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Abstract

Biomedical data commonly include repeated measures of biomarkers and disease states over

time. When the processes determining the biomarker levels and disease states are related, a joint

longitudinal and survival model is needed to properly handle the data. In a recent study of adrenal

cancer patients at the University of Michigan, their tumors were monitored with repeated radiog-

raphy scans. Other body measurements, called morphomics, were also measured from these scans.

At each scan, it was noted whether the patient’s disease was stable, progressing or regressing. In

addition, the data include time to death or end of follow-up. Motivated by this data we explore

joint models for longitudinal and survival data of several types.

In Chapter 2 we compare computational approaches to joint longitudinal and survival models

with a single type of event. We examine different joint model formulations especially those most

often implemented in software available to statisticians and clinicians. We apply and compare

several models to the adrenal data and perform a simulation study to further evaluate each model

and software.

In Chapter 3 we examine the relationship between a morphomic variable and time to first dis-

ease state change which can be either cancer progression or regression, in the adrenal cancer data.

We develop Bayesian joint models for longitudinal and competing risks survival data. A seldom

considered aspect of competing risk joint models is the relationship between the two competing

outcomes. This cannot be examined when using the most common technique, cause-specific haz-

ards models. With that motivation for our future projects, we work under the assumption that each

risk has a latent failure time for each individual. We begin with the simple case of conditionally in-

xiii



dependent risks and model the survival times using parametric distributions. We apply our models

to the adrenal data and examine the performance via simulations.

In Chapter 4 we extend our joint longitudinal and competing risks models for dependent com-

peting risks. We begin with a discussion of survival copulas and the general joint survival function

we will use which is based on an Archimedean copula model. We prove that dependent variables

with this joint survival function can be written in terms of independent variables which is useful

for simulating data. We develop the model with Weibull marginals. We fit this model to the adrenal

data and examine the models using a simulation study. We discuss interpretations of the model and

how it can be used to learn about the dependence between risks.

Finally, in Chapter 5 we will develop a joint model that incorporates multiple longitudinal

outcomes and multistate survival data. We will develop an appropriate model and apply it to the

adrenal cancer data.
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Chapter 1

Introduction
Observational studies with a time-to-event outcome will often include longitudinal measure-

ments associated with the event time outcome. An early and still studied example is CD4 counts

over time and time until progression from HIV to AIDS (Wulfsohn and Tsiatis, 1997; Wang and

Taylor, 2001; Huang et al., 2011). In cancer, increasing PSA levels are known to be associated with

prostate cancer recurrence (Proust-Lima and Taylor, 2009). Other examples include the study of

biomarkers in cancer vaccine trials, quality of life measurements in cancer, and time-to-failure and

degradation in engineering applications (Brown and Ibrahim, 2003; Ibrahim et al., 2010; Lehmann,

2009). A new example motivating this work is a study of adrenocortical carcinoma patients at the

University of Michigan that recorded body measurements over time as well as times for events

including cancer progression and death.

In such contexts, separate models for the longitudinal and survival components that do not take

into account the dependence between the longitudinal and survival processes produce inefficient

results and are prone to bias (Ibrahim et al., 2010). Ideally, a joint model would be used. Less com-

plicated alternatives to joint models include using time-dependent covariates or two-stage models

but these each have drawbacks. Including the longitudinal process as a time-dependent covariate

in the survival model requires the unrealistic assumptions that the longitudinal measurement has

negligible measurement error and that there are observations at every event time (Mccrink et al.,

2013). Traditional Two-Stage models will fit the longitudinal model first, disregarding the sur-

vival outcome. Then the fitted longitudinal trajectory is included as a time-dependent variable in

the survival model (Tsiatis et al., 1995). This will account for the measurement error within the

longitudinal process in the survival model. However, this strategy fails to account for the possible

1



informative censoring in the longitudinal process created by the survival event.

A fully specified joint model incorporates the dependence between the longitudinal and survival

components properly and provides efficient inference that is less prone to bias. Joint models lend

themselves to answering several possible research questions such as the effect of covariates on

one outcome, the association between the outcomes, hypothesis testing, or outcome prediction

(Rizopoulos, 2012, p. 9-10).

There are differing approaches to formulating joint models. We shall focus on random effects

models as these are the most commonly used. Random effects models assume the likelihoods for

the longitudinal and time-to-event models each include correlated random effects, consequently

linking the two processes. Some other likelihood approaches include Selection Models and Pattern-

Mixture Models (Mccrink et al., 2013). Another formulation is latent class models, in which

subjects are assumed to belong to one of a number of latent classes and association is induced

by class membership (Proust-Lima et al., 2014; Proust-Lima and Taylor, 2009; Lin et al., 2002;

Proust-lima et al., 2015; Rouanet et al., 2016; Andrinopoulou et al., 2018; Sun et al., 2019).

Early work on joint models dates back to the mid-nineties (De Gruttola and Tu, 1994). Since

then a body of work has steadily emerged in this area of research (Henderson et al., 2000; Wang and

Taylor, 2001; Wulfsohn and Tsiatis, 1997). Some early Bayesian work on this topic includes those

by Faucett and Thomas (1996), and Brown and Ibrahim (2003). More recently, there have been

several extensions in the directions of dynamic predictions and prognostic tools (Proust-Lima and

Taylor, 2009; Taylor et al., 2013; Rizopoulos et al., 2014), competing risks (Elashoff et al., 2007;

Hu et al., 2009), recurrent events (Liu and Huang, 2009), multiple longitudinal variables (Li et al.,

2007), cure rates (Yu et al., 2004), and diagnostics (Huang et al., 2009). Several comprehensive

reviews of joint modeling of longitudinal and survival processes have been published (Tsiatis and

Davidian, 2004; Mccrink et al., 2013; Gould et al., 2014; Papageorgiou et al., 2019).

Joint models are useful in a few different scenarios. The main interest can be in the longitudinal

process with an event causing informative dropout. Interest could be equally on a longitudinal and

a survival process that are associated. A third common scenario occurs when a time-to-event

2



process is modeled with a longitudinal covariate measured intermittently and with error. Such data

require joint modeling to fully capture the association and reduce bias.

We will begin by describing the basic framework of a joint model in Section 1.2 and usual

estimation techniques in Section 1.3. Section 1.5 describes our motivating dataset from adrenal

cancer patients at the University of Michigan.

1.1 Notation

Throughout this work we will use the following notation unless otherwise specified. Im de-

notes an m × m identity matrix and 0m denotes a vector of zeros of length m. Ind(·) is the

indicator function. A superscript T denotes the transpose of a vector or matrix. The function

log(x) is the natural logarithm of x and may be used interchangeably with ln(x). The symbol ∝

stands for "is proportional to". We will use the phrases survival time, event time, and failure time

interchangeably. Also we will use cause, death, event, and failure interchangeably in regards to

the time-to-event endpoint. Pr(A) will denote the probability of event A. We use f(·) for the

probability density function of a random variable, F (·) the cumulative distribution function, S(·)

the survival function where S(·) = 1 − F (·), h(·) the hazard function, and H(·) the cumulative

hazard function.

1.2 Modeling Framework

We will begin by describing common joint models with longitudinal measurements and a sin-

gle survival outcome. Consider i = 1, ..., N subjects with repeated longitudinal measurements

and a terminal event measured. The repeated measurements and event time are assumed to be

associated. Each subject i has Ji measurements taken at different times with the intervals between

measurements possibly differing. The total number of measurements is n =
∑N

i=1 Ji.
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1.2.1 Longitudinal Submodel

Let Yi(t) denote the longitudinal process for subject i at time t. We assume there is a true un-

derlying process, or trajectory, mi(t) from which Yi(t) is measured with error ei(t), Yi(t) =

mi(t) + ei(t). In practice, we do not observe the longitudinal process at all times. Instead for sub-

ject iwe observe Yi(t) at ni times (ti,1, ..., ti,Ji). Let Yi = (Yi,1, ..., Yi,Ji) = (Yi(ti,1), ..., Yi(ti,Ji)) be

the vector of observations. The trajectory mi(t) is modeled with fixed (possibly time-dependent)

covariates, Xi,j and parameter coefficients β, and random effects vector Ui with possibly time-

dependent design matrix Zi,j . The random effects are traditionally assumed to follow a Normal

distribution. A typical longitudinal submodel is shown in (1.1).

Yi,j = mi(ti,j) + ei(ti,j) = Xi,jβ + Zi,jUi + ei,j,

with ei = (ei,1, ei,2, . . . , ei,Ji)
T ∼ N(0Ji , σ

2IJi),

Ui ∼ N(0,ΣU), i = 1, ..., N, j = 1, ..., Ji;

(1.1)

where σ2 and ΣU are the dispersion parameters for the error and the random effects, respectively.

1.2.2 Time-to-Event Submodel

Let T ∗i denote the event time for subject i, Ci the censoring time, Ti = min{T ∗i , Ci} the observed

time, and Di = Ind(T ∗i ≤ Ci) the event indicator. A common time-to-event submodel is a relative

risk model of the form (1.2).

hi(t|Mi(t)) = h0(t)exp{Wiγ + αmi(t)} (1.2)

where Mi(t) is the history of the longitudinal process up to t, Mi(t) = {mi(s), 0 ≤ s < t}. The

matrix of fixed covariates, Wi, can include the same variables as Xij in the longitudinal submodel

but they do not necessarily overlap. The trajectorymi(t) from the longitudinal model is included to

link the two processes and α measures the strength of this association. While proportional hazards
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models are common, accelerated failure time and other survival models have been implemented

(Mccrink et al., 2013; Tseng et al., 2005)(Rizopoulos, 2012, p.137).

The model form in (1.2) will be referred to as the current value form since the association is

through the current value of the longitudinal trajectory, mi(t), on the right-hand side of the equa-

tion. This form is most often used when the survival time is of interest and the longitudinal process

is thought of as a time-dependent covariate measured with error. In (1.2), hi(t) is the event hazard

and h0(t) is the baseline hazard. In ordinary Cox regression h0(t) is left unspecified, avoiding

restrictions that come from specifying a parametric form for the baseline hazard (Yuen and Mack-

innon, 2016). However if an unspecified hazard is applied in a joint model, it has been shown that

standard errors of the parameter estimates can be underestimated (Hseih et al., 2006). This can be

remedied by estimating the standard errors with an additional method such as bootstrapping (Ri-

zopoulos, 2010; Yuen and Mackinnon, 2016). To avoid this issue, parametric but flexible functions

are often used for h0(t), such as piecewise constant or spline models (Rizopoulos, 2012, p.53).

These flexible functions can sufficiently approximate the baseline hazard and has been noted as the

preferred choice for h0(t) by some (Rizopoulos, 2010; Yuen and Mackinnon, 2016)(Rizopoulos,

2012, p.53).

Alternatively, the submodels can be linked through a shared parameters model. This is often

used when the longitudinal process is the main interest with informative censoring or when the

focus is on both processes equally. Assuming a longitudinal submodel as in (1.1), a survival

submodel as shown in (1.3) is common

hi(t) = h0(t)exp{Wiγ + αZ2i(t)Ui} (1.3)

where Ui is the same vector of random effects as in (1.1) and α again measures the association.

A typical example is a random coefficients model where Z2i(t)Ui = U0i + U1it with U0i and U1i

correlated, often multivariate normal (Wulfsohn and Tsiatis, 1997). The association can be gener-

alized so that αZ2i(t)Ui = α0U0i + α1U1it and α0 need not equal α1 (Mccrink et al., 2013).
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1.3 Estimation

1.3.1 Frequentist Estimation

It is commonly assumed that conditionally given the random effects, the longitudinal and time-

to-event outcomes are independent and so are the longitudinal measurements taken on a single

subject. Denoting the set of all parameters by Ω = (β, γ, α), the log-likelihood contribution from

subject i is

li(Ω) = log

∫ ( Ji∏
j=1

f(yi,j|Ui; Ω)

)
hi(Ti|Ui; Ω)DiS(Ti|Ui; Ω)f(Ui; Ω)dUi,

where f(·) denotes the density function and S(·) denotes the survival function. There is generally

no closed form solution to the likelihood equations. Numerical integration and optimization tech-

niques such as an EM algorithm treating the random effects as missing data, are used in practice.

Due to high-dimensional integration and potential correlation induced by the random effects, the

process of convergence can be slow. Other methods include Newton-type or hybrid-EM and quasi-

Newton algorithms (Rizopoulos, 2012, p.64)(Henderson et al., 2000; Hseih et al., 2006; Tsiatis

and Davidian, 2004; Wulfsohn and Tsiatis, 1997; Yu et al., 2004).

1.3.2 Bayesian Estimation

Joint models from a Bayesian perspective have also been implemented. The full posterior distri-

bution conforms to the structure

f(Ω, U |T,D, y) ∝
n∏
i=1

(f(yi|Ui; Ω)f(Ti, Di|Ui; Ω)f(Ui; Ω))π(Ω),

where π(Ω) denotes the joint prior for the model parameters. MCMC techniques such as Gibbs

Sampling or Metropolis-Hastings algorithm can be used for inference (Bekele and Shen, 2005;

Faucett and Thomas, 1996; Gould et al., 2014; Henderson et al., 2000; Rizopoulos and Ghosh,
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2011; Tsiatis and Davidian, 2004; Yu et al., 2004).

Bayesian estimation can have faster convergence rates than maximum likelihood methods (Mc-

crink et al., 2013). Bayesian models also make prediction fairly straightforward using the posterior

predictive distribution (Sweeting and Thompson, 2011). A drawback is needing to specify priors

which may influence the estimation. Because of this sensitivity analyses are recommended. On

the other hand, Bayesian models avoid asymptotic approximations and can incorporate historical

data (Gould et al., 2014).

1.4 Some Extensions in Joint Modeling

Chapter 2 will focus on joint models with a single longitudinal and a single survival event but

joint models have been extended in many ways. In this work we will first consider extensions

in the survival submodel. Chapters 3 and 4 will examine joint models with competing risks out-

comes. In this situation the event can have one of multiple possible causes. A traditional way to

formulate such data is through latent risks. Assuming there are K ≥ 1 possible causes of failure

(or risks), we can assume that each subject i = 1, .., N theoretically has an event time for each

risk T ∗i1, ..., T
∗
iK . Subjects can still be independently censored at time Ti0. Dependent censoring

can be included as one of the K risks. The observed data in this case is the minimum event time

Ti = min(Ti0, T
∗
i1, ..., T

∗
iK) and the cause of the event Di = k if Tik ≤ Til for all l = 0, 1, ..., K.

Chapter 5 will further extend the survival submodel to consider multi-state data of which com-

peting risks is one subset. In multi-state data we assume that there are R ≥ 1 possible states

and a subject can transition between these states over time. In this case we have something like a

competing risks outcome at each transition time and subjects can have multiple transition times.

Additionally in Chapter 5 we will also extend the longitudinal submodel to include more than one

longitudinal outcome.
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1.5 Motivating Study on Adrenocortical Carcinoma

We are motivated by a study of patients with adrenocortical cancer at the University of Michi-

gan Rogel Cancer Center. Between 1983 and 2011 (inclusive) there were 176 people diagnosed

with adrenocortical carcinoma (ACC). We will also use the phrase adrenal cancer to refer to ACC

in this work. Patients were repeatedly subject to CT scans for monitoring their disease (McDuffie

and Aufforth, 2016). The scans were used to determine the state of disease at each scan. To do

this images of the patient’s tumor were compared to those in the last scan. An example of the

timeline with possible states is shown in Figure 1.1. Each patient has an initial scan, labeled Scan

0. The state of their disease at that scan is considered the reference state. Between that scan and

the next scan the disease could change. At the next scan it is determined whether the tumor did not

significantly change in size (stable), became bigger (progressed), or became smaller (regressed).

At that point, the latest disease state is now considered the reference state for the next scan. This

continues for all the patient’s scans. The diagram in Figure 1.1 shows two scans before the end of

follow-up, but this could be any number of scans. We also have information on a terminal event,

namely death. At the end of follow-up the patient may have died; otherwise the patient would be

censored.

Figure 1.1: Diagram of possible states over time in the adrenal cancer study.

Baseline covariates available are age at diagnosis, sex, cancer stage, tumor grade, operative
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Variable Mean Std. dev. N (%) Miss-
ing

Age at diagnosis 45.8 13.2 0

Scan Time (years) 3.3 3.7 0

Count % N (%) Miss-
ing

Sex Male 72 44 11 (6)
Female 93 56

Stage 1 4 2 5 (3)
2 74 43
3 53 31
4 40 23

Tumor Grade Low 84 48 0
High 63 36
Unknown 29 16

Operative resection Open 108 74 31 (18)
Laparoscopic 37 26

Margin positive Yes 26 62 30 (17)
No 91 18
Unknown 29 20

Vascular invasion Yes 87 49 0
No 35 20
No comment 54 31

Chemo at scan Yes 42 10 716 (63)
No 217 51
Mitotane 132 31
Mitotane & chemo 29 7
unknown 4 1

Table 1.1: Description of demographic and clinical information in adrenal cancer study data.

resection, margin positive, and vascular invasion. Information on if the patient was receiving

chemo at the time of scan is available for 37% of the scans. Demographic and clinical information

included in the data are summarized in Table 1.1.

From the scans markers of body composition, called morphomics, were also measured (Bayar

et al., 2017). Morphomics data reflect a patient’s body composition in terms of adipose tissue as

well as bones and organs which can be closely linked to nutritional status. Morphomic variables

are more refined and informative than the commonly used BMI. These measurements could have

clinical significance such as in improving the dosing of cytotoxic drugs (Bayar et al., 2017). Ad-
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Variable N Missing % Missing
visceral fat area 240 21

body depth 240 21

fascia depth 243 21

fascia area 243 21

central visceral depth 243 21

vb2 front skin 240 21

central back fat depth 718 63

central sub-cutaneous depth 238 21

total psoas perimeter area 244 21

average psoas perimeter mean 244 21

lean psoas muscle density 243 21

lean psoas muscle area 243 21

Table 1.2: List of morphomic measures in adrenal cancer study.

ditional studies have found morphomic data to be useful in researching other malignancies such

as pancreatic cancer (Balentine et al., 2010), oropharyngeal cancer (Wang et al., 2016), melanoma

(Sabel et al., 2015), hepatocellular cancer (Singal et al., 2016), colon cancer (Sabel et al., 2013),

renal cell cancer (Xiao et al., 2018) and other conditions including kidney disease (Locke et al.,

2017) and Crohn’s disease (Stidham et al., 2015).

Twelve time-dependent morphomic variables were recorded at each scan. See Table 1.2 for the

list of longitudinal measurement variables available and see Appendix A for a description of these

morphomic variables (Holcombe et al., 2016). There are between 1 and 47 scans for each patient

with a mean of 6.5 and median of 4 scans. The data includes 1140 longitudinal measurements in

total. For 240 of the scans, the morphomic data is not available as the scans could not be processed.

Time was measured from the date of adrenal cancer diagnosis. Of the patients, 98 (56%) died

and the other 78 (44%) were censored. Time until death or censoring fell between 0.1 and 24.5

years with a median of 2.5 years. There are 117 (66%) with at least one progression. Time to first

progression among those patients was between 0.05 and 14.5 and years with a median of 0.8 years.

For regression, 55 (31%) had at least one regression and time to regression among those patients

10



Variable Mean Std. dev.
Number of Progressions 2.5 4.1

Number of Regressions 0.5 1.0

Number of Scan Events (Pro- or
Re-gressions)

3.0 4.6

Count %
Died Yes 98 56

No (Censored) 78 44

First Event Progression 96 55
Regression 37 21
Death 3 2
Censored 40 23

Died without Progression 5 3

Censored without Progression 54 31

Died without Progression or Re-
gressions

3 2

Censored without Progression or
Regression

40 23

Percent
Had ≥ 1 Progression 66

% scans found Progression 37

Had ≥ 1 Regression 31

% scans found Regression 6

Had ≥ 1 Event 76

% scan have an Event 42

Median Range
Time to first Progression (if had
progression)

0.8 (0.05, 14.5)

Time to first Regression (if had re-
gression)

0.5 (0.03, 8.7)

Time to First Event (any) 0.8 (0.03, 24.5)

Time to Death without Progression 1.5 (0.2, 3.5)

Time to Death without Progression
or Regression

1.5 (0.2, 2.2)

Table 1.3: Description of disease state and survival information in adrenal cancer study data.

was between 0.03 and 8.7 years with a median of 0.5.

We also calculated time to first event of any type. There were 4 possible first event types: (1)

progression, (2) regression, (3) death, or (4) censoring. If the first event was of type 3 or 4 the

patient had no progression or regression during the entire follow up period. Time to first event was

between 0.03 and 24.5 years with a median of 0.8 years. Survival and disease state information is

summarized in Table 1.3. A few examples of patient data are shown in Figure 1.2.

The primary research question is whether the morphomic variables are associated with progno-

sis. A previous study separately investigated the relationship between several morphomic variables

and recurrence-free and overall survival in ACC (Miller et al., 2012). Specifically, they looked at
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Figure 1.2: Example plots of ACC data.

the variables psoas muscle density (PMD), lean psoas muscle area (LPMA), lumbar skeletal mus-

cle index (LSMI), intra-abdominal (IA) fat, and subcutaneous (SC) fat. The study found that PMD,

LPMA and IA fat had significant associations with the survival outcomes.

Since the morphomic variables are measured from the scans, they will be subject to measure-

ment error. Therefore, a joint model for the longitudinal morphomic data and the survival data is

needed. We begin in the simplest case in Chapter 2 and investigate the relationship between a single

morphomic variable, psoas density, and survival time using joint models within various computa-

tional settings. In Chapters 3 and 4 we consider how the longitudinal and survival processes are

related when we incorporate the information on cancer progression and regression. Specifically,

we treat the survival process as a competing risks problem. We investigate the relationship between

a single morphomic variable lean psoas muscle area (LPMA) and time to either first progression

or first regression. Finally in Chapter 5 we will utilize more of the available of information via a

multistate model. The data include recurrent events, from the declaration of disease state at each

scan, and these events can be one of multiple types (progression, regression, or no event). We also

have the terminal event of death. Further, we have multiple morphomic variables and we would
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like to include more than one in our joint multistate model to examine the relationship between the

morphomics and disease state, while accounting for all aspects of the data. We will do this with a

joint model with two longitudinal outcomes and multistate survival data.
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Chapter 2

Comparison of Computational Approaches

for Joint Longitudinal and Time-to-Event

Models

2.1 Introduction

With multiple submodels and shared random effects, joint models can become complicated and

difficult to utilize. This motivates the need for creating an efficient computational platform to fit

these models. Due to the complexity of joint models, implementation can be slow, but can still

be useful for those wanting to fit relatively simple joint models for data analysis. Major statistical

software such as R, SAS, and Stata include joint modeling functions. The purpose of this chapter

is to provide a comprehensive review of associated implementation issues and explore new appli-

cations in related software platforms. There has been limited review of software implementation

in the joint modeling literature. Some early reviews listed software available at the time (Gould

et al., 2014; Mccrink et al., 2013), utilized a single software for data analysis (Rizopoulos, 2012)

or compared a couple in the context of analyzing a dataset (Mccrink et al., 2013). Other reviews

have compared selected softwares, such as WinBUGS and SAS PROC NLMIXED (Guo and Car-

lin, 2004). Documentation of the %JM macro in SAS compares the available features of the macro

to the JM package in R (Garcia-Hernandez and Rizopoulos, 2015). A review of joint modeling

literature by (Sudell et al., 2016) discussed the frequency with which each joint modeling software
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was used. More recently, Yuen and Mackinnon (2016) compare some of the available software

with an application to a dataset documenting time to psychosis transition.

There are several ways in which this work differs from those in the existing literature. Most

of the reviews focus primarily on the survival component of the joint analysis. By contrast, we

provide findings from simulation that assess simultaneous performance of the time-to-event and

the longitudinal model. Our documentation is also more comprehensive than most reviews cov-

ering specialized topics such as latent classes, competing risks, multiple longitudinal outcomes

and more. Through extensive simulation, we present a comprehensive appraisal of the different

implementations. In addition, the different software are contrasted by means of their performance

when used to fit to data from an ongoing trial on adrenal cancer patients enrolled in the University

of Michigan Rogel Cancer Center.

This work has been published in (Furgal et al., 2019). In Section 1.2, we will demonstrate

the software capabilities with an example data analysis. We will discuss software implementation

in Section 2.2. This includes the JM and joineR packages in R, the %JM macro in SAS, and

the stjm command in Stata. In Section 2.4 we describe our simulations. Section 2.5 outlines

implementation of a Bayesian joint model by means of the JMbayes package in R. Other models

such as competing risks joint models and some specialized software functions are introduced in

Section 2.6 and further described in Appendix C. In Section 2.7 we conclude with a discussion of

our findings.

In this chapter we will use the following symbolic notation for distributions. Unless otherwise

noted N(µ, σ2) denotes a (univariate) Normal distribution with mean µ and variance σ2 while a

multivariate Normal distribution with mean vector µ and covariance matrix Σ will be denoted

MVN(µ,Σ). logN(µ, σ2) is a log-Normal model with mean µ and variance σ2. Weibull(γ, µ) is a

Weibull distribution with shape γ and scale µ. We will use∼ Γ(a, b) to denote a parameter follows

a Gamma distribution with parameters a and b. Wishart(B, a) is a Wishart distribution with a

degrees of freedom and variance matrix B. φ(x) and Φ(x) are the probability density function and

the cumulative distribution function of the standard Normal distribution, respectively.
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2.2 Assessment of Implementation Platform

Fitting a joint model can be computationally intensive. As indicated in the data analysis section,

there are a few software packages that are designed to fit such models in an efficient manner.

However, the class of such models is quite large and the software use different iterative algorithms

for estimation and integration. It is thus important to compare and contrast the implementation

platforms to assess and appraise the performance of the competing tools. Such assessment is

difficult to make on the basis of fits to few specific datasets. We undertake this evaluation with

simulations using various statistical software modules available for fitting joint models. In order

to lay the groundwork for the simulation, we first need to briefly describe the available software

packages. All packages described in this section implement (1.1) and either (1.2) or (1.3) under a

frequentist framework.

2.2.1 JM Package in R

The JM package in the R language was designed for fitting joint models with the jointModel()

function. A full description of this package and the jointModel() function are available in the

CRAN documentation (Rizopoulos, 2016a).

The main arguments for the jointModel() function include the output from a linear mixed

model (from the R function lme() (Pinheiro et al., 2016)) and the output from a Cox propor-

tional hazard model (usually from the R function coxph()) (Therneau and Lumley, 2016). Using

these separate model fits, jointModel() fits a corresponding current-value joint model with

submodels having the same covariates and forms as in the separate models and with the additional

association added to the survival submodel.

The jointModel() function fits three different model forms using the parameterization

argument. The default is parameterization = "value" and fits the current value model in

(1.2). For parameterization = "slope", the survival submodel is linked to the longitudi-
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Functionality
JM R package joineR R

package
%JM SAS
Macro

%JMfit SAS
Macro

stjm Stata
Command

JMbayes R
package

Longitudinal Submodel

Gaussian linear model x x x x x x

Generalized linear models x x x

Covariance matrix options x x

Survival Submodel

Relative Risk model x x x x x x

AFT Weibull model x

Unspecified baseline hazard x x

Piecewise baseline hazard x x x

Spline baseline hazard x x x x x

Association

Current value assoc. x x x x

Current slope assoc. x x x x

Random intercept assoc. x x x x x

Random slope association x x x x x

Separate associations x x x

Interactions in associations x x x x x

Model fit options

Lagged effects x x x

Competing risks models x x

Initial value options x x x x

Stratification in survival submodel x x

Piecewise/Spline hazard customization x x x x

Estimation options

EM only x x

Quasi-Newton x x x

Bayesian MCMC x

Number of iteration control x x x x x x

Convergence tolerance control x x x x x

Piecewise/Spline knots control x x x x

Quadrature points control x x x x x

Adaptive Gauss-Hermite quadrature x x x

Pseudo-adaptive Gauss-Hermite quadrature x

Laplace approximation x x

Gauss-Kronrod Rule x x x

Other options

AIC or BIC x x x

Plotting x x x x

Predictions x x

Approx SE default x x x x

Bootstrap SE option x x x

Table 2.1: Overview of available functionalities for joint modeling in each software; ’x’ means the
software in that column has the feature in the corresponding row.
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nal process through the slope of the trajectory as in (2.1).

hi(t|Mi(t)) = h0(t)exp{X2iγ + αm′i(t)} (2.1)

The final option is parameterization = "both" which fits a model with both the current

value and the slope of the trajectory in the survival submodel, namely hi(t|Mi(t)) = h0(t)exp{X2iγ+

α1mi(t) + α2m
′
i(t)}

The method argument specifies the form of the baseline hazard, the form of the model, and

the method of numerical integration. The available options are:

weibull-PH-aGH, piecewise-PH-aGH, spline-PH-aGH, weibull-AFT-aGH,

Cox-PH-aGH, and ch-Laplace. The method ch-Laplace uses the fully exponential Laplace

approximation described by Rizopoulos et al. (2009). All other options follow a similar for-

mat. The first word describes the baseline hazard: weibull uses a Weibull baseline hazard,

piecewise a piece-wise constant baseline hazard, spline a B-spline approximation, and Cox

an unspecified baseline risk. Options with PH fit a proportional hazards survival submodel. There is

one option for an accelerated failure time model using a Weibull baseline (weibull-AFT-GH).

Methods ending in aGH use pseudo-adaptive Gauss-Hermite quadrature for integral approxima-

tion, where the quadrature knots are reassigned once after the first iteration (Rizopoulos, 2010).

Each method can instead end in GH which uses standard Gauss-Hermite quadrature. Adaptive

quadrature is generally preferred due to a reduced computational load using fewer quadrature

points while still achieving error on the same order of magnitude as with the standard quadra-

ture (Yuen and Mackinnon, 2016). Quasi-Newton techniques are used if EM iterations do not

achieve convergence quickly. Only EM is used with the unspecified baseline hazard. Stratification

is allowed only with method="spline-PH-aGH" or method="spline-PH-GH".

The jointModel() function allows for some extensions such as a competing risks model

with the CompRisk argument. Other extensions can be formulated with the interFact and

derivForm options as described in Rizopoulos (2010) and Rizopoulos (2016a).
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2.2.2 joineR Package in R

The joineR package was created to analyze longitudinal studies, possibly with an event time

causing informative censoring. Full description of this package is in the CRAN documentation

(Philipson et al., 2012). The joint() function fits a joint model and requires data in a specific

format that is the output from the function jointdata() in the same package. The user sup-

plies the joint() function with the data and a formula object specifying the form for each of

the longitudinal and survival submodels. This function fits a shared parameter joint model as in

(1.1) and (1.3) with an unspecified baseline hazard. This function is not capable of specifying

a parametric form for the baseline hazard. The model argument determines the shared random

effects. A random slope and intercept model is the default, whereas model="int" specifies

a random intercept only, and model="quad" adds a quadratic time effect to the intercept and

slope. The default settings fit a common association when there is more than one random effect

terms (αZ2i(t)Ui = αU0i + αU1it). A separate association, as discussed in Section 1.2.2, can be

implemented using the sepassoc=TRUE option (αZ2i(t)Ui = α0U0i + α1U1it, α0 6= α1). This

function also uses an EM algorithm for estimation with some options available for control of this

approximation. Since not specifying a baseline hazard may lead to underestimated standard errors,

the joineR package includes a separate function to calculate bootstrap standard errors for the

joint model (jointSE()).

2.2.3 %JM Macro in SAS

The %JM macro in the SAS language was written to fit several joint models in several pos-

sible forms. A full description of the macro was written by Garcia-Hernandez and Rizopou-

los (2015). The %JM macro allows the longitudinal data to be fit to varying outcome types.

The longitudinal data can conform to a Normal, binomial, or Poisson distribution, correspond-

ing to continuous, categorical, or count outcomes, respectively. These can be specified with

the LongiType option. The longitudinal model can also fit different random effects with the
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LongiTimeModel option, including a linear random intercept and slope model and multiple

random splines. There are many options for the baseline hazard of the survival submodel us-

ing the EventModel option, such as exponential, Weibull, piecewise, and several spline op-

tions. The survival submodel can include stratification factors using the EventStrata argu-

ment. The association can be set with the SharedParam argument with the options including

current value as in (1.2), slope (equivalent to our model (1.3) with Z2i(t)Ui = U0i + U1it), cumu-

lative (hi(t|Mi(t)) = h0(t)exp{X2iγ + α
∫ t

0
mi(s)ds}), and “coefficients” in which the user can

specify which random effects from the longitudinal submodel should be included in the survival

submodel. Multiple associations can be used at the same time. The SharedCoefficients and

SharedLongitTerm arguments can be used to create even more joint model parameterizations.

Estimation is carried out by the PROC NLMIXED procedure which is described in Appendix C.1.

2.2.4 stjm Command in Stata

In Stata, joint models can be fit with the stjm command. A detailed description is given by

(Crowther et al., 2013). A linear mixed model and a proportional hazards model can be fit as the

submodels with several association structures available. The association between submodels can

be of the current value or the current slope form, similar to the JM package in R. The association

can also be through shared parameters with or without covariates. Estimation is carried out by

Newton-Ralphson method and numerical integration is implemented with standard or adaptive

Gauss-Hermite quadrature. We found Stata to have more difficulties in fitting models with various

parameter values in our simulations.

2.2.5 Comparison of Software Functionality

In summary, all three major statistical softwares R, SAS and Stata fit joint models with comparable

functionality. A detailed list of available options is provided in Table 2.1. All software will fit

a Gaussian longitudinal submodel as in (1.1). Some software will fit a generalized linear model

where the longitudinal outcome Y has a non-Gaussian distribution such as binomial or Poisson.
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Each software will also fit a standard proportional hazards survival submodel modeling the hazard

function as in (1.2) or (1.3). Only JM in R will fit a survival model in an accelerated failure time

(AFT) framework. Available association options are listed including current value (1.2), random

intercept or slope (1.3) and separate associations like we saw in section 2.2.2. Model fit options

describe different forms of the survival submodels that may be available such as a competing

risks model, lagged effects, or stratification. Estimation options include choices for the model

fitting algorithm and numerical integration. Finally, some other possibly useful options in the

software are listed including built-in AIC or BIC calculations, plotting, predictions, and standard

error calculations.

2.3 Application to the Adrenal Cancer Data

We explore the available software platforms through analysis of the adrenocortical carcinoma

(ACC) dataset described in Section 1.5. We selected a single scan measurement, psoas density, as

the longitudinal response variable. Psoas density is measured in Hounseld Units (HU) using the

density of pixels in the scan (Holcombe et al., 2016). A previous study with similar data describes

how psoas muscle density and size can be measures of patient frailty, and scan measurements can

be associated with survival (Miller et al., 2012). Baseline covariates used were age, cancer stage,

and tumor grade. For simplicity we performed a complete case analysis. There were 160 patients

with psoas density measurements and all baseline covariates. There are between 1 and 45 scans

for each patient with a mean of 5.5 and median of 3 scans. In this group 100 patients died. Time

until death or censoring fell between 0.1 and 17.9 years with a median of 2.4 years. Table 2.2

summarizes the relevant variables. Joint models are fit to the data using three major software,

namely R, SAS, and Stata. Both the current value (1.2) and the shared parameter (1.3) forms are

implemented.

First, a current-value joint model was fit to this data using JM in R, SAS, and Stata. The
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Variable Mean or Count SD or %
Psoas Density 54.4 8.5

Scan Time (years) 3.1 3.2

Age 46.1 13.6

Stage 1 or 2 71 44.4%

3 or 4 89 55.6%

Tumor Grade Low 79 49.4%

High 58 36.3%

Unknown 23 14.4%

Table 2.2: Description of adrenal cancer data used in Ch 2.

longitudinal submodel included a random intercept and slope in each software.

PsoasDensityij = mi(tij) + eij = β0 + β1tij + β2Agei + β3Stagei

+ β4TumorGradeHighi + β5TumorGradeUnknowni + U0i + U1itij + eij

(2.2)

Survival submodels with flexible baseline hazards were chosen since the true model is unknown.

In Stata models with a flexible baseline hazard did not converge, so a specific parametric (Weibull)

hazard was used. Specifically, the software fit survival submodels with the form

hi(t) = h0(t) exp(γ1Agei+γ2Stagei+γ3TumorGradeHighi+γ4TumorGradeUnknowni+αmi(t))

(2.3)

with baseline hazards

R JM PWC: h0(t) ∼ Piecewise constant function

SAS %JM PWC: h0(t) ∼ Piecewise constant function

Stata stjm Weib: h0(t) ∼Weibull

For SAS and R JM, the program defaults were used to create the flexible baseline hazards.

Both procedures by default use six equally spaced internal knots to partition the observed event
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times. For the SAS model, the random effects are assumed uncorrelated because we found fitting

issues with an unstructured matrix (Garcia-Hernandez and Rizopoulos, 2015).

The Two-Stage model in (2.4) was fit for comparison.



First: PsoasDensityij = β0 + β1tij + β2Agei + β3Stagei + β4TumorGradeHighi

+β5TumorGradeUnknowni + U0i + U1itij + eij,

Then: hi(t) = h0(t)exp(γ1Agei + γ2Stagei

+γ3TumorGradeHighi + γ4TumorGradeUnknowni + αm̂i(t)),

h0(t) unspecified

(2.4)

Bootstrapping was used to estimate the coefficients and bias-corrected bootstrapped confidence

intervals (Efron and Tibshirani, 1993), as shown in Table 2.3.

We also fit a shared parameter model as in (1.3) with joineR, SAS, and Stata. The longitudi-

nal submodel included a random intercept in joineR and Stata, while the default in SAS included

a random slope. The model fit is

PsoasDensityij = β0 + β1tij + β2Agei + β3Stagei + β4TumorGradeHighi

+ β5TumorGradeUnknowni + Ui + eij

hi(t) = h0(t) exp(γ1Agei + γ2Stagei + γ3TumorGradeHighi+

γ4TumorGradeUnknowni + αUi)

with baseline hazards

R joineR: h0(t) Unspecified

SAS %JM PWC: h0(t) ∼ Piecewise constant function

Stata stjm Weib: h0(t) ∼Weibull
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The findings are contrasted with a shared parameter two-stage model similar to that in (2.4) but

with αm̂i(t) replaced with αZ2i(t)Ui = α0Ui with scalar Ui.

Comparing Tables 2.3 and 2.4, the results are similar for the current-value and shared param-

eters models. Nearly all joint models estimate the coefficients of the longitudinal submodel very

similarly. Time has a significant negative value showing that psoas density tends to decrease over

time, which fits with previous knowledge (Miller et al., 2012). Older patients tend to have lower

psoas density. Stage 3 or 4 and High Tumor Grade tend to decrease the average psoas density com-

pared to lower stages and grade, but these are not significant in any software or models. There are

more differences in the results of the survival submodel since each software fits the survival model

differently. The effects are estimated to be larger in the Two-Stage current-value models than in

the true joint models. Age does not have much of an effect on death hazard. Most software and

model forms find higher stage to slightly increase the death hazard, but significance depends on the

software. There is a small and significant positive coefficient for High Tumor Stage. Finally, each

software except the current-value Two-Stage model found a small but significant negative associ-

ation with psoas density. Log-likelihoods are shown in Table 2.5 and are similar for all software

and both model forms.

