h(z) + fklin,h(z) + uklin,h(z)],

where rlin,h(s, a) = uklin,h(z)/H , and uklin,h(z) = min{β‖ϕ(z;W (0))‖(Λ̃kh)−1 , H}. This Q-
function can be equivalently reformulated with a normalized representation ϑ = ϕ/z as follows

Qk
lin,h(z) = min{Π[0,H][〈ϑ(z;W (0)),z · (W k

lin,h −W (0))〉]

+ (1 + 1/H) ·min{β‖ϑ(z;W (0))‖(Ξkh)−1}, H}+,
(5.32)

where we have

Ξk
h := λ/z2 · I + (Θk

h)
>Θk

h, Θk
h := Φk

h/z.

Note that z‖W k
lin,h −W (0)‖2 ≤ zH

√
K/λ ≤ H

√
K since λ = z2(1 + 1/K). Thus, we can

see that this new Q-function lies in the space Q(0, RK , BK) as in (5.8), with RK = H
√
K and

BK = (1 + 1/H)β with the kernel function defined as k̃erm(z, z′) := 〈ϑ(z), ϑ(z′)〉.
Now we try to bound the difference between the Q-function Qk

h(z) in the exploration algorithm
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and the one Qk
lin,h(z), which is

|Qk
h(z)−Qk

lin,h(z)|

≤ |fkh (z)− fklin,h(z)|+ (1 + 1/H)β
∣∣∣‖ϕ(z;W k

h )‖(Λkh)−1 − ‖ϕ(z;W (0))‖(Λ̃kh)−1

∣∣∣ ,
where the inequality is by the contraction of the operator min{·, H}+. The upper bound of the
term |fkh (z) − fklin,h(z)| has already been studied in (5.30). Then, we focus on bounding the last
term. Thus, we have∣∣∣‖ϕ(z;W k

h )‖(Λkh)−1 − ‖ϕ(z;W (0))‖(Λ̃kh)−1

∣∣∣
≤
√∣∣∣ϕ(z;W k

h )>(Λk
h)
−1ϕ(z;W k

h )− ϕ(z;W (0))>(Λ̃k
h)
−1ϕ(z;W (0))

∣∣∣
≤
√∣∣[ϕ(z;W k

h )− ϕ(z;W (0))]>(Λk
h)
−1ϕ(z;W k

h )
∣∣+

√∣∣∣ϕ(z;W (0))>((Λk
h)
−1 − (Λ̃k

h)
−1)ϕ(z;W k

h )
∣∣∣

+

√∣∣∣ϕ(z;W (0))>(Λ̃k
h)
−1[ϕ(z;W k

h )− ϕ(z;W (0))]
∣∣∣.

Conditioned on the event that all the inequalities in Lemma 5.18 hold, we can bound the last three
terms above as follows

∣∣[ϕ(z;W k
h )− ϕ(z;W (0))]>(Λk

h)
−1ϕ(z;W k

h )
∣∣

≤ ‖ϕ(z;W k
h )− ϕ(z;W (0))‖2‖(Λk

h)
−1‖2‖ϕ(z;W k

h )‖2 ≤ λ−1z2(KH2/m)1/6
√

logm,∣∣∣ϕ(z;W (0))>(Λ̃k
h)
−1[ϕ(z;W k

h )− ϕ(z;W (0))]
∣∣∣ ≤ λ−1z2(KH2/m)1/6

√
logm,∣∣∣ϕ(z;W (0))>((Λk

h)
−1 − (Λ̃k

h)
−1)ϕ(z;W k

h )
∣∣∣

≤ ‖ϕ(z;W (0))‖2‖(Λk
h)
−1(Λk

h − Λ̃k
h)(Λ̃

k
h)
−1‖2‖ϕ(z;W k

h )‖2

≤ λ−2z2‖(Φk
h)
>Φk

h − (Φ̃k
h)
>Φ̃k

h‖fro ≤ λ−2z2(‖(Φk
h − Φ̃k

h)
>Φk

h‖fro + ‖(Φ̃k
h)
>(Φk

h − Φ̃k
h)‖fro)

≤ λ−2z4K7/6H1/3m−1/6
√

logm,

which thus lead to∣∣∣‖ϕ(z;W k
h )‖(Λkh)−1 − ‖ϕ(z;W (0))‖(Λ̃kh)−1

∣∣∣ ≤ 3K7/12H1/6m−1/12 log1/4m, (5.33)

and thus

|Qk
h(z)−Qk

lin,h(z)| ≤ 4zK5/3H4/3m−1/6
√

logm+ 3(1 + 1/H)βK7/12H1/6m−1/12 log1/4m,
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where we use the fact that λ = z2(1 + 1/K) ∈ [z2, 2z2]. This further implies that we have the
same bound for |V k

h (s)− V k
lin,h(s)|, .i.e.,

|V k
h (s)− V k

lin,h(s)| ≤ max
a∈A
|Qk

h(s, a)−Qk
lin,h(s, a)| (5.34)

≤ 4zK5/3H4/3m−1/6
√

logm+ 3(1 + 1/H)βK7/12H1/6m−1/12 log1/4m,

where we define V k
lin,h(s) = maxa∈AQ

k
lin,h(s, a).

Now, we are ready to bound Term(IV). With probability at least 1− δ′, we have

Term(IV)

=

∥∥∥∥∥
k−1∑
τ=1

[V k
h+1(sτh+1)− PhV k

h+1(zτh)]ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃kh)−1

≤

∥∥∥∥∥
k−1∑
τ=1

[V k
lin,h+1(sτh+1)− PhV k

lin,h+1(zτh)]ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃kh)−1

+

∥∥∥∥∥
k−1∑
τ=1

{[V k
h+1(sτh+1)− V k

lin,h+1(sτh+1)]− Ph[V k
h+1 − V k

lin,h+1(sτh+1)]}ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃kh)−1

≤ [4H2Γ(K,λ′; k̃erm) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)]1/2

+ 8zK8/3H4/3m−1/6
√

logm+ 12βK19/12H1/6m−1/12 log1/4m.

Here we set λ′ = λ/z2 = (1 + 1/K), ς∗ = H/K, RK = H
√
K, BK = (1 + 1/H)β, and

k̃erm(z, z′) = 〈ϑ(z), ϑ(z′)〉. Here the second inequality is by (5.32), and also follows the similar
proof of Lemma 5.12. The last inequality is by (5.34) and Lemma 5.18, which lead to∥∥∥∥∥

k−1∑
τ=1

{[V k
h+1(sτh+1)− V k

lin,h+1(sτh+1)]− Ph[V k
h+1 − V k

lin,h+1(sτh+1)]}ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃kh)−1

≤
k−1∑
τ=1

[8zK5/3H4/3m−1/6
√

logm+ 12βK7/12H1/6m−1/12 log1/4m]‖ϕ(zτh;W (0))‖(Λ̃kh)−1

≤ Kz/
√
λ[8zK5/3H4/3m−1/6

√
logm+ 12βK7/12H1/6m−1/12 log1/4m]

≤ 8zK8/3H4/3m−1/6
√

logm+ 12βK19/12H1/6m−1/12 log1/4m,

where we use z2/λ = 1/(1 + 1/K) ≤ 1 and (1 + 1/H) ≤ 2 due to H ≥ 1. Now we let β satisfy

√
λRQH/

√
d+ 10CactRQH

√
K log(mKH)/m+H[4Γ(K,λ′; k̃erm) + 4 logN∞(ς∗;RK , BK)

+ 10 + 4 log(K/δ′)]1/2 + 8zK8/3H4/3m−1/6
√

logm+ 12βK19/12H1/6m−1/12 log1/4m ≤ β.

157



To obtain the above relation, it suffices to set

m = Ω(K19H14 log3m)

such that m is sufficient large which results in

10CactRQH
√
K log(mKH)/m+ 8zK8/3H4/3m−1/6

√
logm

+ 12βK19/12H1/6m−1/12 log1/4m ≤ RQH + β/2.

