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ABSTRACT

The rational conjugacy classes of tori play an important role in the representation theory

of reductive p-adic groups defined over a finite extension k of the p-adic numbers. In an

upcoming paper, Adler and DeBacker give a parameterization of the rational conjugacy

classes of embeddings of maximal tori using Bruhat-Tits theory, and our primary goal will

be to move towards an analogous parameterization of maximal θ-split tori, which play a

prominent role in the theory of p-adic symmetric spaces. In particular, we will parameterize

the rational conjugacy classes of maximal θ-split tori in finite groups of Lie type and in

groups defined over the maximal unramified extension K of k. We will then use Bruhat-Tits

theory to parameterize the θ-split tori which split over K and then determine which of these

tori can emerge as the maximal K-split subtorus of a maximal θ-split torus. We will also

provide a similar parameterization of a class of unramified tori which we will call unramified

θ-perfect tori. These tori will play an important role in future work where we will use them to

determine how the conjugacy classes of θ-split tori over K split into rational conjugacy classes.

Finally, in the case of symplectic groups, we will compare DeBacker’s parameterization of

maximal unramified tori to another parameterization due to Waldspurger.
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CHAPTER I

Introduction

Suppose G is a connected reductive algebraic group defined over a finite extension k of

the p-adic numbers Qp, with p 6= 2, and suppose that θ is an involution (i.e. an order 2

automorphism) of G defined over k. If Gθ denotes the points in G fixed by θ and (Gθ)◦

denotes its identity component, then we let H be a k-subgroup of G so that (Gθ)◦ ⊆ H ⊆ Gθ.

We then have that H◦, the identity component of H, is reductive by [36], and we say that the

quotient G/H is a p-adic symmetric space. The study of p-adic symmetric spaces has played

a key role in several important results concerning the representations theory of p-adic groups

and the Langlands program. For example, in [15], the authors use symmetric space methods

to determine when two data in Yu’s construction of supercuspidal representations [38, 13]

correspond to equivalent supercuspidal representations, and symmetric space methods also

show up in the study of the relative trace formulas [19].

If G′ is a connected reductive algebraic group defined over k, then perhaps the simplest

example of a p-adic symmetric space emerges from defining G to be the direct product

G′ × G′ and by letting θ be the map which sends (g1, g2) ∈ G′ × G′ to (g2, g1). Then

H = {(g, g)|g ∈ G′}, and we can identify the p-adic symmetric space G/H with G′ via the

map G→ G′ which sends (g1, g2) to (g1)−1g2.

Many results about a reductive p-adic group G′ have natural analogues for p-adic sym-

metric spaces that specialize to the original result when we consider G = G′ ×G′. (See,

1



for example, [3, 12, 21, 22, 31].) In this thesis, our primary goal is to study an analogue of

maximal k-tori associated to p-adic symmetric spaces. In particular, we say that a k-torus

S in G is θ-split if θ(s) = s−1 for all s ∈ S. Such tori correspond to Cartan subalgebras in

the Lie algebra g of G which lie in the −1-eigenspace of the differential dθ, and they have

filled a role analogous to that of maximal k-tori in most existing results on p-adic symmetric

spaces [3, 12, 21, 23, 24]. More specifically, we want to move towards a parameterization

of the H(k)-conjugacy classes of the the maximal θ-split k-tori, with the hope that it will

advance the understanding of the structure of p-adic symmetric spaces and facilitate the

development of symmetric space analogues of results in the representation theory of p-adic

groups in which maximal k-tori play a prominent role (e.g. [20]).

In moving towards this goal, we will attempt to model the approach of Jeff Adler and

Stephen DeBacker in their work on parameterizing the G(k)-conjugacy classes of embeddings

of maximal k-tori in G [10, 1, 2]. In their work, they begin in [10, 1] by using Bruhat-Tits

theory to parameterize the tori which split over the maximal unramified extension K ≤ k of k,

where k denotes a fixed algebraic closure of k, and by determining which of these tori emerge

as the K-split component of a maximal k-torus in G. They then determine in [2] how the

G(K)-conjugacy class of a K-minisotropic maximal k-torus in G splits into G(k)-conjugacy

classes, and so by applying this splitting to the K-minisotropic k-tori contained in the

centralizers of the unramified tori arising in [1], they are able to arrive at a parameterization

of the G(k)-conjugacy classes of all maximal k-tori.

In Chapter 2, we will introduce some relevant notation and recall some important facts

about p-adic symmetric spaces. Then, in Chapter 3, we will begin working towards our

parameterization by solving the analogous problem in a finite group of Lie type G defined

over the residue field f of k. As we will be particularly interested in the case where G is the

reductive quotient associated to a point in the Bruhat-Tits building of G(K) which is fixed

under the action induced by θ, we will again use θ to denote a f-involution of G, and we

will parameterize the θ-split f-tori of G by relating them to twisted conjugacy classes in a
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finite group called the extended little Weyl group. The proof of this parameterization closely

mirrors the classical result found in, for example, [8] and essentially follows from Lang’s

theorem applied to the connected reductive group H◦.

From there, assuming that G satisfies a tameness condition (in particular, the p does not

divide the order of the Weyl group), we will determine in Chapter 4 the H(K)-conjugacy

classes of maximal θ-split K-tori. We will again relate the conjugacy classes to twisted

conjugacy classes in the extended little Weyl group, but we will be forced this time to

rely on an argument using Galois cohomology. We will also provide a parameterization of

the G(K)-conjugacy classes of the tame twisted Levi K-subgroups in G by combining two

proofs in the work of Adler and DeBacker. While this result will be independent of the

theory of symmetric spaces a priori, it will prove useful in showing how the H(K)-conjugacy

class of a maximal θ-split torus splits into H(k)-conjugacy classes and is also independently

interesting as a step towards a parameterization of the G(k)-conjugacy classes of twisted Levi

k-subgroups, which, for example, play a prominent role in Yu’s construction of supercuspidal

representations [38, 13].

We will consider two types of unramified tori associated to p-adic symmetric spaces, the

first being the unramified θ-split tori. A parameterization of the H(k)-conjugacy classes of

maximal unramified θ-split k-tori is given in [28]. Here, in Chapter 5 we will extend Portilla’s

results by defining and parameterizing an analogue for θ-split tori of the unramified tori

appearing in [1]. We will show that the unramified component of a maximal θ-split k-torus

will be a torus of this form, and assuming a conjecture (Conjecture 5.3.4), we can then show

that all of these tori will arise as the unramified component of some maximal θ-split k-torus.

These tori and their centralizers, which are examples of unramified twisted Levi subgroups,

are expected to play a significant role in the theory of p-adic symmetric spaces. In particular,

the unramified twisted Levi subgroups arising from these tori are associated to θ-split

parabolic subgroups, a type of parabolic subgroup of G which plays a prominent role in the

symmetric space analogue of supercuspidal representations of G. (See [21], for example.)
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Thus if one hopes to prove a symmetric space analogue of Yu’s construction of supercuspidal

representations [38, 13] or another result involving twisted Levi subgroups, then one would

expect the unramified twisted Levi subgroups arising from our unramified θ-split tori to fill

the role normally played by unramified twisted Levi subgroups.

However, in order to demonstrate how the H(K)-conjugacy of a maximal θ-split k-torus

splits into H(k)-conjugacy classes, we will need to consider another class of unramified tori.

In Chapter 6, we will consider unramified θ-perfect tori, which are the unramified tori in G (in

the sense of [1]) whose associated unramified twisted Levi subgroup contains a maximal θ-split

k-torus of G. While these tori are not expected to be particularly important in the theory of

p-adic symmetric spaces, they will play a prominent role in the author’s upcoming work on

ramified θ-split tori. In particular, given a maximal θ-split k-torus S of G, we will need to

construct a θ-stable unramified twisted Levi subgroup M so that CM(S) is a K-minisotropic

k-torus. Upon constructing such a Levi subgroup, we will then be able to associate a point

in the Bruhat-Tits building of M(k) to S, and using this point in the building, we will be

able to show how the H(K)-conjugacy class of S breaks into H(k)-conjugacy classes. The

twisted Levi subgroups M arising in this way will all correspond θ-perfect tori, and so the

results in Chapter 6 will play a prominent role in our analysis.

The methods in Chapters 5 and 6 will rely heavily on Bruhat-Tits theory. In particular,

we will show that all of the unramified tori we need to consider emerge from lifts of tori in the

reductive quotients associated to facets in the Bruhat-Tits building of G(k) which intersect

the Bruhat-Tits building of H(k).

Finally, in Chapter 7 we will review the parameterization of maximal unramified tori in

[10], and we will provide a comparison with an analogous parameterization for symplectic

groups in [37]. The work and notation in this chapter will be completely independent of the

rest of the thesis.
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CHAPTER II

Definitions and Notation

In this chapter, we will recall basic definitions and known results about p-adic groups and

p-adic symmetric spaces. We will also introduce notation which we will use for all but the

very last chapter.

2.1 Fields, Groups, and Tori

Let k be a finite extension of the p-adic numbers Qp for p 6= 2 with nontrivial discrete

valuation ν.1 Let k denote an algebraic closure of k, and let K ≤ k be the maximal unramified

extension of k in k. Then the valuation ν extends uniquely to K, and we will also use ν

to denote the valuation of the extension. We let ok (resp. oK) denote the ring of integers

of k (resp. K), and we fix a uniformizer $ for k and thus K. We let f := ok/ < $ > and

F := oK/ < $ > denote the residue fields of k and K respectively. Then F is an algebraic

closure of f. We can and do identify Γ = Gal(K/k) with Gal(F/f), and we fix a topological

generator Fr for Γ.

If G is a group and x, y ∈ G, then we may use both Int(x)(y) and xy to denote xyx−1.

If G is a reductive algebraic group defined over k, then we use Lie(G) or g to denote its

Lie algebra. We will identify G with its k-rational points, and we will also use G instead

1It is quite likely that most if not all of the results in this thesis apply to the more general setting of
non-archimedean local fields whose characteristic and residue characteristic are both not 2. However, the
author has not checked this carefully.
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of G(K) to denote the group of K-points of an algebraic K-group. We use G◦ to denote

the identity component of G, and if τ is a k-automorphism of G, then we write Gτ for the

points in G fixed by τ. Given a subset A of G, we will use NG(A) and CG(A) to denote the

normalizer and centralizer of A in G respectively.

When we refer to a maximal torus, we mean a maximal torus in G unless otherwise

specified. If S is a k-torus in G and E is an extension of k, we will use SE to denote the

unique maximal k-torus which is contained in S and splits over E.

Throughout this thesis, we will frequently consider maximal k-tori in G which are K-split.

We call such a torus a maximal unramified torus. Let A be a maximal unramified torus

in G that contains a maximal k-split torus of G. Such a torus exists and is unique up to

GFr-conjugacy [29]. We denote by Φ = Φ(G,A) the root system of G with respect to A and

by W = W (G,A) the Weyl group NG(A)/CG(A). We denote by Ψ = Ψ(G,A, ν) the set of

affine roots of G with respect to A and ν, and for ψ ∈ Ψ, we let ψ̇ ∈ Φ denote the gradient

of ψ.

2.2 Involutions and p-adic Symmetric Spaces

We fix a connected reductive algebraic group G defined over k, and we fix an involution

θ which is defined over k. If we let H be a linear algebraic k-group with (Gθ)◦ ⊂ H ⊂ Gθ,

then we have that H◦ is reductive by [30, 36], and G/H defines a p-adic symmetric space.

We say that a torus S is θ-split if θ(s) = s−1 for all s ∈ S. If k′ is an extension of k,

then we say that a k-torus is (θ, k′)-split if it is both θ-split and k′-split. We call a maximal

(θ,K)-split k-torus a maximal unramified θ-split torus. By [18], the condition that S is a

maximal θ-split k′-torus is equivalent to the condition that S is a maximal θ-split torus that

is defined over k′. Throughout the thesis, we will generally reserve T for maximal k-tori in

G and S for maximal θ-split k-tori. The one noticable exception to this will be in Section

4.1, where S will play the role of a maximal K-torus in G.

If T is a θ-stable torus, then again by [18], we have a decomposition T = T+T−, where
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T+ denotes the maximal θ-fixed torus in T and T− is a θ-split torus equalling the identity

component of the connected algebraic group {t ∈ T|θ(t) = t−1}. The product is an almost

direct product in the sense that the map from T+ ×T− to T which sends (t1, t2) to (t1)−1t2

is an isogeny whose kernel T+ ∩T− is a finite 2-group. Since θ is defined over k, we have

that if T is defined over k, then both T+ and T− are defined over k as well (although an

element in T(k) cannot always be written as the product of elements of T+(k) and T−(k)).

There are several important results about p-adic symmetric spaces that will play an

important role in our analysis of maximal θ-split k-tori. First, we note that by Vust, all

maximal θ-split tori are (Gθ)◦-conjugate (and hence H-conjugate). It is not generally the case

that two maximal (θ, k)-split tori are H(k)-conjugate, but by [18], they are G(k)-conjugate,

meaning that all such tori have the same k-rank.

The difference between G(k)-conjugacy and H(k)-conjugacy accounts for most of the

difficulty in determining the H(k)-conjugacy classes of maximal θ-split k-tori. This difference

generally stems from the fact that if G is not simply connected, then we will generally not

have that Gθ is connected. However, a result of Vust [36] often allows us to circumvent this

issue. In particular, if A is any maximal θ-split torus in G and C := A∩Gθ, then we have a

decomposition Gθ = C · (Gθ)◦. As all of the elements of A ∩Gθ necessarily have order two,

we see that the component group of Gθ is an abelian 2-group.

A powerful result of Helminck and Wang [18] illuminates the structure of the centralizers of

θ-split k-tori. Recall that G can be written as an almost direct product ZGG1G2, where ZG

is contained in the center of G, G1 is k-anisotropic (i.e. has k-rank 0), and G2 is k-isotropic

(i.e. has k-rank greater than 0). Then if we let A be a maximal (θ, k)-split k-torus in G and

let Z, L1, and L2 denote the central, anisotropic, and isotropic factors of L = CG(A) over k

respectively, then Helminck and Wang show that

• A is the unique maximal (θ, k)-split torus of CG(A).

• L2 ⊂ H.
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• If A0 is any maximal k-split torus of CG(A), then A0 is θ-stable and ZL1 ⊂ CG(A0).

Applying this result when k = k, we see that the centralizer of any maximal θ-split torus has

its derived subgroup contained in (Gθ)◦. As another consequence, one shows that if A is a

maximal (θ, k)-split k-torus of G, A0 ⊃ A is a maximal k-split k-torus in G, and S ⊃ A is a

maximal θ-split k-torus, then A0 and S commute. In particular, there is a maximal torus T

in CG(A) which contains both a maximal k-split torus in G and a maximal θ-split k-torus in

G.

We also note that there is an analogue of the Weyl group for maximal θ-split k-tori of

G. In particular, if S is a maximal θ-split k-torus in G, then we define the little Weyl group

of S in G, which we will denote by Wθ = Wθ(S, G), to be NG(S)/CG(S). By [32], every

element of the little Weyl group has a representative in H◦ so that we may instead define it as

NH◦(S)/CH◦(S). The little Weyl group is in fact the Weyl group of the reduced root system

for the roots of S in G, and if T is a maximal k-torus containing S, then the little Weyl

group can be realized as the quotient of the elements of W (T,G) which normalize S by the

elements of W (T,G) which centralize S. Since the derived subgroup of CG(S) is contained

in H◦, we also have that the image of any element in NH◦(S) in the little Weyl group has a

representative in NH◦(T). As CH◦(S) is frequently disconnected, we will generally have to

work with variants of this object in our parameterizations.

2.3 The Bruhat-Tits Building and Symmetric Spaces

We let B(G) denote the (enlarged) Bruhat-Tits building of G, and we note B(G)Γ (which

we also sometimes write as B(G)Fr) is the (enlarged) Bruhat-Tits building of G(k). Similarly,

we let B(H) denote the (enlarged) Bruhat-Tits building of H◦, from which we then have that

B(H)Γ (or B(H)Fr) is the building of H◦(k).

If T (resp. T′) is a maximal K-split torus in G (resp. H), then we will let A(T) (resp.

A(T′)) denote the associated apartment in B(G) (resp. B(H)). If A is an apartment in one
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of our various buildings and Ω is a subset of A, then we let A(A,Ω) denote the smallest

affine subspace of A containing Ω.

For x ∈ B(G), we let Gx and G+
x denote the parahoric subgroup associated to x and its

pro-unipotent radical. Recall that both Gx and G+
x only depend on the facet F in B(G)

containing x so that we may write GF and G+
F for Gx and G+

x respectively. If F is Γ-stable,

then the quotient GF/G
+
F is the group of F-points of a connected, reductive group GF defined

over f. If x ∈ B(G)Γ, then we have that Γ acts on Gx and G+
x , and the quotient of their

Γ-fixed points coincides with the group of f-rational points of the connected reductive group

Gx defined over f. We also have that Gx(f) = Gx(F)Γ. We can define these notions analogously

for H.

If A is a maximal unramified torus in G containing a maximal k-split torus of G and

A(A) is the apartment in B(G) corresponding to A, then for a facet F in A(A)Fr, we have

that the image of A ∩GF in GF , which we call AF , is a maximally f-split maximal f-torus in

GF . In other words, AF is a maximal f-torus in GF which contains a maximal f-split torus

of GF . If we denote by WF the Weyl group NGF (AF )/AF , then we may identify WF with a

subgroup of W . We let ΨF denote the set of affine roots of A that vanish on F , and we let

ΦF denote the corresponding set of gradients. We then let FM denote the Levi k-subgroup

which contains A and corresponds to ΦF , and we recall that FMF = GF . For a facet F in

A(A), we let W̃ denote the affine Weyl group NG(A)/(CG(A) ∩GF ). Again we may define

all of these objects analogously for a maximal unramified torus in H.

The action of θ on G and G(k) induces an involution on B(G) and B(G)Fr which we

will also denote by θ. Prasad and Yu [30] show that we can identify B(H) with B(G)θ,

and thus we can also identify B(H)Fr with (B(G)Fr)θ. The facets in B(H) are too large for

parameterizing maximal θ-split k-tori. Thus we will be particularly concerned with θ-facets,

which are defined by Portilla in [27, 28] to be a nonempty subset F ⊂ B(H) which is the set

of θ-fixed points of some facet F ′ in B(G).

In studying θ-facets, it will be important to understand how the parahoric subgroup Gx
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of G corresponding to a point x in B(G)θ relates to the corresponding parahoric subgroup Hx

of H. Upon restricting to the respective pro-unipotent radicals, we have that G+
x ∩H = H+

x

by [27]. However, a similar result does not hold for the parahoric subgroups, and we only

have that (Gθx)
◦ = Hx, again by [27].

To see why Gx ∩H does not necessarily equal Hx, we look at the example of G = PGL2,

where we define θ to be the inner automorphism Int(m), where m is the image of the element

 0 1

$ 0


in PGL2. Then H◦ is a maximal tamely ramified elliptic torus, and so the building of H

is a point x. In particular, x is the midpoint of an alcove lying in the apartment of the

diagonal torus. However, the diagonal torus is θ-split, and so the reductive quotient Gx is a

θ-split torus. But a θ-split torus has finitely many θ-fixed points (in particular, the order two

elements), and so the θ-fixed points are disconnected. Thus we see that Gθx is not Hx, which

is the trivial group. By Hakim-Murnaghan, the θ-cohomology of G+
x is trivial, and so each

element of Gθx has a representative in Gx ∩H, meaning we have the desired counterexample.

Even so, with Portilla’s result on the pro-unipotent radicals, he is still able to prove that

the points in a given θ-facet all lie in the same facet in the building of H. Thus every facet

in B(H) can be written as the union of θ-facets, and we have that Hx = Hy for all points x

and y in a given θ-facet F , allowing us to write HF instead of Hx or Hy.
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CHAPTER III

Tori over the Residue Field

The goal of this section is to parameterize conjugacy classes of θ-split tori in finite groups

of Lie type. A less general version of this result was attempted in [28]. Let G be a connected,

reductive group defined over a finite field f with characteristic p 6= 2. Let θ be an involution

of G defined over f, and let (Gθ)◦ ⊆ H ⊆ Gθ. Let S be a maximal θ-split f-torus in G, an

f-torus so that θ(s) = s−1 for all s ∈ S. Recall that the little Weyl group of S is defined

to be Wθ = NG(S)/CG(S), and recall that every element of the little Weyl group has a

representative in H◦ so that we may instead define it as NH◦(S)/CH◦(S). (See [32, 24].) Define

the extended little Weyl group by Wθ,c = NH(S)/(CH(S))◦, and we consider the subgroup

W ′
θ,c := NH◦(S)/(CH(S))◦ of Wθ,c.

Let S1 denote the set of H(f)-conjugacy classes of maximal θ-split f-tori. Define a relation

∼ on W ′
θ,c by saying w ∼ w′ if there is an x in Wθ,c so that w = xw′Fr(x−1). One checks that

this defines an equivalence relation on Wθ,c

Recall from [36] that if S′ is another maximal θ-split f-torus in G, then there is an element

h in H◦ so that S′ = hS. Modeling Carter’s parameterization of conjugacy classes of maximal

tori in a finite group of Lie type in [8], we use this result to show that there is a bijective

correspondence between S1 and W ′
θ,c/ ∼.

Proposition 3.0.1. The map σ : S1 → W ′
θ,c/ ∼F given by hS 7→ h−1Fr(h) is a well-defined

bijection.

11



Proof. If hS is a maximal θ-split f-torus in G, then we have

hS = Fr(hS) = Fr(h)Fr(S) = Fr(h)S

so that h−1Fr(h) is in NH◦(S).

Now suppose that S1 and S2 are maximal θ-split f-tori for which there is some h in H(f)

such that S1 = hS2. Suppose S1 = h1S and S2 = h2S for some h1 and h2 in H◦. We have that

h−1
1 hh2 is an element of NH(S). Then we see that

(h−1
1 hh2)(h−1

2 Fr(h2))Fr((h−1
1 hh2)−1) = h−1

1 Fr(h1),

showing that the image of h−1
2 Fr(h2) in W ′

θ,c is Frobenius conjugate to the image of h−1
1 Fr(h1)

by the image of (h−1
1 hh2) in Wθ,c. Hence our map is well-defined.

We now need to show that the map is injective. Suppose that we have elements h1 and h2

in H◦ for which h1S and h2S determine the same equivalence class in W ′
θ,c. Letting π denote

the projection map from NH(S) to Wθ,c, we have that there is some element n in NH(S) so

that

π(h−1
2 Fr(h2)) = π(nh−1

1 Fr(h1)Fr(n−1)).

Rearranging terms, we have that

t := nh−1
1 Fr(h1)Fr(n−1)Fr(h−1

2 )h2

is an element of (CH(S))◦. Conjugating by h2, we then have that

h2t = h2nh
−1
1 Fr(h1)Fr(n−1)Fr(h−1

2 )

is an element of (CH(h2S))◦. Applying Lang-Steinberg, we can find an element u in (CH(S))◦
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so that (h2u)−1Fr(h2u) = h2t. Rearranging terms, we then find that

h2unh
−1
1 = Fr(h2unh

−1
1 ),

so that h2unh
−1
1 is in H(f). But we know that un is an element of NH(S), so we have that

h2unh
−1
1 (h1S) = h2S,

meaning that the tori are rationally conjugate and that we have injectivity.

Finally, for surjectivity, note that if w is in W ′
θ,c, we can find an element n ∈ NH◦(S)

so that π(n) = w. Then applying Lang-Steinberg, we can find an element h ∈ H◦ so that

h−1Fr(h) = n, and so we have surjectivity, completing the proof.

Note that we can analogously prove that the G(f)-conjugacy classes of maximal θ-split

f-tori are parameterized by Frobenius conjugacy classes in the little Weyl group Wθ. The

component group CH◦(S)/(CH◦(S))◦ thus controls the difference between the H(f)-conjugacy

classes and G(f)-conjugacy classes. We will perform a similar type of measurement when

parameterizing H(k)-conjugacy classes of K-minisotropic maximal θ-split k-tori in the p-adic

setting.