2.4 Simulations

The joint modeling software were compared through simulation. Data were generated under

three scenarios, namely a random intercept only and a random intercept and slope model in the

current-value form, and a random intercept shared-parameters model. Each scenario includes N =

500 subjects and 100 simulated datasets. Data were generated in R version 3.2.2 and simulations

were run in Windows 7 on a 3.2 GHz Intel Core i5 processor.
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Variable Two-Stage* JM PWC SAS %JM PWC Stata stjm Weib

N 89 87 100 100

Intercept 64.4 (59.5,68.2) 64.6 (59.2,68.3) 65.4 (59.8,69.7) 64.6 (60.6,68.6)

Time -0.5 (-1.4,-0.1) -0.6 (-1.7,-0.2) -0.9 (-2.7,-0.4) -0.6 (-1.9,-0.3)

Age -0.2 (-0.3,-0.1) -0.2 (-0.3,-0.1) -0.2 (-0.3,-0.1) -0.2 (-0.4,-0.2)

Stage 3 or 4 -0.6 (-1.7,0.2) -0.6 (-1.7,0.3) -0.6 (-1.8,0.05) -0.6 (-2.2,-0.1)

Tumor Grade: High -0.6 (-3.8,2.2) -0.7 (-4.1,2.1) -0.7 (-4.1,2.1) -0.7 (-3.6,2.1)

Tumor Grade: Unknown -2.9 (-7.5,0.3) -3.2 (-8.4,-0.6) -3.1 (-8.0,0.2) -3.1 (-8.5,-0.4)

Surv-Age 0.1 (-0.009,0.6) 0.002 (-0.01,0.06) -0.009 (-0.03,0.008) -0.01 (-0.03,0.001)

Surv-Stage 3 or 4 0.7 (-0.06,3.4) 0.2 (0.02,0.3) 0.2 (-0.01,0.3) 0.2 (-0.06,0.4)

Surv-Tumor Grade: High 1.3 (-3.6,4.2) 0.6 (0.004,1.0) 0.5 (0.06,1.1) 0.4 (-0.04,1.1)

Surv-Tumor Grade: Unknown 3.4 (0.4,12.0) 1.0 (0.3,1.5) 0.9 (0.2,1.7) 1.0 (0.2,1.9)

Association 0.8 (0.1,3.0) -0.07 (-0.1,-0.04) -0.1 (-0.2,-0.06) -0.09 (-0.1,-0.04)

Table 2.3: Current-value joint model parameter estimates and bias-corrected bootstrapped confi-
dence intervals for the adrenal data. N is the number of models in 100 bootstraps that successfully
converged.
*Two-Stage intervals are the 2.5 and 97.5 quantiles of the bootstrapped values, not bias-corrected.

Variable Two-Stage* joineR SAS %JM PWC Stata stjm Weib

N 100 100 100 100

Intercept 63.7 (59.5,67.7) 63.1 (58.3,67.1) 64.5 (60.0,68.5) 64.4 (59.5,68.1)

Time -0.3 (-0.6,-0.08) -0.4 (-0.7,-0.2) -0.6 (-1.4,-0.3) -0.6 (-1.2,-0.3)

Age -0.2 (-0.3,-0.1) -0.2 (-0.3,-0.1) -0.2 (-0.3,-0.1) -0.2 (-0.3,-0.09)

Stage 3 or 4 -0.6 (-1.7,0.1) -0.7 (-1.6,0.1) -0.6 (-1.7,0.09) -0.6 (-2.3,0.3)

Tumor Grade: High -0.6 (-3.6,2.0) 0.6 (-2.0,3.7) -0.7 (-3.7,2.1) -0.6 (-4.0,2.2)

Tumor Grade: Unknown -3.2 (-9.1,1.6) -2.9 (-7.7,3.3) -3.1 (-8.1,-0.09) -3.2 (-7.5,-0.3)

Surv-Age 0.01 (-0.003,0.03) 0.01 (-0.004,0.02) 0.01 (-0.003,0.03) 0.006 (-0.02,0.02)

Surv-Stage 3 or 4 0.2 (0.06,0.4) 0.2 (0.01,0.4) 0.2 (0.04,0.4) 0.2 (-0.02,0.5)

Surv-Tumor Grade: High 0.5 (-0.01,1.0) -0.5 (-1.0,0.02) 0.6 (0.04,1.2) 0.4 (-0.04,1.1)

Surv-Tumor Grade: Unknown 1.1 (0.6,1.8) 0.7 (-0.2,1.3) 1.2 (0.4,1.8) 1.3 (0.4,2.1)

Association -0.09 (-0.1,-0.06) -0.09 (-0.1,-0.05) -0.1 (-0.1,-0.06 ) -0.09 (-0.1,-0.05)

Table 2.4: Shared parameter joint model parameter estimates and bootstrapped confidence intervals
for the adrenal data. N is the number of models in 100 bootstraps that successfully converged.
*Intervals are the 2.5 and 97.5 quantiles of the bootstrapped values, not bias-corrected.
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Current-value Shared Parameter

JM PWC -3130.6 NA

joineR NA -3392.1

SAS %JM PWC -3147.5 -3147.0

Stata stjm Weib -3100.9 -3083.3

Table 2.5: Log-likelihood values for the adrenal data models.

2.4.1 Scenario 1

Data for the current-value association random intercept only joint model, which we will call Sce-

nario 1, were generated as follows. The longitudinal data were generated from the model

Yij = mi(tij) + eij = β0 + β1tij + β2X1i + β3X2i + U0i + eij (2.5)

We have two covariates in our joint model, a binary group indicator X1 and a continuous X2. The

random effect U0i is a scalar. Measurement times are between 0 and 3 years. The random effect and

measurement error are normally distributed and independent. Survival times T ∗i , were generated

from a relative risk model.

hi(t) = exp(γ0 + γ1X1i + γ2X2i + αmi(t)) (2.6)

(See Appendix B.1 for details on generating the survival times). The parameter values used are

shown below.

X1i ∼ Bernoulli(0.5),

X2i ∼ N(0, 12),

(ti1, ti2, ..., ti7) = (0, 0.5, 1, 1.5, 2, 2.5, 3),

eij ∼ N(0, 42),

U0i ∼ N(0, 2.252)

β0 = 0.6

β1 = 0.2

β2 = −0.1

β3 = 0.4

γ0 = −4.4

γ1 = 0.07

γ2 = 0.2

α = 0.5
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Independent censoring times Ci were drawn from a uniform distribution, Ci ∼ Unif(0, 3.25), and

the observed time Ti is the minimum, , Ti = min(T ∗i , Ci). Any longitudinal measurements Yij at

times after the observed time Ti (where tij > Ti for subject i) were dropped.

The R JM, joineR, Stata stjm, and Two-Stage software fit (2.5) to the longitudinal part.

The SAS macro by default fits a model with a random intercept and slope. The %JM macro has

no built-in option for an intercept only association. Therefore we fit a misspecified longitudinal

model in SAS, replacing U0i with U0i + U1itij in (2.5). An unstructured covariance matrix was

used for the SAS PWC model. For the SAS Weibull model, the default diagonal covariance matrix

was used to achieve convergence.

For the survival part, a current-value association was used if available. The R JM package, Stata

command, and the %JM macro in SAS fit a current-value survival submodel as specified in (2.6).

The joineR package only fits joint models with the shared parameters association conforming to

the structure in (2.7).

hi(t) = h0(t) exp(X1iγ
∗
1 +X2iγ

∗
2 + αU0i) (2.7)

where U0i is a scalar. This amounts to a re-parameterization of the current-value model where

the coefficients γ∗1 and γ∗2 in the joineR survival submodel converge to combinations of the true

coefficients from both submodels, specifically γ∗1 = γ1 + αβ2 and γ∗2 = γ2 + αβ3. For all results,

the joineR coefficients will be compared to these combinations. See Appendix B.2 for more on

this reparameterization.

The baseline hazards used for these software are in (2.8). Pseudo-adaptive Gauss-Hermite

(GH) quadrature is implemented in R JM Weib, PWC and Spl. For the model with an unspecified

baseline hazard (R JM Unspec NA) we used the standard (nonadaptive) GH quadrature, since

we found using the adaptive algorithm led to poor convergence. In order to investigate whether

there is a difference in the nonadaptive (NA) versus the pseudo-adaptive GH quadrature, we also

ran models with each of Weibull, piecewise constant, and spline based baseline hazards, using

standard GH quadrature, labeled R JM Weib NA, R JM PWC NA, and R JM Spl NA.
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R JM Weib: h0(t) ∼Weibull

R JM PWC: h0(t) ∼ Piecewise constant function

R JM Spl: log(h0(t)) ∼ B-spline approximation

R JM Unspec NA: h0(t) unspecified

SAS %JM Weib: h0(t) ∼Weibull

SAS %JM PWC: h0(t) ∼ Piecewise constant function

Stata stjm Weib: h0(t) ∼Weibull

R joineR: h0(t) unspecified

(2.8)

A Two-Stage model is also fit to compare this more simple technique to the true joint models.

The Two-Stage model is fit as follows.


First: Yij = β0 + β1tij + β2X1i + β3X2i + U0i + eij,

Then: hi(t) = h0(t)exp(γ1X1i + γ2X2i + αm̂i(t))

We used the default options for numerical integration and for defining the flexible baseline haz-

ard functions. Specifically, the R JM PWC and SAS %JM PWC models both use a baseline hazard

constructed from six equally spaced internal knots that partition the observed event times with the

function being constant in between knots. For the R JM Spl model, the B-spline approximation is

constructed with five internal knots.

Results are shown in Figure 2.1, plotting the bias of the estimated coefficients compared to the

truth. Coverage probabilities are shown in Table 2.6. Table 2.7 shows the bias and MSE for each

parameter. Empirical standard deviations are in Table 2.8 and the width of confidence intervals are

in Table 2.9. Widths were calculated as the average of confidence interval lengths using a Normal

approximation, specifically the average of 2∗1.96∗(standard error). Table 2.10 shows the run-times

for each software.
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Software n models Intercept Time X1 X2 Surv X1 Surv X2 Assoc.

Two-Stage 100 88 94 93 94 97 91 93

R JM Weib 93 86 91 92 96 97 90 98
R JM Weib NA 92 86 91 91 97 97 91 98
R JM PWC 100 87 92 93 96 97 91 97
R JM PWC NA 100 86 92 92 97 97 91 97
R JM Spl 93 86 91 92 96 97 90 97
R JM Spl NA 93 85 91 91 97 97 90 97
R JM Unspec NA 100 86 92 92 96 92 91 79

SAS % JM Weib* 100 87 94 93 96 97 91 97
SAS %JM PWC* 100 83 91 93 96 94 89 92

Stata Weib 33 58 85 82 88 97 91 97
R joineR** 100 85 94 92 92 99 96 89

Table 2.6: Coverage probabilities for Scenario 1 (in %).
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

Intercept Time X1 X2 Surv X1 Surv X2 Association

Software n models fit Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Two-Stage 100 -0.24 2.68 -1.14 0.42 0.92 2.98 -0.44 0.84 2.31 21.69 4.11 6.96 -10.64 4.33

R JM Weib 93 -0.06 2.79 0.18 0.43 1.01 3.16 0.02 0.84 0.89 23.04 1.02 8.15 0.46 6.66

R JM Weib NA 92 -0.01 2.82 0.27 0.43 0.86 3.18 -0.15 0.82 0.55 23.17 2.08 7.23 -0.97 4.88

R JM PWC 100 -0.09 2.67 0.02 0.42 0.93 3.01 -0.04 0.83 2.72 22.81 0.22 7.49 0.88 5.76

R JM PWC NA 100 -0.08 2.67 0.02 0.42 0.91 3.01 -0.04 0.83 2.73 22.84 0.18 7.56 0.86 5.75

R JM Spl 93 -0.06 2.80 0.22 0.43 1.01 3.16 0.04 0.84 0.33 23.25 1.09 8.07 0.23 7.12

R JM Spl NA 93 -0.05 2.80 0.21 0.43 0.99 3.16 0.04 0.84 0.36 23.28 1.08 8.06 -0.05 6.48

R JM Unspec NA 100 -0.08 2.67 -0.01 0.42 0.92 3.01 -0.05 0.83 2.58 22.59 0.34 7.55 -0.01 5.65

SAS %JM Weib* 100 0.004 2.66 0.10 0.42 0.91 3.02 0.04 0.83 3.66 24.25 -1.61 11.47 6.73 11.76

SAS %JM PWC* 100 -1.80 2.69 -0.68 0.55 -0.40 2.98 -0.01 0.74 -8.02 23.98 -5.34 12.22 6.10 8.74

Stata Weib 33 -34.74 1.51 -10.99 0.42 5.67 0.89 -25.34 0.33 -3.01 3.07 -14.74 2.86 -32.59 1.89

R joineR** 100 0.59 1.09 -1.30 0.36 -0.15 0.81 -0.98 0.67 -17.46 7.23 -49.41 27.20 -12.00 7.38

Table 2.7: Bias*100 and MSE*100 (Mean Squared Error) of the estimates from Scenario 1.
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.
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Figure 2.1: Boxplots showing the bias of the Scenario 1 estimates. Model names abbreviated
as: TS=Two-Stage, JM W=R JM Weibull, JM PW=R JM Piece-Wise, JM Sp=R JM Spline, JM
Un=R JM Unspecified NA, SAS W=SAS Weibull, SAS PW=SAS Piece-Wise. Figure 1(h) plots
the actual values estimated for the random effect variance with the dotted line at the true value.
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Software n models Intercept Time X1 X2 Surv X1 Surv X2 Association

Two-Stage 100 0.16 0.06 0.17 0.09 0.47 0.26 0.18

R JM Weib 93 0.17 0.07 0.18 0.09 0.48 0.29 0.26

R JM Weib NA 92 0.17 0.07 0.18 0.09 0.48 0.27 0.22

R JM PWC 100 0.16 0.07 0.17 0.09 0.48 0.28 0.24

R JM PWC NA 100 0.16 0.07 0.17 0.09 0.48 0.28 0.24

R JM Spl 93 0.17 0.07 0.18 0.09 0.48 0.29 0.27

R JM Spl NA 93 0.17 0.07 0.18 0.09 0.49 0.29 0.26

R JM Unspec NA 100 0.16 0.07 0.17 0.09 0.48 0.28 0.24

SAS %JM Weib* 100 0.16 0.07 0.17 0.09 0.49 0.30 0.34

SAS %JM PWC* 100 0.16 0.07 0.17 0.09 0.49 0.25 0.29

Stata Weib 33 0.31 0.12 0.11 0.18 0.25 0.18 0.25

R joineR** 100 0.10 0.06 0.09 0.08 0.21 0.17 0.24

Table 2.8: Empirical Standard Deviations of the estimates from Scenario 1.
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

Software n models Intercept Time X1 X2 Surv X1 Surv X2 Association

Two-Stage 100 0.51 0.25 0.66 0.33 1.84 0.96 0.73

R JM Weib 93 0.51 0.25 0.67 0.33 1.87 0.99 0.87

R JM Weib NA 92 0.51 0.25 0.67 0.33 1.87 0.98 0.85

R JM PWC 100 0.51 0.25 0.66 0.33 1.87 0.99 0.86

R JM PWC NA 100 0.51 0.25 0.66 0.33 1.87 0.99 0.86

R JM Spl 93 0.51 0.25 0.67 0.33 1.87 0.98 0.87

R JM Spl NA 93 0.51 0.25 0.67 0.33 1.87 0.99 0.86

R JM Unspec NA 100 0.51 0.24 0.66 0.33 1.61 0.97 0.56

SAS %JM Weib* 100 0.51 0.25 0.67 0.33 1.90 1.01 0.99

SAS %JM PWC* 100 0.51 0.25 0.67 0.33 1.92 1.03 0.99

Stata Weib 33 0.13 0.11 0.19 0.10 0.61 0.33 0.29

R joineR** 100 0.51 0.24 0.65 0.33 2.01 0.94 0.75

Table 2.9: Average width of confidence intervals from Scenario 1.
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

31



Scenario 1 Scenario 2 Scenario 3

Two-Stage 0.5 1.5 0.1

R JM Weib 3.1 10.9 5.6

R JM Weib NA 5.3 44.5 8.2

R JM PWC 7.8 20.6 11.7

R JM PWC NA 10.5 85.2 15.8

R JM Spl 21.1 28.5 15.4

R JM Spl NA 23.7 104.9 20.6

R JM Unspec NA 6.6 223.8 93.7

SAS %JM Weib 35.6 49.7 10.6

SAS %JM PWC 94.5 392.5 49.3

Stata Weib 1201.3 609.6 661.9

R joineR* 96.9 121.1 48.5

Table 2.10: Average runtime for Scenarios 1, 2, and 3.
* joineR run-times include estimating bootstrapped standard errors with 50 bootstrapped samples.

All software except Stata were able to fit models to a majority of the 100 datasets. Stata was

only able to fit around one third of the datasets. Each software had relatively good coverage al-

though Stata did not cover the intercept term well. The intervals around the association parameter

from R JM Unspec NA are narrower than the other R JM models. Stata tends to have a larger bias

but smaller MSE than the other software leading to narrow confidence intervals. Every software

overestimated the random effect variance, with the Two Stage and joineR models being most bi-

ased. Despite SAS including an extra random slope term, the random intercept variance estimates

were similar to R JM and Stata. Empirical standard deviations were stable across software.

Models with a flexible baseline hazard took longer to run, as would be expected. Stata was

exceptionally slow in this scenario. Comparing the models using NA (nonadaptive) quadrature

(ex. R JM PWC NA) to the corresponding models using pseudo-adaptive quadrature (ex. R JM

PWC) shows that the nonadaptive versions slightly increased the runtime but otherwise choice of

numerical integration algorithm made very little difference in the results.
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2.4.2 Scenario 2

Our Scenario 2 includes a random intercept and slope joint model, sometimes called the random

coefficients model, generated from the following equations.

Yij = mi(tij) + eij = β0 + β1tij + β2X1i + β3X2i + U0i + U1itij + eij (2.9)

hi(t) = exp(γ0 + γ1X1i + γ2X2i + αmi(t)) (2.10)

As in Scenario 1, there are two covariates, one binary and one continuous. The random effects are

bivariate Normal. The parameter values used are shown below.

X1i ∼ Bernoulli(0.5),

X2,i ∼ N(0, 12),

(ti1, ti2, ..., ti7) = (0, 0.5, 1, 1.5, 2, 2.5, 3),

eij ∼ N(0, 42),

Ui = (U0i, U1i)
T ∼ N
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β0 = 1

β1 = 0.2

β2 = −0.1

β3 = 0.4

γ0 = −4.4

γ1 = 0.1

γ2 = 0.25

α = 0.5

We draw independent censoring times Ci ∼ Unif(1.25, 3.25) and the observed times are Ti =

min(T ∗i , Ci). There was approximately 10% censoring.

JM, joineR in R, %JM in SAS, and stjm in Stata, fits (2.9) to the longitudinal part of the data.

The default covariance structure was used in all models. As in Scenario 1, several survival sub-

models were evaluated. The R JM package, SAS, and Stata fit a current-value survival submodel as

in (2.10). The shared-parameter model below was fit with joineR which is a reparameterization

of the current-value model similar to Scenario 1.

hi(t) = h0(t) exp (γ∗1X1i + γ∗1X2i + α(U0i + U1it))
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Software n models Intercept Time X1 X2 Surv X1 Surv X2 Assoc.

Two-Stage 100 98 87 97 89 95 94 97
R JM Weib 88 95 93 97 91 93 90 90

R JM Weib NA 95 98 96 98 91 94 93 92

R JM PWC 87 97 94 98 90 95 92 98
R JM PWC NA 94 97 96 98 91 96 91 95
R JM Spl 83 95 93 95 87 93 92 95
R JM Spl NA 94 97 96 98 91 95 93 96
R JM Unspec NA 85 96 95 98 92 91 92 64

SAS %JM Weib 100 92 91 91 86 88 89 86

SAS %JM PWC 100 98 97 97 91 95 92 89

Stata Weib 99 97 97 97 90 94 93 90

R joineR 25 100 88 100 96 96 80 92

Table 2.11: Coverage probabilities for Scenario 2 (in %).
* The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

The baseline hazards are the same as in (2.8) including models using both adaptive and nonadaptive

(NA) in R JM Weib, PWC and Spl. Default settings were used for the piecewise constant and spline

functions. Finally, a Two-Stage model was fit for comparison.

Results for Scenario 2 are in Figure 2.2, and Tables 2.11 - 2.14. The Table 2.10 shows the

run-times for this scenario. More results including bias, MSE and confidence interval widths are

in the Supplemental Material.

The software were able to fit models to most of the 100 simulated datasets except for joineR.

The joineR models could fit only around a quarter of the datasets. Coverage probabilities were

similar for all software with one exception. Coverage for the association parameter was noticeably

lower for R JM Unspec NA. The confidence interval widths were generally very similar in each

software. As in Scenario 1, on average the confidence intervals around the association estimate in

R JM Unspec NA were considerably tighter.

In the boxplots, we see that all R JM models and Stata estimated the random effect covariance

parameters well. In SAS, the covariance of the random effects was assumed zero according to the
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Intercept Time X1 X2 Surv X1 Surv X2 Association

Software n models worked Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Two-Stage 100 2.12 0.90 -5.80 0.87 -1.31 1.90 0.18 0.71 -1.17 13.55 -1.77 3.27 1.93 0.91

R JM Weib 88 1.35 0.94 -2.63 0.60 -0.32 1.87 0.34 0.69 1.66 15.11 -2.33 3.77 8.11 2.29

R JM Weib NA 95 0.92 0.88 -1.47 0.56 -0.84 1.83 -0.11 0.70 0.86 15.94 -2.33 3.65 7.56 1.89

R JM PWC 87 1.04 0.84 -1.98 0.53 -1.12 1.78 0.45 0.71 0.30 15.60 -2.86 3.78 9.18 2.10

R JM PWC NA 94 0.80 0.87 -1.15 0.57 -0.77 1.84 -0.31 0.68 1.08 16.40 -2.61 3.70 9.57 2.42

R JM Spl 83 0.52 0.88 -2.42 0.61 -0.72 1.93 0.61 0.76 -0.43 15.41 -1.91 3.88 7.30 1.94

R JM Spl NA 94 0.90 0.87 -1.32 0.57 -0.76 1.85 -0.29 0.67 0.38 15.93 -2.38 3.63 8.31 1.98

R JM Unspec NA 85 0.88 0.87 -1.62 0.59 -0.24 1.95 0.34 0.66 -0.38 15.18 -3.29 3.83 9.74 2.21

SAS %JM Weib 100 -4.88 0.85 -2.85 0.54 -0.67 1.77 -2.45 0.64 -1.28 15.47 -3.12 14.18 5.92 2.23

SAS %JM PWC 100 0.99 0.86 -1.44 0.57 -1.53 1.82 0.27 0.71 1.72 17.54 -3.72 15.14 15.92 6.35

Stata Weib 99 1.23 0.85 -1.78 0.57 -1.21 1.86 0.41 0.70 0.10 4.93 -2.46 3.42 8.06 1.93

R joineR 25 5.70 1.08 -2.39 0.78 -3.54 1.49 1.25 0.60 3.48 10.92 60.70 4.60 -4.67 1.12

Table 2.12: Bias*100 and MSE*100 of estimates from Scenario 2.
*The Surv X1 and Surv X2 estimates are compared to the value to which they converge, as de-
scribed in Section B.2.

Software n models Intercept Time X1 X2 Surv X1 Surv X2 Association

Two-Stage 100 0.09 0.07 0.14 0.08 0.37 0.18 0.09

R JM Weib 88 0.10 0.07 0.14 0.08 0.39 0.19 0.13

R JM Weib NA 95 0.09 0.07 0.14 0.08 0.40 0.19 0.12

R JM PWC 87 0.09 0.07 0.13 0.08 0.40 0.19 0.11

R JM PWC NA 94 0.09 0.08 0.14 0.08 0.41 0.19 0.12

R JM Spl 83 0.09 0.08 0.14 0.09 0.39 0.20 0.12

R JM Spl NA 94 0.09 0.07 0.14 0.08 0.40 0.19 0.11

R JM Unspec NA 85 0.09 0.08 0.14 0.08 0.39 0.19 0.11

SAS %JM Weib 100 0.11 0.07 0.13 0.08 0.40 0.18 0.12

SAS %JM PWC 100 0.09 0.07 0.13 0.08 0.42 0.19 0.20

Stata Weib 99 0.09 0.07 0.14 0.08 0.40 0.18 0.11

R joineR 25 0.09 0.09 0.12 0.08 0.34 0.22 0.10

Table 2.13: Empirical Standard Deviations of the estimates from Scenario 2.
*The Surv X1 and Surv X2 estimates are compared to the value to which they converge, as de-
scribed in Section B.2.
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Figure 2.2: Boxplots showing the bias of the Scenario 2 estimates. Model names abbreviated as:
TS=Two-Stage, JM W=R JM Weibull, JM PW=R JM Piece-Wise, JM Sp=R JM Spline, JM Un=R
JM Unspecified NA, SAS W=SAS Weibull, SAS PW=SAS Piece-Wise. Figures 2(h,i,j) plot the
actual values estimated for the random effect variances and covariance with the dotted line at the
true value.
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Software n models Intercept Time X1 X2 Surv X1 Surv X2 Association

Two-Stage 100 0.44 0.29 0.60 0.30 1.33 0.67 0.40

R JM Weib 88 0.43 0.29 0.59 0.29 1.35 0.68 0.42

R JM Weib NA 95 0.44 0.29 0.60 0.30 1.39 0.70 0.43

R JM PWC 87 0.90 0.28 0.59 0.29 1.39 0.70 0.46

R JM PWC 94 0.44 0.29 0.60 0.30 1.40 0.70 0.46

R JM Spl 83 0.42 0.28 0.56 0.28 1.38 0.70 0.46

R JM Spl NA 94 0.44 0.29 0.60 0.30 1.39 0.70 0.47

R JM Unspec NA 85 0.44 0.29 0.60 0.30 1.23 0.69 0.22

SAS %JM Weib 100 0.45 0.31 0.60 0.30 1.40 0.70 0.46

SAS %JM PWC 100 0.45 0.31 0.60 0.30 1.43 0.72 0.55

Stata Weib 99 0.44 0.29 0.60 0.30 1.39 0.70 0.44

R joineR* 25 0.44 0.29 0.62 0.31 1.66 0.74 0.43

Table 2.14: Average width of Confidence Intervals for Scenario 2.
*The Surv X1 and Surv X2 estimates are compared to the value to which they converge, as de-
scribed in Section B.2.

macro defaults and we see that the variance of the intercept and the slope were overestimated by

SAS. The Two-Stage model estimated the random effect variances well but severely overestimated

the covariance, possibly including additional variance in the longitudinal submodel random effects

estimates that would be explained by the association with the survival submodel in a joint model.

Empirical standard deviations were consistent in all software. We see that the random coefficients

models in this scenario took longer to run on average than the models in Scenario 1 for all software

except Stata. Using nonadaptive quadrature increased runtime more compared to Scenario 1.

2.4.3 Scenario 3

The final simulation scenario utilized a shared coefficients form as in (1.3), with a random intercept

only, i.e. Ui = U0i is a scalar. The data were generated from

Yij = β0 + β1tij + β2X1i + β3X2i + U0i + eij (2.11)
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hi(t) = exp(γ0 + γ1X1i + γ2X2i + αU0i) (2.12)

Parameter values are below.

X1i ∼ Bernoulli(0.5),

X2,i ∼ N(0, 0.52),

(ti1, ti2, ..., ti7) = (0, 0.5, 1, 1.5, 2, 2.5, 3),

eij ∼ N(0, 42),

U0i ∼ N(0, 0.72)

β0 = 6

β1 = 0.2

β2 = −0.1

β3 = 0.4

γ0 = −4.4

γ1 = 0.9

γ2 = 1.2

α = 0.5

For this scenario, independent censoring times were drawn Ci ∼ Unif(1.25, 3.25). There was

approximately 20% censoring.

A random intercept only shared parameter survival submodel was used since the most software

could fit the correct model. The R function joineR and Stata fit the same longitudinal submodel

in (2.11). Again, the default in SAS is to fit a longitudinal model with both a random intercept

and slope as was the case in Scenario 1 which in this case is an misspecified model. The joineR,

SAS, and Stata software fit (2.12) to the survival part. The JM package in R only fits joint models

with a current-value association, which amounts to a reparameterization of the shared parameter

models. In this scenario R JM fits the survival submodel in (2.13). The survival coefficients will

converge to a combination of true parameters, namely γ∗1 = γ1 − αβ2 and γ∗2 = γ2 − αβ3. See

Appendix B.2 for details.

hi(t) = h0(t) exp(γ∗1X1i + γ∗2X2i + αmi(t)) (2.13)

Baseline hazards are listed in (2.8). Both adaptive and nonadaptive (NA) numerical integration was

again utilized in R JM with Weibull, piecewise constant, and spline baseline hazard functions. We

used the default settings to create piecewise constant and spline baseline hazard functions. A Two-

Stage model was also fit with the survival model being a standard semi-parametric Cox model.
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Software n models Intercept Time X1 X2 Surv X1 Surv X2 Assoc.

Two-Stage 100 91 94 98 93 97 92 94

R JM Weib 82 95 93 99 91 88 95 95
R JM Weib NA 80 91 90 99 91 96 94 96
R JM PWC 88 95 93 99 93 95 98 82

R JM PWC 89 94 93 98 92 95 97 80

R JM Spl 97 94 95 98 92 97 95 87

R JM Spl NA 100 94 94 98 92 97 95 88

R JM Unspec NA 45 93 89 100 89 93 88 11

SAS %JM Weib 100 87 96 96 94 100 97 84

SAS %JM PWC 100 88 96 96 94 98 100 80

Stata Weib 89 51 85 98 91 99 100 80

R joineR* 100 93 94 95 89 80 51 91

Table 2.15: Coverage probabilities for Scenario 3 (in %).
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

Figure 2.3 and Tables 2.15 - 2.18 show the results for Scenario 3. Table 2.10 shows the run-

times for all scenarios.

Models could be fit to all or almost all of the 100 simulated datasets by each software in this

scenario. In this scenario R joineR had a considerably lower coverage probability for the X2

coefficient in the survival submodel. Nearly all software except R JM Weib (and R JM Weib NA)

had relatively low coverage for the association parameter, with the coverage from R JM Unspec

NA being especially poor. Again, the average width of confidence intervals around the association

estimate from R JM Unspec NA was much smaller than all other software. The average confidence

interval widths for X1 and X2 from R JM Spl are much larger than the other software, possibly

due to poor model fitting on the simulated datasets corresponding to the outliers.

R JM and Stata estimated the random intercept variance best although all (except Two Stage)

underestimated this value. The Two-Stage model severely overestimated this value as in the first

two scenarios. Interestingly fitting models to this data with R JM Spl produced estimates with
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Intercept Time X1 X2 Surv X1 Surv X2 Association

Software n models worked Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Two-Stage 100 0.62 1.09 -1.68 0.36 -0.34 0.82 -1.23 0.67 0.17 3.57 0.61 2.85 -6.47 5.18

R JM Weib** 82 0.60 0.91 -0.01 0.34 -0.47 0.73 0.28 0.56 -1.88 4.41 -1.41 3.28 -1.71 5.75

R JM Weib** NA 80 -1.20 1.09 0.95 0.41 0.45 0.72 0.75 0.68 -1.44 4.37 -2.54 3.62 1.59 5.97

R JM PWC** 88 0.43 1.00 -0.73 0.35 0.24 0.80 -0.40 0.64 -5.59 4.21 9.67 4.89 -26.48 13.16

R JM PWC NA** 89 0.68 0.99 -0.93 0.35 0.06 0.74 -0.50 0.66 -5.06 4.18 8.30 4.49 -24.36 12.36

R JM Spl** 97 0.24 1.08 -1.16 0.34 0.34 0.80 -0.40 0.65 -4.36 4.20 11.62 4.93 -28.04 12.67

R JM Spl NA** 100 0.24 1.07 -0.97 0.34 0.15 0.80 -0.66 0.67 -4.39 3.85 11.65 4.82 -28.53 11.96

R JM Unspec NA** 45 0.42 1.13 -1.62 0.41 0.81 0.66 0.29 0.70 -0.60 4.21 9.61 3.20 -21.76 8.00

SAS %JM Weib* 100 -1.43 1.24 -1.22 0.31 0.80 1.07 -2.22 0.82 0.86 3.24 1.85 167.99 3.40 47.32

SAS %JM PWC* 100 -0.61 1.17 -1.37 0.30 0.57 1.05 -2.25 0.83 2.08 3.65 4.48 168.58 5.65 23.61

Stata Weib 89 14.31 2.68 4.65 0.84 -0.18 0.87 -0.26 0.65 -0.74 11.99 -0.24 3.13 0.20 9.05

R joineR 100 0.59 1.09 -1.30 0.36 -0.15 0.81 -0.98 0.67 -22.46 9.22 -29.41 11.43 -12.00 7.38

Table 2.16: Bias*100 and Mean Squared Error (MSE)*100 of the estimates from Scenario 3.
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

Software n models Intercept Time X1 X2 Surv X1 Surv X2 Association

Two-Stage 100 0.10 0.06 0.09 0.08 0.19 0.17 0.22

R JM Weib** 82 0.10 0.06 0.09 0.08 0.21 0.18 0.24

R JM Weib NA** 80 0.10 0.06 0.09 0.08 0.21 0.19 0.25

R JM PWC** 88 0.10 0.06 0.09 0.08 0.20 0.20 0.25

R JM PWC NA** 89 0.10 0.06 0.09 0.08 0.20 0.20 0.25

R JM Spl** 97 0.10 0.06 0.09 0.08 0.20 0.19 0.22

R JM Spl NA** 100 0.10 0.06 0.09 0.08 0.19 0.19 0.20

R JM Unspec NA** 45 0.11 0.06 0.08 0.08 0.21 0.15 0.18

SAS %JM Weib* 100 0.11 0.05 0.10 0.09 0.18 0.18 0.69

SAS %JM PWC* 100 0.11 0.05 0.10 0.09 0.19 0.15 0.49

Stata Weib 89 0.08 0.08 0.09 0.08 0.19 0.18 0.30

R joineR 100 0.10 0.06 0.09 0.08 0.21 0.17 0.24

Table 2.17: Empirical Standard Deviations of the estimates from Scenario 3.
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.
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Figure 2.3: Boxplots showing the bias of the Scenario 3 estimates. Model names abbreviated
as: TS=Two-Stage, JM W=R JM Weibull, JM PW=R JM Piece-Wise, JM Sp=R JM Spline, JM
Un=R JM Unspecified NA, SAS W=SAS Weibull, SAS PW=SAS Piece-Wise. Figure 3(h) plots
the actual values estimated for the random effect variance with the dotted line at the true value.
Note: Outliers in Intercept and Association from JM Sp have been omitted to aid in interpreting
the boxplots.
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Software n models Intercept Time X1 X2 Surv X1 Surv X2 Association

Two-Stage 100 0.36 0.21 0.42 0.30 0.81 0.59 0.89

R JM Weib** 82 0.36 0.22 0.41 0.30 0.85 0.69 1.02

R JM Weib NA** 80 0.36 0.22 0.42 0.30 0.86 0.69 1.00

R JM PWC** 88 0.36 0.22 0.42 0.30 0.81 0.69 0.97

R JM PWC NA** 89 0.36 0.22 0.42 0.30 0.83 0.69 0.97

R JM Spl** 97 0.36 0.21 0.41 0.30 4.04 3.56 1.01

R JM Spl NA** 100 0.36 0.21 0.42 0.30 0.83 0.69 0.99

R JM Unspec NA** 45 0.36 0.21 0.41 0.30 0.80 0.60 0.11

SAS %JM Weib* 100 0.35 0.21 0.40 0.28 0.84 0.64 1.32

SAS %JM PWC* 100 0.35 0.21 0.40 0.28 0.82 0.62 1.33

Stata Weib 89 0.29 0.28 0.40 0.29 0.82 0.61 0.91

R joineR 100 0.36 0.20 0.41 0.29 0.84 0.59 1.06

Table 2.18: Average width of Confidence Intervals from Scenario 3.
* The SAS longitudinal model is misspecified, including a random slope not in the data generation
model.
** The Surv X1 and Surv X2 estimates are compared to the value to which they converge and
standard errors are estimated through bootstrapping. Details in Section B.2.

larger bias for most covariates and considerably smaller MSE for some covariates compared to R

JM with the other baseline options. We noted that SAS produced survival submodel X2 coefficient

estimates with an unusually large MSE. Also, joineR generated more biased estimates for the

survival submodel despite fitting a model in the same form as the data generating model. As in

the first two scenarios, empirical standard deviations were very similar across all software. Lastly,

SAS and R joineR ran for notably shorter times than in the first two Scenarios.

2.5 Bayesian Models and Associated Software

The Bayesian implementation was not compared to the simulations for the maximum likelihood

methods in the last section. Instead, in this section we will discuss the single option for Bayesian

joint modeling in the software and also use this to analyze the adrenal cancer data.
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2.5.1 JMbayes Package in R

The JMbayes package in R was written to fit joint models in a Bayesian framework (Rizopoulos,

2016c). The function for fitting joint models is named jointModelBayes(). The arguments

for this function are very similar to the jointModel() function in the JM package in R. A linear

mixed model is fit to the longitudinal data unless the user specifies a different distribution with the

desLong argument. A relative risk model is fit for the time-to-event data. The baseline hazard is

estimated using splines, either penalized P-Splines (the default) or regression-splines (Rizopoulos,

2016b). The param argument determines the form of the association between the submodels.

The default association is current value as in (1.2). Other options are association based on the

current slope of the longitudinal trajectory analogous to the R JM package in (2.1), both the current

value and slope, or shared parameters like in (1.3). A final association option is a combination of

shared random effects and fixed effects, β∗, such as hi(t|Mi(t)) = h0(t)exp{X2iγ + αT (β∗ +

Ui)}. Available functionalities in the JMbayes package are listed in Table 2.1. Extra flexibility is

available for the association structure since the user can define any transformation function using

the extraForm and transFun arguments. Using this, the association can be defined to be any

function of the current value or any function of the shared random effects.

Estimation is done using Markov Chain Monte Carlo (MCMC) sampling from the poste-

rior conditional distributions of the random effects and the parameters. Usually a random walk

Metropolis can be used, but in some cases Metropolis-Hastings or slice sampling are needed (Ri-

zopoulos, 2016c). Initial values can be set using the init argument but if left unspecified initial

values are taken from the outputs from the separate models that are included as arguments to the

jointModelBayes() function. Priors can also be specified by the user with the priors ar-

gument. If not specified, standard prior distributions are used: all the fixed parameters from both

submodels as well as the association parameter are given independent diffuse Normal priors, a

inverse Wishart prior is assumed for the covariance matrix of the random effects when fitting a

Normally distributed longitudinal outcome, and an inverse Gamma prior for the error variance
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Variable Posterior Mean 95% Credible Interval

Intercept 62.0 (57.4,66.5)

Time -0.5 (-0.9,-0.2)

Age -0.2 (-0.24,-0.07)

Stage 3 or 4 -0.4 (-1.4,0.5)

Tumor Grade: High -0.5 (-3.2,2.2)

Tumor Grade: Unknown -3.2 (-6.7,0.4)

Surv-Age -0.007 (-0.02,0.01)

Surv-Stage 3 or 4 0.2 (0.01,0.3)

Surv-Tumor Grade: High 0.40 (-0.03,0.9)

Surv-Tumor Grade: Unknown 0.8 (0.2,1.4)

Association -0.09 (-0.1,-0.06)

Table 2.19: Parameter estimates and credible intervals for the joint models fit to the adrenal data
with JMbayes.