Then, there is

√
λRQH/

√
d+RQH + β/2

+ 2H[Γ(K,λ; kerm) + 5/2 + logN∞(ς∗;RK , BK) + log(K/δ′)]1/2 ≤ β,

where Γ(K,λ; kerm) = Γ(K,λ′; k̃erm) with kerm := 〈ϕ(z;W (0)), ϕ(z′;W (0))〉. This inequality
can be satisfied if we set β as

β2 ≥ H2[8R2
Q(1 +

√
λ/d)2 + 32Γ(K,λ; kerm) + 80 + 32 logN∞(ς∗;RK , BK) + 32 log(K/δ′)].

If the above conditions hold, we have

|fklin,h(z)− f̃(z)| ≤ β‖ϕ(z;W (0))‖(Λ̃kh)−1 ≤ wkh + β(3K7/12H1/6m−1/12 log1/4m),

where the inequality is due to (5.33). Since fklin,h(z) ∈ [0, H] and f̃(z) ∈ [0, H], thus we have
|fklin,h(z)− f̃(z)| ≤ H , which further gives

|fklin,h(z)− f̃(z)| ≤ min{wkh, H}+ β(3K7/12H1/6m−1/12 log1/4m)

= ukh + β(3K7/12H1/6m−1/12 log1/4m).
(5.35)

Now we combine (5.30) and (5.35) as well as (5.27) and obtain

|PhV k
h+1(z)− fkh (z)|

≤ |PhV k
h+1(z)− f̃(z)|+ |fkh (z)− fklin,h(z)|+ |fklin,h(z)− f̃(z)|

≤ 10CactRQH
√

log(mKH)/m+ 4zK5/3H4/3m−1/6
√

logm

+ ukh + β(3K7/12H1/6m−1/12 log1/4m)

≤ ukh + β(5K7/12H1/6m−1/12 log1/4m),
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with m are sufficiently. We also have
∣∣∣‖ϕ(z;W k

h )‖(Λkh)−1 − ‖ϕ(z;W (0))‖(Λ̃kh)−1

∣∣∣ ≤ ι according to
(5.33). The above inequalities hold with probability at least 1 − 2/m2 − δ′ by the union bound.
This completes the proof.

Lemma 5.20. Conditioned on the event E defined in Lemma 5.19, with probability at least 1− δ′,
we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k
1 (s1) + βHKι,

K∑
k=1

V k
1 (s1) ≤ O

(√
H3K log(1/δ′) + β

√
H2K · Γ(K,λ; kerm)

)
+ βHKι,

where ι = 5K7/12H1/6m−1/12 log1/4m.

Proof. We first show the first inequality in this lemma. We prove V ∗h (s, rk) ≤ V k
h (s)+(H+1−h)ι

for all s ∈ S, h ∈ [H] by induction. When h = H+1, we know V ∗H+1(s, rk) = 0 and V k
H+1(s) = 0

such that V ∗H+1(s, rk) ≤ V k
H+1(s1). Now we assume that V ∗h+1(s, rk) ≤ V k

h+1(s) + (H − h)βι.
Then, conditioned on the event E defined in Lemma 5.13, for all s ∈ S, (h, k) ∈ [H] × [K], we
further have

Q∗h(s, a, r
k)−Qk

h(s, a)

= rkh(s, a) + PhV ∗h+1(s, a, rk)−min{rkh(s, a) + fkh (s, a) + ukh(s, a), H}+

≤ max{PhV ∗h+1(s, a, rk)− fkh (s, a)− ukh(s, a), 0}

≤ max{PhV k
h+1(s, a) + β(H − h)ι− fkh (s, a)− ukh(s, a), 0}

≤ β(H + 1− h)ι,

(5.36)

where the first inequality is due to 0 ≤ rkh(s, a) + PhV ∗h+1(s, a, rk) ≤ H and min{x, y}+ ≥
min{x, y}, the second inequality is by the assumption that V ∗h+1(s, rk) ≤ V k

h+1(s) + (H − h)βι,
the last inequality is by Lemma 5.19 such that |PhV k

h+1(s, a)− fkh (s, a)| ≤ ukh(s, a) + βι holds for
any (s, a) ∈ S ×A and (k, h) ∈ [K]× [H]. The above inequality (5.36) further leads to

V ∗h (s, rk) = max
a∈A

Q∗h(s, a, r
k) ≤ max

a∈A
Qk
h(s, a) = V k

h (s) + β(H + 1− h)ι.

Therefore, we obtain that conditioned on event E , we have

K∑
k=1

V ∗1 (s, rk) ≤
K∑
k=1

V k
1 (s) + βHKι.

Next, we prove the second inequality in this lemma. Conditioned on E defined in Lemma 5.19, we
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have

V k
h (skh) = Qk

h(s
k
h, a

k
h) ≤ max{0, fkh (skh, a

k
h) + rkh(s

k
h, a

k
h) + ukh(s

k
h, a

k
h)}

≤ PhV k
h+1(skh, a

k
h) + ukh(s

k
h, a

k
h) + rkh(s

k
h, a

k
h) + ukh(s

k
h, a

k
h)

≤ ζkh + V k
h+1(skh+1) + (2 + 1/H)β‖ϕ(skh, a

k
h;W

k
h )‖(Λkh)−1 ,

where we define

ζkh := PhV k
h+1(skh, a

k
h)− V k

h+1(skh+1).

Recursively applying the above inequality gives

V k
1 (s1) ≤

H∑
h=1

ζkh + (2 + 1/H)β
H∑
h=1

‖ϕ(skh, a
k
h;W

k
h )‖(Λkh)−1 ,

where we use the fact that V k
H+1(·) = 0. Taking summation on both sides of the above inequality,

we have

K∑
k=1

V k
1 (s1) =

K∑
k=1

H∑
h=1

ζkh + (2 + 1/H)β
K∑
k=1

H∑
h=1

‖ϕ(skh, a
k
h;W

k
h )‖(Λkh)−1 .

By Azuma-Hoeffding inequality, with probability at least 1− δ′, the following inequalities hold

K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ′

)
.

On the other hand, by Lemma 5.36, we have

K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λkh)−1 =

K∑
k=1

H∑
h=1

√
ϕ(skh, a

k
h;W

k
h )>(Λk

h)
−1φ(skh, a

k
h;W

k
h )

≤
K∑
k=1

H∑
h=1

√
ϕ(skh, a

k
h;W

(0))>(Λ̃k
h)
−1ϕ(skh, a

k
h;W

(0)) +HKι

≤
H∑
h=1

√√√√K

K∑
k=1

ϕ(skh, a
k
h;W

(0))>(Λ̃k
h)
−1ϕ(skh, a

k
h;W

(0))) +HKι

= 2H
√
K · Γ(K,λ; kerm) +HKι.

where the first inequality is due to Lemma 5.19, the second inequality is by Jensen’s inequality.

160



Thus, conditioned on event E , we obtain that with probability at least 1− δ′, there is

K∑
k=1

V k
1 (s1) ≤ O

(√
H3K log(1/δ′) + β

√
H2K · Γ(K,λ; ker)

)
+ βHKι,

which completes the proof.

Lemma 5.21. We define the event Ẽ as that the following inequality holds ∀(s, a) ∈ S × A,∀h ∈
[H],

|PhVh+1(s, a)− fh(s, a)| ≤ uh(s, a) + βι,∣∣∣‖ϕ(z;Wh)‖(Λh)−1 − ‖ϕ(z;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι,

where ι = 5K7/12H1/6m−1/12 log1/4m and we define

Λh =
K∑
τ=1

ϕ(zτh;Wh)ϕ(zτh;Wh)
> + λ · I, Λ̃h =

K∑
τ=1

ϕ(zτh;W (0))ϕ(zτh;W (0))> + λ · I.

