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Abstract 

 

Construction robots continue to be increasingly deployed on construction sites to assist 

human workers in various tasks to improve safety, efficiency, and productivity. Due to the recent 

and ongoing growth in robot capabilities and functionalities, humans and robots are now able to 

work side-by-side and share workspaces. However, due to inherent safety and trust-related 

concerns, human-robot collaboration is subject to strict safety standards that require robot motion 

and forces to be sensitive to proximate human workers. In addition, construction robots are 

required to perform construction tasks in unstructured and cluttered environments. The tasks are 

quasi-repetitive, and robots need to handle unexpected circumstances arising from loose tolerances 

and discrepancies between as-designed and as-built work. It is therefore impractical to pre-

program construction robots or apply optimization methods to determine robot motion trajectories 

for the performance of typical construction work. 

This research first proposes a new taxonomy for human-robot collaboration on construction 

sites, which includes five levels: Pre-Programming, Adaptive Manipulation, Imitation Learning, 

Improvisatory Control, and Full Autonomy, and identifies the gaps existing in knowledge transfer 

between humans and assisting robots. In an attempt to address the identified gaps, this research 

focuses on three key studies: enabling construction robots to estimate their pose ubiquitously 

within the workspace (Pose Estimation), robots learning to perform construction tasks from human 

workers (Learning from Demonstration), and robots synchronizing their work plans with human 

collaborators in real-time (Digital Twin). 



xiii 

 

First, this dissertation investigates the use of cameras as a novel sensor system for 

estimating the pose of large-scale robotic manipulators relative to the job sites. A deep 

convolutional network human pose estimation algorithm was adapted and fused with sensor-based 

poses to provide real-time uninterrupted 6-DOF pose estimates of the manipulator’s components. 

The network was trained with image datasets collected from a robotic excavator in the laboratory 

and conventional excavators on construction sites. The proposed system yielded an uninterrupted 

and centimeter-level accuracy pose estimation system for articulated construction robots. 

Second, this dissertation investigated Robot Learning from Demonstration (LfD) methods 

to teach robots how to perform quasi-repetitive construction tasks, such as the ceiling tile 

installation process. LfD methods have the potential to be used in teaching robots specific tasks 

through human demonstration, such that the robots can then perform the same tasks under different 

conditions. A visual LfD and a trajectory LfD methods are developed to incorporate the context 

translation model, Reinforcement Learning method, and generalized cylinders with orientation 

approach to generate the control policy for the robot to perform the subsequent tasks. The evaluated 

results in the Gazebo robotics simulator confirm the promise and applicability of the LfD method 

in teaching robot apprentices to perform quasi-repetitive tasks on construction sites. 

Third, this dissertation explores a safe working environment for human workers and robots. 

Robot simulations in online Digital Twins can be used to extend designed construction models, 

such as BIM (Building Information Models), to the construction phase for real-time monitoring of 

robot motion planning and control. A bi-directional communication system was developed to 

bridge robot simulations and physical robots in construction and digital fabrication. Through 

empirical studies, the high accuracy of the pose synchronization between physical and virtual 

robots demonstrated the potential for ensuring safety during proximate human-robot co-work. 
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Introduction 

 

The construction industry is confronted with chronic problems of stagnant productivity and 

a shortage of skilled workers [1,2]. This is largely due to an aging and retiring workforce that has 

not been offset by an influx of younger workers, who are generally reluctant to enter the 

construction industry [2]. The reasons for this are two-fold. First, construction work involves the 

use of a variety of hand and power tools to perform repetitive basic tasks such as cutting, 

connecting, and spreading to complete a project [3]. Such construction tasks are often perceived 

to be dull, dirty, and dangerous (construction 3D [4]) and the cause of strain and long-term fatigue 

[5]. Second, the physical demands of construction work often cause serious occupational injuries, 

such as musculoskeletal disorders that are common among workers leading to early retirement [6], 

which further contributes to keeping new recruits away from the construction industry. It has thus 

been essential to explore new methods to relieve human workers from hazardous working 

conditions and reduce physical-demanding work in construction projects. 

Human-robot collaborative teams are broadly envisioned to be deployed on future 

construction sites to assist or relieve human workers from various quasi-repetitive construction 

tasks. The objective of applying automation and robotics in construction is to increase efficiency 

and productivity in construction projects, improve safety, prevent accidents, and reduce health 

issues from strenuous construction work. To overcome the technical barriers inherent due to the 

unstructured and cluttered nature of construction work, this research explores the prospect of 
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robots learning the knowledge of how to perform quasi-repetitive construction tasks from skilled 

human workers to enable robots as valuable collaborators and assistants on construction sites. 

Particularly, this research aims to develop construction robots that accurately locate themselves 

within their work environments (Pose Estimation), learn to perform construction tasks alongside 

human workers (Learning from Demonstration), and inform their work plans to human supervisors 

in real-time (Online Digital Twins). Figure 1.1 shows the overview of the dissertation. 

 

Figure 1.1 Overview of the Dissertation: Robot Localization and Pose Estimation, Robot 

Learning from Demonstration, and Robot Online Digital Twin 
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1.1 Importance of Research 

Automation and robotics have been introduced to the construction industry decades ago for 

assisting human workers with a variety of construction tasks [7]. The global market for 

construction robotics is estimated to grow from $22.7 million in 2018 to $226 million by 2025 

with corresponding shipments predicted to grow from 358 to 1,475 units by 2025 [8]. Different 

types of single-task construction robots have been developed over the years for specific 

construction tasks and deployed on factory-like construction sites to assist human workers with 

physically-demanding construction tasks [9]. However, the development of such robots has been 

limited, and they have not been broadly employed on actual construction sites due to the 

computational limitations of the hardware, the quality of the robot actuators, and more importantly 

the nature of the unstructured working environments [10–12]. 

Recent advances in hardware, software, and machine learning methods have progressed 

general development in robotics, which has also increased the performance of construction robots 

[13]. In addition, the new paradigm of collaborative robot teams and human-robot collaboration 

(cobot teams) has also been introduced and is envisioned to be deployed on future construction 

sites to assist or relieve human workers from hazardous, dangerous, and repetitive construction 

work [14]. By introducing human-robot collaborative teams on construction sites, human workers 

could potentially transition their current duties to the performance of high-level planning and 

cognitive work as cobot supervisors while benefiting from the assistance of the robots in repetitive 

physical tasks such as heavy-lifting and precise motion control of tools. 

A robot arm is typically used by the construction sector [7] due to the nature of construction 

assembly tasks. The robot arm can provide higher degrees of freedom (up to six degrees of freedom 

when stationary) and more flexibility to adapt to the complexity of construction. In addition, the 
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high precision of the robot arm can help minimize errors in construction tasks caused by traditional 

human-operated equipment. For example, the holes drilled by an imprecise drilling machine often 

result in loose tolerances in the performed work. Robot arms typically have higher precision but 

require calibration using vision-based method [15], laser-based method [16], or mechanism-based 

method [17] to ensure its performance. Examples of other robot arm applications from the 

literature include maintenance and cleaning tasks [18–20], component assembly tasks [10,11,21–

24], or additive manufacturing and fabrication [25–27]. 

When applying robots for complicated or multi-step construction tasks, it is challenging to 

pre-program or automatically plan the trajectory due to the discrepancy between the design model 

and actual workpieces [11]. Even with the feedback from sensors, a human worker still needs to 

assist the robot with additional guidance. Stumm et al. [28] developed a new human-robot 

collaboration strategy for on-site robotic assembly, called haptic programming. The robot performs 

the assembly task by pre-programmed trajectory, and the human worker adapts the plan based on 

the environmental and material conditions. The robot utilizes haptic technology to record human 

performance and applies it to future assembly tasks. 

This concept can be further extended to robot learning from human performance or 

demonstration, which is similar to the apprenticeship learning modality already prevalent in the 

construction industry for human-to-human training [29]. The imitation learning (IL) method or 

Learning from Demonstration (LfD) method utilizes the demonstration data from human experts 

to guide the robot, while the robot tries to mimic the human behavior and explores the environment 

to find the optimal policy [30]. The robot first extracts and learns the knowledge from the 

demonstration data and then applies it to the encountered situation. The human workers switch 
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their role to that of a supervisor of the robot, where they first demonstrate the task several times to 

the robot and then monitor the robot’s performance during the execution. 

LfD methods offer a promising opportunity to deploy robots on construction sites. The 

traditional robot programming methods require an exhaustive specification of robot actions by 

programmers and are difficult to adapt to unknown geometry in the workplace, whereas the IL 

methods require task-specific experts for demonstration [31,32]. Thus, in the construction industry, 

instead of replacing any human workers on-site, the skilled human workers have to continually 

train construction robots and work with them to supervise the process. LfD research has been one 

of the current trends in the robotics community. As indicated by Ravichandar et al. [31], the 

number of publications in the LfD area has been consistently growing in the past decade. 

When establishing a human-robot collaboration team on construction sites, three key 

aspects have to be considered. First, robots have to continuously locate themselves on highly 

occluded construction sites in real-time without interruption. Second, human workers have to 

demonstrate construction tasks to robots and supervise the construction process to ensure the 

quality of work. Additional improvisation from human supervisors must be provided if robots 

cannot complete a task successfully. Finally, human workers have to be aware of the ongoing and 

future changes in the environment, including the robot collaborator’s work plan, to ensure the 

safety of human-robot collaboration on construction sites. Therefore, this research explores three 

key aspects: robot pose estimation, robot Learning from Demonstration, and robot online Digital 

Twin, which are the foundations and critical steps to enable human-robot collaboration teams in 

the construction industry in the near future. 
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1.2 Literature Review and Taxonomy 

Construction robots are used on construction sites to assist with heavy-duty tasks [33] or 

navigate to hazardous or narrow locations to perform construction work [34]. Each robot has its 

specific designed functionality and typically performs a single-task [9], such as bricklaying 

[10,35], welding [36], or beam assembly [37–39]. To analyze the existing research on construction 

robots and explore the challenges and knowledge gaps for future research, a critical review of the 

relevant state of the art research in the construction discipline and categorizing prior and ongoing 

work into a logical and encompassing taxonomy are necessary. 

Everett and Slocum [3] first proposed a taxonomy of construction field operations 

specifically for automation and robotics research. This taxonomy categorized the construction 

operation to the level of the basic task, such as “connect,” “cover,” “cut,” and “dig.” Single-task 

construction robots that existed at the same time or were developed later mapped well to a specific 

basic task in the taxonomy. For instance, robots developed for screwing/bolting identified best 

with the “connect” basic task [38,39]. Saidi et al. [12] further grouped these operations into three 

types of functional operators: materials handling, materials shaping, and structural joining. In 

addition, they also classified construction robots into three general categories based on the level 

of onboard intelligence: tele-operated systems, programmable construction machines, and 

intelligent systems [40]. 

On the other hand, Tan et al. [41] proposed a framework for formulating the robot-inclusive 

environments by measuring the inclusiveness of environments to robots, developing a taxonomy 

of robot-environment interaction, and identifying design criteria of autonomous robots in indoor 

and outdoor environments. Bock [42] identified three modules of construction robots with different 

tasks in interior assembly, i.e., transportation, drilling and mounting, and assembly, and then 
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proposed a procedure of applying these three robot modules and evaluated it in an office building 

construction simulation.  

Although the existing taxonomies of construction robotics have reviewed prior studies and 

categorized them, they have not considered the effect of the human-in-the-loop collaboration. This 

dissertation bridges this critical gap and reviews the existing construction automation and robotics 

studies and applications in the context of a new proposed taxonomy that is based on the level of 

the human-robot interaction in the performance of work. 

1.2.1 Background on Human-Robot Collaboration 

Human-robot collaboration (HRC) is defined as human(s) and robot(s) in contact with each 

other to establish a dynamic system for accomplishing tasks in the environment [43]. The goal of 

HRC is to ease the workload of humans in performing repetitive and physical-demanding tasks 

[44]. In the manufacturing industry, humans and robots work in the shared work-space performing 

manufacturing tasks, such as welding [45], transporting [46], and assembling [44,47,48]. In the 

domestic or healthcare facility, robots are utilized to assist humans with various daily tasks such 

as pick up objects [49] or rehabilitation such as walking assistants [50], or arm reinforcement [51]. 

These applications are typically deployed in structured environments with dynamic objects and 

uncertainties [43], such as industrial assembly lines with moving workers. 

The level of robot autonomy (LoRA) in HRC proposed by Beer et al. [52] categorizes the 

HRC into ten levels based on the role that the human and robot plays in the robot primitive tasks, 

i.e., sensing, planning, and acting. In the lower level of the LoRA, the human performs most 

aspects of the tasks with some assistance from the robot. For example, the robot utilizes sensing 

feedback to avoid obstacles during the tele-operation. The human determines the plan of a task 

and programs the robot to execute it. In the middle of the LoRA, the human and the robot contribute 
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to a task equally. Both humans and robots come up with the task plan, and then the human decides 

for the robot to proceed with the selected plan. 

In the higher level of LoRA, the robot performs most aspects of a task with some human 

interventions. For example, the robot first plans the task and executes it. If the robot encounters 

difficulty, the human will intercede with a new plan for the robot. The human can also give an 

abstract high-level goal to the robot. Finally, in the highest level of the LoRA, the robot performs 

all aspects of a task without any intervention or assistance from the human. Based on these 

generalized ten levels of LoRA, the following five categories in taxonomy are proposed to organize 

collaborative human-robot work in construction: Pre-Programming, Adaptive Manipulation, 

Imitation Learning, Improvisatory Control, and Full Autonomy. 

1.2.2 Taxonomy of Human-Robot Collaboration in Construction Work 

Due to the complexity of construction operations and the need for robots to perform quasi-

repetitive tasks, the interaction relationship in human-robot construction teams can be defined as 

multiplex. It is thus difficult and adds little insight to categorize human-robot interaction in 

construction at the level of detail in LoRA proposed by Beer et al. [52]. Therefore, a condensed 

taxonomy of five distinct groups is proposed: Pre-Programming, Adaptive Manipulation, Imitation 

Learning, Improvisatory Control, and Full Autonomy, to adequately classify construction work 

performed by human-robot teams. Figure 1.2 illustrates the taxonomy of construction human-robot 

collaboration depicting the levels of human effort and robot autonomy. 
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Figure 1.2 Taxonomy of Human-Robot Collaboration in Construction with the Level of Robot 

Autonomy and Human Effort. 

The relative size of the humans and robots in the figure represents the level of effort and 

autonomy during the process. In the Pre-Programming category, the human undertakes the 

majority of the effort to plan the work, and the robot only executes the plan, which maps to the 

Tele-Operation group in the LoRA described in Beer et al. [52]. In the Adaptive Manipulation 

category, the human plans the work while the robot adapts the plan based on the encountered 

geometry, representing a combination of the Assisted Tele-Operation group and Batch Processing 

group in the LoRA. For example, the tile placement robot, bricklaying robot, or 3D printing robot 

(contour crafting) [53–55] are programmed with the robot code generated by the designed pattern 

and executed on-site [35,56]. 

Sensors such as laser profiler [11,21], force sensor [23], or camera [10] can help adjust the 

pre-programmed work plan or remote control command from the human worker to resolve the 

issue of the minor design-built discrepancy. However, if the quality of the robot-built component 
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is unacceptable, the human worker has to demolish the component and reconstruct it manually. 

The unforeseen situations such as arbitrary obstruction or significant discrepancy due to loose 

tolerances on construction sites will prevent the robot from accomplishing the task. 

In the Imitation Learning category, the human worker plans the work, and the robot learns 

the knowledge of the work and executes it, which is categorized under the Decision Support group 

in the LoRA. In the Improvisatory Control category, the robot plans and executes the work while 

the human monitors the work and improvises if necessary. The Shared Control with Human 

Initiative group, Shared Control with Robot Initiative group, Executive Control group, and 

Supervisory Control group in the LoRA are combined to the proposed Improvisatory Control 

category. 

In the Full Autonomy category, the robot performs every aspect of the work without 

intervention from the human, which corresponds to the Full autonomy group in the LoRA. For 

example, the drilling robot that is utilized for landslide consolidation can autonomously operate 

supervised by human workers remotely and switch to tele-operation mode when necessary [57]. 

Autonomous navigation robots are used in built environments or construction sites for 

maintenance and construction applications without human control or intervention [58,59], 

especially for the indoor or GPS-denied environment [60]. However, these robots are unable to 

perform complex construction tasks, which require human worker guidance such as drywall 

installation or ceiling tile installation process. In addition, when the robot encounters an 

unexpected or unforeseen situation, the human worker can intervene in the process and control the 

robot to complete the task. However, the robot will not absorb the concept of how human workers 

resolve the situation, and next time the robot still requires assistance from human workers. 
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A vector can represent the interplay between robot autonomy and the level of human effort 

to indicate the involved distribution between the human worker and the robot in the construction 

human-robot collaborative team, as shown in Figure 1.3. For the Pre-Programming method, the 

human programs the trajectory for the robot or tele-operates it, and the robot is only responsible 

for the acting job. Therefore, robotic autonomy is the lowest, and human effort is the highest in 

the taxonomy. For the Adaptive Manipulation method, the human still programs or tele-operates 

the robot, but the robot adapts the work plan through the use of sensor data. In addition to the 

acting, the robot is involved in the sensing aspect of the process. Thus, the robot has a higher level 

of autonomy than the Pre-Programming method. 

 

Figure 1.3 Vector Representation of Involvement Distributions Between The Human and the 

Robot in Collaborative Human-Robot Construction. 
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For the Imitation Learning method, the robot learns the skill from humans and generates 

the work plan to complete the task, wherein the human and the robot are equally involved in the 

process. For the Improvisatory Control method, the robot first explores the possible solution and 

determines the work plan, then the human supervises the work plan and improvises if necessary. 

Such collaboration requires a higher level of robot autonomy and lower human effort in the 

process. For the Full Autonomy method, the robot finds the work plan without support from 

humans. Thus, the level of robot autonomy is the highest in the taxonomy, and no human effort is 

involved. 

1.2.3 Knowledge Gaps 

Based on the categorization and the review of the literature, this research found a critical 

gap in the transfer of knowledge between human workers and robots in existing construction co-

robots. The transfer of knowledge can enable robots to learn tasks from humans directly and 

resolve problems that manifest in typical quasi-repetitive construction tasks, which cannot be 

easily represented in or solved by optimization approaches. For example, the ceiling tile 

installation process requires complex manipulation trajectories to pass through the grid area while 

avoiding collision above the suspended grids. Such a process can be easily performed by 

experienced human workers who can transfer the knowledge to robots through Learning from 

Demonstration (LfD) or imitation learning (IL) methods. 

The prospect of robots learning how to perform quasi-repetitive construction tasks from 

human workers offers significant promise in overcoming the described challenges, and in turn 

facilitating the deployment of HRC on real construction sites. Such a learning structure parallels 

the vocational education and training model prevalent in today’s construction industry, wherein 

novice construction human workers (e.g., bricklayers, carpenters) develop their skills and 
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credentials by completing apprenticeships under the tutelage of human experts who provide 

technical instruction and on-the-job learning [29]. Skilled workers have thus been training and 

educating newer recruits to produce qualified and productive employees for future construction 

jobs. When training a human worker to perform a construction task in an apprenticeship program, 

the human recruit will learn the task by observing demonstrations from experts, absorbing the 

practical knowledge and practicing the task. Similarly, a robot can learn a task by observing 

demonstrations from human experts. 

1.3 Research Objectives 

The objectives of this research include developing an ubiquitous pose estimation system 

for interaction between robots and the environment, Learning from Demonstration methods for 

interaction between humans and robots, and an online Digital Twin for interaction between 

humans and the environment. The detailed objectives are listed as follows: 

• Investigate a vision-based marker-less 2D and 3D pose estimation approach for large-

scale articulated construction robots. 

o Design a fast dataset collection approach for 3D vision-based articulated 

construction robot pose estimation. 

o Develop a DNN-based sensor fusion uninterrupted pose estimation system 

which combines the vision- and sensor-based pose estimation. 

• Explore the application of the Learning from Demonstration (LfD) method for teaching 

quasi-repetitive construction tasks to robots. 

o Develop a visual demonstration method and a trajectory demonstration method 

for construction tasks involving manipulation. 
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o Evaluate the proposed visual and trajectory-based LfD methods in a virtual 

environment with a robot arm. 

• Develop an online, bi-directional, process-level Digital Twin system to serve as a real-

time communication bridge between human workers and robots. 

o Devise a bi-directional communication mechanism and a pose checking 

algorithm (PCA) to ensure the synchronization between the physical work 

environment and the robot’s virtual representation. 