(Rizopoulos, 2016c). The JMbayes package also includes functions for plotting and running

dynamic predictions (Rizopoulos, 2016b).

2.5.2 Application of Bayesian Model to Adrenocortical Carcinoma Data

A joint model with the current value association as in (2.2) and (2.3) with a P-spline baseline

hazard is fit to the adrenal cancer data from Section 2.3 using JMbayes. MCMC is run for 52,000

iterations with a burn-in of 2000. The results are shown in Table 2.19. The JMbayes estimates

are generally similar to the frequentist current-value results in Table 2.3 and interpretations of the

covariate effects on psoas density and survival are the same.

2.6 Extensions and Specialized Joint Models and their

Implementation

The growing interest in joint modeling has led to many extensions, such as joint modeling

with competing risks, recurrent events, or multiple longitudinal processes. The addition of many

software to fit standard joint models has also encouraged the development of more specialized
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software. Here we briefly describe several model extensions and software available for implemen-

tation. See Appendix C for more implementations via software. The extent of software implemen-

tation for specialized joint modeling is likely to increase in the future.

Up until this point we have focused on longitudinal measurements with a Gaussian distribution.

Yet situations often arise that require a non-Gaussian outcome in the longitudinal submodel, such

as a logistic or Poisson model. The JM and JMbayes software in R as well as the %JM macro

in SAS, described in section 2.2, can accommodate non-Gaussian longitudinal processes. The

Jointlcmm() function in the lcmm package in R can implement different distributions in the

longitudinal submodel of a latent class mixed model (Proust-Lima et al., 2016).

Joint latent class mixed modeling is an extension that can be used to investigate class-specific

differences. These models typically include three submodels, a multinomial logistic model to

determine the latent class, a class-specific linear (or latent process) mixed model, and a class-

specific survival model. The number of latent classes must be set a priori based on knowledge of

the situation from which the data were collected. The lcmm package in R was written for latent

class mixed modeling and includes a function, Jointlcmm()which fits a joint latent class mixed

model for longitudinal and time-to-event data (Proust-Lima et al., 2016). The baseline risk can be

common or class-specific. Choice of initial values is important and it is preferred that the user

specify initial values with the B argument over using the defaults.

In medical studies it is likely more than one biomarker is measured for each patient. This neces-

sitates joint models with multiple longitudinal variables. Hickey et al. (2016) review developments

in multivariate joint models including software implementations. Hickey et. al. mentioned a

new package for multivariate joint models, sjmsoft for R, available from the author’s website

(Brown, 2005). Another option is the R package joineRML (Hickey et al., 2018).

An interesting but currently less studied extension is joint modeling with competing risks. The

longitudinal submodel for a single longitudinal outcome is the same as a single risk joint model.

Literature has almost exclusively focused on a survival submodel with proportional cause-specific

hazards (Armero et al., 2016; Blanche et al., 2015; Elashoff et al., 2007; Hu et al., 2009; Huang
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et al., 2010; Williamson et al., 2008). Usually the survival submodel has the following form,

defining the cause specific hazard h(k) for cause k = 1, ..., K.

h(k)(t;X2i, Ui, γ
(k), α(k)) = lim

h→0
h−1P (t ≤ Ti < t+ h,Di = k|Ti ≥ t,X2i(t), Ui)

= h
(k)
0 (t)exp{X2i(t)γ

(k) + α(k)TUi}

The parameters are defined similar to those in Section 1.2.2, X2i are fixed effects which have

possibly cause-specific coefficients γ(k), Ui are the random effects for subject iwith possibly cause-

specific association α(k), and cause-specific baseline hazard h(k)
0 (t).

Some of the joint modeling software will fit a competing risks model. The JM package in

R has an option CompRisk in the jointModel() function. The joint() function in the

joineR package will fit a cause-specific hazard joint model if the event indicator has multiple

levels but the documentation states this only works for two causes in addition to censoring, and

no more (Philipson et al., 2012). The SAS macro %JM can also fit a competing risk model with

the option COMPETING which is listed under AdditionalOptions. Documentation for the

stjm Stata command states that extension to the competing risks setting is planned but there

is no indication that this has been completed (Crowther et al., 2013). There is also no built-in

option for fitting a competing risks model in JMbayes. Recently a SAS macro called %SPM

was proposed specifically for fitting joint competing risks models (Wang et al., 2017). Finally, the

Jointlcmm() function in lcmm in R can also handle competing risks (Proust-Lima et al., 2016).

Another common situation is data including recurrent events such as repeated hospitalizations

or time between system breakdown in industry. The R package frailtypack will fit a standard

joint model with function longiPenal and also joint models with longitudinal measurements, a

terminal event plus recurrent events using the function trivPenal (Rondeau et al., 2017, 2012).

With the increasing number of studies utilizing joint modeling, it may be useful to analyze

the results from multiple studies in a meta-analytic context. A package for joint modeling in

a this context, joineRmeta in R, has been developed which can pool model parameters from

multiple joint models using standard meta-analysis techniques or analyze the data from all studies
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simultaneously (Sudell et al., 2018; Sudell, 2018).

2.7 Discussion

Joint modeling is a growing field of statistical research and the available software encourages

the use of these complicated models in applications. We have given an overview of joint modeling

methodology and then compiled a comprehensive list of available software. We compared through

simulation and data analysis the most common and user-friendly software: JM, joineR, and

JMbayes in R, %JM in SAS, and stjm in Stata. We also included a short description of extensions

to joint modeling such as those that accommodate competing risks, multiple longitudinal markers

or recurrent events. The %JMfit macro developed for SAS, described in Appendix C, includes

some goodness-of-fit calculations such as decomposition of AIC, BIC, ∆AIC, and ∆BIC (Zhang

et al., 2016). Assessing model fit in a joint modeling framework has had limited study and further

development of this area is likely in the future (Zhang et al., 2014).

Our simulations show joint modeling software is preferable to Two-Stage models when the

longitudinal and survival processes are correlated, as the theoretical work finds. Ours is the first

investigation that explored the performance of regression coefficients on both longitudinal and sur-

vival components. The packages in R fit only one type of association while SAS and Stata include

many more options. All software we compared are similar in their performance when fitting the

longitudinal submodel in simulations. There are more differences in the survival submodel options

and performance. All except joineR included a flexible parametric baseline hazard which is most

applicable to real data when the true model is unknown. A Cox-type survival submodel using an

unspecified baseline hazard is currently available in the R packages joineR and JM. In each of

our simulation scenarios we found that the average width of the confidence intervals around the

association estimate were smaller than all other software. This could be evidence of underestima-

tion of standard error. This is similar to what was found in simulations in Yuen and Mackinnon

(2016). Otherwise we did not see underestimation for the other covariates. Still, documentation

of the R JM package does not indicate that any techniques are used to correct for the theoretical
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underestimation. Hence this should be considered when using the R JM package with a Cox type

survival submodel. We found convergence issues when using the adaptive Gauss-Hermite quadra-

ture option only when using an unspecified baseline hazard in the R JM function. Additionally,

we saw in our simulations that using a restrictive parametric baseline risk function that matches the

truth does not aid in estimation but may shorten runtime. Unless there is a compelling reason to use

a restrictive parametric function, such as Weibull, for the baseline hazard, we would recommend

using a flexible hazard such as piecewise constant or spline based.

In our investigation through simulation, we found that the Stata stjm command can be very

sensitive to the parameter values used in data generation. SAS can also have difficulties depending

on the parameters chosen when using an unstructured covariance matrix, but the default model

assuming uncorrelated random effects was always able to fit the models. The R functions were

always able to fit models to at least some of the datasets, no matter the parameter values used.

Basic joint modeling capabilities are available in the main statistical programming languages,

R, SAS, and Stata, giving the user an option to use the implementation in the language of their

choice. Each software has good features as well as limitations. Overall, we would recommend R

JM or SAS. The SAS macro %JM offers the most functionality, including submodel, association,

and estimation options. R JM was consistently the fastest and includes almost as many options as

SAS, so this may be a better option if runtime is a concern. The joineR function is limited in the

type of models it can fit. But if a joint model with a Gaussian longitudinal response and a shared

parameter survival submodel is appropriate for the data, joineR may be a good option because

of its simplicity.

Our investigation was focused on giving an overview of the available software and their fea-

tures. Our simulations were limited to three scenarios that could be modeled in each common

software. Other simulation scenarios were explored but not every software was able to fit models

to the data. Running more simulations with different data forms and more focus on time slopes in

longitudinal models, different forms of the submodels, and various associations would add to the

knowledge of these software. Development of this group of software is expected based on the con-
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tinued research in this field and the applicability of these models. With increased generalization in

the form of each part (longitudinal and survival submodels, and the association) the software could

accommodate many more types of data. Some software are currently being developed and released

to accommodate useful extensions such as competing risks and multiple longitudinal outcomes as

we discussed. Further work on more robust estimation as well as faster algorithms would be useful.

Fitting a simple joint model with only a few covariates is not prohibitively restrictive on time. The

time required will increase with an increase in the number of covariates or a non-normal longitu-

dinal models, especially if one has to rely on re-sampling techniques for inference purposes. Such

extensions may require creative enhancements and approximations that would be computationally

efficient. An important area in joint modeling that is largely unexplored is model diagnostics.

While some of the software offer some basic diagnostics (Rizopoulos, 2010, 2016c) and dynamic

predictions (Crowther et al., 2013; Garcia-Hernandez and Rizopoulos, 2015; Rizopoulos, 2010,

2016c), there is room for further expansion.

Bayesian models can be very powerful and are gaining traction in joint modeling literature

but the implementation is relatively limited. Analyzing joint models in a general multi-purpose

Bayesian statistical programming language such as OpenBUGS, JAGS or Stan is possible and

attractive due to its flexibility. Defining a joint model can become complicated in OpenBUGS

due to the lack of closed-form for the integrals encountered in estimation. A common simplifying

assumption is that the survival process follows a parametric distribution, often Weibull (Guo, 2003;

Guo and Carlin, 2004). Full proportional hazards survival submodels have been implemented in

the literature and code is available in the supplemental materials of Rizopoulos and Ghosh (2011)

for the case of multiple longitudinal outcomes and Andrinopoulou et al. (2013) for the case of

two longitudinal variables and competing risks data. A competing risks joint model has been

implemented in WinBUGS (Deslandes and Chevret, 2010). In the next chapter we will shift our
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focus onto the competing risks scenario and develop our own models with Bayesian estimation.
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Chapter 3

Bayesian Inference and Dynamic Prediction

from Joint Models Under Competing Risks

3.1 Introduction

Joint models were developed to study the relationship between a longitudinal measurement

and a time-to-event outcome, such as CD4 counts and time to AIDS diagnosis (De Gruttola and

Tu (1994); Tsiatis et al. (1995)). The relationship between the longitudinal and time-to-event

processes is further complicated when the event can have one of multiple causes, called competing

risks. Competing risks data can arise in clinical trials and observational studies when multiple

reasons for death are recorded or when death is a competing risk of the main event of interest such

as disease progression. This is the case in our motivating dataset from a study of adrenocortical

carcinoma (ACC) patients. The morphomics, which were collected over time, are believed to be

related to time to disease change.

Typically, joint longitudinal and competing risks models use a mixed effects models frame-

work for the longitudinal part and cause-specific proportional hazards (PH) models for the survival

component with some shared variables inducing an association between the two parts (Williamson

et al. (2008); Elashoff et al. (2007); Li et al. (2010); Hu et al. (2009); Rue et al. (2017); Hickey

et al. (2018)). While cause-specific PH models are common, such modeling cannot capture any

dependence between the competing risks themselves (Lakhal et al. (2008)). Further, not all sur-

vival models conform to a PH specification. In this chapter, we propose using parametric survival

submodels from a log-location scale family in the survival part of our joint model. Utilizing para-
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metric survival models assumes that the resulting hazard functions have a specific form usually

described by a relatively small number of parameters. This reduces the number of parameters nec-

essary to estimate in our models compared to proportional hazards models, whose baseline, in its

completely unspecified form, is infinite-dimensional and typically gives rise to estimation issues.

In the context of joint models, it is well-known that unspecified baseline hazard estimation leads

to underestimated standard errors if not properly corrected (Hseih et al. (2006)). Therefore most

joint models using proportional hazards will define the baseline hazard to be a piece-wise spline

function (Furgal et al. (2019)). However, when one allows these baseline hazards to differ for each

event cause in a competing risks setting, the number of parameters to either be estimated or set

apriori increases. A fully parametric model offers parsimony and allows flexibility to go beyond a

specific structural formulation.

Specifically, we focus on Weibull and log-Normal models for our competing risks component.

Weibull and log-Normal are two widely implemented formulations adopted in the analysis of para-

metric time-to-event data. Both of the distributions fall under the umbrella of the log-location-scale

family of models. While Weibull conforms to a PH structure, assuming the failure times to follow

either a log-Normal or a Weibull distribution results in an accelerated failure time class of models.

The use of parametric survival models has recently been used in joint models with a single cause

of failure and to date we have not seen any application of parametric survival distributions with

joint longitudinal and competing risks models (Dil and Karasoy (2020)).

We develop and estimate our models under a Bayesian framework. The Bayesian technique

can help leverage data with a relatively small sample size. Further, joint models are known to

produce convergence problems and computational challenges and Bayesian estimation may be

a more efficient approach. The posterior predictive distribution can also be used for relatively

easy prediction. Joint models have often been used for dynamic prediction in biomedical settings,

predictions that can be quite useful in clinical settings (Proust-Lima and Taylor (2009); Taylor et al.

(2013); Rizopoulos et al. (2014); Blanche et al. (2015); Andrinopoulou et al. (2017, 2018); Li and

Luo (2019); Wu et al. (2019)). The event prediction can be updated with each new longitudinal
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biomarker measurement in a seamless way under the Bayesian setup.

The rest of the chapter is organized as follows. In Section 3.2 we develop our models and

we describe the Bayesian estimation in Section 3.3. We apply our models to the adrenocortical

carcinoma data in Section 3.4 and then explore model performance with simulations in Section 3.5.

Section 3.6 explains the premise of dynamic predictions in our context and supplies an example.

We conclude with a discussion in Section 3.7.

3.2 Framework

Let N be the number of subjects, indexed by i = 1, ..., N . Each subject has Ji ≥ 1 measure-

ments of the longitudinal process Y (τ) with τ measuring time since the start of the study. Subject

i has observations at times τi = (τi1, τi2, ..., τij, ..., τiJi)
T . Let Yij denote subject i’s measurement

at time τij , i.e. Yij = Y (τij). Let Yi = (Yi1, ..., YiJi)
T be the vector of longitudinal measurements

for subject i.

Each subject can experience an event with one of K ≥ 2 causes indexed by k. Let Ti be the

event time for subject i and Di = (Di1, ..., Dik, ..., DiK)T be the vector of event indicators where

Dik = 1 if subject i has event with cause k and Dil = 0 for all l 6= k. A subject’s event time may

be right-censored in which case Dik = 0 for all k = 1, ..., K.

Baseline covariates are denoted Xi in the longitudinal model and Wi in the survival submodel.

Xi may depend on the observation time τij . In the survival submodels, for simplicity, we assume

Wi is time independent. The ensemble Xi and Wi may share covariates, but need not be the same.

Let the number of covariates in the longitudinal submodel be p and the survival submodel be q.

3.2.1 Longitudinal submodel

We assume the linear mixed effects model in (3.1) for the longitudinal outcome Yi. Here we

assume that Y is continuous and normally distributed. Extending this to a generalized linear model

for non-Gaussian outcomes Y is straightforward. We include subject-specific random effects Ui

with design matrix Zi. In (3.1), β is a p-vector of regression parameters and the εij are random
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measurement errors with εij ∼ N(0, σ2
ε ). Let εi = (εi1, ..., εiJi)

T .

Yi = Xiβ + ZiUi + εi (3.1)

We assume that given Ui the Yij are independent, i.e. Yij ⊥ Yij′ | Ui if j 6= j′. For simplicity we

will work with a subject-specific random intercept only, i.e. Zi = 1, and Ui = U0i ∼ N(0, σ2
U).

3.2.2 Competing Risks Survival Submodels

For the competing risks data, we use parametric models from the log-location-scale family (Basu

et al. (2003); Mukhopadhyay and Roy (2016)). We model the distribution of the failure times

directly within a latent failure time framework. A common critique of the latent failure time

approach to competing risks analysis is that this framework can suffer from identifiability issues

(Tsiatis (1975)). This problem can be avoided by assuming the latent failure times are conditionally

independent given random effects or by including a regression model with covariates (Heckman

and Honorè (1989)). Our models both assume conditional independence and include covariates so

the parameters in our model are identifiable.

We assume that if there are K possible causes of failure, each subject, in theory, has a time

to event for each cause. Denote the time to event of cause k for subject i as T ∗ik, i = 1, ..., N ,

k = 1, ..., K. Subjects may also be independently censored and we will call T ∗i0 the independent

censoring time. Dependent censoring can be included as one of the K possible causes of failure.

We observe only the minimum failure time called Ti for subject i, Ti = min (T ∗i0, T
∗
i1, ..., T

∗
iK). We

assume that given some random effects Vi, sometimes called a frailty, the Tik are independent, i.e.

Tik ⊥ Tik′ | Vi,Wi for k 6= k′. We also assume that the longitudinal and event time outcomes for

a single subject are conditionally independent given the random effects Yij ⊥ Ti | Ui, Vi, Xi,Wi

for all i and j. We focus on two specific distributions in the log-location-scale family: Weibull

and log-Normal, which are by far the most commonly used distributions for parametric survival

analysis.
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Model W: Weibull

In the Weibull model we assume that given Vi the latent event times follow a Weibull distribution

with scale parameter γk and shape parameter µik. The shape and scale depend on the cause of

failure k and the shape µik will also depend on the subject i. Then

T ∗ik|Vi ∼Weibull (µik, γk) , k = 1, ..., K (3.2)

To incorporate the covariates and random effects, we put a regression model on the log of the

Weibull scale, assuming

log (µik) = Wiαk + θTk Vi (3.3)

where Wi is the vector of covariates with regression coefficient q-vector αk. Note that we are

assuming the covariates Wi are the same for all k for simplicity. Theoretically these Wi could

depend on k.

An association between the longitudinal and survival submodels is induced by assuming the

random effects in (3.1) and (3.3), Ui and Vi, are correlated. For simplicity, we will assume they are

the same, i.e. Vi = Ui. The regression model can be rewritten as

log (µik) = Wiαk + θTk Ui (3.4)

The parameter θk measures the strength of the association between the longitudinal and survival

processes. Here θk = 0 would mean there is no association.

When interpreting the results from fitting this model, an increase in the scale parameter µik

with constant γk moves the center of the distribution to the right on the x-axis, thus moving the

density away from 0. Hence an increase in µik = exp(Wiαk + θTk Ui), meaning a larger value for

either αk or θk, holding other parameters constant, corresponds to generally longer survival times.

A positive association parameter θk means that a larger difference in Y from its expected value

is associated with longer survival and a negative θk value means a larger baseline Y is associated
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with shorter survival. The shape parameters γk determine the shape of the Weibull distribution

with γk = 1 reducing to an exponential distribution.

Model L: Log-Normal

We also consider a joint model with the latent failure times following a log-Normal distribution

with mean µik and standard deviation γk, given random intercept Vi = Ui, i.e.

T ∗ik|Ui ∼ logNormal
(
µik, γ

2
k

)
, k = 1, ..., K (3.5)

Here we put a regression model on the mean

µik = Wiαk + θTk Ui (3.6)

with αk, Wi, and θk as described in Section 3.2.2. Interpretation is similar to the Weibull model.

Here a larger positive value of µik with a constant standard deviation γk leads to more density away

from zero meaning longer survival times.

3.3 Bayesian Model and Estimation

We use Bayesian techniques to fit these models. In our Bayesian model, we assume that the

random effect is a scalar U0i and our longitudinal outcome Yij follows a multivariate Normal dis-

tribution with mean Xijβ +U0i and standard deviation σεIJi . Here IJ is the J × J identity matrix.

Yi|Xi, β, U0i, σU , σ
2
ε ∼ MVN (Xiβ + U0i, σεIJi)

Our survival submodels will assume the latent failure event times for cause k (k = 1, ..., K)

follow either a Weibull or log-Normal distribution as in (3.2) or (3.5) called Model W and Model
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L, respectively.

Model W: Ti|Di,k = 1,Wi, U0i, γk, αk, θk ∼Weibull (µik, γk) , with log (µik) = Wiαk + θkU0i

Model L: Ti|Di,k = 1,Wi, U0i, γk, αk, θk ∼ logNormal
(
µik, γ

2
k

)
, with µik = Wiαk + θkU0i

3.3.1 Priors

We will call the set of parameters Ω = {β, σU , σε, γ1, ..., γK , α1, ..., αK , θ1, ..., θK} on which we

put the following priors.

β ∼ MVN
(
mβ, s

2
βIp
)

U0i ∼ N
(
0, σ2

U

)
σU ∼ Γ (a, b)

σε ∼ Γ (a, b)

γk ∼ Γ (a, b)

αk ∼ MVN
(
mα, s

2
αIq
)

θk ∼ N
(
mθ, s

2
θ

)

We have hyperparameters mβ , sβ , mα, sα, mθ, sθ, a, and b. The Gamma distribution hyperparam-

eters a and b could differ for each parameter but for simplicity we will use the same values.

3.3.2 Complete Data Likelihood and Posterior

The likelihood contribution from the longitudinal submodel is below where p(Yi|Xi, β, U0i, σU , σε)

is the density function of the multivariate normal distribution.

LY =
N∏
i=1

p(Yi|Xi, β, U0i, σU , σε)

=
N∏
i=1

(2πσε)
−Ji

2 exp

{
− 1

2σJiε

(
Yi − βTXi − U0i

)T (
Yi − βTXi − U0i

)}
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The likelihood contribution from the competing risks survival submodels takes the form

LT =
N∏
i=1

K∏
k=1

hk(Ti|Di,Wi, U0i, γk, αk, θk)
DikSk(Ti|Di,Wi, U0i, γk, αk, θk)

where hk and Sk are the hazard function and survival function, respectively, for cause k. The

hazard and survival functions for Model W are

Model W: hk(Ti|Di,Wi, Ui, γk, αk, θk) =
γk
µik

T γk−1
i

Sk(Ti|Di,Wi, Ui, γk, αk, θk) = exp

{
−T

γk
i

µik

}

The functions for Model L are below where φ(x) and Φ(x) are the density function and cumulative

distribution function (CDF) of a standard normal distribution, respectively.

Model L: hk(Ti|Di,Wi, Ui, γk, αk, θk) =
φ
(
γ−1
k (log Ti − µik)

)
Tiγk

(
1− Φ

(
γ−1
k (log Ti − µik)

))
Sk(Ti|Di,Wi, Ui, γk, αk, θk) = 1− Φ

(
γ−1
k (log Ti − µik)

)
Let p(Ω) denote the product of the density functions for the priors of all parameters in Ω and

p(U) =
∏N

i=1 p(U0i) the product of the densities of Ui for i = 1, ..., N . The posterior is propor-

tional to the product of the likelihood and priors.

p(Ω|Y, T,D,X,WU) ∝ LYLTp(U)p(Ω).

The posterior is high-dimensional and intractable. The standard path is to take a computational

approach using a Markov Chain Monte Carlo (MCMC) technique. The full conditionals for both

models are included in Appendix G.1. Drawing from the posterior is accomplished through a

Hamiltonian Monte Carlo which is available in Stan. We fit our models in Stan through the R

package rstan version 2.19.3 and using R version 3.6.1 (Guo et al. (2020)).
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Figure 3.1: Centered LPMA longitudinal measurements from the ACC data.

3.4 Application to ACC Data

We apply these models to the adrenocortical carcinoma (ACC) data from Section 1.5. Patients

received repeated CT scans in order to monitor their disease (McDuffie and Aufforth (2016)).

Images of the patient’s tumor were compared to those in the previous scan to determine the state

of disease. The disease could be categorized into one of three states: progression (increased tumor

size), regression (decreased tumor size), or stable (no significant tumor size change). Here we are

interested in time to first disease status change which can be either a progression or a regression.

Time is measured from date of diagnosis.

A previous study found that some morphomics, including lean psoas muscle area (LPMA),

had significant associations with the survival outcomes separately (Miller et al. (2012)). We are

interested in the association between LPMA and time to disease status change. Figure 3.1 shows

the longitudinal LPMA measurements for all patients in the study.

The ACC data used in this chapter is summarized in Table 3.1. The study included 159 patients.

The patients had between 1 and 19 scans with an average of 3.1 scans and a median of 2 scans per

patient. The majority of patients (54%) had a progression and 23% had a regression. Information
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Baseline Covariates Mean Std. dev.
Age* (years), at diagnosis 46.3 13.3

Count %
Sex Male 68 43

Female 91 57

Longitudinal Data Mean Std. dev.
LPMA* (mm2) 17.6 6.1

Scan time (years) 2.1 3.3

Survival Data Count %
Event: Change in disease state Progression 86 54

Regression 37 23

Censored 36 23

Median Range
Time to Event (years) 0.8 (0.03, 24.5)

Table 3.1: Description of adrenal cancer data used in Chapter 3. * Variables were centered in
models, i.e. X-mean(X).

on age, sex were used as baseline covariates.

We fit our models to the ACC data. The longitudinal submodel includes a time slope and two

covariates, binary sex (X1i) and continuous baseline age (X2i). A random subject-specific intercept

Ui is included. There are two competing risks; k = 1 corresponds to first progression and k = 2 to

first regression. Age is the only covariate included in the survival submodels. Adding additional

covariates to the survival submodels led to fitting problems due to the small sample. We fit both

Model W and Model L to the data. The form of the distributions for our joint models are shown in

(3.7).

Yi ∼ N
(
β0 + β1τi + β2X1i + β3X2i + Ui, σ

2
ε IJi
)

Model W: Ti ∼Weibull (µik, γk) with log(µik) = α0k + α1kX2i + θkU0i

Model L: Ti ∼ logN
(
µik, γ

2
k

)
with µik = α0k + α1kX2i + θkU0i

(3.7)

Let β = (β0, β1, β2, β3)T , and αk = (α0k, α1k)
T , k = 1, 2. We use the priors in Section 3.3.1
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with hyperparameters mβ = (0,−1,−1,−1)T , mα = (1, 1)T , mθ = −1, sβ = sα = sθ = 2,

a = 3, and b = 0.5. These hyperparameters were chosen to be weakly informative to aid in fitting

the model. We fit the models with Stan using four chains with separate initial values and 27500

warm-up iterations and 30000 iterations total.

We also fit a cause-specific proportional hazards (PH) model as in 3.8 for comparison. For

simplicity we use a parametric baseline hazard with a Weibull form for both outcomes.

Yi ∼ N
(
β0 + β1τi + β2X1i + β3X2i + Ui, σ

2
ε IJi
)

Model W PH: hk(Ti) =
γk
α0k

T γk−1
i exp (α1kX2i + θkU0i)

(3.8)

This PH model was fit in Stan with 5000 iterations, 3000 warm-up iterations and the same priors

as in Section 3.3.1. The likelihood contributions have the same form as in Section 3.3.2 with the

hazard and survival functions below (Derivations for the survival functions are in Appendix B.3.)

Model W PH: hk(Ti|Di,Wi, Ui, γk, αk, θk) =
γk
α0k

T γk−1
i exp (α1kX2i + θkU0i)

Sk(Ti|Di,Wi, Ui, γk, αk, θk) = exp

(
−
∫ Ti

0

γk
α0k

sγk−1 exp (α1kX2i + θkU0i) ds

)
= exp

(
− 1

α0k

T γki exp (α1kX2i + θkU0i)

)

3.4.1 Results

Table 3.2 shows the results and trace plots can be found in Figures F.1 and F.2 in the Appendix.

We found that in all models, LPMA tended to decrease over time (β1 < 0), older patients had

lower LPMA (β3 < 0) and females had much lower LPMA than males (β2 < 0). We see that

the association parameters (θ1 and θ2) in Models W and L have similar estimates. There is a small

positive association betweenU0i and progression and a small negative association with progression.

We found that 92% of the estimates of θ1 from the post-warm-up iterations in Model W and 95%

in Model L were above 0 and 68% of estimates from Model W and 67% of estimates from Model
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L of θ2 were below zero. In Model W PH the association parameters have opposite signs and 92%

of θ1 estimates were below 0 while 64% of θ2 estimates were above zero. In our models a higher θk

value means a larger µk and longer survival times. On the other hand, in the W PH model a larger

θk corresponds to a higher hazard and therefore smaller survival times. So the difference in signs

between our models and the W PH model is reasonable. In each model time to regression tended

to be longer than time to progression (α0,1 < α0,2). Age had a small negative effect in the survival

submodels for progression in each model (α1,1 < 0) and regression for Models W andL (α1,2 < 0).

In these cases older patients tended to have a shorter time to event. The bottom row of Table 3.2

shows the mean Deviance Information Criteria (DIC) values from the post-warm-up iterations and

the 2.5% and 97.5% quantiles. According to DIC Model W fit the data slightly better than Model

L and Model W PH had the worst fit.

3.5 Simulations

For our simulations, we generated data to be similar to the ACC study. We ran simulations for

a sample size of N = 160 (similar to the ACC data) and for N = 1000 subjects to investigate

the effect of a larger sample size. For each subject, we have two covariates, one binary and one

continuous, with distributions similar to sex and centered age in decades, respectively. For i =

1, ..., N , X1i ∼ Bin(0.57) and X2i ∼ N(0, 1.52). A random intercept is defined as U0i ∼ N(0, 42).

For each subject we generate longitudinal measurements at starting at time 0 and every 0.125

years until 3 years, then every 0.5 years until 5 years and every 1 year until 8 years, i.e. τ =

(0, 0.125, 0.25, ..., 2.875, 3, 3.5, 4, 4.5, 5, 6, 7, 8)T . Thus subjects have up to 32 longitudinal mea-

surements. These times were chosen to represent patients getting regular scans early after diagno-

sis and having less frequent scans as time since diagnosis increases. At each measurement time a

longitudinal outcome Yij (i = 1, ..., N , j = 1, ..., 32) is calculated as

Yij = β0 + β1τj + β2X1i + β3X2i + U0i + εij

The measurement errors are εij ∼ N(0, 2.22) and the true values for β differ for Models W and L.
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Model W Model L

Parameter Mean CI Pr > 0 Mean CI Pr > 0

β0 3.38 (2.31, 4.42) 1.00 3.37 (2.29, 4.42) 1.00

β1 -0.14 (-0.30, 0.01) 0.06 -0.13 (-0.27, 0.02) 0.07

β2 -5.81 (-7.13, -4.39) 0.00 -5.82 (-7.12, -4.45) 0.00

β3 -1.42 (-1.96, -0.87) 0.00 -1.43 (-1.97, -0.87) 0.00

α0,1 1.34 (1.05, 1.66) 1.00 0.65 (0.36, 0.96) 1.00

α1,1 -0.05 (-0.29, 0.19) 0.36 -0.04 (-0.26, 0.17) 0.33

α0,2 3.18 (2.42, 4.16) 1.00 2.77 (1.87, 3.87) 1.00

α1,2 -0.20 (-0.73, 0.31) 0.21 -0.24 (-0.77, 0.30) 0.19

θ1 0.08 (-0.02, 0.17) 0.92 0.07 (0.00, 0.15) 0.95

θ2 -0.06 (-0.23, 0.10) 0.32 -0.05 (-0.23, 0.12) 0.33

γ1 0.75 (0.64, 0.88) 1.00 1.59 (1.36, 1.87) 1.00

γ2 0.53 (0.40, 0.67) 1.00 3.18 (2.46, 4.16) 1.00

σU 4.31 (3.78, 4.91) 1.00 4.30 (3.77, 4.89) 1.00

σε 2.18 (2.02, 2.36) 1.00 2.18 (2.02, 2.36) 1.00

DIC -2931.6 -3255.5; -2616.9 -2665.4 -2975.3; -2400.6

Model W PH

Parameter Mean CI Pr > 0

β0 3.51 (2.40, 4.60) 1.00

β1 -0.15 (-0.34, 0.04) 0.06

β2 -6.10 (-7.51, -4.69) 0.00

β3 -1.45 (-2.01, -0.87) 0.00

α0,1 2.70 (2.03, 3.56) 1.00

α1,1 -0.11 (-0.58, 0.34) 0.33

α0,2 5.04 (3.55, 6.90) 1.00

α1,2 0.16 (-0.48, 0.75) 0.69

θ1 -0.05 (-0.12, 0.02) 0.08

θ2 0.01 (-0.07, 0.10) 0.64

γ1 0.76 (0.64, 0.88) 1.00

γ2 0.51 (0.38, 0.64) 1.00

σU 4.43 (3.88, 5.06) 1.00

σε 2.05 (1.87, 2.25) 1.00

DIC -1074.5 -1098.2; -1053.8

Table 3.2: Posterior Mean (Mean), 95% Credible Interval (CI), and probability the estimate was
greater than 0 (Pr > 0) for the ACC data using Model W. The bottom row contains the average
Deviance Information Criteria (DIC) under Mean and the 2.5% and 97.5% quantiles under CI.
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Model α0,1 α1,1 α0,2 α1,2 θ1 θ2 γ1 γ2

W 1.5 0.1 3.1 -0.1 0.05 -0.2 0.8 0.5

L 0.7 -0.02 1.9 0.2 0.1 -0.12 1.5 2.7

Table 3.3: True parameter values used to generate competing risks survival data for simulation
study.

For Model W we have β0 = 2.4, β1 = −0.1, β2 = −5.1, β3 = −1. For Model L we have β0 = 2,

β1 = −0.02, β2 = −4.2, β3 = −1.7.

We generate competing risks survival data with K = 2 risks. We do this once assuming Model

W is the truth and then assuming Model L is the truth. For each subject µik is calculated as follows

for each Model.

Model W: µik = exp(α0k + α1kX2i + θkU0i)

Model L: µik = α0k + α1kX2i + θkU0i

A survival time for each risk (k = 1, 2) is drawn from a Weibull or log-Normal distribution.

Model W: T ∗ik ∼Weibull(µik, γk)

Model L: T ∗ik ∼ logN(µik, γ
2
k)

True parameter values for the survival data generation are shown in Table 3.3. An independent

censoring time is drawn from a uniform distribution T ∗i,0 ∼ Unif(0, 7). The observed time is the

minimum Ti = min(T ∗i,0, T
∗
i,1, T

∗
i,2). We keep the longitudinal outcome Yij for a subject if τj < Ti

and we drop all other Yij . Models were fit using Stan via R with four chains with 57500 warm-up

iterations and 60000 iterations total. We generated 200 datasets for each combination of Model

(W or L) and N (160 or 1000) and fit the model on each dataset.

3.5.1 Results

Simulation results are shown in Tables 3.4 and 3.5. The table includes the average of the posterior

means (Mean) for the estimate from the 200 generated datasets. We also show the bias and Mean
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squared error (MSE) of these estimates multiplied by 1000. Finally we list the coverage probability

which is the percent of credible intervals from the 200 dataset fits that include the true value.

We see similarities between each model (Models W and L) and for each N. Bias and MSE are

generally small in each model and bias and MSE are reduced with the larger sample size, N=1000.

The parameters with the largest biases and MSEs are the longitudinal intercept (β0) and the X1

coefficient (β2). In the survival models, parameters related to the second event type, specifically

α0,2, α1,2 and γ2, tend to have larger bias and MSE than corresponding parameters for event type 1.

This is likely from a smaller number of events of type 2 observed in the data. Coverage probabilities

are generally close to 95. The few parameters that have a lower coverage probability in the N=160

case, β0, β2, and γ2 in Model L, have better coverage for N = 1000. Data was generated for two

other simulation scenarios with different true parameter values. Results for those scenarios are

similar to the results discussed here and are shown Tables D.1, D.2, D.3 and D.4 in the Appendix.
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True surv. N Param True Value Mean Bias*1000 MSE*1000 CP

Weibull 160 β0 2.4 2.09 -313 300 89

(Model W) β1 -0.1 -0.11 -6 3 98

β2 -5.1 -4.53 575 633 87

β3 -1.0 -0.96 38 53 94

σU 4.0 3.95 -53 59 95

σε 2.2 2.20 -1 2 96

α0,1 1.5 1.52 18 31 98

α1,1 0.1 0.11 7 11 96

α0,2 3.1 3.00 -99 165 96

α1,2 -0.1 -0.06 35 43 96

θ1 0.05 0.06 5 2 94

θ2 -0.2 -0.19 14 7 96

γ1 0.8 0.81 7 6 96

γ2 0.5 0.53 32 5 95

Weibull 1000 β0 2.4 2.34 -56 43 93

(Model W) β1 -0.1 -0.10 -2 1 95

β2 -5.1 -4.99 107 77 92

β3 -1.0 -1.00 3 7 96

σU 4.0 4.00 -4 9 95

σε 2.2 2.20 -1 0 95

α0,1 1.5 1.51 6 5 94

α1,1 0.1 0.10 2 2 95

α0,2 3.1 3.09 -7 44 92

α1,2 -0.1 -0.10 -1 8 95

θ1 0.05 0.05 1 0 95

θ2 -0.2 -0.19 6 1 95

γ1 0.8 0.80 0 1 92

γ2 0.5 0.50 5 1 94

Table 3.4: Simulation results for data generated with Model W as the truth. Data was generated
for either N=160 (top) or N=1000 (bottom). Data was generated 200 times. For each parameter
the results include the mean of the 200 posterior means, the bias*1000, the mean squared error
(MSE)*1000, and the coverage probability (CP).
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True surv. N Param True Value Mean Bias*1000 MSE*1000 CP

log-Normal 160 β0 2.0 1.69 -313 266 92

(Model L) β1 -0.02 -0.01 9 5 97

β2 -4.2 -3.64 555 595 87

β3 -1.7 -1.69 14 47 94

σU 4.0 3.99 -9 56 96

σε 2.2 2.20 2 2 98

α0,1 0.7 0.72 24 23 97

α1,1 -0.02 -0.02 -1 12 95

α0,2 1.9 1.81 -88 114 96

α1,2 0.2 0.18 -20 41 93

θ1 0.1 0.10 -2 2 95

θ2 -0.12 -0.12 -3 7 93

γ1 1.5 1.50 -1 13 96

γ2 2.7 2.56 -135 95 88

log-Normal 1000 β0 2.0 1.95 -55 38 95

(Model L) β1 -0.02 -0.02 -2 1 93

β2 -4.2 -4.06 137 83 92

β3 -1.7 -1.68 21 8 93

σU 4.0 4.00 -2 10 94

σε 2.2 2.20 -1 0 97

α0,1 0.7 0.71 5 4 98

α1,1 -0.02 -0.02 3 2 96

α0,2 1.9 1.87 -35 28 93

α1,2 0.2 0.20 -5 5 97

θ1 0.1 0.10 0 0 94

θ2 -0.12 -0.12 4 1 94

γ1 1.5 1.50 1 2 97

γ2 2.7 2.67 -27 16 93

Table 3.5: Simulation results for data generated with Model L as the truth. Data was generated
for either N=160 (top) or N=1000 (bottom). Data was generated 200 times. For each parameter
the results include the mean of the 200 posterior means, the bias*1000, the mean squared error
(MSE)*1000, and the coverage probability (CP).