Setting β = B̃K , R̃K = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we set

β2 ≥ H2[8R2
Q(1 +

√
λ/d)2 + 32Γ(K,λ; kerm) + 80 + 32 logN∞(ς∗; R̃K , B̃K) + 32 log(K/δ′)],

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event Ẽ happens, i.e.,

Pr(Ẽ) ≥ 1− 2/m2 − δ′.

Proof. The proof of this lemma exactly follows our proof of Lemma 5.19. There are several
minor differences here. In the proof of this lemma, we set B̃K = β instead of (1 + 1/H)β

due to the structure of the planning phase. Moreover, we use N∞(ε;RK , BK) to denote covering
number of the Q-function class Q(rh, RK , BK). Since the covering numbers of Q(rh, RK , BK)

and Q(0, RK , BK) are the same where the former one only has an extra bias rh, we use the same
notation N∞(ε;RK , BK) to denote their covering number. Then, the rest of this proof can be
completed by using the same argument as the proof of Lemma 5.19.
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Lemma 5.22. Conditioned on the event Ẽ as defined in Lemma 5.21, we have

V ∗h (s, r) ≤ Vh(s) + (H + 1− h)βι, ∀s ∈ S,∀h ∈ [H],

Vh(s) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)) + βι, ∀s ∈ S, ∀h ∈ [H],

where πh(s) = argmaxa∈AQh(s, a).

Proof. We first prove the first inequality in this lemma by induction. For h = H + 1, we have
V ∗H+1(s, r) = VH+1(s) = 0 for any s ∈ S. Then, we assume that V ∗h+1(s, r) ≤ Vh+1(s)+(H−h)βι.
Thus, conditioned on the event Ẽ as defined in Lemma 5.21, we have

Q∗h(s, a, r)−Qh(s, a)

= rh(s, a) + PhV ∗h+1(s, a, r)−min{rh(s, a) + fh(s, a) + uh(s, a), H}+

≤ max{PhV ∗h+1(s, a, r)− fh(s, a)− uh(s, a), 0}

≤ max{PhVh+1(s, a) + (H − h)βι− fh(s, a)− uh(s, a), 0}

≤ (H + 1− h)βι,

where the first inequality is due to 0 ≤ rh(s, a) + PhV ∗h+1(s, a, r) ≤ H and min{x, y}+ ≥
min{x, y}, the second inequality is by the assumption that V ∗h+1(s, a, r) ≤ Vh+1(s, a)+(H−h)βι,
the last inequality is by Lemma 5.21 such that |PhVh+1(s, a)− fh(s, a)| ≤ uh(s, a) + βι holds for
any (s, a) ∈ S ×A and (k, h) ∈ [K]× [H]. The above inequality further leads to

V ∗h (s, r) = max
a∈A

Q∗h(s, a, r) ≤ max
a∈A

Qh(s, a) + (H + 1− h)βι = Vh(s) + (H + 1− h)βι.

Therefore, we have

V ∗h (s, r) ≤ Vh(s) + (H + 1− h)βι, ∀h ∈ [H],∀s ∈ S.

We further prove the second inequality in this lemma. We have

Qh(s, a) = min{rh(s, a) + fh(s, a) + uh(s, a), H}+

≤ min{rh(s, a) + PhVh+1(s, a) + 2uh(s, a) + βι,H}+

≤ rh(s, a) + PhVh+1(s, a) + 2uh(s, a) + βι,

where the first inequality is also by Lemma 5.21 such that |PhVh+1(s, a)−fh(s, a)| ≤ uh(s, a)+βι,
and the last inequality is because of the non-negativity of rh(s, a) +PhVh+1(s, a) + 2uh(s, a) +βι.
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Therefore, we have

Vh(s) = max
a∈A

Qh(s, a) = Qh(s, πh(s)) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)) + βι.

This completes the proof.

Lemma 5.23. With the exploration and planning phases, conditioned on events E and Ẽ , we have

the following inequality

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι,

where ι = 5K7/12H1/6m−1/12 log1/4m.

Proof. The bonus for the planning phase is uh(s, a) = min{βwh(s, a), H} where wh(s, a) =

‖ϕ(s, a;Wh)‖Λ−1
h

. We also have H · rkh(s, a) = ukh(s, a) = min{βwkh(s, a), H} where wkh(s, a) =

‖ϕ(s, a;W k
h )‖(Λkh)−1 . Conditioned on events E and Ẽ , according to Lemmas 5.19 and 5.21, we have∣∣∣‖ϕ(s, a;W k

h )‖(Λkh)−1 − ‖ϕ(s, a;W (0))‖(Λ̃kh)−1

∣∣∣ ≤ ι,∣∣∣‖ϕ(s, a;Wh)‖(Λh)−1 − ‖ϕ(s, a;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι,

such that

βwh(s, a) ≤ β‖ϕ(s, a;W (0))‖(Λ̃h)−1 + βι,

βι+ βwkh(s, a) ≥ β‖ϕ(s, a;W (0))‖(Λ̃kh)−1 .

Moreover, we know

‖ϕ(s, a;W (0))‖(Λ̃h)−1

=

√√√√ϕ(s, a;W (0))>

[
λI +

K∑
τ=1

ϕ(sτh, a
τ
h;W

(0))ϕ(sτh, a
τ
h;W

(0))>

]−1

ϕ(s, a;W (0)),

and also

‖ϕ(s, a;W (0))‖(Λ̃kh)−1

=

√√√√ϕ(s, a;W (0))>

[
λI +

k−1∑
τ=1

ϕ(sτh, a
τ
h;W

(0))ϕ(sτh, a
τ
h;W

(0))>

]−1

ϕ(s, a;W (0)).
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Since k − 1 ≤ K and x>φ(sτh, a
τ
h)φ(sτh, a

τ
h)
>x = [x>φ(sτh, a

τ
h)]

2 ≥ 0,∀x, then we know that

Λ̃h = λI +
K∑
τ=1

ϕ(sτh, a
τ
h;W

(0))ϕ(sτh, a
τ
h;W

(0))>

< λI +
k−1∑
τ=1

ϕ(sτh, a
τ
h;W

(0))ϕ(sτh, a
τ
h;W

(0))> = Λ̃k
h.

The above relation further implies that Λ̃−1
h 4 (Λ̃k

h)
−1 such that

ϕ(s, a;W (0))>Λ̃−1
h ϕ(s, a;W (0)) ≤ ϕ(s, a;W (0))>(Λ̃k

h)
−1ϕ(s, a;W (0)).

Thus, we have

βwh(s, a) ≤ βwkh(s, a) + 2βι,

such that

min{βwh(s, a), H} ≤ min{βwkh(s, a) + 2βι,H} ≤ min{βwkh(s, a), H}+ 2βι,

which further implies that

uh(s, a) ≤ ukh(s, a) + 2βι = H · rkh(s, a) + 2βι.

Then, by the definition of the value function, we have

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k) + 2βι,

which thus gives

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.

This completes the proof.

5.9.2 Proof of Theorem 5.5

Proof. Conditioned on the event E in Lemma 5.19 and the event Ẽ in Lemma 5.21, we have

V ∗1 (s1, r)− V π
1 (s1, r) ≤ V1(s1)− V π

1 (s1, r) +Hβι, (5.37)
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where the inequality is by Lemma 5.22. Further by this lemma, we have

Vh(s)− V π
h (s, r) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))−Qπ

h(s, πh(s), r) + βι

= rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))− rh(s, πh(s))

− PhV π
h+1(s, πh(s), r) + βι

= PhVh+1(s, πh(s))− PhV π
h+1(s, πh(s), r) + 2uh(s, πh(s)) + βι.

Recursively applying the above inequality and making use of V π
H+1(s, r) = VH+1(s) = 0 gives

V1(s1)− V π
1 (s1, r) ≤ E∀h∈[H]: sh+1∼Ph(·|sh,πh(sh))

[
H∑
h=1

2uh(sh, πh(sh))

∣∣∣∣∣s1

]
+Hβι

= 2H · V π
1 (s1, u/H) +Hβι.