13



CHAPTER IV

Results over the Maximal Unramified Extension

We let G be a connected reductive group defined over a p-adic field k with p 6= 2. We

assume that G is tame, i.e. that p does not divide the order of the Weyl group. Let θ be an

involution of G defined over k, and let H be a subgroup so that (Gθ)◦ ⊆ H ⊆ Gθ. We will use

G(k), G,G for the k,K, and k points of G, where K is the maximal unramified extension of k

in k, and we will use similar notation for H and other subgroups of G. We will parameterize

tame twisted Levi K-subgroups up to G-conjugacy. Then we will parameterize θ-split tori up

to H-conjugacy, and we will then discuss which tame twisted Levi K-subgroups arise as the

centralizer of a θ-split torus. Finally, we will parameterize the embeddings of maximal θ-split

tori up to H-conjugacy as well as the conjugacy classes of θ-regular semisimple elements

lying in a fixed maximal θ-split torus S.

4.1 Tame Twisted Levis over K

We suppose G is a connected reductive group defined over K, and we fix a Borel K-

subgroup B of G. We also fix a maximal K-torus S of B, and we let ∆G = ∆(G,B,S) be the

corresponding set of simple roots. We denote the Weyl group of S in G by WG = W (G,S).

For π ⊂ ∆G, we let WG,π denote the corresponding parabolic subgroup of WG. Suppose

the residue characteristic of K does not divide the order of the Weyl group, and let σ be a

topological generator of Gal(E/K), where E is a tame extension of K over which all maximal
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K-tori of G split.

Recall that we call a subgroup L of G a twisted Levi K-subgroup if it is defined over

K and if there exists a parabolic E-subgroup P of G so that L is a Levi component of P.

We seek to study the set L of twisted Levi K-subgroups up to G-conjugacy, modeling the

work in [1] for quasi-finite fields and the parameterization in [2] of maximal K-tori up to

G-conjugacy. As in [1], we define a Levi torus to be a K-torus T in G that is equal to the

identity component of the center of CG(T), and if L is a twisted Levi K-subgroup, then we

let TL be the corresponding Levi torus, i.e. TL is the identity component of the center of L.

Since L = CG(TL), understanding L up to G-conjugacy is equivalent to understanding the

set of Levi tori up to G-conjugacy.

Let L/ ∼G be the set of G-conjugacy classes in L. We will relate L/ ∼G to the set IG

consisting of pairs (π,w) where π ⊂ ∆G and w ∈ WG such that σ(π) = wπ. For two pairs

(π′, w′) and (π,w) in IG, we will say that (π′, w′) ∼ (π,w) if there is an element u in WG for

which

• π = uπ′

• w = σ(u)w′u−1.

One may check that this defines an equivalence relation on IG.

Proposition 4.1.1. There is a natural bijective correspondence between IG/ ∼ and L/ ∼G.

Proof. We begin by defining a map φ : IG → L/ ∼G. To do so, suppose we have a pair (π,w)

in IG. Looking at the proof of surjectivity in the parameterization of maximal K-tori up to

G-conjugacy in [2], we can find g ∈ G(E) so that ng := σ(g−1)(g) lies in NG(E)(S) and has

image w in WG. Let Sπ = (∩α∈πker(α))◦ and Mπ = CG(Sπ). Because σ(π) = wπ, we have

σ(gMπ) = σ(g)σ(Mπ) = gn−1
g (Mσ(π)) = g(n

−1
g (Mwπ)) = gMπ,

so that gMπ is a twisted Levi K-subgroup of G with TgMπ = gTMπ = gSπ.
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We need to show that this construction is independent of our choice of g. In other

words, we need to show that a different choice results in a twisted Levi K-subgroup that

is G-conjugate to gMπ. Choose gi ∈ G(E) (i = 1, 2) so that σ(g−1
i )gi has image w in

WG. Then there is some s in S(E) so that σ(g−1
1 )g1 = σ(g−1

2 )g2s. Fix an element X of

Lie(g1TMπ)(K) so that CG(X) = g1Mπ. (Such an X exists. The elements of Lie(g1TMπ) that

do not vanish on any root of (g1 ·∆G) \ (g1 · π) is non-empty and open in Lie(g1TMπ), and

tori are unirational. Thus there is an element of Lie(g1TMπ)(K) which does not vanish on

any root of (g1 ·∆G) \ (g1 · π) and so that CG(X) = CG(g1TMπ) = g1Mπ.) Then we have

σ(g2g
−1
1 X) = g2sg

−1
1 X = g2g

−1
1 X.

Thus g2g
−1
1 X lies in Lie(g2TMπ)(K). However, since the Galois cohomology H1(K,CG(X))

is trivial by [33], we have that X and g2g
−1
1 X are G-conjugate, and so CG(X) = g1Mπ and

CG(g2g
−1
1 X) = g2Mπ are also G-conjugate so that φ is well-defined.

We claim that φ descends to a map from IG/ ∼ to L/ ∼G, which we will also call φ.

Suppose (π,w) ∼ (π′, w′) with w′ = σ(u)wu−1, and choose g ∈ G(E) and n′ ∈ NG(E)(S)

so that σ(g−1)g has image w in W and n′ has image u in W . Then g′ = g(n′)−1 is an

element of G(E) so that σ(g′−1)g′ has image w′ in W . We then see that g′Mπ′ = gMπ so

that φ(π,w) = φ(π′, w′).

We now need to show that the map φ is injective. To see this, suppose we have (π,w)

and (π′, w′) in IG so that φ(π,w) = φ(π′, w′). Choose g and g′ in G(E) so that images of

ng = σ(g)−1g and ng′ = σ(g′)−1g′ in WG are w and w′ respectively. Replacing g with kg for

some k in G, we may assume without loss of generality that gMπ = g′Mπ′ and hence that gS

and g′S are maximal E-split K-tori in gMπ. Consequently, there is an element m′ = gm for

m in Mπ(E) so that m′g′S = gS and m′g′(B ∩Mπ) = g(B ∩Mπ). Since we also have

σ(m′)(g
′
S) = σ(m′)σ(g

′
S) = σ(m

′g′S) = m′g′S,
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we may conclude that m′σ(m′)−1 is an element of NgMπ(E)(
gS), which then implies that

g−1(m′σ(m′)−1)−1g = n−1
g σ(m)ngm

−1 is an element of NMπ(E)(S). Now set n = mg−1g′ =

g−1m′g′, which we note is an element of NG(E)(S) so that nπ′ = π (because m′g′(B ∩Mπ) =

g(B ∩Mπ)). We have

σ(n)(ng′)n
−1 = σ(mg−1g′)σ(g′)−1g′(mg−1g′)−1 = σ(m)(ng)m

−1 = ng(n
−1
g σ(m)(ng)m

−1),

and so looking at images in WG, we have that σ(n)w′n−1 is in the coset wWG,π, where n

denotes the image of n in WG. Choose x in WG,π so that σ(n)w′n−1 = wx, and note that

xπ = w−1σ(n)w′n−1π = w−1σ(n)w′π′ = w−1σ(n)σ(π′) = w−1σ(π) = π.

But the action of WG,π on the set of bases for the root system spanned by π is simply

transitive, and so we have x = 1 and (π,w) ∼ (π′, w′) as desired.

It remains to show that our map is surjective. Suppose that L is in L. Let TL be the

connected component of the center of L. Choose a Borel K-subgroup BL in L and a maximal

K-torus SL in BL. Denote by ∆L = ∆(L,BL,SL) the corresponding set of simple roots,

and choose g in G(E) so that SL = gS and BL ≤ gB. Define πL = g−1 ·∆L, and note that

πL ⊂ ∆G. Let wL denote the image of σ(g−1)g in WG and put SπL = (∩α∈πLker(α))◦ ≤ S.

Then we have

• TL = gSπL and

• σ(πL) = wLπL

Thus we have constructed a pair (πL, wL) in IG whose image under φ is the G-conjugacy

class of L.
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4.2 Maximal θ-split Tori over K

We now seek to parameterize the maximal θ-split K-tori up to H-conjugacy. We are

forced to take an approach using Galois cohomology.

Fix a maximal θ-split K-torus S, and let X be the set of all maximal θ-split tori in G. Let

Wθ = NH(S)/CH(S) and Wθ,c = NH(S)/(CH(S))◦ be the little Weyl group and connected

little Weyl group of S respectively. Consider the exact sequence

0→ NH(S)→ H→ X → 0.

Taking the Galois cohomology sequence over K, we have

0→ NH(S)→ H → X(K)→ H1(K,NH(S))→ H1(K,H).

Then the set ofH-conjugacy classes is parameterized by the kernel of the map H1(K,NH(S))→

H1(K,H). In order to compute this kernel, we will begin by computing H1(K,NH(S)).

We slightly revise our definition of σ from the previous section to let it be a topological

generator for the Galois group of the maximal tame extension Ktame of K in the maximal

separable extension Ksep in k.

Lemma 4.2.1. Assume that p does not divide the order of the Weyl group of G. Then

H1(K,NH(S)) is in bijection with the set of σ-conjugacy classes in Wθ,c.

Proof. First consider the exact sequence

0→ (CH(S))◦ → NH(S)→ Wθ,c → 0.

Then by [33], the Galois cohomology sequence gives us a bijection between H1(K,NH(S))

and H1(K,Wθ,c), and so it suffices to compute the cohomology H1(K,Wθ,c).

To do so, first note that any prime dividing the order of Wθ also divides the order of W .
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This is because if T is a maximal torus in G containing S and n is in NH(S), then T and nT

are CG(S)-conjugate. Since the derived group of CG(S) is θ-fixed by [18], they are actually

CH◦(S)-conjugate, meaning that n is equivalent in Wθ to an element of NH◦(T) and thus

that Wθ is isomorphic to a quotient of a subgroup of W (since Wθ is defined by modding

NH(T) by a subgroup containing T).

Now Wθ,c is an extension of Wc by a 2-group, since by [36], the component group of

CH(S)/(CH(S))◦ is a finite abelian 2-group. Since 2 clearly divides the order of W , we have

that each prime dividing the order of Wθ,c divides the order of W as well.

Now since the residue characteristic p does not divide the order of W by assumption, we

see that there can be no non-trivial cocycles from Gal(Ksep/Ktame) to Wθ,c, as the former is

a pro-p group and the order of the latter is not divisible by p by our tameness assumption.

Thus it suffices to consider H1(Gal(Ktame/K),Wθ,c). Note that Gal(Ktame/K) is isomor-

phic to the product of the groups Zl for l 6= p and is topologically generated by σ. Thus

a cocycle is determined entirely by the image of σ, and since Wθ,c is finite, we can form

a cocycle by mapping σ to any element of Wθ,c (see e.g. [11, 2.1.2]). Then two cocycles

are cohomologous if and only if the respective images of σ in Wθ,c are σ-conjugate in Wθ,c,

meaning we are done.

Consequently, if we have that H is connected (e.g. if G is simply connected by e.g. [30]),

or if H-conjugacy is equivalent to H◦-conjugacy (e.g. if G splits over K or, more generally,

if G contains a maximal θ-split K-torus which splits over K since by Vust, the component

group of H has representatives in the order two elements of some fixed maximal θ-split

K-torus, which are all K-rational if the maximal θ-split torus splits over K), then we have

our parameterization since H1(K,H◦) vanishes by Steinberg’s theorem ([33]). To deal with

the case of a general G and H, first consider the map of short exact sequences:
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1 NH◦(S) H◦ X 1

1 NH(S) H X 1

where the vertical maps are given by the obvious inclusions. We then obtain a commutative

diagram of the Galois cohomology sequences:

1 NH◦(S) H◦ X(K) H1(K,NH◦(S)) H1(K,H◦)

1 NH(S) H X(K) H1(K,NH(S)) H1(K,H)

Now suppose that w is in the kernel of the map H1(K,NH(S)) → H1(K,H). Then

it is in the image of the map X(K) → H1(K,NH(S)), and so by the commutativity of

the above diagram, w is also the image of an element w′ in H1(K,NH◦(S)) under the

vertical map H1(K,NH◦(S)) → H1(K,NH(S)). On the other hand, since H1(K,H◦) is

trivial, the commutativity of our diagram tells us that every element of H1(K,NH◦(S))

maps to an element in the kernel of the map H1(K,NH(S)) → H1(K,H). Thus we see

that the kernel of the map H1(K,NH(S)) → H1(K,H) is precisely the image of the map

H1(K,NH◦(S))→ H1(K,NH(S)). By the proof of our lemma, we know that H1(K,NH◦(S))

is the set of σ-conjugacy classes in W ′
θ,c := NH◦(S)/(CH◦(S))◦, and the latter is the set of

σ-conjugacy classes in Wθ,c.
1 Thus we have

Proposition 4.2.2. The H-conjugacy classes of maximal θ-split K-tori are in bijection with

the the elements of W ′
θ,c, modulo σ-conjugacy by the elements of Wθ,c.

Note that by replacing H and H◦ with G in the proof of the previous proposition allows

us to show that the G-conjugacy classes of maximal θ-split K-tori are in bijection with the

σ-conjugacy classes in the little Weyl group Wθ. Note that by [32] every element in the little

Weyl group has a representative in H◦, and by looking at its image in the extended little

1Note that we could avoid using commutative diagrams in this argument by noting that all the maximal
θ-split K-tori are H◦-conjugate by [36], meaning that we can just directly show that every cocycle in the
kernel is cohomologous to a cocycle in H◦.
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Weyl group Wθ,c, we see from our proof that there is an element h ∈ H◦ so that h−1σ(h) has

the same image in Wθ,c and hence in Wθ as well. Thus we see that every G-conjugacy class

contains a maximal θ-split K-torus, and we have that the difference between the σ-conjugacy

classes in Wθ and those in Wθ,c measures the difference between G-conjugacy and H-conjugacy

of maximal θ-split K-tori in G.

We now ask which of the G-conjugacy classes of twisted Levi K-subgroups from Proposition

4.1 have a representative which emerges as the centralizer of a θ-split torus in G. In other

words, by [18], we want to know which twisted Levis occur in the Levi decomposition of a

θ-split parabolic subgroup over k, i.e. a parabolic subgroup P of G so that θ(P)∩P is a Levi

subgroup. First, note that we may choose T to be a maximal K-torus which is both θ-stable

and contains a maximal θ-split torus S [18]. Fix a θ-basis ∆θ for the roots of T in G, i.e. a

simple system for the roots of T in G as in [17] so that every simple root is either fixed by

θ or sent to a negative root by θ, and let ∆+
θ be the roots in ∆θ fixed by θ. Then by [17],

every θ-split parabolic subgroup is H◦-conjugate to one of the form Pπ for π a subset of ∆θ

containing ∆+
θ whose span is θ-stable. Thus we see that any pair (π,w) in IG corresponding

to the Levi of a θ-split parabolic must satisfy

1. π is a subset of ∆θ containing ∆+
θ whose span is θ-stable and

2. w is the image of an element in NH◦(T) ⊆ NNG(S)(T).

The previous paragraph is enough for what we ultimately want to do, but one may also

ask the question of whether all pairs (π,w) satisfying the two conditions above emerge as

the Levi of a θ-split parabolic subgroup over k. Given a pair (π,w) ∈ IG so that π is a

subset of ∆θ containing ∆+
θ whose span is θ-stable and that w is the image of an element

n in NH◦(S) ⊆ NNG(S)(T), choose g ∈ G(E) so that σ(g−1)g = n. Then the proof of our

parameterization of the H-conjugacy classes of maximal θ-split K-tori tells us that there is

also an element h ∈ H◦(E) so that h−1σ(h) has the same image in the extended little Weyl

group Wθ,c as n and hence also in the little Weyl group Wθ. Since they have the same image
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in Wθ, the parameterization of the G-conjugacy classes of maximal θ-split K-tori then tells

us that we may multiply g by an element of g′ ∈ G so that hS = gS is a maximal θ-split

K-torus in G. But by [17], we know that the centralizer in G of h(Tπ ∩ S) = g(Tπ ∩ S)

equals the centralizer in G of gTπ. In particular, CG(h(Tπ ∩ S)) is the Levi component of a

θ-split parabolic subgroup over k of type π and also a twisted Levi subgroup corresponding

to the pair (π,w) in our parameterization of twisted Levi K-subgroups.

4.3 θ-regular Semisimple Elements over K

Recall that S is a fixed maximal θ-split K-torus in G. Let s be a strongly θ-regular

semisimple element in S, i.e. an element so that CG(s) = CG(S). We seek to parameterize

the H-orbits in Hs ∩G. Note that since all maximal θ-split K-tori are H(Ktame)-conjugate

and since the little Weyl group has representatives in H◦(Ktame), we have that all such

elements are conjugate over H(Ktame) so that it is again enough to consider the Galois action

of σ. We will again use a cohomological argument.

Let X ′ be the set of all elements of the form hs for h in H, and consider the exact sequence

0→ CH(S)→ H→ X ′ → 0.

Taking the Galois cohomology sequence over K, we have

0→ CH(S)→ H → X ′(K)→ H1(K,CH(S))→ H1(K,H).

Then the set ofH-conjugacy classes is parameterized by the kernel of the map H1(K,CH(S))→

H1(K,H).

Lemma 4.3.1. H1(K,CH(S)) is in bijection with the set of σ-conjugacy classes in CH(S)/(CH(S))◦.

The proof is nearly identical to that of Lemma 4.2.1 in the previous section, replacing

NH(S) with CH(S). Note that CH(S)/(CH(S))◦ is a finite abelian 2-group by [36], and since
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the residue characteristic p is not equal to 2 by assumption, we see that Gal(Ksep/Ktame)

acts trivially on CH(S)/(CH(S))◦ so that it does in fact carry an action of σ. To complete

the classification, we can look at the analogous commutative diagrams to the ones in the

previous section and perform an identical argument to find

Proposition 4.3.2. The H-conjugacy classes of elements in (Hs ∩G), where s is strongly

θ-regular semisimple element in G, is in bijection with the elements of CH◦(S)/(CH(S))◦,

modulo σ-conjugacy by CH(S)/(CH(S))◦.

It is also of interest to know which of these conjugacy classes intersect S. To compute this,

we need to compute the kernel of the map H1(K,CH(S))→ H1(K,NH(S)). Combining our

lemmas from this section and the previous, we see that the kernel is the set of σ-conjugacy

classes in CH(S)/(CH(S))◦ which are σ-conjugate to the trivial class in the connected little

Weyl group Wθ,c of S.
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CHAPTER V

Unramified θ-split Tori

We now attempt to adapt the parameterization of unramified twisted Levi subgroups and

unramified tori in [1] to the setting of θ-split tori. We carry over notation from the previous

section, including the choice of G,H, etc. as the K points, with G(k),H(k), etc. denoting

the k-points. Recall that a θ-stable k-torus S is the almost direct product of subtori S+ · S−,

where S+ ⊆ Gθ is a k-torus and S− is a θ-split k-torus.

5.1 θ-Perfect Tori, Roots, and θ-split Parabolics

We say that a maximal k-torus T in G is θ-perfect if it is θ-stable and contains both

a maximally k-split, maximal K-split k-torus and a maximal θ-split k-torus which is both

maximally (θ, k)-split and maximally (θ,K)-split. In other words, we have

• T is a maximal k-torus,

• T contains a maximal K-split k-torus TK ,

• TK contains a maximal k-split k-torus Tk,

• T contains a maximal θ-split k-torus S,

• S contains a maximal (θ,K)-split k-torus SK ,

• S contains a maximal (θ, k)-split k-torus Sk.
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We first show that such a torus exists. Begin with a maximal (θ, k)-split torus Sk, i.e. a

k-torus which is both θ-split and split over k and maximal among such tori. By a result of

Helminck in [16], if we choose any maximal k-split torus T′k containing Sk and any maximal

θ-split k-torus S′ containing Sk, then S′ and T′k commute so that there is a maximal k-torus

T′ containing both. Then to construct a θ-perfect torus, we first choose a maximally (θ,K)-

split maximal θ-split k-torus S containing Sk, and let SK denote the maximal (θ,K)-split

k-torus in S. We also choose a maximal k-split torus Tk containing Sk. Then since S and Tk

commute by Helminck’s result, SK and Tk also commute, meaning we can choose a maximal

K-split k-torus TK containing both SK and Tk. Then applying Helminck’s result again, this

time over K, we have that S and TK commute, so there is a maximal k-torus T containing

both S and TK . We then have that T is a θ-perfect torus.

We next show that a θ-perfect k-torus T containing a maximal k-split torus Tk and a

maximal θ-split k-torus S is unique up to (HNG(T))(k)-conjugacy. To see this, first note

that T is unique up to G(k)-conjugacy by [29]. Now note that S is unique up to H-conjugacy

by [36], and again using [29], T is unique up to CG(k)(S)-conjugacy. But by [18], the derived

subgroup of CG(k)(S) is contained in H◦, meaning that T is also unique up to H-conjugacy.

Thus since T is unique up to G(k)-conjugacy and H-conjugacy, we have that T is also unique

up to (HNG(T))(k)-conjugacy, and so we have our claim.

Henceforth, we fix a θ-perfect torus T containing a maximal k-split Tk, a maximal θ-split

k-torus S, and a maximal (θ, k)-split torus Sk. We will now choose a special simple system

for the roots of T. In particular, by [17], there is a θ-basis for the roots of T in G, which we

will denote by ∆, so that ∆ is a basis for the roots of T in G and for all α in ∆, we have

either

• θ(α) = α or

• θ(α) is a negative root with respect to the basis defined by ∆.

We let ∆+ denote the simple roots satisfying the former condition and let ∆− denote the
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simple roots satisfying the latter. Again by Helminck [17], the restrictions of the roots in ∆

to the maximal θ-split torus S contained in T gives a simple system for the roots of S in G,

and the subsets of the corresponding simple system for the roots of S are in bijection with

subsets π of ∆ so that

1. ∆+ ⊂ π

2. the subsystem spanned by π is θ-stable.

We call such a subset θ-admissible. Note that since the action of Fr on T commutes with

the action of θ by assumption, we have that Fr acts on the set of θ-admissible subsets of

the θ-bases for the roots of T. The little Weyl group Wθ := NG(S)/CG(S) can be identified

with the Weyl group of the roots of S in G and acts simply transitively on the set of θ-bases

for the roots of T in G [17]. We let Wθ,c := NH(S)/(CH(S))◦ be the connected little Weyl

group of S in G, and we consider the subgroup W ′
θ,c := NH◦(S)/(CH(S))◦ of Wθ,c. Given

a θ-admissible subset π of ∆, we let Wθ,c(π) and W ′
θ,c(π) denote the respective subgroups

of elements whose image in Wθ under the obvious projection lies in the parabolic subgroup

corresponding to π. Note that through this projection, all of these groups act on the roots of

S.

Recall that a θ-split parabolic K-subgroup is a parabolic K-subgroup P of G such that

θ(P) ∩ P is a Levi subgroup of P. In other words, θ sends P to an opposite parabolic

subgroup. By [18], a minimal θ-split parabolic K-subgroup has an associated Levi subgroup

of the form CG(S1) for S1 a maximal (θ,K)-split torus. Again by [17], the minimal θ-

split K-parabolic subgroup P containing the Borel subgroup B corresponding to ∆ has

associated Levi subgroup CG(S), and the root system of CG(S) has simple system ∆+. More

generally, the θ-split parabolics containing B are in bijection with θ-admissible subsets π of

∆. The θ-split parabolic subgroup corresponding to a θ-admissible subset π ⊆ ∆ has a Levi

subgroup of the form CG(Sπ), where Sπ :=
⋂
α∈π

(ker(α|S))◦. We call such a Levi subgroup a

θ-split Levi subgroup. Given such a subset π, we let Wθ,c(π) := NH(S)/((CH(Sπ))◦ ∩ CH(S))
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and W ′
θ,c(π) := NH◦(S)/((CH(Sπ))◦ ∩ CH◦(S)). These groups also act on the roots of S by

projecting onto the little Weyl group.

Our primary goal for this section is to parameterize the unramified θ-split twisted Levi

subgroups up to H(k)-conjugacy.