3.6 Dynamic Prediction

We model our approach to dynamic prediction based on that used by Andrinopoulou and col-

leagues (Andrinopoulou et al. (2017)). For a new subject l, denote the set of subject l’s longitudinal
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measurements up until time s as Yl(s). The subject has baseline covariate data Xl and Wl. Let

O be the data on which the model was originally fit, O = {Yi, Ti, Di, Xi,Wi | i = 1, ..., N}. We

are interested in the probability of subject l experiencing an event of cause k before time t after

surviving event-free up until time s (s < t). We denote this probability as πl,k(s, t).

πl,k(s, t) = Pr(Tlk < t | Tl > s,Yl(s), Xl,Wl,O) (3.9)

Based on the posterior predictive distribution of the parameters Ω, we can write πl,k(t, s) as an

integral.

πl,k(s, t) =

∫
Pr(Tlk < t | Tl > s,Yl(s), Xl,Wl,Ω)p(Ω | O) dΩ (3.10)

The first part of the integrand in (3.10) can be written in terms of the overall survival function S(t)

and the cumulative incidence function CIF (s, t, k) =
∫ t
s
hk(v)S(v)dv.

Pr(Tlk < t | Tl > s,Yl(s), Xl,Wl,Ω)

=

∫
Pr(Tlk < t | Tl > s,Yl(s), Xl,Wl,Ω, Ul)p(Ul | Tl > s,Yl(s), Xl,Wl,Ω)dUl

=

∫
Pr(Tlk < t | Tl > s,Wl,Ω, Ul)p(Ul | Tl > s,Yl(s), Xl,Wl,Ω)dUl

=

∫
Pr(Tlk < t, Tl > s |Wl,Ω, Ul)

Pr(Tl > s |Wl,Ω, Ul)
p(Ul | Tl > s,Yl(s), Xl,Wl,Ω)dUl

=

∫
CIF (s, t, k |Wl,Ω, Ul)

S(s |Wl,Ω, Ul)
p(Ul | Tl > s,Yl(s), Xl,Wl,Ω)dUl

Since the longitudinal and survival outcomes are assumed independent given Ul, we have

p(Ul | Tl > s,Yl(s), Xl,Wl,Ω) ∝ p(Yl(s), Tl > s | Ul, Xl,Wl,Ω)p(Ul | Xl,Wl,Ω)

= p(Yl(s) | Ul, Xl,Wl,Ω)p(Tl > s | Ul, Xl,Wl,Ω)p(Ul | Xl,Wl,Ω)

= p(Yl(s) | Ul, Xl,Ω)S(s | Ul,Wl,Ω)p(Ul | Ω)

Here p(Yl(s) | Ul, Xl,Ω) is the likelihood for Yl, S(s | Ul,Wl,Ω) is the overall survival function,

and p(Ul | Ω) is the prior for Ul. We assumed that given Ul the latent failure times are independent
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so the overall survival function is simply the product of the cause-specific survival functions which

are defined in Section 3.3.2, i.e. S(s | Ul,Wl,Ω) =
∏K

k=1 Sk(s | Ul,Wl,Ω). The longitudinal

measurements for a single subject at different times are also independent given the random effect

so p(Yl(s) | Ul, Xl,Ω) =
∏
{j:τlj≤s} p(Ylj | Ul, Xl,Ω). Therefore,

πl,k(s, t) =

∫
Pr(Tlk < t | Tl > s,Yl(s), Xl,Wl,Ω)p(Ω | O) dΩ

=

∫ ∫
CIF (t, s, k |Wl,Ω, Ul)

S(s |Wl,Ω, Ul)
p(Ul | Tl > s,Yl(s), Xl,Wl,Ω)p(Ω | O) dUldΩ

∝
∫ ∫

CIF (t, s, k |Wl,Ω, Ul)

S(s |Wl,Ω, Ul)

∏
{j:τlj≤s}

p(Ylm | Ul, Xl,Ω)

K∏
k=1

Sk(s | Ul,Wl,Ω)p(Ul | Ω) dUldΩ

The probability of interest πl,k(s, t) can be estimated using a Monte Carlo simulation scheme with

the following three steps iterated B times. At iteration b (b = 1, ..., B),

1. Draw Ω(b) from the MCMC sample of the posterior p(Ω|O).

We have Ω(b) =
{
β(b), σ

(b)
U , σ

(b)
ε , γ

(b)
1 , ..., γ

(b)
K , α

(b)
1 , ..., α

(b)
K , θ

(b)
1 , ..., θ

(b)
K

}
2. Draw U

(b)
l from p(Ul|Ω(b)) using a Metropolis-Hastings algorithm as follows. Let

g(U | Xl,Wl,Ω) =
∏
{j:τlj≤s}

p(Ylm | U,Xl,Ω)
K∏
k=1

Sk(s | U,Wl,Ω)p(U | Ω)

• Draw a new U∗ from N(U
(b−1)
l , σ

(b)
ε

2
)

• Calculate a = min

(
1, g(U∗ |Xl,Wl, Ω(b))

g(U
(b−1)
l |Xl,Wl,Ω(b))

)
• Draw A from a Uniform(0, 1) distribution

• If A < a, set U (b)
l = U∗. Otherwise set U (b)

l = U
(b−1)
l

3. Compute π(b)
l,k (s, t |Wl, U

(b)
l ,Ω(b)) =

ĈIF (s,t,k |Wl,U
(b)
l ,Ω(b))

S(s |Wl,U
(b)
l ,Ω(b))

.

The CIF is estimated empirically with this empirical estimate denoted ĈIF . Note that

CIF (s, t, k) is the probability of having an event of type k before time t given no event up

to time s (s < t). We describe this for K = 2 risks, but the method can be easily extended
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for any K. At iteration b, we have parameter estimates Ω(b) including γ(b)
1 and γ(b)

2 and we

can calculate µ(b)
l1 and µ(b)

l2 as in (3.4) or (3.6) depending on the model chosen.

Model W :µ(b)
lk = exp

(
Wlα

(b)
k + θ

(b)
k

T
U

(b)
l

)
Model L :µ(b)

lk = Wlα
(b)
k + θ

(b)
k

T
U

(b)
l

We draw random variables R[m]
1 and R

[m]
2 for m = 1, ...,M from the following survival

distributions. In Model W, R[m]
1 ∼ Weibull(µ(b)

l1 , γ
(b)
1 ), R[m]

2 ∼ Weibull(µ(b)
l2 , γ

(b)
2 ). In Model

L, R[m]
1 ∼ logN(µ

(b)
l1 , γ

(b)
1

2
), R[m]

2 ∼ logN(µ
(b)
l2 , γ

(b)
2

2
). Let R[m]

min = min(R
[m]
1 , R

[m]
2 ). Then

ĈIF (s, t, 1 |Wl, U
(b)
l ,Ω(b)) =

1

M

M∑
m=1

(
Ind

(
s < R

[m]
min ≤ t

)
· Ind

(
R

[m]
1 < R

[m]
2

))
(3.11)

ĈIF (s, t, 2 |Wl, U
(b)
l ,Ω(b)) =

1

M

M∑
m=1

(
Ind

(
s < R

[m]
min ≤ t

)
· Ind

(
R

[m]
2 < R

[m]
1

))
(3.12)

Here Ind(·) is the indicator function. The sum in Equation (3.11) counts how many of theM

simulated subjects survive until time s and have an event of type 1 before time t and before

an event of type 2. Equation (3.12) is similar except for an event of type 2 occurring first.

Steps 1-3 are repeated B times and the overall estimate of πl,k(s, t) defined in (3.9) is the mean of

the π(b)
l,k from iterations b = 1, ..., B.

π̂l,k(s, t) =
1

B

∑
b=1

π
(b)
l,k (s, t |Wl, U

(b)
l ,Ω(b)) (3.13)

3.6.1 Application

In order to demonstrate our dynamic predictions, we simulated data with covariate effects stronger

than in the ACC data. We simulated data as in Section 3.5 but with the following true values:

β = (3,−1,−5,−2)T , σU = 4, σε = 2, α1 = c(1,−2)T , α2 = (3,−3)T , γ = (0.75, 0.5)T ,

θ = (1,−1)T . We simulated data for 1000 subjects with Weibull survival times and fit Model W.
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Data for three new subjects was then generated. Subject 1 had X1 = 0 and X2 = −0.08,

Subject 2 had X1 = 1 and X2 = −1.31, and Subject 3 had X1 = 0 and X2 = −0.36. Subjects

1 and 2 had a progression at 0.38 and 1.28 years, respectively, while Subject 3 had a regression at

0.93 years. The longitudinal Y values generated for each subject are shown in Figure 3.2. Each

subject has an increase in Y prior to the event. Subject 2 has the largest range of Y values and

Subject 3 has overall much higher values of Y than the other two new subjects.

Figure 3.2: Longitudinal measurements over time for new subjects. Vertical line indicates the
simulated event time with a solid red line corresponding to a progression and a dashed blue line
corresponding to a regression.

At the time of each of a patient’s longitudinal measurements τij we calculated the estimated

probability in (3.13) of experiencing either a progression or death given event-free survival up until

time τij , i.e. π̂l,k(τij, t), k = 1, 2. We calculated this for every 0.05 years up to 3 years, meaning

for t = 0, 0.05, 0.1, 0.15, ..., 3 if t > τij . We used B = 200 iterations to estimate the probabilities

and M = 200 random variables for the empirical estimation of the CIF. Since we generated the

data according to Model W, we show predictions only from the Weibull model. Figure 3.3 shows

the estimated probabilities π̂l,k(τij, t) over time t. We plotted only up to a short time after the

last longitudinal measurement, specifically 0.5 years for Subject 1, 1.75 years for Subject 2 and

1.5 years for Subject 3. Note that while theoretically a CIF curve will be monotonically non-

decreasing, our estimated CIF curves may have some small decreases due to the empirical nature

of our estimate.

Predictions for Subject 1 interestingly start with almost no probability of either event but then
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(a) New Subject 1

(b) New Subject 2
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(c) New Subject 3

Figure 3.3: Dynamic predictions for new patients from Model W. The solid red curve is the
probability of progression (π̂l,1(τij, t)) and the dashed blue line is the probability of regression
(π̂l,2(τij, t)). The solid vertical line indicates the time of the last longitudinal measurement used to
predict (τij) and the dashed vertical line is at the observed event time in our data.

predicts a higher chance of regression after a decrease in Y . At scans 2 and 3 new subject 1’s Y

increases and so we see a small increase in the probability of progression. Subject 2 initially has a

much higher chance of progression but after scan 2 regression has a higher probability until scan

6. Subject 3 starts with a high Y value and has a higher predicted probability of regression from

scans 1 to 6. Model W predicts very little probability of either event for the last four scans for

Subject 2 and the last scan for Subject 3 but we do not see the same flattening of both curves for

Subject 1 who has an event earlier than the other two new subjects.

3.7 Discussion

This chapter proposes the joint modeling of longitudinal and competing risks data using para-

metric distributions for the survival submodel. The Bayesian approach is natural in this context as

it exploits the hierarchical structure of the modeling framework and offers an efficient solution in
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a situation that is often numerically challenging. We developed survival submodels using Weibull

and log-Normal distributions and described how these joint models can be utilized for dynamic

prediction. Our models were used to model data from the study of adrenocortical carcinoma and

found results with similar interpretations for both the Weibull and log-Normal models. Comparing

our models to a cause-specific proportional hazards model we found similar results for the longitu-

dinal submodel parameters and most of the covariate effects in the survival submodels. But the PH

model estimated the association parameters to have the opposite signs as our models. In all cases

the association was small (θk was close to zero). While in our models these association parameters

measure the effect of deviations of the LPMA from the mean on the survival time distribution, in

the PH model these parameters change the hazard function and the opposite signs can be explained

by this difference in parameterization. Our simulation results show small bias and MSE with good

coverage even for the relatively small sample size of 160.

Parametric survival submodels can be construed as parsimonious alternatives to the oft-used

cause-specific PH formulation. Indeed the Weibull model considered in this article conforms to

the cause-specific semi-parametric PH structure. Parametric modeling allows further flexibility by

allowing non-PH formulation (e.g. log-Normal) or the possibility of formulating regression of the

scale parameters.

In Section 3.2 we assumed that the random effects in the longitudinal and competing risks

submodels were the same (Vi = Ui). This was done for the sake of simplicity but it could be

considered a strong assumption. We could instead assume that these are only correlated, for ex-

ample with a multivariate normal distribution, i.e. (Vi, Ui)
T ∼MVN(0,Σ). Additionally we used

only a random subject-specific intercept but instead could have included additional random effects

like a random slope. These options can be more flexible but also require estimation of additional

parameters.

Although the current article focuses on a linear model for the longitudinal component, aligning

it closer to the motivating data, it is apparent that the methodology will work in principle for

scenarios where the longitudinal observations stem from generalized linear models (e.g. binary
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or count data). Perhaps a more significant extension to the current discourse lies in the treatment

of recurrent events, research on which is still developing in the joint modeling context (Han et al.

(2007); Kim et al. (2012); Król et al. (2016); Cai et al. (2017); Ren et al. (2019)).

In analyzing competing causes of mortality, sometimes one may encounter missingness in the

documentation of the exact cause. Such a phenomenon, commonly referred to as masking, has

applications in the analysis of registry data or investigation of the failure pattern of complex multi-

component industrial systems (Basu et al. (1999, 2003); Mukhopadhyay and Basu (2007); Sen et al.

(2010); Bakoyannis et al. (2010); shou Ko (2019)). Bayesian framework is particularly useful in

this case as it avoids imposing non-testable assumptions on the probability of missingness. The

modeling framework we have proposed here can easily adapt to the masked data case.

A natural extension of the work proposed here is the incorporation of dependence among the

risk components. Such dependence can be induced through a frailty or Copula structure. Of course,

one has to be cognizant of the potential non-identifiability that can generate from the dependent

models. Inclusion of covariates comes to the rescue as subject level heterogeneity enables sep-

aration of information across different risk components. Study of such dependence modeling is

considered in the next chapter.
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Chapter 4

Bayesian Inference for Joint Models Under

Dependent Competing Risks

4.1 Introduction

In classical competing risks models the causes of failure are assumed stochastically indepen-

dent (Carrière, 1995) but in some cases it can be unreasonable to assume such independence. This

is especially true in medical studies where the risks may be causes of death or diagnosis of disease

in a patient with complicated health. An example of possibly dependent risks are death without

tumor, death from other causes with tumor, and death from tumor in the data described by Craiu

and Reiser (2006). The cause-specific hazards are identifiable but such models cannot estimate

dependence between the competing risks. Quantifying the dependence between these risks may be

of interest. This dependence can be modeled in different ways such as through frailties (Hougaard,

1986) or copula models (Genest and Nešlehová, 2006). Copula models define the joint distribu-

tion using a function of the marginal distributions of multiple random variables. A copula can

also be defined in terms of the survival functions. If T1, ..., TK are continuous random variables

with marginal survival functions S1, .., SK and joint survival function S, a survival copula C is a

function such that

S(t1, ..., tK) = C (S1(t1), ..., SK(tK))

Copula models allow for flexibility in the choice of margins and provide a way to qualify the de-

pendence nature of a continuous random vector in terms of the underlying copula (Genest and
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Nešlehová, 2006). Copulas have been utilized in the competing risks setting without joint lon-

gitudinal data. Lo and Wilke (2010) examines Archimedean copula model for three competing

risks. Shih and Emura (2018) used the FGM (Farlie-Gumbel-Morgenstern) copula with Burr III

marginals for competing risks data. Wu et al. (2017) used a Gumbel copula model in a compet-

ing risks setting which has a similar form to our copula model in Section 4.2 and with marginals

similar to our Weibull model described in Section 4.3.

The desire to measure the dependence between risks motivates the use of a copula model for

the competing risks part of our joint model. In Section 4.2 we describe the multivariate survival

function based on an copula model that we will focus on in this work. We consider the competing

risks data in a latent failure time framework. Competing risks models in this framework can suffer

from identifiability issues. We discuss why the parameters of our models are identifiable in Section

4.2.2.

An additional reason to stray from the common cause-specific Cox-type competing risks model

is that the data may not conform to the proportional hazards assumption. Accelerated failure

time models have been used (Tseng et al., 2005; Hanson et al., 2011). Another option is to use

parametric survival models. As discussed in the last chapter, parametric models can be more

parsimonious than a proportional hazards model which often uses a piece-wise baseline hazard

function (Furgal et al., 2019). In Section 4.3 we lay out the framework for our joint model. We use

Weibull cumulative hazard functions as a specific case of the general copula model from Section

4.2. We use Bayesian Hamiltonian Monte Carlo to estimate the parameters in our model and

describe the Bayesian estimation in Section 4.4.

Our competing risks submodel includes a parameter δ that measures the strength of the depen-

dence between the causes of failure. In theory, this parameter can take a value in (0, 1] where δ = 1

reduces to a model with independent risks. Since our Bayesian model described in Section 4.4 puts

a Beta prior on δ we also test for the case when δ = 1 using Bayes factors. This is described in

Section 4.5.

We apply our models to the ACC data in Section 4.6. We then evaluate our models via simula-
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tion in Section 4.7. Section 4.8 concludes with a discussion.

4.2 Formulation of Dependence

We will develop our models for the competing risks data under a latent failure time framework

similar to the previous chapter. We assume that each subject i (i = 1, ..., N ) theoretically has an

event time for each of the K ≥ 2 risks. Let T ∗ik be the event time for subject i caused by risk k

(i = 1, ..., N , k = 1, ..., K). Subjects may also be independently censored and we will call the

censoring time T ∗i0. We only observe the minimum of these event times. Denote the observed time

as Ti = min(T ∗i0, T
∗
i1, ..., T

∗
iK).

We will assume that the latent failure times have a joint survival function S(t1, ..., tK) with the

form in (4.1). This is a valid survival function for any arbitrary cumulative hazard functions Hk(t)

(k = 1, ..., K) and with 0 < δ ≤ 1. (See Appendix H.2 for proof.)

S(t1, ..., tK) = exp

(
−
[
H1(t1)

1
δ + ...+HK(tK)

1
δ

]δ)
(4.1)

The multivariate survival function in (4.1) is similar to or an extension of models studied over

the years (Hougaard, 1986; Lu and Bhattacharyya, 1990, 1991; Wang and Ghosh, 2000; Wang,

2012; Schwarz et al., 2013). Lu and Bhattacharyya (1990) motivate the bivariate version from the

association between two component liftetimes with some common environmental stress. Another

reason for using this survival function is the relative ease with which we can simulate data follow-

ing that distribution. This is because random variables with the joint survival function in (4.1) can

be written in terms of independent variables. This is discussed in Section 4.2.1.

The parameter δ measures the strength of the dependence between the latent failure times.

Wang (2012) shows that for a version of the joint survival model above, Kendall’s tau is equal to

1− δ. Therefore δ = 1 the model reduces to an independent failure time case.

If we use the relationship between the cumulative hazard and survival functions, Hk(tk) =
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− log(Sk(tk)), we can rewrite (4.1) as

S(t1, ..., tK) = exp

(
−
[
(− log(S1(t1)))

1
δ + ...+ (− log(SK(tK)))

1
δ

]δ)

We see that this is an Archimedean survival copula with generatorψ(t) = exp(−tδ). An Archimedean

survival copula is of the form S(t1, ..., tK) = ψ (ψ−1 (S1(t1)) + ...+ ψ−1 (SK(tK))) for some gen-

erator function ψ : [0,∞) → [0, 1] where ψ(0) = 1, ψ(t) → 0 as t → ∞, and ψ is K-monotone

(Genest and Nešlehová, 2006; Jia, 2018). Archimedean copulas have become popular in applica-

tions in biostatistics (Tao et al., 2013; Suresh et al., 2019), insurance and finance (Savu and Trede,

2010; Li and Lu, 2019), engineering (Singh and Zhang, 2007; Fenech et al., 2015), and other

fields (Zhang et al., 2012; Ayantobo et al., 2019) because of their simple form and connections

to frailty models. Specifically, if the generator ψ is completely monotone, then the copula can be

interpreted as the survival copula with lifetimes following a multiplicative hazard model with a

frailty Z and ψ is the Laplace transform of Z (Genest and Nešlehová, 2006). Any Archimedean

copula C∗(u1, ..., uK) is symmetric (i.e. C∗(u1, u2) = C∗(u2, u1) for K = 2) and associative

(i.e. C∗(u1, ..., uK) = C∗(C∗(u1, .., uK−1), uK) = ... = C∗(C∗(...C∗(C∗(u1, u2), u3), ..., uk−1), uK))

meaning the dependence structure between all the random variables is the same (Lo and Wilke,

2010).

4.2.1 Representation Result

One reason for using the copula model in (4.1) is because of the relative ease with which we

can simulate data having this joint survival function. Lee (1979) proved that in the bivariate case

(i.e. K = 2) with Weibull marginal Hk functions, the dependent random variables T1 and T2 can

be represented in terms of independent variables V1 and V2, where V2 ∼ Beta(1, 1) and V1 is a

mixture of Γ(2, 1) and Γ(1, 1) variables. Here we extend this result for an arbitrary finite number of

dependent random variables K and for arbitrary cumulative hazard functions Hk for k = 1, ..., K.

Specifically we have the following result.
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Theorem 1 Let K random variables T1, ..., TK have joint survival function

ST (t1, t2, ..., tK) = exp

(
−
[
H1(t1)

1
δ + ...+Hn(tK)

1
δ

]δ)

with 0 < δ ≤ 1, and H1, ..., HK arbitrary cumulative hazard functions.

Let Zk = Hk(Tk)
1
δ , k = 1, ..., K. Define the random variables V1 = (Z1 + ...+ZK)δ, V2 = Z1

Z1+Z2
,

V3 = Z1+Z2

Z1+Z2+Z3
, ..., VK = Z1+...+ZK−1

Z1+...+ZK−1+ZK
.

Then V1, ..., VK are independent with the following distributions: V2 ∼ Beta(1, 1), ..., VK ∼

Beta(K − 1, 1) and V1 is a mixture of the Gamma distributions Γ(K, 1), Γ(K − 1, 1), ..., Γ(2, 1),

Γ(1, 1) with the following distribution

fV1(v) =
1

δΓ(K)
exp(−v)

(
aK,Kv

K−1 + (−1)K−(K−1)aK,K−1v
K−2 + ...

+ (−1)K−kaK,kv
k−1 + ...

+ (−1)K−2aK,2v + (−1)K−1aK,1

)
where Γ(k) is the Gamma function, i.e. Γ(k) =

∫∞
0
xk−1e−xdx, and the aK,k are defined recur-

sively as follows

a1,1 = δ;

aK,K = δaK−1,K−1;

aK,1 = (δ − (K − 1))aK−1,1;

aK,k = (kδ − (K − 1))aK−1,k + δaK−1,k−1, for 2 ≤ k ≤ K − 1.

The proof of this theorem is in Appendix H.

This can be used to simulate data by first drawing the independent V1, ..., VK which is very

simple for V2, ..., VK and relatively easy for V1. We can then calculate the Zk given the following
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relationships,

Z1 = V2 · · · VKV 1/δ
1

Z2 = (1− V2)V3 · · · VKV 1/δ
1

Z3 = (1− V3)V4 · · · VKV 1/δ
1

...

ZK = (1− VK)V
1/δ

1

Then our dependent event times are T ∗k = H−1
k (Zδ

k). Since theHk are cumulative hazard functions,

the inverse function H−1
k exists.

4.2.2 Competing Risks and Identifiability

While there are several nice properties of the survival copula in (4.1) and the representation from

Section 4.2.1 allows for easy simulation, there may be concerns about identifiability. It is well

known that Tsiatis showed competing risks models in a latent failure time framework are not iden-

tifiable with the identified minimum alone (Tsiatis, 1975). Specifically given any joint distribution

for latent failure times there exists a distribution with independent failure times that gives the same

identified minimum distribution (Heckman and Honorè, 1989). Heckman and Honorè demonstrate

conditions under which including covariates as regressors circumvents non-identifiability for pro-

portional hazards and accelerated failure time models. Zheng and Klein (1995) established that if

the form of the copula is known, the marginal survival functions are identifiable from the identified

minimum in the bivariate case and Carrière (1995) extended this to the case with more than two

competing risks.

We chose to estimate using a Bayesian approach. Bayesian methods using both informative

and non-informative priors are discussed by Wang and Ghosh (2000). While Heckman and Honorè

prove identifiability for models of a certain form with a continuous covariate, Wang et al. (2015)

provide conditions for identifiability in bivariate frailty models related to Achrimedean copulas
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given a possibly discrete covariate. Escarela and Carrière (2003) also discuss bivariate competing

risks models using an Archimedean copula and they propose using a fully parametric model with an

assumed copula. Wang (2014) shows that assuming an Archimedean copula model, the marginal

survival functions of dependent survival times are functionals of the Archimedean copula and

therefore can be estimated. Also if one of the marginal functions is known, the joint survival

function can be determined for many common families of Acrhimedean copulas.

In Section 4.3 we lay out the framework for our joint model. The survival submodels are based

on the Archimedean copula model in (4.1) and we include a regression model with a continuous

covariate. Given the results above, our the parameters in our model will be identifiable.

4.3 Framework

Assume we have N subjects and subject i has Ji ≥ 1 longitudinal measurements for i =

1, ..., N . The observation times for subject i are τij for j = 1, ..., Ji with the longitudinal mea-

surement at τij denoted Yij . We will write the vector of longitudinal measurements as Yi =

(Yi1, ..., YiJi)
T for subject i. For the competing risks data, each subject can have an event with

one of K ≥ 2 causes or may be right-censored. Denote the observed event time for subject i as Ti.

We also have an event indicator matrix Di = (Di1, ..., Dik, ..., DiK)T where Dik = 1 if subject i

had an event with cause k (k = 1, ..., K) andDik = 0 otherwise. At most one of theDi1, ..., DiK is

equal to one; all Dik will be 0 if the subject is censored. In addition we have covariate information.

In the longitudinal model denote the covariate matrix by Xij for subject i and it may depend on

time j. We assume if these covariates depend on time they are exogenous (Rizopoulos, 2012, p.44).

In the survival submodel let Wi be the covariate matrix which we assume is time-independent for

simplicity. Theoretically Wi could depend on the event type k but again for simplicity we assume

it is independent of k. The Xij and Wi may but do not have to share covariates. Assume we have p

covariates in the longitudinal model and q in the survival model. Therefore Xij is a Ji × p matrix

and Wi is a q-vector.

82



4.3.1 Longitudinal Submodel

We assume our longitudinal outcome Yi is continuous and normally distributed. Hence we use

a linear mixed effects model. Extension to a generalized linear mixed effects model for non-

Gaussian outcomes is straightforward. We have subject-specific random effects denoted Ui with

design matrix Ri, a p-vector of regression parameters β and random measurement errors εij . Let

εij ∼ N(0, σ2
ε ) and εi = (εi1, ..., εiJi)

T .

Yi = Xiβ +RiUi + εi (4.2)

Assume that the longitudinal measurements are independent given the random effects, i.e. Yi ⊥

Yl|Ui, Ul, i 6= l.

4.3.2 Competing Risks Survival Submodels

We will consider a specific case of (4.1) with cumulative hazard functions based on the common

parametric survival function Weibull. The Weibull distribution is part of the log-location-scale

family of distributions. This family has often been used to describe lifetimes (Hong et al., 2015).

The cumulative distribution function (CDF) for distributions in this family can be written in the

form F (t;µ, γ) = Φ∗
(
log(t)−µ

γ

)
. Here µ is called the location parameter and γ the scale parameter.

Φ∗ is the standard CDF for the distribution (location = 0, scale = 1). We also chose to examine

this distribution since Weibull is both a proportional hazards as well as an accelerated failure time

model.

Define Hk(t) = µkt
γk giving us the following joint survival function.

S(t1, ..., tK) = exp

(
−
[
(µ1t

γ1
1 )

1
δ + ...+ (µKt

γK
K )

1
δ

]δ)
(4.3)
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We put a regression model on the µk parameters.

log(µk) = Wiαk + θTk Ui

Here Wi is a vector of covariates, Ui is the same random effect as in the longitudinal model in

(4.2), and θk measures the association between the longitudinal and survival data. Although we are

considering a regression model on the location parameter µk, it possible to instead or additionally

put a regression model on scale parameter γk or dependence parameter δ.

4.4 Bayesian Model and Estimation

We chose to estimate the parameters of our model with Bayesian techniques since this can be

less computationally intensive than frequentist techniques which often require an EM algorithm.

Additionally Bayesian models can account for additional variability. Fitting can be aided by incor-

porating any prior knowledge into the priors on the parameters.

We will use a random intercept only so Ri = 1, i = 1, ..., N and we will write Ui as U0i to

make clear the random effect is a scalar and θk is also a scalar. We assume U0i ∼ N(0, σ2
U). For

our Bayesian model we put priors on our parameters.

β ∼MVN(mβ, s
2
βIp)

σU ∼Γ(aU , bU)

σε ∼Γ(aε, bε)

γk ∼Γ(aγ, bγ)

αk ∼MVN(mα, s
2
αIq)

θk ∼N(mθ, s
2
θ)

δ ∼Beta(aδ, bδ)

Since δ can be equal to 1, we will test for this case which is discussed in Section 4.5.
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4.4.1 Likelihood and Posterior

Let Ω = (β, σU , σε, α1, ..., αK , θ1, ..., θK , γ1, ..., γK , δ)
T be the vector of parameters. The posterior,

p(Ω|Y, T,D,X,W ), is proportional to the product of the likelihood and priors. We write the

likelihood contribution from the longitudinal model as LY and from the survival model as LT . Let

p(Ω) denote the product of the prior density functions for the parameters in Ω.

p(Ω|Y, T,D,X,W,U) ∝ LYLTp(U |Ω)p(Ω)

LY has the following form

LY =
N∏
i=1

p(Yi|Xi, β, U0i, σU , σε)

=
N∏
i=1

(2πσε)
−Ji

2 exp

{
− 1

2σJiε
(Yi −Xiβ − U0i)

T (Yi −Xiβ − U0i)

}

The likelihood contribution from the competing risks survival data has the form

LT =
N∏
i=1

(
K∏
k=1

hk(Ti|Di,k = 1,Wi, U0i, γk, αk, θk)
Dik

)
·

S(Ti|Di,Wi, U0i, γ1, ..., γK , α1, ..., αK , θ1, ..., θK)

where hk and S are the cause-specific hazard function and joint survival function, respectively. We

will write the functions for K = 2 risks. With the Weibull marginals, these functions are

hk(t|Di,k = 1,Wi, Ui, γ1, γ2, α1, α2, θ1, θ2) = γkµ
1
δ
k t

γk
δ
−1
(

(µ1t
γ1)

1
δ + (µ2t

γ2)
1
δ

)δ−1

S(t|Di,Wi, Ui, γ1, γ2, α1, α2, θ1, θ2) = exp

(
−
(

(µ1t
γ1)

1
δ + (µ2t

γ2)
1
δ

)δ)

Derivation of the hazard function hk is in Appendix B.4. Full conditionals are listed in Appendix

G.2. We fit our models using Hamiltonian Monte Carlo via Stan through the R package rstan

version 2.21.2 and using R version 4.0.4 (Guo et al., 2020).
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4.5 Testing for Independence

When introducing our general joint survival function in (4.1), we stated that the dependence

parameter δ could take any value in (0, 1]. Our Bayesian model in Section 4.4 puts a Beta prior

on δ which excludes the case when δ exactly equals 1, or the independent failure times case. We

therefore need to test whether the data supplies strong evidence for the δ = 1 case. To do this we

use a Bayes factor (Kass and Raftery, 1995).

Kass and Raftery state that Bayes factors can be used to evaluate the evidence in favor of a null

hypothesis. They explain Bayes factors as follows. We assume our data D arose under one of our

two hypotheses H0 and H1. The data have probability density Pr(D|H0) or Pr(D|H1) and the

hypotheses have a priori probabilities Pr(H0) and Pr(H1) = 1−Pr(H0). Posterior probabilities

induced by the data are Pr(H0|D) and Pr(H1|D). Using Bayes theorem we can see that the

posterior odds is
Pr(H0|D)

Pr(H1|D)
=
Pr(D|H0)

Pr(D|H1)

Pr(H0)

Pr(H1)

Transformation from the prior odds to the posterior odds is equivalent to multiplication by the term

B01 =
Pr(D|H0)

Pr(D|H1)

which is called the Bayes factor.

In our situation the hypotheses are H0 : δ = 1 and H1 : 0 < δ < 1. We calculate the Bayes

factor with these two hypotheses using the bridgesampling R package (Gronau et al., 2020). To

do this we fit two Stan models to the data: (1) Model 1 as described in Section 4.4 assuming

δ is random and in (0, 1) and (2) Model 0 where δ is assumed fixed at 1. Documentation for

the bridgesampling package recommends running models that will be used for testing for more

iterations than are needed for only estimating the parameters. Therefore we run these models

for 50000 iterations after 10000 warm-up iterations. The log marginal likelihoods are calcu-

lated using the bridge_sampler function from the bridgesampling package which follows
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the bridge sampling described by Meng and Wong (Meng and Wong, 1996). Output from the

bridge_sampler is supplied to the bf function to calculate the Bayes factor. Kass and Raftery

say that the Bayes factor can be interpreted based on the following ranges. A Bayes factor of 1

to 3.2 is "not worth more than a bare mention", 3.2 to 10 is substantial, 10 to 100 is strong, and

greater than 100 is decisive evidence in favor ofH0.

4.6 Application to Adrenal Cancer Data

We apply our models to the 159 adrenocortical carcinoma (ACC) patients as in the previous

chapter. Again we define our competing risks outcome to be time until first disease status change

which can be either a progression or a regression. Death and loss to follow-up censor our out-

come. While in theory death may not be independent of disease state change we group deaths with

censoring events because there are very few patients that died before a progression or regression.

Data used are the same as described in Table 3.1. We fit our models to this data with a longitudi-

nal model for lean psoas muscle area (LPMA) (Y ) including a fixed time slope and covariates for

binary sex (X1, reference male) and (centered) age in decades (X2). In our survival submodel for

the observed event time Ti we included age as the only covariate.

Yi ∼ MVN
(
β0 + β1τi + β2X1i + β3X2i + U0i, σ

2
ε IJi
)

Ti = t|Di,k = 1 with survival function S(t, ..., t) = exp

(
−
[
(µ1t

γ1)
1
δ + ...+ (µKt

γK )
1
δ

]δ)
with log(µik) = α0k + α1kX2i + θkU0i

(4.4)

Define β = (β0, β1, β2, β3)T and αk = (α0k, α1k)
T for k = 1, 2. We set priors on the parameters as

in Section 4.4 with the following hyperparameters chosen so that our priors are weakly informative:

mβ = (1, 1, 1, 1)T , sβ = 2, aU = aε = aγ = 3, bU = bε = bγ = 2, mα = (−1, 1)T , sα = 2,

mθ = (1,−1)T , sθ = 2, aδ = 1, and bδ = 1.

To test the sensitivity of the estimates for the δ parameter we also fit the model with different
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hyperparameters for the Beta prior. Priors for all other parameters were the same as above. We fit

four additional models. The Beta(0.03,0.07) and Beta(0.05,0.05) priors have density concentrated

near 0 and 1. The other two priors used are Beta(3,7) and Beta(5,5) and have densities centered

near 0.3 and 0.5. Figures 4.1 - 4.5 show histograms of the Beta priors.

As in the previous chapter, we fit the cause-specific proportional hazards (PH) model in 4.5

for comparison. A Weibull baseline hazard was used for simplicity. In this case the risks are

independent and so there is no δ parameter.

Yi ∼ N
(
β0 + β1τi + β2X1i + β3X2i + Ui, σ

2
ε IJi
)

hk(Ti) =
γk
α0k

T γk−1
i exp (α1kX2i + θkU0i)

(4.5)

This model is fit in Stan with the same priors as in Section 4.4. The likelihood contributions have

the same form as in Section 4.4.1 with the survival functions below.

hk(Ti|Di,k = 1,Wi, Ui, γ1, γ2, α1, α2, θ1, θ2) =
γk
α0k

T γk−1
i exp (α1kX2i + θkU0i)

S(Ti|Di,Wi, Ui, γ1, γ2, α1, α2, θ1, θ2) =

2∏
k=1

exp

(
−
∫ Ti

0

γk
α0k

sγk−1 exp (α1kX2i + θkU0i) ds

)
= exp

(
− 1

α0,1

T γ1i exp (α1,1X2i + θ1U0i)−

1

α0,2

T γ2i exp (α1,2X2i + θ2U0i)

)

4.6.1 Results

Our models were fit using Stan with four chains with different initial values (see Appendix Section

F.2). The chains were run with 10000 warm-up iterations and an additional 1000 iterations after

warm-up. Trace plots are in Appendix F.3. Table 4.1 shows the results. We tested for δ = 1 as

described in Section 4.5 and found a Bayes factor of 1.62 in favor of H0 : δ = 1 over H1 : 0 <
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Parameter Mean CI Pr > 0

β0 3.45 (2.32, 4.50) 1.00

β1 -0.14 (-0.33, 0.05) 0.07

β2 -5.95 (-7.33, -4.52) 0.00

β3 -1.41 (-1.97, -0.85) 0.00

σU 4.31 (3.79, 4.89) 1.00

σε 2.04 (1.86, 2.24) 1.00

α0,1 -1.51 (-1.85, -1.20) 0.00

α1,1 0.05 (-0.12, 0.22) 0.74

α0,2 -1.98 (-2.53, -1.42) 0.00

α1,2 0.10 (-0.12, 0.32) 0.83

θ1 -0.04 (-0.11, 0.02) 0.12

θ2 0.00 (-0.07, 0.09) 0.53

γ1 0.74 (0.64, 0.85) 1.00

γ2 0.53 (0.41, 0.66) 1.00

δ 0.61 (0.14, 0.99) 1.00

DIC -1168.6 -1191.3; -1147.1

Table 4.1: Posterior Mean (Mean), 95% Credible Interval (CI) and probability the parameter is
greater than 0 (Pr > 0) for the model fit to the ACC data. The bottom row contains the mean and
2.5% and 97.5% quantiles for the DIC. Here aδ = 1 and bδ = 1.

δ < 1. This is not strong evidence in favor of δ = 1.

The results in Table 4.1 and show a slight negative time slope in the longitudinal model (β1).