1.4 Dissertation Outline 

This dissertation is a compilation of peer-reviewed scientific manuscripts, which describe 

the research on construction robot pose estimation, learning from human demonstration, and online 

Digital Twin. The remainder of the dissertation is organized as follows. 

Chapter 2 introduces the development of a vision-based marker-less pose estimation 

system and a fusion-based pose estimation system for articulated construction robots. A fast image 

dataset collection approach is also described in this chapter. The proposed pose estimation system 

is evaluated with the image dataset and compares the results with sensor-based pose estimation 

system and ground truth data. 

Chapter 3 presents the development of a visual Learning from Demonstration method and 

a trajectory Learning from Demonstration method for teaching robots quasi-repetitive construction 

tasks. The ceiling tile installation process is selected as the target construction task. The two 

proposed LfD methods are evaluated by having the robot install tiles in the ROS Gazebo simulator 

environment and comparison of the success rate of both methods. 

Chapter 4 describes the development of an online process-level Digital Twin system for 

construction and digital fabrication robots. The bi-directional communication mechanism is 
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developed to ensure state synchronization between the virtual and the physical robot. The proposed 

Digital Twin is evaluated by comparing the joint angles and end-effector coordinates of the virtual 

and physical robot. 

Chapter 5 summarizes the dissertation and discusses the significance and contribution of 

the research. Finally, future research directions are also articulated. 
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Ubiquitous Pose Estimation for Large-Scale Articulated Construction Robots 

 

2.1 Introduction 

Due to the hazardous, unstructured, and dynamic working environment and labor-intensive 

nature, the construction industry has a higher rate of workplace fatalities and injuries compared to 

other industries [37,61]. According to reports from the U.S. Bureau of Labor Statistics and CPWR, 

on average 53% of the fatal accidents that happen on construction sites are either struck by vehicle 

or equipment overturns and collisions between 2003 and 2010 [62], which costs approximately 

$13 billion per year in the U.S. [63]. On a typical construction site, workers and heavy equipment 

have to work together closely, which increases the potential safety risks [64]. 

Blind spots around the equipment are the primary cause of struck-by accidents [65]. When 

workers need to interact with the equipment on job sites, the equipment operator sometimes cannot 

locate all workers nearby, and the workers also cannot monitor the equipment components clearly, 

especially for articulated equipment such as excavators that usually work around trenches or earth 

mounds that serve as potential occlusions leading to the increased possibility of blind spots. To 

prevent these types of accidents, manual jobsite safety observations and inspections are required 

on construction sites [66]. However, safety personnel has to pay attention to entire job sites 

continuously, which is time-consuming and incurs additional costs [67]. 
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Underground utility strike incidents are another category of accidents related to the 

operation of articulated construction robots such as excavators [68,69]. According to the Common 

Ground Alliance (CGA) 2016 Damage Information Reporting Tool (DIRT) report, approximately 

379,000 underground utility damage incidents were reported in 2016 in the U.S., which was an 

increase of 20% from 2015 and cost an additional $1.5 billion [70]. One key reason for the high 

incident rate is the location uncertainty of the underground utilities [71]. Many of the existing 

buried utilities are abandoned or undocumented, and locating hidden utilities is the first step to 

address this issue [72]. The underground utility record could help workers and excavator operators 

avoid potential utility locations. However, the operators sometimes cannot locate the bucket or 

utilities directly from the cabin. The indirect guidance from workers near the bucket does little to 

reduce the risks of utility strikes. 

Thus, utilizing sensors to estimate the excavator pose and providing real-time information 

to workers and operators has emerged as a feasible method and has been studied in developing on-

site articulated construction robot pose estimation systems [71,73–75], and enhancing the on-site 

information with Augmented Reality [76–78]. Furthermore, the pose estimation system also 

provides the potential application of productivity analysis [79]. The existing productivity analysis 

methods only tracked the construction equipment or part of the equipment by sensors or computer 

vision method [80–82]. For example, the part of the excavator and the haul truck were identified 

and tracked during the dirt-loading cycle and utilized to estimate the productivity [80]. Motion 

analysis or action recognition methods are required to classify similar excavator activities such as 

digging and dumping to enhance productivity analysis [83]. This can be achieved by providing the 

detailed pose of the excavator for identifying the action [84]. 
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The prospect of human-robot collaboration (HRC) on construction sites further heightens 

these proximity safety concerns [85]. Unlike HRC in typical manufacturing settings, the robot on 

the construction site has to maneuver around the unstructured environment to their following task 

location. The workplace of the robot changes dynamically based on their location, which is a 

challenge for HRC safety. According to standards ISO 10218-1, ISO 10218-2, and ISO/TS 15066, 

the safety of the HRC must be adhered to either by stopping the robot before human contact or be 

controlled by regulating force and speed limits [86]. 

The recently developed dynamic safety system utilized human detection sensors and 

optical sensors to adjust the robot speed according to the detected human action and the protective 

distance [87]. However, the protective distance, or safety zone, has to be very large since the 

optical sensors only identify the difference between the current frame and the previous frame 

instead of tracking the robot’s exact pose, which causes the poor utilization of space [86]. On the 

other hand, the robot’s onboard sensors are often failed due to magnetic disturbance by artifacts 

(IMU) or signal blockage in an urban canyon (GPS) [88]. In addition, the articulated construction 

robot has arbitrary and expansive movement around the unstructured construction site and is 

difficult to make the construction site a structured environment [89]. This highlights the need for 

developing an effective on-site pose estimation system for articulated construction robots and 

human workers. 

The experimental testbed of the construction articulated robot in this research was an 

excavator since it is ubiquitous equipment on jobsite and has a large blind spot [65]. The pose of 

the excavator can be described as the angle between each component (boom, stick, and bucket) 

and the six-degree-of-freedom (6 DOF) coordinates of each joint (cabin-boom, boom-stick, stick-

bucket, bucket end-effector). Figure 2.1 depicts a 2D pose estimation system. 
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Figure 2.1 Illustration of the 2D Pose Estimation System on a Video Frame for Both Articulated 

Construction Robot and Human Workers. 

The pose of the construction equipment, such as an excavator, can be described as the angle 

between each component (boom, stick, and bucket) and the six-degree-of-freedom (6 DOF) 

coordinates of each joint (cabin-boom, boom-stick, stick-bucket, bucket end-effector). In the 2D 

case, the pose is defined as the pixel-wise coordinate and angle (𝑋, 𝑌, 𝜃), whereas in the 3D case, 

the pose is defined as the world coordinate and roll-pitch-yaw (𝑋, 𝑌, 𝑍, 𝜙, 𝜃, 𝜓) . Figure 2.2 

illustrates the excavator side view with the kinematic chain and the corresponding parameters. The 

pose of each excavator joint P can be calculated using the angle between each component θ and 

effective lengths of each component L by Forward Kinematics [90] or directly estimated by sensors 
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or vision [71]. Therefore, determining the location of each joint and the angle between each link 

is the primary goal of articulated construction robot pose estimation. 

 

Figure 2.2 Definition of the Excavator Pose. 

The remainder of this chapter is organized as follows. First, the existing pose estimation 

methods are reviewed. Second, a deep neural network pose estimation method for articulated 

construction robots is introduced. 2D, 3D, and sensor fusion version baselines are established and 

evaluated. Third, the performance of the proposed pose estimation method is investigated via an 

experiment and compared with the IMU-based pose estimation method and ground truth data. 

Lastly, an articulated construction robot pose estimation dataset is collected and evaluated. 
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2.2 Related Work 

This section reviews the existing pose estimation methods, including sensor-based 

methods, vision-based marker-based methods, and vision-based marker-less methods, and their 

applications in the construction industry based on the performance. 

2.2.1 Existing Pose Estimation Methods 

In current practice, two types of pose estimation methods are mainly used on construction 

equipment or human workers. These are non-visual sensor-based and vision-based pose estimation 

methods. For non-visual sensor-based pose estimation methods, sensors such as Inertial 

Measurement Unit (IMU), Global Positioning System (GPS), Wireless Local Area Network 

(WLAN), Radio Frequency Identification (RFID), and Ultra-Wide Band (UWB) are mainly 

deployed on construction equipment and construction sites. IMU sensors need to be mounted on 

excavator links to measure the angle [68,91–94], which suffers from drift issues over time and 

magnetic interference [95]. GPS is effective for outdoor use only and also suffers from signal 

blockage in an urban canyon [88], which is not suitable for some indoor or urban construction 

sites. 

WLAN systems require a significant amount of effort for calibration [96]. The accuracy of 

the WLAN estimation depends on the distribution of the access point [97]. RFID and UWB 

methods both require sufficient preinstalled tags and readers on equipment and infrastructure [98–

101]. They generally suffer from missing data issues [75] and are inadequate for pose estimation 

[102]. Besides, most of these methods cannot provide orientation information directly, except for 

IMU sensors, and are thus not suitable for construction scenarios. 
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On the other hand, vision-based pose estimation methods are capable of analyzing position 

information as well as orientation information directly from input data, such as videos or point 

clouds [103]. These methods generally recognize construction equipment on-site [80,104–106], 

then estimate their six-degrees-of-freedom (6 DOF) pose [74,107,108], and can be categorized into 

two different groups: marker-based and marker-less pose estimation methods. The marker-based 

pose estimation method recognizes all the markers mounted on equipment and estimates the pose 

by their geometric relations or marker network [71,109,110], or projects infrared LEDs and 

analyzes the pattern to determine the pose [111,112]. In contrast, the marker-less pose estimation 

method directly extracts image features and estimates the pose from them [74,107,108]. The 

marker-based method has been extensively applied in indoor localization and facility management 

[10,113–115]. Similar to the sensor-based pose estimation method, they also require pre-installed 

markers on equipment and environment. 

In comparison to the marker-based method, the marker-less pose estimation method only 

requires an on-site camera system, which is common on typical construction sites today, or utilizes 

RGB-D cameras [116–119]. Feature descriptor based is the first type of marker-less pose 

estimation method, such as Histograms of Oriented Gradient (HOG) [80], 3D principal axes 

descriptor (PAD) [104], Iterative Closest Point (ICP) [11], or Viewpoint Feature Histogram (VFH) 

[107]. On the other hand, the recently emerging Convolutional Neural Networks (CNN) is another 

type of pose estimation method [120], which has improved performance (accuracy and speed) in 

comparison with all other vision-based methods, especially for human pose estimation. The 

majority of the human pose estimation methods are 2D-based methods [121,122], which estimate 

the human pose in 2D pixel-wise coordinates, as shown in Figure 2.1. Existing human pose 

estimation can be categorized as detection-based and repression-based [123]. The detection-based 
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methods utilized a heat-map to predict the joint location [124], whereas the regression-based 

methods utilized a nonlinear function to compute the joint coordinates directly [125]. 

The stacked hourglass network method proposed by Newell et al. [126] built the foundation 

of the state-of-the-art 2D human pose estimation method. Generative Adversarial Networks 

(GAN) [127], Pyramid Residual Module (PRM) [128], Conditional Random Field (CRF) [129] 

were applied to the stacked hourglass network to improve the performance. Besides, several 

existing 3D human pose estimation methods adopted the stacked hourglass network with coarse-

to-fine volumetric architecture [130] or weakly-supervised approach [131]. The existing pose 

estimation methods were mainly focused on the 2D pose due to the lack of 3D ground truth posture 

data [132]. For human pose data collection, the motion capture system is primarily used to obtain 

the ground truth data of the human skeleton in an indoor environment [133], which is difficult to 

employ for construction equipment in an outdoor environment. 

2.2.2 Application of Pose Estimation Methods 

The existing pose estimation methods used in construction have different target 

applications. The accuracy and the specific shortcomings of any pose estimation method affect the 

method selected for each specific construction application. Table 2.1 lists the accuracy and the 

limitations of the existing pose estimation methods. For the 3D markerless vision-based pose 

estimation method, the accuracy can be achieved at 1 m. However, the largest distance of the target 

equipment from the camera is 50 m; otherwise, the accuracy drops dramatically [74]. For the 3D 

marker-based vision-based pose estimation method, the accuracy can be achieved at 2 cm when 

the distance between camera and bucket teeth is under 6.1 m [71]. The camera occlusion is the 

main drawback of the marker-based method since the markers have to be visible in the camera 

view at all times in order to estimate the pose [71]. 
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Table 2.1 Comparison of the Existing Pose Estimation Methods by Accuracy and Limitations. 

 
3D markerless 

vision-based [74] 

3D marker-based 

vision-based [71] 
Sensor-based [92] 

2D vision-based 

[108] 

Accuracy 1 m 2 cm 5 cm 10° 

Disadvantage Distance < 50 m Camera occlusion Data missing 
No depth data 

and 3D pose 

 

For the sensor-based pose estimation method, the accuracy can be achieved at 5 cm when 

testing on a real excavator arm with IMU sensors [92] but could be improved depending on the 

type of sensor used. In addition, data missing or signal block is the major issue of the sensor-based 

method [75,92]. Finally, for the 2D vision-based pose estimation method, the angular accuracy can 

be achieved at 10° between the excavator components, which results in 122 cm vertical 

displacement when the reaching length of the excavator boom is 7 m [108]. However, this type of 

method can only provide 2D pixel-wise location or angle in each image and requires extra post-

processing to acquire the depth data or 3D pose [108]. 

Pose estimation methods have been applied on construction sites to address safety and 

quality-related issues. Table 2.2 compares the different pose estimation-related construction 

applications comparing their acceptable location uncertainty and the methods currently used. The 

first application is preventing accidental utility strikes during excavation, which has a 2.5 cm 

acceptable location uncertainty [71]. The sensor-based method [75,92] and the 3D marker-based 

vision-based method [71] are two methods used for such applications. The second application is 

grade control, which also has a 2.5 cm acceptable location uncertainty [71]. Several sensor-based 

grade control commercial products have claimed that their accuracy can approach 1 mm [134,135]. 

The above two applications can tolerate relatively low uncertainty in pose estimates due to their 

precise control features.  
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Table 2.2 Comparison of Equipment Pose Estimation Applications in the Construction Industry 

by Location Uncertainty and Corresponding Methods. 

 
Preventing 

utility strikes 
Grade control 

Object 

detection and 

tracking 

Proximity 

detection 

Autonomous 

excavation 

Location 

uncertainty 
2.5 cm [71] 2.5 cm [71] < 1 m [136] < 0.7 m [137] 4 cm [138] 

Methods 

Sensor 

[75,92] 

3D vision 

[71] 

Sensor 

[134,135] 

Sensor [136] 

2D vision 

[73,139] 

Sensor 

[98,137] 

2D vision 

[140] 

Sensor 

[138,141] 

3D vision 

[74] 

 

The third application is object detection and tracking. The object detection and tracking 

methods have demonstrated a location uncertainty of less than 1 m [136], and sensor-based 

methods and 2D vision methods are mainly utilized in this application [73,139]. The fourth 

application is proximity detection, in which the location uncertainty is shown to be under 0.7 m 

[137]. Similar to object detection and tracking, the sensor-based method [98,137] and the 2D vision 

method [140] are used in proximity detection applications. Instead of the high accuracy, data 

consistency is more important for these two types of applications. Finally, the fifth application is 

autonomous excavation, and the acceptable location uncertainty is 4 cm [138]. The sensor-based 

method [138,141] and the 3D vision-based method [74] are applied. 

2.3 Research Goal and Contribution 

This research first proposes a vision-based marker-less pose estimation system for 

articulated construction robots, which can distinguish robot joints and estimate their poses in 

images or video frames. The excavator is used as the experimental testbed. This system is built on 

a state-of-the-art human pose estimation deep neural network called the stacked hourglass network 

[126,142] and trained on an excavator image dataset collected from a factory environment with a 

robotic manipulator. The network is adapted and modified for the excavator skeleton. Both 2D and 
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3D versions of the system are built and evaluated in order to characterize the location uncertainty 

requirement illustrated in Table 2.2.The performance of the proposed system is validated based on 

the dataset annotation and the 3D ground truth data and compared with the sensor-based pose 

estimation method (IMU sensors). 

Furthermore, a DNN-based sensor fusion pose estimation system is proposed, which 

combines the vision pose and the sensor pose data (IMU sensors) to obtain an uninterrupted and 

high accurate 3D pose estimation system. The proposed DNN-based sensor fusion system is 

compared with the Extended Kalman filter methods [143,144], pure 3D vision-based method, 

sensor-based method, and ground truth data. Finally, a fast dataset collection approach for 

articulated construction robot pose estimation is also developed and described to overcome the 

lack of 3D ground data on construction sites. 

2.4 Vision-based Marker-less Pose Estimation 

This section first discusses the development of the 2D pose estimation system. Then, the 

system is extended to the 3D pose estimation. Third, the sensor-based pose estimation system is 

developed. Finally, the sensor fusion pose estimation system is introduced. 

2.4.1 2D Pose Estimation System 

The proposed vision-based marker-less 2D pose estimation system is developed based on 

a state-of-the-art human pose estimation algorithm, namely the stacked hourglass network by 

Newell et al. [126,142]. This network scales the training images into different resolutions and 

captures features, and then combines the information to predict the pose. Compared to the 

complicated human pose, the construction equipment pose is relatively simpler and thus requires 

less information across different image resolutions. 
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Unlike the complicated human skeleton, the excavator pose only requires identifying three 

components: the bucket, stick, boom, and corresponding joints. Therefore, the complexity of the 

network needed is lower than the original network. Two convolutional layers followed by a max-

pooling layer are first applied to the training images, which shrinks the images down to the size of 

64 pixels. Then three subsequent convolutional layers upscale the images to the size of 256 pixels 

before the hourglass module. Finally, four hourglass modules, output prediction modules, and 

residual link modules are used in the network. 

According to Newell et al. [126], eight hourglass modules are used for human pose 

estimation. The reason for using four hourglass modules for the excavator pose estimation is that 

the excavator pose is relatively simpler than the human and thus requires less information across 

different image resolutions. All the convolutional layers are followed by the ReLu activation 

function, with stride one except the first convolutional layer (Conv1 layer) with stride two, and 

with batch normalization except the convolutional layers in the output prediction module. Figure 

2.3 shows the detailed network structure. 

 

Figure 2.3 Vision-Based Marker-Less 2D Pose Estimation Network Structure [126]. 
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The hourglass modules are the main components that collect features across the different 

resolutions of the images. Figure 2.4 shows the network structure of the hourglass module. The 

input passes into two parallel routes. In the first route, only one convolutional layer is applied to 

upscale the input to the size of 256 pixels. In the second route, one max pooling layer followed by 

three convolutional layers are applied to downscale the input to the size of 384 pixels, then resized 

to the size of 256 pixels, as the first route result. Finally, two route results are added together 

through elementwise summation to generate the output. This can preserve the global features and 

capture the local features as well. 

 

Figure 2.4 Hourglass Module Network Structure. 

The output prediction module and residual link module are applied after the hourglass 

module. Two convolutional layers are used in the output prediction module to generate the heat-

map of the possibility distribution of the location of each joint. Figure 2.5 shows the concept of 

the prediction heat-map. Each circle in the image represents the highest probability of the 

corresponding joint location. The final layer is a one-by-one convolutional layer, which aims to 
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calculate the possibility across the depth of the output of the previous layer. On the other hand, the 

residual link module combines the output of the prior hourglass and the output prediction module 

to generate the input for the next hourglass. The repeated hourglass and residual link modules can 

preserve the spatial location and relation of each feature and apply to the final prediction step. 

 

Figure 2.5 The Concept of the Prediction Heat-Map Generated by the Output Prediction Module. 

2.4.2 3D Pose Estimation System 

The proposed vision-based marker-less 3D pose estimation system is adapted and modified 

from a 3D human pose estimation baseline network [132]. This network uses the 2D pose 

estimation result, such as the stacked hourglass network, to predict and reconstruct the 3D pose. 

This can expedite the estimation process in order to accomplish the real-time pose estimation. 

The objective of the baseline network is to predict and reconstruct the 3D pose of the 

articulated equipment based on the input 2D pose data. The 2D pose data from the previous vision-

based marker-less 2D pose estimation result is passed to two subsequent linear layers, which are 
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followed by the ReLu activation function and the 0.5 dropout. The batch normalization is also 

applied to the linear layer output, which can increase the performance of the network. Next, the 

residual link module combines the output of the linear layer and the input 2D pose data to generate 

the predicted 3D pose, similar to the 2D pose estimation network. The entire process is repeated 

twice to generate a higher accuracy of the prediction and prevent overfitting. Based on the 

experiment results from [132], the best performance of the network can be achieved by repeating 

the process twice, and it will saturate after repeating the process four times due to overfitting the 

network. Figure 2.6 shows the 3D pose estimation network structure. 

 

Figure 2.6 Vision-Based Marker-Less 3D Pose Estimation Network Structure. 