Combining with (5.37) gives

V ∗1 (s1, r)− V π
1 (s1, r) ≤ 2H · V π

1 (s1, u/H) + 2Hβι ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k) + 4Hβι

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; kerm)

)
+Hβι(H + 4)

≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
,

where the second inequality is due to Lemma 5.23 and the third inequality is by Lemma 5.20.
By the union bound, we have P (E ∧ Ẽ) ≥ 1 − 2δ′ − 4/m2 . Therefore, by setting δ′ =

1/(4K2H2), we obtain that with probability at least 1− 1/(2K2H2)− 4/m2

V ∗1 (s1, r)− V π
1 (s1, r) ≤ O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
≤ O

(
β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K +H2βι

)
,

where the last inequality is due to β ≥ H . Note that E ∧ Ẽ happens when the following two
conditions are satisfied, i.e.,

β2 ≥ H2[8R2
Q(1 +

√
λ/d)2 + 32Γ(K,λ; kerm) + 80 + 32 logN∞(ς∗;RK , BK) + 32 log(K/δ′)],

β2 ≥ H2[8R2
Q(1 +

√
λ/d)2 + 32Γ(K,λ; kerm) + 80 + 32 logN∞(ς∗; R̃K , B̃K) + 32 log(K/δ′)],

where β = B̃K ,(1 + 1/H)β = BK , λ = z(1 + 1/K), R̃K = RK = H
√
K, and ς∗ = H/K. The

165



above inequalities hold if we further let β satisfy

β2 ≥ H2[8R2
Q(1 +

√
λ/d)2 + 32Γ(K,λ; kerm) + 80 + 32 logN∞(ς∗;RK , 2β) + 96 log(2KH)],

since 2β ≥ (1 + 1/H)β ≥ β such that N∞(ς∗;RK , 2β) ≥ N∞(ς∗;RK , BK) ≥ N∞(ς∗; R̃K , B̃K).
This completes the proof.

5.10 Proofs for Markov Game with Kernel Function Approxi-
mation

5.10.1 Lemmas

Lemma 5.24. We define the event E as that the following inequality holds ∀(s, a, b) ∈ S × A ×
B,∀(h, k) ∈ [H]× [K],

|PhV k
h+1(s, a, b)− fkh (s, a, b)| ≤ ukh(s, a, b),

where ukh(s, a, b) = min{wkh(s, a, b), H}, wkh(s, a, b) = βλ−1/2[ker(z, z) − ψkh(s, a, b)>(λI +

Kkh)−1ψkh(s, a, b)]1/2 with z = (s, a, b), and fkh (z) = Π[0,H][ψ
k
h(z)>(λ · I +Kkh)−1ykh] with

ψkh(z) = Φk
hφ(z) = [ker(z, z1

h), · · · , ker(z, zk−1
h )]>,

Φk
h = [φ(z1

h), φ(z2
h), · · · , φ(zk−1

h )]>,

ykh = [V k
h+1(s1

h+1), V k
h+1(s2

h+1), · · · , V k
h+1(sk−1

h+1)]>,

Kkh = Φk
h(Φ

k
h)
> =


ker(z1

h, z
1
h) . . . ker(z1

h, z
k−1
h )

... . . . ...

ker(zk−1
h , z1

h) . . . ker(zk−1
h , zk−1

h )

 ,
Thus, setting β = BK/(1 + 1/H), if BK satisfies

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(K/δ′)

]
≤ B2

K ,∀h ∈ [H],

then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(E) ≥ 1− δ′.

Proof. According to the exploration algorithm for the game, we can see that by letting a = (a, b)

be an action in the space A×B, Algorithm 8 reduces to Algorithm 6 with the action space A×B
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and state space S. Now, we also have a transition in the form of Ph(s|a) and a product policy
(πkh ⊗ νkh)(s) such that a ∼ (πkh ⊗ νkh)(s) at state s ∈ S for all (h, k) ∈ [H] × [K]. Similarly,
we have Qk

h(s, a, b) = Qk
h(s,a) and V k

h (s, a, b) = V k
h (s,a) as well as ukh(s, a, b) = ukh(s,a) and

ukh(s, a, b) = ukh(s,a) and rkh(s, a, b) = rkh(s,a). Thus, we can simply apply the proof of Lemma
5.13 and obtain the proof for this lemma. This completes the proof.

Lemma 5.25. Conditioned on the event E defined in Lemma 5.24, with probability at least 1− δ′,
we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k
1 (s1) ≤ O

(√
H3K log(1/δ′) + β

√
H2K · Γ(K,λ; ker)

)
.

Proof. By the reduction of Algorithm 8 to Algorithm 6, we can apply the same proof as the one
for Lemma 5.14, which completes the proof.

Lemma 5.26. We define the event Ẽ as that the following inequality holds ∀(s, a, b) ∈ S × A ×
B,∀h ∈ [H],

|PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a, b), (5.38)

|PhV h+1(s, a, b)− f
h
(s, a, b)| ≤ uh(s, a, b), (5.39)

where uh(s, a, b) = uh(s, a, b) = uh(s, a, b) = min{wh(s, a, b), H}, wh(s, a, b) =

βλ−1/2[ker(z, z) − ψh(s, a, b)
>(λI + Kh)−1ψh(s, a, b)]

1/2 with z = (s, a, b), Kh = ΦhΦ
>
h , and

ψh(s, a, b) = Φhφ(s, a, b) with Φh = [φ(z1
h), φ(z2

h), · · · , φ(zKh )]>. Moreover, we have

fh(s, a, b) = Π[0,H][ψh(s, a, b)
>(λ · I +Kh)−1yh],

f
h
(s, a, b) = Π[0,H][ψh(s, a, b)

>(λ · I +Kh)−1y
h
],

where yh := [V h+1(s1
h+1), · · · , V h+1(sKh+1)]> and y

h
:= [V h+1(s1

h+1), · · · , V h+1(sKh+1)]>.

Thus, setting β = B̃K , if B̃K satisfies

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(2K/δ′)

]
≤ B̃2

K ,∀h ∈ [H],

then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(Ẽ) ≥ 1− δ′.

Proof. According to the construction of uh and fh, the proof for the the first inequality in this
lemma is nearly the same as the proof of Lemma 5.15 but one difference for computing the covering
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number of the value function space. Specifically, we have the function class for V h which is

V(rh, R̃K , B̃K) = {V : V (·) = max
a∼π′

min
b∼ν′

Eπ′,ν′Q(·, a, b) with Q ∈ Q(rh, R̃K , B̃K)}.

By Lemma 5.35 with δ′/2, we have∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V h+1(sτh+1)− PhV h+1(sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ sup
V ∈V(rh,R̃K ,B̃K)

∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V (sτh+1)− PhV (sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ 2H2 log det(I +K/λ) + 2H2K(λ− 1) + 4H2 log(N Vdist(ε; R̃K , B̃K)/δ′) + 8K2ε2/λ

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(2/δ′),

where the last inequality is by setting λ = 1 + 1/K and ε = ς∗ = H/K. HereN Vdist is the covering
number of the function space V w.r.t. the distance dist(V1, V2) = sups |V1(s) − V2(s)|, and N∞
is the covering number for the function space Q w.r.t. the infinity norm. In the last inequality, we
also use

N Vdist(ς
∗; R̃K , B̃K) ≤ N∞(ς∗; R̃K , B̃K),

which is in particular due to

dist(V1, V2) = sup
s∈S
|V1(s)− V2(s)|

= sup
s∈S
|max

π′
min
ν′

Ea∼π′,b∼ν′ [Q1(s, a, b)]−max
π′′

min
ν′′

Ea∼π′′,b∼ν′′ [Q2(s, a, b)]|

≤ sup
s∈S

sup
a∈A

sup
b∈B
|Q1(s, a, b)−Q2(s, a, b)|

= ‖Q1(·, ·, ·)−Q2(·, ·, ·)‖∞,

(5.40)

where we use the fact that max-min operator is non-expansive. Thus, we have that with probability
at least 1− δ′/2, the following inequality holds for all k ∈ [K]∥∥∥∥∥

K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V h+1(sτh+1)− PhV h+1(sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
Λ−1
h

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(2K/δ′)]1/2.