The covariates were found to have significant negative coefficients with females and older patients

having lower LPMA measurements (β1, and β2, resp.). Age in the survival submodels (α1,1, α1,2)

had a small positive effect and the majority of estimates were greater than zero. We find a small

negative association between U0i and progression (θ1). There does not seem to be any association

between regression and U0i (θ2 ≈ 0). The model estimates δ to be about 0.6, although the credible

interval includes a large range of the possible values. The Bayes factor of 1.62 suggests that there

is no evidence for independence in this case.

Comparing to the model assuming independence in Chapter 3 (Table 3.2) we see that the results

for the longitudinal model (β, σU , σε) and the Weibull shapes (γ1, γ2) are very similar. Interestingly,

89



when accounting for dependence between the risks in this chapter, we find different results for the

competing risks model than in Table 3.2. The estimates of α0,1 and α0,2 are much closer in value

than in the previous chapter. Here we find a small positive association for age for both progression

and regression (α1,1 and α1,2), resp.) Finally now the estimate for the association between U0i and

progression θ1 is negative. Since we found evidence in favor of dependence with the small Bayes

factor and δ estimate different from 1, we would argue that the dependence should be included in

the model.

Results for the models fit with different hyperparameters for the prior on δ are shown in Table

4.2, histograms of the estimates are shown in Figures 4.1 - 4.5 and trace plots are in Appendix

Figures F.7 - F.11. We see that the estimates for the parameters other than δ are consistent but the

estimates for δ differ depending on the prior. Figures 4.1 - 4.5 show that the posterior distributions

of θk are similar but not exactly the same as the priors. This suggests that the data does not supply

much information about δ. Based on DIC, the model with a Beta(5,5) has the best fit to the data.

Bayes factors for all models are in Table 4.3 and we see that there is not strong evidence for δ = 1

with any priors except Beta(0.03,0.07). The model with a Beta (0.03,0.07) has a Bayes factor of

5.23 which Kass and Raftery classify as substantial evidence in favor of δ = 1. Comparing DIC,

the model with a Beta(5,5) prior has the best fit to the data.

Table 4.4 shows the results for the cause-specific PH model. Estimates for the longitudinal

submodel parameters are similar to our model. The α0k parameters in the survival submodels

have different estimates but these are also included in each model differently and therefore are not

directly comparable. The α1k and θk parameters effect the µk in our models and effect the hazard

in the cause-specific PH model. Still we see similar estimates in our models and the cause-specific

PH model. Based on DIC the cause-specific PH model fits the data slightly better than any of our

models.
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Beta(0.03,0.07) Beta(0.05,0.05)

Parameter Mean CI Pr > 0 Mean CI Pr > 0

β0 3.44 (2.35, 4.55) 1.00 3.47 (2.44, 4.57) 1.00

β1 -0.15 (-0.34, 0.04) 0.06 -0.15 (-0.32, 0.04) 0.06

β2 -5.94 (-7.33, -4.55) 0.00 -5.92 (-7.31, -4.61) 0.00

β3 -1.42 (-1.95, -0.86) 0.00 -1.42 (-1.96, -0.81) 0.00

σU 4.32 (3.80, 4.89) 1.00 4.31 (3.78, 4.91) 1.00

σε 2.04 (1.87, 2.23) 1.00 2.03 (1.85, 2.24) 1.00

α0,1 -1.68 (-1.95, -1.40) 0.00 -1.66 (-1.95, -1.35) 0.00

α1,1 0.04 (-0.14, 0.22) 0.68 0.05 (-0.13, 0.23) 0.69

α0,2 -2.32 (-2.72, -1.86) 0.00 -2.29 (-2.70, -1.68) 0.00

α1,2 0.12 (-0.14, 0.39) 0.82 0.12 (-0.14, 0.38) 0.83

θ1 -0.05 (-0.12, 0.02) 0.08 -0.05 (-0.12, 0.02) 0.08

θ2 0.02 (-0.07, 0.10) 0.66 0.02 (-0.07, 0.11) 0.62

γ1 0.75 (0.64, 0.88) 1.00 0.75 (0.64, 0.87) 1.00

γ2 0.52 (0.39, 0.66) 1.00 0.52 (0.39, 0.66) 1.00

δ 0.95 (0.51, 1.00) 1.00 0.92 (0.30, 1.00) 1.00

DIC -1169.1 -1192.4; -1148.1 -1168.0 -1190.6; -1146.7

Beta(3,7) Beta(5,5)

Parameter Mean CI Pr > 0 Mean CI Pr > 0

β0 3.43 (2.35, 4.49) 1.00 3.41 (2.37, 4.46) 1.00

β1 -0.14 (-0.33, 0.05) 0.07 -0.14 (-0.32, 0.05) 0.07

β2 -5.94 (-7.29, -4.55) 0.00 -5.93 (-7.26, -4.62) 0.00

β3 -1.40 (-1.98, -0.82) 0.00 -1.41 (-1.96, -0.83) 0.00

σU 4.31 (3.81, 4.91) 1.00 4.31 (3.80, 4.88) 1.00

σε 2.04 (1.87, 2.25) 1.00 2.04 (1.86, 2.24) 1.00

α0,1 -1.39 (-1.64, -1.16) 0.00 -1.46 (-1.72, -1.23) 0.00

α1,1 0.06 (-0.10, 0.22) 0.80 0.06 (-0.10, 0.21) 0.77

α0,2 -1.72 (-2.13, -1.39) 0.00 -1.90 (-2.31, -1.53) 0.00

α1,2 0.08 (-0.09, 0.25) 0.81 0.09 (-0.10, 0.29) 0.82

θ1 -0.04 (-0.10, 0.03) 0.13 -0.04 (-0.10, 0.03) 0.12

θ2 -0.01 (-0.07, 0.06) 0.43 0.00 (-0.07, 0.07) 0.52

γ1 0.72 (0.63, 0.82) 1.00 0.73 (0.63, 0.84) 1.00

γ2 0.55 (0.44, 0.67) 1.00 0.54 (0.42, 0.66) 1.00

δ 0.35 (0.13, 0.64) 1.00 0.51 (0.24, 0.80) 1.00

DIC -1171.4 -1193.6; -1150.3 -1173.5 -1197.1; -1152.0

Table 4.2: Results with different hyperparameters for delta. Posterior Mean (Mean), 95% Credible
Interval (CI) and probability the parameter is greater than 0 (Pr > 0) for the model fit to the ACC
data. The bottom row contains the mean and 2.5% and 97.5% quantiles for the DIC.
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Prior Bayes Factor

Beta(1,1) 1.62

Beta(0.03,0.07) 5.23

Beta(0.05,0.05) 2.30

Beta(3,7) 2.44

Beta(5,5) 2.14

Table 4.3: Bayes factors for models fit with differing priors on delta.

Parameter Mean CI Pr > 0

β0 3.42 (2.33, 4.45) 1.00

β1 -0.15 (-0.34, 0.03) 0.04

β2 -5.96 (-7.28, -4.56) 0.00

β3 -1.42 (-1.96, -0.85) 0.00

σU 4.32 (3.79, 4.93) 1.00

σε 2.04 (1.86, 2.24) 1.00

α0,1 4.97 (3.93, 6.22) 1.00

α1,1 0.05 (-0.14, 0.23) 0.68

α0,2 7.31 (5.75, 9.13) 1.00

α1,2 0.11 (-0.11, 0.32) 0.81

θ1 -0.05 (-0.12, 0.02) 0.07

θ2 0.01 (-0.07, 0.08) 0.57

γ1 0.73 (0.62, 0.85) 1.00

γ2 0.48 (0.36, 0.60) 1.00

δ NA NA NA

DIC -1183.8 -1207.4; -1163.3

Table 4.4: Posterior Mean (Mean), 95% Credible Interval (CI) and probability the parameter is
greater than 0 (Pr > 0) for the cause-specific proportional hazards model fit to the ACC data. The
bottom row contains the mean and 2.5% and 97.5% quantiles for the DIC. Here aδ = 1 and bδ = 1.
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(a)

(b)

Figure 4.1: Prior (a) and estimates (b) from model fit with a Beta(1,1) prior.
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(a)

(b)

Figure 4.2: Prior (a) and estimates (b) from model fit with a Beta(0.03,0.07) prior.
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(a)

(b)

Figure 4.3: Prior (a) and estimates (b) from model fit with a Beta(0.05,0.05) prior.
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(a)

(b)

Figure 4.4: Prior (a) and estimates (b) from model fit with a Beta(3,7) prior.
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(a)

(b)

Figure 4.5: Prior (a) and estimates (b) from model fit with a Beta(5,5) prior.
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4.7 Simulations

We test our model with a simulation study by generating data to be similar to the ACC data. We

ran simulations for two sample sizesN = 160 as in the ACC data andN = 1000. Each subject has

two covariates a binaryX1i ∼ Bin(0.57) similar to sex, and continuousX2i ∼ N(0, 1.52) similar to

centered age in decades. We draw a random intercept U0i ∼ N(0, 4.32). We calculate longitudinal

measurements starting at time 0 and then every 0.125 years until 3 years, then every 0.5 years until

5 years and every 1 year until 8 years, so τ = (0, 0.125, 0.25, ..., 2.875, 3, 3.5, 4, 4.5, 5, 6, 7, 8)T .

These measurements times were chosen to increase the likelihood that subjects with a short event

time still have more than one observation and the time between observations increases to represent

that patients have less frequent scans as time since diagnosis increases. Random measurement

errors are drawn as εij ∼ N(0, 22) and the longitudinal outcome for subject i at time point j is

Yij = β0 + β1τj + β2X1i + β3X2i + U0i + εij

True values for β are set to be β0 = 3.4, β1 = −0.15, β2 = −6, β3 = −1.5.

For the competing risks data we generate times for K = 2 risks with Weibull marginals. We

calculate µik as

µik = exp(α0k + α1kX2i + θkU0i)

The true values used in the regression model are α1 = (−1.5, 0.1)T , α2 = (−2, 0.2)T , θ1 = −0.4,

θ2 = 0.5, γ1 = 0.75, and γ2 = 0.5. We also generate data for different levels of dependence with

δ = 0.5, 0.8, or 1.

In order to calculate the event times, we utilize the representation from the Theorem in Section

4.2.1. We can draw V2 ∼ Beta(1, 1) and independently draw V1 from a mixture of Γ(1, 1) and

Γ(2, 1) distributions with mixture proportion δ. We can calculateZ1 = V
1
δ

1 V2 andZ2 = V
1
δ

1 (1−V2).

Then our dependent event times are Tk = H−1
k (Zδ

k), k = 1, 2 where the Hk is defined in Section

4.3 and derivations for the H−1
k function is in Appendix B.5.
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We fit models as described in Section 4.4. Hyperparameters were the same as in Section 4.6.

We also tested for the δ = 1 case as detailed in Section 4.5 for 10 datasets. The small number of

datasets tested was due to the additional computational resources required.

4.7.1 Results

True Value N Param Mean Bias*1000 MSE*1000 CP N Param Mean Bias*1000 MSE*1000 CP

3.4 160 β0 3.19 -214 218 88 1000 β0 3.35 -53 31 92

-0.15 β1 -0.15 0 3 96 β1 -0.15 0 1 98

-6 β2 -5.76 237 193 86 β2 -5.96 43 22 95

-1.5 β3 -1.44 61 62 94 β3 -1.48 22 9 93

4.3 σU 4.22 -84 76 94 σU 4.28 -22 13 94

2 σε 2.00 1 1 94 σε 2.00 -1 0 93

0.1 α1,1 0.08 -20 21 92 α1,1 0.09 -11 3 94

0.2 α1,2 0.27 73 40 88 α1,2 0.21 11 4 92

-0.4 θ1 -0.45 -46 7 92 θ1 -0.41 -10 1 93

0.5 θ2 0.58 82 18 87 θ2 0.51 9 1 95

0.75 γ1 0.81 62 12 91 γ1 0.76 12 1 92

0.5 γ2 0.55 52 8 89 γ2 0.51 6 1 95

0.5 δ 0.55 54 26 98 δ 0.52 17 9 95

Table 4.5: Simulation results for data generated with δ = 0.5. Data was generated for either N=160
(left side) or N=1000 (right side). Data was generated 200 times. For each parameter the results
include the mean of the 200 posterior means, the bias*1000, the mean squared error (MSE)*1000,
and the coverage probability (CP).

We used Stan to fit the models with four chains each with 10000 burn-in iterations and 1000

additional iterations after burn-in. Tables 4.5, 4.6 and 4.7 show the results for δ = 0.5, δ = 0.8 and

δ = 1, respectively. Results from the boundary testing are shown in Table 4.8. Our results show

small bias and MSE for all parameters as well as good coverage for N = 160 and the results are

even better for N = 1000. We see similar results for the δ = 0.8 and δ = 1 cases. When testing for

independence, we find essentially no evidence for independence in the δ = 0.5 simulations since

the maximum Bayes factor value found was 2.37 with N = 160, below the threshold of 3.2 set by

Kass and Raftery (1995). In the δ = 0.8 case, some of the simulations found "substanial" evidence

of independence with a maximum Bayes factor of 5.45 with N = 160 and 9.17 with N = 1000

but the average Bayes factor value with N = 1000 was below the 3.2 threshold. In the δ = 1 case
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True Value N Param Mean Bias*1000 MSE*1000 CP N Param Mean Bias*1000 MSE*1000 CP

3.4 160 β0 3.16 -236 222 89 1000 β0 3.36 -44 30 94

-0.15 β1 -0.15 3 4 94 β1 -0.15 2 1 98

-6 β2 -5.73 266 224 86 β2 -5.97 30 21 98

-1.5 β3 -1.44 59 61 94 β3 -1.48 24 9 92

4.3 σU 4.21 -89 71 95 σU 4.28 -23 13 94

2 σε 2.00 1 2 94 σε 2.00 1 0 94

0.1 α1,1 0.08 -24 19 94 α1,1 0.10 -5 2 96

0.2 α1,2 0.25 45 30 94 α1,2 0.22 16 4 94

-0.4 θ1 -0.41 -13 5 96 θ1 -0.41 -7 1 95

0.5 θ2 0.54 39 11 90 θ2 0.51 9 1 96

0.75 γ1 0.78 34 7 96 γ1 0.76 10 1 96

0.5 γ2 0.54 40 7 92 γ2 0.51 8 1 96

0.8 δ 0.73 -72 26 98 δ 0.80 301 96 99

Table 4.6: Simulation results for data generated with δ = 0.8. Data was generated for either N=160
(left side) or N=1000 (right side). Data was generated 200 times. For each parameter the results
include the mean of the 200 posterior means, the bias*1000, the mean squared error (MSE)*1000,
and the coverage probability (CP).

we should find evidence for independence. We see that while some of the simulations did not find

evidence for independence with N = 160 (given the minimum Bayes factor of 1.05) the average

Bayes factor with N = 160 shows "substantial" evidence but the average with N = 1000 shows

"strong evidence" (Bayes factor of 10 to 100).

4.8 Discussion

In this chapter we propose jointly modeling longitudinal and competing risks data with survival

submodels from a multivariate copula. We explored a joint survival copula model with a general

structure and then in the specific cases with cumulative hazard functions from a Weibull distribu-

tion. This model is an alternative to the often used cause-specific proportional hazards models in

competing risks settings. We estimate via a Bayesian approach that makes use of the hierarchical

structure of the model. Bayesian techniques also allow us to incorporate prior information, if avail-

able, which can help alleviate some identifiability issues and are useful in joint modeling which

can be numerically challenging in a frequentist setting.

We examined performance of the models via a simulation study. Simulations showed generally

good performance even with a relatively small sample size of 160. Testing for independence with
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True Value N Param Mean Bias*1000 MSE*1000 CP N Param Mean Bias*1000 MSE*1000 CP

3.4 160 β0 3.14 -251 231 90 1000 β0 3.34 -60 35 92

-0.15 β1 -0.15 -1 4 93 β1 -0.15 0 1 94

-6 β2 -5.70 298 250 84 β2 -5.95 50 29 93

-1.5 β3 -1.44 64 59 94 β3 -1.47 23 10 92

4.3 σU 4.20 -101 76 94 σU 4.27 -28 13 90

2 σε 2.00 3 2 96 σε 2.00 -1 0 94

0.1 α1,1 0.09 -14 16 94 α1,1 0.09 -6 3 94

0.2 α1,2 0.24 44 28 94 α1,2 0.21 7 4 96

-0.4 θ1 -0.39 12 4 96 θ1 -0.39 8 1 94

0.5 θ2 0.51 15 9 92 θ2 0.49 -11 1 95

0.75 γ1 0.76 8 7 92 γ1 0.75 -2 1 96

0.5 γ2 0.54 35 7 92 γ2 0.50 2 1 96

1 δ 0.80 -196 48 NA δ 0.91 -90 10 NA

Table 4.7: Simulation results for data generated with δ = 1. Data was generated for either N=160
(left side) or N=1000 (right side). Data was generated 200 times. For each parameter the results
include the mean of the 200 posterior means, the bias*1000, the mean squared error (MSE)*1000,
and the coverage probability (CP). Note that coverage probabilities were not included for δ since
the model uses a Beta prior and so will not include the true value of 1.

N Mean Min Max N Mean Min Max

δ = 0.5 160 0.82 0.02 2.37 1000 0.02 0.00 0.09

δ = 0.8 160 3.30 0.05 5.45 1000 2.17 0.05 9.17

δ = 1 160 5.04 1.05 10.75 1000 11.45 3.32 22.12

Table 4.8: Simulation results Bayes factors testing δ = 1.

Bayes factors did show stronger evidence in favor of independence when δ = 1 as expected. We

also illustrated the technique by applying the joint model to the ACC data. We did not find a

significant association between the longitudinal LPMA and time to either disease state change but

there was evidence of dependence between the risks.

We explored the sensitivity of δ to the priors using the ACC data and found that the data may not

supply much information about the dependence parameter. In the simulations using the Beta(1,1)

prior we were able to accurately estimate the δ parameter when δ was 0.5 and 0.8 with small bias

and MSE. A larger bias was found when δ = 1. Additional sensitivity analyses to examine the

prior influence on δ in the simulations would be useful. The δ parameter may only be "weakly"

identifiable (Cao et al., 2013; Ho and Nguyen, 2016) and further study is needed.

We used Bayes Factors to test for independence between the competing risks, meaning δ = 1.
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The model we fit assumes that δ is actually between 0 and 1, not including 1. Another option

would be to allow δ to be exactly equal to 1 in the fitted model. This can be done by including

δ = 1 in the prior such as by using a spike-and-slab prior.

We applied our model with Weibull marginals. The Weibull distribution is a popular and simple

distribution which can be interpreted in both proportional hazards and accelerated failure time

form. Another option could be the log-Normal distribution which is popular in accelerated failure

time models. Both of these examples have ties to accelerated failure time models which are the

main alternative to the common proportional hazards models. Our model is developed such that

any cumulative hazard function could be substituted depending on the application. Also, while we

assumed that the cumulative hazard functions for each latent failure time were of the same form

with differing parameters, in theory we could use a different parametric form for each time. This

would complicate the likelihood derivation but adds flexibility.

In this work we considered the time to first disease progression or regression as a competing

risks endpoint. In fact, our motivating data from the ACC study includes more information on

disease states. Specifically, at each timepoint we know if the patient’s disease is stable, progressing

or regressing, as well as time of death or censoring. This is multistate data (Hougaard, 1999) and

incorporation of this type of data into joint models is beginning to be studied (Dantan et al., 2011;

Hu et al., 2012; Cai et al., 2017; Król et al., 2016; Ferrer et al., 2016; Mwanyekange et al., 2019;

Dessie et al., 2020). In addition, there are multiple longitudinal morphomics variables that were

measured at each scan. It is possible to incorporate more than one longitudinal submodel into a

joint model with a single survival endpoint (Hatfield et al., 2011; Tang and Tang, 2015; Hickey

et al., 2016; Mauff et al., 2020), competing risks (Andrinopoulou et al., 2013), or recurrent events

(Musoro et al., 2015). To the best of our knowledge combining both multiple longitudinal and

multi-state models has been explored only with a two-stage estimation technique (Alafchi et al.,

2021). The next chapter extends this model to a joint longitudinal and multistate model to fully
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understand the relationship between ACC disease and body morphomics.
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Chapter 5

Bayesian Joint Models for Multiple

Longitudinal Outcomes and Multi-State

Survival Data

5.1 Introduction

Our motivating data from adrenocortical carcinoma (ACC) patients at the University of Michi-

gan includes more information than has been utilized in our earlier chapters. To start, information

is available on disease states over time, more than just the time to first of progression or regres-

sion. We have information on whether the disease was stable, progressive or regressive at each

longitudinal timepoint as well as if the individual died or was censored. This falls into the category

of multistate data (Hougaard, 1999; Andersen and Keiding, 2002). Multi-state survival modeling

has recently been incorporated in joint models. Alafchi et al. (2021) developed a joint model for

multiple longitudinal processes and multi-state survival data which was estimated in two-stages.

Implementations which estimate using the full joint likelihood exclusively consider a single longi-

tudinal biomarker and generally use a proportional hazards format for the multistate hazards. This

includes Dantan et al. (2011) who modeled a longitudinal biomarker and an illness-death multi-

state model with latent state transitions. Ferrer et al. (2016) studied prostate cancer using a joint

linear mixed model and Markov multistate model. Dessie et al. (2020) studied viral load in HIV

patients with a similar model. Musoro et al. (2015) developed a joint model for two longitudinal
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biomarkers and two types of repeated events. Mwanyekange et al. (2019) describe a Bayesian joint

model for a single longitudinal process and a recurrent event with up to 3 recurrences plus a ter-

minal event using a Semi-Markov model. Other studies of joint models for a longitudinal process,

recurrent events and possibly a terminal event include Cai et al. (2017) using an accelerated failure

time model, Han et al. (2007) and Król et al. (2016).

In the ACC data multiple morphomics variables were repeatedly measured. These could be

related to the survival process in different ways and so it may be useful to include more than one

longitudinal outcome in the model. This has received some limited attention when joint modeling

with multistate data as described above. More work has been done on including multiple longi-

tudinal outcomes with a single survival time (Hatfield et al., 2011; Baghfalaki et al., 2014; Tang

and Tang, 2015; Musoro et al., 2015; Yang et al., 2016; Hickey et al., 2016; Long and Mills, 2018;

Mauff et al., 2020) and with a competing risks survival setting (Andrinopoulou et al., 2013, 2017).

We propose jointly modeling two longitudinal variables and the repeatedly measured multi-

state outcomes with a possible terminal event. We plan to use a joint survival function based on

the copula explored in 4 with parametric Weibull marginal survival functions to define the multi-

state survival information. Copulas have been explored in the multistate context by Rotolo et al.

(2013)and Diao and Cook (2014), for recurrent events by Huang et al. (2020) and Malehi et al.

(2015), and for semi-competing risks by Wu et al. (2020). To our knowledge there has been no

work including both multiple longitudinal outcomes and a multistate model derived from a cop-

ula. In this chapter we will develop a joint model based on the motivating study on adrenocortical

carcinoma first described in Section 1.5.

5.1.1 Motivating Study on Adrenocortical Carcinoma

The example timeline from Chapter 1 is replicated in Figure 5.1. Recall that each patient has an

initial scan and the state of disease at that scan is considered the reference state. It is determined

at the next scan whether the tumor did not change size significantly (stable), became larger (pro-

gressed) or became smaller (regressed). The latest disease state is then considered the reference
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state for the next scan and this continues for all the patient’s scans. The diagram in Figure 5.1

shows two scans before the end of follow-up, but this could be any number of scans. We also have

information on a terminal event, namely death. At the end of follow-up the patient may have died;

otherwise the patient would be censored.

Figure 5.1: Diagram of possible states over time in the adrenal cancer study.

Recall that twelve time-dependent morphomic variables were recorded at each scan listed in

Table 1.2 and described in Appendix A. As stated in Chapter 1, a previous study separately in-

vestigated the relationship between several morphomic variables and recurrence-free and overall

survival in ACC (Miller et al., 2012). The study found that psoas muscle density (PMD), lean psoas

muscle area (LPMA), and intra-abdominal (IA) fat had significant associations with the survival

outcomes.

Since the morphomic variables are measured from the scans, they will be subject to measure-

ment error. Therefore, a joint model for the longitudinal morphomic data and the survival data is

needed. We began with the simplest case in Chapter 2 and investigated the relationship between

a single morphomic variable, psoas density, and survival time using joint models within various

computational settings. In Chapters 3 and 4 we considered how the longitudinal and survival pro-

cesses are related when we incorporated the information on cancer progression. Specifically, we

treated the survival process as a competing risks problem. We investigated the relationship between

a single morphomic variable lean psoas muscle area (LPMA) and time to either first progression or
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death without progression. Those who have died without progression could have died from causes

other than their cancer. Analyzing the data as competing risks can help us learn about the relation-

ship between LPMA and worsening disease (progression) while accounting for the competing risk

of death not attributable to the disease. Finally here in Chapter 5 we will utilize more of the infor-

mation available via a multistate model. The data include recurrent events, from the declaration of

disease state at each scan, and these events can be one of multiple types (progression, regression,

or no event). We also have the terminal event of death. Further, we have multiple morphomic

variables and we would like to include more than one in our joint multistate model to examine

the relationship between the morphomics and disease state, while accounting for all aspects of the

data. We will do this with a joint model with two longitudinal outcomes and multistate survival

data.

5.2 Multi-state Survival Data

Assume we have N subjects indexed by i = 1, ..., N and R possible states. Subject i has Ki

state transitions. Let Dt denote the state at time t ≥ 0. The hazard function for going to state l

from state k at time t is defined in (Hougaard, 1999) (with slightly different notation here) as

λl|k(t | Du, u ∈ [0, t)) = lim
∆t↘0

Pr (Dt+∆t = l | Dt− = k,Ft−)

∆t
(5.1)

where Ft− is the history of the state process over time [0, t). The total hazard from state k is

λk(t) =
∑
l 6=k

λl|k(t) (5.2)

In the ACC data we have four possible states: (1) stable, (2) progressing, (3) regressing, and

(4) dead. State 4 (dead) is an absorbing state, so there can be no transitions out of this state. The

hazard functions for going between each state are labeled on the state diagram in Figure 5.2.

We will use the Markov assumption which states that instead of the full state process history
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Figure 5.2: Diagram of possible states in the ACC study.

we only need to know the last state before time t, i.e.

Pr(Dt = l|Du, u ∈ [0, v]) = Pr(Dt = l | Dv) (5.3)

Define the Markov transition probabilities as

Pl|k(t, v) = Pr(Dt = l | Dv = k) (5.4)

As in previous chapters we will use the joint survival function with Weibull marginal hazards.

Denote the time of the kth state transition for subject i by ti,k and the state at time ti,k by Di,k.

State transition times are measured as time from the start of the study (time since diagnosis in the

ACC data) and so we assume the times are increasing, ti,1 < ti,2 < ... < ti,Ki for each i.

S(ti,1, ..., ti,Ki |Di,1, ..., Di,Ki) = exp

(
−
[
(µi,Di,1t

γDi,1
i,1 )

1
δ + ...+ (µi,Di,Ki t

γDi,Ki
i,Ki

)
1
δ

]δ)
(5.5)

Using the Markov assumption, for transition at time ti,k we only need to know time ti,k−1 from

Markov assumption. So the relevant joint survival function for each transition is

S(ti,k−1, ti,k|Di,k−1, Di,k) = exp

(
−
[
(µi,Di,k−1

t
γDi,k−1

i,k−1 )
1
δ + (µi,Di,kt

γDi,k
i,k )

1
δ

]δ)
(5.6)
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Hougaard (1999) gives the likelihood contribution for subject i as

[
Ki∏
k=1

λDi,k|Di,k−1
(ti,k|ti,k−1) exp

(
−
∫ ti,k

ti,k−1

λDi,k−1
(v|ti,k−1)dv

)]
exp

(
−
∫ Ci

ti,Ki

λDi,Ki (v|ti,Ki)dv

)
(5.7)

where Ci is the censoring time if the subject is censored after transition Ki (i.e. Ki is not an ab-

sorbing state). We need the conditional hazards λDk|Dk−1
for each possible Dk−1 and Dk. Shaked

and Shanthikumar (1987) defines this conditional hazard using the joint survival and joint proba-

bility density functions. We write this out for λ1|2 below and generalizing to any two states other

than states 1 and 2 is straightforward. See Appendix B.6 for details.

λ1|2(t | t2) = lim
∆t↘0

Pr (t < T1 ≤ t+ ∆t | T1 > t, T2 = t2)

∆t

= − f(t, t2)(
∂
∂t2
S(t, t2)

) (5.8)

The joint probability density function is f(t1, t2) = (−1)2∂2S(t1,t2)
∂t1∂t2

(Crowder, 2012, p.105). Hence

f(t, t2) =
1

δ
µ

1
δ
1 γ1t

γ1
δ
−1 · 1

δ
µ

1
δ
2 γ2t

γ2
δ
−1

2 · exp

(
−
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ)
·[

δ(1− δ)
([

(µ1t
γ1)

1
δ + (µ2t

γ2
2 )

1
δ

]δ−2
)

+ δ2

([
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]2δ−2
)]

The denominator from (5.8) is

∂

∂t2
S(t, t2) = − exp

(
−
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
δ
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)

1

δ
µ

1
δ
2 γ2t

γ2
δ
−1

2

Giving

λ1|2(t | t2) =
1

δ
µ

1
δ
1 γ1t

γ1
δ
−1

[
(1− δ)

([
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]−1
)

+

(
δ
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)]
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In general for transition to state l from state k, the conditional hazard is

λl|k(t|tk) =
1

δ
µ

1
δ
l γlt

γl
δ
−1

[
(1− δ)

([
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]−1
)

+

(
δ
[
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]δ−1
)]

(5.9)

and the total hazard from state k is

λk(t|tk) =
∑
l 6=k

(
1

δ
µ

1
δ
l γlt

γl
δ
−1

[
(1− δ)

([
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]−1
)

+

(
δ
[
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]δ−1
)])

(5.10)

Using these hazard functions we can write out the likelihood contribution for each subject as in

(5.7).

5.3 Multiple Longitudinal Outcomes

Suppose for each subject iwe haveM ≥ 1 different longitudinal processes measured over time

which we will call a biomarker. Subject i has Jim total measurements of biomarker m = 1, ...,M

at times τ (m)
i = (τ

(m)
i1 , ..., τ

(m)
ij , ...τ

(m)
iJim

)T . Let Y (m)
i,j be subject i’s biomarker m measurement at

time τ (m)
ij and let Y (m)

i be the vector of biomarker measurements Y (m)
i = (Y

(m)
i,1 , ..., Y

(m)
i,Jm

)T . We

will assume a linear mixed effects model for Y (m)
i ,

Y
(m)
i = X

(m)
i β(m) + Z

(m)
i U

(m)
i + ε

(m)
i , m = 1, ...,M (5.11)

Here X(m)
i is a covariate matrix with coefficients β(m), U (m)

i is a vector of random effects with

design matrix Z(m)
i , and ε(m)

i is a vector of random measurement errors ε(m)
i = (ε

(m)
i1 , ..., ε

(m)
iJim

)T .

Assume ε(m)
i ∼ N(0, σ

(m)
ε

2
IJim).

For simplicity we will use only a random intercept, i.e. Z(m)
i U

(m)
i = U

(m)
0i . The M biomarkers

may be correlated with each other so we assume a multivariate normal distribution for the random

intercepts with mean 0 and covariance matrix ΣU , (U
(1)
0i , ..., U

(M)
0i )T ∼ MVN(0,ΣU).
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5.4 Bayesian Model and Estimation

5.4.1 Longitudinal Submodels

We will describe the Bayesian model that will be fit to our ACC data specifically. For the ACC

data we will consider M = 2 biomarkers: LMPA (Y (1)) and body depth (BD) (Y (2)). Examples of

the LPMA and BD measurements over time for selected patients are shown in Figures 5.3 and 5.4.

As in previous chapters we will include an intercept, time slope, binary sex X1i and centered

continuous age in decades X2i in the longitudinal models. Here we include the same baseline

covariates in each longitudinal model though these could differ between models. We have the

following submodels.

Y
(1)
i ∼ N(β

(1)
0 + β

(1)
1 τ

(1)
i + β

(1)
2 X1i + β

(1)
3 X2i + U

(1)
0i , σ

(2)
ε

2
IJi1)

Y
(2)
i ∼ N(β

(2)
0 + β

(2)
1 τ

(2)
i + β

(2)
2 X1i + β

(2)
3 X2i + U

(2)
0i , σ

(2)
ε

2
IJi2)

(U
(1)
0i , U

(2)
0i )T ∼ MVN((0, 0)T ,ΣU)

Let ΣU =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

.

5.4.2 Multi-state Submodels

For our multistate model the possible transitions shown in Figure 5.2 are 2|1, 3|1, 4|1, 1|2, 3|2,

4|2, 1|3, 2|3, and 4|3. No transitions are allowed out of state 4 (dead) since this is an absorbing

state. The conditional and total hazards for these transitions are as described in Section 5.2. We

incorporate covariates by putting a regression model on the µk parameters.

µi,k = exp
(
Wiαk + θ

(1)
k U

(1)
0i + θ

(2)
k U

(2)
0i

)
(5.12)
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Figure 5.3: Example plots of LPMA from the ACC data. A vertical red dashed line indicates time
of death. A vertical blue dot-dashed line indicates time of censoring. LPMA values in plots can be
negative because the values have been centered.
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Figure 5.4: Example plots of BD from the ACC data. A vertical red dashed line indicates time
of death. A vertical blue dot-dashed line indicates time of censoring. BD values in plots can be
negative because the values have been centered.
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HereWi are time-independent covariates, which may coincide with theX(m)
i from the longitudinal

models, αk are regression coefficients, the U (m)
i are the same random effects as in the longitudi-

nal submodels and the θ(m)
k measure the strength of the association between the state k and the

biomarker m. In our example we will include the centered age in decades as a covariate in each of

these submodels, so

µi,k = exp
(
α0k + α1kX2i + θ

(1)
k U

(1)
0i + θ

(2)
k U

(2)
0i

)
.

5.4.3 Priors

For our Bayesian model we put priors on our parameters as follows with m = 1, 2.

β(m) ∼ MVN(mβ, s
2
βI4)

ΣU ∼Wishart(aU , BU)

σ(m)
ε ∼ Γ(ae, be)

αk ∼ MVN(mα, s
2
αI2)

θ
(m)
k ∼ N(mθ, s

2
θ)

γk ∼ Γ(aγ, bγ)

δ ∼ Beta(aδ, bδ)

Hyperparameters used are mβ = (2, 2, 2, 2)T , sβ = 4, aU = 4, BU =

1 0

0 1

, aε = 5, bε = 5,

mα = (2, 2)T , sα = 4, mθ = 2, sθ = 4, aγ = 5, bγ = 5, aδ = 2, bδ = 2.

5.4.4 Likelihood

Denote the vector of parameters by

Ω = (β(1), β(2),ΣU , σ
(1)
ε , σ

(2)
ε , α1, ..., α4, θ

(1)
1 , ..., θ

(1)
4 , θ

(2)
1 , ..., θ

(2)
4 , γ1, ..., γ4, δ)

T . The posterior will

114



be proportional to the product of the likelihood and the prior densities. Let

p(Ω|Y (1)
i , Y

(2)
i , Ti,1, ..., Ti,Ki , Di,1, ..., Di,Ki , Xi,Wi, U

(1)
0i , U

(2)
0i ) denote the posterior, LY the likeli-

hood contribution from the longitudinal submodels, LT the likelihood contribution from the mul-

tistate submodels, and p(Ω) be the product of the prior densities for all components of Ω. Then

p(Ω|Y (1), Y (2), T,D,X,W,U (1), U (2)) ∝ LYLTp(U |Ω)p(Ω)

where

LY =

N∏
i=1

2∏
m=1

p(Y
(m)
i |X(m)

i , β(m), U
(m)
0i ,ΣU , σ

(m)
ε )

=

N∏
i=1

2∏
m=1

(2πσ(m)
ε )−

Jm
2 exp

{
− 1

2σ
(m)
ε

Jm

(
Y

(m)
i − β(m)TX

(m)
i − U (m)

0i

)T (
Y

(m)
i − β(m)TX

(m)
i − U (m)

0i

)}

and

LT =
N∏
i=1

Ki∏
k=1

λDi,k|Di,k−1
(Ti,k|Ti,k−1) exp

(
−
∫ Ti,k

Ti,k−1

λDi,k−1
(v|Ti,k−1)dv

)
·

exp

(
−
∫ Ci

Ti,Ki

λDi,Ki (v|Ti,k−1)dv

) (5.13)

We see that the likelihood contribution in LT contains integrals which can not be evaluated an-

alytically. Due to difficulties in using the Stan numerical integration function (integrate_1d)

we estimated these integrals using the midpoint method. Specifically,

∫ Tk

Tk−1

λDk−1
(v|Tk−1)dv ≈ (Tk − Tk−1) ∗ λDk−1

(
Tk−1 + Tk

2
|Tk−1

)

This is a crude approximation but since generally the time between state transitions, (Tk−1, Tk), is

relatively small using this approximation is reasonable. Time between transitions varied between

0.003 years and 7.97 years with a median of 0.31 years and third quantile of 0.78 years.
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5.5 Results

We fit our models using Hamiltonian Monte Carlo with Stan through the R package rstan

version 2.21.2 and R version 4.0.4 (Guo et al., 2020). Stan code is provided in Appendix E.4.

Initial values were generated automatically. Due to slow computation time the models were run

for 1000 iterations total with 500 iterations of warm-up for four chains. Despite the small number

of iterations, Rhat values for the parameters were between 1.00 and 1.01 indicating that the chains

have mixed. See Appendix Table F.2. Trace plots in Figures 5.5 - 5.10 also show mixing of the

two chains.