2.4.3 Sensor Fusion Pose Estimation System 

Occlusion is the primary issue of the vision-based method, especially on highly occluded 

construction sites. The excavators are usually blocked by trucks or soil when digging. Increasing 

the number and variety of training datasets has the potential to address this issue [145]. In addition, 

with the help of multiple cameras, the occlusion can be reduced and increases the accuracy of the 

pose estimation [109]. On the other hand, the sensor-based pose estimation methods can resolve 

the occlusion issues but suffer from data missing, drift, magnetic interference, or signal blockage 

issues [75,88,90,95]. By combining the advantage of the vision-based and sensor-based method, 
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the pose can be tracked uninterruptedly with high accuracy, i.e., sensor fusion pose estimation 

[146,147]. 

First, the sensor-based pose estimation is developed. Four IMU sensors are deployed to 

measure the angular change of the robot joints, as shown in Figure 2.7. These sensors are placed 

on the axis of each joint so that they can measure the correct angle when the robot changed its 

pose. The 3D pose of each joint can be calculated by Forward Kinematics. Since the exact location 

of a joint requires location sensors such as GPS, which are not available in the system, the first 

joint (A1) is aligned with the ground truth A1 joint location, and then the other joints are calculated 

relative to the first joint. The Xsens MTw Awinda wireless motion tracker system [148] is used 

for the sensor-based method. The system contains four motion trackers with IMU embedded and 

a wireless receiver to transmit the data. The sensor data is also synchronized with the vision-based 

pose data and the ground truth data so that it can be compared and fused with each other. 

 

Figure 2.7 IMU Sensors Deployment. 
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The fusion-based pose estimation method combines the vision-based methods, which can 

acquire joint position accurately but are sensitive to occlusion and illumination. The IMU-based 

pose estimation methods can obtain the link orientation and joint position based on the body model 

but are sensitive to missing data and magnetic interference. In previous work, the IMU orientation 

data were fused with the multi-viewpoint images in the network to estimate the pose. They were 

either fusing the volumetric probabilistic visual hull data (PVH) from multi-viewpoint video and 

the IMU orientation data with Forward Kinematics at the last layer [149] or fusing the IMU 

orientation data as the link layer and multi-viewpoint images at the early stage [150]. 

In the proposed system, the IMU pose data is fused with the 3D pose network at the last 

residual connection layer before the final fully-connected layer. If the IMU pose data are missing, 

the network will simply skip the IMU pose data in the residual connection layer. Figure 2.8 shows 

the 3D fusion-based pose estimation network structure. 

 

Figure 2.8 Fusion-Based 3D Pose Estimation Network Structure. 
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On the other hand, Kalman Filter methods are well-known in the sensor fusion domain to 

provide consistent, real-time, and uninterrupted data in high occlusion environments. Extended 

Kalman Filter (EKF) [143,146,147], Unscented Kalman Filter [151,152], and Information Filter 

[153] are usually utilized to fuse multi-sensor data for mobile robots. The EKF method is applied 

to fuse the vision pose data and the IMU pose data to compare with the DNN method. 

The IMU pose data has high accuracy at the beginning of the trajectory, and the data stream 

latency is low but has drift issues over time. In addition, Vision pose data has high accuracy but 

requires more computing time, and the data stream latency is high. The occlusion is another issue 

that affects accuracy. Therefore, in the EKF method, the IMU pose data is used in the predicting 

step, and the vision pose data is used in the updating step to correct the sensor drifts. Figure 2.9 

and Figure 2.10 show the flowchart and the equations of the EKF-based pose estimation. For each 

iteration, if the sensor data is unavailable such as missing data, the vision data will be used for the 

prediction step. 

 
Figure 2.9 EKF-Based Pose Estimation Procedure. 
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Figure 2.10 EKF-Based Pose Estimation Equations. 

2.4.4 Training Details and Implementation 

For the 2D pose estimation, the 𝐿2-norm loss function is used to train the network, as shown 

in Eq 2.1: 

 𝐿2(𝑋̂𝑃, 𝑋𝐿) = ∑(𝑋̂𝑃 − 𝐺(𝑋𝐿))
2

 Eq 2.1 

where 𝑋̂𝑃 represents the predicted pose and 𝑋𝐿 represents the labeled ground truth training data, 

and 𝐺(∙) represents the Gaussian kernel function with 1-pixel standard deviation. The loss function 

directly calculates the error between the training ground truth heat-map and the predicting heat-

map and minimizes it. 

The 2D network system is implemented by modifying the original network using PyTorch 

and the loss function Eq 2.1. The RMSprop method with learning rate 2e-4 is used for optimization. 

Batch normalization is used for the training process [154]. The network is trained with NVIDIA 

GeForce GTX 1060 graphic card on an excavator image dataset, which is collected from a factory 

setup laboratory environment with a simulated robotic excavator. The excavator dataset contains 

2,500 training images and 500 testing images aligned with their 2D pose annotation. The detailed 

laboratory environment setup and data annotation are discussed in sections 2.5. 
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For the 3D pose estimation and the sensor fusion pose estimation, the 𝐿2 -norm loss 

function is also used to train the network, as shown in Eq 2.2: 

 𝐿2(𝑋2𝐷 , 𝑋𝑠𝑒𝑛𝑠𝑜𝑟, 𝑋3𝐷) = ∑(𝑓(𝑋2𝑑, 𝑋𝑠𝑒𝑛𝑠𝑜𝑟) − 𝑋3𝐷)2 Eq 2.2 

where 𝑋2𝑑 represents the input 2D pose data, 𝑋𝑠𝑒𝑛𝑠𝑜𝑟 represents the input IMU pose data, and 𝑋3𝐷 

represents the labeled ground truth 3D training data, and 𝑓(∙) represents the function that maps the 

2D input data to the 3D prediction and fuses with the sensor pose. The loss function minimizes the 

prediction error between 3D prediction and 3D ground truth data. The 𝐿2-norm loss function is 

derived from the loss function of the 3D human pose estimation baseline network [132]. If the 

sensor pose data is unavailable, the loss function will ignore 𝑋𝑠𝑒𝑛𝑠𝑜𝑟  and not update the 

corresponding parameters. 

The 3D network is implemented using TensorFlow and the loss function described in Eq 

2.2. The Adam method with starting learning rate 2e-3 and exponential decay is used for 

optimization instead of starting learning rate 1e-3 [132]. Batch normalization is also used for the 

training process. The network is trained with NVIDIA GeForce GTX 1060 graphic card on the 

same image dataset collected from the laboratory with a robotic excavator. The 3D ground truth 

data is measured directly from the robot’s embedded joint sensors. 

The DNN model is implemented using PyTorch and trained with NVIDIA GeForce GTX 

1060 graphic card on the lab dataset with robot ground truth and the site dataset with IMU pose 

data as ground truth. On the other hand, the EKF method is implemented using MATLAB and 

tested with the lab dataset. For evaluation, we compare the performance of the fusion-based pose 

estimation (both DNN model and EKF method) with vision-based, sensor-based, and ground truth 

data by the bucket 3D location. 
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2.5 Dataset Collection Approach 

The image dataset is collected with an articulated robotic manipulator outfitted with a 

simulated excavator bucket. The dataset is separated into training and testing groups. The proposed 

networks are trained by the training group and then evaluated by the testing group. 

2.5.1 Dataset Collection Setup 

For the dataset collection setup, a KUKA 7 DOF robot arm (KUKA KR120) [155] in the 

Digital Fabrication Laboratory at the Taubman College of Architecture and Urban Planning was 

used to simulate the excavator, and the images of the robot arm with different poses were captured. 

Figure 2.11 illustrates the simulated excavator in the laboratory. The upper arm represents the 

excavator stick and the lower arm represents the excavator boom. A bucket is mounted on the 

robot arm end-effector for a more realistic simulation. In order to control the robot as an excavator, 

the profile of the mounted bucket must remain perpendicular to the ground level. Thus, only four 

of the robot joints were moved during the dataset collection process, and the others were fixed at 

all times. 

The robot arm was controlled to follow trajectories to perform several excavator-like tasks 

such as digging, swinging, or unloading. The ground truth of the excavator pose data was acquired 

from the robot arm’s embedded encoders, including 6 DOF pose of the robot’s end-effector 

(𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶) and angles of all joints (𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6). The joint angles were used to 

calculate the 6 DOF pose of the robot’s joint. 
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Figure 2.11 Simulated Robotic Excavator. 

In order to collect the images of the simulated excavator, a Point Grey camera [156] was 

used in the process. The camera was mounted on a second KUKA robot arm in the laboratory, as 

shown in Figure 2.12. This could not only provide several different locations and orientations of 

the camera to increase the variety of the dataset, but also helped obtain the 6 DOF pose of the 

camera itself, which is the end-effector of the camera robot, for further processing. The mounted 

camera on the second robot arm was triggered by the same controller (Programmable Logic 

Controller, PLC) to control the first robot arm. Thus, the captured image and the recorded ground 

truth pose data were synchronized with each other. In the data collection process, a total of 2,500 

images were collected; 2,000 of them were used as training images and 500 of them were used as 

testing images. 

The data augmentation method was applied to increase the verity of the dataset to 3,000 

training images [157]. The human pose benchmark dataset FLIC [158] is composed of 3,987 
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training images. In addition, the human pose is much more complicated than the excavator pose 

and constraint-free. The excavator has 1 DOF joints which are finite in number, and that reduces 

very dramatically the number of images needed for training. Figure 2.13 shows a set of the 

collected images from the dataset. The size of each image is 2048x2048 pixels. 

 

Figure 2.12 The Camera is Mounted on the Second Robot Arm to Capture Images. 

 

 

Figure 2.13 A Set of the Captured Images for the Excavator Dataset with Different Camera 

Locations, Orientation, and Excavator Pose. 
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In addition, to increase the variety of the dataset and vary the background of the dataset 

images, several images from outdoor construction sites with working excavators were also 

collected, as shown in Figure 2.14. The images contain a variety of excavator operations on 

different construction sites with single or multiple machines. These images were only used for 

evaluating the 2D pose estimation network since the 3D ground truth data could not be obtained 

from these images. To overcome the 3D ground truth issue, we mounted three IMU sensors on real 

excavators to collect the cabin, boom, and stick pose data as ground truth along with the video 

captures on real sites by stationary cameras and drone cameras. A total of 6,508 images were 

collected; 4,234 of them were used as training images and 2,274 of them were used as testing 

images. The size of the images was different and thus needed re-scaling and cropping to 

1024x1024 pixels before inputting into the network. 

   

   
Figure 2.14 A Set of Working Excavator Images from the Dataset. 
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2.5.2 Data Annotation 

Data annotation is required in order to indicate the location of the excavator’s joints in the 

images as the ground truth. The structure of the excavator data annotation follows a similar 

structure to the human pose dataset annotation, MPII for 2D pose [120] and Human3.6M for 3D 

pose [133]. In the 2D pose annotation, excavator joint locations were annotated in the pixel-wise 

coordinate. The visibility of each joint was also marked in the annotation data. The scale of the 

image was measured with respect to a height of 200 pixels. 

On the other hand, in the 3D pose annotation, the locations of the excavator’s joints were 

labeled as (𝑋, 𝑌) in pixel-wise coordinates and 𝑍  was considered as the depth value from the 

camera to each joint, which was calculated from the robot arm end-effector and joints’ ground 

truth data. The bounding box was also labeled to show the area of the excavator in the image. The 

annotations were performed via MATLAB and saved as two separated annotation files, one for the 

2D pose and the other for the 3D pose. Figure 2.15 shows an example of an annotated image. 

 

Figure 2.15 Example of the Annotated Image. 
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The 3D ground truth data was acquired by the robot arm’s built-in encoders and the 

Programmable Logic Controller (PLC). Figure 2.16 illustrates the framework of the pose data and 

image acquisition. The PLC sent the control command to both robot arms (North and South). The 

South robot would perform the predefined trajectory, such as digging or unloading, whereas the 

North robot would stay as it is to capture the images. Several trigger points were set to trigger the 

camera on the North robot to capture the image and acquire the pose of both robots, and then 

transfer them to a computer. After the South robot finished the entire trajectory, the North robot 

would move to a different pose and re-run the process. This could increase the variety of the dataset 

by having different orientations in the images. The 3D pose of the end-effector was directly read 

from the robot arm, and the 3D pose of the rest of the robot joints was obtained using inverse 

kinematics. 

 

Figure 2.16 Framework of the Pose Data and Image Acquisition. 

2.6 Experimental Results 

The results of the pose estimation experiments are explained in the following subsections. 

The 2D vision-based method is first compared with the ground truth. Then, the 3D vision-based 

method, sensor-based method, and ground truth are compared with each other. Finally, the DNN-
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based fusion method, EKF fusion method, 3D vision-based method, sensor-based method, and 

ground truth are compared with each other. 

2.6.1 Results of the 2D Pose Estimation System 

The proposed 2D network was evaluated by comparing the prediction results of the testing 

images and the ground truth. Figure 2.17 demonstrates the results of the excavator pose estimation. 

The lines represent the bucket, stick, and boom prediction. These images are estimated in the 

testing dataset. The proposed model is first evaluated by average PCKb@0.5, which reports the 

percentage of the distance between ground truth heat map and predicted heat map that is below 

50% of the bucket segment length. The PCK (Percentage of Correct Key-points) is a well-known 

evaluation metric for measuring the performance of human pose estimation models [120]. Then, 

the Euclidean distance between the estimated joint location and the ground truth joint location in 

pixel-wise units and converted to mm units are used to evaluate the performance, and the error 

percentage of the predicted component length and the ground truth, which can be found in Table 

2.3 and Table 2.4. 

  

   
Figure 2.17 Results of the Excavator 2D Pose Estimation. 
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Table 2.3 Results of the Average Euclidean Distance Between the Predicted and the Ground 

Truth Joint Location. 

(mm) Laboratory Dataset Real Site Dataset 

Boom 31.58 777.12 

Boom Stick 39.47 701.40 

Stick Bucket 35.65 753.36 

Bucket 55.84 1216.44 

 

During the training phase of the entire dataset (lab and site dataset), the average PCKb@0.5 

is 87.1% for the training dataset and 79.5% for the validation dataset. The average PCKb@0.5 is 

71.3% for the entire testing dataset. Moreover, the average Euclidean distance between the 

laboratory testing dataset and ground truth is 40.64 pixels (image size is 2048x2048), and between 

the real site testing dataset and the ground truth is 71.84 pixels (image size is 1024x1024). In the 

laboratory dataset, the pixel size is measured by averaging the length of the robot arm across the 

entire dataset, which resulted in 1 pixel approximated to 1 mm. Therefore, the average Euclidean 

distance in the laboratory dataset can be converted to 40.64 mm. The distance between the camera 

and the robotic excavator is 10 m. The distance between the camera and the robotic excavator is 

10 m. 

In the real site dataset, some of the image data are collected by our team, and the distance 

between the camera and the excavator is measured by GPS. However, some of the distances of the 

image data are unknown since they are collected randomly online. Thus, it is difficult to convert 

the result from pixel to mm. The result is roughly converted to mm by measuring the length of the 

excavator stick in the testing image and calculating the ratio with the actual excavator stick length. 

The size of the excavator must be similar throughout the entire testing dataset. The stick size in 

the testing image is 40 pixels and the actual stick size is 2,500 mm, which resulted in 1 pixel 
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approximated to 12 mm. Therefore, the average Euclidean distance in the real site dataset can be 

converted to 862.08 mm. 

The results show that the bucket location has the highest error because the bucket is blocked 

(occluded) or out of range in some of the images. The network still tries to find the bucket location 

in these cases, which increases the error distance. The error in the real site dataset is higher than 

the laboratory dataset. This is because the real site dataset has a greater variety of excavators and 

backgrounds. Only some of these variations were included in the testing dataset, which caused a 

decrease in accuracy. The number of images in the real site dataset is also insufficient for training 

purposes. 

For the error percentage of the predicted component length and the ground truth, only the 

laboratory dataset is evaluated because the length of each robot arm skeleton is known, but some 

of the component sizes in the real site dataset are unknown due to occlusion. The results are shown 

in Table 2.4. The error percentage of the boom and stick is approximately 40% and 31%, and the 

bucket is 59%. The reason for the high error percentage in the bucket case is the occlusion issue. 

When the bucket is blocked or out of range in the image, the predicted bucket location will be far 

from its actual location. 

Table 2.4 Results of the Error Percentage of the Predicted Component Length and the Ground 

Truth in the Laboratory Dataset. 

(%) Error Percentage of the Component Length 

Boom 39.1 

Stick 30.7 

Bucket 58.8 
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In addition, the ground truth length of the bucket is short, which increases the differences 

between the ground truth and the false predicted result. Figure 2.18 shows the result of a false 

prediction of the bucket caused by occlusion. The excavator is partially blocked by another 

equipment, and the network mispredicts the bucket pose. The occlusion issue can be resolved by 

deploying multi-cameras system on construction sites to collect several video streams with 

different viewpoints or deploying sensor systems on the excavator to fuse the pose data. 

 

Figure 2.18 False Prediction Result of the Bucket Due to Occlusion. 

2.6.2 Results of the 3D Pose Estimation 

The proposed 3D pose estimation method is first evaluated by comparing the prediction 

results and the ground truth of the laboratory dataset. Figure 2.19 shows the result of the 3D pose 

estimation. The left image is the result of the 2D pose estimation, which is the input to the 3D 

network. The right image was the 3D predicted result. The dashed line is the vision-based result, 

the dotted line is the sensor-based result, and the solid line is the ground truth. The average 
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Euclidean distance, i.e., the average mean square error, between the estimated joint location and 

the ground truth joint location in 3D coordinate is used to evaluate the performance, as shown in 

Table 2.5. Since the boom location is aligned together, it is not considered in the comparison. On 

the other hand, we also compare the average difference in the 3D coordinate between the IMU 

pose data and the vision estimated bucket location with different drone view angles on real sites. 

 

Figure 2.19 Results of the Excavator 3D Pose Estimation, Including the 2D (Left) and the 3D 

Result (Right). 

Table 2.5 Results of the Average Euclidean Distance Between the Predicted and the Ground 

Truth Joint Location. 

(mm) 3D Vision-based Sensor-based 

Boom -- -- 

Boom-Stick 148.16 84.35 

Stick-Bucket 134.22 97.21 

Bucket 151.58 99.42 

 

The overall average Euclidean distance between the 3D vision-based method and ground 

truth is 144.65 mm (distance between the camera and the robotic excavator is 10 m), and between 

the sensor-based method and the ground truth is 93.66 mm. The results show that the error of the 

3D vision-based is higher than the sensor-based method. One of the reasons is that the 3D vision-
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based method predicted the pose based on the 2D pose estimation result, wherein the error would 

accumulate from 2D prediction and decrease the accuracy in the 3D prediction. The other reason 

is that the camera coordinates preprocessing mentioned in [132] was not applied to the ground 

truth data because the camera matrix is not determined in the laboratory dataset. In addition, the 

occlusion issue also affects the prediction result similar to the 2D results. The error caused by the 

occlusion also accumulates from the 2D pose estimation results, especially for the bucket. 

Second, the bucket pose estimation accuracy is evaluated by comparing the estimated 

bucket location with the sensor-based result and the ground truth. In the laboratory dataset, a 

sequence of the excavator trajectory is repeated ten times and is captured with different camera 

orientations, as demonstrated in Figure 2.20. A total of 16 images are captured in the trajectory 

yielding a total of 160 images that are used in the evaluation. The average pose of each of the 16 

data points is calculated and compared between pose estimation methods.  

 

Figure 2.20 A Sequence of the Excavator Trajectory. 

Figure 2.21 shows the results of the pose estimation. The star-line is the 3D vision-based 

result, the circle-line is the sensor-based result, and the cross-line is the ground truth. The error of 

the 3D vision-based method is larger than the sensor-based method at the beginning of the 

trajectory. The sensor-based pose is closer to the ground truth pose than the vision-based pose 

before data 5 in X and Y location. After data 6, the sensor-based pose has a higher error than the 
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vision-based pose. The error of the X and Y location in the sensor-based result increased over time. 

The difference in the Z location in sensor-based and vision-based pose does not change 

significantly. This is because the drift occurred in the heading direction (Yaw). The sensor system 

has a stabilizing mechanism to calibrate the sensors. The earth’s magnetic field is used to stabilize 

the heading but is susceptible to disturbance by artifacts such as nearby metal objects. 

 

Figure 2.21 Results of the Bucket 3D Pose Estimation. 