5.2 θ-split Twisted Levi Subgroups for Finite Groups of Lie Type

We first look at the analogous question over the residue field f. We carry over all notation

from the previous subsection, except we use G,H, etc. for groups over f. We fix a θ-stable

maximal f-torus T of G containing a maximal θ-split f-torus S of G as well as a maximal

f-torus in G and a maximal (θ, k)-split f-torus in G (in other words, a θ-perfect f-torus T in

G, which exists by [18] as in the case of groups G defined over k). We also fix a θ-basis ∆ of

T. We say that a reductive subgroup L of G is called a θ-split twisted Levi f-subgroup of G

if L is defined over f and there exists a θ-split parabolic F-subgroup of G for which L is the

associated Levi factor. We let Lθ denote the set of θ-split twisted Levi f-subgroups of G.

Every θ-split twisted Levi f-subgroup L of G can naturally be associated to a θ-split f-torus.

In particular, we let SL denote the maximal θ-split subtorus of the connected component of the

center of L, which is θ-stable. We call an f-torus S in G that is equal to the θ-split component

of the center of CG(S) a θ-split Levi torus. Then for a θ-split twisted Levi f-subgroup of

G, we have that L = CG(SL), and so we have a bijective correspondence between the set of

θ-split Levi tori in G and the set of θ-split twisted Levi f-subgroups in G. Thus understanding

Lθ up to H(f)-conjugacy is equivalent to understanding the set of θ-split Levi tori in G up

H(f)-conjugacy.

Let Lθ/ ∼H denote the set of H(f)-conjugacy classes in Lθ. Let IH denote the set of pairs

(π,w) where π is a θ-admissible subset of ∆ and w ∈ W ′
θ,c(π) = NH◦(S)/((CH(Sπ))◦ ∩ CH(S))

so that wπ = Fr(π). For (π′, w′) and (π,w) in IH, we write (π′, w′) ∼ (π,w) if there exists an

element n′ in NH(S) so that θ = n′θ′ and w = Fr(n′)w′(n′)−1. One can check that this gives

a well-defined equivalence relation on the set IH.
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Lemma 5.2.1. There is a natural bijective correspondence between IH/ ∼ and Lθ/ ∼H.

Proof. We begin by defining a map ϕ : IH → Lθ/ ∼H. Suppose that we have a pair

(π,w) ∈ IH. Then by Lang-Steinberg for H◦, we can choose an element h ∈ H◦ so that the

image of Fr(h−1)h in W ′
θ,c(π) is w. Set nh = Fr(h−1)h ∈ NH◦(S). Let Sπ :=

⋂
α∈π

(ker(α|S))◦ and

Mπ = CG(Sπ). Since Fr(π) = wπ, we have

Fr(hMπ) = Fr(h)Fr(Mπ) = hn−1
h (MFr(π)) = h(n

−1
h (Mwπ)) = hMπ.

Thus we have that hMπ is a θ-split twisted Levi f-subgroup of G.

We need to show that a different choice of h results in a θ-split twisted Levi f-subgroup

which is H(f)-conjugate to hMπ. Suppose h′ ∈ H◦ is chosen so that nh′ := Fr(h′)−1h′ also

has image w in W ′
θ,c(π). Then we can choose s ∈ (CH(Sπ))◦ ∩ CH◦(S) so that nh′ = nhs.

Then we have Fr(h′h−1)−1h′h−1 = hs ∈ h((CH(Sπ))◦ ∩ CH◦(S)), and applying Lang-Steinberg

to (CH(Sπ))◦, we can find an element s′ ∈ h((CH(Sπ))◦) ⊆ hMπ so that Fr(h′h−1)−1h′h−1 =

Fr(s′)−1s′. Thus s′h(h′)−1 = Fr(s′h(h′)−1), meaning that s′h(h′)−1 ∈ H(f), and we have

hMπ = s′hMπ = (s′h(h′)−1)h′Mπ.

Thus we have that h′Mπ is H(f)-conjugate to hMπ, and so ϕ is well-defined.

We now show that ϕ descends to an injective map from IH/ ∼ to Lθ/ ∼H, which we

shall also call ϕ. Suppose (π,w) and (π′, w′) are in IH, and choose h and h′ in H◦ so that

the images of nh and n′h in W ′
θ,c(π) are w and w′ respectively. If ϕ(π,w) = ϕ(π′, w′), then

there is a k ∈ H(f) so that hMπ = kh′Mπ′ . Replacing h′ by kh′, we may assume without loss

of generality that hMπ = h′Mπ′ . We then have that both hS and h′S are maximal θ-split

f-tori in hMπ, and so there exists some m′ = hm with m in (CH(Sπ))◦ so that m′h′S = hS and

m′h′(P ∩Mπ′) = h(P ∩Mπ), where P is the minimal θ-split parabolic subgroup corresponding

to our θ-basis for the roots of T. Since we also have that Fr(m′)(h
′
S) =h S and since the two

tori are defined over f, we may conclude that m′Fr(m′)−1 ∈ Nh(CH(Sπ))◦(
hS), which implies
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that n−1
h Fr(m)nhm

−1 ∈ N(CH(Sπ))◦(S). Then set n = mh−1h′ ∈ NH(S) and note that nπ′ = π.

We have

Fr(n)(nh′)n
−1 = Fr(mh−1h′)Fr(h′)−1h′(mh−1h′)−1 = Fr(m)(nh)m

−1 = nh(n
−1
h Fr(m)(nh)m

−1).

Looking at images in the little Weyl group Wθ of S, we see that the image of Fr(n)(w′)n−1

is equal to the image of w times an element of the parabolic subgroup Wθ(π) of the little

Weyl group corresponding to the θ-admissible subset π of ∆, an element which we call x and

which is equal to the image of n−1
h Fr(m)(nh)m

−1 in Wθ. Note that

xπ = w−1Fr(n)w′n−1π = w−1Fr(n)w′π′ = w−1Fr(n)Fr(π′) = w−1Fr(π) = π.

But since the action of Wθ(π) on the set of θ-bases for the root system spanned by π is

simply transitive, we must have that x = 1 in Wθ, so that n−1
h Fr(m)(nh)m

−1 lies in CH(S).

Thus n−1
h Fr(m)(nh)m−1 lies in (CH(Sπ))◦ ∩CH(S), and so we have that its image in Wθ,c(π) is

trivial. Consequently, we have that (π,w) ∼ (π′, w′) so that the map is injective as claimed.

Finally, we show that ϕ is surjective. Suppose L ∈ Lθ. Let AL denote the maximal θ-split

subtorus of the connected component of the center of L. Choose a minimal θ-split parabolic

f-subgroup PL in L and a maximal f-torus TL in PL containing a maximal θ-split f-torus SL.

Denote by ∆L the corresponding θ-basis for the roots of TL. Choose h ∈ H◦ so that SL = hS

and PL ≤ hP. Define πL = h−1 ·∆L, and note that πL ⊂ ∆θ. Let wL denote the image of

Fr(h−1)h in Wθ,c(π) and put SπL = (
⋂
α∈πL

(ker(α|S))◦ ≤ S. Then we have that AL = hSπL and

Fr(πL) = wLπL, which shows that ϕ(πL, wL) gives the H(f)-conjugacy class of L.
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5.3 More on θ-split Tori and θ-split Levi Subgroups

We fix a Galois extension E of k. (Note that E here is not necessarily the extension E

from chapter 4, which was defined to be a tame extension of K over which all K-tori split.)

Then we call a subgroup M of G a θ-split Levi (E, k)-subgroup if it is a k-subgroup so that

M = P ∩ θ(P) for some θ-split parabolic E-subgroup P of G (which then implies that M is

a Levi (E, k)-subgroup in the sense of [1]). If E is a tame Galois extension of k and M is

the group of K-rational points of a Levi (E, k)-subgroup of G, then we can and do identify

B(M) with a subset of B(G), noting that there is no canonical way to do this but that all

such identifications have the same image. Given a θ-split k-torus S of G, we let SE denote

the maximal E-split subtorus in G, and given a θ-stable maximal k-torus T of G, we let T−

denote the maximal θ-split subtorus of T.

Lemma 5.3.1. If M is a θ-split Levi (E, k)-subgroup and ZE
M is defined to be the maximal

(θ, E)-split torus in the center of M, then ZE
M is defined over k and M = CG(ZE

M).

Proof. Since M is defined over k, the center of M is also defined over k. Thus by the

uniqueness of ZE
M , we have that it is also defined over k.

Now since M is a θ-split Levi (E, k)-subgroup, we have that there is θ-split parabolic

E-subgroup P of G so that M is equal to P ∩ θ(P). By [17], there is a (θ, E)-split torus S

of G so that M = CG(S). Since S is in the center of M and is (θ, E)-split, we must have

that S is contained in ZE
M. Thus we have that M ≤ CG(ZE

M) ≤ CG(S) = M, and so we are

done.

Corollary 5.3.2. Suppose M is a θ-split Levi (E, k)-subgroup whose center has θ-split

component ZM. Then if C is a k-subgroup of G which lies between ZE
M and ZM, then

M = CG(C).

Proof. Since ZE
M ≤ C ≤ ZM , we have M ≤ CG(ZM) ≤ CG(C) ≤ CG(ZE

M) = M.

Lemma 5.3.3. If T is a maximal θ-split k-torus in G, then CG(TE) is the unique θ-split

Levi (E, k)-subgroup in G that is minimal among Levi (E, k)-subgroups that contain T.
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Proof. Let M = CG(TE). Then we must first show that M is a θ-split Levi (E, k)-subgroup

in G. Since TE is a θ-split torus, M is a θ-split Levi subgroup by [17], and since TE is the

unique maximal E-split torus in T, it is defined over k. Thus M is defined over k as well.

Now if ZE
M denotes the maximal (θ, E)-split torus in the center of M, then we must have that

TE ≤ ZE
M. Furthermore, since T is a maximal θ-split k-torus in M, we also have ZE

M ≤ T.

But then by the maximality of TE in T, we conclude that ZE
M ≤ TE. This then implies that

TE = ZE
M, and so M = CG(TE) = CG(ZE

M).

Now let T′ be a maximal (θ, E)-split torus in G that contains TE, and let P′ be a minimal

θ-split parabolic E-subgroup so that P′ ∩ θ(P′) = CG(T′). (Such a parabolic exists by [17].)

Then since T′ ≤M, we have that the subgroup MP′ of G is a θ-split parabolic E-subgroup

of G for which M is the associated θ-split Levi E-subgroup.

We now show that M is the unique minimal θ-split Levi (E, k)-subgroup in G that

contains T. Suppose that M′ is another Levi (E, k)-subgroup that contains T, and let ZE
M′

denote the maximal (θ, E)-split torus in the center of M′. Then by the previous lemma, we

have that M′ = CG(ZE
M′), and since T ≤M′, we have that ZE

M′ ≤ T. Thus ZE
M′ ≤ TE = ZE

M,

and so M ≤M′.

We now adopt the following language when E is the maximal unramified extension K

of k. First, we say that a subgroup L of G is an unramified θ-split twisted Levi subgroup

provided that L is a θ-split Levi (K, k)-subgroup of G. In addition, we say that a k-torus

S is an unramified θ-split torus in G provided that S is the (θ,K)-split component of the

center of an unramified θ-split twisted Levi subgroup in G.

Note that by our lemmas, we know that if L is an unramified θ-split twisted Levi subgroup

in G and S is the (θ,K)-split component of the center of L, then L = CG(S). In addition,

since two θ-split Levi (K, k)-subgroups are H(k)-conjugate if and only if the (θ,K)-split

components of their centers are H(k)-conjugate, we have that a parameterization of the H(k)-

conjugacy classes of unramified tori also gives a parameterization of the the H(k)-conjugacy

classes of θ-split Levi (K, k)-subgroups.
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5.3.1 A Conjecture and a Consequence

We state the following as a conjecture. It likely follows from applying the analogous

result in [1] to the reductive subgroup constructed in [23], but this needs to be checked more

carefully. Note that this conjecture is not used outside of this subsection.

Conjecture 5.3.4. If G is a connected reductive k-group and θ is an involution defined over

k, then G contains a K-minisotropic maximal θ-split k-torus.

Assuming the conjecture is true, we can prove the following:

Lemma 5.3.5. Suppose f is finite. Then a θ-split torus T in G is an unramified θ-split torus

if and only if there exists a maximal θ-split k-torus T′ in G such that T is the maximal

K-split subtorus of T′.

Proof. Suppose T is the (θ,K)-split component of the center of a θ-split Levi (K, k)-subgroup

L. Then by the conjecture, there is a K-minisotropic maximal θ-split k-torus T′ in L. Then

T is the maximal K-split subtorus of T′.

Now suppose there exists a maximal θ-split k-torus T′ in G for which T is the maximal

K-split subtorus of T′. Then since T′ is defined over k, T is as well. Let L = CG(T). Then

by our previous lemma, we have that L is the unique minimal θ-split Levi (K, k)-subgroup

containing T′. We also have that T is contained in ZL, the θ-split component of the center

of L. Thus T = TK ≤ ZK
L . But then since T′ contains ZL and T is the maximal (θ,K)-split

subtorus of T′, we conclude that ZK
L is contained in T. Hence T = ZK

L , and so T is an

unramified torus in G.

Regardless of whether the conjecture holds, note that we have shown that the maximal

(θ,K)-split subtorus of a maximal θ-split k-torus in G must be an unramified θ-split torus.
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5.4 θ-split (K, k)-tori

Adjusting our notation from the previous section, we let Z = ZG denote the center of G,

and we let Z− and ZK− denote its θ-split component and (θ,K)-split component respectively.

We call a torus in G a θ-split (K, k)-torus in G if it is a (θ,K)-split k-torus that contains

ZK−. If we let TK denote the set of θ-split (K,K)-tori in G, then TK carries a natural

action of Gal(K/k), and we denote the set of points in TK fixed by Gal(K/k) by Tk. To

ease notation, we will also call the K-rational points S of a θ-split (K, k)-torus S a θ-split

(K, k)-torus.

Our goal for this subsection is to parameterize the H(k)-conjugacy classes in Tk. To begin,

we introduce indexing sets modeling those in [28] and [1]. For a θ-facet F in B(G) (i.e. a

non-empty subset of points in B(H) = B(G)θ which equals the set of θ-fixed points of some

facet F ′ of B(G)), we let Z−F denote the group corresponding to the image of GF ∩ ZK−(K)

in GF/G
+
F , where we write GF for the parahoric of the facet F ′ in B(G) containing F . Now

consider the indexing set

J := {(F, S)|F is a θ-facet in B(G) and S is a θ-split torus in GF which contains Z−F}.

Definition 5.4.1. We say that a (θ,K)-split torus S in TK is a lift of (F, S) ∈ J provided

that we have

1. F ⊂ B(CG(S))

2. the image of S ∩GF in GF = GF/G
+
F is S.

Now suppose that (F, S) ∈ J , and let Γ := Gal(K/k). Note that if Γ(F ) = F, then GF is

defined over the residue field f of k. In this situation, it makes sense to consider Γ(S), and so

we define JΓ to be the set of pairs (F, S) in J so that both F and S are Γ-stable.

Next, we say that a pair (F, S) ∈ JΓ is maximal if whenever a θ-facet F1 in B(G) is both

Γ-stable and contains F in its closure, then S belongs to the f-parabolic subgroup GF1/G
+
F of
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GF if and only if F = F1. We let JΓ
max denote the subset of maximal pairs in JΓ.

5.4.1 Lifts of Tori over f

Suppose (F, S) ∈ JΓ. Our first goal for this subsection is to show that there is an element

of Tk that lifts (F, S) and to show that any two such lifts are conjugate by an element of

(H+
F )Γ. (Recall from [28] that F is contained in a unique facet F2 in B(H). Thus we may

use HF and H+
F to denote the subgroups of H associated to F2.) We will then show that all

elements of Tk arise in this way.

First, recall that we defined a θ-perfect f-torus in a group defined over f to be a θ-stable

maximal f-torus which contains a maximal f-split torus, a maximal θ-split f-torus, and a

maximal (θ, k)-split f-torus.

Lemma 5.4.2. Set M = CGF (S), and let T denote a θ-perfect f-torus in M. Then there is a

θ-stable maximal unramified torus T in G which lifts (F,T). Moreover, for all such T lifting

(F,T) there exists a unique lift S ∈ Tk of (F, S) with the property that S ≤ T.

Proof. Such an unramified torus T exists by [28]. Now note that X∗(T) = X∗(T) as Γ-modules

and as θ-modules, and so we can choose a subtorus S of T corresponding to the image of

X∗(S) under the map X∗(S) ↪→ X∗(T) = X∗(T). Then S ∈ Tk, and since T ≤ CG(S), we have

F ⊆ B(T ) ⊆ B(CG(S)), giving us that S is a lift of (F, S) as required.

Now if S′ ∈ Tk is another lift of (F, S) that lies in T, then X∗(S
′) = X∗(S) = X∗(S) in

X∗(T), and so S′ = S.

Corollary 5.4.3. If S,S′ ∈ Tk both lift (F, S), then there exists an element h ∈ (H+
F )Γ so

that hS = S′

Proof. We reuse the notation from the proof of the preceding lemma.

Set M′ = CG(S′). Then note that F ⊂ B(M ′) by the definition of a lift, and we have that

the image of M ′ ∩ GF in GF is M = CGF (S). Now let T′ ≤ M′ be a θ-stable lift of (F,T).

Since S′ is in the center of M′, we have S′ ≤ T′, and since S′ (resp. T′) is a K-split torus
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lifting (F, S) (resp. (F,T)), we conclude from the preceding lemma that S′ is the unique lift

of (F, S) in T′. Then by [28], there is an h in (H+
F )Γ so that hT = T′. Our result then follows

from uniqueness in the preceding lemma.

Thanks to the preceding lemma and corollary, we can define an action of H(k) on JΓ
max.

Suppose h ∈ H(k) and (F, S) ∈ JΓ
max. Then if S is a lift of (F, S), let hS denote the image of

hS ∩GhF in GhF and set h(F, S) := (hF, hS) ∈ JΓ
max.

We now want to move in the opposite direction, showing that every element of Tk arises

as a lift from a pair in JΓ
max.

Lemma 5.4.4. For all S ∈ Tk there exists (F, S) ∈ JΓ
max so that S lifts (F, S).

Before proving the lemma, given a reductive k-subgroup C of G having the same K-rank

as G, we define a (θ, C)-facet to be a non-empty subset of B(G)θ which equals the set of

θ-fixed points of some C-facet in B(C) ⊆ B(G).

Proof. Fix S ∈ Tk, and let M = CG(S). Note that M is a Levi (K, k)-subgroup of G.

Choose a Γ-stable (θ,M)-facet F ′ in B(M) so that F ′ has maximal dimension among

θ-facets in B(M). Then since F ′ can be written as the disjoint union of (θ,G)-facets in B(G),

we may choose a Γ-stable (θ,G)-facet F in B(H) so that F ⊂ F ′ and dim(F Γ) ≥ dim(F̃ Γ) for

all Γ-stable (θ,G)-facets F̃ in F
′
. In fact, dim(F Γ) ≥ dim(F̃ Γ) for all Γ-stable (θ,G)-facets

F̃ in B(M). This is because every such facet is (M θ)Γ-conjugate to an element in the closure

of an alcove of B(M θ) = B(M)θ [30] containing F ′, and by [5, 9.2.5], the Γ-fixed points of

all (θ,G)-facets lying in the closure of this alcove which do not lie in the closure of another

(θ,G)-facet have the same dimension, which will be that of F Γ.

Now let S be the f-torus in GF corresponding to the image of S ∩ GF in GF . Then,

by our construction, we have that S is a lift of the pair (F, S). It remains to show that

(F, S) ∈ JΓ
max. Suppose that F ′′ ⊂ B(G) is a Γ-stable (θ,G)-facet with F ⊂ F

′′
and F 6= F ′′.

Then if S belongs to the proper parabolic f-subgroup GF ′′/G
+
F of GF = GF/G

+
F , then we

have that S ∩GF = S ∩GF′′ fixes F ′′ and (F ′′, S′) ∈ JΓ where S′ is the θ-split f-torus in GF ′′
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corresponding to the image of S ∩ GF ′′ in GF ′′ . By [9, 4.4.2], we then have that F ′′ is in

B(M), but the dimension of F ′′Γ is strictly larger than than of F Γ, contradicting the previous

paragraph.

5.4.2 An Equivalence Relation

Thanks to the results of the previous subsection, we have a well-defined surjective map

ϕ from JΓ
max to the set of HΓ-conjugacy classes in Tk. In this subsection, we introduce an

equivalence relation ∼ on JΓ
max so that ϕ descends to a bijection.

Suppose A is an apartment in B(H)Γ so that A = A(S, k) for some maximal k-split torus

S ≤ H. Note that any two such apartments are conjugate by an element h ∈ HΓ.

If Ω ⊂ A, then we denote the smallest affine subspace of A that contains Ω by A(A,Ω).

If F1, F2 are two (θ,GΓ)-facets in A for which ∅ 6= A(A, F1) = A(A, F2), then we say that F1

and F2 are equivalent. Note that if F ′i denotes the GΓ-facet containing Fi for i = 1, 2, and A′

is an apartment of B(G)Γ containing F ′1, F
′
2, then by [27] A(A, F1) = A(A, F2) if and only if

A(A′, F ′1) = A(A′, F ′2). Thus there is a natural identification of GF1 with GF2 as in [10], and

we write GF1 ≈ GF2 .

Now suppose (Fi, Si) ∈ JΓ. Then we write (F1, S1) ∼ (F2, S2) if there exists an element

h ∈ HΓ and an apartment A in B(H)Γ so that

1. ∅ 6= A(A, F Γ
1 ) = A(A, hF Γ

2 )

2. S1 ≈ hS2 in GF1 ≈ GhF2 .

Lemma 5.4.5. The relation ∼ is an equivalence relation on JΓ
max.

Proof. The proof is nearly identical to the one in [28] or [10].

5.4.3 A Bijective Correspondence

Suppose S ∈ Tk is a lift of (F, S) ∈ JΓ
max. Let M = CG(S), and note that by our definition

of a lift (Definition 5.4.1), we have that F ⊂ B(M).
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Lemma 5.4.6. Let C denote a Γ-stable (θ,M)-facet in B(M) that contains F in its closure.

Then CΓ is a maximal (θ,MΓ)-facet in B(M)Γ, and F Γ is an open subset of CΓ.

Proof. It will be enough to show that F Γ is a maximal (θ,GΓ)-facet in B(M)Γ. Now choose

a (θ,GΓ)-facet D ⊂ B(M)Γ so that F Γ ⊂ D. If F Γ 6= D, then as S is in the center of M,

the image of S ∩ GF = S ∩ GD in GF/G
+
F belongs to the parabolic f-subgroup GD/G

+
F ,

contradicting that (F, S) ∈ JΓ
max.

Lemma 5.4.7. Suppose (Fi, Si) ∈ JΓ
max with lifts Si ∈ Tk. Then if there exists h ∈ HΓ so

that hS1 = S2, then (F1, S1) ∼ (F2, S2).

Proof. Replacing (F1, S1) with (hF1,
h S1), we may and do assume that S := S1 = S2. Now

set M = CG(S). Then since S is a lift of (Fi, Si), we know from the definition of a lift that

Fi ⊂ B(M). Let Ci denote the (θ,M)-facet in B(M) to which Fi belongs. By the preceding

lemma, we have that CΓ
i is a maximal (θ,MΓ)-facet in B(MΓ), and so in particular, CΓ

i

must lie in an alcove C̃Γ
i of B(MΓ)θ for some M -facet C̃i in B(M)θ. Thus there exists an

m ∈ MΓ ∩ H so that mC̃1 = C̃2. Replacing (F1, S1) by (mF1,
m S1), then since F Γ

1 and

F Γ
2 are open in CΓ

1 and CΓ
2 , and hence also open in C̃Γ

1 = C̃Γ
2 , for any apartment A in

B(MΓ)θ ⊂ B(H)Γ containing C̃Γ
1 we have ∅ 6= A(A, F Γ

1 ) = A(A, F Γ
2 ). Then since mS = S, we

see that (F1, S1) ∼ (F2, S2).