Results are shown in Table 5.1. As in previous chapters we see that LPMA tends to decrease

over time (β(1)
1 < 0), females have significantly lower LPMA (β(1)

2 < 0) and LPMA decreases

with increasing age (β(1)
3 < 0). We do not see strong effects of time, sex, or age on body depth

(β(2)
1 , β

(2)
2 , β

(2)
1 ≈ 0). In the multistate model, we see that age does not have a significant associ-

ation with stable (α1,1), regression (α1,3), or death states (α1,4). Older patients do tend to have a

shorter time to progression (α1,2 < 0). We find no significant association between LPMA and tran-

sition times for stable (θ(1)
1 ) and progression (θ(1)

2 ) states. Higher LPMA is associated with longer

transition time to regression (θ(1)
3 ) and shorter time to death (θ(1)

4 ). Unsurprisingly given the lack

of association found in the longitudinal model for body depth, we do not find significant associa-

tion between body depth and the transition times (θ(2)
1 , θ

(2)
2 , θ

(2)
3 , θ

(2)
4 ). The dependence parameter

δ is found to be 1 indicating independence between the transition times. This is an interesting

result that warrants further study. The dependence between specific states (say progression and

death) may be different than dependence between other states and this model cannot capture such

heterogeneity in the single dependence parameter δ.
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Parameter Mean CI Pr > 0 Parameter Mean CI Pr > 0

β
(1)
0 9.37 (7.19, 11.51) 1.00 α0,1 1.03 (0.36, 1.71) 1.00

β
(1)
1 -0.22 (-0.31, -0.12) 0.00 α1,1 -0.04 (-0.17, 0.08) 0.26

β
(1)
2 -6.73 (-7.8, -5.57) 0.00 α0,2 0.68 (-0.01, 1.39) 0.97

β
(1)
3 -1.34 (-1.77, -0.89) 0.00 α1,2 -0.21 (-0.35, -0.06) 0.00

β
(2)
0 -0.01 (-0.04, 0.02) 0.19 α0,3 -1.06 (-2.22, 0.07) 0.03

β
(2)
1 0.00 (0.00, 0.00) 0.40 α1,3 0.12 (-0.07, 0.33) 0.88

β
(2)
2 -0.02 (-0.03, 0.00) 0.01 α0,4 -0.81 (-1.70, 0.03) 0.03

β
(2)
3 0.00 (0.00, 0.01) 0.96 α1,4 -0.10 (-0.27, 0.07) 0.14

σ1 3.77 (3.32, 4.26) 1.00 θ
(1)
1 0.00 (-0.06, 0.05) 0.46

σ2 0.04 (0.04, 0.05) 1.00 θ
(1)
2 0.00 (-0.06, 0.05) 0.55

ρ 0.15 (-0.02, 0.31) 0.96 θ
(1)
3 0.09 (0.02, 0.16) 0.99

σ
(1)
ε 3.02 (2.87, 3.17) 1.00 θ

(1)
4 -0.17 (-0.25, -0.10) 0.00

σ
(2)
ε 0.02 (0.02, 0.02) 1.00 θ

(2)
1 2.57 (-1.54, 6.61) 0.89

δ 1.00 (0.99, 1.00) 1.00 θ
(2)
2 3.83 (-0.32, 7.91) 0.97

γ1 0.70 (0.55, 0.86) 1.00 θ
(2)
3 -0.07 (-5.34, 4.98) 0.49

γ2 0.50 (0.37, 0.63) 1.00 θ
(2)
4 4.26 (-0.47, 8.96) 0.96

γ3 0.30 (0.16, 0.45) 1.00

γ4 0.74 (0.56, 0.93) 1.00

Table 5.1: Posterior Mean (Mean), 95% Credible Interval (CI) and probability the parameter is
greater than 0 (Pr > 0) for the joint model fit to the ACC data.
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Figure 5.5: Trace plots for beta parameters.
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Figure 5.6: Trace plots for standard deviation and correlation parameters.
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Figure 5.7: Trace plots for alpha parameters.
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Figure 5.8: Trace plots for theta parameters.
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Figure 5.9: Trace plots for gamma parameters.
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Figure 5.10: Trace plot for delta parameter.

5.6 Discussion

In this chapter we developed a joint model based on the motivating ACC data. This included

more than one longitudinal outcome and a multistate model for the survival part. We worked under

the Markov assumption, a common simplifying assumption in multistate modeling. One extension

would be to weaken this assumption such as assuming a semi-Markov situation. While the possible

transitions described in this work were based on the ACC data, the hazards for transition from state

k to l are general and could be applied to a problem with any possible transitions.

As in other chapters we use a joint survival function from an Archimedean copula with Weibull

marginals. Archimedean copulas have some nice properties as discussed in Chapter 4 and Weibull

is a common distribution in event time analysis. This formulation is an alternative to the often used

proportional hazards models for transition hazards. Utilizing a copula also allows us a way to study

the dependence between the times between state transitions. One limitation to the model studied
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in this chapter is that the dependence is quantified in a single parameter. One may be interested

in dependence between specific transitions more than others or differences in dependence between

different transitions. Future work could consider how to extend this model to measure dependence

with multiple parameters. Additional flexibility could be added to the multistate model by allowing

the marginal distributions for the transition times to be from different distributions (instead of all

Weibull). This would require careful considerations of what distributions are best suited to each

transition time and coding and model interpretation would be more complicated.

Our longitudinal outcomes are both continuous but using a generalized linear mixed model

for binary, count or other non-continuous outcomes is straightforward. We included only a single

random intercept in each longitudinal submodel. Additional or different random effects could be

included such as a random slope. This would obviously require estimating additional variance and

correlation parameters for these added random effects. We also included the random intercepts

from both longitudinal submodels in the regression models for the multistate data. Another option

could be to include the trajectory of the longitudinal variables in the multistate regression as in

µk = αTkWi + θ
(1)
k

(
X

(1)
i β(1) + U

(1)
0i

)
+ θ

(2)
k

(
X

(2)
i β(2) + U

(2)
0i

)
for a random intercept model and

µk = αTkWi + θ
(1)
k

(
X

(1)
i β(1) + η0,1U

(1)
0i + η1,1U

(1)
1i

)
+ θ

(2)
k

(
X

(2)
i β(2) + η0,2U

(2)
0i + η0,2U

(2)
1i

)
for a

random intercept and slope model. We chose to put the regression model on the shape parameter

of the Weibull distribution but instead a regression model could be put on the scale parameter γk

or the dependence parameter δ.

Our code to fit the model relied on a crude approximation to integrals in the likelihood. Future

work ideally would use an approximation method expected to have less bias. We also were only

able to run the model for a relatively small number of iterations and in the future could run the

model for longer to hopefully verify the results are similar. We showed that this model can be

applied to the ACC data. A simulation study would be useful to verify that the inferences from this
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model are accurate and precise.
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Chapter 6

Conclusion
In this dissertation we have explored joint models for longitudinal and survival data of multiple

types. In particular we considered a standard joint model with a single survival event in Chapter

2, with competing risks in Chapters 3 and 4. In Chapter 5 we generalized the model to explore

survival data with multiple states over time as well as multiple longitudinal biomarkers. This

work was motivated by a study of adrenocortical carcinoma in the University of Michigan’s Rogel

Cancer Center, but these models can be applied to other problems including other cancers such as

progression and regression in prostate cancer and association longitudinal PSA levels (Ferrer et al.,

2016).

Medical studies often collect both longitudinal and time-to-event data which necessitate a joint

modeling approach to fully account for all dependencies in the data. But these joint models can be

difficult to implement for clinicians and statisticians who do not work with these models frequently.

This has motivated the creation of various software packages for implementing the most common

joint models seen in practice. Comparing these software implementations was the focus of Chapter

2. In later chapters of this dissertation we explored extensions in the survival data including com-

peting risks and multistate data. Software to implement these types of models would help facilitate

increased use in practical settings. There has been limited development of joint longitudinal and

competing risks software but developing user-friendly software for implementing these models is

a constant source of future work.

In Chapter 3 we discussed how the model we developed could be used for dynamic prediction.

Dynamic prediction with joint models quickly became an area of interest once joint modeling

became more accessible and common. These predictions can be directly utilized in a clinical
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setting if implemented in a way clinicians can access such as a website (Taylor et al., 2013). While

we detailed the algorithm for calculating dynamic predictions using our models in Chapter 3, there

is still work that could be done. The model and predictions have not been validated. Sensitivity

analyses investigating the influence of our priors and other model assumptions could be performed.

Additional parametric distributions could also be used. Finally the dynamic predictions could be

extended to use the models with dependence in Chapter 4 and the models with multistate data in

Chapter 5.

This work has focused on developing joint models that fit the ACC study and are also novel

in the way the survival submodels are defined. We have described possible settings where these

models may be more appropriate than standard joint models which often use proportional hazards

formulations. These settings include when a proportional hazards assumption does not fit the data.

In this work we concentrated on describing the models and demonstrating through simulation

that the model estimates are close to the true values. A useful area of future work would be

to use simulation studies to discover how these models compare to the more common, usually

proportional hazards, models. It would be useful to advocating for the use of these models to know

when our new models have better fit to the data.

We chose to focus on parametric and copula-based survival submodels but there are other

options that could be explored. First, in Chapters 4 and 5 we used Weibull cumulative hazards

and marginals, respectively, but we could have considered using the log-Normal distribution as in

Chapter 3 or another distribution. Both Weibull and log-Normal are from the log-location-scale

family and so other members of that family are possible candidates for study. We could also

study joint models in a competing risks setting using a Fine-and-Gray model defining the survival

submodel through the subdistribution functions (Fine and Gray, 1999). This option has received

little consideration in the literature (Deslandes and Chevret, 2010; Musoro et al., 2018)

A related area that could use future study is goodness of fit and model diagnostics in joint

modeling. We used DIC to compare the Weibull and log-Normal model fits to the ACC data in

Chapter 3 but this is a generic measure output by the Bayesian software Stan. Diagnostics have
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received some study in joint modeling with a single longitudinal outcome and single survival event

(Dobson and Henderson, 2003; Rizopoulos et al., 2010; Park and Qiu, 2014) (Rizopoulos, 2012,

Chapter 6)(Elashoff et al., 2017, p.198). Variable selection is another important consideration that

has received little attention in the joint modeling context (Chen and Wang, 2017)(Elashoff et al.,

2017, p.202). Extension of model diagnostics and variable selection methods to joint models with

competing risks and with multistate data has, to the best of our knowledge, yet to be explored.

We hope that the work in this dissertation encourages future exploration into different aspects

of joint modeling. We have considered unique parametric and copula-based approaches that we

believe deserve further study.
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Appendix A

Description of Morphomic Variables in

Adrenocortical Carcinoma Data

Below is a short description of each of the morphomics variables in the adrenal cancer study.

This information is from the online Morphomics Data Dictionary (Holcombe et al., 2016). These

measurements are taken from CT scans of the chest, abdomen, or pelvis. Most measurements are

taken at each vertebral level and are reported as a function of body region. Some measures of

muscle density are reported in Hounsfield Units (HU) (Hounsfield, 1980).

Average psoas perimeter mean

Mean pixel intensity of all pixels in psoas region of scan, a measure of psoas muscle, in HU.

Body depth

Distance between front and back of body (aligned to body habitus), a body measure, in mm.

Central back fat depth

Distance from posterior tip of spinous process to back skin, a body measure, in mm.

Central sub-cutaneous depth

Linear distance from anterior fascia to anterior skin, a body measure, in mm.
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Central visceral depth

Central visceral depth, distance from anterior of vertebral body to anterior fascia, a body measure,

in mm.

Fascia area

Cross-sectional area of the fascia region, a body measure, in mm2.

Fascia depth

Central sub-cutaneous depth, linear distance from anterior fascia to anterior skin, in mm.

Lean psoas

From Holcombe et al. (2016): “ “lean psoas" is a mathematical combination of measures of psoas

cross sectional area (mm2) and psoas density (in HU) inside the muscle boundary... This can be

thought of as "normalizing a muscle’s density between -85 HU (very fatty and low density) and

+85 HU (very dense)". The values of ±85 were chosen by inspection of some of our sickest and

healthiest individuals’ data points. " The formula for lean psoas is given as:

(lean psoas) =
(mean psoas density) + 85

170
· (psoas cross sectional area)

LMPA lean psoas muscle area

Area covered by psoas muscles in cross-sectional image, usually sampled at the L4 vertebral level.

LPMD lean psoas muscle density

Measure of fatty infiltration in psoas muscles found in cross-sectional image.
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Psoas muscles

Core muscles running alongside the lumbar spine.

Total psoas perimeter area

Total area within the perimeter of the left and right psoas, a measure of psoas muscle, in mm2.

VB2 front skin

Central visceral depth, distance - anterior of vertebral body to anterior fascia, in mm.

Visceral fat area

Area inside fascia meeting fat density thresholds (-205 to -51 HU), a fat measure, in mm2.
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Variable Description N
Miss-
ing

%
Miss-
ing

average psoas perime-
ter mean

Mean pixel intensity of all
pixels in psoas region of scan,
a measure of psoas muscle, in
HU

244 21

body depth Distance between front and
back of body (aligned to body
habitus), a body measure, in
mm

240 21

central back fat depth Distance from posterior tip of
spinous process to back skin,
a body measure, in mm

718 63

central sub-cutaneous
depth

Linear distance from anterior
fascia to anterior skin, a body
measure, in mm

238 21

central visceral depth Distance from anterior of ver-
tebral body to anterior fascia,
a body measure, in mm

243 21

fascia area Cross-sectional area of the
fascia region, a body measure,
in mm2

243 21

fascia depth Central sub-cutaneous depth,
linear distance from anterior
fascia to anterior skin, in mm

243 21

lean psoas muscle area Area covered by psoas mus-
cles in cross-sectional image,
usually sampled at the L4 ver-
tebral level, in mm2

243 21

lean psoas muscle
density

Measure of fatty infiltration in
psoas muscles found in cross-
sectional image, in HU

243 21

total psoas perimeter, Total area within the perime-
ter of the left and right psoas,
a measure of psoas muscle, in
mm2

244 21

vb2 front skin Central visceral depth, dis-
tance - anterior of vertebral
body to anterior fascia, inmm

240 21

visceral fat area Area inside fascia meeting fat
density thresholds (-205 to -51
HU), a fat measure, in mm2

240 21

Table A.1: Morphomic measures in adrenal cancer study.

132



Appendix B

Derivations

B.1 Generation of Survival Times in Chapter 2 Simulations

The generalized hazard function for the survival submodel of Scenario 2 is

hi(t) = h0(t) exp(γ0 + γ1X1i + γ2X2i + αmi(t)) (B.1)

where, in general terms,

Yi(t) = mi(t) + ei(t) = β0 + β1t+ β2X1i + β3X2i + U0i + U1it+ ei(t)

We set h0(t) = 1 and have a constant γ0 absorbed into the exponential. After dropping the

subscript i,

h(t) = exp(γ0 + γ1X1 + γ2X2 + α(β0 + β1t+ β2X1 + β3X2 + U0 + U1t))

Then the cumulative hazard function is

H(t) =

∫ t

0

h(y)dy

=

∫ t

o

exp(γ0 + γ1X1 + γ2X2 + α(β0 + β1y + β2X1 + β3X2 + U0 + U1y))dy

=
exp(γ0 + αβ0 + αU0 + (γ1 + αβ2)X1 + (γ2 + αβ3)X2)

αβ1 + αU1

(exp(αβ1t+ αU1t)− 1)
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Let V ∼ Unif(0, 1) be a random survival probability and set H(t) = − log(V ). Then

− log(V ) =
exp(γ0 + αβ0 + αU0 + (γ1 + αβ2)X1 + (γ2 + αβ3)X2)

αβ1 + αU1

(exp(αβ1t+ αU1t)− 1)

exp(αβ1t+ αU1t) =
− log(V )(αβ1 + αU1)

exp(γ0 + αβ0 + αU0 + (γ1 + αβ2)X1 + (γ2 + αβ3)X2)
+ 1

α(β1 + U1)t = log

(
− log(V )(αβ1 + αU1)

ω0 exp(γ0 + αβ0 + αU0 + (γ1 + αβ2)X1 + (γ2 + αβ3)X2)
+ 1

)

and so

t =
1

α(β1 + U1)
log

(
− log(V )(α(β1 + U1))

exp(γ0 + αβ0 + αU0 + (γ1 + αβ2)X1 + (γ2 + αβ3)X2)
+ 1

)

The calculation for a random intercept only model (Scenario 1) is the same but with U1 = 0.

Calculation for Scenario 3 (a shared parameter model) is simpler with mi(t) replaced by just Ui in

(B.1).

B.2 Chapter 2 Simulation Model Reparameterization

In Scenario 1, we fit a shared parameter model as in (2.7) with joineR while the data was

generated from the current-value model described in (2.5) and (2.6). So the data are generated

from

Y = β0 + β1t+ β2X1 + β3X2 + U + e

and

h(t) = exp(γ0) exp(γ1X1 + γ2X2 + α(β0 + β1t+ β2X1 + β3X2 + U)) (B.2)

The longitudinal submodel is the same for joineR but the survival submodel is of the form

h(t) = h0(t) exp(γ∗1X11 + γ∗2X2 + α∗U) (B.3)
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Rearranging terms in (B.2),

h(t) = exp(γ0) exp(γ1X1 + γ2X2 + α(β0 + β1t+ β2X1 + β3X2 + U))

= exp(γ0 + αβ0 + αβ1t) exp((γ1 + αβ2)X1 + (γ2 + αβ3)X2 + αU)

Comparing this to (B.3) we see that

γ∗1 = γ1 + αβ2

γ∗2 = γ2 + αβ3

(B.4)

Since joineR assumes an unspecified baseline hazard, the form of the baseline hazard does not

matter when estimating. When calculating the bias and MSE for the joineR model, we compare

the estimates output to the combination of true parameters on the left hand side of the equations in

(B.4). In order to calculate the coverage probabilities for γ∗1 and γ∗2 , we estimate standard errors by

bootstrapping. Specifically, we select, with replacement, data for 500 subjects and run a model on

that bootstrap sample. We do this 100 times for each of the 100 simulated datasets and calculate

γ∗1 − αβ2 and γ∗2 − αβ3. We then use the standard deviation of these values as an estimate of the

standard error.

The coefficients for the covariates in the survival submodel of Scenario 2 work out to be exactly

the same as above and standard errors were again found by bootstrapping.

In Scenario 3 the JM model is in a different form than the true model. The data are generated

from

Y = β0 + β1t+ β2X1 + β3X2 + U + e

h(t) = exp(γ0) exp(γ1X1 + γ2X2 + αU)

Whereas JM fits a model of the form

h(t) = h0(t) exp(γ∗1X1 + γ∗2X2 + α(β0 + β1t+ β2X1 + β3X2 + U))

= h0(t) exp(α(β0 + β1t)) exp((γ∗1 + αβ2)X1 + (γ∗2 + αβ3)X2 + αU)
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So we see that
γ∗1 + αβ2 = γ1

γ∗2 + αβ3 = γ2

Bias and MSE for γ∗1 and γ∗2 are calculated compared to the combinations γ1−αβ2 and γ2−αβ3,

respectively. Standard errors are estimated with bootstrapping similar to the method described

above for Scenario 1.

B.3 Chapter 3 Cause-Specific Proportional Hazards Model

Survival Functions Derivations

For Model W PH

Sk(Ti|Di,Wi, Ui, γk, αk, θk) = exp

(
−
∫ Ti

0

γk
α0k

sγk−1 exp (α1kX2i + θkU0i) ds

)
= exp

(
− exp (α1kX2i + θkU0i)

γk
α0k

sγk

γk
|Ti0

)
= exp

(
− exp (α1kX2i + θkU0i)

1

α0k

(T γki − 0)

)
= exp

(
− 1

α0k

T γki exp (α1kX2i + θkU0i)

)
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B.4 Chapter 4 Cause-specific Hazard Function Derivations

We have

S(t1, t2) = exp

(
−
(

(µ1t
γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

)δ)
and

hk(t) = − ∂

∂tk
log (S(t1, t2)) |(t1,t2)=(t,t)

= − ∂

∂tk
log

(
exp

(
−
(

(µ1t
γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

)δ))
|(t1,t2)=(t,t)

= − ∂

∂tk

(
−
(

(µ1t
γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

)δ)
|(t1,t2)=(t,t)

= δ
(

(µ1t
γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

)δ−1 1

δ
(µkt

γk
k )

1
δ
−1µkγkt

γk−1
k |(t1,t2)=(t,t)

= γkµ
1
δ
k t

γk
δ
−1
(

(µ1t
γ1)

1
δ + (µ2t

γ2)
1
δ

)δ−1

B.5 Inverse H Function for Dependent Competing Risks in

Chapter 4

Hk(t) = µkt
γk

y = µkt
γk

y

µk
= tγk(

y

µk

)1/γk

= t

⇒ H−1
k (y) =

(
y

µk

)1/γk
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So our event times are Tk = H−1
k (Zδ

k), meaning

Tk =

(
Zδ
k

µk

)1/γk

B.6 Transition Hazards in Multistate Submodel from Chapter

5

We write this out for λ1|2 below and generalizing to any two states other than states 1 and 2 is

straightforward.

λ1|2(t | t2) = lim
∆t↘0

Pr (t < T1 ≤ t+ ∆t | T1 > t, T2 = t2)

∆t

= − f(t, t2)(
∂
∂t2
S(t, t2)

) (B.5)

The joint probability density function is f(t1, t2) = (−1)2∂2S(t1,t2)
∂t1∂t2

(Crowder, 2012, p.105). Hence

f(t1, t2) =
∂2

∂t1∂t2
exp

(
−
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ)
=

∂

∂t2

[
exp

(
−
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
−δ
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)]

1

δ
(µ1t

γ1
1 )

1
δ−1

µ1γ1t
γ1−1
1

=
1

δ
µ

1
δ
1 γ1t

γ1
δ −1
1

[
exp

(
−
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
−δ(δ − 1)

[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ−2
)
·(

1

δ
(µ2t

γ2
2 )

1
δ−1

µ2γ2t
γ2−1
2

)
+

(
−δ
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)

exp

(
−
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
−δ
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)
·(

1

δ
(µ2t

γ2
2 )

1
δ−1

µ2γ2t
γ2−1
2

)]
=

1

δ
µ

1
δ
1 γ1t

γ1
δ −1
1 · 1

δ
µ

1
δ
2 γ2t

γ2
δ −1
2 · exp

(
−
[
(µ1t

γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ)
·[

δ(1− δ)
([

(µ1t
γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]δ−2
)

+ δ2
([

(µ1t
γ1
1 )

1
δ + (µ2t

γ2
2 )

1
δ

]2δ−2
)]

138



The denominator from (B.5) is

∂

∂t2
S(t, t2) =

∂

∂t2
exp

(
−
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ)
= exp

(
−
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
−δ
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)

1

δ
(µ2t

γ2
2 )

1
δ
−1µ2γ2t

γ2−1
2

= − exp

(
−
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
δ
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)

1

δ
µ

1
δ
2 γ2t

γ2
δ
−1

2

Giving

⇒ λ1|2(t | t2) = − f(t, t2)(
∂
∂t2
S(t, t2)

)
= − 1

δ2
µ

1
δ
1 γ1t

γ1
δ
−1 · µ

1
δ
2 γ2t

γ2
δ
−1

2 · exp

(
−
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ)
·[

δ(1− δ)
([

(µ1t
γ1)

1
δ + (µ2t

γ2
2 )

1
δ

]δ−2
)

+ δ2

([
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]2δ−2
)]

− exp

(
−
[
(µ1tγ1)

1
δ + (µ2t

γ2
2 )

1
δ

]δ)(
δ
[
(µ1tγ1)

1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)

1
δµ

1
δ
2 γ2t

γ2
δ
−1

2

=
1

δ
µ

1
δ
1 γ1t

γ1
δ
−1

[
(1− δ)

([
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ−2−δ+1
)

+

(
δ
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]2δ−2−δ+1
)]

=
1

δ
µ

1
δ
1 γ1t

γ1
δ
−1

[
(1− δ)

([
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]−1
)

+

(
δ
[
(µ1t

γ1)
1
δ + (µ2t

γ2
2 )

1
δ

]δ−1
)]

In general for transition to state l from state k, the conditional hazard is

λl|k(t|tk) =
1

δ
µ

1
δ
l γlt

γl
δ
−1

[
(1− δ)

([
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]−1
)

+

(
δ
[
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]δ−1
)]

(B.6)

and the total hazard from state k is

λk(t) =
∑
l 6=k

(
1

δ
µ

1
δ
l γlt

γl
δ
−1

[
(1− δ)

([
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]−1
)

+

(
δ
[
(µlt

γl)
1
δ + (µkt

γk
k )

1
δ

]δ−1
)])

(B.7)
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Appendix C

Other Joint Modeling Software Implementations

C.1 PROC NLMIXED in SAS

Both the %JM and %JMfit SAS macros call PROC NLMIXED to fit the joint model. PROC

NLMIXED can also be used separately to fit a joint model in SAS that can not be fit with the macros

described above. The NLMIXED procedure was designed for fitting nonlinear mixed models but

has been used for fitting joint models (Gould et al., 2014; SAS Institute, 2015b,a; Schabenberger,

2004)(Littell et al., 2006, p.595). The user must specify the joint likelihood of the joint model but

this procedure allows for much more flexibility. The association can take any form that the user

writes into the joint likelihood. PROC NLMIXED fits the models by approximating the likelihood

integrated over the random effects and then maximizing (SAS Institute, 2015b). Different options

are available for integral approximation including adaptive Gaussian quadrature and first-order

Taylor series expansion.

C.2 %JMfit Macro in SAS

The %JMfit macro for the SAS software was created to fit joint models and while simultane-

ously assessing the fit of the models. A full description of the macro is given by (Zhang et al.,

2016). The %JMfit macro fits only shared parameter models as in (1.3). This macro can fit a joint
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model in one of four forms: SPM1L, SPM1Q, SPM2L, and SPM2Q described in (C.1).

SPM1L: hi(t) = h0(t)exp{Xi2γ + α(U0i + U1it)}

SPM1Q: hi(t) = h0(t)exp{Xi2γ + α(U0i + U1it+ U2it
2)}

SPM2L: hi(t) = h0(t)exp{Xi2γ + α(U0i + U1i)}

SPM2Q: hi(t) = h0(t)exp{Xi2γ + α(U0i + U1i + U2i)}

(C.1)

One addition to %JMfit not readily available in other software is built-in decomposition of AIC,

BIC, ∆AIC, and ∆BIC for examining goodness-of-fit, and comparing between the joint model

forms (SPM1L, SPM1Q, SPM2L, and SPM2Q) (Zhang et al., 2016). Estimation is done with the

PROC NLMIXED procedure. This macro was not able to fit joint models to our simulated data

or the adrenal cancer data. This macro generally had issues with the optimization convergence or

quadrature accuracy.

C.3 gsem Command in Stata

The gsem command in the Stata software was created to fit generalized structural equation

models and multilevel data. It can be used for joint modeling with flexible latent processes but

the survival outcome must be modeled parametrically (Marchenko, 2016)(Stata Corp LP, 2015,

p.449-473). Common distributions for the survival submodel can be specified such as Exponential,

Weibull, Gamma, or log-Normal (Stata Corp LP, 2015, p.95,467). The association is through

shared parameters as in (1.3) but it is flexible since any random terms can be included.

C.4 jmxtstset Command in Stata

The unofficial Stata command jmxtstcox fits joint models (Marchenko, 2016) and is cur-

rently available from the authors. The joint model in this command has a random-intercept Cox

model and uses nonparametric maximum likelihood for estimation of model parameters. This

command can also accommodate stratification and standard post-estimation commands in Stata
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such as text, predict, and lincom (Marchenko, 2016). The jmxtstcox command does

not yet support random coefficients models; only a random intercept shared parameter model can

be fit, but extensions are planned.

C.5 MATLAB

MATLAB, a mathematical programming language, has been used for joint modeling. Estimation

of parameters from the joint likelihood can be achieved with the fmisearch and fmincon

functions, which are unconstrained and constrained nonlinear optimization function, respectively.

This has been used by (Thomasson, 2012) and (Hwang, 2013) who also provide sample code for

MCMC estimation.
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Appendix D

Additional Simulations

D.1 Additional Simulations with Conditionally Independent

Competing Risks in Chapter 3
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True surv. True Value N Param Mean Bias*1000 MSE*1000 CP

Weibull 3.4 160 β0 2.90 -495 478 82

(Model W) -0.15 β1 -0.14 5 4 95

-5.8 β2 -4.99 809 1038 75

-1.4 β3 -1.37 32 55 96

4.3 σU 4.25 -50 66 94

2.2 σε 2.20 3 1 95

1.3 α0,1 1.34 36 33 95

-0.1 α1,1 -0.09 6 14 94

3.2 α0,2 3.11 -93 187 95

-0.2 α1,2 -0.20 -1 43 96

0.1 θ1 0.10 4 2 95

-0.1 θ2 -0.09 14 7 93

0.75 γ1 0.75 4 5 95

0.5 γ2 0.54 42 7 93

Weibull 3.4 1000 β0 3.30 -97 55 93

(Model W) -0.15 β1 -0.15 1 1 97

-5.8 β2 -5.66 137 97 92

-1.4 β3 -1.39 11 8 94

4.3 σU 4.30 -4 11 95

2.2 σε 2.20 1 0 96

1.3 α0,1 1.31 8 5 95

-0.1 α1,1 -0.10 2 2 96

3.2 α0,2 3.18 -23 45 92

-0.2 α1,2 -0.20 -3 8 97

0.1 θ1 0.10 1 0 96

-0.1 θ2 -0.10 3 1 96

0.75 γ1 0.75 2 1 97

0.5 γ2 0.51 8 1 93

Table D.1: Scenario 2 simulation results for data generated with Model W as the truth. Data was
generated for either N=160 (top) or N=1000 (bottom). Data was generated 200 times. For each
parameter the results include the mean of the 200 posterior means, the bias*1000, the mean squared
error (MSE)*1000, and the coverage probability (CP).
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True surv. True Value N Param Mean Bias*1000 MSE*1000 CP

log-Normal 3.4 160 β0 2.88 -515 518 85

(Model L) -0.15 β1 -0.15 4 4 96

-5.8 β2 -4.98 817 1061 77

-1.4 β3 -1.35 54 56 94

4.3 σU 4.24 -57 54 97

2.2 σε 2.20 -3 2 94

0.7 α0,1 0.69 -10 29 96

-0.05 α1,1 -0.04 8 11 96

2.8 α0,2 2.50 -302 259 88

-0.25 α1,2 -0.24 10 47 97

0.1 θ1 0.10 3 1 98

-0.1 θ2 -0.09 7 6 97

1.6 γ1 1.61 10 17 96

3.2 γ2 2.89 -306 185 86

log-Normal 3.4 1000 β0 3.32 -81 48 93

(Model L) -0.15 β1 -0.15 1 1 94

-5.8 β2 -5.67 129 96 93

-1.4 β3 -1.39 6 9 96

4.3 σU 4.29 -7 11 95

2.2 σε 2.20 0 0 95

0.7 α0,1 0.69 -11 5 94

-0.05 α1,1 -0.05 1 1 96

2.8 α0,2 2.71 -86 49 93

-0.25 α1,2 -0.24 8 9 94

0.1 θ1 0.10 0 0 96

-0.1 θ2 -0.10 3 1 96

1.6 γ1 1.59 -12 3 96

3.2 γ2 3.13 -68 32 92

Table D.2: Scenario 2 simulation results for data generated with Model L as the truth. Data was
generated for either N=160 (top) or N=1000 (bottom). Data was generated 200 times. For each
parameter the results include the mean of the 200 posterior means, the bias*1000, the mean squared
error (MSE)*1000, and the coverage probability (CP).
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True surv. True Value N Param Mean Bias*1000 MSE*1000 CP

Weibull 3.0 160 β0 2.92 -81 144 94

(Model W) -1.0 β1 -0.99 11 6 96

-2.0 β2 -1.91 85 113 94

-1.0 β3 -0.94 57 58 91

4.0 σU 3.92 -76 73 93

2.0 σε 2.00 0 3 96

1.0 α0,1 1.02 20 164 94

-1.5 α1,1 -1.44 62 71 93

3.0 α0,2 2.83 -170 295 95

-1.0 α1,2 -1.04 -36 85 94

1.0 θ1 1.04 36 11 94

-1.0 θ2 -0.98 23 18 95

0.75 γ1 0.82 70 20 96

0.5 γ2 0.55 47 7 90

Weibull 3.0 1000 β0 3.00 4 22 96

(Model W) -1.0 β1 -1.00 3 1 95

-2.0 β2 -1.98 17 22 93

-1.0 β3 -1.00 -3 7 96

4.0 σU 3.98 -22 10 95

2.0 σε 2.00 0 0 95

1.0 α0,1 1.02 21 26 93

-1.5 α1,1 -1.51 -9 8 97

3.0 α0,2 2.97 -31 72 94

-1.0 α1,2 -0.99 14 15 94

1.0 θ1 1.00 4 1 97

-1.0 θ2 -1.00 3 3 93

0.75 γ1 0.76 8 2 98

0.5 γ2 0.50 2 1 97

Table D.3: Scenario 3 simulation results for data generated with Model W as the truth. Data was
generated for either N=160 (top) or N=1000 (bottom). Data was generated 200 times. For each
parameter the results include the mean of the 200 posterior means, the bias*1000, the mean squared
error (MSE)*1000, and the coverage probability (CP).

146



True surv. True Value N Param Mean Bias*1000 MSE*1000 CP

log-Normal 3.0 160 β0 2.94 -64 177 90

(Model L) -1.0 β1 -1.00 4 4 95

-2.0 β2 -1.85 147 166 92

-1.0 β3 -0.98 22 37 98

4.0 σU 3.94 -60 73 94

2.0 σε 2.00 3 2 96

1.0 α0,1 0.99 -8 185 96

-1.5 α1,1 -1.47 28 61 97

3.0 α0,2 2.62 -378 485 90

-1.0 α1,2 -0.98 20 106 93

1.0 θ1 1.01 8 9 96

-1.0 θ2 -0.95 52 21 95

2.0 γ1 1.89 -108 61 91

3.0 γ2 2.76 -244 153 85

log-Normal 3.0 1000 β0 2.99 -6 26 93

(Model L) -1.0 β1 -1.00 -1 1 93

-2.0 β2 -1.97 27 24 94

-1.0 β3 -1.00 2 9 93

4.0 σU 4.00 -4 10 95

2.0 σε 2.00 1 0 94

1.0 α0,1 1.01 7 28 98

-1.5 α1,1 -1.50 5 13 93

3.0 α0,2 2.94 -63 84 92

-1.0 α1,2 -1.01 -6 18 96

1.0 θ1 1.00 5 1 96

-1.0 θ2 -0.99 7 3 95

2.0 γ1 1.99 -15 9 95

3.0 γ2 2.93 -72 25 92

Table D.4: Scenario 3 simulation results for data generated with Model L as the truth. Data was
generated for either N=160 (top) or N=1000 (bottom). Data was generated 200 times. For each
parameter the results include the mean of the 200 posterior means, the bias*1000, the mean squared
error (MSE)*1000, and the coverage probability (CP).