Then, the rest of the proof for (5.38) follows the proof of Lemma 5.15.
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Next, we give the proof of (5.39). We define another function class for V h as

V(rh, R̃K , B̃K) = {V : V (·) = max
a∼π′

min
b∼ν′

Eπ′,ν′Q(·, a, b) with Q ∈ Q(rh, R̃K , B̃K)}.

Note that as we can show in the covering number for the function spaces Q and Q have the same
covering number upper bound. Therefore, we use the same notation N∞ for their upper bound.
Thus, by the similar argument as (5.40), we have that with probability at least 1−δ′/2, the following
inequality holds for all k ∈ [K]∥∥∥∥∥

K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V h+1(sτh+1)− PhV h+1(sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
Λ−1
h

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(2K/δ′)]1/2,

where we use the fact that

N Vdist(ς
∗; R̃K , B̃K) ≤ N∞(ς∗; R̃K , B̃K).

The rest of the proof are exactly the same as the proof of Lemma 5.15.
In this lemma, we let

H
[
2λR2

Q + 8Γ(K,λ; ker) + 20 + 4 logN∞(ς∗; R̃K , B̃K) + 8 log(2K/δ′)
]1/2 ≤ β = B̃K ,

which can be further guaranteed by

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(2K/δ′)

]
≤ B̃2

K

as (1 + 1/H) ≤ 2 and λ = 1 + 1/K ≤ 2. This completes the proof.

Lemma 5.27. Conditioned on the event Ẽ as defined in Lemma 5.26, we have

V †h (s, r) ≤ V h(s) ≤ Ea∼πh,b∼br(π)h [(PhV h+1 + rh + 2uh)(s, a, b)],∀s ∈ S,∀h ∈ [H], (5.41)

V †h (s, r) ≥ V h(s) ≥ Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(s, a, b)], ∀s ∈ S,∀h ∈ [H]. (5.42)

Proof. For the first inequality of (5.41), we can prove it by induction. We first prove the first
inequality in this lemma. We prove it by induction. For h = H + 1, by the planning algorithm,
we have V †H+1(s, r) = VH+1(s) = 0 for any s ∈ S. Then, we assume that V †h+1(s, r) ≤ V h+1(s).
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Thus, conditioned on the event Ẽ as defined in Lemma 5.26, we have

Q†h(s, a, b, r)−Qh(s, a, b)

= rh(s, a, b) + PhV †h+1(s, a, b, r)−min{rh(s, a, b) + fh(s, a, b) + uh(s, a, b), H}+

≤ max{PhV †h+1(s, a, b, r)− fh(s, a, b)− uh(s, a, b), 0}

≤ max{PhV h+1(s, a, b)− fh(s, a, b)− uh(s, a, b), 0} ≤ 0,

where the first inequality is due to 0 ≤ rh(s, a, b) + PhV †h+1(s, a, b, r) ≤ H and min{x, y}+ ≥
min{x, y}, the second inequality is by the assumption that V †h+1(s, a, b, r) ≤ V h+1(s, a, b), the last
inequality is by Lemma 5.26 such that |PhV h+1(s, a, b) − fh(s, a, b)| ≤ uh(s, a, b) holds for any
(s, a, b) ∈ S ×A× B and (k, h) ∈ [K]× [H]. Thus, the above inequality leads to

V †h (s, r) = max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Q†h(s, a, b, r)] ≤ max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Qh(s, a, b)] = V h(s),

which eventually gives

V ∗h (s, r) ≤ Vh(s), ∀h ∈ [H],∀s ∈ S.

To prove the second inequality of (5.41), we have

V h(s) = min
ν′

Ea∼πh,b∼ν′Qh(s, a, b)

≤ Ea∼πh,b∼br(π)hQh(s, a, b)

= Ea∼πh,b∼br(π)h min{(fh + rh + uh)(s, a, b), H}+

≤ Ea∼πh,b∼br(π)h min{(PhV h+1 + rh + 2uh)(s, a, b), H}+

≤ Ea∼πh,b∼br(π)h [(PhV h+1 + rh + 2uh)(s, a, b)],

where the first and the second equality is by the iterations in Algorithm 9, the second inequality is
by Lemma 5.26, and the last inequality is due to the non-negativity of (PhV h+1 +rh+2uh)(s, a, b).

For the inequalities in (5.42), one can similarly adopt the argument above to give the proof.
From the perspective of Player 2, this player is trying to find a policy to maximize the cumulative
rewards w.r.t. a reward function {−rh(s, a, b)}h∈[H]. Thus, the proof of (5.42) follows the proof of
(5.41). This completes the proof.
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Lemma 5.28. With the exploration and planning phases, we have the following inequalities

K · V π,br(π)
1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k), K · V br(ν),ν

1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Proof. First, we haveK ·V π,br(π)
1 (s1, u/H) ≤ K ·V ∗1 (s1, u/H), as well asK ·V br(ν),ν

1 (s1, u/H) ≤
K · V ∗1 (s1, u/H) due to the definition of V ∗1 (·, u/H). Thus, to prove this lemma, we only need to
show

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Since the constructions of uh and rkh are the same as the ones for the single-agent case, similar to
the proof of Lemma 5.17, we have

uh(s, a)/H ≤ rkh(s, a),

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k),

and thus

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Therefore, we eventually obtain

K · V π,br(π)
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k),

K · V br(ν),ν
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k).

This completes the proof.
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5.10.2 Proof of Theorem 5.6

Proof. Conditioned on the event E defined in Lemma 5.24 and the event Ẽ defined in Lemma 5.26,
we have

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ V 1(s1)− V π,br(π)

1 (s1, r), (5.43)

where the inequality is by Lemma 5.27. Further by this lemma, we have

V h(sh)− V π,br(π)
h (sh, r)

≤ Eah∼πh,bh∼br(π)h [(PhV h+1 + rh + 2uh)(sh, ah, bh)]− V π,br(π)
h (sh, r)

= Eah∼πh,bh∼br(π)h [(rh + PhV h+1 + 2uh)(sh, ah, bh)− rh(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r)]

= Eah∼πh,bh∼br(π)h [PhV h+1(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r) + 2uh(sh, ah, bh)]

= Eah∼πh,bh∼br(π)h,sh+1∼Ph [V h+1(sh+1)− V π,br(π)
h+1 (sh+1, r) + 2uh(sh, ah, bh)].

Recursively applying the above inequality and making use of V H+1(s) = V
π,br(π)
H+1 (s, r) = 0 yield

V 1(s1)− V π,br(π)
1 (s1, r)

≤ E∀h∈[H]: ah∼πh,bh∼br(π)h,sh+1∼Ph

[
H∑
h=1

2uh(sh, ah, bh)

∣∣∣∣∣s1

]
= 2H · V π,br(π)

1 (s1, u/H).

Combining this inequality with (5.43) gives

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ 2H · V π,br(π)

1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
≤ O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
,

where the second inequality is due to Lemma 5.28 and the third inequality is by Lemma 5.25.
Next, we prove the upper bound of the term V

br(ν),ν
1 (s1, r) − V †1 (s1, r). Conditioned on the

event E defined in Lemma 5.24 and the event Ẽ defined in Lemma 5.26, we have

V
br(ν),ν

1 (s1, r)− V †1 (s1, r) ≤ V
br(ν),ν

1 (s1, r)− V 1(s1, r), (5.44)
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where the inequality is by Lemma 5.27. Further by Lemma 5.27, we have

V
br(ν),ν
h (sh, r)− V h(sh)

≤ V
br(ν),ν
h (sh, r)− Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(sh, ah, bh)]

= Eah∼br(ν)h,bh∼νh [PhV br(ν),ν
h+1 (sh, ah, bh, r)− PhV h+1(sh, ah, bh) + 2uh(sh, ah, bh)]

= Eah∼br(ν)h,bh∼νh,sh+1∼Ph [V
br(ν),ν
h+1 (sh+1, r)− PhV h+1(sh+1) + 2uh(sh, ah, bh)].