Corollary 5.4.8. There exists a bijection between JΓ
max/ ∼ and the set of HΓ-conjugacy

classes in Tk.

Proof. The only thing we still need to check is that if (F1, S1), (F2, S2) ∈ JΓ
max with (F1, S1) ∼

(F2, S2), then they have lifts that are HΓ-conjugate. Suppose we have such (F1, S1) and

(F2, S2) with (F1, S1) ∼ (F2, S2). Then there is some element h ∈ HΓ and an apartment A in

B(H)Γ so that

• ∅ 6= A(A, F Γ
1 ) = A(A, hF Γ

2 )

• S1 ≈ hS2 in GF1 ≈ GhF2
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We may and do assume that h is the identity and that A ⊂ A′(A)Γ, where A′(A) is an

apartment in B(G) for some maximal k-split torus A of G.

Let Mi denote the Levi (k, k)-subgroup of G corresponding to the G-facet F ′i containing

the (θ,G)-facet Fi. Since A(A′, (F ′1)Γ) = A(A′, (F ′2)Γ) by our earlier remark, we have that

M1 = M2, so we can set M = M1. By construction, the image of M ∩GFi in GFi is GFi itself.

Now since S1 ≈ S2 in GF1 ≈ GF2 , we can find a θ-stable (K, k)-torus T so that the image

of T ∩MF1 ∩MF2 in MFi = GFi is a θ-perfect f-torus in CGFi
(Si). But by Lemma 5.4.2, there

is exactly one lift S of (Fi, Si) in T. Then the image of S ∩M in MFi = GFi is Si, and so the

proof is complete.

5.4.4 θ-split (K, k)-tori and Extendable Levi (k, k)-subgroups

If M′ is a Levi (k, k)-subgroup of G, then we let (M′) denote the HΓ-conjugacy class of M′.

For two conjugacy classes (M1) and (M2), we write (M1) ≤ (M2) if there exists Li ∈ (Mi)

so that L1 ≤ L2. If a Levi (k, k)-subgroup M is θ-stable, we say that it is extendable if

M = CG((T+)k) for some k-torus T+ so that (T+)k ≤ H. As the minimal θ-stable parabolic

k-subgroups in G have a Levi component equal to the centralizer of a maximal k-split torus

in H by [18], the extendable Levi (k, k)-subgroups should correspond to the Levi subgroups

arising as Levi component of a θ-stable parabolic k-subgroup, hence the term extendable.

Given a θ-facet F in B(H), we let FM denote the Levi k-subgroup of G associated to the

facet F ′ in B(G) containing F .

Lemma 5.4.9. Fix (F, S) ∈ JΓ
max, and let S ∈ Tk be a lift of (F, S). Then there exists a

θ-stable (H+
F )Γ-conjugate M′ of FM so that S ≤ M′ and so that every extendable Levi

(k, k)-subgroup M′′ containing S, satisfies (M′) ≤ (M′′).

Proof. Let M = CG(S). Then from the previous section, we have that F Γ is a maximal

(θ,GΓ)-facet in B(M)Γ and hence contained in an (M ∩ H)Γ-alcove. Choose a θ-perfect

k-torus T in CGF (S). Then there is a θ-stable lift T of T containing S, and if C denotes

the f-split component of the center of GF , there is a unique k-torus CF which lifts CZF and
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which is contained in both T and the center of M by [1]. We know then that M′ = CG(CF )

is θ-stable since CF is θ-stable by uniqueness, and our previous result tells us that it is

(H+
F )Γ-conjugate to FM since the central tori are θ-stable and have the same image in GF .

Note that M′ contains S.

Now suppose that M′′ = CG((A+)k) is an extendable θ-stable Levi (k, k)-subgroup which

contains S, where A+ is a k-torus in H. (Recall that (A+)k denotes the maximal k-split torus

contained in A+.) Then since (A+)k commutes with S, we have that (A+)k ≤M. Choose a

maximally k-split maximal (K, k)-torus T′ in M ∩H that contains (A+)k. Then since F Γ is

contained in an (M ∩H)Γ-alcove, after replacing T′ and M′′ with a (M ∩H)(k)-conjugate

we may assume that F Γ ⊂ B(T ′)Γ ⊂ B(M θ)Γ. Since F Γ is a maximal (θ,GΓ)-facet in B(M)θ,

we see that the image of (T′)k in GF is contained in C. After potentially replacing T′ by an

(H+
F )Γ-conjugate, we then have that (A+)k ≤ (T′)k ≤ CF . We then have that M′ ≤M′′, and

so we are done.

5.5 A Parameterization of Unramified θ-split Tori

In this section we seek to parameterize the unramified θ-split tori, those θ-split k-tori S

in G for which S is the (θ,K)-split component of the the center of CG(S). In the case of

maximal unramified θ-split tori, we have a parameterization by Portilla. In this case, there is

a bijective correspondence between the set of HΓ-conjugacy classes of maximal unramified

θ-split tori in G and equivalence classes of pairs (F, S), where F is a θ-facet in B(Gθ)Fr and S

is a maximal θ-elliptic θ-stable f-torus in GF , where we recall from [28] that a θ-stable torus

in said to be θ-elliptic if (T+)f = (Z+
GF

)f. (Note that there is another notion of a θ-elliptic

f-torus appearing in the work of Murnaghan, where it is defined to be a f-torus T so that

(T−)f = (Z−GF )f.)

A general unramified θ-split torus will arise as a lift of one of the pairs (F, S) from the

previous section, where F is a θ-facet in B(Gθ)Fr and S is a θ-split f-torus in GF . However,
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not all of the θ-split (K, k)-tori from the previous section are unramified θ-split tori, and so

we need to refine this parameterization.

We fix an H-alcove C in B(H) lying in the apartment of a maximally k-split maximal

unramified k-torus A of H, which in turn lies inside of a maximally k-split maximal unramified

k-torus A′ of CG(A). Then CΓ is a union of θ-facets in B(Gθ)Γ, and for each such θ-facet

F such that a pair (F,AF ) arises in our parameterization from the previous section, we fix

a maximally k-split maximal θ-split f-torus AF in GF and a θ-perfect torus A′F containing

AF so that if for two θ-facets F and F ′, there is an h ∈ HΓ so that F and hF ′ are strongly

associated, then AF is identified with AF ′ and A′F with A′F ′ under the identification of GF

with GF ′ .

By taking lifts of each of the AF above we find a family of θ-split tori AF and maximally

k-split θ-stable maximal unramified tori A′F in G containing them. By [17], the set of roots

in G of each of the A′F has a θ-basis, which we denote by ∆F .

5.5.1 An Indexing Set over f

Given A′F as above, we set Π(G, F ) to be the set of all θ-admissible subsets of θ-bases

of the roots of A′F in G. Recall that we may and do identify Π(G, F ) with the subsets of

simple systems for the roots of AF in G. Recall that we identified Fr with a topological

generator for Γ. Set

Iθ,F = {(π,w)|π ∈ Π(G, F ), w ∈ Wθ,c(π),F , and Fr(Φπ) = wΦπ},

where Φπ denotes the root system spanned by π and Wθ,c(π),F = NH◦(AF )/((CH◦((AF )π))◦ ∩

CH◦(AF )).

Modeling [1], if F is θ-facet contained in the facet F ′ in B(G), we let Φ(F ) denote the

set of gradients of the affine roots of A′ in G whose restriction to F ′ is constant, and we let

A′(F ) =
(⋂

α∈Φ(F ) ker(α)
)◦
. Recall that FM = CG(A′(F )) and that the image of A′(F )∩GF
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in GF is the group of F-points of the f-split component of the center of GF ∼= FMF .

For a θ-admissible subset π of roots of A′F , we define

(Wθ,c(π))F := NHF (AF )/((CHF ((AF )π))◦ ∩ CHF (AF )),

where (AF )π is the image of (AF )π in GF . Note that we can and do identify (Wθ,c(π))F with a

subgroup of Wθ,c(π),F .

We now define

I(F ) := {(π,w) ∈ Iθ,F |w ∈ (Wθ,c(π))F ≤ Wθ,c(π),F}.

For (θ′, w′) and (θ, w) in I(F ), we write (θ′, w′) ∼F (θ, w) if there exists n ∈ NHF (AF ) so

that Φπ′ = nΦπ and Fr(n)wn−1 ∈ w′((Wθ,c(π′))F ∩Wθ,c(π′)(π
′)), where Wθ,c(π′)(π

′) denotes the

subgroup of Wθ,c(π′) whose image in the little Weyl group under the natural projection lies

in the parabolic subgroup corresponding to π′. One checks that ∼F defines an equivalence

relation.

We will say that (θ, w) ∈ I(F ) is F -elliptic provided that for all θ-facets F ′ in C so

that F ⊆ F
′
, for all (θ′, w′) ∈ I(F ) with (θ′, w′) ∼F (θ, w), and for all hF ′ ∈ HΓ

F so that

(AF )θ′ ⊆ hF ′AF ′ , we have that h−1
F ′ w′ does not have a representative in HF ′ . We set Ie(F ) to

be the set of pairs in I(F ) which are F -elliptic.

Lemma 5.5.1. Suppose (π,w) ∈ I(F ). Then we can choose h ∈ HF so that the image of

n = Fr(h)−1h ∈ NHF (AF ) in (Wθ,c(π))F is w.

Proof. Choose h ∈ HF so that the image of Fr(h)−1h in (Wθ,c(π))F is w, which we can do by

Lang’s theorem applied to HF . Note that S = hAF is a maximal θ-split f-torus in GF by our

choice of AF . Now let S be a lift of (F, S). Then since S is a maximal unramified θ-split torus

with F ⊂ A(S), there exists an element x ∈ HF so that xAF = S. Let x denote the image of

x in HF . Then since S = xAF , the image of Fr(x)−1x in (Wθ,c(π))F is of the form Fr(w′)−1ww′
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for some w′ in (Wθ,c(π))F . Then let n′ ∈ NHF (AF ) be a lift of w′, and set h = xn′.

5.5.2 Relevant θ-split Tori over f

Suppose (F, S) ∈ JFr, and let S be a lift of (F, S). Then we will say that S is relevant in

GF provided that S is the (θ,K)-split component of the center of CG(S). Let R(F ) denote

the set of relevant θ-split tori in GF . Fix ι = (π,w) ∈ I(F ). Then thanks to Lemma 5.5.1,

we can fix h ∈ HF so that the image of n = Fr(h)−1h ∈ NHF (AF ) in (Wθ,c(π))F is w. Let h

denote the image of h in HF , and let

(AF )π =

(⋂
α∈π

ker(α)|AF

)◦
≤ AF .

Set Sι = h(AF )π and Sι = h(AF )π. Then Sι is a lift of (F, Sι). Set Lι = CGF (Sι) and

Lι = CG(Sι). Then note that Φπ = h−1
Φ(Lι,

hA′F ), and note that since Sι is the (θ,K)-split

component of the center of Lι, Sι is relevant.

Lemma 5.5.2. The map that sends ι ∈ I(F ) to the HΓ
F -conjugacy class of Sι is well-defined.

Proof. We first show that the the HΓ
F -conjugacy class of Sι is independent of the choice of

h above. Suppose h′ ∈ HF so that the image of Fr(h′)−1h′ ∈ NHF (AF ) in (Wθ,c(π))F is also

w and let h
′

denote the image of h′ in HF . Let S′ι = h
′
(AF )π and S′ι = h′(AF )π. Then S′ι is

a lift of (F, S′ι), and since Fr(h′)−1h′ and Fr(h)−1h have image w in (Wθ,c(π))F , there exists

s′ ∈ (CHF ((AF )π))◦ ∩ CHF (AF ) so that Fr(h′)−1h′s′ = Fr(h)−1h. Let x = h′h−1 ∈ HF . Then

for all t ∈ Sι we have

Fr(xt) = Fr(h′)Fr(h−1)Fr(t) = h′h−1

(
hs′Fr(t)) = xFr(t).

Hence Int(x) and Int(Fr(x)) both carry SFr
ι to S ′Fr

ι , hence they carry Sι to S′ι. Moreover,

Fr(x)−1x ∈ (CHF (Sι))
◦. Then since we know that H1(Fr, (CHF (Sι)

◦) = 1, we know there

exists l ∈ (CHF (Sι))
◦ so that Fr(x)−1x = Fr(l)−1l modulo H+

F . Thus y, the image of xl−1 in
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HF , belongs to HFr
F , and we have that that Sι and S′ι are HΓ

F -conjugate by y.

If S′ι isHΓ-conjugate to Sι, say by h1 ∈ HΓ, then S′ι = h1h(AF )π. Then since Fr(h1h)−1h1h =

Fr(h)−1h, the map is independent of our choice of lift, and so we have a well-defined map

from I(F ) to the set of HFr
F -conjugacy classes in R(F ).

Lemma 5.5.3. The map that sends ι ∈ I(F ) to the HFr
F -conjugacy class of Sι descends to a

bijective map from I(F )/ ∼F to the set of HFr
F -conjugacy classes in R(F ).

Proof. We first show that the map is injective. Suppose ιi = (πi, wi) ∈ I(F ) and hi ∈ HF so

that image of Fr(hi)
−1hi in (Wθ,c(π))F is wi. Set Si = hi(AF )πi and Si = hi(AF )πi , where hi

is the image of hi in HF . Note that Si is a lift of (F, Si). Now suppose there exists h ∈ HFr
F

so that S1 = hS2. Then by the previous section, there exists a lift h ∈ HFr
F of h for which

S1 = hS2. Without loss of generality replace h2 by hh2 so that S1 = S2 and S1 = S2. Let

L1 = CGF (S1), and let L1 = CG(S1). Then there exists l ∈ (L1 ∩HF )◦ for which h2AF = lh1AF .

Then there is a lift l ∈ (L1 ∩HF ) of l so that h2AF = lh1AF . Choose m ∈ NH(AF ) for which

lh1 = h2m, and note that m = h−1
2 lh1 ∈ HF . Let Mπi = CG((AF )πi). Then we have

Φπ1 = Φ(Mπ1 ,AF )

= h−1
1 Φ(L1,

h1AF ) = h−1
1 l−1Φ(L1,

lh1AF ) = h−1
1 l−1Φ(L1,

h2AF )

= h−1
1 l−1h2Φ(Mπ2 ,AF ) = m−1Φ(Mπ2 ,AF ) = Φ(Mm−1π2

,AF )

= m−1Φπ2

so that mΦπ1 = Φπ2 .

Since the image of h
−1

(Fr(l)−1l) ∈ NHF (AF ) in Wθ,c(π1) belongs to the parabolic subgroup

Wθ,c(π1)(π1), we then have that

Fr(m)−1w2m = Fr(lh1)−1lh1((CHF ((AF )π))◦ ∩ CHF (AF ))
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= w1h
−1
1 (Fr(l)−1l)h1((CHF ((AF )π))◦ ∩ CHF (AF )) ∈ w1Wθ,c(π1)(π1).

Since the representatives are all in HF , we have that Fr(m)−1w2m is in (Wθ,c(π))F , and so we

conclude that ι1 ∼F ι2.

We now show that the map is surjective. Suppose T ≤ GF belongs to R(F ). Let T′

be a maximal θ-stable f-torus in GF that contains T and has the largest possible (θ, f)-

split rank among θ-stable tori in GF that contain T. Then T’ contains the center of GF

and there exist lifts T of (F,T) and T′ of (F,T′) such that L = CG(T) is a θ-split Levi

(K, k)-subgroup, T is the (θ,K)-split component of the center of L, and T ≤ T′ ≤ L. Let

BL ≤ L be a Borel K-subgroup of L contained in a minimal θ-split parabolic K-subgroup of

L which contains T′. Since T′ is a lift of (F,T′), there is a h ∈ HF so that hA′F = T′. Let

π = h−1∆(L,BL,T
′) ∈ Π(G, F ). Let w denote the image of Fr(h)−1h in (Wθ,c(π))F . Then

the pair (π,w) belongs to I(F ) and corresponds to T.

5.5.3 Parameterizing HFr-Conjugacy Classes of Unramified θ-split Tori in G

Define

Iun = {(F, π, w) : F ⊆ A(A)Fr is a (GFr, θ)-facet and (π,w) ∈ I(F )}

and let U denote the set of HFr-conjugacy classes of unramified θ-split tori in G. Then by

the previous subsections, we can define a function j : Iun → U as follows. For (F, π, w) ∈ Iun,

let S ∈ R(F ) be a relevant torus associated to (π,w) and let j(F, π, w) be the HFr-conjugacy

class of any lift of (F, S).

For (F ′, π′, w′), (F, π, w) ∈ Iun we write (F ′, π′, w′) ∼ (F, π, w) provided that there ex-

ists an element n ∈ (W̃ (H, A))Fr, where W̃ (H, A) is defined to be the affine Weyl group

NH(A)/(CH(A) ∩HF ) of A in H, for which A(A(A)Fr, F ′) = A(A(A)Fr, nF ) and with the

identifications of GF ′ = GnF and X∗(AF ′) = X∗(AnF ) = X∗(AF ) arising in this way, we have

that (π′, w′) ∼F ′ (nπ, nw) in I(F ′) = I(nF ). One check that this defines an equivalence
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relation on Iun.

We say that (F, π, w) ∈ Iun is elliptic provided that (π,w) ∈ Ie(F ), and we set Ieun to be

the set of elliptic triples (F, π, w) in Iun.

Theorem 5.5.4. The map j induces a bijection from Ieun/ ∼ to U .

Proof. We first show that j is surjective. Let S be an unramified θ-split torus in G. Let

L denote the centralizer of S and let F be a maximal (θ,GFr)-facet in B(Lθ)Fr ⊆ B(Gθ)Fr.

Choose a maximally (θ,K)-split maximal unramified torus S′ of L that contains S so that

F ⊂ B(S ′). Also fix a minimal θ-split parabolic K-subgroup PL of L that contains S′ and a

Borel K-subgroup BL contained in PL. Choose h ∈ HFr so that hF ⊂ A(A)Fr. Then after

replacing S with hS, we may assume that F ⊂ A(A)Fr.

Let S denote the θ-split f-torus in GF whose group of f-rational points coincides with

the image of S ∩ GF in GF . Then there exists an h ∈ HF so that S′ = hA′F . Let π =

h−1∆(L,BL,S
′) ∈ Π(G, F ), and let w denote the image of Fr(h)−1h in (Wθ,c(π))F . Then note

that S belongs to j(F, π, w).

To conclude our proof of surjectivity, we need to show that the triple (F, π, w) is elliptic.

If it is not elliptic, then there exists (π′, w′) ∈ I(F ) with (π,w) ∼F (π′, w′), an element

hF ′ ∈ HF , and a (θ,GFr)-facet F ′ with F ⊂ F so that h−1
F ′ w′ has a representative in HF ′

and (AF )π′ ⊆ hF ′AF ′ . Then there exists h ∈ H̃ := hF ′HF ′ ⊂ HF so that Fr(h)−1h lies in

NH̃(AF ) and has image w′ in (Wθ,c(π))F . Note that hhF ′F
′ is a facet in B(hhF ′A′F ′), and since

(π,w) ∼F (π′, w′), from the preceding lemma we have that hhF ′ (AF ′)h−1
F ′ π

′ = h(AF )π′ = xS for

some x ∈ HΓ. Note that then x−1hhF ′A′F ′ ≤ L, and so x−1hhF ′F
′ ⊂ B(x

−1hhF ′A′F ′)
Fr ⊆ B(L)Fr,

contradicting the maximality of F.

It remains to show that if (Fi, πi, wi) for i ∈ {1, 2} are two elements of Iθun with

j(F1, π1, w1) = j(F2, π2, w2), then (F1, π1, w1) ∼ (F2, π2, w2). Choose Si ∈ R(Fi) corre-

sponding to (πi, wi) ∈ Ie(Fi) and let Si be a lift of (Fi, Si). Note that (Fi, Si) ∈ JΓ
max. Since

j(F1, π1, w1) = j(F2, π2, w2), we conclude that S1 is HFr-conjugate to S2. Thus we know that

there exists h ∈ HFr and an apartment A′ in B(Gθ)Fr so that ∅ 6= A(A′, F1) = A(A′, hF2)
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and S1 = hS2 in GF1 = GhF2 by Corollary 5.4.8. After conjugating by an element of HFr
F1
, we

may assume that A′ = A(A). By the affine Bruhat decomposition for H, we may choose

n ∈ NH(k)(A) so that n−1h ∈ HFr
F2
. Then there exists x ∈ HFr

F2
such that after replacing

S2 by xS2 we may assume A(A(A)Fr, F1) = A(A(A)Fr, nF2) and S1 = nS2 in GF1 = GnF2 .

Identifying n with its image in the affine Weyl group W̃ (H,A) of A in H, we then have that

(π1, w1) ∼F (nπ2,
nw2) in I(F1) = I(nF2).
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CHAPTER VI

Unramified θ-perfect Tori

While the previous section provides a serviceable analogue of the results in [1], working

with unramified θ-split tori alone does not allow us to show how the H(K)-conjugacy class of

a maximal θ-split k-torus splits into H(k)-conjugacy classes. In this section, we will provide

a very similar parameterization of the H(k)-conjugacy classes of a class of θ-stable tori called

unramified θ-perfect tori, which are unramified tori in the sense of [1] which are contained in

a H-conjugate of a θ-perfect torus in the sense of the previous section. Using these tori, we

will be able to show how an H(K)-conjugacy class splits into H(k)-conjugacy classes in a

future paper.

6.1 Results for Finite Groups of Lie Type

In this subsection, we will look at the analogous problem for finite groups of Lie type.

Recall that a θ-stable maximal f-torus in G is called θ-perfect if it contains a maximal

f-torus, a maximal θ-split f-torus, and a maximal (θ, k)-split f-torus. We say that a reductive

subgroup L of G is a θ-perfect twisted Levi f-subgroup of G if

1. L is defined over f,

2. there exists a parabolic F-subgroup of G for which L is the associated Levi factor,
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3. and the center of L is a θ-stable subtorus of an H-conjugate of a θ-perfect torus of G

(or, equivalently, a θ-stable maximal f-torus containing a maximal θ-split f-torus.

We let Lper denote the set of θ-perfect twisted Levi f-subgroups of G.

If S is a θ-stable subtorus of an H-conjugate of a θ-perfect torus of G, then we say that it

is a θ-perfect Levi torus if it equals the connected component of the center of CG(S). Now

if L is a θ-perfect twisted Levi f-subgroup, let SL denote the the connected component of

the center of L, which by definition is contained in a θ-perfect torus of G. Then we have

L = CG(SL), and this gives a bijective correspondence between the set of θ-perfect Levi tori

in G and the set of θ-perfect twisted Levi f-subgroups in G. This means that understanding

Lper up to H(f)-conjugacy is equivalent to understanding the set of θ-perfect Levi tori in G

up to H(f)-conjugacy.

Now let Lper/ ∼H denote the set of H(f)-conjugacy classes in Lper. Fix a θ-perfect f-torus

T, and let ∆ denote a θ-basis for the roots of T as in the previous section. Then if π is a

subset of ∆ whose span is θ-stable, we let W ′
θ,c(π) = NH◦(T)/((CH(Tπ))◦ ∩ CH◦(T)). Note the

W ′
θ,c(π) acts on the set of such π by considering the action which arises from projecting to the

usual Weyl group of T. Let Iper denote the set of pairs (π,w), where π is a subset of a fixed

θ-basis ∆ for the roots of T and w ∈ W ′
θ,c(π) so that

1. the span of π is θ-stable and

2. wπ = Fr(π).

For (π′, w′) and (π,w) in Iper, we write (π′, w′) ∼ (π,w) if there exists an element n′ in NH(T)

so that θ = n′θ′ and w = Fr(n′)w′(n′)−1. One checks that this gives a well-defined equivalence

relation on the set Iper.

Lemma 6.1.1. There is a natural bijective correspondence between Iper/ ∼ and Lper/ ∼H.