147



D.2 Chapter 4 Chain Initial Values for Simulation

Parameter Chain 1 Chain 2 Chain 3 Chain 4

β0 3.5 2.5 1.5 2

β1 0.15 0.55 -0.15 0.05

β2 2 1 3 0.5

β3 3 2 4 1.5

σU 0.5 1 2 1.5

σε 2 1 3 0.5

α0,1 1.2 2.2 0.2 0.6

α1,1 -0.4 0.4 -1.4 -0.2

α0,2 1.1 2.1 0.1 0.5

α1,2 -0.5 0.5 -1.5 -0.1

θ1 -1.1 1.1 -2.1 -0.1

θ2 -0.9 0.9 -1.9 -0.5

γ1 5 6 4 5.5

γ2 8 7 6 9

δ 0.4 0.3 0.7 0.6

U0i 0 1 2 0.5

Table D.5: Initial values for four chains used to fit Model W to the simulated data.
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Appendix E

Code

E.1 Code for Joint Longitudinal and Single Survival Event

from Chapter 2

E.1.1 R Code

library(JM)

library(nlme)

library(survival)

library(joineR)

library(JMbayes)

library(R2WinBUGS)

library(foreign)

library(sas7bdat)

set.seed(5202017)

######################################################

#Random Intercept Model

#####################################################
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#Software Comparison Simulation Data

#total run time for R

t.tot.start<- proc.time()[1]

#number of subjects

n=500

###################################################

# Simulation loops

#################################################

softwareNames=c("JM_Weib","JM_Weib_No_Adpt","JM_PW",

"JM_Spl","joineR","Two-Stage")

#number of simulations

nSim=100

#load("data_01202018_int.RData")

t.tot.start<- proc.time()[1]

######################################

# Model Fitting

######################################

####################

# two-stage model
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####################

for(k in 1:nSim){

t<- proc.time()[1]

tryCatch({

fittry=rep(NA,length(simdataLongit[[k]][,1]))

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

for(i in 1:length(simdataLongit[[k]][,1])){

fittry[i]=sum(c(lmemodel$coefficients$fixed,1)*

c(1,simdataLongit[[k]]$timevar[i],

simdataLongit[[k]]$Z1[i],

simdataLongit[[k]]$Z2[i],

as.vector(lmemodel$coefficients$random$subjID[

simdataLongit[[k]]$subjID[i]])))

}

subjID=simdataLongit[[k]]$subjID

timevar=simdataLongit[[k]]$timevar

lmefits=cbind(subjID,fittry,timevar)

subjID=unique(subjID)

survdata=cbind(simdataSurv[[k]],subjID)

tostata=merge(lmefits,survdata,by=c("subjID"))
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tostatasave=tostata

tostata=tostata[order(tostata$subjID),]

tostata$last=rep(0, length(tostata$X))

tostata$time1=rep(-1, length(tostata$X))

tostata$time2=rep(-1, length(tostata$X))

tostata$event=rep(0, length(tostata$X))

for(i in 1:length(tostata$X)){

if(i==length(tostata$X)){

tostata$last[i]=1

}else if(tostata$subjID[i] != tostata$subjID[i+1]){

tostata$last[i]=1

}

}

for(i in 1:length(tostata$X)){

if(tostata$last[i]==1){

tostata$time1[i]=tostata$timevar[i]

tostata$time2[i]=tostata$X[i]

if( tostata$D[i]==1){

tostata$event[i]=1

}

}else{

tostata$time1[i]=tostata$timevar[i]

tostata$time2[i]=tostata$timevar[i+1]

}
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}

coxmodel=coxph(Surv(time1,time2,event)~Z1+Z2+fittry,

data=tostata,x=TRUE)

twostagefits[[k]]=list(lmemodel, coxmodel)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,nSoftware]=proc.time()[1]-t

}

##########################################

# JM

##########################################

for(k in 1:nSim){

t<- proc.time()[1]

################# Weibull Baseline Haz

tryCatch({

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model
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JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="weibull-PH-aGH", parameterization = "value")

JMfits.weib[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,1]=proc.time()[1]-t

}

for(k in 1:nSim){

################# Weibull Baseline Haz NOT ADAPTED

t<- proc.time()[1]

#fit separate models

tryCatch({

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="weibull-PH-GH")

JMfits.weibNoAdapt[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,2]=proc.time()[1]-t
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}

for(k in 1:nSim){

################# Piecewise Baseline Haz

t<- proc.time()[1]

tryCatch({

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="piecewise-PH-aGH", parameterization = "value")

JMfits.pw[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,3]=proc.time()[1]-t

}

for(k in 1:nSim){

################# Splines Baseline Haz

t<- proc.time()[1]

tryCatch({
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#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="spline-PH-aGH", parameterization = "value")

JMfits.spl[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,4]=proc.time()[1]-t

}

#####################################################

# joineR

####################################################

#Note joineR only fits Cox PH models, no other options

###################

# Same association

###################

for(k in 1:nSim){

t<- proc.time()[1]
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#need specific data

#for longitudinal model need: longitudinal measurements,

#time of measurements, ID

lmedata.joineR=simdataLongit[[k]][,c("Y","subjID","timevar")]

#for survival data need: survival time, indicator, ID

survdata.joineR=simdataSurv[[k]][,c("X","D")]

survdata.joineR=cbind(survdata.joineR,1:n)

colnames(survdata.joineR)=c("x","D","subjID")

#baseline covariate data: covariates, ID

covariates.joineR=simdataSurv[[k]][,c("Z1","Z2")]

covariates.joineR=cbind(covariates.joineR,1:n)

colnames(covariates.joineR)=c("Z1","Z2","subjID")

tryCatch({

#create the data

joineRdata=jointdata(lmedata.joineR,survdata.joineR,

covariates.joineR, id.col="subjID",time.col="timevar")

#fit the joint model

joineR.model=joint(joineRdata,long.formula=Y~1+timevar+Z1+Z2,

surv.formula=Surv(X,D)~Z1+Z2,model="int")

joineRfits[[k]]=joineR.model#joineR.model$coefficients

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

runtimes[k,5]=proc.time()[1]-t

}

157



###############################################

#put names on runtimes table for easier interpretation

runtimes=as.data.frame(runtimes)

colnames(runtimes)=softwareNames

### Calc total run time for R

totalruntime=proc.time()[1]-t.tot.start

totalruntime=totalruntime/60 #time in minutes

totalruntime.h=totalruntime/60 #time in hours

totalruntime.d=totalruntime.h/24 #time in days

totalruntime

totalruntime.h

totalruntime.d

#printing mean runtimes for software

colMeans(runtimes)

#####################################################

#Random Coefficients Model

#####################################################

t.tot.start<- proc.time()[1]

###################################################
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# Model Fitting

###################################################

#load("data_01202018_slope.RData")

####################

# two-stage model

####################

for(k in 1:nSim){

t<- proc.time()[1]

tryCatch({

fittry=rep(NA,length(simdataLongit[[k]][,1]))

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2+timevar*Z1,

data=simdataLongit[[k]],

random=~1+timevar|subjID,control=lmeControl(opt=’optim’))

randeffs=as.data.frame(lmemodel$coefficients$random)

for(i in 1:length(simdataLongit[[k]][,1])){

fittry[i]=sum(c(lmemodel$coefficients$fixed,1,

simdataLongit[[k]]$timevar[i])*

c(1,simdataLongit[[k]]$timevar[i],

simdataLongit[[k]]$Z1[i],

simdataLongit[[k]]$Z2[i],

simdataLongit[[k]]$timevar[i]*

159



simdataLongit[[k]]$Z1[i],

lmemodel$coefficients$random$subjID[

simdataLongit[[k]]$subjID[i],][1],

lmemodel$coefficients$random$subjID[

simdataLongit[[k]]$subjID[i],][2]))

}

subjID=simdataLongit[[k]]$subjID

timevar=simdataLongit[[k]]$timevar

lmefits=cbind(subjID,fittry,timevar)

subjID=unique(subjID)

survdata=cbind(simdataSurv[[k]],subjID)

tostata=merge(lmefits,survdata,by=c("subjID"))

tostatasave=tostata

tostata=tostata[order(tostata$subjID),]

tostata$last=rep(0, length(tostata$X))

tostata$time1=rep(-1, length(tostata$X))

tostata$time2=rep(-1, length(tostata$X))

tostata$event=rep(0, length(tostata$X))

for(i in 1:length(tostata$X)){

if(i==length(tostata$X)){

tostata$last[i]=1

}else if(tostata$subjID[i] != tostata$subjID[i+1]){
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tostata$last[i]=1

}

}

for(i in 1:length(tostata$X)){

if(tostata$last[i]==1){

tostata$time1[i]=tostata$timevar[i]

tostata$time2[i]=tostata$X[i]

if( tostata$D[i]==1){

tostata$event[i]=1

}

}else{

tostata$time1[i]=tostata$timevar[i]

tostata$time2[i]=tostata$timevar[i+1]

}

}

coxmodel=coxph(Surv(time1,time2,event)~Z1+Z2+fittry,

data=tostata,x=TRUE)

twostagefits[[k]]=list(lmemodel, coxmodel)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,nSoftware]=proc.time()[1]-t

}
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k

#################################################

# JM

#################################################

for(k in 1:nSim){

t<- proc.time()[1]

################# Weibull Baseline Haz

tryCatch({

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1+timevar|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="weibull-PH-aGH")

JMfits.weib[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,1]=proc.time()[1]-t

}
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k

for(k in 1:nSim){

################# Weibull Baseline Haz NOT ADAPTED

t<- proc.time()[1]

#fit separate models

tryCatch({

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1+timevar|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="weibull-PH-GH")

JMfits.weibNoAdapt[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,2]=proc.time()[1]-t

}

k

for(k in 1:nSim){

################# Piecewise Baseline Haz

t<- proc.time()[1]

tryCatch({

#fit separate models
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lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1+timevar|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="piecewise-PH-aGH")

JMfits.pw[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,3]=proc.time()[1]-t

}

k

for(k in 1:nSim){

################# Splines Baseline Haz

t<- proc.time()[1]

tryCatch({

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1+timevar|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model
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JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="spline-PH-aGH")

JMfits.spl[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,4]=proc.time()[1]-t

}

k

#################################################

# joineR

###############################################

#Note joineR only fits Cox PH models, no other options

###################

# Same association

###################

for(k in 1:nSim){

t<- proc.time()[1]

#need specific data

#for longitudinal model need: longitudinal measurements,

#time of measurements, ID

lmedata.joineR=simdataLongit[[k]][,c("Y","subjID","timevar")]

#for survival data need: survival time, indicator, ID
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survdata.joineR=simdataSurv[[k]][,c("X","D")]

survdata.joineR=cbind(survdata.joineR,1:n)

colnames(survdata.joineR)=c("x","D","subjID")

#baseline covariate data: covariates, ID

covariates.joineR=simdataSurv[[k]][,c("Z1","Z2")]

covariates.joineR=cbind(covariates.joineR,1:n)

colnames(covariates.joineR)=c("Z1","Z2","subjID")

tryCatch({

#create the data

joineRdata=jointdata(lmedata.joineR,survdata.joineR,

covariates.joineR, id.col="subjID",time.col="timevar")

#fit the joint model

joineR.model=joint(joineRdata,long.formula=Y~1+timevar+Z1+Z2,

surv.formula=Surv(X,D)~Z1+Z2,

model="intslope",sepassoc=FALSE)

joineRfits[[k]]=joineR.model#joineR.model$coefficients

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

runtimes[k,5]=proc.time()[1]-t

}

k

#########################

# Separate association

#########################

for(k in 1:nSim){
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t<- proc.time()[1]

#need specific data

#for longitudinal model need: longitudinal measurements,

#time of measurements, ID

lmedata.joineR=simdataLongit[[k]][,c("Y","subjID","timevar")]

#for survival data need: survival time, indicator, ID

survdata.joineR=simdataSurv[[k]][,c("X","D")]

survdata.joineR=cbind(survdata.joineR,1:n)

colnames(survdata.joineR)=c("x","D","subjID")

#baseline covariate data: covariates, ID

covariates.joineR=simdataSurv[[k]][,c("Z1","Z2")]

covariates.joineR=cbind(covariates.joineR,1:n)

colnames(covariates.joineR)=c("Z1","Z2","subjID")

tryCatch({

#create the data

joineRdata=jointdata(lmedata.joineR,survdata.joineR,

covariates.joineR, id.col="subjID",time.col="timevar")

#fit the joint model

joineR.model=joint(joineRdata,

long.formula=Y~1+timevar+Z1+Z2,

surv.formula=Surv(X,D)~Z1+Z2,model="intslope",sepassoc=TRUE)

joineRSepfits[[k]]=joineR.model#joineR.model$coefficients

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

runtimes[k,6]=proc.time()[1]-t
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}

k

##################################################

#put names on runtimes table for easier interpretation

runtimes=as.data.frame(runtimes)

colnames(runtimes)=softwareNames

### Calc total run time for R

totalruntime=proc.time()[1]-t.tot.start

totalruntime=totalruntime/60 #time in minutes

totalruntime.h=totalruntime/60 #time in hours

totalruntime.d=totalruntime.h/24 #time in days

totalruntime

totalruntime.h

totalruntime.d

#printing mean runtimes for software

colMeans(runtimes)

######################################################

#Random Intercept Model: SHARED PARAM

######################################################
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#load("data_SP_01202018.RData")

t.tot.start<- proc.time()[1]

###################################################

# Model Fitting

##################################################

####################

# two-stage model

####################

for(k in 1:nSim){

t<- proc.time()[1]

tryCatch({

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

randint=as.vector(lmemodel$coefficients$random$subjID)

tostata=cbind(simdataSurv[[k]],randint)

coxmodel=coxph(Surv(X,D)~Z1+Z2+randint,data=simdataSurv[[k]],

x=TRUE)

twostagefits[[k]]=list(lmemodel, coxmodel)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime
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runtimes[k,1]=proc.time()[1]-t

}

####################################################

# JM

###################################################

for(k in 1:nSim){

################# Piecewise Baseline Haz

t<- proc.time()[1]

tryCatch({

#fit separate models

lmemodel=lme(Y~timevar+Z1+Z2,data=simdataLongit[[k]],

random=~1|subjID,control=lmeControl(opt=’optim’))

coxmodel=coxph(Surv(X,D)~Z1+Z2,data=simdataSurv[[k]],x=TRUE)

#separate models are input to joint model

#fit joint model

JM.model=jointModel(lmemodel,coxmodel,"timevar",

method="piecewise-PH-aGH")

JMfits.pw[[k]]=JM.model

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

#save runtime

runtimes[k,2]=proc.time()[1]-t
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}

###################################################

# joineR

##################################################

#Note joineR only fits Cox PH models, no other options

###################

# Same association

###################

for(k in 1:nSim){

t<- proc.time()[1]

#need specific data

#for longitudinal model need: longitudinal measurements,

#time of measurements, ID

lmedata.joineR=simdataLongit[[k]][,c("Y","subjID","timevar")]

#for survival data need: survival time, indicator, ID

survdata.joineR=simdataSurv[[k]][,c("X","D")]

survdata.joineR=cbind(survdata.joineR,1:n)

colnames(survdata.joineR)=c("x","D","subjID")

#baseline covariate data: covariates, ID

covariates.joineR=simdataSurv[[k]][,c("Z1","Z2")]

covariates.joineR=cbind(covariates.joineR,1:n)

colnames(covariates.joineR)=c("Z1","Z2","subjID")
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tryCatch({

#create the data

joineRdata=jointdata(lmedata.joineR,survdata.joineR,

covariates.joineR, id.col="subjID",time.col="timevar")

#fit the joint model

joineR.model=joint(joineRdata,long.formula=Y~1+timevar+Z1+Z2,

surv.formula=Surv(X,D)~Z1+Z2,model="int")

joineRfits[[k]]=joineR.model#joineR.model$coefficients

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

runtimes[k,3]=proc.time()[1]-t

}

##################################################

#put names on runtimes table for easier interpretation

#runtimes=as.data.frame(runtimes)

#colnames(runtimes)=softwareNames

### Calc total run time for R

totalruntime=proc.time()[1]-t.tot.start

totalruntime=totalruntime/60 #time in minutes

totalruntime.h=totalruntime/60 #time in hours

totalruntime.d=totalruntime.h/24 #time in days

totalruntime
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totalruntime.h

totalruntime.d

#printing mean runtimes for software

colMeans(runtimes)

E.1.2 SAS Code

libname softw "C:\Users\AKC\Box Sync\SoftwareComparisonPaper";

*libname softw "C:\Users\acullen\Box

Sync\SoftwareComparisonPaper";

*OPTIONS NOERRORABEND;

*OPTIONS NOSYNTAXCHECK ;

/* Load for the %JM macro (must change working folder to folder

with the JM macro files)*/

/*

%include ’C:\Users\acullen\Box

Sync\SoftwareComparisonPaper\calculateknotspartition.sas’;

%include ’C:\Users\acullen\Box

Sync\SoftwareComparisonPaper\spline.sas’;

%include ’C:\Users\acullen\Box

Sync\SoftwareComparisonPaper\ncspline.sas’;

%include ’C:\Users\acullen\Box
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Sync\SoftwareComparisonPaper\bspline.sas’;

%include ’C:\Users\acullen\Box

Sync\SoftwareComparisonPaper\kronrodrule15p.sas’;

%include ’C:\Users\acullen\Box

Sync\SoftwareComparisonPaper\jm.sas’;

*/

/**/

%include ’C:\Users\AKC\Box

Sync\SoftwareComparisonPaper\calculateknotspartition.sas’;

%include ’C:\Users\AKC\Box

Sync\SoftwareComparisonPaper\spline.sas’;

%include ’C:\Users\AKC\Box

Sync\SoftwareComparisonPaper\ncspline.sas’;

%include ’C:\Users\AKC\Box

Sync\SoftwareComparisonPaper\bspline.sas’;

%include ’C:\Users\AKC\Box

Sync\SoftwareComparisonPaper\kronrodrule15p.sas’;

%include ’C:\Users\AKC\Box Sync\SoftwareComparisonPaper\jm.sas’;

/**/

proc printto log="C:\Users\AKC\Box Sync\SoftwareComparisonPaper\

saslog_intweibpwc_12052017.log";

run;

proc sort data=softw.final_int_11272017;

by dataset subjID;
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run;

/* Run JM macro for each dataset 1,...,100*/

/* Random Int Model */

%JM(

Data=softw.final_int_11272017,

Where = (dataset=1),

SubjectVar = subjID,

LongiTimeModel= LINEAR,

LongiVar = Y,

LongiTimevar = timevar,

LongiCovariates= Z1 Z2,

LongiTimeInter = Z1,

LongiGMatrix = UN,

LongiModelOptions = METHOD=ML,

EventTimeVar = X,

EventVar = D,

EventVal = 1,

EventModel = PIECEWISE,

EventCovariates = Z1 Z2,

NLMIXEDOptions = GCONV=0 QTOL=0.0005 QPOINTS=1 METHOD=GAUSS,

SharedParam = CURRENT_VALUE,

AdditionalOptions = CALCULATEEXECTIME SKIPMACROHEADER,

OutputParameters = softw.jmmacrooutput);

data softw.jmmacrooutput;

set softw.jmmacrooutput;
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dataset = 1;

run;

/* Random Coefficients Model */

/* Run JM macro for each dataset 1,...,100*/

%JM(

Data=softw.final_slope_11272017,

Where = (dataset=1),

SubjectVar = subjID,

LongiTimeModel= LINEAR,

LongiVar = Y,

LongiTimevar = timevar,

LongiCovariates= Z1 Z2,

LongiTimeInter = Z1,

LongiGMatrix = UN,

LongiModelOptions = METHOD=ML,

EventTimeVar = X,

EventVar = D,

EventVal = 1,

EventModel = PIECEWISE,

EventCovariates = Z1 Z2,

NLMIXEDOptions = GCONV=0 QTOL=0.0005 QPOINTS=1 METHOD=GAUSS,

SharedParam = CURRENT_VALUE,

AdditionalOptions = CALCULATEEXECTIME SKIPMACROHEADER,

OutputParameters = softw.jmmacrooutput);
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data softw.jmmacrooutput;

set softw.jmmacrooutput;

dataset = 1;

run;

/* Shared Parameter Model */

%JM(

Data=softw.final_SP_11272017,

Where = (dataset=1),

SubjectVar = subjID,

LongiTimeModel= LINEAR,

LongiVar = Y,

LongiTimevar = timevar,

LongiCovariates= Z1 Z2,

LongiTimeInter = Z1,

LongiGMatrix = UN,

LongiModelOptions = METHOD=ML,

EventTimeVar = X,

EventVar = D,

EventVal = 1,

EventModel = PIECEWISE,

EventCovariates = Z1 Z2,

NLMIXEDOptions = GCONV=0 QTOL=0.0005 QPOINTS=1 METHOD=GAUSS,

SharedParam = COEFFICIENTS,
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SharedCoefficients = bi0,

AdditionalOptions = CALCULATEEXECTIME SKIPMACROHEADER,

OutputParameters = softw.jmmacrooutput);

data softw.jmmacrooutput;

set softw.jmmacrooutput;

dataset = 1;

run;

E.1.3 Stata Code

version 14

clear

use "C:\Users\acullen\Desktop\data_stjm_finalINT.dta", clear

cd "C:\Users\acullen\Desktop"

ssc install stjm

ssc install rcsgen

ssc install estout

capture log close

log using softwSimstjm, text replace

set rmsg on, perm

set more off, perm
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stset time2 if dataset==1, id(subjID) enter(time1)

failure(event==1)

stjm Y Z1_x Z2_x if dataset==1, panel(subjID) survmodel(weibull)

rfp(0) gh(25) survcov(Z1_x Z2_x) difficult

estimates store model1

stset time2 if dataset==1, id(subjID) enter(time1)

failure(event==1)

stjm Y Z1_x Z2_x if dataset==1, panel(subjID) survmodel(weibull)

rfp(1) gh(25) survcov(Z1_x Z2_x) difficult

estimates store model1

stset time2 if dataset==1, id(subjID) enter(time1)

failure(event==1)

stjm Y Z1_x Z2_x if dataset==1, panel(subjID) survmodel(weibull)

rfp(0) gh(25) survcov(Z1_x Z2_x )

difficult nocurrent intassociation

estimates store model1

E.2 Stan Code for Joint Model with Conditionally

Independent Competing Risks in Chapter 3

E.2.1 For Model W

functions{

real mysurv_lpdf(vector t, matrix d, matrix mu, vector gam){
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vector[num_elements(t)] probs;

real lprob;

for(i in 1:num_elements(t)){

probs[i] = 0;

}

for(i in 1:num_elements(t)){ ////// num elements t = N

for(j in 1:num_elements(gam)){ ////// num elements gam = K

probs[i] = probs[i] + d[i,j]*(log(gam[j]) -

gam[j]*log(mu[i,j]) + (gam[j]-1)*log(t[i])) -

(t[i]/mu[i,j])^(gam[j]);

}

}

lprob = sum(probs);

return lprob;

}

}

data{

int K; // Number of competing risks

//(not including independent censoring)

int Ntot; // length of vector of all

//longitudinal outcome observations

int N; // number of subjects

int P; // number of covars in longitudinal model

int<lower=1,upper=N> subj[Ntot]; // subject ID

vector[Ntot] Y; // longitudinal outcome

int Q; // num covars in survival model

vector[N] surt; // survival times
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matrix[N,K] D; // failure indicators

matrix[Ntot,P] XL; // covariates

matrix[N,Q] XS;

vector[P] mbeta; // Hyper priors

real<lower=0> sbeta;

real<lower=0> au;

real<lower=0> bu;

real<lower=0> aeps;

real<lower=0> beps;

real<lower=0> su;

matrix[K,Q] malpha;

real<lower=0> salpha;

real<lower=0> agamma;

real<lower=0> bgamma;

vector[K] mtheta;

real<lower=0> stheta;

}

parameters{

vector[P] beta; // longitudinal regression coeffs

real<lower=0> sigmau; // std dev of random intercept

real<lower=0> sigmaeps; // std dev of longitudinal error

vector[N] u0; // subject-specific random intercept

matrix[K,Q] alpha; // survival regression coeffs

vector<lower=0>[K] gamma; // Weibull shape param

vector[K] theta; // association params

}

model{
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real mul;

matrix[N,K] mus;

// Priors

for(i in 1:P){

beta[i] ~ normal(mbeta[i],sbeta);

}

sigmau ~ gamma(au,bu);

sigmaeps ~ gamma(aeps,beps);

u0 ~ normal(0,sigmau);

for(i in 1:K){

for(j in 1:Q){

alpha[i,j] ~ normal(malpha[i,j],salpha);

}

theta[i] ~ normal(mtheta[i],stheta);

gamma[i] ~ gamma(agamma,bgamma);

}

// Longutudinal Model

for(i in 1:Ntot){

mul = XL[i]*beta + u0[subj[i]];

Y[i] ~ normal(mul,sigmaeps);

}

// Survival Model

for(i in 1:N){
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for(j in 1:K){

mus[i,j] = exp(XS[i]*(alpha[j]’) + theta[j]*u0[i]);

}

}

surt ~ mysurv(D, mus, gamma);

}

E.2.2 For Model L

functions{

real mysurv_log(vector t, matrix d, matrix mu, vector gam){

vector[num_elements(t)] probs;

real lprob;

matrix[num_elements(t),num_elements(gam)] thexs;

for(i in 1:num_elements(t)){

probs[i] = 0;

}

for(i in 1:num_elements(t)){

for(j in 1:num_elements(gam)){

thexs[i,j] = (log(t[i])-mu[i,j])/gam[j];

probs[i] = probs[i] +

d[i,j]*( -(1.0/2.0)*log(2.0) -

(1.0/2.0)*log(pi())-

log(gam[j])-log(t[i])-

(1.0/(2.0*(gam[j]^2)))*((log(t[i]) - mu[i,j])^2)) +

(1.0-d[i,j])*log(1-Phi(thexs[i,j]));
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}

}

lprob = sum(probs);

return lprob;

}

}

data{

int K; // Number of competing risks

//(not including independent censoring)

int Ntot; // length of vector of all

//longitudinal outcome observations

int N; // number of subjects

int P; // number of covars in longitudinal model

int<lower=1,upper=N> subj[Ntot]; // subject ID

vector[Ntot] Y; // longitudinal outcome

int Q; // num covars in survival model

vector[N] surt; // survival times

matrix[N,K] D; // failure indicators

matrix[Ntot,P] XL; // covariates

matrix[N,Q] XS;

vector[P] mbeta; // Hyper priors

real<lower=0> sbeta;

real<lower=0> au;

real<lower=0> bu;

real<lower=0> aeps;

real<lower=0> beps;

real<lower=0> su;
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matrix[K,Q] malpha;

real<lower=0> salpha;

real<lower=0> agamma;

real<lower=0> bgamma;

vector[K] mtheta;

real<lower=0> stheta;

}

parameters{

vector[P] beta; // longitudinal regression coeffs

real<lower=0> sigmau; // std dev of random intercept

real<lower=0> sigmaeps; // std dev of longitudinal error

vector[N] u0; // subject-specific random intercept

matrix[K,Q] alpha; // survival regression coeffs

vector<lower=0>[K] gamma; // Weibull shape param

vector[K] theta; // association params

}

model{

real mul;

matrix[N,K] mus;

// Priors

for(i in 1:P){

beta[i] ~ normal(mbeta[i],sbeta);

}

sigmau ~ gamma(au,bu);

sigmaeps ~ gamma(aeps,beps);
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u0 ~ normal(0,sigmau);

for(i in 1:K){

for(j in 1:Q){

alpha[i,j] ~ normal(malpha[i,j],salpha);

}

theta[i] ~ normal(mtheta[i],stheta);

gamma[i] ~ gamma(agamma,bgamma);

}

gamma ~ gamma(agamma,bgamma);

// Longutudinal Model

for(i in 1:Ntot){

mul = XL[i]*beta + u0[subj[i]];

Y[i] ~ normal(mul,sigmaeps);

}

// Survival Model

for(i in 1:N){

for(j in 1:K){

mus[i,j] = XS[i]*(alpha[j]’) + theta[j]*u0[i];

}

}

surt ~ mysurv(D, mus, gamma);

}
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E.3 Stan Code for Joint Models with Dependent Competing

Risks in Chapter 4

E.3.1 For Model Fitting

functions{

real mysurv_lpdf(vector t, matrix d, matrix chi, vector gam,

real delta){

vector[num_elements(t)] probs;

real lprob;

for(i in 1:num_elements(t)){

probs[i] = 0;

}

for(i in 1:num_elements(t)){ // num elements t = N

for(j in 1:num_elements(gam)){ // num elements gam = K

probs[i] = probs[i] +

d[i,j]*( (delta-1)*log( (chi[i,1]*(t[i]^gam[1]))^(1/delta) +

(chi[i,2]*(t[i]^gam[2]))^(1/delta) ) +

((1/delta)-1)*log( chi[i,j]*(t[i]^gam[j]) ) + log(chi[i,j]) +

log(gam[j]) + (gam[j]-1)*log(t[i]) ) -

( (chi[i,1]*(t[i]^gam[1]))^(1/delta) +

(chi[i,2]*(t[i]^gam[2]))^(1/delta) )^delta

;

}
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}

lprob = sum(probs);

return lprob;

}

}

data{

int K; // Number of competing risks

//(not including independent censoring)

int Ntot; // length of vector of all

//longitudinal outcome observations

int N; // number of subjects

int P; // number of covars in longitudinal model

int<lower=1,upper=N> subj[Ntot]; // subject ID

vector[Ntot] Y; // longitudinal outcome

int Q; // num covars in survival model

vector[N] surt; // survival times

matrix[N,K] D; // failure indicators

matrix[Ntot,P] XL; // covariates

matrix[N,Q] XS;

vector[P] mbeta; // Hyper priors

real<lower=0> sbeta;

vector[K] mtheta;

real<lower=0> stheta;

//vector[K] theta;

real<lower=0> au;

real<lower=0> bu;

real<lower=0> aeps;
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real<lower=0> beps;

real<lower=0> su;

matrix[K,Q] malpha;

real<lower=0> salpha;

real<lower=0> agamma;

real<lower=0> bgamma;

real<lower=0> adelta;

real<lower=0> bdelta;

}

parameters{

vector[P] beta; // longitudinal regression coeffs

real<lower=0> sigmau; // std dev of random intercept

real<lower=0> sigmaeps; // std dev of longitudinal error

vector[N] u0; // subject-specific random intercept

matrix[K,Q] alpha;

vector[K] theta;

vector[K] gamma;

real<lower=0, upper=1> delta;

}

model{

real mul;

matrix[N,K] chik;

// Priors

for(i in 1:P){

beta[i] ~ normal(mbeta[i],sbeta);
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}

sigmau ~ gamma(au,bu);

sigmaeps ~ gamma(aeps,beps);

u0 ~ normal(0,sigmau);

for(i in 1:K){

for(j in 1:Q){

alpha[i,j] ~ normal(malpha[i,j],salpha);

}

theta[i] ~ normal(mtheta[i],stheta);

gamma[i] ~ gamma(agamma,bgamma);

}

delta ~ beta(adelta,bdelta);

// Longutudinal Model

for(i in 1:Ntot){

mul = XL[i]*beta + u0[subj[i]];

Y[i] ~ normal(mul,sigmaeps);

}

// Survival Model

for(i in 1:N){

chik[i,1] = exp(XS[i,1]*alpha[1,1] +

XS[i,2]*alpha[1,2] + theta[1]*u0[i]);

chik[i,2] = exp(XS[i,1]*alpha[2,1] +

XS[i,2]*alpha[2,2] + theta[2]*u0[i]);
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}

surt ~ mysurv(D, chik, gamma, delta);

}

E.3.2 For Bayes Factors

Code for Model with 0 < δ < 1:

functions{

real mysurv_lpdf(vector t, matrix d, matrix chi, vector gam,

real delta){

vector[num_elements(t)] probs;

real lprob;

for(i in 1:num_elements(t)){

probs[i] = 0;

}

for(i in 1:num_elements(t)){ // num elements t = N

for(j in 1:num_elements(gam)){ // num elements gam = K

probs[i] = probs[i] +

d[i,j]*( (delta-1)*log( (chi[i,1]*(t[i]^gam[1]))^(1/delta) +

(chi[i,2]*(t[i]^gam[2]))^(1/delta) ) +

((1/delta)-1)*log( chi[i,j]*(t[i]^gam[j]) ) +

log(chi[i,j]) + log(gam[j]) + (gam[j]-1)*log(t[i])

) -
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( (chi[i,1]*(t[i]^gam[1]))^(1/delta) +

(chi[i,2]*(t[i]^gam[2]))^(1/delta) )^delta

;

}

}

lprob = sum(probs);

return lprob;

}

}

data{

int K; // Number of competing risks

//(not including independent censoring)

int Ntot; // length of vector of all

//longitudinal outcome observations

int N; // number of subjects

int P; // number of covars in longitudinal model

int<lower=1,upper=N> subj[Ntot]; // subject ID

vector[Ntot] Y; // longitudinal outcome

int Q; // num covars in survival model

vector[N] surt; // survival times

matrix[N,K] D; // failure indicators

matrix[Ntot,P] XL; // covariates

matrix[N,Q] XS;

vector[P] mbeta; // Hyper priors

real<lower=0> sbeta;

vector[K] mtheta;
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real<lower=0> stheta;

//vector[K] theta;

real<lower=0> au;

real<lower=0> bu;

real<lower=0> aeps;

real<lower=0> beps;

real<lower=0> su;

matrix[K,Q] malpha;

real<lower=0> salpha;

real<lower=0> agamma;

real<lower=0> bgamma;

real<lower=0> adelta;

real<lower=0> bdelta;

}

parameters{

vector[P] beta; // longitudinal regression coeffs

real<lower=0> sigmau; // std dev of random intercept

real<lower=0> sigmaeps; // std dev of longitudinal error

vector[N] u0; // subject-specific random intercept

matrix[K,Q] alpha;

vector[K] theta;

vector[K] gamma;

real<lower=0, upper=1> delta;

}

model{

real mul;

matrix[N,K] chik;
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// Priors

for(i in 1:P){

target += normal_lpdf(beta[i] | mbeta[i],sbeta);

}

target += gamma_lpdf(sigmau | au,bu);

target += gamma_lpdf(sigmaeps | aeps,beps);

target += normal_lpdf(u0 | 0,sigmau);

for(i in 1:K){

for(j in 1:Q){

target += normal_lpdf(alpha[i,j] | malpha[i,j],salpha);

}

target += normal_lpdf(theta[i] | mtheta[i],stheta);

target += gamma_lpdf(gamma[i] | agamma,bgamma);

}

target += beta_lpdf(delta | adelta,bdelta);

// Longutudinal Model

for(i in 1:Ntot){

mul = XL[i]*beta + u0[subj[i]];

target += normal_lpdf(Y[i] | mul,sigmaeps);

}

// Survival Model
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for(i in 1:N){

chik[i,1] = exp(XS[i,1]*alpha[1,1] +

XS[i,2]*alpha[1,2] + theta[1]*u0[i]);

chik[i,2] = exp(XS[i,1]*alpha[2,1] +

XS[i,2]*alpha[2,2] + theta[2]*u0[i]);

}

target += mysurv_lpdf(surt | D, chik, gamma, delta);

}

Code for Model with δ = 1:

functions{

real mysurv_lpdf(vector t, matrix d, matrix chi, vector gam){

vector[num_elements(t)] probs;

real lprob;

for(i in 1:num_elements(t)){

probs[i] = 0;

}

for(i in 1:num_elements(t)){ // num elements t = N

for(j in 1:num_elements(gam)){ // num elements gam = K

probs[i] = probs[i] +

d[i,j]*( log(chi[i,j]) + log(gam[j]) +

(gam[j]-1)*log(t[i])) -

( (chi[i,1]*(t[i]^gam[1])) +

(chi[i,2]*(t[i]^gam[2])) )
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;

}

}

lprob = sum(probs);

return lprob;

}

}

data{

int K; // Number of competing risks

//(not including independent censoring)

int Ntot; // length of vector of all

//longitudinal outcome observations

int N; // number of subjects

int P; // number of covars in longitudinal model

int<lower=1,upper=N> subj[Ntot]; // subject ID

vector[Ntot] Y; // longitudinal outcome

int Q; // num covars in survival model

vector[N] surt; // survival times

matrix[N,K] D; // failure indicators

matrix[Ntot,P] XL; // covariates

matrix[N,Q] XS;

vector[P] mbeta; // Hyper priors

real<lower=0> sbeta;

vector[K] mtheta;

real<lower=0> stheta;

//vector[K] theta;
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real<lower=0> au;

real<lower=0> bu;

real<lower=0> aeps;

real<lower=0> beps;

real<lower=0> su;

matrix[K,Q] malpha;

real<lower=0> salpha;

real<lower=0> agamma;

real<lower=0> bgamma;

}

parameters{

vector[P] beta; // longitudinal regression coeffs

real<lower=0> sigmau; // std dev of random intercept

real<lower=0> sigmaeps; // std dev of longitudinal error

vector[N] u0; // subject-specific random intercept

matrix[K,Q] alpha;

vector[K] theta;

vector[K] gamma;

}

model{

real mul;

matrix[N,K] chik;

// Priors

for(i in 1:P){

target += normal_lpdf(beta[i] | mbeta[i],sbeta);
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}

target += gamma_lpdf(sigmau | au,bu);

target += gamma_lpdf(sigmaeps | aeps,beps);

target += normal_lpdf(u0 | 0,sigmau);

for(i in 1:K){

for(j in 1:Q){

target += normal_lpdf(alpha[i,j] | malpha[i,j],salpha);

}

target += normal_lpdf(theta[i] | mtheta[i],stheta);

target += gamma_lpdf(gamma[i] | agamma,bgamma);

}

// Longutudinal Model

for(i in 1:Ntot){

mul = XL[i]*beta + u0[subj[i]];

target += normal_lpdf(Y[i] | mul,sigmaeps);

}

// Survival Model

for(i in 1:N){

chik[i,1] = exp(XS[i,1]*alpha[1,1] +

XS[i,2]*alpha[1,2] + theta[1]*u0[i]);

chik[i,2] = exp(XS[i,1]*alpha[2,1] +

XS[i,2]*alpha[2,2] + theta[2]*u0[i]);

}
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target += mysurv_lpdf(surt | D, chik, gamma);

}

E.4 Stan Code for Joint Models with Multiple Longitudinal

Outcomes and Multi-state Data in Chapter 5

functions{

real myintegrand(real x, real delt, real m1, real g1,

real m2, real g2){

// integrate over x

real intval;

intval = (1/delt)*(

(m1^(1/delt))*g1*( x^( (g1/delt)-1 ) )*(

(1-delt)*( ( ( m1*( x^g1 ) )^(1/delt) )^(-1) ) +

delt*( ( ( m1*( x^g1 ) )^(1/delt) )^(delt-1) )

)

);

return intval;

}

real mysurv_lpdf(vector t, int Nsurv, vector D, matrix mu,

real[] gam, real delta, int[] lastobs){

vector[Nsurv] probs;

real lprob;
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for(i in 1:Nsurv){

probs[i] = 0;

}

for(i in 2:Nsurv){

probs[i] = probs[i] +

(lastobs[i-1] != 1)*(

(D[i]==1)*(D[i-1]==2)*log(

(1/delta)*(mu[i,1]^(1/delta))*gam[1]*(

t[i]^( (gam[1]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,1]*(t[i]^(gam[1]) ))^(1/delta) +

(mu[i,2]*(t[i-1]^(gam[2]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,1]*(t[i]^(gam[1]) ))^(1/delta) +

(mu[i,2]*(t[i-1]^(gam[2]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==1)*(D[i-1]==3)*log(

(1/delta)*(mu[i,1]^(1/delta))*gam[1]*(

t[i]^( (gam[1]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,1]*(t[i]^(gam[1]) ))^(1/delta) +

(mu[i,3]*(t[i-1]^(gam[3]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,1]*(t[i]^(gam[1]) ))^(1/delta) +

(mu[i,3]*(t[i-1]^(gam[3]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==2)*(D[i-1]==1)*log(
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(1/delta)*(mu[i,2]^(1/delta))*gam[2]*(

t[i]^( (gam[2]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,2]*(t[i]^(gam[2]) ))^(1/delta) +

(mu[i,1]*(t[i-1]^(gam[1]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,2]*(t[i]^(gam[2]) ))^(1/delta) +

(mu[i,1]*(t[i-1]^(gam[1]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==2)*(D[i-1]==3)*log(

(1/delta)*(mu[i,2]^(1/delta))*gam[2]*(

t[i]^( (gam[2]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,2]*(t[i]^(gam[2]) ))^(1/delta) +

(mu[i,3]*(t[i-1]^(gam[3]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,2]*(t[i]^(gam[2]) ))^(1/delta) +

(mu[i,3]*(t[i-1]^(gam[3]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==3)*(D[i-1]==1)*log(

(1/delta)*(mu[i,3]^(1/delta))*gam[3]*(

t[i]^( (gam[3]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,3]*(t[i]^(gam[3]) ))^(1/delta) +

(mu[i,1]*(t[i-1]^(gam[1]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,3]*(t[i]^(gam[3]) ))^(1/delta) +

(mu[i,1]*(t[i-1]^(gam[1]) ))^(1/delta))^(delta-1) )
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)

)+

(D[i]==3)*(D[i-1]==2)*log(

(1/delta)*(mu[i,3]^(1/delta))*gam[3]*(

t[i]^( (gam[3]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,3]*(t[i]^(gam[3]) ))^(1/delta) +

(mu[i,2]*(t[i-1]^(gam[2]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,3]*(t[i]^(gam[3]) ))^(1/delta) +

(mu[i,2]*(t[i-1]^(gam[2]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==4)*(D[i-1]==1)*log(

(1/delta)*(mu[i,4]^(1/delta))*gam[4]*(

t[i]^( (gam[4]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,4]*(t[i]^(gam[4]) ))^(1/delta) +

(mu[i,1]*(t[i-1]^(gam[1]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,4]*(t[i]^(gam[4]) ))^(1/delta) +

(mu[i,1]*(t[i-1]^(gam[1]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==4)*(D[i-1]==2)*log(

(1/delta)*(mu[i,4]^(1/delta))*gam[4]*(

t[i]^( (gam[4]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,4]*(t[i]^(gam[4]) ))^(1/delta) +
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(mu[i,2]*(t[i-1]^(gam[2]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,4]*(t[i]^(gam[4]) ))^(1/delta) +

(mu[i,2]*(t[i-1]^(gam[2]) ))^(1/delta))^(delta-1) )

)

)+

(D[i]==4)*(D[i-1]==3)*log(

(1/delta)*(mu[i,4]^(1/delta))*gam[4]*(

t[i]^( (gam[4]/delta)-1 ) )*

( (1-delta)*(

( (mu[i,4]*(t[i]^(gam[4]) ))^(1/delta) +

(mu[i,3]*(t[i-1]^(gam[3]) ))^(1/delta) )^(-1)

) + delta*(((mu[i,4]*(t[i]^(gam[4]) ))^(1/delta) +

(mu[i,3]*(t[i-1]^(gam[3]) ))^(1/delta))^(delta-1) )

)

)

-

(t[i]-t[i-1])*(

(D[i-1] == 1)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,2],

gam[2], mu[i,1], gam[1])+

(D[i-1] == 1)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,3],

gam[3], mu[i,1], gam[1])+

(D[i-1] == 1)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,4],

gam[4], mu[i,1], gam[1])+

(D[i-1] == 2)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,1],

gam[1], mu[i,2], gam[2])+

(D[i-1] == 2)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,3],

gam[3], mu[i,2], gam[2])+
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(D[i-1] == 2)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,4],

gam[4], mu[i,2], gam[2])+

(D[i-1] == 3)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,1],

gam[1], mu[i,3], gam[3])+

(D[i-1] == 3)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,2],

gam[2], mu[i,3], gam[3])+

(D[i-1] == 3)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,4],

gam[4], mu[i,3], gam[3])+

(D[i-1] == 4)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,1],

gam[1], mu[i,4], gam[4])+

(D[i-1] == 4)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,2],

gam[2], mu[i,4], gam[4])+

(D[i-1] == 4)*myintegrand((t[i-1]+t[i])/2, delta, mu[i,3],

gam[3], mu[i,4], gam[4])+

(D[i] == 5)*(D[i-1] == 1)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,2],gam[2], mu[i,1], gam[1])+

(D[i] == 5)*(D[i-1] == 1)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,3],gam[3], mu[i,1], gam[1])+

(D[i] == 5)*(D[i-1] == 1)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,4], gam[4], mu[i,1], gam[1])+

(D[i] == 5)*(D[i-1] == 2)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,1], gam[1], mu[i,2], gam[2])+