Recursively applying the above inequality yields

V
br(ν),ν

1 (s1, r)− V 1(sh, r) ≤ 2H · V br(ν),ν
1 (s1, u/H).

Combining this inequality with (5.44) gives

V
br(ν),ν

1 (s1, r)− V †1 (s1, r) ≤ 2H · V br(ν),ν
1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
≤ O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
,

where the second inequality is due to Lemma 5.28 and the third inequality is by Lemma 5.25.
Since Pr(E ∧Ẽ) ≥ 1−2δ′ by the union bound, by setting δ′ = 1/(4H2K2), we obtain that with

probability at least 1− 1/(2H2K2)

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ O

(
[
√

2H5 log(2HK) + β
√
H4 · Γ(K,λ; ker)]/

√
K
)
,

V
br(ν),ν

1 (s1, r)− V †1 (s1, r) ≤ O
(

[
√

2H5 log(2HK) + β
√
H4 · Γ(K,λ; ker)]/

√
K
)
,

such that

V
br(ν),ν

1 (s1, r)− V π,br(π)
1 (s1, r) ≤ O

(
[
√

2H5 log(2HK) + β
√
H4 · Γ(K,λ; ker)]/

√
K
)

≤ O
(
β
√
H4[Γ(K,λ; ker) + log(HK)]/

√
K
)
,

where the last inequality is due to β ≥ H . The event E ∧ Ẽ happens if we further let β satisfy

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , 2β) + 6 log(2HK)

]
≤ β2, ∀h ∈ [H],

where λ = 1 + 1/K, R̃K = RK = 2H
√

Γ(K,λ; ker), and ς∗ = H/K. This completes the
proof.
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5.11 Proofs for Markov Game with Neural Function Approxi-
mation

5.11.1 Lemmas

Lemma 5.29 (Lemma C.7 of Yang et al. [2020]). With TH2 = O(m log−6m), then there exists

a constant z such that the following inequalities hold with probability at least 1 − 1/m2 for any

z ∈ S ×A× B and any W ∈ {W : ‖W −W (0)‖2 ≤ H
√
K/λ},

|f(z;W )− ϕ(z;W (0))>(W −W (0))| ≤ zK2/3H4/3m−1/6
√

logm,

‖ϕ(z;W )− ϕ(z;W (0))‖2 ≤ z(KH2/m)1/6
√

logm, ‖ϕ(z;W )‖2 ≤ z,

with z ≥ 1.

Lemma 5.30. We define the event E as that the following inequality holds ∀z = (s, a, b) ∈ S ×
A× B,∀(h, k) ∈ [H]× [K],

|PhV k
h+1(s, a, b)− fkh (s, a, b)| ≤ ukh(s, a, b) + βι,∣∣∣‖ϕ(z;W k

h )‖(Λkh)−1 − ‖ϕ(z;W (0))‖(Λ̃kh)−1

∣∣∣ ≤ ι,

where ι = 5K7/12H1/6m−1/12 log1/4m and we define

Λk
h =

k−1∑
τ=1

ϕ(zτh;W k
h )ϕ(zτh;W k

h )> + λ · I, Λ̃k
h =

k−1∑
τ=1

ϕ(zτh;W (0))ϕ(zτh;W (0))> + λ · I.

Setting (1 + 1/H)β = BK , RK = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we

let

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2

+ 32H2 logN∞(ς∗;RK , BK) + 32H2 log(K/δ′),

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event E happens, i.e.,

Pr(E) ≥ 1− 2/m2 − δ′.
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Proof. By letting a = (a, b) be an action in the space A × B, Algorithm 8 reduces to Algorithm
6 with the action space A × B and state space S. We have Qk

h(s, a, b) = Qk
h(s,a), V k

h (s, a, b) =

V k
h (s,a), ukh(s, a, b) = ukh(s,a), ukh(s, a, b) = ukh(s,a) and rkh(s, a, b) = rkh(s,a). Simply applying

the proof of Lemma 5.19, we have the proof of this lemma.

Lemma 5.31. Conditioned on the event E defined in Lemma 5.30, with probability at least 1− δ′,
we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k
1 (s1) + βHKι,

K∑
k=1

V k
1 (s1) ≤ O

(√
H3K log(1/δ′) + β

√
H2K · Γ(K,λ; kerm)

)
+ βHKι,

where ι = 5K7/12H1/6m−1/12 log1/4m.

Proof. By the reduction of Algorithm 8 to Algorithm 6, we can apply the same proof for Lemma
5.20, which completes the proof.

Lemma 5.32. We define the event Ẽ as that the following inequality holds ∀(s, a, b) ∈ S × A ×
B,∀h ∈ [H],

|PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a) + βι,

|PhV h+1(s, a, b)− f
h
(s, a, b)| ≤ uh(s, a) + βι,∣∣∣‖ϕ(z;W h)‖(Λh)−1 − ‖ϕ(z;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι,∣∣∣‖ϕ(z;W h)‖(Λh)−1 − ‖ϕ(z;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι.

where ι = 5K7/12H1/6m−1/12 log1/4m, and we define fh(z) = Π[0,H][f(z;W h)] and f
h
(z) =

Π[0,H][f(z;W h)] as well as

Λh =
K∑
τ=1

ϕ(zτh;W h)ϕ(zτh;W h)
> + λ · I, Λh =

K∑
τ=1

ϕ(zτh;W h)ϕ(zτh;W h)
> + λ · I,

Λ̃h =
K∑
τ=1

ϕ(zτh;W (0))ϕ(zτh;W (0))> + λ · I.

Setting β = B̃K , R̃K = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we set

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2 + Γ(K,λ; kerm)

+ 80H2 + 32H2 logN∞(ς∗; R̃K , B̃K) + 32H2 log(2K/δ′),
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and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event Ẽ happens, i.e.,

Pr(Ẽ) ≥ 1− 2/m2 − δ′.

Proof. The proof of this lemma follows our proof of Lemmas 5.19 and 5.21 and apply some similar
ideas from the proof of Lemma 5.26. Particularly, to deal with the upper bounds of the estimation
errors of PhV h+1 and PhV h+1, we define the two value function space V and V and show their
covering numbers similar to the proof of Lemma 5.26. Then, we further use the proof of Lemma
5.21, which is derived from the proof of Lemma 5.19, to show the eventual results in this lemma.
In the proof of this lemma, we set B̃K = β instead of (1 + 1/H)β due to the structure of the
planning phase. This completes the proof.

Lemma 5.33. Conditioned on the event Ẽ as defined in Lemma 5.32, we have

V †h (s, r) ≤ V h(s) + (H + 1− h)βι, ∀s ∈ S, ∀h ∈ [H],

V h(s) ≤ Ea∼πh,b∼br(π)h [(PhV h+1 + rh + 2uh)(s, a, b)] + βι, ∀s ∈ S,∀h ∈ [H],
(5.45)

V †h (s, r) ≥ V h(s)− (H + 1− h)βι, ∀s ∈ S,∀h ∈ [H],

V h(s) ≥ Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(s, a, b)]− βι, ∀s ∈ S,∀h ∈ [H].
(5.46)

Proof. We prove the first inequality in (5.45) by induction. For h = H + 1, we have V †H+1(s, r) =

V H+1(s) = 0 for any s ∈ S. Then, we assume that V †h+1(s, r) ≤ V h+1(s) + (H − h)βι. Thus,
conditioned on the event Ẽ as defined in Lemma 5.32, we have

Q†h(s, a, b, r)−Qh(s, a, b)

= rh(s, a, b) + PhV †h+1(s, a, b, r)−min{[rh(s, a, b) + fh(s, a, b) + uh(s, a, b)], H}+

≤ max{[PhV †h+1(s, a, b, r)− fh(s, a, b)− uh(s, a, b)], 0}

≤ max{[PhVh+1(s, a, b) + (H − h)βι− fh(s, a, b)− uh(s, a, b)], 0}

≤ (H + 1− h)βι,

where the first inequality is due to 0 ≤ rh(s, a, b) + PhV †h+1(s, a, b, r) ≤ H and min{x, y}+ ≥
min{x, y}, the second inequality is by the assumption that V †h+1(s, a, b, r) ≤ V h+1(s, a, b) + (H −
h)βι, the last inequality is by Lemma 5.32 such that |PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a, b) +

176



βι holds for any (s, a, b) ∈ S ×A× B and (k, h) ∈ [K]× [H]. The above inequality leads to

V †h (s, r) = max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Q†h(s, a, b, r)]

≤ max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Qh(s, a, b)] + (H + 1− h)βι

= V h(s) + (H + 1− h)βι.