Proof. We begin by defining a map ϕ : Iper → Lper/ ∼H . To do this, first suppose that we

have a pair (π,w) ∈ Iper. Then applying Lang-Steinberg to H◦, we can choose an element
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h ∈ H◦ so that the image of Fr(h−1)h in W ′
θ,c(π) is w. Then we set nh = Fr(h−1)h ∈ NH◦(T),

and we let Tπ := (
⋂
α∈π

(ker(α)))◦. Let Mπ = CG(Tπ). Then since Fr(π) = wπ, we have

Fr(hMπ) = Fr(h)Fr(Mπ) = hn−1
h (MFr(π)) = h(n

−1
h (Mwπ)) = hMπ.

Furthermore, since the span of π is θ-stable, we have that the center hTπ of hMπ is a θ-stable

subtorus of a θ-perfect torus of G. Thus hMπ is the center of a θ-perfect twisted Levi

f-subgroup.

In order to show that we have a well-defined map, we need to show that a different choice

of h results in a θ-perfect twisted Levi f-subgroup which is H(f)-conjugate to hMπ. Suppose

that h′ ∈ H◦ is chosen so that nh′ := Fr(h′)−1h′ also has image w in W ′
θ,c(π). Then we can

choose s ∈ (CH(Tπ))◦ ∩ CH◦(T) so that nh′ = nhs. Then we have Fr(h′h−1)−1h′h−1 = hs ∈
h((CH(Tπ))◦ ∩CH◦(T)), and applying Lang-Steinberg to h((CH(Tπ))◦), we can find an element

s′ ∈h ((CH(Tπ))◦) ⊆ hMπ so that

Fr(h′h−1)−1h′h−1 = Fr(s′)−1s′.

Thus s′h(h′)−1 = Fr(s′h(h′)−1), meaning that s′h(h′)−1 ∈ H(f), and we have

hMπ = s′hMπ = (s′h(h′)−1)h′Mπ.

Thus we have that h′Mπ is H(f)-conjugate to hMπ, and so φ is well-defined.

We now show that ϕ descends to an injective map from Iper/ ∼ to Lper/ ∼H, which

we will also call ϕ. To do this, suppose that (π,w) and (π′, w′) are in Iper, and choose

h and h′ in H◦ so that the images of nh and nh′ in W ′
θ,c(π) are w and w′ respectively. If

ϕ(π,w) = ϕ(π′, w′), then we know that there is k ∈ H(f) so that hMπ = kh′Mπ′ . Replacing h′

with kh′, we may then assume without loss of generality that hMπ = h′Mπ′ . We then have

that both hT and h′T are maximal θ-perfect f-tori in hMπ, and so there exists some m′ = hm
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with m in (CH(Tπ))◦ so that m′h′T = hT and m′h′(B ∩ Mπ′) = h(B ∩ Mπ), where B is the

Borel subgroup of G corresponding to our fixed θ-basis ∆ for the roots of T. Since h′T and

hT are both defined over f, we also see that Fr(m′)(h
′
T) = hT, and so we can conclude that

m′Fr(m′)−1 ∈ Nh(CH(Tπ))◦(
hT). This then implies that n−1

h Fr(m)nhm
−1 ∈ N(CH(Tπ))◦(T). We

now set n = mh−1h′ ∈ NH(T) and note that nπ′ = π. We also have

Fr(n)(nh′)n
−1 = Fr(mh−1h′)Fr(h′)−1h′(mh−1h′)−1 = Fr(m)(nh)m

−1 = nh(n
−1
h Fr(m)(nh)m

−1).

Looking at images in the Weyl group W of T in G, we see that the image of Fr(n)(w′)n−1 is

equal to the image of w times an element of the parabolic subgroup Wπ of W associated to

π, which we call x and equals the image of n−1
h Fr(m)nhm

−1 in W . Note that

xπ = w−1Fr(n)w′n−1π = w−1Fr(n)w′π′ = w−1Fr(n)Fr(π′) = w−1Fr(π) = π.

But since the action of Wπ on the set of simple systems for the root system spanned by π

is simply transitive, we must have that x = 1 in W , meaning that n−1
h Fr(m)nhm

−1 lies in

CH(T). Thus we have shown that n−1
h Fr(m)(nh)m

−1 lies in (CH(Tπ))◦ ∩ CH(T), and so its

image in W ′
θ,c(π) is trivial. Consequently, we have shown that (π,w) ∼ (π′, w′) so that the

map is injective as claimed.

Finally, we show that the map φ is surjective. To do so, suppose that L ∈ Lper, and let AL

denote the connected component of the center of L. Choose a θ-perfect torus TL in L, and let

BL be a Borel f-subgroup in L containing TL and corresponding to a θ-basis ∆L for the roots of

TL. Now choose an h ∈ H◦ so that TL = hT. and BL ≤ hB. Define πL = h−1 ·∆L, and note that

πL ⊂ ∆. Let wL denote the image of Fr(h−1)h in W ′
θ,c(π) and put TπL = (

⋂
α∈πL

(ker(α)))◦ ≤ T.

Then we have that AL = hTπL and Fr(πL) = wLπL, which shows that ϕ(πL, wL) gives the

H(f)-conjugacy class of L.
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6.2 Some Notation and a Counterexample

Fix a Galois extension E of k. We call a subgroup M of G a θ-perfect Levi (E,k)-subgroup

if it is a θ-stable k-subgroup so that M is the Levi factor of a parabolic E-subgroup of G and

if M contains an H-conjugate of a θ-perfect torus of G. The latter condition is equivalent to

the identity component of the center of M being contained in an H-conjugate of a θ-perfect

torus of G. (Note that the H-conjugates of a θ-perfect torus of G are precisely the θ-stable

maximal tori in G which contain a maximal θ-split torus. This is because all maximal θ-split

tori are H-conjugate and because the derived subgroup of the centralizer of a maximal θ-split

torus is in H◦ by [18].) Recall that if E is a tame Galois extension of k and M is the group

of K-rational points of a Levi (E, k)-subgroup of G, then we can and do identify B(M)

with a subset of B(G), noting that there is no canonical way to do this but that all such

identifications have the same image. As in Section 5.3, given a k-torus S of G, we let SE

denote the maximal E-split subtorus in G.

When E is the maximal unramified extension K of k, we adopt the following language.

First, we say that a subgroup L of G is an unramified θ-perfect twisted Levi subgroup provided

that L is a θ-perfect Levi (K, k)-subgroup of G. In addition, we say that a k-torus S is

an unramified θ-perfect torus in G provided that S is the maximal K-split subtorus of the

identity component of the center of an unramified θ-perfect twisted Levi subgroup of G.

Note that a θ-perfect Levi (E, k)-subgroup is also a Levi (E, k)-subgroup in the sense of

[1], and so we can carry over results from section 3 there. In particular, we know that if L is

an unramified θ-perfect twisted Levi subgroup in G and S is the maximal K-split subtorus

of the identity component of the center of L, then we know that L = CG(S). This gives

a bijective correspondence between the unramified θ-perfect twisted Levi subgroups of G

and the unramfied θ-perfect tori in G, and we have that two unramified θ-perfect twisted

Levi subgroups are H(k)-conjugate if and only if the corresponding unramified θ-perfect tori

are H(k)-conjugate. Consequently, parameterizing the H(k)-conjugacy classes of unramified

θ-perfect twisted Levi subgroups in G is equivalent to parameterizing the H(k)-conjugacy
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calsses of unramified θ-perfect tori in G.

It is natural to ask whether the conjecture from Section 5.3 and the lemma following it

have analogues for θ-perfect tori. In particular, one asks:

1. Does G contain a H-conjugate of a θ-perfect torus which is K-minisotropic?

2. Is a K-split torus T contained in an H-conjugate of a θ-perfect torus unramified if and

only if there exists an H-conjugate T′ of a θ-perfect k-torus so that T is the maximal

K-split subtorus of T′.

The answer to both of these questions is no, as the following example illustrates. Let

G = SL3 defined over, as always, a finite extension k of the p-adic numbers Qp with p 6= 2,

and let θ be the involution given by conjugating by the matrix


1 0 0

0 1 0

0 0 −1


Then the H(k)-conjugacy classes of θ-split k-tori with respect to this involution can be

directly computed. In particular, for each x ∈ {1, ε,$, ε$}, where we fix ε ∈ o× \ (o×)2, there

is an H(k)-conjugacy class which has a representative torus Tx consisting of matrices of the

form 
1 0 0

0 a b

0 xb a

 .

The centralizers of these θ-split tori consist of matrices having the form


c 0 0

0 a b

0 xb a

 ,
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and as these centralizers are tori, we have that they are representatives for the H(k)-conjugacy

classes of the maximal k-tori which are H-conjugate to a θ-perfect torus. (The θ-perfect

tori correspond to the class where x = 1, and the other H(k)-conjugacy class of maximal

unramifed θ-perfect tori is the class where x = ε.) But notice that the intersection of each

representative with the diagonal torus in SL3 gives us a k-split torus of rank 1, and so none

of the H-conjugates of a θ-perfect torus are K-minisotropic. Furthermore, the trivial torus is

K-split and clearly contained in a θ-perfect torus, yet it is not the maximal K-split subtorus

of any H-conjugate of a θ-perfect torus, as each such torus contains a k-split torus of rank 1.

Thus we have shown that the answer to both of our questions is no.

6.3 θ-perfect (K, k)-tori

We call a torus in G a θ-perfect (K, k)-torus if it is a θ-stable K-split k-torus which

contains ZK
G := ZK and is contained in a H-conjugate of a θ-perfect torus. We let TK,per

denote the set of θ-perfect (K,K)-tori in G, then we have that TK,per carries a natural action

of Gal(K/k), and we denote the set of points in TK,per fixed by Gal(K/k) by Tk,per. To ease

notation, we will also call the K-rational points T of a θ-perfect (K, k)-torus T a θ-perfect

(K, k)-torus.

Our goal for this subsection is to parameterize the H(k)-conjugacy classes in Tk,per. To

begin, as in the previous section we introduce our indexing sets. For a θ-facet F in B(G), we

let ZF denote the group corresponding to the image of (GF ∩ZK) in GF/G
+
F , where as in the

previous section we write GF for the parahoric of the facet F ′ in B(G) containing F. Now we

define the indexing set Jper to be the set of pairs (F,T) so that F is a θ-facet in B(G) and T

is a subtorus of an HF -conjugate of a θ-perfect torus in GF containing ZF .

We say that a (K,K)-torus T (in the sense of [1]) is a lift of (F,T) provided that we have

1. T is θ-stable

2. F ⊂ B(CG(T ))
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3. the image of T ∩GF in GF = GF/G
+
F is T.

Now suppose that (F,T) ∈ Jper, and let Γ := Gal (K/k). If Γ(F ) = F , then GF is defined

over the residue field f of k, and so it makes sense to consider Γ(T). We then define JΓ
per to

be the set of pairs (F,T) in Jper so that both F and T are Γ-stable.

Next, we say that a pair (F,T) in JΓ
per is maximal if whenever a θ-facet F1 in B(G) is

Γ-stable and contains F in its closure, then T belongs to the f-parabolic subgroup GF1/G
+
F

of GF if and only if F = F1. We let JΓ
m,per denote the subset of maximal pairs in JΓ

per.

6.3.1 Lifts of Tori over f

Suppose that (F,T) ∈ JΓ
per. Our first goal for this subsection is to show that there is

a (K, k)-torus which lifts (F,T) and to show that any two such lifts are conjugate by an

element of (H+
F )Γ. We will then show that all elements of Tk,per arise in this way.

The proofs here are almost identical to the ones in 5.4.1 from the previous chapter, the

main difference being the tori T which show up in the pairs (F,T) in JΓ
per. In particular, a

torus T in GF may not be θ-split. For example, letting G be SL3 as in our example from 6.2,

one may take a special vertex x in the apartment of the diagonal torus, and then take the

torus T in Gx consisting of diagonal matrices of the form diag(c, a, a). Then T is contained

in a θ-perfect torus in Gx, meaning that (x,T) ∈ JΓ
per, but T is certainly not θ-split. On the

other hand, the torus S in a pair (F, S) ∈ JΓ from the previous section may not contain all of

ZF . For example, if one lets G be the direct product of our SL3 example from 6.2 with a

non-trivial k-split torus Tk on which θ is defined to act trivially, then the maximal θ-split

tori in the product SL3 ×Tk are the product of maximal θ-split tori in SL3 with the trivial

subtorus and hence do not contain the center of the direct product. Consequently, the pairs

(F, S) in JΓ associated to the direct product G will not contain the center of the associated

reductive quotient GF and hence will not be in JΓ
per.

Lemma 6.3.1. Set M = CGF (T), and let T′ denote a θ-perfect f-torus in M. Then there is

a θ-stable maximal unramified torus T′ in G which lifts (F,T′). Moreover, for all such T′
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lifting (F,T′) there exists a unique lift T ∈ Tk,per of (F,T) with the property that T ≤ T′.

Proof. We know that such an unramified torus T′ exists by [28]. We have that X∗(T
′) =

X∗(T
′) both as Γ-modules and as θ-modules, and so we can choose a subtorus T of T′

corresponding to the image of X∗(T) under the map X∗(T) ↪→ X∗(T
′) = X∗(T

′). Then we

have that T is a (K, k)-torus, and since we have T ′ ≤ CG(T ) by construction, we have that

F ⊆ B(T ′) ⊆ B(CG(T )), which shows that T is a lift of (F,T) as required.

Now if T2 ∈ Tk,per is another lift of (F,T) that lies in T′, then X∗(T2) = X∗(T) = X∗(T)

in X∗(T
′), and so T = T2.

Corollary 6.3.2. If T1,T2 ∈ Tk,per both lift (F,T), then there exists an element h ∈ (H+
F )Γ

so that hT1 = T2.

Proof. Set Mi = CG(Ti). Then note that F ⊆ B(Mi) by the definition of a lift, and we know

that the image of Mi ∩ GF in GF is M = CGF (T). Now let T′i ≤ M′ be a θ-stable lift of

(F,T′), where as in Lemma 6.3.1, T′ is a θ-perfect f-torus in M. Then since Ti is in the center

of Mi, we have that Ti ≤ T′i, and since Ti (resp. T′i) is a K-split torus lifting (F,T) (resp.

(F,T′)), we know from the previous lemma that Ti is the unique lift of (F,T) in T′i. Then by

[28], we know that there is an h in (H+
F )Γ so that hT′1 = T′2. Our result then follows from

uniqueness in Lemma 6.3.1.

The preceding lemma and corollary allow us to define an action of HΓ on JΓ
m,per. Suppose

that h ∈ HΓ and (F,T) ∈ JΓ
m,per. Then if T is a lift of (F,T), let hT denote the image of

hT ∩GhF in GhF and set h(F,T) := (hF, hT) ∈ JΓ
m,per.

We now move in the opposite direction, showing that every element of Tk,per arises as a

lift of a pair in JΓ
m,per. Recall from Section 5.4 that given a θ-stable reductive k-subgroup

C of G having the same K-rank as G, we define a (θ, C)-facet to be a non-empty subset of

B(G)θ which equals the set of θ-fixed points of some C-facet in B(C) ⊆ B(G).

Lemma 6.3.3. For all T ∈ Tk,per there exists (F,T) ∈ JΓ
m,per so that T lifts (F,T).
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Proof. Fix T ∈ Tk,per, and let M = CG(T). Note that M is a θ-stable Levi (K, k)-subgroup

of G.

Choose a Γ-stable (θ,M)-facet F ′ in B(M) so that F ′ has maximal dimension among θ-

facets in B(M). Then since F ′ can be written as the disjoint union of (θ,G)-facets in B(G), we

are able to choose a Γ-stable (θ,G)-facet F in B(H) so that F ⊂ F ′ and dim(F Γ) ≥ dim(F̃ Γ)

for all Γ-stable (θ,G)-facets F̃ in F
′
. As in the analogous proof for θ-split (K, k)-tori in

Section 5.4, we actually have that dim(F Γ) ≥ dim(F̃ Γ) for all Γ-stable (θ,G)-facets F̃ in

B(M).

Now let T be the f-torus in GF corresponding to the image of T ∩ GF in GF . Then,

by construction, we have that T is a lift of the pair (F,T). It remains to show that

(F,T) ∈ JΓ
m,per. Suppose that F ′′ ⊂ B(G) is a Γ-stable (θ,G)-facet with F ⊂ F

′′
and F 6= F ′′.

Then if T lies in the proper parabolic f-subgroup GF ′′/G
+
F of GF = GF/G

+
F , then we have that

S ∩GF = S ∩GF ′′ fixes F ′′ and (F ′′, T̃) ∈ JΓ
per, where T̃ is the f-torus in GF ′′ corresponding

to the image of S ∩GF ′′ in GF ′′ . By [9, 4.4.2], we then have that F ′′ is in B(M). However,

the dimension of (F ′′)Γ is strictly larger than that of F Γ, contradicting our choice of F.

6.3.2 An Equivalence Relation

The previous subsection gives us a well-defined surjective map ϕ from JΓ
m,per to the set of

HΓ-conjugacy classes in Tk,per. In this subsection, we will define an equivalence relation ∼ on

JΓ
m,per so that ϕ will descend to a bijection.

Suppose (Fi,Ti) ∈ JΓ
per. Then we write (F1,T1) ∼ (F2,T2) if there exists an element

h ∈ HΓ and an apartment A in B(H)Γ so that

1. ∅ 6= A(A, F Γ
1 ) = A(A, hF Γ

2 )

2. T1 ≈ hT2 in GF1 ≈ GhF2 .

Lemma 6.3.4. The relation ∼ is an equivalence relation on JΓ
m,per.

Proof. The proof is nearly identical to the one in [28] or [10].
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6.3.3 Reducing JΓ
m,per

Suppose that T ∈ Tk,per is a lift of (F,T) ∈ JΓ
m,per. Let M = CG(T), and note that by our

definition of a lift, we have that F ⊂ B(M).

Lemma 6.3.5. Let C denote a Γ-stable (θ,M)-facet in B(M) that contains F in its closure.

Then CΓ is a maximal (θ,MΓ)-facet in B(M)Γ, and F Γ is an open subset of CΓ.

Proof. It will be enough to show that F Γ is a maximal (θ,GΓ)-facet in B(M)Γ. Now choose

a (θ,GΓ)-facet D ⊂ B(M)Γ so that F Γ ⊂ D. If F Γ 6= D, then since T is contained in the

center of M, we have that the image of T ∩GF = T ∩GD in GF/G
+
F belongs to the parabolic

f-subgroup GD/G
+
F , contradicting that (F,T) ∈ JΓ

m,per.

In contrast to the case of θ-split (K, k)-tori, not every lift of a pair (F,T) in JΓ
per is

contained in a θ-perfect (K, k) torus in G. We can see this by looking at an alcove in B(H)Γ

in the SL3 example from 6.2. Thus we want to determine a condition for a lift of (F,T) to lie

in Tk,per.

First, note that since any two lifts of (F,T) are (H+
F )Γ-conjugate, it suffices to check

whether a single lift lies in Tk,per. With this in mind, we have the following lemma:

Lemma 6.3.6. Let d be the rank of a maximal (θ,K)-split k-torus in G. Let T be a lift of

a pair (F,T) ∈ JΓ
per. Then T lies in Tk,per if and only if there exists a θ-facet F1 so that

• F1 is Γ-stable

• F contains F1 in its closure

• the rank of a maximal θ-split f-torus in GF1 is d

• the image of T ∩GF in GF/G
+
F1

is contained in a HF1-conjugate of a θ-perfect torus in

GF1 .

Proof. First suppose there exists a θ-facet F1 as in the statement of the lemma. Then choose

a θ-perfect torus T′ in GF1 containing the image of T ∩GF in GF/G
+
F1

. Then a lift T′ of T′
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will contain a maximal θ-split k-torus in G, and so T′ is an H-conjugate of a θ-perfect torus

in G. After further conjugating, by an element of (H+
F )Γ, we may assume that T′ contains

T, and so T is in Tk,per as desired.

Now suppose that T ∈ Tk,per is a lift of (F,T), and choose a θ-perfect torus T′′ in CG(T),

and let T′ be its maximal K-split subtorus. Then since T ∈ Tk,per, we have that T′′ is

an H-conjugate of a subtorus of a θ-perfect torus, and so T′ ∈ Tk,per as well. Thus by

the previous lemma, there is a pair (F ′,T′) ∈ JΓ
m,per such that T′ lifts (F ′,T′). Then F ′

is an open subset of a (CG(T) ∩ H)Γ-alcove, and so after replacing T′ and (F ′,T′) with

a (CG(T) ∩ H)(k)-conjugate, we may assume that F is contained in the closure of the

(M ∩H)Γ-alcove containing F ′. But all maximal (θ,GΓ)-facets contained in the alcove will be

open and thus strongly associated. Thus replacing F ′ with a strongly associated (θ,GΓ)-facet

F1 containing F in its closure, we may assume that F lies in the closure of F ′ = F1. The

other three conditions on F1 are satisfied by construction, and so we are done.

We let JΓ′
m,per denote the pairs in JΓ

m,per which have a lift T satisfying the conditions of

the previous lemma.

6.3.4 A Bijective Correspondence

Upon restricting to JΓ′
m,per and applying our equivalence relation to it, we will finally

obtain our bijective correspondence.

Lemma 6.3.7. Suppose that (Fi,Ti) ∈ JΓ′
m,per with lifts Ti ∈ Tk,per. Then if there exists

h ∈ HΓ so that hT1 = T2, then (F1,T1) ∼ (F2,T2).

Proof. Replacing (F1,T1) with (hF1,
hT1), we may and do assume that T := T1 = T2. Now

set M = CG(T). Then since T is a lift of (Fi,Ti), we must have that Fi ⊂ B(M). Let Ci

denote the (θ,M)-facet in B(M) to which Fi belongs. Then by Lemma 6.6, we have that

CΓ
i is a maximal (θ,MΓ)-facet in B(MΓ), and so in particular, we have that CΓ

i must lie in

an alcove C̃Γ
i of B(MΓ)θ for some M -facet C̃i in B(M)θ. Then there exists an m ∈MΓ ∩H
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so that mC̃1 = C̃2. Replacing (F1,T1) by (mF1,
mT1), then since F Γ

1 and F Γ
2 are open

in CΓ
1 and CΓ

2 , and hence also open in C̃Γ
1 = C̃Γ

2 , we have that for any apartment A in

B(MΓ)θ ⊂ B(H)Γ containing C̃Γ
1 , ∅ 6= A(A, F Γ

1 ) = A(A, F Γ
2 ). Then since mT = T, we see

that (F1,T1) ∼ (F2,T2).

Corollary 6.3.8. There exists a bijection between JΓ′
m,per/ ∼ and the set of HΓ-conjugacy

classes in Tk,per.

Proof. It remains to check that if (F1,T1), (F2,T2) ∈ JΓ′
m,per/ ∼ with (F1,T1) ∼ (F2,T2), then

they have lifts that are HΓ-conjugate. To do this, fix such (F1,T1) and (F2,T2). Then there

is some element h ∈ HΓ and an apartment A in B(H)Γ so that

• ∅ 6= A(A, F Γ
1 ) = A(A, hF Γ

2 )

• T1 ≈ hT2 in GF1 ≈ GhF2 .

We may and do assume that A ⊂ A′(A)Γ, where A′(A) is an apartment in B(G) for some

maximal k-split torus A of G, and we may also assume that h is the identity element.

Let Mi denote the Levi (k, k)-subgroup of G corresponding to theG-facet F ′i containing the

(θ,G)-facet Fi. Then since A(A′, (F ′1)Γ) = A(A′, (F ′2)Γ) by [28], we have that M := M1 = M2.

By construction, we have that the image of M ∩GFi in GFi is GFi itself.

Now since T1 ≈ T2 in GF1 ≈ GF2 , we can find a θ-stable (K, k)-torus T′ so that the image

of T ∩MF1 ∩MF2 in MFi = GFi is a θ-perfect f-torus in CGFi
(Ti). But we know that there is

exactly one lift T of (Fi,Ti) in T′, meaning that the image of T ∩M in MFi = GFi is Ti and

that the proof is complete.