(D[i] == 5)*(D[i-1] == 2)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,3], gam[3], mu[i,2], gam[2])+

(D[i] == 5)*(D[i-1] == 2)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,4], gam[4], mu[i,2], gam[2])+

(D[i] == 5)*(D[i-1] == 3)*myintegrand((t[i-1]+t[i])/2, delta,
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mu[i,2], gam[2], mu[i,3], gam[3])+

(D[i] == 5)*(D[i-1] == 3)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,1], gam[1], mu[i,3], gam[3])+

(D[i] == 5)*(D[i-1] == 3)*myintegrand((t[i-1]+t[i])/2, delta,

mu[i,4], gam[4], mu[i,3], gam[3])

)

)

;

}

lprob = sum(probs);

return lprob;

}

}

data{

int K; // Number of possible states

//(not including independent censoring)

int Ntot1; // length of vector of

// all longitudinal outcome observations

int Ntot2;

int N; // number of subjects

int Nsurv; // length of survival vectors

int P1; // number of covars in longitudinal model

int P2;

int<lower=1> subj1[Ntot1]; // subject ID,

//each repeated for the number of that subject’s

// longitudinal measurements

int<lower=1> subj2[Ntot2];
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int<lower=1> subj3[Nsurv]; // subjid repeated

//number of transition times

vector[Ntot1] Y1; // longitudinal outcome

vector[Ntot2] Y2;

int Q; // num covars in survival model

vector[Nsurv] surt; // survival times

vector[Nsurv] D; // failure indicators

matrix[Ntot1,P1] XL1; // covariates

matrix[Ntot2,P2] XL2;

matrix[Nsurv,Q] XS;

int<lower=0,upper=1> lastobs[Nsurv];

vector[P1] mbeta1; // Hyper priors

vector[P2] mbeta2;

real<lower=0> sbeta;

vector[K] mtheta;

real<lower=0> stheta;

real<lower=0> aeps;

real<lower=0> beps;

matrix[K,Q] malpha;

real<lower=0> salpha;

real<lower=0> agamma;

real<lower=0> bgamma;

real<lower=0> adelta;

real<lower=0> bdelta;

real<lower=0> nu;

matrix[2,2] hypSigma;

vector[2] muzero;
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}

parameters{

vector[P1] beta1; // longitudinal regression coeffs

vector[P2] beta2;

real<lower=0> sigmaeps1; // std dev of longitudinal error

real<lower=0> sigmaeps2;

matrix[N,2] u0; // subject-specific random intercept

matrix[K,Q] alpha;

vector[K] theta1;

vector[K] theta2;

real<lower=0> gamma[K];

real<lower=0, upper=1> delta;

cov_matrix[2] Sigma;

}

transformed parameters{

real<lower=0> sigmau1;

real<lower=0> sigmau2;

real rho;

sigmau1 = Sigma[1,1]^(0.5);

sigmau2 = Sigma[2,2]^(0.5);

rho = Sigma[1,2]/((Sigma[1,1]^(0.5))*(Sigma[2,2]^(0.5)));

}

model{

real mul1;

real mul2;

matrix[Nsurv,K] muk;
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// Priors

for(i in 1:P1){

beta1[i] ~ normal(mbeta1[i],sbeta);

}

for(i in 1:P2){

beta2[i] ~ normal(mbeta2[i],sbeta);

}

sigmaeps1 ~ gamma(aeps,beps);

sigmaeps2 ~ gamma(aeps,beps);

Sigma ~ wishart(nu,hypSigma);

for(i in 1:N){

u0[i,] ~ multi_normal(muzero,Sigma);

}

for(i in 1:K){

for(j in 1:Q){

alpha[i,j] ~ normal(malpha[i,j],salpha);

}

theta1[i] ~ normal(mtheta[i],stheta);

theta2[i] ~ normal(mtheta[i],stheta);

gamma[i] ~ gamma(agamma,bgamma);

}

delta ~ beta(adelta,bdelta);

// Longutudinal Model

for(i in 1:Ntot1){

mul1 = XL1[i]*beta1 + u0[subj1[i],1];
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Y1[i] ~ normal(mul1,sigmaeps1);

}

for(i in 1:Ntot2){

mul2 = XL2[i]*beta2 + u0[subj2[i],2];

Y2[i] ~ normal(mul2,sigmaeps2);

}

// Survival Model

for(i in 1:Nsurv){

muk[i,1] = exp(XS[i,1]*alpha[1,1] + XS[i,2]*alpha[1,2] +

theta1[1]*u0[subj3[i],1] + theta2[1]*u0[subj3[i],2]);

muk[i,2] = exp(XS[i,1]*alpha[2,1] + XS[i,2]*alpha[2,2] +

theta1[2]*u0[subj3[i],1] + theta2[2]*u0[subj3[i],2]);

muk[i,3] = exp(XS[i,1]*alpha[3,1] + XS[i,2]*alpha[3,2] +

theta1[3]*u0[subj3[i],1] + theta2[3]*u0[subj3[i],2]);

muk[i,4] = exp(XS[i,1]*alpha[4,1] + XS[i,2]*alpha[4,2] +

theta1[4]*u0[subj3[i],1] + theta2[4]*u0[subj3[i],2]);

}

surt ~ mysurv(Nsurv,D,muk,gamma,delta,lastobs);

}
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Appendix F

Additional Data Analysis Results

F.1 Data Analysis Trace Plots for Joint Model with

Conditionally Independent Competing Risks in Chapter 3
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Figure F.1: Trace plots for Model W from ACC data.
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Figure F.2: Trace plots for Model L from ACC data.
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F.2 Chapter 4 Chain Initial Values for Data Analysis

Parameter Chain 1 Chain 2 Chain 3 Chain 4

β0 3.5 2.5 1.5 2

β1 0.15 0.55 -0.15 0.05

β2 2 1 3 0.5

β3 3 2 4 1.5

σU 0.5 1 2 1.5

σε 2 1 3 0.5

α0,1 1.2 2.2 0.2 0.6

α1,1 -0.4 0.4 -1.4 -0.2

α0,2 1.1 2.1 0.1 0.5

α1,2 -0.5 0.5 -1.5 -0.1

θ1 -1.1 1.1 -2.1 -0.1

θ2 -0.9 0.9 -1.9 -0.5

γ1 5 6 4 5.5

γ2 8 7 6 9

δ 0.4 0.1 0.7 0.6

U0i 1 -1 2 -2

Table F.1: Initial values for four chains used to fit Model W to the ACC data.
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F.3 Data Analysis Trace Plots for Joint Longitudinal and

Dependent Competing Risks in Chapter 4

Figure F.3: Trace plots for beta parameters.
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Figure F.4: Trace plots for standard deviation parameters.
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Figure F.5: Trace plots for alpha parameters.
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Figure F.6: Trace plots for theta and gamma parameters.
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Figure F.7: Trace plot for delta parameter with Beta(1,1) prior.
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Figure F.8: Trace plot for delta parameter with Beta(0.03,0.07) prior.
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Figure F.9: Trace plot for delta parameter with Beta(0.05,0.05) prior.

220



Figure F.10: Trace plot for delta parameter with Beta(3,7) prior.
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Figure F.11: Trace plot for delta parameter with Beta(5,5) prior.
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F.4 Additional Information from Data Analysis with

Multistate Model in Chapter 5

Parameter N eff Rhat Parameter N eff Rhat Parameter N eff Rhat

β
(1)
0 570 1.00 α0,1 1952 1.00 α0,3 2222 1.00

β
(1)
1 1683 1.00 α1,1 2341 1.00 α1,3 2705 1.00

β
(1)
2 460 1.01 θ

(1)
1 3422 1.00 θ

(1)
3 2619 1.00

β
(1)
3 553 1.00 θ

(2)
1 3269 1.00 θ

(2)
3 4403 1.00

β
(2)
0 367 1.00 γ1 3081 1.00 γ3 2660 1.00

β
(2)
1 1984 1.00 α0,2 1571 1.00 α0,4 1411 1.00

β
(2)
2 448 1.00 α1,2 1511 1.00 α1,4 1498 1.00

β
(2)
3 402 1.00 θ

(1)
2 2827 1.00 θ

(1)
4 2056 1.00

σ1 1919 1.00 θ
(2)
2 4013 1.00 θ

(2)
4 3072 1.00

σ2 2345 1.00 γ2 3733 1.00 γ4 2593 1.00

ρ 1993 1.00 σ
(1)
ε 3445 1.00 δ 4289 1.00

σ
(2)
ε 3428 1.00

Table F.2: Effective sample size (N eff) and Rhat values for the joint model fit to the ACC data.
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Appendix G

Full Conditionals

G.1 Full Conditionals for Joint Longitudinal and

Conditionally Independent Competing Risks in Chapter 3

p(β|·) ∝

σ
−
∑N
i=1 Ji

ε exp

{
− 1

2σ
2
∑N
i=1 Ji

ε

N∑
i=1

(Yi −Xiβ − ZiUi)T (Yi −Xiβ − ZiUi)

}

× σ−pβ exp

{
− 1

2σ2p
β

(β −mβ)T (β −mβ)

}

= σ
−
∑N
i=1 Ji

ε σ−pβ ·

exp

{
− 1

2σ
2
∑N
i=1 Ji

ε

N∑
i=1

(Yi −Xiβ − ZiUi)T (Yi −Xiβ − ZiUi)−
1

2σ2p
β

(β −mβ)T (β −mβ)

}

∼ N (A,B)

where

B =

(
1

σ2p
β

Ip +
1

σ
2
∑N
i=1 Ji

ε

N∑
i=1

XT
i Xi

)−1

and

A = B−1

(
1

σ
2
∑N
i=1 Ji

ε

(
N∑
i=1

UT
i ZiXi −

N∑
i=1

Y T
i Xi

)
− 1

σ2p
β

mβ

)
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p(σε|·) ∝

σ−
∑N
i=1 Ji

ε exp

{
− 1

2σ2Ji
ε

N∑
i=1

(Yi −Xiβ − ZiUi)T (Yi −Xiβ − ZiUi)

}

× 1

Γ(a)ba
σa−1
ε exp

{
−σε
b

}

p(σU |·) ∝

σ−1
U exp

{
− 1

2σ2
U

U2
i

}
1

Γ(a)ba
σa−1
U exp

{
−σU
b

}

G.1.1 Weibull model

p(γk|·) ∝
N∏
i=1

(
K∏
k=1

[(
γk
(
exp{Wiαk + θTk Ui}

)−1
tγk−1

)Dki
exp

{
−tγk

(
exp{Wiαk + θTk Ui}

)−1
}])

×
K∏
k=1

[
b−aγa−1

k exp
{
−γk
b

}]

p(αk|·) ∝
N∏
i=1

(
K∏
k=1

[(
γk
(
exp{Wiαk + θTk Ui}

)−1
tγk−1

)Dki
exp

{
−tγk

(
exp{Wiαk + θTk Ui}

)−1
}])

×
K∏
k=1

[
s−1
α exp

{
− 1

2s2q
α

(αk −mα)T (αk −mα)

}]
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p(θk|·) ∝
N∏
i=1

(
K∏
k=1

[(
γk
(
exp{Wiαk + θTk Ui}

)−1
tγk−1

)Dki
exp

{
−tγk

(
exp{Wiαk + θTk Ui}

)−1
}])

×
K∏
k=1

[
s−1
θ exp

{
− 1

2s2
θ

(θk −mθ)
T (θk −mθ)

}]

G.1.2 Log-Normal Model

p(γk|·) ∝
N∏
i=1

(
K∏
k=1

[
(hk(Ti|Wi, Ui, γk, αk, θk))

Dki τk(Ti|Wi, Ui, γk, αk, θk)
])

×
K∏
k=1

[
b−aγa−1

k exp
{
−γk
b

}]

p(αk|·) ∝
N∏
i=1

(
K∏
k=1

[
(hk(Ti|Wi, Ui, γk, αk, θk))

Dki τk(Ti|Wi, Ui, γk, αk, θk)
])

×
K∏
k=1

[
s−1
α exp

{
− 1

2s2q
α

(αk −mα)T (αk −mα)

}]

p(θk|·) ∝
N∏
i=1

(
K∏
k=1

[
(hk(Ti|Wi, Ui, γk, αk, θk))

Dki τk(Ti|Wi, Ui, γk, αk, θk)
])

×
K∏
k=1

[
s−1
θ exp

{
− 1

2s2
θ

(θk −mθ)
T (θk −mθ)

}]
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Here the hazard and survival functions are:

hk(t|Ui) =

(
γk
2π

)1/2
x−1 exp

(
−γk

2
(log x−

[
Wiαk + θTk Ui

]
)2
)∫∞

t

(
γk
2π

)1/2
x−1 exp

(
−γk

2
(log x− [Wiαk + θTk Ui])

2
)

τk(t|Ui) =

∫ ∞
t

( γk
2π

)1/2

x−1 exp
(
−γk

2
(log x−

[
Wiαk + θTk Ui

]
)2
)

G.2 Full Conditionals for Joint Longitudinal and Dependent

Competing Risks in Chapter 4
The posterior is proportional to the following.

p(Ω | Y, T,D,X,W ) ∝
N∏
i=1

(2πσε)
− Ji

2 exp

{
− 1

2σ2Ji
ε

(Yi −Xiβ − Ui)T (Yi −Xiβ − Ui)
}
·

s−pβ exp

(
− 1

2s2pβ
(β −mβ)T (β −mβ)

)
σ−1
U exp

(
− 1

2σ2
U

U2
i

)
σaU−1
U exp(−σU/bU )σaε−1

ε exp(−σε/bε)·

K∏
k=1

(
γk exp

(
Wiαk − θTk Ui

) 1
δ T

γk
δ −1
i

(
(exp

(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ−1
)Dik

·

exp

(
−
(

(exp
(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ)
·

γ
aγ−1
k exp(−γk/bγ)s−1

α exp

(
− 1

2s2qα
(αk −mα)T (αk −mα)

)
s−1
θ exp

(
− 1

2s2pθ
(θk −mθ)

T (θk −mθ)

)
·

δaδ−1(1− δ)bδ−1

And the full conditionals are below.

227



p(β| all) ∝
N∏
i=1

(2πσε)
−Ji

2 exp

{
− 1

2σJiε
(Yi −Xiβ − Ui)T (Yi −Xiβ − Ui)

}
·

s−pβ exp

(
− 1

2s2p
β

(β −mβ)T (β −mβ)

)

= σ−
∑N
i=1 Ji/2

ε s−pβ exp

{
− 1

2σ
2
∑N
i=1 Ji

ε

N∑
i=1

(Yi −Xiβ − Ui)T (Yi −Xiβ − Ui)

− 1

2s2p
β

(β −mβ)T (β −mβ)

}

∼ N (A,B)

where

B =

(
1

s2p
β

Ip +
1

σ
2
∑N
i=1 Ji/2

ε

N∑
i=1

XT
i Xi

)−1

and

A = B−1

(
1

σ
2
∑N
i=1 Ji/2

ε

(
N∑
i=1

UiXi −
N∑
i=1

Y T
i Xi

)
− 1

s2p
β

mβ

)

p(σU | all) ∝
N∏
i=1

σ−1
U exp

(
− 1

2σ2
U

U2
i

)
σaU−1
U exp(−σU/bU)·

= σaU−2
U exp

(
− 1

2σ2
U

N∑
i=1

U2
i − σU/bU

)

p(σε| all) ∝
N∏
i=1

(2πσε)
−Ji

2 exp

{
− 1

2σ2Ji
ε

(Yi −Xiβ − Ui)T (Yi −Xiβ − Ui)
}
σaε−1
ε ·

exp(−σε/bε)
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p(γk| all)

∝
(
γk exp

(
Wiαk − θTk Ui

) 1
δ T

γk
δ
−1

i ·(
(exp

(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ−1
)Dik

·

exp

(
−
(

(exp
(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ)
·

γ
aγ−1
k exp(−γk/bγ)

p(αk| all)

∝
(
γk exp

(
Wiαk − θTk Ui

) 1
δ T

γk
δ
−1

i ·(
(exp

(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ−1
)Dik

·

exp

(
−
(

(exp
(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ)
s−1
α ·

exp

(
− 1

2s2q
α

(αk −mα)T (αk −mα)

)

p(θk| all)

∝
(
γk exp

(
Wiαk − θTk Ui

) 1
δ T

γk
δ
−1

i ·(
(exp

(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ−1
)Dik

·

exp

(
−
(

(exp
(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ)
s−1
θ ·

exp

(
− 1

2s2p
θ

(θk −mθ)
T (θk −mθ)

)

229



p(δ| all)

∝
(
γk exp

(
Wiαk − θTk Ui

) 1
δ T

γk
δ
−1

i ·(
(exp

(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ−1
)Dik

·

exp

(
−
(

(exp
(
Wiα1 − θT1 Ui

)
T γ1i )

1
δ + (exp

(
Wiα2 − θT2 Ui

)
T γ2i )

1
δ

)δ)
·

δaδ−1(1− δ)bδ−1
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Appendix H

Proof of Representation Theorem from Chapter 4

Extending a distribution in Lu and Bhattacharyya’s paper (Lu and Bhattacharyya, 1990), con-

sider the following multivariate (joint) survival distribution for K variables T1, ..., TK :

ST (t1, t2, ..., tK) = exp

(
−
[
H1(t1)

1
δ + ...+HK(tK)

1
δ

]δ)
(H.1)

where 0 < δ ≤ 1, and H1, ..., HK are arbitrary cumulative hazard functions. If each Hk(t) is a cu-

mulative hazard function then there exists an inverse functionH−1
k (t) which is also non-decreasing.

Additionally, for any cumulative hazard function Hk(t) and δ in (0, 1], Hk(t)
1
δ is also a valid cu-

mulative hazard function.

Let Zk = Hk(Tk)
1
δ , k = 1, ..., K. We can write the joint survival function of the Zk using the

joint survival function of the Tk in (H.1).

SZ(z1, ..., zK) = Pr(Z1 > z1, ..., ZK > zK)

= Pr(T1 > H−1
1 (zδ1), ..., TK > H−1

K (zK)δ)

= ST (H−1
1 (zδ1), ..., H−1

K (zδK))

= exp

(
−
[
H1(H−1

1 (zδ1))
1
δ + ...+HK(H−1

K (zδK))
1
δ

]δ)
= exp

(
− [z1 + ...+ zK ]δ

)

Define the random variable Y(K) = Z1 + ... + ZK , with realization y(K) = z1 + ... + zK . The
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joint density of the Z’s is given by

fZ(z1, ..., zK) =
∂K

∂z1 · · · ∂zK
SZ(z1, ..., zK)

= (−1)K
∂K

∂yK(K)

exp
(
−yδ(K)

)
See Section H.1 for details. Define the gK(y) functions as

gK(y) = (−1)K
∂K

∂yK
exp

(
−yδ

)
(H.2)

So that

fZ(z1, ..., zK) = gK
(
y(K)

)
(H.3)

We can show that gK(y) can be written in the form in (H.4),

gK(y) = exp(−yδ)
(

(−1)K−KaK,Ky
Kδ−K

+ (−1)K−(K−1)aK,K−1y
(K−1)δ−K

+ ...

+ (−1)K−kaK,ky
kδ−K

+ ...

+ (−1)K−2aK,2y
2δ−K

+ (−1)K−1aK,1y
δ−K
)

(H.4)

The aK,k coefficients are defined recursively.

a1,1 = δ;

aK,K = δaK−1,K−1;

aK,1 = (δ − (K − 1))aK−1,1;

aK,k = (kδ − (K − 1))aK−1,k + δaK−1,k−1, for 2 ≤ k ≤ K − 1

(H.5)
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See Section H.2.1 of the appendix for the proof of (H.3) - (H.5).

Define the random variables V1, ..., VK

V1 = (Z1 + ...+ ZK)δ = Y δ
(K)

V2 =
Z1

Z1 + Z2

V3 =
Z1 + Z2

Z1 + Z2 + Z3

...

VK =
Z1 + ...+ ZK−1

Z1 + ...+ ZK−1 + ZK

We can write the Z1, ..., ZK in terms of the V variables.

Z1 = V2 · · · VKV 1/δ
1

Z2 = (1− V2)V3 · · · VKV 1/δ
1

Z3 = (1− V3)V4 · · · VKV 1/δ
1

...

ZK = (1− VK)V
1/δ

1

(H.6)

Note that y(K) = v
1
δ
1 . Call the Jacobian matrix of this transformation J(K). The determinant of the

Jacobian is below. See Section H.3 in the appendix for the proof of (H.7).

det
(
J(K)

)
=

(−1)K−1

δ
v
K
δ
−1

1 v3v
2
4v

3
5 · · · vK−2

K (H.7)
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The joint density of V1, ..., VK is derived in Section H.4 and is equal to

fV (v1, v2, ..., vK) =
∣∣det (J(K)

)∣∣ fZ(z1, ..., zK)

=
1

δ
v0

2v3v
2
4v

3
5 · · · vK−2

K · exp(−v1)
(
aK,Kv

K−1
1 + (−1)K−(K−1)aK,K−1v

K−2
1 + ...

+ (−1)K−kaK,kv
k−1
1 + ...+ (−1)K−2aK,2v1 + (−1)K−1aK,1

)
(H.8)

Since fV (v1, v2, ..., vK) factors, V1, ..., VK are independent. The kernel of the marginal density for

each Vk will have the same form as the terms with vk in the joint density. So we can see that

V2 ∼ Beta(1, 1)

V3 ∼ Beta(2, 1)

...

VK ∼ Beta(K − 1, 1)

and V1 is a mixture of the Gamma distributions Γ(K, 1), Γ(K − 1, 1), ..., Γ(2, 1), Γ(1, 1) with the

following distribution

fV1(v) =
1

δΓ(K)
exp(−v1)

(
aK,Kv

K−1
1 + (−1)K−(K−1)aK,K−1v

K−2
1 + ...

+ (−1)K−kaK,kv
k−1
1 + ...

+ (−1)K−2aK,2v1 + (−1)K−1aK,1

) (H.9)

where Γ(x) is the Gamma function, i.e. Γ(k) =
∫∞

0
xk−1e−xdx. See Section H.4 of the appendix

for proof that fV1(v) is a valid distribution.
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H.1 Proof of the Joint density of the Z Variables

Define the random variable Y(K) = Z1 + ...+ ZK , with realization y(K) = z1 + ...+ zK . Note

that the derivative of y(K) with respect to any zk is 1, i.e. ∂y(K)

∂zk
= 1, ∀k = 1, ..., K. And so

∂

∂zk
SZ(z1, ..., zK) =

∂

∂zk
exp

(
− (z1 + ...+ zK)δ

)
= exp

(
− (z1 + ...+ zK)δ

)
(−δ) (z1 + ...+ zK)δ−1

= exp
(
−yδ(K)

)
(−δ)

(
y(K)

)δ−1

=
∂

∂y(K)

exp
(
−yδ(K)

)
Extending this, for any k1, k2, ..., km ∈ {1, 2, ..., K}

∂m

∂zk1∂zk2 · · · ∂zkm
SZ(z1, ..., zK) =

∂m

∂ym(K)

exp
(
−yδ(K)

)
(H.10)

H.2 Verifying (H.1) is a Survival Function

It is easy to see that for all t1, ..., tK , (H.1) is non-negative, so ST (t1, ..., tK) ≥ 0.

Now tk ≥ 0 and Hk is a cumulative hazard function so it has range [0,∞) for k = 1, 2, ..., K,
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and 0 < δ ≤ 1. So

Hk(tk) ≥ 0,∀k = 1, ..., K,∀tk ∈ [0,∞)

⇒ (Hk(tk))
1
δ ≥ 0

⇒ (Hk(tk))
1
δ + ... (Hk(tk))

1
δ ≥ 0

⇒
(

(Hk(tk))
1
δ + ... (Hk(tk))

1
δ

)δ
≥ 0

⇒−
(

(Hk(tk))
1
δ + ... (Hk(tk))

1
δ

)δ
≤ 0

⇒ exp

(
−
(

(Hk(tk))
1
δ + ... (Hk(tk))

1
δ

)δ)
≤ 1

⇒ST (t1, ..., tK) ≤ 1

Suppose a ≤ b. Then since Hk(t) is a cumulative hazard function for any k

H1(a) ≤ H1(b)

⇒ (H1(a))
1
δ ≤ (H1(b))

1
δ

⇒ (H1(a))
1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ ≤ (H1(b))

1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

⇒
(

(H1(a))
1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

)δ
≤
(

(H1(b))
1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

)δ
⇒−

(
(H1(a))

1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

)δ
≥ −

(
(H1(b))

1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

)δ
⇒ exp

(
−
(

(H1(a))
1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

)δ)
≥

exp

(
−
(

(H1(b))
1
δ + (H2(t2))

1
δ ...+ (HK(tK))

1
δ

)δ)
⇒ST (a, t2, ..., tK) ≥ ST (b, t2, ..., tK)

This also holds for if a and b are substituted for any of t2, ..., tK . Hence ST is non-increasing.
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Note that Hk(0) = 0 for all k so

ST (0, ..., 0) = exp

(
−
(

(H1(0))
1
δ + ... (HK(0))

1
δ

)δ)
= exp (0)

= 1

Also,

lim
t1→∞,...,tK→∞

ST (t1, ..., tK) = lim
t1→∞,...,tK→∞

exp

(
−
(

(H1(t1))
1
δ + ... (HK(tK))

1
δ

)δ)
= lim

y→∞
exp

(
−yδ

)
= 0

And

lim
t1→∞

ST (t1, ..., tK) = lim
t1→∞

exp

(
−
(

(H1(t1))
γ1
δ + ... (HK(tK))

γK
δ

)δ)
= lim

y→∞
exp

(
−yδ

)
= 0

This holds for tk →∞ for any k = 1, ..., K. Finally

ST (t1, 0, ..., 0) = exp (−H1(t1)) = exp (− (− log(S1(t1))) = S1(t1)

Similarly for any k = 2, ..., K, tk 6= 0 and tl = 0, for all l 6= k.

So ST in (H.1) is a valid survival function.

H.2.1 Proof of Formula for Joint Density of Z1, ..., ZK in (H.3 - H.5)

We will prove by induction.
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We will write fZ(K)(z) for the joint density of the K random variables (Z1, .., ZK). For ease of

notation we will drop the subscripts on Y(K) and y(K).

For K = 1, Y = Y(1) = Z1 and

fZ(1)(z1) = g1(y)

= (−1)1 ∂

∂y
exp(−yδ)

= −
(
−δyδ−1 exp(−yδ)

)
= δyδ−1 exp(−yδ)

= exp(−yδ)(−1)0a1,1y
δ−1

We have a1,1 = δ and the form for gK(y) holds for K = 1.

For K = 2, Y = Y(2) = Z1 + Z2 and

fZ(2)(z1, z2) = g2(y)

= (−1)2 ∂
2

∂y2
exp(−yδ)

=
∂

∂y

[
−δyδ−1 exp(−yδ)

]
= (−δyδ−1)(−δyδ−1) exp(−yδ) + exp(−yδ)(−δ(δ − 1)yδ−2)

= exp(−yδ)
(
δ2y2δ−2 − δ(δ − 1)yδ−2

)
= exp(−yδ)

(
(−1)0a2,2y

2δ−2 + (−1)a2,1y
δ−2
)

Hence a2,2 = δ2 = δa1,1, and a2,1 = (δ − 1)δ = (δ − (2− 1))a1,1. The formula holds for K = 2.
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For K = 3, Y = Y(3) = Z1 + Z2 + Z3.

fZ(3)(z1, z2, z3) = g3(y)

= (−1)3 ∂
3

∂y3
exp(−yδ)

= (−1)
∂

∂y

[
exp(−yδ)δ2y2δ−2 − exp(−yδ)δ(δ − 1)yδ−2

]
= (−1)

(
exp(−yδ)

(
δ2(2δ − 2)y2δ−3

)
+ δ2y2δ−2

(
−δyδ−1

)
exp(−yδ)

−
[
exp(−yδ)

(
δ(δ − 1)(δ − 2)yδ−3

)
+ δ(δ − 1)yδ−2

(
−δyδ−1

)
exp(−yδ)

] )
= exp(−yδ)

(
− δ2(2δ − 2)y2δ−3 + δ3y3δ−3 + δ(δ − 1)(δ − 2)yδ−3

− δ2(δ − 1)y2δ−3
)

= exp(−yδ)
(

(−1)0δ3y3δ−3 + (−1)1
[
δ2(2δ − 2) + δ2(δ − 1)

]
y2δ−3

+ (−1)2δ(δ − 1)(δ − 2)yδ−3
)

= exp(−yδ)
(

(−1)0a3,3y
3δ−3 + (−1)1a3,2y

2δ−3 + (−1)2a3,1y
δ−3
)

and the formula holds for K = 3.

Assume that (H.4) holds for someK. Note that ∂K

∂yK
exp(−yδ) = (−1)KgK(y). Then forK+1
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variables

fZ(K+1)(z1, ..., zK+1) = gK+1(y)

= (−1)K+1 ∂
K+1

∂yK+1
exp(−yδ)

= (−1)K+1 ∂

∂y

[
∂K

∂yK
exp(−yδ)

]
= (−1)K+1 ∂

∂y

[
(−1)KgK(y)

]
= (−1)2K+1 ∂

∂y

(
exp(−yδ)

[
(−1)K−KaK,Ky

Kδ−K

+ (−1)K−(K−1)aK,K−1y
(K−1)δ−K

+ ...

+ (−1)K−kaK,ky
kδ−K

+ ...

+ (−1)K−2aK,2y
2δ−K

+ (−1)K−1aK,1y
δ−K
])
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⇒ fZ(K+1)(z1, ..., zK+1) = (−1)

(
exp(−yδ)

[
aK,K(Kδ −K)yKδ−K−1

+ (−1)K−(K−1)aK,K−1 [(K − 1)δ −K] ·

y(K−1)δ−K−1

+ ...

+ (−1)K−kaK,k(kδ −K)ykδ−K−1

+ ...

+ (−1)K−2aK,2(2δ −K)y2δ−K−1

+ (−1)K−1aK,1(δ −K)yδ−K−1
]

+ exp(−yδ)
(
−δyδ−1

) [
aK,Ky

Kδ−K

+ (−1)K−(K−1)aK,K−1y
(K−1)δ−K

+ ...

+ (−1)K−kaK,ky
kδ−K

+ ...

+ (−1)K−2aK,2y
2δ−K

+ (−1)K−1aK,1y
δ−K
])
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⇒ fZ(K+1)(z1, ..., zK+1) = (−1) exp(−yδ)

(
aK,K(Kδ −K)yKδ−K−1

+ (−1)K−(K−1)aK,K−1 [(K − 1)δ −K] ·

y(K−1)δ−K−1

+ ...

+ (−1)K−kaK,k(kδ −K)ykδ−K−1

+ ...

+ (−1)K−2aK,2(2δ −K)y2δ−K−1

+ (−1)K−1aK,1(δ −K)yδ−K−1

+ (−δ)aK,Ky(K+1)δ−K−1

+ (−1)K−(K−1)+1δaK,K−1y
Kδ−K−1

+ ...

+ (−1)K−k+1δaK,ky
(k+1)δ−K−1

+ ...

+ (−1)K−2+1δaK,2y
3δ−K−1

+ (−1)K−1+1δaK,1y
2δ−K−1

)
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⇒ fZ(K+1)(z1, ..., zK+1) = (−1) exp(−yδ)
(

(−δ)aK,K ·

y(K+1)δ−(K+1)

+ (−1)K−(K−1)+1(δ + (Kδ −K))aK,K−1·

yKδ−(K+1)

+ (−1)K−(K−1) [(K − 1)δ −K] aK,K−1·

y(K−1)δ−(K+1)

+ ...

+ (−1)K+1−kδaK,ky
(k+1)δ−(K+1)

+ (−1)K−k(kδ −K)aK,ky
kδ−(K+1)

+ ...

+ (−1)K+1−2 [δaK,2 + (3δ −K)aK,3] y3δ−(K+1)

+ (−1)K+1−1 [δaK,1 + (2δ −K)aK,2] y2δ−(K+1)

+ (−1)K−1(δ −K)aK,1y
δ−(K+1)

)

⇒ fZ(K+1)(z1, ..., zK+1) = exp(−yδ)
(
δaK,Ky

(K+1)δ−(K+1)

+ (−1)(K+1)−K [(Kδ −K)aK,K + δaK,K−1] yKδ−(K+1)

+ ...

+ (−1)K+1−k [(kδ −K)aK,k + δaK,k−1] ykδ−(K+1)

+ ...

+ (−1)K+1−1+1 [(2δ −K)aK,2 + δaK,1] y2δ−(K+1)

+ (−1)K+1−1(δ −K)aK,1y
δ−(K+1)

)
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⇒ fZ(K+1)(z1, ..., zK+1) = exp(−yδ)
(

(−1)(K+1)−(K+1)aK+1,K+1y
(K+1)δ−(K+1)

+ (−1)(K+1)−KaK+1,Ky
Kδ−(K+1)

+ ...

+ (−1)(K+1)−kaK+1,ky
kδ−(K+1)

+ ...

+ (−1)(K+1)−2aK+1,2y
2δ−(K+1)

+ (−1)(K+1)−1aK+1,1y
δ−(K+1)

)

The right hand side is (H.4) for K + 1 variables and the result is shown.

H.3 Proof of Transformation Jacobian in (H.7)

We will show that

det (JK) =
(−1)K−1

δ
v
K
δ
−1

1 v3v
2
4v

3
5 · · · vK−2

K

The determinant of the Jacobian matrix for the transformation in (H.6) is
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d
et

(J
K

)
=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∂
z 1
∂
v
1

∂
z 1
∂
v
2

∂
z 1
∂
v
3

∂
z 1
∂
v
4

..
.

∂
z 1

∂
v
K
−
1

∂
z 1

∂
v
K

∂
z 2
∂
v
1

∂
z 2
∂
v
2

∂
z 2
∂
v
3

∂
z 2
∂
v
4

..
.

∂
z 2

∂
v
K
−
1

∂
z 2

∂
v
K

. . .
. . .

. . .
. . .

. .
.

. . .
. . .

∂
z K
−
1

∂
v
1

∂
z K
−
1

∂
v
2

∂
z K
−
1

∂
v
3

∂
z K
−
1

∂
v
4

..
.

∂
z K
−
1

∂
v
K
−
1

∂
z K
−
1

∂
v
K

∂
z K ∂
v
1

∂
z K ∂
v
2

∂
z K ∂
v
3

∂
z K ∂
v
4

..
.

∂
z K

∂
v
K
−
1

∂
z K
∂
v
K

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

d
et

(J
K

)
=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣1 δ
v

1 δ
−
1

1
v
2
v
3
..
.v
K

v
1 δ 1
v
3
..
.v
K

v
1 δ 1
v
2
v
4
..
.v
K

v
1 δ 1
v
2
v
3
v
5
..
.v
K

..
.

v
1 δ 1
v
2
..
.v
K
−
2
v
K

v
1 δ 1
v
2
..
.v
K
−
1

1 δ
v

1 δ
−
1

1
(1
−
v
2
)v

3
..
.v
K

−
v
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This is an upper triangular matrix so the determinant is the product of the diagonal entries. We

see a pattern where v3 is only in the first diagonal term, v4 is in the first two diagonal terms, v5 in

the first three, and so on until vK which is in K-2 terms. And −v
1
δ
1 in all K − 1 diagonal terms. So
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δ
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1
δ
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2
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3
5 . . . v
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3
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K

Which shows the result
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δ
v
K
δ
−1

1 v3v
2
4v

3
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K

H.4 Proof of Mixture Distribution for V1

The joint density of V1, ..., VK is
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=
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1 + ...+ (1− vK)v
1/δ
1 )

=
∣∣det (J(K)

)∣∣ gK(v
1/δ
1 (v2 · · · vK +−v2v3 · · · vK + v3 · · · vK + ...+ 1− vK))

=
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1 )

⇒ fV (v1, v2, ..., vK) =
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δ
v
K
δ
−1
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2
4v

3
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K · exp(−(v
1/δ
1 )δ)

(
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)
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This is (H.8).

We will show that fV1 in (H.9) (and repeated below) is a valid distribution function. Note that

V1 ≥ 0.

fV1(v) =
1

δΓ(K)
exp(−v1)

(
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)
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This needs to integrate to 1.

∫ ∞
0

fV1(v)dv =

∫ ∞
0

[ 1

δΓ(K)
exp(−v1)

(
aK,Kv

K−1
1

+ (−1)K−(K−1)aK,K−1v
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dv

⇒
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∫ ∞
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∫ ∞
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∫ ∞
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∫ ∞
0

v1 exp(−v1)dv
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∫ ∞
0

exp(−v1)v1dv
]

The integrands are kernels of Gamma densities Gamma(k, 1), k = K, ..., 1. Γ(k) denotes the

gamma function, i.e. Γ(k) =
∫∞

0
xk−1e−xdx. Note that Γ(k) = (k − 1)! if k is an integer.

⇒
∫ ∞
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fV1(v)dv =
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[
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⇒
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+ (−1)K−2 (2− 1)!

(K − 1)!
aK,2

+ (−1)K−1 (1− 1)!

(K − 1)!
aK,1

]
(H.11)

We will prove by induction that the sum on the RHS of (H.4) equals 1. Recall the definition of the

aK,k in (H.5).

For K = 1,

∫ ∞
0

fV1(v)dv =
1

δ

(−1)1−1(1− 1)!

(1− 1)!
a1,1

=
1

δ
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=
1

δ
δ

= 1

So it holds for K = 1.
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For K = 2,

∫ ∞
0

fV1(v)dv =
1

δ

[
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=
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And the integral equals 1 for K = 2.

For K = 3,

∫ ∞
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=
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2
(δ − 2)a2,1

]
=
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δ

2
a2,1 +
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2
a2,1 − a2,1

]
=

1

δ

[
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]
=
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δ

[
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It holds for K = 3.

254



Assume the integral of fV1(v)dv is 1 for arbitrary K. Meaning we are assuming that

∫ ∞
0

fV1(v)dv =
1

δ

[(K − 1)!

(K − 1)!
aK,K

+ (−1)K−(K−1) (K − 2)!
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(K − 1)!
aK,k + ...

+ (−1)K−2 (2− 1)!

(K − 1)!
aK,2
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(K − 1)!
aK,1

]
= 1

(H.12)

Consider the integral for K + 1.

∫ ∞
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(K + 1− 1)!
aK+1,k + ...
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]

⇒
∫ ∞
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(K + 1− 1)!
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]
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⇒
∫ ∞
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(K − 1)!
aK,2 + (−1)K−1δaK,1

+ (−1)K
1

K!
δaK,1 + (−1)K−1 1

(K − 1)!
aK,1

]

⇒
∫ ∞

0

fV1(v)dv =
1

δ

[
(−1)K−K

(K − 1)!

(K − 1)!
aK,K

+ (−1)K−(K−1) (K − 2)!

(K − 1)!
aK,K−1 + ...

+ (−1)K−k
(k − 1)!

(K − 1)!
aK,k + ...

+ (−1)K−2 (2− 1)!

(K − 1)!
aK,2

+ (−1)K−1 (1− 1)!

(K − 1)!
aK,1

]
=1 (by the induction hypothesis)

We have proved that
∫
fV1(v)dv = 1 for any K. Therefore fV1(v) is a valid density function ∀K.
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