In addition, the cumulative error of the bucket 3D vision-based pose estimation is 

illustrated in Figure 2.22. The straight line is the error in X-axis, the cross-line is the error in Y-

axis, and the circle-line is the error in Z-axis. The cumulative error along the X- and Y-axes is 

higher than the cumulative error along the Z-axis since the movement of the excavator bucket in 
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the data points is larger in the X and Y direction. In addition, the cumulative error along the X-

axis is much higher than along the Y- and Z-axes. This is because the X direction has a higher 

projection in the camera viewing direction and the movement in such direction is difficult to 

identify by a single camera. Moreover, the Z direction is tangent to the viewing direction of the 

camera (pointing up), which has a larger displacement in the image and results in better 

performance. 

 

Figure 2.22 Cumulative Error of the Bucket 3D Vision-Based Pose Estimation. 

Finally, different drone view angles for 3D pose estimation are compared with each other. 

The drone is controlled to collect videos of excavation works with three different view angles, i.e., 

45°, 70°, and 90°. Figure 2.23 three different drone views with different angles (45°, 70°, and 90°). 

The IMU pose is used as ground truth for training and evaluating. Table 2.6 shows the results of 

the average bucket 3D pose estimation difference with different drone view angles. The average 

difference of the 45° angle results in X: 198.7 mm, Y: 184.5 mm, and Z: 199.6 mm. The average 
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difference of the 70° angle results in X: 181.1 mm, Y: 202.8 mm, and Z: 178.8 mm. The average 

difference of the 90° angle (top view) results in X: 170.4 mm, Y: 183.2 mm, and Z: 334.5 mm. 

The Z direction of the 90° view angle has the highest difference between the estimated pose and 

the ground truth data since the axis is parallel to the camera view direction. 

   

 

Figure 2.23 Different Drone Views with Different Angles. 

Table 2.6 Results of the Average Bucket Pose Error with Different Drone View Angles. 

View Angle X (mm) Y (mm) Z (mm) 

45° 198.7 184.5 199.6 

70° 181.1 202.8 178.8 

90° 170.4 183.2 334.5 
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2.6.3 Results of the Sensor Fusion Pose Estimation 

In the lab dataset, a sequence of the robotic excavator trajectory is repeated ten times and 

is captured with different camera orientations. A total of 16 images are captured in the trajectory 

yielding a total of 160 images that were used in the evaluation. Figure 2.13 shows one set of 

images. Parts of the images and sensor data are manually blocked to evaluate sensor-fusion 

performance. In each 16 data points, 1-3 and 7-9 are all clear. For 4-6 data points, the sensor data 

are missed. For 10-12 data points, the bucket area in the image is blocked by a mean dataset color 

rectangle. For 13-16 data points, both image and sensor data are blocked. Figure 2.24 shows a set 

of testing data with occluded images and missed sensor data. 

 

Figure 2.24 A Set of Testing Data with Occluded Images and Missed Sensor Data. 

The average difference in the 3D coordinate of the bucket location is used to evaluate the 

fused location with vision-based, sensor-based, and ground truth data. Figure 2.25 shows the 

results of the bucket pose estimation by DNN fusion-, EKF-, vision-, and sensor-based methods. 

The average difference of the DNN fusion method is X:54.3 mm, Y: 57.0 mm, and Z: 19.5 mm, 

and the EKF-based method is X: 65.3 mm, Y: 88.1 mm, and Z: 40.3 mm. For the vision-based 
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method, the average difference is X: 113.1 mm, Y: 117.6 mm, and Z: 75.3 mm. For the sensor-

based method, the average difference is X: 84.0 mm, Y: 83.1 mm, and Z: 38.5 mm. 

 

Figure 2.25 Results of the Bucket Pose Estimation by DNN Fusion-, EKF-, Vision-, and Sensor-

Based Method. 

The occluded results are compared with the results of the original data. The errors of both 

the sensor-based method and the vision-based method are increased due to the blocked view and 

data missing. The sensor-based method accumulates the error over time due to the drift issue. Both 

DNN fusion and EKF-based could improve the pose estimation performance even when some of 

the data are missed or occluded. The DNN fusion method has a lower error than the EKF-based 
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method since the EKF-based method utilized only the vision pose data to estimate the pose when 

the IMU data is unavailable. 

2.7 Discussion 

Based on the evaluation results, occlusion is the primary issue of the proposed vision-based 

method, which can potentially be addressed by increasing the number and variety of the training 

dataset. Dataset augmentation and expansion techniques can also help address this issue. Another 

problem is the multiple-machine situation. The proposed network can only identify one machine’s 

pose. If there are two or more articulated machines in the image, the result is likely to fail. The 

other issue is the accumulated error from the 2D pose estimation result. The proposed 3D pose 

estimation network utilizes the 2D pose estimation results as input to predict the 3D pose, which 

results in accumulated errors. Therefore, a new network or method for the multiple-machine 

situation and the 3D pose direct training can be designed in future work. 

The accuracy of the proposed 2D pose estimation method is 40.64 mm in the laboratory 

dataset, which is acceptable for the object detection and tracking and the proximity detection 

application discussed in Table 2.2. On the other hand, the accuracy of the proposed 3D pose 

estimation method is 144.65 mm and the DNN fused pose estimation method is 43.6 mm, which 

are not adequate for preventing utility strikes, grade control, and autonomous excavation 

applications, even though it may be acceptable in proximity detection applications. 

The camera distance is important for pose estimation on construction sites. The scope of 

some existing human pose estimation methods is not suitable for the articulated construction robot 

due to short camera distance. The typical excavator working range is within 6.1 m, according to 

Lundeen et al. [71]. Thus, the performance of the articulated construction robot pose estimation 
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should be evaluated over 6.1 m for the camera distance. The camera distance in the evaluation of 

the proposed method is 10 m. 

The proposed pose estimation method has three limitations. First, the network trained on 

the laboratory dataset is unable to achieve high performance when applying to an excavator 

operating in the field. The background and the light conditions of the laboratory dataset do not 

have a wide variety since they were collected in the same indoor environment, compared to actual 

construction sites where such conditions may vary. Second, the latency of the proposed method is 

affected by the hardware specifications and the complexity of the network structure, which would 

need extra cost for the advanced hardware in order to achieve outstanding performance. 

Third, the system assumes the consistency and quality of the source video stream, which 

is not always available in real practice, especially on hazardous and unstructured construction sites. 

Further research of the data consistency on construction sites needs to be conducted to explore this 

issue. Fourth, the proposed 3D pose estimation method is trained and evaluated on the laboratory 

dataset and some real site images due to the lack of the 3D ground truth data for the real site dataset. 

Future work on augmenting the real site dataset with ground truth data from onboard sensors of 

the excavator or exploring a new network to train without ground truth data needs to be conducted. 

2.8 Conclusions and Future Work 

In this research, vision-based marker-less 2D and 3D pose estimation methods and DNN-

based fusion pose estimation methods for articulated construction robots were proposed, in which 

an excavator was used as the experimental machine test-bed. The excavator boom, stick, and 

bucket joint positions are estimated with both 2D and 3D coordinates. State-of-the-arts human 

pose estimation deep convolutional networks, i.e., the stacked hourglass network and baseline 

network, were adapted and modified for the application. The network model was trained on an 
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excavator dataset, which was collected and annotated with a KUKA robot arm representing an 

excavator and from real construction sites with working excavators. The IMU sensor-based pose 

estimation method was also implemented to evaluate the performance of the proposed network. 

The results showed that the proposed network could estimate the boom and stick joints but had 

higher estimation errors for the bucket location due to typically encountered occlusion issues. 

To overcome the occlusion issues, the DNN-based fusion method was proposed to combine 

the vision-based and the sensor-based pose data to estimate the uninterrupted and accurate pose. 

The pose data were integrated into the last residual module. The network was trained on the 

excavator dataset and tested on some occluded image data and signal blocked data. An EKF-based 

fusion pose estimation method was also implemented to compare the performance. The results 

showed that the proposed fusion network could achieve a higher accuracy than the vision-only and 

sensor-only methods in the occluded scenario. 

Moreover, the accumulated error in the 3D pose estimation resulting from the 2D predicted 

pose input needs to be resolved as well. Therefore, in proposed future work, additional training 

image data with greater variety will be collected. A further modification of the proposed network 

will also be explored to adapt to the multiple-machine situation and address the accumulated error 

issues. Finally, the data consistency on construction sites will also be considered and surveyed. 

 

 



 56 

  

Robot Learning from Human Demonstration for Quasi-Repetitive Construction Tasks 

 

3.1 Introduction 

Applying robots on construction sites is one of the current trends to resolve construction 

safety, productivity, and quality [40]. In the United States, the fatal injury rate continuously grew 

in the past decade and reached the highest fatalities in 2019 [159]. Such safety issues cause high 

costs and delay to the construction project. Statistics show that the construction industry accounts 

for 5% of all industry annual employment but 15% of all industry annual injury costs [160]. 

Accidents on construction sites are one of the significant reasons for construction project delays 

since entire sites have to be shut down and suspended for recovery or investigation [161]. On the 

other hand, productivity and quality are highly dependent on the skill and experience of human 

workers. Manual errors happen occasionally and decrease the productivity and quality of the 

construction project [37]. 

The adoption of construction robots on job sites has demonstrated improvement in the 

safety, the productivity of projects, and the quality of work [162]. Similar to applications in 

disparate fields such as manufacturing and surgery, where a robot can assist with repetitive or 

precise work in a narrow workspace, robots on the construction site can assist with physically 

demanding and repetitive construction tasks. However, unlike manufacturing or surgery robots, 

where the robots are typically placed at stationary locations to perform work by pre-programming 
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or tele-operating, on-site construction robots have to navigate to different locations in an 

unstructured environment to perform work that is often susceptible to loose tolerances and 

discrepancies between the designed and built versions [11]. It is therefore impractical to pre-

program a robotic construction work plan or to define it as an optimization problem. In addition, 

tele-operating robots to complete construction tasks requires significant training of operators that 

must include both construction experts as well as robot technicians [163]. 

3.1.1 Challenges in On-Site Construction Robot Deployment 

Even though a series of construction tasks are often similar, there are distinct reasons why 

they cannot be considered purely repetitive, particularly when considered from a robot’s 

perspective. For example, in the ceiling tile installation process, several tiles are sequentially 

installed into grid openings in a ceiling frame. Even though the dimensions of the tiles and the 

frame openings may be nominally identical, there are subtle differences in the installation process 

of each subsequent tile. For instance, each tile is installed in a different, albeit adjacent, opening 

in the ceiling frame and no two tiles are placed at the same location. 

In addition, even though the motions involved in installing tiles in a frame may be generally 

similar, the geometry of the obstructions above such a frame (e.g., ducts or other utilities) may be 

dramatically different in each frame cell. This requires the basic motions involved in maneuvering 

a tile above the frame and dropping it onto the supports to be uniquely dependent on the cell 

geometry. Such construction tasks that are conceptually similar but differ in location and required 

elemental motions are defined as quasi-repetitive. The distinct quasi-repetitive characteristic of 

construction tasks makes the deployment of on-site robots particularly challenging. For instance, 

the subtleties of ceiling tile installation tasks described above are intuitively overcome by human 
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workers but are extremely challenging, if not impossible, to pre-program as a set of installation 

instructions for robots. 

3.1.2 Robot Apprentices Learning from Human Experts 

Imitation learning or Learning from Demonstration (LfD) methods eliminate the 

requirement of pre-programming or tele-operation to control a robot to accomplish a task. Instead, 

these methods enable the robot to imitate the behavior of human experts directly [30]. The human 

worker and the robot coexist in the workspace to teach and perform the construction task 

respectively. Human experts demonstrate the task to the robot during the teaching process, and the 

robot generates models to reproduce the task under similar yet non-identical circumstances. 

In the performance phase, the robot first observes the scene to determine the start and target 

locations through scene understanding methods or human instructions [11,21]. Then, the robot 

uses the model to reproduce the task based on the encountered circumstance under the human 

worker’s supervision. For typical installation tasks, an experienced worker can pick up and install 

construction components in desired locations while the robot observes the procedure and learns 

the model. Then, the robot reproduces such installation tasks at different locations with similar 

components. 

This procedure of teaching construction robots is, in some aspects, comparable to a 

construction apprenticeship program involved in training new construction workers [29]. The 

novice construction workers follow instructions from veteran experts and develop their skills by 

observing and practicing the craft. They complete the necessary training and and are evaluated 

through examinations before being qualified as independent construction craftworkers. The robot 

imitation learning or LfD methods have a learning structure that parallels such an apprenticeship 

program. The robot develops a model for performing work by observing demonstrations from 
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expert workers and practicing the skills through supervision, thereby developing the capability to 

adapt the skills to other similar work contexts. 

Based on the success of robots learning industrial assembly tasks such as pick-and-place 

and bolt-screwing from demonstration [164], the application of the LfD method in construction 

provides opportunities to train robots to perform work semi-autonomously (i.e., not pre-

programmed or tele-operated) in partnership with human workers, specifically on quasi-repetitive 

tasks on unstructured construction sites. Such collaboration between humans and robots provides 

a sustainable and scalable model for robot deployment in construction in the upcoming future 

where robots’ training on quasi-repetitive tasks can be easily transferable to other projects in the 

future. 

The remainder of this chapter is organized as follows. First, existing robot LfD methods 

are identified and discussed in the context of construction applications. Second, a visual LfD-based 

context translation method for construction task learning is introduced. A Reinforcement Learning 

(RL)-based robot control method for construction task performance is developed to utilize the 

translated context to generate the control policy and perform the construction task. Third, a 

trajectory LfD method, i.e., generalized cylinder with orientations approach (GCO), is developed. 

A trajectory adaptation approach and a human-in-the-loop refinement approach are developed in 

the GCO. Lastly, the ceiling tile installation experiments are conducted and used to evaluate the 

proposed robot LfD methods. 

3.2 Related Work 

In this section, the existing works on robot Learning from Demonstration (LfD) are 

reviewed and discussed based on the demonstration methods and the learning methods. The 
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imitation from observation (IfO) methods and the trajectory-based LfD methods are discussed for 

construction applications. 

3.2.1 Demonstration Methods 

Robot learning from demonstration (LfD) or imitation learning methods enable a robot to 

acquire new skills by imitating observed demonstrations from human experts [30], and is an 

advantageous approach when the involved skills can neither be pre-programmed nor expressed as 

optimization problems [31]. LfD methods are typically applied to manipulation tasks or assembly 

tasks [164,165] that can be easily demonstrated by human experts. Existing LfD methods can be 

categorized based on the demonstration methods or the learning methods [31,32]. The 

demonstration methods are concerned with how the skills are demonstrated to the robot, including 

trajectory demonstration and passive observation. On the other hand, the learning methods are 

categorized based on how the skills are being learned by the robot, which includes probabilistic 

approach, dynamic system approach, and reward-based approach. 

The demonstration methods are concerned with how the skills are demonstrated to the 

robot, including trajectory demonstration and passive observation. On the other hand, the learning 

methods are categorized based on how the skills are being learned by the robot, which includes 

probabilistic approach, dynamic system approach, and reward-based approach. Figure 3.1 shows 

the categories of the demonstration methods. In the kinesthetic demonstration, the human expert 

demonstrates the task by manually moving the robot to the desired waypoints [166]. The onboard 

sensors or external sensors are used to record the trajectory data, including joint angles, end-

effector poses, and motor torques [167–170]. The kinesthetic demonstration provides an intuitive 

way to interact with the robot and eliminates the correspondence problem [30] but is limited to 

lightweight and small object manipulation [164]. Thus, it is challenging to apply kinesthetic 
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demonstration to construction tasks where the objects being manipulated are typically heavy and 

oversized. 

 

Figure 3.1 Categorization of the Demonstration Method 

In the tele-operating demonstration, the human expert controls the robot with a remote 

controller to demonstrate the task [171,172]. Similar to the kinesthetic demonstration, the onboard 

sensors or external sensors such as haptic sensors on the controller are used to record the trajectory 

data [170]. The tele-operating demonstration supports broader applications such as autonomous 

helicopter learning [173], mobile robot positioning [174], and hierarchical tasks learning [175] due 

to straightforward and efficient communication of control from the human. However, in some 

complicated construction tasks such as drywall installation, it is not intuitive to control a robot to 

complete the task using a joystick and requires additional human effort. 

Lastly, in the extended reality demonstration, the use of virtual reality (VR) or augmented 

reality (AR) provides various scenarios for human experts to demonstrate tasks to the robot 

[176,177]. The human expert can either control the virtual robot to demonstrate the task [178] or 

directly demonstrate the task in the virtual environment and record the video [179,180]. The 

trajectory of the robot or manipulated object can be recorded easily inside the controlled virtual 

environment to construct the demonstration dataset. With the assistance of extended reality, the 
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human expert can demonstrate different construction tasks inside the virtual environment with 

different components and backgrounds. 

On the other hand, passive observation is the second group of demonstration methods, and 

allows human experts to demonstrate the task directly and utilizes sensors or cameras to collect 

the demonstration data. The passive observation is a particularly intuitive way for the human expert 

to demonstrate the task, and the robot is not involved during the demonstration phase. This type 

of method includes visual demonstration and sensor demonstration. In the visual demonstration, 

the videos of the demonstration are collected for the robot using camera or motion sensors, and 

then used to extract features from video frames or track the motion of humans or objects in the 

scene [181,182]. Visual demonstration is susceptible to typical computer vision-related challenges 

such as occlusion. 

Motion capture systems provide accurate human whole-body motion data and can record 

various human motions such as lifting objects for demonstration [183]. However, such systems 

have limited applicability for deployment in dynamic and constantly-changing construction 

environments. In the sensors demonstration, multiple sensors are used to collect demonstration 

data, such as tactile sensors or motion sensors [172,184]. The trajectory of the human expert’s 

movement or the contact force between the human and the object is collected. Furthermore, the 

sensor demonstration can also be combined with the visual demonstration to provide abundant and 

informative demonstration data [169,184,185]. This type of demonstration method is usually 

applicable to tasks requiring contact forces, e.g., fastening bolts, but needs additional data mapping 

approach to ensure the correspondence. 
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3.2.2 Learning Methods 

The probabilistic approach, dynamic system approach, and reward-based approach are 

three subgroups of the learning method, as shown in Figure 3.2. The probabilistic approach is the 

first group of learning methods that encode the feature using probabilistic representations and learn 

the policy. Hidden Markov Model (HMM) is the common probabilistic method applied in LfD to 

learn the skill by regression [164,166,186]. In addition, HMM method can be combined with other 

probabilistic methods to obtain more reliable learning outcomes, such as the combination of 

Gaussian Mixture Regression (GMR) and Gaussian Mixture Model (GMM) to obtain smooth 

trajectory [166,168,187]. However, these methods usually require extensive parameter tuning to 

get robust manipulation [188]. In order to minimize the parameter tuning process, Ahmadzadeh 

and Chernova [188] developed the Generalized Cylinders-based LfD method to generate 

trajectories within the geometry. 

The dynamic system approach is the second group of learning methods, which utilizes 

nonlinear dynamic systems to represent demonstrations and generate trajectories. The Dynamic 

Movement Primitives (DMP) method uses the spring-damper model to represent the demonstration 

and GMM to learn the movement [189,190] but also requires a notable parameter tuning process. 

Stable Estimator of Dynamical Systems (SEDS) optimizes the parameters of the dynamic system 

to imitate the demonstration as a function of the velocity data [191]. 

 

Figure 3.2 Categorization of the Learning Method. 
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Finally, the reward-based approach is the third group of learning methods, which defines a 

reward or cost function and optimizes the policy with maximum reward or minimum cost. 

However, it is difficult to define a reward or cost function for the LfD method since it requires 

assumptions about the task and the workspace [31]. Behavior cloning or trajectory optimization 

approaches directly use expert demonstration data to learn the policy with the assumption that the 

expert always provides optimal solutions to the task, and thus the hidden cost function in the 

demonstration data is minimum [192,193]. 

Inverse reinforcement learning (IRL) methods first infer a hidden reward function using 

demonstration data, then apply reinforcement learning (RL) methods to determine the policy based 

on the inferred reward function [173,194], which requires significant computational time. Recent 

advances in IRL methods combine the IRL structure with other methods to reduce the 

computational effort. Generative adversarial imitation learning (GAIL) [195,196] is one of the 

examples of combining IRL with generative adversarial networks (GAN) [197]. 