6.3.5 θ-perfect (K, k)-tori and Extendable Levi (k,k)-subgroups

Recall that if a Levi (k, k)-subgroup M is θ-stable, we say that it is extendable if

M = CG((T+)k) for some k-torus T+ so that (T+)k ≤ H. Fixing a pair (F,T) ∈ JΓ′
m,per and

a lift T ∈ Tk,per of (F,T), we are able to prove the following lemma:
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Lemma 6.3.9. There exists a θ-stable (H+
F )Γ-conjugate M′ of FM so that T ≤M′ and so

that every extendable Levi (k, k)-subgroup M′′ containing T satisfies (M′) ≤ (M′′).

Proof. First let M = CG(T). Then from the previous section, we have that F Γ is a maximal

(θ,GΓ)-facet in B(M)Γ and hence contained in an (M ∩ H)Γ-alcove. Choose a θ-perfect

k-torus T′ in CGF (T). Then there is a θ-stable lift T′ of T′ containing T, and if C denotes

the f-split component of the center of GF , then there is a unique lift CF of CZF contained

in T by [1]. We must have that M′ = CG(CF ) is θ-stable by uniqueness and the fact that

CZF is θ-stable. Since any two lifts of T′ are (H+
F )Γ-conjugate, we must have that M′ is

(H+
F )Γ-conjugate to FM, and M′ clearly contains T.

Now suppose that T+
1 is a k-torus in H so that M′′ = CG((T+

1 )k) is an extendable θ-stable

Levi (k, k)-subgroup which also contains T. Then since (T+
1 )k commutes with T, we have

that (T+
1 )k ≤M. Now choose a maximally k-split maximal (K, k)-torus T′1 in M ∩H that

contains (T+
1 )k. Then since F Γ is contained in an (M ∩H)Γ-alcove, we may replace T′1 and

M′′ with a (M ∩H)(k)-conjugate in order to obtain F Γ ⊂ B(T ′1) ⊂ B(M θ)Γ. Then since F Γ

is a maximal (θ,GΓ)-facet in B(M)θ, we must then have that the image of ((T′1)k)(K) ∩GF

in GF is contained in C. After potentially replacing T′1 by an (H+
F )Γ-conjugate, we then have

that (T+
1 )k ≤ (T′1)k ≤ CF . We then have that M′ ≤M′′, and so we are done.

6.4 A Parameterization of Unramified θ-perfect Tori

In this section, we seek to parameterize the unramified θ-perfect tori, the k-tori T in G

for which CG(T) contains a H-conjugate of a θ-perfect torus and for which T is the K-split

component of the center of CG(T).

The unramified θ-perfect tori will arise as a lift of one of the pairs (F,T) from Section

6.3, where F is a θ-facet in B(Gθ)Γ and T is a subtorus of an HF -conjugate of a θ-perfect

torus in GF . However, not all of the θ-perfect (K, k)-tori are unramified θ-perfect tori, and

so we need to refine the parameterization.
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We first fix an H-alcove C in B(H) lying in the apartment of a maximally k-split maximal

unramified torus A of H, which in turn lies inside of a fixed maximally k-split maximal

unramified torus A′ of CG(A). Then CΓ is a union of θ-facets in B(Gθ)Γ, and for each such

θ-facet F such that a pair (F,T) arises in our parameterization of θ-perfect (K, k)-tori from

Section 6.3, we fix a θ-perfect torus A′F in GF . We choose these tori A′F so that if for two

θ-facet F and F ′ there is an h ∈ HΓ such that F and hF ′ are strongly associated, then A′F is

identified with A′F ′ under the identification of GF with GF ′ . For each such θ-perfect torus A′F ,

we let AF denote the maximal θ-split subtorus of A′F .

By taking lifts of each of the A′F above we find a family of θ-stable maximal unramified

tori A′F in G. Note that not all of the A′F are θ-perfect tori in G, but we have a criterion for

checking whether this is the case from 6.3.3.

6.4.1 An Indexing Set over f

Given A′F as above, we set Π′(G, F ) to be the set of all subsets πF of bases of the roots

of A′F in G so that the span of πF is θ-stable. Set

I ′θ,F = {(π,w)|π ∈ Π′(G,F ), w ∈ W ′
θ,c(π),F , and Fr(Φπ) = wΦπ),

where Φπ denotes the root system spanned by π and

W ′
θ,c(π),F = NH◦(A

′
F )/((CH◦((A

′
F )π))◦ ∩ CH◦(A′F )).

Modeling [1] and our parameterization of unramified θ-split tori, if F is a θ-facet contained

in the facet F ′ in B(G), we let Φ(F ) denote the set of gradients of the affine roots of A′ in

G whose restriction to F ′ is constant, and we let A′(F ) =
(
∩α∈Φ(F )ker(α)

)◦
. Recall that

FM = CG(A′(F )) and that the image of A′(F ) ∩GF in GF is the group of F-points of the

f-split component of the center of GF ∼= FMF .
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For a set of roots of π ∈ Π′(G, F ) of the torus A′F , we define

(W ′
θ,c(π))F := NHF (AF )/((CHF ((AF )π))◦ ∩ CHF (AF )),

where (AF )π is the image of (AF )π ∩GF in GF . Note that we can and do identify (W ′
θ,c(π))F

with a subgroup of W ′
θ,c(π),F .

We now define

I ′(F ) := {(π,w) ∈ I ′θ,F |w ∈ (Wθ,c(π))F ≤ Wθ,c(π),F}.

For (θ′, w′) and (θ, w) in I ′(F ), we write (θ′, w′) ∼F (θ, w) if there exists an element

n ∈ NHF (A′F ) so that Φπ′ = nΦπ and Fr(n)wn−1 ∈ w′((W ′
θ,c(π′))F ∩W ′

θ,c(π′),F (π′)), where

W ′
θ,c(π′),F (π′) denotes the subgroup of Wθ,c(π′) whose image in the Weyl group of AF under

the natural projection lies in the parabolic subgroup corresponding to π′. One checks that

∼F defines an equivalence relation on I ′(F ).

We will say that (θ, w) ∈ I ′(F ) is F -elliptic provided that for all θ-facets F ′ in our H-

alcove C so that F ⊆ F
′
, for all (θ′, w′) ∈ I ′(F ) with (θ′, w′) ∼F (θ, w), and for all hF ′ ∈ HΓ

F

so that (A′F )θ′ ⊆ h−1
F ′A′F ′ , we have that hF ′w′ does not have a representative in HF ′ . We set

I ′e(F ) to be the set of pairs in I ′(F ) which are F -elliptic.

Lemma 6.4.1. Suppose (π,w) ∈ I ′(F ). Then we can choose h ∈ HF so that the image of

n = Fr(h)−1h ∈ NHF (A′F ) in (W ′
θ,c(π))F is w.

Proof. Choose h ∈ HF so that the image of Fr(h)−1h) in (W ′
θ,c(π))F is w, which we can do by

applying Lang’s theorem to HF . Note that T = hA′F is by construction an HF -conjugate of a

maximal θ-perfect f-torus in GF . Now let T be a lift of (F,T). Then there exists an element

x ∈ HF so that xA′F = T. Now let x denote the image of x in HF . Then since T = xA′F , the

image of Fr(x−1)x in (W ′
θ,c(π))F is of the form Fr(w′)−1ww′ for some w′ in (W ′

θ,c(π))F . Then

let n′ ∈ NHF (A′F ) be a lift of w′, and set h = xn′.
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6.4.2 Relevant θ-perfect Tori over f

Suppose (F,T) ∈ JΓ
per, and let T be a lift of (F,T). Then we will say that T is relevant in

GF provided that T is the K-split component of the center of CG(T). Let R′(F ) denote the

set of relevant θ-perfect tori in GF , and fix ι = (π,w) ∈ I ′(F ). Then thanks to Lemma 6.11,

we can fix h ∈ HF so that the image of n = Fr(h)−1h ∈ NHF (A′F ) in (W ′
θ,c(π))F is w. Let h

denote the image of h in HF , and let

(A′F )π =

(⋂
α∈π

ker(α)|A′F

)◦
≤ A′F .

Set Tι = h(A′F )π and Tι = h(A′F ). Then we have that Tι is a lift of (F,Tι). We now set

Lι = CGF (Tι) and Lι = CG(Tι). Then note that Φπ = h−1
Φ(Lι,

hA′F ), and note that since Tι

is the K-split component of the center of Lι, we have that Tι is relevant.

Lemma 6.4.2. The map that sends ι ∈ I ′(F ) to the (HF )Γ-conjugacy class of Tι is well-

defined.

Proof. We first show that the (HF )Γ-conjugacy class of Ti is independent of the choice of h

above. Suppose h′ ∈ HF so that image of Fr(h′)−1h′ ∈ NHF (A′F ) in (W ′
θ,c(π))F is also w and

let h
′

denote the image of h′ in HF . Let T′ι = h
′
(A′F )π and T′ι = h′(A′F )π. Then T′ι is a lift

of (F,T′ι), and since Fr(h′)−1h′ and Fr(h)−1h both have image w in (Wθ,c(π))F , there exists

s′ ∈ (CHF ((A′F )π))◦ ∩ CHF (A′F ) so that Fr(h′)−1h′s′ = Fr(h)−1h. Let x = h′h−1 ∈ HF . Then

for all t ∈ Tι we have

Fr(xt) = Fr(h′)Fr(h−1)Fr(t) = h′h−1

(
hs′Fr(t)) = xFr(t).

Hence we see that Int(x) and Int(Fr(x)) both carry TFr
ι to T ′Fr

ι , and so they carry Tι

to T′ι. In addition, we have that Fr(x)−1x ∈ (CHF (Tι))
◦. Then because we know that

H1(Fr, (CHF (Tι)
◦) = 1, we know that there exists l ∈ (CHF (Tι))

◦ so that Fr(x)−1x = Fr(l)−1l

modulo H+
F . Thus y, the image of xl−1 in HF , belongs to HFr

F , and we have that Tι and T′ι
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are HFr
F -conjugate by y.

Now if T′ι is HΓ-conjugate to Tι, say by h1 ∈ HΓ, then T′ι = h1h(A′F )π. Then since

Fr(h1h)−1h1h = Fr(h)−1h, the map is independent of our choice of lift, and so we have a

well-defined map from I ′(F ) to the set of HFr
F -conjugacy classes in R(F ).

Lemma 6.4.3. The map that sends ι ∈ I ′(F ) to the HFr
F -conjugacy class of Tι descends to a

bijective map from I ′(F )/ ∼F to the set of HFr
F -conjugacy classes in R(F ).

Proof. We first show that the map is injective. Suppose ιi = (πi, wi) ∈ I ′(F ) and hi ∈ HF

so that the image of Fr(hi)
−1hi in (W ′

θ,c(πi)
)F is wi. Set Ti = hi(A′F )πi and Ti = hi(AF )πi ,

where hi is the image of hi in HF . Note that Ti is a lift of (F,Ti). Now suppose that there

exists h ∈ HFr
F so that T1 = hT2. Then we know there exists a lift h ∈ HFr

F of h for which

T1 = hT2. Without loss of generality, we may replace h2 by hh2 so that T1 = T2 and

T1 = T2. Let L1 = CGF (T1), and let L1 = CG(T1). Then there exists l ∈ (L1 ∩HF )◦ for which

h2A′F = lh1A′F . Choose m ∈ NH(A′F ) for which lh1 = h2m, and note that m = h−1
2 lh1 ∈ HF .

Let Mπi = CG((A′F )πi). Then we have

Φπ1 = Φ(Mπ1 ,A
′
F )

= h−1
1 Φ(L1,

h1A′F ) = h−1
1 l−1Φ(L1,

lh1A′F ) = h−1
1 l−1Φ(L1,

h2A′F )

= h−1
1 l−1h2Φ(Mπ2 ,A

′
F ) = m−1Φ(Mπ2 ,A

′
F ) = Φ(Mm−1π2

,A′F )

= m−1Φπ2

so that mΦπ1 = Φπ2 .

Since the image of h
−1

(Fr(l)−1l) ∈ NHF (A′F ) in W ′
θ,c(π1) belongs to the parabolic subgroup

W ′
θ,c(π1)(π1), we then have that

Fr(m)−1w2m = Fr(lh1)−1lh1((CHF ((A′F )π))◦ ∩ CHF (A′F ))

= w1h
−1
1 (Fr(l)−1l)h1((CHF ((A′F )π))◦ ∩ CHF (A′F )) ∈ w1W

′
θ,c(π1)(π1).
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Since the representatives are all in HF , we have that Fr(m)−1w2m is in (W ′
θ,c(π))F , and so

we conclude that ι1 ∼F ι2.

We now show that the map is surjective. Suppose T ≤ GF belongs to R(F ). Let T′ be a

maximal θ-stable f-torus in GF which contains T and has the largest possible (θ, f)-split rank

among θ-stable tori in GF that contain T. Then T contains the center of GF and there exists

lifts T of (F,T) and T′ of (F,T′) such that L = CG(T) is a θ-perfect Levi (K, k)-subgroup,

T is the K-split component of the center of L, and T ≤ T′ ≤ L. Let BL ≤ L be a Borel

K-subgroup of L. Then since T′ is a lift of (F,T′), there is an h ∈ HF so that hA′F = T′. Let

π = h−1∆(L,BL,T
′) ∈ Π′(G, F ). Let w denote the image of Fr(h)−1h in (W ′

θ,c(π)F . Then

the pair (π,w) belongs to I(F ) and corresponds to T.

6.4.3 Parameterizing HΓ-Conjugacy Classes of Unramified θ-perfect tori in G

Note that not all of the tori in R(F ) from the previous subsection lift to a θ-perfect

(K, k)-torus. However, we have a condition in Lemma 6.3.6 which allows us to check whether

this is the case. Given a Γ-stable θ-facet F1 which is contained in the closure of F , we

can check whether or not GF1 contains a maximal θ-split f-torus which lifts to a maximal

(θ,K)-split k-torus in G by looking at the θ-bases of the roots of our fixed maximal unramified

torus A′F1
associated to F1.

In particular, if ∆ is a θ-basis for the roots of A′F1
, Φ− is the set of negative roots of A′F1

with respect to ∆, and θ∗ is the automorphism of the Dynkin diagram of ∆ induced by θ,

then we can partition ∆ into ∆+ = {α ∈ ∆|θ(α) = α}, ∆−1 = {β ∈ ∆|θ(β) ∈ Φ−, θ∗(β) = β},

and {∆−2 = {γ ∈ ∆|θ(β) ∈ Φ−, θ∗(β) 6= β}. Then by [17], the reduced root system of the

maximal θ-split subtorus AF1 of A′F1
has rank |∆−1 |+

|∆−2 |
2

. Thus if this number equals the

rank of a maximal (θ,K)-split k-torus of G, then AF1 must be a maximal (θ,K)-split k-torus,

meaning that AF1 satisfies the third bullet point of Lemma 6.3.6.

For the fourth condition of Lemma 6.3.6, note that the torus in R(F ) corresponding to

a pair (θ, w) ∈ I ′(F ) satisfies the condition if and only if (A′F )θ also satisfies the condition,
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significantly reducing the number of tori we need to check. However, there does not appear

to be a unique minimal θ, as we can conjugate (A′F )θ by elements in NHF (A′F ). Furthermore,

there does not appear to be a condition on θ significantly simpler than the fourth condition

of Lemma 6.3.6.

We let I(F )per denote the set of pairs (π,w) ∈ I ′(F ) so that the conjugacy class in R(F )

corresponding to the equivalence class of (π,w) under our map from the previous section

consists of tori which lift to θ-perfect (K, k)-tori. Now define

Iun,per := {(F, π, w) : F ⊆ A(A)Fr is a (θ,GFr)-facet and (π,w) ∈ I(F )per}

and let Uper denote the set of HΓ-conjugacy classes of unramified θ-perfect tori in G. Then

by the previous subsections, we can define a function j : Iun,per → Uper as follows. For

(F, π, w) ∈ Iun,per, we let T ∈ R(F ) denote a relevant torus associated to (π,w) and let

j(F, π, w) denote the HΓ-conjugacy class of any lift of (F,T) which is a θ-perfect (K, k)-torus.

For (F ′, π′, w′), (F, π, w) ∈ Iun,per we write (F ′, π′, w′) ∼ (F, π, w) provided there exists

an element n ∈ (W̃ (H, A))Fr, where we recall that W̃ (H, A) is defined to be the affine Weyl

group NH(A)/(CH(A)∩HF ) of A in H, for which A(A(A)Fr, F ) = A(A(A)Fr, nF ) and, with

the identifications of GF ′ = GnF and X∗(A′F ′) = X∗(A′nF ) = X∗(A′nF ) arising in this way, we

have that (π′, w′) ∼F ′ (nπ, nw) in I ′(F ′) = I ′(nF ). One checks that this defines an equivalence

relation on Iun,per.

We say that (F, π, w) ∈ Iun,per is elliptic provided that (π,w) ∈ I ′e(F ), and we set Ieun,per

to be the set of elliptic triples (F, π, w) in Iun,per.

Theorem 6.4.4. The map j induces a bijection from Ieun,per/ ∼ to U .

Proof. We first show that j is surjective. Let T be an unramified θ-perfect torus in G. Let

L denote the centralizer of T, and let F be a maximal (θ,GFr)-facet in B(Lθ)Fr ⊆ B(Gθ)Fr.

Choose a maximally (θ,K)-split maximal unramified torus T′ of L that contains T and so

that F ⊂ B(T′). Also fix a Borel K-subgroup BL of L that contains T′. Choose h ∈ HΓ so
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that hF ⊂ A(A)Fr. Then after replacing T with hT, we may assume that F ⊂ A(A)Fr.

Let T denote the θ-split f-torus in GF whose group of f-rational points coincides with

the image of T ∩ GF in GF . Then there exists an h ∈ HF so that T′ = hA′F . Then let

π = h−1∆(L,BL,T
′) ∈ Π′(G, F ), and let w denote the image of Fr(h)−1h in (W ′

θ,c(π))F . Then

note that T belongs to j(F, π, w).

To conclude our proof of surjectivity, we need to show that the triple (F, π, w) we

have constructed is elliptic. If this is not the case, then there exists (π′, w′) ∈ I ′(F ) with

(π,w) ∼F (π′, w′), an element hF ′ ∈ HΓ
F , and a (θ,GFr)-facet F ′ with F ⊂ F

′
so that h−1

F ′ w′

has a representative in HF ′ and (A′F )π′ ⊆ hF ′A′F ′ . Then there exists h ∈ hF ′HF ′ ⊂ HF

so that Fr(h)−1h lies in NhF ′HF ′
(A′F ) and has image w′ in (W ′

θ,c(π))F . Note that hhF ′F
′

is a facet in B(hhF ′A′F ′), and since (π,w) ∼F (π′, w′), from Lemma 6.13 we have that

hhF ′ (A′F ′)h−1
F ′ π

′ = h(A′F )π′ = xT for some x ∈ H(k). Note that then x−1hhF ′A′F ′ ≤ L, and so

x−1hhF ′F
′ ⊂ B(x

−1hhF ′A′F ′)
Fr ⊆ B(L)Fr, contradicting the maximality of F .

It remains to show that if (Fi, πi, wi) for i ∈ {1, 2} are two elements of Ieun,per with

j(F1, π1, w1) = j(F2, π2, w2), then (F1, π1, w1) ∼ (F2, π2, w2). Choose Ti ∈ R(Fi) correspond-

ing to (π,wi) ∈ I ′e(Fi), and let Ti be a lift of (Fi,Ti). Note that (Fi,Ti) ∈ JΓ′
m,per. Then since

j(F1, π1, w1) = j(F2, π2, w2), we know that T1 is HΓ-conjugate to T2. Thus we know that

there exists h ∈ HΓ and an apartment A′ in B(Gθ)Fr so that ∅ 6= A(A′, F1) = A(A′, hF2)

and T1 = hT2 in GF1 = GhF2 . After conjugating by an element of HΓ
F1

, we may assume that

A′ = A(A). Then by the affine Bruhat decomposition for H, we may choose n ∈ NH(k)(A)

so that n−1h ∈ HFr
F2
. Then there exists x ∈ HFr

F2
such that after replacing T2 with xT2 we may

assume that A(A(A)Fr, F1) = A(A(A)Fr, nF2) and T1 = nT2 in GF1 = GnF2 . Identifying n

with its image in W̃ (H, A), we then have that (π1, w1) ∼F (nπ2,
nw2) in I ′(F1) = I ′(nF2).
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6.5 Unramified θ-split Tori versus Unramified θ-perfect Tori: An

Example

At first glance, the concept of an unramified θ-split torus is quite similar to that of

an unramified θ-perfect torus, and one may notice that our parameterizations and proofs

for these two classes of tori are nearly identical. Here, we seek to briefly demonstrate the

difference between the two parameterizations through an example, and we will attempt to

motivate why each of these concepts is worthwhile.

We return to the SL3 example from Section 6.2 earlier in the chapter. In particular, we

let θ be the involution given by conjugation by the matrix


1 0 0

0 1 0

0 0 −1

 .

Then H is the (2, 1)-Levi subgroup of SL3, and the diagonal torus in SL3 is a maximal

k-split torus in H. Then the torus S consisting of matrices of the form


1 0 0

0 a b

0 b a


is a maximal θ-split k-torus, and a θ-perfect torus T containing S consists of matrices of the

form 
c 0 0

0 a b

0 b a

 .

Then one computes that NH(T)/CH(T) = NH(S)/CH(S) is a subgroup of order two whose
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non-trivial element w has representative


−1 0 0

0 1 0

0 0 −1

 .

(Note that it is not generally the case that the set of Weyl group elements having representatives

in H equals the little Weyl group, as an analogous example in SL4 shows.)

The roots of T act on an element

t =


c 0 0

0 a b

0 b a


as follows: The root α sends t to c(a + b)−1, the root β sends t to (a + b)(a − b)−1. We

then define −α,−β, and ±(α + β) in the obvious way. We check that θ acts on the roots by

sending β to −β and by permuting α and α+β. One then checks that ∆ = {α+β,−α} gives

a θ-basis for the roots of T and that −∆ is the only other θ-basis. The only θ-admissible

subsets of ∆ are ∆ itself and the empty set. The only other subsets of simple roots which

span a θ-stable root space are the sets {β} and {−β}. Note that for each of these subsets π,

one can check that the θ-fixed points of the centralizer of (T)π is connected so that there is

no need to distinguish between the little Weyl group (resp., the Weyl group elements having

representatives in H) and the variants of the Weyl group showing up in our parameterizations.

With all of this in mind, we can give the data corresponding to the conjugacy classes of

unramified θ-split tori and unramified θ-perfect tori. It will suffice to work in a fixed alcove

of the apartment of the diagonal torus of SL2. Then if we let β′ be the root of the diagonal
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torus which sends the element

t′ =


x 0 0

0 y 0

0 0 z

 .

to yz−1. Then all the maximal unramified θ-split tori are lifts of tori in the facet intersecting

the hyperplane Hβ̃, where β̃ denotes the gradient of β′. In particular, we have the torus S,

which corresponds to the equivalence class of the triple (Hβ̃, ∅, Id) and the torus Sε, where

we fix ε ∈ o× \ (o×)2, which has representatives of the form


1 0 0

0 a b

0 εb a


and corresponds to the equivalence class of the triple (Hβ̃, ∅, w). Since the maximal unramified

θ-split tori have rank 1, the only other possible unramified θ-split torus is the trivial torus,

which lies in the interior F of our fixed alcove in the apartment of the diagonal torus and

corresponds to the triple (F,∆′, Id), where ∆′ is some set of simple roots for the roots of the

diagonal torus.

Similarly, we see that the maximal unramified θ-perfect tori are lifts of tori in the facet

Hβ̃. In particular, we have the torus T, which corresponds to the equivalence class of the

triple (Hβ̃, ∅, Id), and the torus Tε, which has representatives of the form


c 0 0

0 a b

0 εb a


and corresponds to the equivalence class of the triple (Hβ̃, ∅, w). In this case, the maximal

unramified θ-perfect tori have rank 2, and so we have other non-trivial unramified θ-perfect

tori. However, as it turns out the only such torus is the subtorus of the diagonal torus having
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representatives of the form 
c 0 0

0 a 0

0 0 a

 ,

which corresponds to the triple (F, β′, Id). Finally, the trivial torus again corresponds to the

triple (F,∆′, Id).