Therefore, we have

V †h (s, r) ≤ V h(s) + (H + 1− h)βι, ∀h ∈ [H],∀s ∈ S.

We further prove the second inequality in (5.45). We have

Qh(s, a, b) = min{[rh(s, a, b) + fh(s, a, b) + uh(s, a, b)], H}+

≤ min{[rh(s, a, b) + PhV h+1(s, a, b) + 2uh(s, a, b) + βι], H}+

≤ rh(s, a, b) + PhV h+1(s, a, b) + 2uh(s, a, b) + βι,

where the first inequality is also by Lemma 5.32 such that |PhV h+1(s, a, b) − fh(s, a, b)| ≤
uh(s, a, b) + βι, and the last inequality is because of the non-negativity of rh(s, a, b) +

PhVh+1(s, a, b) + 2uh(s, a, b) + βι. Therefore, we have

V h(s) = min
ν′

Ea∼πh,b∼ν′Qh(s, a, b)

≤ Ea∼πh,b∼br(π)hQh(s, a, b)

≤ Ea∼πh,b∼br(π)h [rh(s, a, b) + PhV h+1(s, a, b) + 2uh(s, a, b)] + βι.

For the inequalities in (5.46), we can prove them in the same way to proving (5.45). From the
perspective of Player 2, this player is trying to find a policy to maximize the cumulative rewards
w.r.t. a reward function {−rh(s, a, b)}h∈[H]. Thus, one can further use the proof technique for
(5.45) to prove (5.46). This completes the proof.

Lemma 5.34. With the exploration and planning phases, conditioned on the event E defined in

Lemma 5.30 and the event Ẽ defined in Lemma 5.32, we have the following inequalities

K · V π,br(π)
1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2Kβι,

K · V br(ν),ν
1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.
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Proof. First, we have K ·V π,br(π)
1 (s1, u/H) ≤ K ·V ∗1 (s1, u/H) as well as K ·V br(ν),ν

1 (s1, u/H) ≤
K · V ∗1 (s1, u/H) according to the definition of V ∗1 . Thus, to prove this lemma, we only need to
show

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι,

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.

Because the constructions of the planning bonus uh and the exploration reward rkh are the same as
the ones for the single-agent case, similar to the proof of Lemma 5.23, and according to Lemmas
5.30 and 5.32, we have the following results

uh(s, a, b) ≤ H · rkh(s, a, b) + 2βι, uh(s, a, b) ≤ H · rkh(s, a, b) + 2βι

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k) + 2βι, V ∗1 (s1, u/H) ≤ V ∗1 (s1, r

k) + 2βι,

Therefore, we eventually obtain

K · V π,br(π)
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2Kβι,

K · V br(ν),ν
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.

This completes the proof.

5.11.2 Proof of Theorem 5.7

Proof. Conditioned on the events E and Ẽ defined in Lemmas 5.30 and 5.32, we have

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ V 1(s1)− V π,br(π)

1 (s1, r) +Hβι, (5.47)
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where the inequality is by Lemma 5.33. Further by this lemma, we have

V h(sh)− V π,br(π)
h (sh, r)

≤ Eah∼πh,bh∼br(π)h [(PhV h+1 + rh + 2uh)(sh, ah, bh)]− V π,br(π)
h (sh, r) + βι

= Eah∼πh,bh∼br(π)h [(rh + PhV h+1 + 2uh)(sh, ah, bh)− rh(sh, ah, bh)

− PhV π,br(π)
h+1 (sh, ah, bh, r)] + βι

= Eah∼πh,bh∼br(π)h [PhV h+1(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r) + 2uh(sh, ah, bh)] + βι

= Eah∼πh,bh∼br(π)h,sh+1∼Ph [V h+1(sh+1)− V π,br(π)
h+1 (sh+1, r) + 2uh(sh, ah, bh)] + βι.

Recursively applying the above inequality and making use of V H+1(s, r) = V
π,br(π)
H+1 (s) = 0 gives

V 1(s1)− V π,br(π)
1 (s1, r) ≤ E∀h∈[H]: ah∼πh,bh∼br(π)h,sh+1∼Ph

[
H∑
h=1

2uh(sh, ah, bh)

∣∣∣∣∣s1

]
= 2H · V π,br(π)

1 (s1, u/H) +Hβι.

Combining with (5.47) gives

V †1 (s1, r)− V π,br(π)
1 (s1, r)

≤ 2H · V π,br(π)
1 (s1, u/H) + 2Hβι ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k) + 4Hβι

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; kerm)

)
+ (H + 4)Hβι

≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
,

where the second inequality is due to Lemma 5.34 and the third inequality is by Lemma 5.31.
Next, we give the upper bound of V br(ν),ν

1 (s1, r)−V †1 (s1, r). Conditioned on the event E defined
in Lemma 5.30 and the event Ẽ defined in Lemma 5.32, we have

V
br(ν),ν

1 (s1, r)− V †1 (s1, r) ≤ V
br(ν),ν

1 (s1, r)− V 1(s1) +Hβι, (5.48)

where the inequality is by Lemma 5.33. Further by this lemma, we have

V
br(ν),ν
h (sh, r)− V h(sh)

≤ V
br(ν),ν
h (sh, r)− Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(sh, ah, bh)] + βι

= Eah∼br(ν)h,bh∼νh [PhV br(ν),ν
h+1 (sh, ah, bh, r)− PhV h+1(sh, ah, bh) + 2uh(sh, ah, bh)] + βι

= Eah∼br(ν)h,bh∼νh,sh+1∼Ph [V
br(ν),ν
h+1 (sh+1, r)− PhV h+1(sh+1) + 2uh(sh, ah, bh)] + βι.

179



Recursively applying the above inequality gives

V
br(ν),ν

1 (s1, r)− V 1(s1) ≤ 2H · V br(ν),ν
1 (s1, u/H) +Hβι.

Combining with (5.48) gives

V
br(ν),ν

1 (s1, r)− V †1 (s1, r) ≤ 2H · V π
1 (s1, u/H) + 2Hβι ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k) + 4Hβι

≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
,

where the second inequality is due to Lemma 5.34 and the last inequality is by Lemma 5.31. Thus,
we eventually have

V
br(ν),ν

1 (s1, r)− V π,br(π)
1 (s1, r)

≤ O
([√

H5 log(1/δ′) + β
√
H4 · Γ(K,λ; kerm)

]
/
√
K +H2βι

)
.

Moreover, we also have P (E ∧ Ẽ) ≥ 1− 2δ′− 4/m2 by the union bound. Therefore, since β ≥ H

as shown in Lemmas 5.30 and 5.32, setting δ′ = 1/(4K2H2), we obtain that with probability at
least 1− 1/(2K2H2)− 4/m2,

V ∗1 (s1, r)− V π
1 (s1, r) ≤ O

(
β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K +H2βι

)
.