Imitation learning from observation (IfO) is the special form of LfD where the robot only 

has access to state demonstrations, i.e., visual observation, instead of the state-action 

demonstrations, i.e., visual observation with expert’s action [32,181]. The challenge of the IfO is 

how to extract actions from demonstration states. The dynamics model is the first type of the IfO 

method [198,199] that learns the action from state demonstration using forward or inverse 

dynamics models. For example, one of the inverse dynamics method extracts actions 𝑎𝑡 from state 

transitions (𝑠𝑡, 𝑠𝑡+1) in the demonstration video to train the model, then used it to determine the 

actions for robots to follow. Reinforcement learning (RL) is the second type of the IfO method 

that applies GAN to learn the policy [200] or manually defines the reward function [181,201,202]. 
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In this research, the visual demonstration and reward-based IfO method is first adapted and 

applied to teach robots the quasi-repetitive construction task, i.e., ceiling tile installation process. 

Second, the trajectory demonstration and probabilistic approach, i.e., Generalized Cylinders with 

Orientation approach, trajectory adaptation approach, and human-in-the-loop refinement 

approach, for teaching robots the same quasi-repetitive construction task is developed and 

compared with the first IfO method. 

3.3 Research Goal and Contribution 

The objective of this research is to investigate the robot LfD method [181,188] and evaluate 

the feasibility of applying visual LfD and trajectory-based LfD for teaching quasi-repetitive 

construction tasks to robot apprentices. The visual demonstrations and the trajectory 

demonstrations of the construction task by human experts are provided to the robots to first learn 

the knowledge by extracting state-action pairs and then perform the task to evaluate its 

performance. Trained robots can then collaborate with human workers to perform physical tasks 

while human workers focus on the planning and cognitive aspects of the work. 

Four specific research questions are pursued in this work: (i) To what extent can a robot 

learn a quasi-repetitive construction task through visual demonstration or trajectory demonstration 

by a human expert; (ii) What is the effect of the viewpoint of observed demonstrations on the 

subsequent robot learning and performance; and (iii) What is the general relationship between the 

number of visual demonstrations provided and the corresponding learning and performance of a 

quasi-repetitive construction task by a robot. (iv) How to adapt to the new start and target locations 

in different scenes. 

The installation of suspended ceiling tiles, which fits the definition of quasi-repetitive 

construction tasks where the encountered geometry is different in each instance, is used as the 
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target construction process to describe and validate the developed methods. Figure 3.3 illustrates 

the procedure of installing ceiling tiles by a human worker or a robot. First, the worker or robot 

navigates to the desired assembly location based on their interpretation of digital maps (e.g., 

Building Information Models) and specifications [21]. Second, the worker measures the ceiling 

grid layout by tape measure, whereas the robot measures the layout and the geometry of the 

workspace using its sensors. Third, the worker or robot maneuvers, positions, and places a tile at 

the target grid location. Finally, the worker or robot inspects the alignment of the tile. 

 

Figure 3.3 Procedure of Installing a Ceiling Tile by a Human and a Robot. 

This research specifically focuses on the third step in the procedure and assumes that the 

robot is able to navigate to the correct location and gathers the correct geometric information using 

mapping and adaptive manipulation methods such as those developed in our prior work [11,203]. 

The research is conducted in the Gazebo robotics simulator using Robot Operating System (ROS)  

tools [204,205] and a KUKA mobile industrial robot arm emulator [155]. Virtual simulators allow 
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rapid prototyping of new robotic algorithms and methods such as the ones developed, and allow 

the testing of their feasibility and iterative adjustments based on the achieved results [206]. 

This research has three main contributions. First, this research discusses the challenges of 

the on-site construction robot deployment and identifies the need for robot learning and adapting 

construction tasks. Second, this research explores the existing robot Learning from Demonstration 

(LfD) method and rigorously extends and adapts them to a new application in construction, where 

the visual demonstration method, i.e., the context translation model [181] and Trust Region Policy 

Optimization (TRPO) [207] method, and the trajectory demonstration method, i.e., generalized 

cylinders with orientation (GCO) approach, are applied to learn quasi-repetitive construction tasks 

such as ceiling tile installation. Third, this research conducts the simulation experiment to 

investigate the capabilities and limitations of the context translation model, TRPO, and GCO for 

construction tasks. 

3.4 Robot Learning from Visual Demonstration 

The visual LfD method utilized for teaching a robot the experimental construction tasks, 

i.e., ceiling tile installation, is an extension of the context translation and imitation method [181]. 

This method only uses the visual demonstration to train the robot and has been applied before for 

tasks such as robot arm reaching, object pushing, sweeping, and pouring in controlled and 

uncluttered environments [181,202,208]. The context translation model is constructed by several 

encoders, decoders, and autoencoder networks. In this research, the ceiling tile installation can be 

considered as an advanced and intricate version of object pushing. 

The challenge of applying the context translation model to construction tasks is the 

unstructured and cluttered environment, which can be overcome by modifying the network 

structure and fine-tuning on the construction tasks demonstration videos. The knowledge of the 
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construction task, such as the pose of the ceiling tile, is extracted from the demonstration videos 

as the work context features and translated to the target scene, i.e., the scene that the robot 

observed, to place the ceiling tile. The robot can further learn the results of the translation and 

generate the control policy through the RL method [209]. 

Figure 3.4 shows the work process of the developed construction task learning and 

performance method, which takes demonstration videos and the target scene as input and output 

the robot commands for execution. The context translation model and Reinforcement Learning are 

two primary algorithms in the proposed method, which are introduced in Section 3.4.2 and Section 

3.4.4. 

 

Figure 3.4 Process of the Proposed Visual LfD Method. 

3.4.1 Problem Definition and Assumptions 

When teaching a robot to perform a specific task, the knowledge, or work context, from 

the expert’s demonstration must be defined in order to let the robot know what information needs 

to be tracked and assimilated, as well as how to determine the action to take for achieving the task. 

In the ceiling tile installation process as an example, the work context is to pick up a tile from a 

staged location, maneuver it through a target ceiling grid, and place it at the correct grid location. 

The context tracks the intention of how the ceiling tile is being manipulated to the target location. 

When the robot subsequently faces additional tile installation tasks with different staging and target 

grid locations, it can still use the context learned to manipulate those tiles to the target grid cells. 
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The context variable ω can be defined as the pose of the object and human expert, the 

viewpoint of the camera, the condition of the environment, and the target location. Variations in 

the camera viewpoint increase the complexity of the robot learning problem since the camera 

viewpoint is one of the context variables [181]. In this research, the camera is assumed to be fixed 

in two different viewpoints, i.e., bottom view and iso view, and the task is to be performed in the 

same environment to reduce the complexity. 

The demonstration of the task is defined as [181] Eq 3.1: 
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 Eq 3.1 

where 𝐷𝑛 is the n-th demonstration and 𝑂𝑡 is the observation at time 𝑡, which is generated from 

the Partially Observable Markov Decision Process (POMDP) [210]. For example, the observation 

𝑂5 is the demonstration video frame containing the condition of the ceiling tile at time 5. The 

probability observation distribution 𝑝(𝑂𝑡|𝑠𝑡, 𝜔𝑖), dynamics 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡, 𝜔𝑖), and the policy of 

the expert 𝑝(𝑎𝑡|𝑠𝑡, 𝜔𝑖) are utilized to define the POMDP, where 𝑠𝑡 and 𝑠𝑡+1 are the current and 

next state (e.g., unknown Markovian state), 𝑎𝑡  is the action of the agent at time 𝑡  (e.g., 

maneuvering direction), and 𝜔𝑖 is the i-th context (e.g., pose of the ceiling tile, the viewpoint of 

the camera). 

The demonstration domain and the learner domain are two domains in the environment, as 

shown in Figure 3.5. Each demonstration 𝐷𝑛 is extracted with different context 𝜔1, 𝜔2, and 𝜔3 in 

the demonstration domain. In the learner domain, 𝐷𝑜 is the scene that the robot learner observes 

and is also extracted with different contexts 𝜔′1, 𝜔′2, and 𝜔′3. Since this is a partially observable 

environment, the context from the demonstration domain is unknown to the robot learner in the 



 70 

probability distribution, i.e., 𝜔𝑖  and 𝜔′𝑖  are unrelated and noncorresponding. The robot learner 

might try to track the mismatch context from the demonstration domain. For example, the robot 

learner might follow the context of the ceiling tile pose (e.g., 𝜔1) but consider it as the context of 

the expert pose (e.g., 𝜔′2). 

 

Figure 3.5 The Demonstration Domain and the Learner Domain. 

This can be overcome by applying the context translation model to translate the context 

from the source (demonstration domain) to the target (learner domain) and aligning the context 

variable in the learner domain. This is followed by defining a reward function based on the 

translated context feature for the RL method, such as Trust Region Policy Optimization (TRPO) 

[207], Proximal Policy Optimization (PPO) [211], or Deep Deterministic Policy Gradient (DDPG) 

[212], to learn the robot control policy. The details of the RL method and the reward function 

definition are described ahead in the section 3.4.4 and section 3.4.5. 
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The source and the target demonstrations are defined as follows Eq 3.2 and Eq 3.3: 

 𝐷𝑠 = [𝑂0
𝑠 𝑂1

𝑠 ⋯ 𝑂𝑇
𝑠 ] Eq 3.2 

 𝐷𝑡 = [𝑂0
𝑡 𝑂1

𝑡 ⋯ 𝑂𝑇
𝑡 ] Eq 3.3 

where 𝐷𝑠 is the demonstration from the unknown context extracted from the source video frames 

with observations 𝑂𝑠, and 𝐷𝑡 is from the unknown context extracted from target video frames with 

observations 𝑂𝑡. For example, the context of the ceiling tile pose from the source demonstration is 

translated to the target scene, which is the first frame of different demonstration videos, and the 

model is trained with the loss function calculated by the translated context and the different 

demonstration video frames. After training with a sufficient number of demonstration examples, 

the context translation model is capable of translating the source demonstration 𝐷𝑠  into a new 

target scene 𝐷𝑛 with the robot learner’s context 𝜔𝑙 so that the robot can track and learn the context 

feature. Figure 3.6 illustrates the steps of the context translation from the source demonstration to 

the target scene. The translation function takes the source demonstration and translates it to the 

target scene to obtain translated context. The details of the context translation model are discussed 

in the following section. 

 

Figure 3.6 Flow Chart of the Context Translation from the Source Demonstration 𝐷𝑠 to the 

Target Scene 𝐷𝑡 Resulting in the Translated Context 𝐷𝑡̂. 
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3.4.2 Context Translation Model 

The objective of the context translation model is to learn the translation function that can 

translate the source demonstration 𝐷𝑠 = [𝑂𝑡
𝑠], 𝑡 = 0,1, …𝑇 to the target scene 𝐷𝑡 = [𝑂0

𝑡], that is, 

the scene of the ceiling tile at the starting location for the robot to install, with the context 𝜔𝑡, e.g., 

the pose of the ceiling tile or pose of the demonstrator. The full translation function is defined as 

Eq 3.4: 

 𝑀(𝑂𝑡
𝑠, 𝑂0

𝑡) = (𝑂̂𝑡
𝑡)

𝑡𝑟𝑎𝑛𝑠
 Eq 3.4 

where (𝑂̂𝑡
𝑡)

𝑡𝑟𝑎𝑛𝑠
 represents the translated observations in the robot learner’s context. 

The context translation model is constructed by several encoders, decoders, and 

autoencoders [213], which includes a source encoder 𝐸𝑛𝑠(𝑂𝑡
𝑠), a target first observation encoder 

𝐸𝑛𝑡(𝑂0
𝑡), and a target context decoder 𝐷𝑒𝑡(𝑧𝑡𝑟𝑎𝑛𝑠), as shown in Figure 3.7. The encoder extracts 

the features from observations (video frames), and the decoder recovers the features back to 

observations. The features extracted by the encoder are pixel values representing movement in the 

frames. On the left side is the framework of translating the source observations to the target 

observation through the translation function 𝑇(𝑧𝑠, 𝑧𝑡) = 𝑧𝑡𝑟𝑎𝑛𝑠, where 𝑧𝑠, 𝑧𝑡 and 𝑧𝑡𝑟𝑎𝑛𝑠 represent 

the features of the encoded source, target, and translation. The loss function for training the 

translation function is defined as 𝐿2-norm (Eq 3.5): 

 𝐿𝑡𝑟𝑎𝑛𝑠 = ‖(𝑂̂𝑡
𝑡)

𝑡𝑟𝑎𝑛𝑠
− 𝑂𝑡

𝑡‖
2

2

 Eq 3.5 
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The loss function calculates the differences between translated observations and the target 

observations, and the translation function tries to minimize the difference between these two 

observations. 

 

Figure 3.7 The Structure of the Context Translation Model. 

Since the unknown context feature is translated from source to target, it must be ensured 

that the feature in the target domain is the same as the feature in the source. The features need to 

be trained on the target demonstration video in order to ensure the consistency of the feature 

representation between the source encoder 𝐸𝑛𝑠 and the target decoder 𝐷𝑒𝑡. The autoencoder is 

applied for aligning the feature extraction from 𝐸𝑛𝑠 and 𝐷𝑒𝑡. The right side of Figure 3.7 is the 
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framework of the encoder for training the 𝐸𝑛𝑠 and 𝐷𝑒𝑡 with a reconstruction loss, which is defined 

as Eq 3.6: 

 𝐿𝑟𝑒𝑐 = ‖𝐷𝑒𝑡(𝐸𝑛𝑠(𝑂𝑡
𝑡)) − 𝑂𝑡

𝑡‖
2

2
 Eq 3.6 

The encoder 𝐸𝑛𝑠  extracts the features from the target, and then the decoder 𝐷𝑒𝑡 

reconstructs the observation from these features. The reconstruction loss calculates the difference 

between the reconstructed target observations and the actual target observations, and the 

autoencoder tries to minimize this loss function to ensure the 𝐸𝑛𝑠 and 𝐷𝑒𝑡 are extracting the proper 

features. 

The final step is to align the feature representation of the autoencoder with the translation 

function features 𝑧𝑡𝑟𝑎𝑛𝑠 so that the encoder and the decoder in the source and target domains can 

track the same feature representation. The loss function for the alignment is defined as Eq 3.7: 

 𝐿𝑎𝑙𝑖𝑔𝑛 = ‖𝑧𝑡𝑟𝑎𝑛𝑠 − 𝐸𝑛𝑠(𝑂𝑡
𝑡)‖2

2 Eq 3.7 

The alignment loss calculates the difference between the translation features 𝑧𝑡𝑟𝑎𝑛𝑠 and the 

features in the autoencoder 𝐸𝑛𝑠(𝑂𝑡
𝑡), and the model tries to align these two features. After training 

with sufficient demonstrations, the context translation model is able to translate the context from 

the source to a target observation that is never shown in the training steps for determining the 

procedure of completing the construction task, in this case, the ceiling tile installation process. 

3.4.3 Network Structure of the Context Translation Model 

The source encoder, the target encoder, and the target decoder are constructed by deep 

neural networks to process the demonstration video frames and extract features. The demonstration 

video frames are cropped and resized to the size of 180x120 and then fed into the networks. The 
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network of the encoder and decoder is illustrated in Table 3.1. All the network parameters are 

adapted from [181] and fine-tuned with the ceiling tile installation demonstration videos. In the 

encoder network, four convolutional layers with different filter size (32, 16, 16, and 8) and stride 

(1, 2, 1, and 2) followed by two linear layers with a size of 100 and 0.5 dropout are applied to the 

training video frames to extract the context features, which are unknown to the learner (partially 

observed). 

In the translation function, one linear layer with a size of 100 and 0.5 dropout is used, 

which translates the source features to the target domain. In the decoder network, one linear layer 

with 0.5 dropout followed by four deconvolutional layers with different filter size (16, 16, 32, and 

3) and stride (½, 1, ½, and 1) are applied to the translated feature, which reconstructs the translated 

feature to the observations. The translated feature is the trajectory of the ceiling tile. All the 

convolutional and deconvolutional layers are followed by LeakyReLu activation function [214] 

with 0.2 leak except the last deconvolutional layer in the decoder. The filter size of the first linear 

layer in the decoder is dependent on the size of the input image. Batch normalization [154] is 

applied to the network for the training. The input image is cropped to the size of 48 by 48 pixels 

for training and testing in order to reduce the computation complexity. 

The target objects do not need to be specified in the video frames. The encoder extracts the 

features from video frames, and then the decoder reconstructs the frames from translated features. 

The reconstructed frames are used to calculate the loss by Eq 3.5 for tuning the weights of the 

network. Therefore, when the networks receive new observation data, it can reconstruct a series of 

manipulation frames, and the robot can determine the trajectory based on the manipulation frames. 
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Table 3.1 The Network Structure of the Encoder and Decoder. 

Type Layer Filter size Stride Other 

Encoder 

Conv 32 1 

LeakyReLu 

leak = 0.2 

Conv 16 2 

Conv 16 1 

Conv 8 2 

Linear 100 n/a 
Dropout = 0.5 

Linear 100 n/a 

Translation function Linear 100 n/a Dropout = 0.5 

Decoder 

Linear * n/a Dropout = 0.5 

Deconv 16 ½ 
LeakyReLu 

leak = 0.2 
Deconv 16 1 

Deconv 32 ½ 

Deconv 3 1 n/a 

*Depends on the size of the input image 

 

3.4.4 Reinforcement Learning Method 

After extracting the context from the demonstration videos and translating it to the target 

initial observation, the observing robot apprentice must determine the action to take for 

accomplishing tasks. The RL method [209] is utilized for the robot to learn the sequence of the 

actions, i.e., the policy, to reach the goal state, i.e., the tile installation location. Deep RL methods 

have been proven successful in robot continuous control [212] and visual LfD [202,208]. A reward 

function needs to be defined for the robot to find the policy with the highest rewards. 

The RL method is agent-oriented [209], where agents learn by interacting with an 

environment to reach a goal. The agent (e.g., robot) will receive a reward (e.g., reaches the goal) 

or penalty (e.g., hits obstacles) after taking a sequence of actions and interacting with the 

environment. The agent learns a policy (e.g., a sequence of actions) mapping states to actions and 

seeks to maximize its cumulative reward in the long run, which is the optimal policy to accomplish 

the task. Figure 3.8 shows the RL concept. One of the main challenges for the Reinforcement 

Learning application is defining the reward function [194]. For the developed method, the reward 
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function is defined based on the translated context, and the agent will receive a higher reward if it 

follows the translated context, which is discussed in section 3.4.5. 

 

Figure 3.8 Reinforcement Learning (RL) Concept. 

When applying the RL method to control a robot, the robot action needs to be formulated 

in continuous form, where the action in the RL setting is discrete since the agent will choose the 

action at each iteration [215]. The Policy Gradient (PG) based methods, such as Trust Region 

Policy Optimization (TRPO) [207], Proximal Policy Optimization (PPO) [211], and Deep 

Deterministic Policy Gradients (DDPG) [212], are the state-of-the-art methods in the robot RL 

continuous control domain [215] for solving the linearity and the non-linearity feature of the 

control. 

The PG methods utilize gradient ascent to find the optimal policy with the most precipitous 

increase in rewards, which have issues of choosing a proper learning rate (step size). If the learning 

rate is too large, one step could result in overshoot and never converge to the maximum. If the 

learning rate is too small, the model learns too slow and might take an inordinate amount of time 

to find the optimal policy. Some PG methods use the learning rate adjustment method [209] to 

change the learning rate over-time based on the situation, or optimization methods such as Adam 

optimizer [216]. For instance, in the flat region of the gradient, a large learning rate is used, and a 

small learning rate is used in the steep region of the gradient. However, there are still some issues 
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in the cliff situation or unexpected significant changes in the policy even with a small learning 

rate. 

The Trust Region Policy Optimization (TRPO) method [207] is applied in this work for 

robots to generate the control policy for installing the ceiling tiles, which utilizes a trust region to 

address the learning rate issue in the policy gradient. TRPO defines a trust-region by the Minorize-

Maximization algorithm (MM algorithm) [217] and KL divergence- which is the maximum step 

size. The PG method will then find the optimal point within the trust region and use that point to 

define a new trust region. This process will be repeated until the global maximum location is found, 

which is the control policy with the most precipitous increase in rewards. 

The challenge of the RL method in construction application is the partial observability and 

non-stationarity, similar to the challenge of deploying the RL method to physical systems [218]. 

This challenge can be overcome by constructing an RL environment in the simulator for the robot 

to interact with and find the trajectory by the TRPO method. This learning environment includes 

the non-stationarity of the construction site, such as loose tolerances and unexpected obstacles. 