In the general setting, even though unramified θ-split tori are not unramified θ-perfect

tori in general, we can associate to each unramified θ-split torus S an unramified θ-perfect

torus T by taking the identity component of the center of CG(S). (In other words, by taking

the identity component of the unramified θ-split twisted Levi subgroup corresponding to S.)

If S corresponds to a triple of the form (F, π, w), then the corresponding unramified θ-perfect

torus will correspond to a torus of the form (F, π, w′) where w′ has image w upon restricting

from the unramified θ-perfect torus A′F associated to F to its θ-split component AF . Thus

we could have first parameterized θ-perfect tori first and then identified the unramified θ-split

twisted Levi subgroups and their corresponding unramified θ-split tori by restricting to triples

(F, π, w′) where π is θ-admissible. However, this approach is more unwieldy in practice, as the

various lifts of elements in (Wθ,c(π))F to (W ′
θ,c(π))F will typically enlarge the size of the various

equivalence classes of triples and hence the data we need to sort through. Furthermore, as we

discuss below, unramified θ-split tori are more likely to play a prominent role in the theory

of p-adic symmetric spaces outside of the parameterization of general θ-split k-tori.

Finally, we point out that both of these classes of unramified tori should play an important

role in the theory of p-adic symmetric spaces. In [21], the authors study a symmetric space

analogue of supercuspidal representations called relatively cuspidal representations, and

they show that each irreducible HΓ-distinguished representation of GΓ can be embedded in

some iG
Γ

PΓ(σ), where P is a θ-split parabolic k-subgroup of G and σ is a relatively cuspidal

representation of the θ-split Levi k-subgroup corresponding to P . This suggests that the

θ-split twisted Levi k-subgroups are likely to be the proper analogue of twisted Levi k-
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subgroups for proving symmetric space analogues of results where twisted Levi k-subgroups

of G play a prominent role (for example, a potential analogue of Yu’s construction of

supercuspidal representations of G in [38, 13] for relatively cuspidal representations). Thus

one would like to understand the H(k)-conjugacy classes of all θ-split twisted Levi k-subgroups,

and understanding the unramified θ-split twisted Levi subgroups, which correspond to the

unramified θ-split tori, is an important first step in that parameterization.

On the other hand, our motivation for parameterizing unramified θ-perfect tori comes

entirely from its role in showing how the H-conjugacy class of a maximal θ-split k-torus

breaks up into H(k)-conjugacy classes. In order to do this, one will need to construct from a

representative S in our H-conjugacy class an unramified twisted Levi k-subgroup L containing

S so that the centralizer of S in L is a K-minisotropic maximal k-torus T. As it turns

out, the unramified twisted Levi k-subgroups arising in this way are all unramified θ-perfect

twisted Levi subgroups, and so expanding our parameterization of unramified θ-split twisted

Levi subgroups to unramified θ-perfect twisted Levi subgroups is essential for parameterizing

maximal θ-split k-tori.

For example, in the SL3 example, to show how the H-conjugacy class of the maximal

θ-split k-torus S1 having representatives of the form


1 0 0

0 a b

0 $b a


breaks into H(k)-conjugacy classes, we need to work within the (1, 2)-Levi k-subgroup which

is an unramified θ-perfect twisted Levi k-subgroup corresponding to the unramified θ-perfect
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torus having representatives of the form


c 0 0

0 a 0

0 0 a

 ,

which is not an unramified θ-split torus.
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CHAPTER VII

Maximal Unramified Tori in Symplectic Groups

If G is a reductive algebraic group over a p-adic field F with residue field Fq, an unramified

torus is the group of F -rational points of a F -torus in G that splits over an unramified

extension of F . In [10], the author gives a parameterization of G(F )-conjugacy classes of

maximal unramified tori using Bruhat-Tits theory. In particular, modulo an equivalence, the

conjugacy classes are parameterized by pairs (F,T) where F is a facet in the F -points of the

Bruhat-Tits building of G and T is an elliptic Fq-torus in the reductive quotient of G at the

facet F . Given such a pair, T can be lifted to a maximal unramified torus in G, and this

gives a representative for the conjugacy class associated to the pair. The elliptic Fq-tori in

the reductive quotient are in turn parameterized by the elliptic Frobenius conjugacy classes

in the Weyl group of the reductive quotient.

On the other hand, for symplectic, orthogonal, and unramified unitary groups, Waldspurger

in [37] gives a parameterization of the maximal unramified tori in terms of triples of partitions.

For each part of one of these partitions, he defines an F -algebra whose structure is determined

by the partition, and he also constructs an F -endomorphism of the algebra. Taking the

sum of these F -algebras, he obtains a symplectic F -vector space, and the sum of the

F -endomorphisms determines a regular semisimple element for a torus in the associated

conjugacy class.

The goal of this chapter is to provide a comparison of the two parameterizations in the
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case of the symplectic group, similar to the work in [26] and [4] for nilpotent orbits. In

particular, given a triple of partitions (µ0, µ
′, µ′′) in the Waldspurger parameterization, we will

associate a facet in the Bruhat-Tits building and an elliptic conjugacy class in the Weyl group

of the reductive quotient which determine the same conjugacy class of tori as (µ0, µ
′, µ′′).

We will also construct an inverse map, showing that the two indexing sets are in bijective

correspondence.

The facet corrresponding to a triple (µ0, µ
′, µ′′) will correspond to a subdiagram of the

extended Dynkin diagram of type Cn. This subdiagram will be a union of two subdiagrams

of type Ck, which will be determined by the partitions µ′ and µ′′, and subdiagrams of type

Aj, which will be determined by the partition µ0.

Each element in the Weyl group of the reductive quotient attached to this facet is a

product of signed ki-cycles for natural numbers ki < n. We say that a signed ki-cycle σ is

even if σki = Id and odd if σki = − Id. The conjugacy class of an element is determined

by its cycle-type, and the parts of the partitions µ0, µ
′, and µ′′ give us the cycle-type of the

associated element w. In particular, each part xi of µ0 give us an even xj-cycle while each

part yj of µ′ or µ′′ give us an odd yj-cycle.

The chapter is organized as follows. In Section 2, we introduce some of the general

notation needed for our result, and we recall some of the structure of the symplectic group

Sp2n. In Section 3, we discuss the Bruhat-Tits building of Sp2n, and we discuss the DeBacker

parameterization in more detail. In Section 4, we discuss Waldspurger’s parameterization

for Sp2n. In Section 5, we present and prove the main result, discussing each partition in

Waldspurger’s parameterization in a separate subsection before putting everything together.

Finally, in Section 6 we discuss an inverse to our construction, showing how one can move

from a pair (F, w) to the associated triple of partitions in the Waldspurger construction.
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7.1 General Notation and the Group Sp2n

Let F be a finite extension of Qp. Let o be the ring of integers of F and p the maximal

ideal in o. Let $ be a uniformizer of F . Let q be the order of the residue field of F , which

we denote by Fq. We let Fr denote a topological generator of the absolute Galois group of Fq.

We can and do identify Fr with a topological generator of Gal(Fun/F ), where Fun ⊆ F is the

maximal unramified extension of F .

If C is an algebraic group defined over F , we will by abuse of notation also use C (bold)

to denote the F -points, and we will use C (not bold) to denote the group of F -points.

Let V be a vector space over F of even dimension 2n for p ≥ 6n+ 1,1 and fix an ordered

basis B = {e1, . . . , en} of V . Let qV be the non-degenerate anti-symmetric bilinear form of V

whose matrix with respect to B is the anti-diagonal matrix

1

. .
.

1

−1

. .
.

−1


Let G be the symplectic group Sp2n preserving qV . Then G is a connected reductive

group defined over F . We will use g to denote the vector space of F -rational points of the

Lie algebra of G, which we may identify with a subalgebra of the F -endomorphisms of V .

If S denotes the diagonal torus in G, which of course is an F -split maximal torus in G,

we will let diag(t1, . . . , tn) denote the matrix in S whose (i, i) entry is ti for i ≤ n and t−1
2n+1−i

for i > n. Let W = NG(S)/S be the Weyl group of S in G, and we will let Φ denote the set

of roots of S in G. We fix the simple system ∆ = {α1, . . . , αn−1, β}, where αj is the root that

1This is Waldspurger’s assumption on p in [37]. In our proofs, we require q > 2n when choosing the
generators ai in our sections 5.1 - 5.3. We also want p 6= 2, else regular semisimple elements may not exist in
the residue field.
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takes diag(t1, . . . , tn) to tjt
−1
j+1 for 1 ≤ j ≤ n− 1 and β is the root which takes diag(t1, . . . , tn)

to t2n. Then e := 2α1 + · · ·+ 2αn−1 + β is the highest root with respect to this simple system,

and it takes diag(t1, . . . , tn) to t21.

We conclude this section by recalling the root space decomposition of g. We let Ei,j

denote the elementary matrix having 1 in the (i, j) entry and 0 elsewhere. Then we have

• For 1 ≤ i 6= j ≤ n, the matrix Ei,j − E2n+1−j,2n+1−i spans the root space of the root

sending diag(t1, . . . , tn) to tit
−1
j .

• For 1 ≤ i < j ≤ n, Ei,2n+1−j + Ej,2n+1−i spans the root space of the root sending

diag(t1, . . . , tn) to titj, while E2n+1−j,i + E2n+1−i,j spans the root space of the root

sending diag(t1, . . . , tn) to (titj)
−1.

• For 1 ≤ i ≤ n, Ei,2n+1−i spans the root space of the root sending diag(t1, . . . , tn) to t2i ,

while E2n+1−i,i spans the root space of the root sending diag(t1, . . . , tn) to t−2
i .

Notice that if X ∈ g has the block form

X1,1 X1,2

X2,1 X2,2

, where each block is an n × n

matrix, then the root spaces of the roots in the subsystem spanned by α1, . . . , αn−1 are

contained in X1,1 and X2,2, while every root space lying in X1,2 or X2,1 must be associated

to a root so that the coordinate of β with respect to the simple system ∆ is non-zero.

7.2 The DeBacker Parameterization for G

Let B(G) = B(G, F ) be the Bruhat-Tits building of G, which we identify with the Fr-fixed

points of B(G, Fun). We let A = A(S) denote the apartment of the diagonal torus S in B(G).

Within the apartment, we fix a fundamental alcove C whose walls are determined by the

hyperplanes of n+ 1 affine roots so that the set of their gradients is precisely ∆ ∪ {e}. By a

slight abuse of notation, we denote these hyperplanes by Hα1 , . . . , Hαn−1 , Hβ, He.

The facets in our fundamental alcove C can be identified with proper subdiagrams of the

extended Dynkin diagram of G. In particular, given such a subdiagram Γ, the corresponding
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facet is the one vanishing at the hyperplanes Hγ, where γ ∈ {e, α1, . . . , αn−1, β} is a root so

that the corresponding vertex in the extended Dynkin diagram occurs in Γ. We adopt the

following notation for the facets in the fundamental alcove:

Definition 7.2.1. If a, b ≥ 0 and x1, . . . , xt > 0 are integers so that a+ b+
∑t

i=1 xi = n, the

facet 〈a|x1, . . . , xt|b〉 is defined as follows. Let

Ha
e =


A a = 0

He a 6= 0

,

and define Hb
β analogously. Then 〈a|x1, . . . , xt|b〉 is the facet in C lying on

Ha
e ∩Hα1 ∩ · · · ∩Hαa−1∩

Hαa+1 ∩ · · · ∩Hαa+x1−1∩
...

Hαa+x1+···+xt−1+1 ∩ · · · ∩Hαa+x1+···+xt−1∩

Hαa+x1+···+xt+1 ∩ · · · ∩Hαn−1 ∩Hb
β,

where by convention we ignore Hαa+x1+···+xi−1+1 ∩Hαa+x1+···+xi−1 if xi = 1.

Note that the special vertex in C lying on the hyperplanes Hα1 , . . . , Hαn−1, Hβ is the facet

〈0| |n〉, while the other special vertex in C, which lies on He instead of Hβ, is the facet 〈n| |0〉

Example: Let G = Sp4. In Figure 7.1 below, we label the facets in the alcove C determined

by the simple roots ∆ = {α, β}. There are three vertices and three edges in addition to the

interior of the alcove.

If x ∈ B(G), we let Gx denote the parahoric subgroup of G attached to x, and we let

G+
x denote the prounipotent radical of Gx. Note that both Gx and G+

x depend only on the

facet F to which x belongs, so we may write GF and G+
F . For a facet F in B(G), the quotient
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〈0| |2〉 〈1| |1〉

〈2| |0〉

〈0|1|1〉

〈0|2|0〉 〈1|1|0〉

〈0|1, 1|0〉

Figure 7.1: A labeling of the facets for Sp4

GF := GF/G
+
F is the group of Fq-rational points of a reductive Fq-group. The root system of

this reductive group is the subdiagram of the extended Dynkin diagram associated to the

facet. So in particular, the reductive quotient at the facet 〈a|x1, . . . , xt|b〉 has root system of

type

Ca × Ax1−1 × · · · × Axt−1 × Cb,

where again by convention we ignore terms with subscript 0.

We now discuss the parameterization in [10] for G. Let CS denote the set of G-conjugacy

classes of maximal unramified tori. We will relate CS to the set Im of pairs (F,T), where

F is a facet in B(G) and T is a Fq-minisotropic maximal torus in GF. Given such a pair,

DeBacker shows that T can be lifted to a maximal unramified F -torus T , and he shows that

a representative of each G-conjugacy class in CS arises in this way. To attain a bijection, one

needs to define an equivalence relation on Im.

Given a facet F in an apartment A′ of B(G), let A(A′,F) be the affine subspace of A′

spanned by F. Then if A(A′,F) = A(A′,F′) for two facets F,F′ ⊆ A′, we can identify the

reductive quotients GF and GF′ (see [9, Lemma 3.5.1]). This identification then allows us to

define an equivalence relation by saying (F,T) ∼ (F′,T′) provided there is an apartment A′

in B(G) and an element g ∈ G so that
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• ∅ 6= A(A′,F) = A(A′, gF′) and

• T is identified with gT′ by the identification of GF with GgF′ .

Then this equivalence relation gives us a bijection

Im/ ∼ → CS.

Modeling upcoming work in [1], we can refine this parameterization. First, note that

since C is a fundamental alcove, every facet F in B(G) is conjugate to at least one facet in C.

Thus we may restrict to pairs (F,T) with F ⊆ C. Additionally, by [10, Lemma 4.2.1] or [8],

the maximal Fq-tori in the reductive quotient GF are parameterized by the conjugacy classes

of the Weyl group WF associated to the image of S ∩ GF in GF, which we can and do the

identify with a subgroup of the Weyl group W of S in G. Futhermore, the Fq-minisotropic

tori in the reductive quotient correspond to the elliptic conjugacy classes. Thus we can refine

our parameterization to look at equivalence classes of pairs (F, w), where F is a facet in C

and w is an elliptic element in the Weyl group WF.

The elements in the Weyl group of G can be identified with signed permutations of

{1, . . . , n}. By ignoring the sign changes, each element τ of W determines a permutation τ ′

of {1, . . . , n}, and this permutation can be written as a product of disjoint cycles. If j is in a

cycle of length k in the cycle decomposition of τ ′, then τ k(j) = ±j. If τ k(j) = j, then we say

that the cycle is even, and if τ k(j) = −j, then we say that the cycle is odd. Mimicking the

notation in [7], we write Ck for an odd cycle of length k and Ak−1 for an even cycle of length

k. In this notation, using Carter’s classification of conjugacy classes in the Weyl group found

in [7], given a facet F in C of type 〈a|x1, . . . , xt|b〉, the elliptic elements in WF are of the form

(Ca1 × · · · × Cak)× Ax1−1 × · · · × Axt−1 × (Cb1 × · · · × Cbj),

where
∑k

i=1 ai = a and
∑j

i=1 bi = b.
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For example, in Sp18, the facet 〈2|2, 1, 3|1〉 is the facet vanishing on the hyperplanes

He, Hα1 , Hα3 , Hα6 , Hα7 , and Hβ. It has root system of type C2 × A1 × A2 × C1, and the

elliptic Weyl group elements are of type C2 × A1 × A2 × C1 and C1 × C1 × A1 × A2 × C1 in

Carter’s notation.

Example: The conjugacy classes of maximal unramified tori in Sp4 are parameterized as

in Figure 7.2 below. In this example, none of the facets in the alcove C determined by the

simple roots ∆ = {α, β} are equivalent, and there are nine pairs (F, w) up to equivalence.

C2

C1 × C1

C1 × C1

C2

C1 × C1

C1

A1 C1

1

Figure 7.2: A labeling of the pairs (F, w) for Sp4

7.3 The Waldspurger Parameterization for G

We will first discuss Waldspurger’s parameterization of conjugacy classes of regular

semisimple elements in g, which will then allow us to discuss his parameterization of the

conjugacy classes of maximal unramified tori.

7.3.1 Regular Semisimple Elements in G

We let greg denote the set of regular semisimple elements of g. We are going to recall the

description of the G-conjugacy classes in greg given in [37]. To start, we will consider the
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following objects:

1. A finite set I

2. For all i ∈ I, a finite extension F#
i of F and a F#

i -algebra Fi which is 2-dimensional

over F#
i .

3. For all i ∈ I, elements ai and ci in F×i .

For all i ∈ I, we let τi be the unique non-trivial automorphism of Fi over F#
i . We assume

that our choices above satisfy

(a) For all i, ai generates Fi over F .

(b) For all i, j ∈ I with i 6= j, there does not exist an F -linear isomorphism from Fi to Fj

which maps ai to aj

(c) For all i ∈ I, τi(ai) = −ai and τi(ci) = −ci

(d) 2n =
∑

i∈I [Fi : F ]

Thus the choice of ai determines Fi and F#
i . Write W =

⊕
i∈I Fi, and define a symplectic

form qW on W by

qW (
∑
i∈I

wi,
∑
i∈I

w′i) =
∑
i∈I

[Fi : F ]−1traceFi/F (τi(wi)w
′
ici).

We let XW be the element of EndF (W ) defined by XW (
∑

i∈I wi) =
∑

i∈I aiwi. Then if we

fix an isomorphism from (W, qW ) onto (V, qV ), the element XW identifies an element X ∈ g

which is regular and semisimple. The orbit does not depend on the choice of isomorphism,

and if we call it O(I, (ai), (ci)), then all orbits in greg are of this form.

Now for all i ∈ I, let sgnFi/F#
i

be the quadratic character of F#×
i associated to the algebra

Fi. Let I∗ be the set of i ∈ I so that Fi is a field, i.e. so that sgnFi/F#
i

is non-trivial. Then

for two families (I, (ai), (ci)) and (I ′, (a′i), (c
′
i)) satisfying the above conditions, we have that

the corresponding orbits O(I, (ai), (ci)) and O(I ′, (a′i), (c
′
i)) are equal if and only if
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1. There is a bijection φ : I → I ′.

2. For all i ∈ I, there is an F -linear isomorphism σi : F ′φ(i) → Fi so that

i. For all i ∈ I, σi(a
′
φ(i)) = ai

ii. For all i ∈ I, sgnFi/F#
i

(ciσi(c
′
φ(i))

−1) = 1

We also have that the two orbits are in the same stable conjugacy class, i.e. there are

regular semisimple elements of g in the respective orbits which are conjugate by an element of

G, if maps φ and σi satisfying all but condition ii. above exist. A stable class Ost(I, (ai), (ci))

thus splits into exactly (Z/2Z)I
∗
G-conjugacy classes.

7.3.2 Unramified Tori in G

Given a partition λ = (x1, . . . , xk), let S(λ) :=
∑k

i=1 xi denote the sum of the parts of λ.

We always order the parts of λ so that x1 ≥ · · · ≥ xk, and we do not allow parts of λ to be zero.

Let θmax(V ) be the set of triples of partitions (µ0, µ
′, µ′′) so that S(µ0) + S(µ′) + S(µ′′) = n.

Then we have a bijection CS → θmax(V ) given as follows:

Let T be a maximal unramified torus, and fix a regular semisimple element X in t, the

Lie algebra of T in g. Choose (I, (ai), (ci)) so that X is in the orbit O(I, (ai), (ci)). For an

integer m ≥ 1, let F (m) be the unique unramified extension of F of degree m. Since T is

unramified, for all i ∈ I, there exists an integer m(i) so that F#
i = F (m(i)). Let I ′, resp. I ′′,

be the set of i ∈ I∗ so that the valuation vFi(ci) of ci in Fi is even, resp. odd. We define the

triple (µ0, µ
′, µ′′) by setting µ′, resp. µ′′, to be the the partition which has the same parts

as the family (m(i))i∈I′ , resp. (m(i))i∈I′′ . Finally, we define µ0 to be the partition having

the same non-zero terms as the family (m(i))i∈I\I∗ . Thus we have defined an element of

θmax(V ) from a given maximal unramified torus T . According to [37], it does not depend on

the choice of X in T , and gX defines the same element of θmax(V ) for all g ∈ G. Thus the

construction gives a bijection

Cs → θmax(V )
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.

7.4 Main Result

We are now ready to compare the two parameterizations.

Theorem 7.4.1. Consider (µ0, µ
′, µ′′) ∈ θmax(V ), with µ0 = (x1, . . . , xr), µ

′ = (y1, . . . , ys),

µ′′ = (z1, . . . , zt). Then we have that the corresponding G-conjugacy class in CS corresponds

to the equivalence class of (F, w) in the DeBacker parameterization, where F is the facet

〈S(µ′′)|x1, . . . , xr|S(µ′)〉 and w is in the conjugacy class of type

(Cz1 × · · · × Czt)× Ax1−1 × · · · × Axr−1 × (Cy1 × · · · × Cys).

In particular, the tori corresponding to the special vertex of C vanishing at the hyperplanes

Hα1 , . . . , Hαn−1 and Hβ are those corresponding to triples of the form (∅, µ′, ∅). Similarly,

the tori vanishing corresponding to the special vertex of C vanishing at the hyperplanes

Hα1 , . . . , Hαn−1 and He are those corresponding to triples of the form (∅, ∅, µ′′). The diagonal

torus S corresponds to the triple ((1, . . . , 1), ∅, ∅).

Example: In Figure 7.3 below, for each pair (F, w) in Sp4, we give the corresponding triple

in the Waldspurger paramaterization.

We will prove this theorem throughout the rest of this section. We will deal with each of

the partitions in a separate subsection before putting everything together at the end. For each

partition, we will carefully construct the necessary field extensions, algebras, and generators

ai. We will then use our construction to produce an ordered symplectic basis and determine

the structure of the matrix of the multiplication map with respect to our choice of ordered

basis. We will pay particularly close attention to:

1. The location of the non-zero entries of the matrix of multiplication by ai, particularly

in our analysis of µ0. We need to choose our basis of W so that X lies in the parahoric
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C2 ↔ (∅, (2), ∅)
C1 × C1 ↔ (∅, (1, 1), ∅)

C1 × C1 ↔ (∅, (1), (1))

C2 ↔ (∅, ∅, (2))
C1 × C1 ↔ (∅, ∅, (1, 1))

C1 ↔ ((1), (1), ∅)

A1 ↔ ((2), ∅, ∅)
C1 ↔ ((1), ∅, (1))

1↔ ((1, 1), ∅, ∅)

Figure 7.3: The Theorem for Sp4

of our proposed facet F and descends to a regular semisimple element in the reductive

quotient. In particular, we will choose our ordered basis so that all of the non-zero

entries of X will lie on either the diagonal or in the root space of a root α so that

F ⊆ Hα.

2. The way in which Fr acts on the eigenvalues of the matrix of multiplication by ai. When

we put everything together, we will use this information to determine the conjugacy

class in W associated to our torus.

7.4.1 The Partition µ0

We begin with a lemma:

Lemma 7.4.2. The degree m extension Fmq of Fq contains an element η so that Fmq = Fq(η2).