The event E ∧ Ẽ happens if we further let β satisfy

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2

+ 32H2 logN∞(ς∗;RK , 2β) + 96H2 log(2KH).

where guarantees the conditions in Lemmas 5.30 and 5.32 hold. This completes the proof.

5.12 Other Supporting Lemmas

Lemma 5.35 (Lemma E.2 of Yang et al. [2020]). Let {sτ}∞τ=1 and {φτ}∞τ=1 be S-valued and

H-valued stochastic processes adapted to filtration {Fτ}∞τ=0, respectively, where we assume that

‖φτ‖ ≤ 1 for all τ ≥ 1. Moreover, for any t ≥ 1, we let Kt ∈ Rt×t be the Gram matrix of

{φτ}τ∈[t] and define an operator Λt : H 7→ H as Λt = λI +
∑t

τ=1 φτφ
>
τ with λ > 1. Let

V ⊆ {V : S 7→ [0, H]} be a class of bounded functions on S. Then for any δ ∈ (0, 1), with
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probability at least 1− δ, we have simultaneously for all t ≥ 1 that

sup
V ∈V

∥∥∥∥∥
t∑

τ=1

φτ{V (sτ )− E[V (sτ )|Fτ−1]}

∥∥∥∥∥
2

Λ−1
t

≤ 2H2 log det(I +Kt/λ) + 2H2t(λ− 1) + 4H2 log(Nε/δ) + 8t2ε2/λ,

where Nε is the ε-covering number of V with respect to the distance dist(·, ·) := supS |V1(s) −
V2(s)|.

Lemma 5.36 (Lemma E.3 of Yang et al. [2020]). Let {φt}t≥1 be a sequence in the RKHS H. Let

Λ0 : H 7→ H be defined as λI where λ ≥ 1 and I is the identity mapping onH. For any t ≥ 1, we

define a self-adjoint and positive-definite operator Λt by letting Λt = Λ0 +
∑t

j=1 φjφ
>
j . Then, for

any t ≥ 1, we have

t∑
j=1

min{1, φjΛ−1
j−1φ

>
j } ≤ 2 log det(I +Kt/λ),

where Kt ∈ Rt×t is the Gram matrix obtained from {φj}j∈[t], i.e., for any j, j′ ∈ [t], the (j, j′)-th

entry of Kt is 〈φj, φj〉H. Moreover, if we further have supt≥0{‖φt‖H} ≤ 1, then it holds that

log det(I +Kt/λ) ≤
t∑

j=1

φ>j Λ−1
j−1φj ≤ 2 log det(I +Kt/λ).

181



CHAPTER 6

Conclusion

Due to the huge empirical successes of RL in solving real-world decision-making problems, there
have been a large number of works studying the theoretical understandings of the RL algorithms.
Along such a research direction, this thesis focuses on two classes of RL methods, i.e., reward-
based online RL and reward-free RL, for both single-agent MDPs and Markov games. For the
reward-based online RL, this thesis investigates two concrete problems, namely online learning
for constrained MDPs and policy optimization for two-player zero-sum Markov games. Moreover,
within the framework of reward-free RL, this thesis proposes and analyzes novel algorithms for
both single-agent MDPs and Markov games incorporating the powerful nonlinear function approx-
imations. Specifically, the main contributions of this thesis are concluded as follows:

Online Learning for Constrained MDPs. Chapter 3 proposes a new upper confidence primal-
dual algorithm for constrained MDP online learning problems. The proposed algorithm estimates
the unknown transition model based on the trajectories and maintains a confidence set inspired by
the idea of UCB. It incorporates the confidence set into the online primal-dual method for learning
the policies. The proposed algorithm is proved to achieve Õ(

√
K) upper bounds for the regret

and the constraint violation simultaneously. Moreover, the regret bound nearly matches the lower
bound of the regret for learning MDPs. The analysis incorporates a new high-probability drift
analysis of Lagrange multiplier processes into the regret and constraint violation proofs for the
proposed upper confidence algorithm.

Policy Optimization for Zero-Sum Markov Games. Chapter 4 proposes and analyzes new prov-
able optimistic PO algorithms for two-player zero-sum Markov games with two non-trivial special
transition structures, namely the factored independent transition and the single-controller transi-
tion. The proposed algorithms feature a combination of UCB-type optimism and policy optimiza-
tion updating rules adapted to the structured transitions in a multi-agent non-stationary environ-
ment. In order to handle the non-stationarity resulting from the opponent’s varying state, both
players in the factored independent transition setting and Player 2 in the single-controller setting
demand to make an estimation of the opponent’s state reaching probability. For both transition
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structures, this thesis provides Õ(
√
K) regret bounds afterK episodes. The Õ(

√
K) regret bounds

in this thesis match the regrets of the value-based methods when translating their results in terms of
the regret definition here. This thesis also proposes novel value difference decomposition by taking
the transition structures and the state reaching probability estimation error into consideration.

Reward-Free RL with Kernel and Neural Function Approximations. Chapter 5 first proposes
sample- and computationally efficient reward-free RL algorithms with kernel and neural func-
tion approximations for single-agent MDPs. The proposed exploration algorithm is an optimistic
variant of the least-square value iteration algorithm incorporating kernel and neural function ap-
proximators. Further with the planning phase, which is a single-episode optimistic value itera-
tion algorithm, the proposed method achieves an Õ(1/ε2) sample complexity to generate an ε-
suboptimal policy for an arbitrary extrinsic reward function. Moreover, this thesis extends the
proposed method from the single-agent scenario to the two-player zero-sum Markov games, which
can achieve an Õ(1/ε2) sample complexity to generate an ε-approximate Nash equilibrium. Par-
ticularly, in the planning phase for Markov games, the proposed algorithm only involves finding
the Nash equilibrium of matrix games formed by Q-function that can be solved efficiently, which
is of independent interest. The above sample complexities match the Õ(1/ε2) results in existing
works for tabular or linear function approximation settings.

6.1 Future Direction

There are plenty of topics remaining to explore in the area of theoretical RL. This section provides
several lines of future research directions specific to the main problems studied in this thesis.

Extension to General Function Approximations. The problems of online learning for con-
strained MDPs and policy optimization for Markov games are only investigated in the tabular
case. However, when the state and action spaces are large, it is necessary to analyze the function
approximation scenario, especially the general (nonlinear) function approximation. On the other
hand, this thesis studies two specific nonlinear function approximators, i.e., kernel function and
1-layer neural network, for the reward-free RL problem. It is challenging to further investigate the
reward-free RL with a general nonlinear function approximator or a multi-layer neural network
approximator beyond the neural tangent kernel modeling.

Extension to General Multi-Agent Scenarios. While this thesis studies constrained single-agent
MDPs, it is interesting to see the exploration of new provable algorithms for multi-agent RL with
constraints, e.g., constrained Markov games. In addition, this thesis analyzes the policy optimiza-
tion algorithms for two-player zero-sum Markov games with special transition structures. How-
ever, whether the policy optimization for Markov games with a general transition can attain an
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O(
√
K) remains a challenging problem. Moreover, it is worthwhile to investigate how to extend

such analysis to multi-player general-sum games. For the reward-free RL, it is appealing to study
the extension of the analysis for two-player Markov games based on a joint environment explo-
ration to the multi-player game scenario where each player can explore the environment separately.

Toward Tighter Bounds. Recently, there have been a lot of works investigating how to sharpen
the upper bounds of the regrets or the sample complexities such that one can obtain tighter results
matching the lower bounds. It has been shown that employing the bonus terms based on Bernstein’s
inequality instead of Hoeffding’s inequality could lead to a better dependence on the episode length
H and the sizes of the action/state spaces |S|, |A|, |B| or the feature dimension for the online
value-based RL algorithms in the tabular case or with linear function approximation. Thus, it is
an interesting research question that whether we can adopt such a technique to the constrained
RL, policy optimization methods, and reward-free RL or even these three aspects generally with
nonlinear function approximations under the multi-agent setting.
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