3.4.5 Reward Function for Robot Learning 

After the source context is translated to the target initial observation, a reward function 

must be defined for the robot to learn the control policy through the TRPO RL method. Since the 

context translation model extracts the features from the image of the source demonstration and 

translates it to the target scene, the reward function is defined based on the extracted features, i.e., 

the feature tracking reward function Eq 3.8 [181]: 

 𝑅̂𝑓(𝑂𝑡
𝑙) = −‖𝐸𝑛𝑠(𝑂𝑡

𝑙) −
1

𝑛
∑𝑇(𝑧𝑠, 𝑧𝑡)

𝑛

𝑖

‖

2

2

 Eq 3.8 
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The feature tracking reward function calculates the difference between the features in the 

encoder 𝐸𝑛𝑠(𝑂𝑡
𝑡), which encodes the learner’s observation 𝑂𝑡

𝑙  to 𝑧𝑙 , and the average translated 

feature 
1

𝑛
∑ 𝑇(𝑧𝑠, 𝑧𝑡)

𝑛
𝑖 . If these two features have large differences, the robot should receive a large 

penalty to avoid following this translated context. If these two features match perfectly, the robot 

should receive the highest reward (in this case, zero) to follow this translated context. For example, 

if the context features in the translated context frame are similar to the context features in one of 

the ceiling tile demonstration video frames, which means the translated context at that time is close 

to what the demonstration did, the robot should receive a higher reward and use this translated 

context for performing the task. 

On the other hand, in order to avoid the robot overfit to the extracted features, a second 

reward function is defined to provide supplemental information, i.e., an image tracking reward 

function Eq 3.9 [181]: 

 𝑅̂𝑖(𝑂𝑡
𝑙) = −‖𝑂𝑡

𝑙 −
1

𝑛
∑𝑀(𝑂𝑡

𝑠, 𝑂0
𝑡)

𝑛

𝑖

‖

2

2

 Eq 3.9 

The image tracking reward function calculates the difference between the images of the target 

observation 𝑂𝑡
𝑙 and the average translated observation 

1

𝑛
∑ 𝑀(𝑂𝑡

𝑠, 𝑂0
𝑡)𝑛

𝑖 . The robot will receive the 

highest reward if these two observations match with each other. 

Finally, the total reward function combines the feature tracking reward function and the 

image tracking reward function, which is defined as Eq 3.10 [181]: 

 𝑅̂(𝑂𝑡
𝑙) = 𝑅̂𝑓(𝑂𝑡

𝑙) + 𝛼𝑅̂𝑖(𝑂𝑡
𝑙) Eq 3.10 

where 𝛼 represents the weight of the image tracking reward function. 
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3.5 Robot Learning from Trajectory Demonstration 

The generalized cylinder (GC) is a generic representation of an arbitrary cylinder. The 

center axis of the cylinder is defined as arbitrary spline curve Γ(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) and the 

cross-section boundary of the cylinder is a closed curve 𝛾(𝑟, 𝑠) = (𝑥(𝑟, 𝑠), 𝑦(𝑟, 𝑠)) with different 

shapes. Each cross-section along the center axis is perpendicular to each other. Figure 3.9 

illustrates an example of GC with the center axis and three cross-sections. The GC can be 

represented as: 

 𝐺(𝑟, 𝑠) = Γ(𝑠) + 𝑥(𝑟, 𝑠)𝜈(𝑠) + 𝑦(𝑟, 𝑠)𝜉(𝑠) Eq 3.11 

where 𝜈 represents the unit norm vector of the center axis and 𝜉 represents the unit binormal vector 

of the center axis. The GC has been applied for robotics applications, including collision detection 

[219], mapping and state estimation [220], and learning from demonstration [188]. The GC for 

LfD is modified to suit basic construction manipulating tasks, and a new generalized cylinders 

with orientation approach is further proposed to perform complex construction manipulating tasks. 

The strategies of handling unforeseen situations and obstacle avoidance are also developed for 

human-robot collaboration. Details of each element are discussed in the following subsections. 

 

Figure 3.9 Example of the Generalized Cylinder. Each Cross-Section 𝛾 is Perpendicular to Each 

Other Along the Center Axis 𝛤. 
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3.5.1 Generalized Cylinders for Robot Learning from Demonstration 

For the Learning from Demonstration approach, the GC is constructed from demonstration 

data and determines the robot trajectory within the GC space. Figure 3.10 shows the detailed 

procedure of the GC for LfD. First, the demonstration data is pre-processed to obtain aligned data. 

Second, the center axis curve and the cross-section boundary of the GC are calculated using the 

aligned data. Third, the GC is constructed using the center axis curve and the set of cross-section 

curves. Finally, the new robot trajectory is sampled within the GC space starting from the new 

initial pose. 

 

Figure 3.10 Procedure of the Generalized Cylinder Method for Trajectory LfD Method. 

In the first step, the demonstration data is processed and aligned. The demonstration data 

is captured using the virtual robot simulator, where the human expert controls the robot to complete 

the construction task manually, and the robot's end-effector poses are recorded. Since the 

demonstrations are recorded separately and manually, they are not aligned with each other and 

have some redundant waypoints, e.g., the robot is idle during the demonstration since the human 

expert has to ensure a collision-free manipulation. The group of 𝑚 demonstration data sets is 

defined as 𝐷𝑖 = (𝐷𝑥
𝑖 , 𝐷𝑦

𝑖 , 𝐷𝑧
𝑖) where 𝑖 = 1,… ,𝑚 represents 𝑖th demonstration data set, i.e., robot’s 

end-effector pose in 3D Cartesian coordinates. 

Each demonstration data set has different numbers of data points and requires the alignment 

process. The Ramer–Douglas–Peucker (RDP) algorithm is first applied to simplify and remove the 

redundant points in the demonstration data. Only key points remain in the simplified trajectory. 
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Then, we resample the trajectory with 𝑛 new data points, including key points from the simplified 

trajectory. Finally, the Dynamic Time Warping (DTW) algorithm is applied to align each 

resampled demonstration data. The resulting demonstration data becomes 𝐷𝑖̂ = (𝐷𝑥
𝑖̂ , 𝐷𝑦

𝑖̂ , 𝐷𝑧
𝑖̂) , 

where 𝐷̂ ∈ ℝ3×𝑛×𝑚  represents the set of demonstration having 𝑚  different demonstration 

trajectories where each trajectory has 𝑛 data points in 3D Cartesian coordinates. Figure 3.11 shows 

the original and the processed demonstration data. On the left side is the original demonstration 

data with three trajectories and different numbers of data points in each trajectory. On the right 

side is the processed demonstration data, where all three trajectories have the same number of data 

points and are aligned with each other. 

 

Figure 3.11 Example of the Original (left) and the Processed Demonstration Data (right). 

In the second step, the center axis Γ of the GC is calculated using processed demonstration 

data. The average location of the demonstration data is simply computed at 𝑠𝑡ℎ data point and 

assigns to Γ(𝑠): 

 Γ(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐷̂(𝑠)) Eq 3.12 
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This ensures that the center axis is aligned with the demonstration data at each timestep. In the 

third step, the cross-section curve 𝛾 of the GC is calculated using the processed demonstration data 

and the center axis Γ . In order to construct the cross-section curve at 𝑠𝑡ℎ  data point, all 

corresponding points are taken from processed demonstration data 𝐷̂(𝑠) , and cubic spline 

interpolation is applied to fit the data with the closed curve [188]. Figure 3.12 illustrates one of the 

cross-section curves 𝛾(𝑟, 𝑠) defined by three demonstration data and the center axis data point. 

After calculating all cross-section curves, the GC can be constructed by the center axis Γ, cross-

section curve 𝛾, and Eq 3.12. Figure 3.13 shows an example of the GC constructed by three 

demonstration data. 

 

Figure 3.12 A Cross-Section Curve is Defined by Three Demonstration Data and a Center Axis. 

 

Figure 3.13 Example of the GC Constructed by Three Demonstration Data. 
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In the final step, a new robot trajectory has to be sampled within the GC. The skill 

reproduction process in [188] is followed to sample the robot trajectory. The initial pose of the 

trajectory 𝑝0  is randomly sampled from the first cross-section plane 𝑆0 , i.e., the cross-section 

defined by 𝛾(0) and Γ(0). To determine the next point on the second cross-section plane 𝑆1, the 

initial pose 𝑝0  is first projected onto 𝑆1  and get the new pose 𝑝′1 . The variable 𝑝𝑡  is used to 

represent the current pose and 𝑝𝑡+1 is used to represent the new pose in Eq 3.13, Eq 3.14, and Eq 

3.15 to keep consistency (𝑡 = 0,1, … 𝑛 − 1): 

 𝑝′𝑡+1 = 𝑇𝑡
𝑡+1𝑝𝑡 Eq 3.13 

where 𝑇𝑡
𝑡+1 represents the projection matrix between two coordinates. In order to preserve the 

feature of the previous pose 𝑝𝑡 , a similarity ratio 𝜂 is defined to shift the new pose 𝑝′𝑡+1 to a 

different pose 𝑝𝑡+1. On the previous cross-section plane 𝑆𝑡, the center axis point Γ(𝑡) is projected 

to the cross-section curve 𝛾(𝑡) through 𝑝𝑡 and find the projection point 𝑔𝑡. The similarity ratio is 

calculated using the following equation: 

 𝜂 =
|𝑝𝑡Γ(𝑡)̅̅ ̅̅ ̅̅ ̅̅ |

|𝑔𝑡Γ(𝑡)̅̅ ̅̅ ̅̅ ̅̅ |
 Eq 3.14 

After obtaining the new pose 𝑝′𝑡+1, the center axis point Γ(𝑡 + 1) is again projected to the 

cross-section curve 𝛾(𝑡 + 1) through 𝑝′𝑡+1 and find the projection point 𝑔𝑡+1. Finally, the shifted 

new pose 𝑝𝑡+1 is calculated by: 

 𝑝𝑡+1 = (𝜂|𝑔𝑡+1Γ(𝑡 + 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |)𝑝′𝑡+1 Eq 3.15 
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The entire process is repeated through every cross-section to generate the new robot trajectory. 

Figure 3.14 illustrates the new pose sampling process from the cross-section 𝑆𝑡 to 𝑆𝑡+1 along the 

center axis Γ. The pseudo-code of the GC for LfD can be found in Algorithm 1. 

 

Figure 3.14 Process of Sampling New Pose from the Cross-Section 𝑆𝑡 to the Next Plane 𝑆𝑡+1. 

Algorithm 1. Generalized Cylinder for Robot Learning from Demonstration 

procedure ENCODING DEMONSTRATIONS(𝑫̂) 

Γ(𝑠) ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐷̂) 

𝛾(𝑟, 𝑠) ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷̂) 

𝐺(𝑟, 𝑠), 𝑆 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟(Γ(𝑠), 𝛾(𝑟, 𝑠)) 

return 𝐺(𝑟, 𝑠), 𝑆 

end procedure 

procedure CONSTRUCTGENERALIZEDCYLINDER(𝚪(𝒔), 𝜸(𝒓, 𝒔)) 

for each 𝑠 do 

𝜈(𝑠), 𝜉(s) ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑈𝑛𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟(Γ(𝑠)) 

𝑆𝑠 ← 𝑔𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝜈(𝑠), 𝜉(s)) 

𝐺(𝑟, 𝑠) ← Γ(𝑠) + 𝛾𝑥(𝑟, 𝑠)𝜈(𝑠) + 𝛾𝑦(𝑟, 𝑠)𝜉(s) 

end for 

return 𝐺(𝑟, 𝑠), 𝑆 

end procedure 

procedure GENERATE TRAJECTORY(𝑮(𝒓, 𝒔), 𝑺) 

𝑝0 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐺(𝑟, 0)) 

𝜂 ←
|𝑝0 − Γ(0)|

|𝑔0 − Γ(0)|
 

𝑝𝑡 ← 𝑝0 

for each 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑡 do 

𝑝𝑡+1 ← 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑝𝑡, 𝜂, 𝑆𝑡+1, 𝑆𝑡) 

𝑡 ← 𝑡 + 1 

end for 

return 𝑝 

end procedure 
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3.5.2 Orientation Constraint 

After obtaining the robot learned trajectory from the GC, the robot control policy could be 

determined using Inverse Kinematics. The robot trajectory is in 3D Cartesian coordinate as 

(𝑥, 𝑦, 𝑧) triplets without end-effector’s orientation information. However, it is necessary for some 

complex construction tasks to strictly follow the manipulating orientation. For example, in the 

ceiling tile installation process, the tile has to be manipulated to some specific orientations in order 

to pass through the grid area. In the end, the tile also has to be placed with the same orientation to 

fit the grid. 

When the tile is approaching the grid, the orientations are similar across every 

demonstration data. Figure 3.15 illustrates the orientation information of the tile manipulation. The 

demonstration trajectories are close to each other when nearing the grid area to insert a tile into 

the grid. The demonstration data points with minimum distance to each other are defined as the 

insertion points since all demonstration trajectories have to go through that region. The average 

orientation at the insertion point is defined as the critical orientation, i.e., the robot must use it at 

the insertion point to pass the tile into the grid area. Figure 3.16 shows an example of the insertion 

point and the critical orientation. 

 

Figure 3.15 Orientation Information of the Ceiling Tile Installation Manipulation. 
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Figure 3.16 Example of the Insertion Point and the Critical Orientation. 

The new algorithm called Generalized Cylinder with Orientations approach (GCO) is 

proposed using the GC method and orientation constraint method. Figure 3.17 shows the procedure 

of the orientation constraint for the GC method. First, the cross-section with the minimum area 

and the insertion point is determined. The demonstration data points on this cross-section are 

closest to each other. Second, the critical orientation is calculated by averaging all orientation data 

at the insertion point. Finally, the robot pose is constrained by the critical orientation at the 

insertion point and determines the new control policy. 

 

Figure 3.17 Procedure of the Orientation Constraint for the GC Method. 

In the first step, the area of every cross-section is calculated and the one with the minimum 

area is found. Using the GC representation from Eq 3.11, the cross-section curve at the 𝑠𝑡ℎ data 

point is 𝛾(𝑟, 𝑠) = (𝑥(𝑟, 𝑠), 𝑦(𝑟, 𝑠)). The area of the cross-section curve can be calculated by: 

 𝑎𝑟𝑒𝑎(𝑠) = ∫ (𝑥
𝑑𝑦

𝑑𝑟
− 𝑦

𝑑𝑥

𝑑𝑟
) 𝑑𝑟

𝑝

0

 Eq 3.16 

where 𝑝 represents the perimeter of the cross-section curve. Then, the data point with the minimum 

cross-section can be determined, i.e., the insertion point 𝑠̂. 
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In the second step, the critical orientation is calculated at the insertion point 𝑠̂ . The 

orientation of the demonstration data is represented using quaternions. The critical orientation is 

defined as the average of the quaternions. Based on the definition, the average quaternion is the 

argument of the minima of the following equation [221]: 

 𝑞̅ = argmin
𝑞∈𝕊3

∑𝜔𝑖‖𝐴(𝑞) − 𝐴(𝑞𝑖)‖𝐹
2

𝑛

𝑖

 Eq 3.17 

Using Eq 3.17, the average quaternion can further derived by: 

 𝑞̅ = argmax
𝑞∈𝕊3

𝑞𝑇𝑀𝑞 Eq 3.18 

 𝑀 = ∑𝜔𝑖𝑞𝑖𝑞𝑖
𝑇

𝑛

𝑖

 Eq 3.19 

Therefore, the average quaternion is the normalized eigenvector corresponding to the maximum 

eigenvalue of 𝑀. The average quaternion is calculated using Eq 3.19 and the eigendecomposition 

process. In the final step, Inverse Kinematics is applied with the critical orientation constraint and 

the last orientation data (the orientation for fitting the grid) to find the robot control policy. The 

pseudo-code of the GCO can be found in Algorithm 2. 

 

Algorithm 2. Orientation Constraint for the Generalized Cylinder Approach 

procedure ORIENTATION CONSTRAINT(𝑫̂, 𝑮(𝒓, 𝒔)) 

for each 𝑠 do 

𝑎𝑟𝑒𝑎(𝑠) ← ∫ (𝑥
𝑑𝑦

𝑑𝑟
− 𝑦

𝑑𝑥

𝑑𝑟
) 𝑑𝑟

𝑝

0

 

end for 

𝑠̂ ← 𝑓𝑖𝑛𝑑𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐴𝑟𝑒𝑎(𝑎𝑟𝑒𝑎(𝑠)) 

𝑀 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 (𝐷̂(𝒔̂)) 

𝑞̅ ← 𝑓𝑖𝑛𝑑𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟(𝑀) 

return 𝑞̅ 

end procedure 
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3.5.3 New Locations and Obstacle Avoidance 

The GCO approach provides the geometric space constructed by demonstration data to 

sample the new robot trajectory. However, the start and the target pose have to lie in the GC space, 

and the process is unable to overcome unforeseen situations such as arbitrary obstruction. One way 

to overcome such unforeseen situations is to apply a nonrigid registration technique, e.g., Thin-

Plate Splines or Laplacian Trajectory Editing that takes a set of points in the unforeseen geometry 

to deform the GC [188]. Since construction tasks are quasi-repetitive and subject to various start 

and target locations, a trajectory adaptation approach is proposed to refine the robot trajectory 

based on the new start and target locations. 

Figure 3.18 shows the procedure of the trajectory adaptation approach. First, each 

demonstration data is translated to the new scene and matches the target data point with the new 

target location. Then, the GC is constructed using the translated demonstration data. Second, the 

GC is updated by the new start location. Third, the collision of the new GC is checked by the 

collision detection algorithm. If the collision exists, the GC will be updated to avoid the obstacle. 

Finally, a new robot trajectory is sampled within the new GC with the orientation constraint and 

applies Inverse Kinematics to determine the robot control policy. 

 

Figure 3.18 Procedure of the Trajectory Adaptation Approach to Refine the Robot Trajectory. 

In the first step, the human worker indicates the new target location 𝑝𝑡 in the new scene to 

the robot. The robot translates the demonstration data 𝐷̂ to the new scene and matches the new 

target location 𝑝𝑡 . Next, the GC is constructed using the translated demonstration data 𝐷′̂  and 
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Algorithm 1 before sampling a new trajectory. In the second step, the GC is updated with the new 

start location 𝑝0, i.e., the current pose of the robot’s end-effector. 

If the new start location 𝑝0  is within the GC space, the new trajectory can be simply 

sampled starting from the cross-section of the new start location 𝑝0 to the new target location 𝑝𝑡, 

as shown in Figure 3.19(a). If the new start location 𝑝0 is outside the GC space and coplanar with 

the first cross-section plane of the GC, the new start location is directly connected to the previous 

start location, as shown in Figure 3.19(b). By following this process, the robot can maneuver on 

the first cross-section plane 𝑆0 and follow the same trajectory afterward. 

 

Figure 3.19 Updated GC with Different Start and Target Locations. 

 If the new start location 𝑝0 is outside the GC space and not coplanar with the first cross-

section of the GC, the new start location 𝑝0  is connected to every start waypoint of the 

demonstration data 𝐷′̂(0) with straight lines. Then, a new GC 𝐺′(𝑟, 𝑠) is constructed using these 

updated straight-line demonstration data 𝐷′′̂(0) and resample the robot trajectory. Because all 

updated demonstration data 𝐷′′̂ are started from the same initial waypoint 𝑝0, the vertex of the GC 

𝐺′(𝑟, 𝑠) is the new start location 𝑝0 and the first similarity ratio 𝜂 cannot be determined (𝑆0 is the 

vertex of the GC). 
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To simplify the trajectory sampling process, instead of using the projection and similarity 

ratio to determine the second robot waypoint 𝑝1, a waypoint is randomly sampled on the cross-

section plane 𝑆1 and utilize it as the second robot waypoint 𝑝1. Then, the generating trajectory 

procedure in Algorithm 1 can be repeated to find the new robot trajectory. Figure 3.19(c) shows 

an example of the updated GC with a new start location outside the GC space and not coplanar 

with the first cross-section plane of the GC. Algorithm 3 shows the pseudo-code of the trajectory 

adaptation approach. 