In other words, η2 is a primitive element of the extension Fmq /Fq.

Proof. We will treat the cases of p = 2 and p 6= 2 separately. First, suppose p 6= 2, and choose
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an element η ∈ Fmq so that η is a cyclic generator of the multiplicative group of Fmq . Then η

has order qm − 1, and since p 6= 2, η2 has order (qm − 1)/2 =
q − 1

2
(1 + q + · · ·+ qm−1). If

η2 is not a primitive element of the extension Fmq /Fq, then η2 must belong to some proper

subextension, and so the order of η2 is less or equal qk − 1 for some k < m. But

qk − 1 < qk < 1 + q + · · ·+ qm−1 <
q − 1

2
(1 + q + · · ·+ qm−1)

since q > p > 2, and so η2 is the desired primitive element of the extension Fmq /Fq.

On the other hand, if p = 2, then since 2 is then coprime to qm − 1, η2 is another cyclic

generator of the multiplicative group of Fmq for any cyclic generator η of Fmq , and so we are

done.

For the part x1 of the partition µ0, we may thus assume that F (x1) = F (η2) for some

η ∈ o×
F (x1) . Let f(x) be the minimal polynomial of η2 over F so that F (x1) = F [x]/(f(x)). Note

that F (x1) = F (η) as well, and so the minimal polynomial g(x) of η over F also has degree x1,

which we will use shortly. Then we define the algebra Fx1 := F (x1)[y]/(y2−η2) ∼= F [y]/(f(y2)).

Then Fx1 is 2-dimensional over F (x1) and is not a field, meaning that it is the algebra

corresponding to x1 in the Waldspurger construction. We have that the non-trivial F (x1)-

automorphism τ sends y to −y.

We set c1 = y so that our symplectic form on Fx1 , viewed as an F -algebra, is given by

the pairing 〈v1, v2〉 = 1
2x1

traceFx1/F
(τ(v1)v2y) for v1, v2 ∈ Fx1 . We set a1 = y so that our

F -endomorphism Xx1 on Fx1 is given by multiplication by y.

We will now determine the eigenvalues of our multiplication map Xx1 , and we will

determine how Fr acts on them. Again viewing Fx1 as an F -vector space, we begin by

fixing the ordered basis {1, y, η2, η2y, η4, . . . , η2(x1−1), η2(x1−1)y}. Then the matrix of Xx1 with

respect to this basis is in rational canonical form, and so the characteristic polynomial of Xx1

is f(x2). We then claim that f(x2) = ±g(x)g(−x). To see this, first note that η and −η cannot

both be roots of g(x). If they were, we would have η = Frk(−η) for some integer k < x1,
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as every unramified extension of F is cyclic. But then we would have that η2 = Frk(η2),

implying that the extension Fq(η2) has degree less than x1 and hence contradicting our choice

of η. Thus the minimal polynomial of −η, which is ±g(−x), is not equal to g(x), and so in

particular g(x) and g(−x) have distinct roots. But η and −η are both roots of the monic

polynomial f(x2), and so we must have that both g(x) and ±g(−x) divide f(x2). Since the

degrees match and the roots are distinct, we have our claim.

With this equality, we have that Fr permutes the roots of g(x), which are elements of

o×
F (x1) having distinct images in the residue field, and the roots of g(−x), which are the

negatives of the roots of g(x), cyclically, and so Fr acts on the roots of f(x2), which are the

eigenvalues of Xx1 , via two x1-cycles.

We will now begin working towards a symplectic basis. To begin, we reorder our basis as

{1, η2, η4, . . . , η2(x1−1), y, η2y, . . . , η2(x1−1)y}.

Then with respect to the basis, Xx1 is a block matrix of the form 0 A

Id 0


where each block is a x1×x1 matrix with non-zero entries in o. However, if we consider F (η2) =

F (x1) as an F -vector space and let Y be the linear transformation given by multiplication

by η2, we notice that A is also the matrix of Y with respect to the ordered basis B =

{1, η2, η4, . . . , η2(x1−1)}. Thus the matrix A has a natural square root
√
A obtained by taking

the matrix of the linear transformation on F (η2) given by multiplication by η with respect to

the basis B. We also see that
√
A is invertible, with inverse given by multiplication by η−1

in F (η2). Note that
√
A and

√
A
−1

both have entries in o.

Now let T be the block matrix √A −
√
A

Id Id


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and let BT be the transformed ordered basis BT = {T · 1, T · η2, . . . , T · η2(x1−1), T · y, . . . , T ·

η2(x1−1)y}. Then the matrix of Xx1 with respect to BT is given by 1
2

√
A
−1 1

2
Id

−1
2

√
A
−1 1

2
Id


 0 A

Id 0


√A −

√
A

Id Id

 =

√A 0

0 −
√
A


From here, we finally construct a symplectic basis. First, we claim that 〈T · η2i, T · η2j〉 =

0 = 〈T · η2iy, T · η2jy〉 for all i, j in {0, . . . , x1 − 1}. To see this, note that

T · η2i = η · η2i + η2iy = η2i+1 + η2iy

since
√
A acts on F (x1) by multiplication by η by construction and

T · η2iy = −η · η2i + η2iy = −η2i+1 + η2iy.

Thus

〈T · η2i, T · η2j〉 = 〈η2i+1 + η2iy, η2j+1 + η2jy〉 =
1

2x1

traceFx1/F
((η2i+1 − η2iy)(η2j+1 + η2jy)y)

=
1

2x1

traceFx1/F
(yη2i+2j+2 + η2i+2j+3 − η2i+2j+3 − yη2i+2j+2)

= 0.

The computation for 〈T · η2i, T · η2j〉 is nearly identical.

Thus we can decompose the F -vector space Fx1 into two Lagrangian subspaces, x1-

dimensional subspaces F+
x1

= spanF{T · 1, T · η2, . . . , T · η2(x1−1)} and F−x1
= spanF{T ·

y, . . . , T · η2(x1−1)y} so that 〈x, y〉 = 0 for all x, y ∈ F+
x1
, resp. F−x1

. Then for v′ ∈ F−x1
, the

map which sends v ∈ F+
x1

to 〈v, v′〉 gives a linear functional on F+
x1

. Since the symplectic form

is non-degenerate, we obtain an isomorphism F−x1

∼−→ (F+
x1

)∗, where (F+
x1

)∗ denotes the dual

space of F+
x1
. We can then construct a dual basis {γ∗0 , . . . , γ∗x1−1} of (F+

x1
)∗ so that γ∗i (T ·η2j) =
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
0 i 6= j

1 i = j

, and letting B′ be the ordered basis {T · 1, T · η2, . . . , T · η2(x1−1), γx1−1, . . . , γ0},

where γi is the inverse image of γ∗i under our isomorphism F−x1

∼−→ (F+
x1

)∗, we have obtained

our symplectic basis.

Note that the change of basis matrix from BT to B′ has the block-diagonal form

Id 0

0 M


for some x1 × x1 matrix M , and so the matrix of Xx1 with respect to B′ also has block

diagonal form √A 0

0 N



where N is the x1×x1 matrix given by conjugating −
√
A

ᵀ
by the matrix


1

. .
.

1

 . Thus

we note that the matrix of Xx1 with respect to the ordered basis B′ still has entries in o.

For future use, we let γx1,+
j+1 := T · β2j and γx1,−

j+1 := γj for j ∈ {0, . . . , x1 − 1} so that

B′ = {γx1,+
1 , . . . , γx1,+

x1
, γx1,−

x1
, . . . , γx1,−

1 }. We also let

M1,1
x1

0

0 M2,2
x1


denote the matrix of Xx1 with respect to this ordered basis.

Remark: Note that we could have constructed the symplectic basis before applying the

transformation T to our original basis. However, the resulting matrix of Xx1 would not have

the block-diagonal form we have just obtained, which is essential to ensuring our resulting

element will be a lift of a regular semisimple element in the reductive quotient of our eventual

facet F. In particular, we want the non-zero entries of this piece to only show up in the root

spaces in the subsystem spanned by the simple roots αi.
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Thus we are done with the entry x1 in µ0. For the other xj ∈ µ0, we can repeat this

process. The only difference is if xj1 = xj2 for j1 6= j2, we need to rescale our choice of aj2 by

a representative of a non-trivial class in F×q /(F×q ∩R2xj1
), where R2xj1

denotes the group of

2xj1th roots of unity which belong to F×q . The resulting matrix of Xxj2
and its eigenvalues are

then scaled by the same element so that the entries of Xxj2
still lie in o and the eigenvalues

of Xxj2
still lie in o×

F (x1) . Since q > 2n, we can scale so that for all xjm = xj1 , each of the ajm

are multiplied by representatives of different classes. We need to do this so that condition (b)

at the start of Section 4.1 is satisfied and so that the the eigenvalues of all the matrices Xxjm

are distinct elements of o×Fun
with distinct images in F×q .

7.4.2 The Partition µ′

We choose a lift δ ∈ o×
F (y1) of an element of the degree y1 extension Fy1

q of Fq which

generates the cyclic group (Fy1
q )×. Then we have that the degree y1 unramified extension

F (y1) is equal to F [δ]. Furthermore, the image of δ cannot have a square root in (Fy1
q )× since

(Fy1
q )× has even order, and so the degree 2 unramified extension Fy1 of F (y1) is generated by

δ1/2 for some fixed square root of δ. We let τ denote the non-trivial element of the Galois

group of the extension Fy1/F
(y1), so that τ(δ1/2) = −δ1/2.

We choose ay1 = cy1 = δ1/2 in the Waldspurger construction. Thus our F -endomorphism

Xy1 of Fy1 is given by multiplication by δ1/2, and our symplectic form on Fy1 is given by

the pairing 〈v1, v2〉 = 1
2y1

traceFy1/F (τ(v1)v2δ
1/2) for v1, v2 ∈ Fy1 . Let f(x) be the minimal

polynomial of δ over F . Then f(x2) is the minimal polynomial of δ1/2 over x, and so it also

the characteristic polynomial of Xy1 . Since f(x2) is the minimal polynomial of an unramified

extension of F , we know that the eigenvalues of Xy1 are in o×
F (y1) and have distinct images in

Fy1
q . We also know that Fr permutes the 2y1 roots of f(x2) cyclically. Furthermore, for all

roots γ1/2 of f(x2), we must have that Fry1(γ1/2) = −γ1/2 since Fr permutes the y1 roots of

f(x) cyclically, meaning that Fr acts as an odd y1-cycle on the roots of f(x2).
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Before constructing our symplectic basis, we begin with the ordered basis

{1, δ, . . . , δy1−1, δ1/2, δ3/2, . . . , δy1−1/2}.

Then the matrix of our multiplication map with respect to this basis has the block form 0 A

Id 0


where each block is a y1 × y1 matrix. If we let

F+
y1

= spanF{1, δ, δ2, . . . , δy1−1} and F−y1
= spanF{δ1/2, δ3/2, . . . , δy1−1/2},

then note that any two elements of F+
y1

(resp. F−y1
) are mutually orthogonal with respect to our

symplectic form. For v′ in F−y1
, the map which sends v ∈ F+

y1
to 〈v, v′〉 gives a linear functional

on F+
y1
, and since the symplectic form is non-degenerate, we have an isomorphism F−y1

∼−→ (F+
y1

)∗,

where (F+
y1

)∗ denotes the dual basis of F+
y1

. Constructing a dual basis {γ∗0 , . . . , γ∗y1−1} of (F+
y1

)∗

so that γ∗i (δ
j) =


0 i 6= j

1 i = j

, we let B′ = {1, . . . , δy1−1, γy1−1, . . . , γ0}, where γi is the inverse

image of γ∗i under our isomorphism F−y1

∼−→ (F+
y1

)∗. For future use, we let γy1,+
j+1 = δj and

γy1,−
j+1 = γj for all j ∈ {0, . . . , y1 − 1} so that B′ = {γy1,+

1 , . . . , γy1,+
y1

, γy1,−
y1

, . . . , γy1,−
1 }.

Note that the change of basis matrix from our initial basis to the ordered basis B′ has

the block-diagonal form

Id 0

0 M

 for some y1 × y1 matrix M , and so the matrix of our

multiplication map with respect to B′ has the block form 0 M1,2
y1

M2,1
y1

0

 .

This is a matrix with entries in o.

For the other yj ∈ µ′, we can repeat this process. The only change we need to make is

that if yj1 = yj2 , for j1 6= j2, we need to rescale our choice of ayj2 by a representative of a

91



non-trivial class in F×q /(F×q ∩R2yj1
), where R2yj1

denotes the group of 2yj1 roots of unity. The

resulting matrix of Xyj2
and its eigenvalues are then scaled by the same element of F×q so that

the entries of Xyj2
still lie in o and the eigenvalues of Xyj2

still lie in o×
F (y1) . Since q > 2n, we

can scale so that for all yjm = yj1 , all of the ajm are multiplied by representatives of different

classes. As with µ0, we do this to ensure condition (b) at the start of section 4.1 is satisfied.

7.4.3 The Partition µ′′

For zi ∈ µ′′, we choose δ as in the previous section so that F (zi) = F (δ) and Fzi = F (δ1/2).

The primary difference in the construction from the previous section is that we set czi = $δ1/2,

so that the symplectic form is given by 〈v1, v2〉 = 1
2zi

trFzi/F (τ(v1)v2$δ
1/2) for v1, v2 ∈ Fzi . We

take azi = dzi · δ1/2, where dzi is an element of Fq chosen so that for all zi = zj , dzi and dzj are

distinct representatives of F×q /(F×q ∩R2zi), where R2zj1
denotes multiplicative group of 2zith

roots of unity in F×q , and so that for all zi = yk for yk ∈ µ′, ayk was not scaled by an element

in the same class as dzi in the previous section. Then our F -endomorphism is multiplication

by dzi · δ1/2. We take our initial basis to be B = {1, δ, . . . , δzi−1, δ
1/2

$
, δ

3/2

$
, . . . , δ

zi−1/2

$
}. We

then construct the change of basis matrix that we would have constructed for the basis

{1, δ, . . . , δzi−1, δ1/2, δ3/2, . . . , δzi−1/2} in the µ′ case, and apply it to B to obtain an ordered

basis B′ = {γzi,+1 , . . . , γzi,+zi
, γzi,−zi

, . . . , γzi,−1 }. Then we again have a symplectic basis, and the

matrix of the multiplication map Xzi with respect to B′ has the block form 0 M1,2
zi

M2,1
zi

0

 .

The zi × zi matrix M1,2
zi

(resp. M2,1
zi

) has non-zero entries in p−1 (resp. p), and we again see

that the eigenvalues of Xzi are elements of o×
F (zi)

with distinct images in Fziq .
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7.4.4 Completing the Proof

We are now ready to put everything together. Let

W =
⊕
xi∈µ0

Fxi ⊕
⊕
yj∈µ′

Fyj ⊕
⊕
zk∈µ′′

Fzk .

Then W is the space associated to the triple (µ0, µ
′, µ′′) in the Waldspurger construction.

The symplectic form and F -endomorphism determining our regular semisimple element are

the respective sums of the symplectic forms and F -endomorphisms of each subspace, as

described in section 4.

For xi ∈ µ0, set B+
xi

= {γxi,+1 , . . . , γxi,+xi
} and B−xi = {γxi,−xi

, . . . , γxi,−1 }. Define B±yj and B±zk

analogously. Fix the ordered basis

BW = B+
z1
∪· · ·∪B+

zt∪B
+
x1
∪· · ·∪B+

xr∪B
+
y1
∪· · ·∪B+

ys∪B
−
ys∪· · ·∪B

−
y1
∪B−xr∪· · ·∪B

−
x1
∪B−zt∪· · ·∪B

−
z1
.

By our work in the previous subsections, we know that the matrix of our symplectic form

on W has the form 

1

. .
.

1

−1

. .
.

−1


with respect to the ordered basis BW so that we have an obvious isomorphism from W into V .

With respect to BW , we have that our F -endomorphism (which again is a regular semisimple

element of our unramified torus), has the block formM1,1 M1,2

M2,1 M2,2

,
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where each block has size n× n. These blocks M i,j are in turn block matrices. The matrix

M1,1 is block diagonal of the form

0

. . .

0

M1,1
x1

. . .

M1,1
xr

0

. . .

0



,

where the blocks have size z1×z1, . . . , zt×zt, x1×x1, . . . , xr×xr, y1×y1, . . . , ys×ys respectively.

Similarly, the block M2,2 is block diagonal of the form

0

. . .

0

M2,2
xr

. . .

M2,2
x1

0

. . .

0



,

where the listed blocks have size ys × ys, . . . , y1 × y1, xr × xr, . . . , x1 × x1, zt × zt, . . . , z1 × z1.

The matrices M1,2 and M2,1 are block anti-diagonal. M1,2 has the form
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

M1,2
z1

. .
.

M1,2
zt

0

. .
.

0

M1,2
y1

. .
.

M1,2
ys



,

where the listed blocks have size, from top to bottom, z1 × z1, . . . , zt × zt, x1 × x1, . . . , xr ×

xr, y1 × y1, . . . , ys × ys, and M2,1 has the form

M2,1
ys

. .
.

M2,1
y1

0

. .
.

0

M2,1
zt

. .
.

M2,1
z1



,

where the listed blocks have size, from top to bottom, ys × ys, . . . , y1 × y1, xr × xr, . . . , x1 ×

x1, zt × zt, . . . , z1 × z1. Henceforth, we identify our F -endomorphism of W with the matrix

we have constructed above, and we will write XW for both.

Thus XW is the regular semisimple element for our torus arising from the Waldspurger

construction. We now determine a pair (F, w) giving our torus in the DeBacker parameteriza-

tion. We begin with w. To compute w, we first note that there is a diagonal matrix s in the
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Lie algebra of S and an element g ∈ G(Fun) so that Xw = gs. Then since XW is F -rational,

we have that n = g−1Fr(g) is an element of NG(S) sending Fr(s) to s, and we know from

[1] that w is the image of this element in the Weyl group. But by linear algebra, note that

the columns of g must be an eigenbasis for the endomorphism XW . Since XW is a regular

semisimple element in the Lie algebra of Sp2n its eigenvalues are distinct, and so g−1Fr(g)

is a permutation matrix, where the cycle type of the permutation is determined by how Fr

permutes the eigenvalues of XW . But by our previous analysis, each xi ∈ µ0 gives us an even

cycle of type Axi−1 in the Carter notation, while each yj ∈ µ′ and zk ∈ µ′′ gives us an odd

cycle of type Cyj or Czk respectively. Thus the Weyl group element w associated to XW is of

type

(Cz1 × · · · × Czt)× Ax1−1 × · · · × Axr−1 × (Cy1 × · · · × Cys)

in the Carter notation.

To conclude the proof, we need to show that the image of XW in Lie(GF)/Lie(G+
F ) is still

a regular semisimple element, where F denotes the facet in the fundamental alcove C of type

〈S(µ′′)|x1, . . . , xt|S(µ′)〉. To do this, we claim that it suffices to check

• The eigenvalues of XW lie in o×Fun
and are distinct in the reductive quotient.

• Every non-zero entry in the root space of a root α in the subsystem Φ′ spanned by

{−e, α1, . . . , αS(µ′′)−1} lies in o if the coefficient of −e in α is 0 with respect to the

simple system {−e, α1, . . . , αS(µ′′)−1} of Φ′, lies in p if the coefficient of −e is positive,

or lies in p−1 if the coefficient of −e is negative.

• Every non-zero entry in the root space of a root α in the subsystem spanned by the

simple roots αj corresponding to the vertices in the subdiagram of the extended Dynkin

diagram associated to a part xi ∈ µ0 lies in o.

• Every non-zero entry in the root space of a root α in the subsystem spanned by the
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simple roots β and αn−S(µ′)+1, . . . , αn−1 is in o.

• Every non-zero diagonal entry is in o.

• Every other entry is zero.

The last five conditions ensure that the element XW lies in the Lie algebra of the parahoric

at our facet, and the first ensures that the image XW of XW in the associated reductive

quotient is a regular semisimple element of Lie(GF). Note that the centralizer of XW , call it T,

in the quotient GF/G
+
F is a maximal Fq-torus that corresponds to the image of CG(XW )∩GF

in GF/G
+
F . By [10], the maximal unramified torus CG(XW ) is a lift of T.

We now check that XW does in fact satisfy the six conditions. The first condition follows

from our choice of the elements ai in the preceding sections for each partition. In particular,

we showed that the eigenvalues associated to each part are distinct elements of o×Fun
, and

since they are the roots of the minimal polynomial of an unramified extension, they have

distinct image in the residue field. Furthermore, by scaling at the end of each subsection

whenever one of our partitions contains parts that are equal, we ensured that eigenvalues of

XW in the direct sum are also distinct elements of o×Fun
which still have distinct image in F×q .

We can see that all of the remaining conditions hold from the block form of our matrix

XW . In the first S(µ′′) columns and last S(µ′′) columns of XW , all non-zero entries are in

M2,1 and M1,2 respectively. In particularly, they lie in a block of the form M2,1
zi

or M1,2
zi

. The

entries in the blocks M2,1
zi

correspond to root spaces of roots in the subsystem spanned by

{−e, α1, . . . , αS(µ′′)−1} so that the coefficient of −e is positive. By our construction in the

previous section, we know that the non-zero entries of M2,1
zi

lie in p. Similarly, the entries in

the blocks M1,2
zi

correspond to root spaces of roots so that the coefficient of −e is negative,

and again by our construction in the previous section, we know that the non-zero entries of

B1,2
zi

lie in p−1.

For xi ∈ µ0, we consider the columns S(µ′′)+x1+· · ·+xi−1+1, . . . , S(µ′′)+x1+· · ·+xi−1+xi

and 2n − (S(µ′′) + x1 + · · · + xi) + 1, . . . , 2n − (S(µ′′) + x1 + · · · + xi−1). Then the only
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non-zero entries are in the matrices M1,1
xi

and M2,2
xi

. The non-zero entries of these matrices

are in o. They contain the diagonal entries of XW lying in the columns, and they also contain

the root spaces of the roots in the span of αS(µ′′)+x1+···+xi−1+1, . . . , αS(µ′′)+x1+...xi−1, which are

the simple roots corresponding to the vertices in the subdiagram of the extended Dynkin

diagram associated to xi.

Finally, in the middle 2· S(µ′) columns of XW , all non-zero entries are in the blocks of

the form M2,1
yi

or M1,2
yi
. But the non-zero entries of these blocks are in o, and the entries of

the blocks are root spaces of roots in the subsystem spanned by β and αn−S(µ′), . . . , αn−1.

Consequently, XW defines the torus associated to the pair (F, w), and so we are done.

7.5 Inverse Map

The construction in the previous section produces one pair (F, w) in the equivalence class

associated to our maximal unramified torus. It is natural to ask whether we can obtain

other pairs (F′, w′) in our equivalence class so that we may construct an inverse map. To

answer this, note that our construction only produces facets of the form 〈a|x1, . . . , xr|b〉 for

x1 ≥ · · · ≥ xr. However, in our construction of W in the previous section, note that if σ is a

permutation of the parts of µ0, then we can permute the sub-bases B+
xi

by σ when choosing

our ordered basis BW , as long as we also permute the B−xi analogously. Then with respect to

this permuted ordered basis, the matrix of XW will still be of type w, and it will define an

element in the same G-conjugacy class. However, now it will be regular semisimple in the

reductive quotient of the facet of type 〈S(µ′′)|σ(x1), . . . , σ(xr)|S(µ′)〉.

Consequently, given a pair (F, w), where F is of the form 〈a|x1, . . . , xr|b〉 and w ∈ WF is

elliptic of type (Ca1 × · · · ×Cat)×Ax1−1× · · · ×Axr−1× (Cb1 × · · · ×Cbs), then we can define

µ0 to be the unique partition containing the parts x1, . . . , xr, µ
′ to be the partition containing

the parts b1, . . . , bs, and µ′′ to be the partition containing the parts a1, . . . , at. Then the

F -conjugacy class associated to the triple (µ0, µ
′, µ′′) is the F -conjugacy class associated to

(F, w).
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