 

Algorithm 3. Trajectory Adaptation Approach 

procedure TRAJECTORY ADAPTATION(𝑫̂, 𝒑𝟎, 𝒑𝒕) 

𝐷′̂ ← 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒(𝐷̂, 𝑝𝑡) 

𝐺′(𝑟, 𝑠), 𝑆′ ← 𝐸𝑛𝑐𝑜𝑑𝑒 𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝐷′̂) 

if 𝑝0 ∈ 𝐺′(𝑟, 𝑠) do 

𝑆0
′ ← 𝑔𝑒𝑡𝐶𝑟𝑜𝑠𝑠𝑆𝑒𝑐𝑡𝑖𝑜𝑛(𝑆′, 𝑝0) 

𝑝 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝐺′(𝑟, 𝑆0
′), 𝑆′) 

else if 𝑝0 ∉ 𝐺′(𝑟, 𝑠) and 𝑖𝑠𝐶𝑜𝑝𝑙𝑎𝑛𝑎𝑟(𝑝0, 𝑆0
′) do 

𝑝 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝐺′(𝑟, 𝑠), 𝑆′) 

𝑝 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑝0, 𝑝) 

else do 

𝐷′′̂ ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑝0, 𝐷′̂) 

𝐺′′(𝑟, 𝑠), 𝑆′′ ← 𝐸𝑛𝑐𝑜𝑑𝑒 𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝐷′′̂) 

𝑝 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝐺′′(𝑟, 𝑠), 𝑆′′) 

𝐺′(𝑟, 𝑠) ← 𝐺′′(𝑟, 𝑠) 

end if 

return 𝑝, 𝐺′(𝑟, 𝑠) 

end procedure 

 

In the third step, the collision detection algorithm is applied to validate the GC. The 

bounding box algorithm is used to create bounding boxes around each geometry in the 

environment. the robot is assumed to have all information of the surrounding environment using 

an approach described in previous work to collect and synchronize the geometry data [11] and 

construct bounding boxes around each geometry in the environment. If the GC or the handled 
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component is intersecting with any of the bounding boxes, the GC must be reconstructed to avoid 

collision. Existing methods used the adaptive ratio and deformation function to avoid the obstacle 

intersecting with the GC [188]. A human-in-the-loop refinement approach is proposed to resolve 

the situation. When a collision occurs, the human worker will demonstrate one solution to the robot 

and record the trajectory. The new demonstration data is combined with all other demonstration 

data to construct a new GC. 

Instead of randomly sampling a waypoint on the first cross-section plane 𝑆1, the center axis 

Γ(1) is connected to the new demonstration data 𝐷𝑚̂(1) with a straight line and define a shift ratio 

𝜌 to select the waypoint: 

 𝜌 =
𝑛

|Γ(1)𝐷𝑚̂(1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
 Eq 3.20 

where 𝑛  represents the total number of the data points in one demonstration. Then, the first 

waypoint is determined by the demonstration data 𝐷𝑚̂(1) and the shift ratio 𝜌. By using the shift 

ratio, the new robot trajectory will stay close to the new demonstration data in order to avoid 

obstacles. Figure 3.20 illustrates the process of determining the robot waypoint on the first cross-

section plane. The dashed curve is the original cross-section, and the solid curve is the new cross-

section extended by the new demonstration data 𝐷𝑚̂(1). The new waypoint 𝑝1 is selected by the 

line Γ(1)𝐷𝑚̂(1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and the shift ratio 𝜌. Next, the rest of the robot trajectory can be sampled using 

the updated GC and Algorithm 1. 
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Figure 3.20 Process of Determining the Waypoint 𝑝1 on the First Cross-Section Plane 𝑆1. 

On the other hand, a collision usually occurs when the manipulated object is approaching 

the installation location, e.g., a tile collides with the suspended grids. To overcome such collisions, 

more critical orientation data points near the installation location are included. The number of 

critical orientation data points depends on the demonstration trajectory. If the demonstration 

trajectory is close to the obstacle, it requires more critical orientations, and the computational time 

also increases significantly to calculate the average quaternions. 

Two steps are proposed to determine if the critical orientation is required. First, if the 

distance between the current robot waypoint and the installation plane is smaller or equal to the 

half-length of the manipulated object bounding box’s largest diagonal, the critical orientation is 

required at this waypoint. Second, if the collision still occurs, the human-in-the-loop refinement 

approach will be applied to avoid the obstacle and repeat the entire process to determine the robot 

trajectory. Finally, the robot control policy is determined based on the robot trajectory and the 

critical orientations. Algorithm 4 shows the pseudo-code of the human-in-the-loop refinement 

approach. 

 



 94 

Algorithm 4. Human-in-the-Loop Refinement Approach 

procedure HUMAN-IN-THE-LOOP REFINEMENT(𝑮′(𝒓, 𝒔)) 

𝐵 ← 𝑔𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥() 

if 𝑖𝑠𝐹𝑜𝑢𝑛𝑑𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝐺′(𝑟, 𝑠), 𝐵) do 

𝐷𝑚̂ ← 𝑔𝑒𝑡𝐻𝑢𝑚𝑎𝑛𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛() 

𝐺′′(𝑟, 𝑠), 𝑆 ← 𝐸𝑛𝑐𝑜𝑑𝑒 𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝐷̂) 

𝜌 ←
𝑛

|Γ(1)𝐷𝑚̂(1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
 

𝑝1 ← 𝑠ℎ𝑖𝑓𝑡 (𝜌, 𝐷𝑚̂(1), Γ(1)) 

𝑖𝑛𝑠𝑒𝑟𝑡 𝑝1 𝑖𝑛𝑡𝑜 𝑝 

𝑝 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝐺′′(𝑟, 𝑠), 𝑆) 

return 𝑝 

end if 

end procedure 

 

3.6 Experiments and Results 

To evaluate the feasibility of applying the visual and trajectory LfD method for teaching 

quasi-repetitive construction tasks, the ceiling tile installation task was chosen as the experimental 

construction process. The visual LfD method is first evaluated. The ceiling tile installation 

demonstration videos were collected in the laboratory with a camera, as shown in Figure 3.21, and 

utilized to train the context translation model and the RL method (TRPO). The performance of the 

model and the TRPO method was evaluated by the success rate of the installation task in the 

Gazebo robotics simulator using ROS (Robot Operating System) [204] and rviz [222] tools and a 

KUKA industrial robot arm emulator. Second, the trajectory LfD method is evaluated. The robot 

simulator ROS Gazebo [205] is used to build the robot’s work environment, collect demonstration 

data, and evaluate the robot’s performance. The success rate of the installation is used as the 

evaluation metric. 
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Figure 3.21 Ceiling Tile Installation Demonstration Video Collected in the Laboratory with an 

Iso View Camera. 

3.6.1 Implementation and Training Details 

The context translation model was implemented by modifying the original network using 

TensorFlow. A total of 85 videos were collected in the real-world for training the networks. The 

imitation learning by observation methods typically require thousands of demonstration videos to 

train accurate learning models [223]. This can be coupled with pre-programming a robot with 

primitive actions and providing an action sequence to complete tasks. However, collecting such 

data at this scale in real construction work settings is not practical due to the human effort required. 

Therefore, we propose the use of robot simulation in the virtual simulator or humans demonstrating 

in Virtual Reality to help collect a rich training dataset by interacting with different ceiling tiles or 

placing the camera at different locations[178]. Additional 1,500 simulation videos were collected 

in the virtual simulator and augmented to 3,000 training data by dataset augmentation method 

[157]. 
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The network was trained by the Adam optimizer [216] with learning rate 10-5 and the loss 

function described in the subsection Context Translation Model. The pre-trained model of the 

pushing task from [181] is used and fine-tuned the entire network’s weight with our training 

dataset. The network was trained for 10,000 iterations, and the batch size was 50. Since the total 

number of the training data is 3,085, each epoch has 3,085 / 50 = 62 iterations and a total of 10,000 

/ 62 = 162 epochs. The network weights were updated in every iteration. The training loss was 

found to converge after 1,000 iterations. Thus, considering time constraints and for ensuring the 

quality of the training, the model that trained for 10,000 iterations was selected. Table 3.2 listed 

the training parameters of the context translation model network. For validating the trained 

network, 60 different initial scenes were used as the testing data. In the demonstration video 

collection, the camera was set up at two fixed viewpoints for reducing the complexity, i.e., iso 

view and bottom view, as shown in Figure 3.22. 

Table 3.2 Context Translation Model Network Training Parameters 

 Parameters 

Optimizer Adam  

Learning rate 10-5 

Batch size 50 

Training iterations 10,000 

  

Figure 3.22 Example of the Ceiling Tile Installation Demonstration Video with Two Different 

Camera Viewpoints (Iso View and Bottom View). 
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The robot construction task performance was implemented in the virtual simulator 

environment for demonstrating the learned skill. ROS, Gazebo, rviz, OpenAI Gym [224], and 

gym-gazebo [225] were utilized to create the simulation environment and the TRPO algorithm. 

The use of a virtual simulator such as ROS Gazebo is the first step for evaluating the feasibility of 

a new method [226]. Different types of construction conditions could also be demonstrated and 

evaluated in virtual simulations, e.g., different sizes of the ceiling tile. In addition, the ROS and 

Gazebo systems are capable of communicating with real robots for testing in real environmental 

settings in subsequent work. 

A 6 DOF KUKA robot arm with a gripper, a ceiling tile, and a suspended grid were built 

and included in the ROS Gazebo simulator. Figure 3.23 illustrates the robot construction task 

performance in the simulation environment. The target grid location is on top of the robot arm. 

The real demonstration videos collected from the previous experiment were used as the training 

source, and 60 different initial observations with the same viewpoint (iso view) but different target 

suspended grid location and initial tile location were used as the testing data. 

 

Figure 3.23 A 6-DOF Robot Arm with a Gripper, a Ceiling Tile, and a Suspended Grid are 

Included in the Simulation Environment. 
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For the trajectory demonstration, the data were also collected in the robot simulation. The 

human expert controlled the robot to complete the ceiling tile installation process while the robot’s 

end-effector 6-DOF poses (𝑥, 𝑦, 𝑧, 𝑞)  were recorded as the trajectory demonstration. For the 

human demonstration, three different target locations, i.e., three different grids, were defined and 

demonstrated four different trajectories for each target location from similar start locations (total 

12 sets of demonstration trajectories). The robot was assumed to have picked up the tile, and thus 

the tile was secured on the robot’s end-effector. The demonstration data were pre-processed using 

the method discussed in Section 3.5.1 to smoothen and align the trajectories. Each demonstration 

trajectory was resampled to 1,500 waypoints, as suggested in [188]. The number of the waypoints 

affects the computational time, the trajectory smoothness, and the collision checking ability. Figure 

3.24 shows one of the processed demonstration trajectories. 

 

Figure 3.24 One of the Processed Demonstration Trajectories with 1,500 Waypoints. 

The generalized cylinders with orientation approach was implemented in MATLAB and 

sent the control policy to the Gazebo robot. The experiment was designed in two phases to evaluate 

the GCO approach and the adaptation approach. In the first phase, the start and the target locations 

were both inside the GC space. Fifty start locations were defined on the first cross-section of each 

GC and, therefore, 150 cases to test the GCO approach. 
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In the second phase, the start and the target locations were both outside the GC space, i.e., 

unforeseen situations. Ten different start locations and ten different target grids were defined to 

test the trajectory adaptation approach. The image of the start locations was captured for the 

Imitation from Observation (IfO) approach to compare with the GCO approach. Figure 3.25 shows 

two examples of different start locations and target grids. 

 

Figure 3.25 Two Examples of Different Start Locations and Target Grids 

For evaluation and validation, the existing validation method in Liu et al. [181] was 

followed to devise the benchmark for success based on the understanding of the ceiling tile 

installation process and its success by consultation with experts and viewing tutorial videos online 

[227]. The volumetric success metric was defined, i.e., how close to the desired ceiling tile volume 

the robot places the tile, based on the ceiling tile tolerance identified in the product manual [228] 

for validation. 

3.6.2 Results of Context Translation Model 

The success metric is defined as whether the final non-overlapping area between the ceiling 

tile and the target grid cells is within a predefined threshold. Based on the ceiling tile tolerance 
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manual [228], the size of 595 by 595 mm (23.4" by 23.4") ceiling tile allows for a 5 mm (0.2") 

difference of tolerance between the tile and the grid; thus, the threshold is defined as 30 cm2 

(0.5𝑐𝑚 × 60𝑐𝑚 = 30𝑐𝑚2) in the experiment. Figure 3.26 is an example of the source video of 

ceiling tile installation. The human worker demonstrates how to install the ceiling tile, and the 

frame is sampled every 1/3 second in the video, which is approximately 15 frames in every training 

data point. 

 

Figure 3.26 Example of a Source Video of Ceiling Tile Installation. 

Figure 3.27 shows examples of the target initial observations with two different viewpoints 

(iso view and bottom view). The target initial observation is the first frame of the demonstration 

video, which is utilized for translating the context from the source video. Figure 3.28 shows the 

results of the translated scene. The top row is the successful result, and the bottom row is the 

unsuccessful result. The red rectangle represents the ceiling tile, and the green rectangle represents 

the target grid. The distance between the ceiling tile and the grid is over the predefined threshold 

of 5 mm; thus, it is determined as an unsuccessful result. 
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Figure 3.27 Example of Target Initial Observations, i.e., First Frame of the Video. 

Translated Success 

 

Translated Failure 

 
Figure 3.28 Results of the Translated Scene by Reconstructing Images with the Successful Result 

(Top) and Unsuccessful Result (Bottom). 

The success rate of the context translation model is compared with the different types of 

viewpoints (bottom view and iso view), as shown in Table 3.3. The success rate of the bottom 

view is 40% with 15 initial scenes, the iso view is 53% with 15 initial scenes, and the overall 

success rate is 47% with 30 initial scenes. In comparison with the result from Liu et al. [181], 

where the lowest success rate is 66% for pouring almonds with 3,060 demonstration videos, our 

context translation success rate is acceptable given the relatively modest number of demonstration 

videos (85) used for training. In addition, the results show that the bottom view has a lower success 

rate since most of the trajectories of ceiling tile installation are vertical types of movement, and 

the bottom view cannot provide sufficient information. This can be addressed by avoiding the 

vertical type viewpoint, and thus for evaluating the construction task performance, only the iso 

view types of the initial observation are utilized. 
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Table 3.3 Success Rate of the Context Translation Result. 

Viewpoint Success Failure Success rate 

Bottom view 6 9 40% 

Iso view 8 7 53% 

Overall 14 16 47% 

 

3.6.3 Results of Reinforcement Learning Method 

The success metric is defined as whether the final non-overlapping volume between the 

ceiling tile and the target grid cells is within a predefined threshold. Figure 3.29 shows a series of 

sequential frames for one of the results of the ceiling tile installation task performed by the robot 

arm in the virtual simulation environment. For the 2ft-by-2ft ceiling tile (60𝑐𝑚 × 60𝑐𝑚 × 1𝑐𝑚), 

30cm3 ( 0.5𝑐𝑚 × 60𝑐𝑚 × 1𝑐𝑚 = 30𝑐𝑚3 ) is selected as the threshold for determining the 

successful and failed cases. Figure 3.30 shows the cases of successful and failed ceiling tile 

installation. On the left side, the ceiling tile is placed at the incorrect location and exceeded the 30 

cm3 threshold. The success rate of the ceiling tile installation is 78% (47/60) in the simulation 

experiment. Among the thirteen failed cases, five of them exceeded the threshold (> 30cm3), and 

eight of them failed to pass the grid area. 

 

Figure 3.29 Result of the Ceiling Tile Installation Task Performed by the Robot Arm in the 

Virtual Simulation Environment. 
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Figure 3.30 Example of the Successful (Left) and Failed (Right) Cases. 

For comparing the number of real-world training data and the success rate, the network 

was trained with different numbers of real demonstration videos (30, 50, 70, 75, 80, and 85 videos) 

by 10,000 iterations. The success rate and the number of training data were approximated by a log 

function to predict the success rate with thousands of real training data, as shown in Figure 3.31. 

The success rate converged to 80% after 3,000 training data. The result of the 3,085 virtual and 

real training data was 78%. In the results of Liu et al. [181], a total of 3,000 training videos in 

virtual environments were used for the reaching task, which resulted in 81% success rate, and 

4,500 training videos in virtual environments for the pushing task, which resulted in 78% success 

rate. Therefore, the proposed method can achieve similar performance in the ceiling tile installation 

task, which is a more complex task than the simple reaching tasks, when provided with sufficient 

demonstration videos in both virtual and real world. 

 

Figure 3.31 The Prediction of the Success Rate by Approximating the Number of Training Data 

and Success Rate with Log Function. 
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3.6.4 Results of Generalized Cylinder with Orientations Approach 

In the first phase of the experiment, the success rate of the GCO approach is compared with 

the GC approach and the Context Translation Reinforcement Learning method (CTRL). Table 3.4 

shows the results of the GCO approach, GC approach, and the CRTL method for the robot 

installing ceiling tiles. First, the success rate of the GCO approach is 75.3%, with 113 success 

cases and 37 failed cases. In the 37 failed cases, the tiles were found to have collided with the grids 

before reaching the critical orientations. Second, the success rate of the GC approach is 16.0%, 

with 24 success cases and 126 failed cases. Among the 126 failed cases, 103 were unable to pass 

the grid, and 23 exceeded the threshold. Finally, the success rate of the CTRL method is 71.3%, 

with 107 success cases and 43 failed cases. Among the 43 failed cases, 23 were unable to pass the 

grid, and 8 exceeded the threshold. 

Table 3.4 Results of the GCO, GC, and CTRL Method for the Ceiling Tile Installation. 

Method Success Failure Success Rate 

GCO 113 37 75.3% 

GC 24 126 16.0% 

CTRL 107 43 71.3% 

 

Figure 3.32 shows the results of the GCO approach and the generated robot trajectory. The 

GC is constructed by the four sets of demonstration data, which are the thin lines inside the GC. 

The generated trajectory is shown as the thick line inside the GC, and the insertion point (critical 

orientation) is shown as the red dot. The robot will manipulate from the start location 𝑝0 to the 

target location 𝑝𝑡. For the failed cases in this experiment, they were unable to complete the task 

due to the demonstration trajectories being close to the suspended grid, and the tile colliding before 

reaching the critical orientation. The multiple critical orientation approach was applied and 

resolved 34 failed cases. Only 3 cases still collided with the grid due to the inaccurate 
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demonstration orientation recording. Figure 3.33 shows one of the sequences of the robot 

executing the ceiling tile installation process. 

 

Figure 3.32 Results of the GCO Approach and the Generated Robot Trajectory. 

 

Figure 3.33 A Sequence of the Robot Executing the Ceiling Tile Installation Process Using the 

GCO Approach. 
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In the second phase of the experiment, the success rate of the GCO and trajectory 

adaptation approach is compared with the GC approach and the CTRL method. Table 3.5 shows 

the results of the GCO and trajectory adaptation approach (GCOT), GC and trajectory adaptation 

approach (GCT), and the CTRL method for the new start and target locations. First, the success 

rate of the GCOT is 82.0%, with 82 success cases and 18 failed cases. The 18 failed cases collided 

with the grid during the inserting process. Even with the multiple critical orientations, the tile still 

could collide with the grid after passing the last critical orientation. The other reason is the noisy 

demonstration orientation during the data collection phase. Second, the success rate of the GCT is 

3.0%, with 3 success cases and 97 failed cases, which were unable to pass the grid. The low success 

rate of the GCT is due to incorrect orientation near the grid. Finally, the success rate of the CTRL 

method is 66.0%, with 66 success cases and 34 failed cases. Among the 34 failed cases, 24 were 

unable to pass the grid, and 10 exceeded the threshold. 

Table 3.5 Results of the GCO and Trajectory Adaptation Approach, GC and Trajectory 

Adaptation Approach, and CTRL Method for the New Start and Target Locations. 

Method Success Failure Success Rate 

GCOT 82 18 82.0% 

GCT 3 97 3.0% 

CTRL 66 34 66.0% 

 

Figure 3.34 shows the results of the GCOT approach and the generated robot trajectory. 

The human worker first determines the new target grid location 𝑝𝑡 to the robot. Then, the robot 

constructs the GC using four sets of translated demonstration data (thin lines) and connects to the 

new start location 𝑝0. Lastly, the robot can generate the adapted trajectory (thick line) using the 

new GC. Figure 3.35 shows one of the sequences of the robot executing the ceiling tile installation 

process using the GCOT approach with the new start and target locations. 
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Figure 3.34 Results of the GCOT Approach and the Generated Robot Trajectory. 

 

Figure 3.35 A Sequence of the Robot Executing the Ceiling Tile Installation Process Using the 

GCOT Approach with the New Start and Target Locations. 

3.7 Discussion 

In comparison with the results of Liu et al. [181], where they used the context translation 

model to teach a robot to push an object onto the target area, ladle almonds into a frying pan, and 

sweep the almonds into a dustpan, the success rate is 80% with 4,635 training videos (135 in real-
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world and 4,500 in the virtual environment) of the object pushing, 66% with 3,060 training videos 

(60 in real-world and 3,000 in the virtual environment) of the almonds pouring, and 75% with 994 

training videos (100 in real-world and 894 in the virtual environment) of the almonds sweeping. 

In this research, the result of the ceiling tile installation is 78% with 3,085 training videos 

(85 in real and 3,000 in virtual), which achieves a similar performance. The primary issue 

encountered in the experiment is the inability to pass the suspended grid due to incorrect 

manipulating angles, which can be improved by providing more demonstration videos from several 

tile installation projects with a variety of geometric conditions. Furthermore, the use of the 

augmented, virtual, mixed reality (AVMR) can also help collect more demonstration videos easily 

[176,178] since the human can demonstrate different tasks by interacting with different 

construction conditions in virtual environments directly. 

On the other hand, to evaluate the proposed trajectory-based Learning from Demonstration 

approach, the demonstration data and the experiment results were compared with the imitation 

learning from observation methods (IfO). For the demonstration data, the IfO methods typically 

require thousands of visual demonstration data (3,000 demonstration data in our experiment) 

[223], whereas the proposed trajectory-based approach only needs a few-shot demonstration (four 

sets of demonstrations in our implementation). The GCO approach requires detailed demonstration 

with the robot’s end-effector 6-DOF trajectory, which can be collected using the robot simulator 

or the parametric VR system. Furthermore, demonstration data can also be in the physical 

environment using the object pose estimation method [229] or markers such as AprilTag and KEG 

algorithm [113,230] to track the 6-DOF pose of the manipulated object. 

For the experiment results, the GCO approach achieves a higher success rate (75.3% for 

single critical orientation and 98.0% for multiple critical orientations) than the pure GC approach 
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(16%) and the CTRL method (71.3%) due to its close following of the human demonstration with 

detailed 6-DOF end-effector pose information. In the new start and target locations experiment, 

the GCOT approach also achieves a higher success rate (82.0%) than the GCT approach (3.0%) 

and the CTRL method (66.0%). The GC-based approach requires humans to indicate the target 

grid location, whereas the CTRL method requires the camera to point at the target grid. The CTRL 

methods can also achieve high accuracy by providing sufficient and variety of visual 

demonstration data. 

There are some limitations to the proposed method of teaching robots construction tasks 

from visual or trajectory demonstrations. First, the camera viewpoint in the visual demonstration 

is fixed at the iso view in order to reduce the complexity. On a real construction site, however, it 

is difficult to set up the camera with the same viewpoint during the robot performing process. In 

addition, the bottom view cannot provide sufficient information since the trajectory of the ceiling 

tile is parallel to the viewpoint of the camera. A new set of training data with a variety of 

viewpoints in both real-world and virtual world needs to be collected in future work, which can 

also tackle the variation in the demonstration video and the target scene. Humans can also 

demonstrate tasks in Virtual Reality by interacting with different objects and placing the virtual 

camera at different locations [178]. 

Second, the experiment is conducted in a virtual prototyping simulator, which will have 

some differences when the method is applied in the real-world with a real robot. For example, the 

size of the ceiling tile and grids might not be perfectly matched, and additional scene understanding 

and adaptive manipulation techniques such as those described in [11,21] may be necessary for 

implementation. The human-in-the-loop adaptation can also help the robot adjust the component 

and provide additional instructions. 
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Third, the proposed method only used visual demonstration or trajectory demonstration as 

input for learning the construction task skill. However, some of the construction tasks require 

different types of demonstrations to learn the skill [23]. For example, if the ceiling tile and the grid 

are perfectly snug without any workable gap between them, the human worker has to push the tile 

up and down to overcome friction and place it at the correction location. This process will need 

multiple types of demonstrations, such as tactile observations to measure the contact force 

corresponding to the visuals, so that the movements can be recorded and fused with such additional 

observation streams to teach the robot. Thus, an ongoing study of combining visual demonstration 

and force feedback, or haptic feedback, for teaching construction robots is currently being 

investigated. 

Fourth, the tile alignment must be checked in real practice to ensure quality, as illustrated 

in Figure 3.3 step 4. For this study, the ceiling tile installation is only concerned with ensuring that 

it is placed in its cell within the threshold volume, and the alignment is assumed to be already 

addressed in the grid construction phase (Figure 3.3 step 2). Thus, the overall grid alignment is 

assumed to be sufficient for this study. In real practice, an alignment checking mechanism such as 

a robot with a laser profiler must be included in the system to measure the alignment of the tile in 

the future, especially for other types of tiles such as those requiring plaster. If the alignment is 

incorrect or below the acceptable quality, the robot has to repeat the installation process until the 

tile alignment is correct. 

Fifth, the environment feedback is assumed to be collected by additional sensors and 

registered to the virtual simulator [11,231]. However, when dealing with the dynamic changing 

environment on construction sites, synchronization between the virtual and the physical 

environment is required to provide real-time information. The online process-level Digital Twins 
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can ensure state synchronization between the physical and the virtual environment, which is 

introduced in the next chapter. 

Sixth, the context translation model can handle a similar task under different scenarios. For 

example, placing the tile from a different starting position. However, when dealing with an 

unforeseen object such as the different shapes of the tile, additional algorithms must be applied to 

address the issue. For example, one-shot imitation learning [202] can be adapted to provide the 

robot the solution to the situation with limited demonstrations. The human can show the robot how 

to manipulate the different shape tiles with only one demonstration video, and the robot can 

improve their skill to handle such circumstances in the future. 

3.8 Conclusions and Future Work 

In this research, two robot LfD methods for training a construction robot to perform quasi-

repetitive construction tasks were proposed and evaluated, in which the ceiling tile installation was 

utilized as the experimental construction process. First, a visual LfD method, i.e., the context 

translation model, was adapted and extended for the construction application. The context 

translation model only uses the visual demonstration as input to teach the robot how to perform a 

specific task. 

There were two stages in the context translation model: construction task learning and 

construction task performing. In the construction task learning, the context from the training data 

was translated to the target initial observation, and then the robot could learn the translated context 

via the RL method, i.e., Trust Region Policy Gradient (TRPO) method. The model was trained on 

a set of ceiling tile installation demonstration videos, which was collected from the laboratory, and 

evaluated in the virtual ROS and Gazebo systems with a virtual KUKA robot arm. 
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Second, a trajectory-based Learning from Demonstration method to train robots to perform 

quasi-repetitive construction tasks is developed. The generalized cylinders approach was adapted 

and combined with orientation constraints to construct a geometric representation using 

demonstration data and generate the robot trajectory within the space with critical orientations 

(GCO approach). The trajectory adaptation approach and human-in-the-loop refinement approach 

were proposed to overcome unforeseen situations and avoid collisions (GCOT approach). The 

proposed GCO and GCOT approaches were evaluated in the robot simulator ROS Gazebo with 

ceiling tile installation demonstration trajectories collected from the human-controlled robot 

simulator. Only four sets of demonstration trajectories were required to construct the GC space 

and generate the robot trajectory. 

For evaluating the visual LfD method, a total of 3,085 demonstration videos (85 in real-

world and 3,000 in the virtual environment) were used for training, and 60 different scenes were 

used as test cases. The results showed that the model could translate the work context from the 

source video to the target observation with a success rate of 78% when using the iso camera view 

and used to find the robot control policy of the construction task with the TRPO method. For 

evaluating the trajectory LfD method, 150 test cases were selected for the GCO, and 100 test cases 

were selected for the GCOT and compared with the visual LfD method. The results showed that 

the GCO and GCOT could achieve 98.0% and 82.0% success rates with different start and target 

locations. 

For future work, additional demonstration videos with a variety of viewpoints and 

environmental conditions will first be collected for enhancing the training data in both the real-

world and virtual environments. Second, a human subjects study aimed at understanding how 

human workers interact with the robot using the proposed system to indicate the target location 
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and supervise the process will also be conducted to evaluate the human-in-the-loop refinement 

approach. Third, the deployment of real physical learning robots on actual construction jobsites 

will be developed and investigated in subsequent work. Fourth, the extension of the proposed 

approach to other quasi-repetitive construction tasks, such as drywall installation, will be 

investigated. Finally, the combination of multiple types of demonstration and sensor fusion, 

including trajectory, visual, and tactile demonstration, will be developed to tackle more complex 

construction tasks in cluttered work environments. 
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Online State Synchronization Between Physical Robots and Process-Level Digital Twins 

 

4.1 Introduction 

Construction work is generally characterized by 3D (dull, dirty, and dangerous) [4]. Among 

all U.S. industries, statistics show that the construction sector ranks the highest in occupational 

injuries and fatalities [232]. Falls, struck by objects, electrocution, and caught-in/between are four 

leading construction worker death causes (Fatal Four) [233] due to active and close proximity 

interaction between human workers and heavy equipment [109,234]. Accidents happen when the 

machine operator and human workers are not aware of each other or misunderstand the intention. 

For example, human workers present in the blind spot of the excavator and are struck by the bucket 

[235]. On the other hand, human workers also have to repetitively handle large and heavy materials 

with machines to complete construction tasks, where the struck-by and caught-in/between hazards 

usually occur in such processes [236]. 

Research has explored with various solutions to help prevent construction accidents. The 

tracking system is one of the methods to continuously locate equipment and human workers on 

construction sites. This can be achieved by sensors such as RFID [237], UWB [238], IMU [68], 

or GPS [239], or by cameras and computer vision algorithms [139]. Furthermore, different types 

of sensors can be combined and fused to improve tracking accuracy [90,95]. Recent advances in 

computer vision algorithms have extended the construction equipment and workers tracking 
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algorithm to trajectory prediction [234]. Blindspot analysis and prediction can also identify the 

possible collision zone near the heavy equipment [65,240]. Lastly, tele-operated or autonomous 

equipment can help reduce the requirement of humans working close to the equipment [241,242]. 

This can be extended to using robots on construction sites. 

4.1.1 Human-Robot Collaboration Safety 

Robots deployment on construction sites can help relieve safety issues [21]. For instance, 

the construction robot can group with human workers on job-sites to assist with physically 

demanding tasks, while human workers focus on the work process plan and decision-making tasks. 

This is similar to the assembly line in the manufacturing industry, where the robots focus on 

repetitive and precise tasks, and humans focus on planning and checking tasks. Human-robot 

interaction is defined as humans and robots working in a shared environment with all types of 

interactions [243]. Wang et al. classified the relationships between humans and robots into four 

categories: coexistence, interaction, cooperation, and collaboration [244]. Human-robot 

collaboration (HRC) has among the most active interaction between humans and robots, where 

humans and robots are sharing the workspace and coordinating on the same task synchronously 

[245]. 

Symbiotic human-robot collaboration is one of HRC that applies to solve complex tasks 

[246,247] by combining their expertise and complementing proficiencies, which typically requires 

significant computational effort and training data. For example, the human has cognitive skills, 

decision-making ability, and ability to react reasonably to unexpected situations that might arise 

on a construction site, where as the robot has the advantage of high precision, strength, and 

repeatability [248]. However, such human-robot collaborative work suffers from safety and trust-

related concerns [14,249] and is subject to strict safety standards [86]. For example, the robot must 
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be restricted for speed and force while collaborating with nearby human workers even though 

physical contact is allowed. A real-time human and robot tracking system can ensure safety by 

providing the information of the robot state to human workers [250]. 

On the other hand, since the symbiotic HRC consistently engages the human and robot 

with each other during the process, bi-directional communication is required to minimize the 

interruption and ensure safety [244]. In the human-to-robot direction, In the human-to-robot 

direction, communication can be achieved by directly commanding through the user interface to 

determine the robot goal or by using sensors to observe human movement, such as hand gestures, 

and extract the command [251]. The robot can easily understand the situation and execute the work 

plan. In the robot-to-human direction, the human has to be informed of the robot’s work plan 

before execution. This can be achieved by providing a virtual representation, i.e., Digital Twin, of 

the robot and the environment. The robot’s work plan can be demonstrated in the Digital Twin to 

the human in real-time and high-precision [244], allowing the human can make decisions based 

on the information. 

4.1.2 Process-Level Digital Twin 

The Digital Twin (DT) offers opportunities to virtually mimic the conditions of the physical 

(real) environment. This allows for a cyber-physical system (CPS) [252] where information of the 

current and forecasted future states of the robot can be displayed for decision making and 

evaluation prior to task execution [249]. Figure 4.1 shows the physical robot arm and its Digital 

Twin in the Gazebo simulator. Madni et al. [253] defined four levels of Digital Twin (Pre-Digital 

Twin, Digital Twin, Adaptive Digital Twin, and Intelligent Digital Twin) based on the level of 

intelligence. Of these four levels, the Adaptive Digital Twin combines user interface and machine 



 117 

learning with regular DT, whereas the Intelligent Digital Twin further utilizes reinforcement 

learning to process the state in a partially observed and uncertain environment. 

 

Figure 4.1 The Physical Robot Arm (Left) and its Digital Twin in Gazebo simulator (Right). 

Adaptive Digital Twin or process-level Digital Twin replicates the entire physical process 

in real-time [254], such as the manufacturing assembly line process. Real-time is defined as 

whether the digital twin is able to complete the process correctly within pre-defined timestamps, 

i.e., deadlines [255]. The real-time system can be categorized as a hard real-time system, firm real-

time system, and soft real-time system [256]. The hard real-time system has to accomplish each 

subtask before deadlines and will cause failure if missing any of the deadlines. For example, a 3D 

printer is considered a hard real-time system since the filament must be extruded at the right time 

as the extruder crosses the print bed. The firm real-time system can tolerate infrequent missing 

deadlines and count those as low-quality results. The soft real-time system can accommodate 

missing deadlines by reducing the quality of the result, such as live broadcasting video. The real-

time process-level DT has to meet all deadlines in order to represent the physical environment and 

thus is defined as a hard real-time system [257]. 

One of the major aspects of the process-level DT is the synchronized model [258]. The DT 

first constructs the virtual model based on the physical environment, then records and tracks the 
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changes in the physical environment and reflects them in the virtual model. The virtual model can 

be extracted from the designed construction model such as BIM or scanned 3D point cloud of the 

as-built environment [259–261]. On the other hand, a communication mechanism is required to 

synchronize the data between the physical environment and the virtual model [244,252]. The 

communication needs to be bi-directional so that the virtual model can reflect the changes of the 

physical environment, and the user can determine the next steps in the virtual model and send the 

command to the physical environment. This level of data communication and connectivity is one 

of the challenges to applying DT in architecture, engineering, and construction discipline [262]. 

The remainder of this chapter is organized as follows. First, existing digital modeling 

methods and Digital Twin robotic systems are identified and reviewed to define the research gap. 

Second, the real-time process-level Digital Twin of the robotic construction process is developed. 

Third, the communication system and an algorithm for checking synchronization are introduced. 

Finally, experiments of robot motion planning and executing are conducted and used to evaluate 

the synchronization of the proposed real-time process-level Digital Twin. 

4.2 Related Work 

To enable the virtual simulator to mimic the physical robot and its workspace, two aspects 

need to be considered. First, the virtual simulator has to reconstruct the physical environment and 

dynamically reflect the changes, which is the digital modeling method. Second, the virtual 

simulator has to plan the robot’s work plan and send commands back to the physical robot, which 

is the Digital Twin for the robotic system. The existing digital modeling methods and Digital Twin 

for construction robots are discussed in the following subsections. 
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4.2.1 Digital Modeling Methods 

Digital modeling methods, such as 3D visualization or BIM, are used in the construction 

industry for design, management, and operation throughout the building life cycle [263,264]. 

These modeling methods document the project information and provide a platform for 

stakeholders to record changes, collaborate, and resolve conflicts [265,266]. In order to achieve a 

high-quality collaboration, the model must be fully synchronized with the physical environment. 

It is time and cost-prohibitive to manually update the model [267]. Thus, existing research focuses 

on automatically generating and updating the 3D model [268]. 

Collecting the 3D point cloud is one of the methods for generating the 3D model of the 

indoor environment [231]. This type of method requires a registration method for obtaining 3D 

points from cameras or laser scanners [10,203,269] and then applies segmentation methods to 

separate objects and reconstructs the semantic model [270–272]. Object recognition algorithms 

are also applied to identify different objects in the point cloud [273,274]. Finally, algorithms are 

required to automatically update the digital model based on the identified objects [275,276]. In the 

Digital Twin system, geometry assurance is developed to ensure the quality of the model 

[277,278]. The data transmission in these types of methods is from the physical environment to 

the virtual environment. 

4.2.2 Digital Twin for Construction and Assembly Robots 

Digital Twin has been envisioned to be the next generation of construction cyber-physical 

systems that can benefit the construction industry in decision-making and monitoring [279]. A 

similar approach can be used to integrate a construction robot with digital modeling methods for 

visualization and task planning [280]. For example, Yang et al. [281] utilized BIM and robot path 
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planners to find and visualize the construction process of modular construction. Shahmiri and 

Ficca [282] developed a parametric model that can directly control industrial robots to assemble 

the structure. Bruckmann et al. [283] used BIM as the data source to program a cable-driven 

parallel robot to construct masonry buildings. Similarly, Usmanov et al. [284] used BIM to 

program an industrial robot arm to lay bricks. 

However, these types of systems are typically not synchronized between the virtual model 

and physical robot and require further adaptation to the design-build discrepancy [11]. One way to 

resolve the discrepancy is to use sensors to adapt the robot control [21,285]. On the other hand, 

the robot Digital Twin system developed in this work fulfills the demand for real-time data 

exchange, which is widely utilized in the manufacturing industry, digital fabrication, and human-

robot collaboration assembly [286–288]. For example, Naboni and Kunic [289] used DT for 

complex wood structure manufacturing and assembly. Furthermore, by combining with other 

techniques such as Augmented Reality, the synchronization and communication mechanism of the 

robot DT system can be improved [290]. The data transmission in these types of methods is from 

the virtual environment to the physical environment. 

4.3 Research Objective and Contributions 

To address the issue of human-robot collaboration in construction work, an online process-

level Digital Twin system is developed to bridge the virtual robot and physical robot in 

construction and digital fabrication. Robot Operating System (ROS) [204] is utilized to construct 

the framework of the system and create a robot arm model representing the physical robot arm in 

the Gazebo simulation environment [205]. ROS and Gazebo simulator have been utilized as 

modeling and operating tools for robotic buildings and environments [291] or multi-robot 

collaboration across different robot platforms [292]. 
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In terms of bi-directional communication, MQTT [293] or TwinCAT ADS [294] are used 

to connect the virtual robot arm with the physical robot arm. The algorithm of checking the 

synchronization between the physical robot arm and the virtual twin is also developed. Various 

robot motion planning methods are implemented in the Digital Twin system to control the physical 

robot arm, including joint angle control and Cartesian path planning. 

The proposed framework can be adapted to any robot arm models reflecting physical 

robots. The system is implemented in a fabrication laboratory with a full-scale KUKA KR120 6 

DOF robot arm and evaluates the system by comparing the pose of the physical robot arm with the 

virtual robot arm. Several complex trajectories and sets of joint angles are collected to test the 

proposed system. Finally, to validate the hard real-time feature of our process-level Digital Twin 

system, the data transmission time between the virtual robot and the physical robot is measured. 

4.4 Digital Twins of Robotic Construction Process 

The proposed real-time process-level robot Digital Twin system consists of three modules: 

the physical robot module, the virtual robot module, and the communication module, as shown 

inFigure 4.2. First, the virtual robot module includes the Digital Twin for visualizing the robot and 

the motion planner for planning the trajectory and solving the inverse kinematics (IK). Second, the 

physical robot module includes the real robot arm and the embedded sensors for measuring joint 

angles. Finally, the communication module includes two different communication protocols 

(MQTT and ADS) for data exchange and synchronization. 

The system is developed in Robot Operating System (ROS) since it is a meta-operating 

system that provides a message exchange mechanism between platforms across a network. For 

instance, the motion planner in the virtual robot module plans a trajectory and then sends the 
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control commands to the DT robot for execution and visualization. Each platform can be operated 

under different operating systems or programming languages. 

 

Figure 4.2 The Framework of the Online Process-Level Robot Digital Twin System. 

Figure 4.3 and Figure 4.4 show the flowchart of the data exchange between each platform in 

the MQTT version and ADS version. The system requires at least one PC to run the Digital Twin 

system and one PC embedded on the robot to process the control commands. The two PCs are 

connected with ethernet for data exchange and communication using the MQTT or ADS protocol. 

A detailed description of each module is provided in the following subsections. 

 

Figure 4.3 Flowchart of the Data Exchange Between Each Platform (MQTT Version). 



 123 

 

Figure 4.4 Flowchart of the Data Exchange Between Each Platform (ADS Version). 

4.4.1 Virtual Robot Module 

The ROS Gazebo and rviz are used to develop the DT in the virtual robot module on a 

Linux PC [205,222]. The Gazebo is a real-world physics simulator that creates a world and 

simulates the robot, whereas the rviz is visualization software that can read and display the data 

from Gazebo or real-world sensors. The robot arm model is imported to the Gazebo and rviz 

environment using the urdf format, as shown in Figure 4.5 and Figure 4.6. Two different robots 

are used as examples in the DT, i.e., KUKA KR5 and KUKA KR120 robot arms. The KR5 robot 

is a stationary robot arm whereas the KR120 is mounted on a track system with additional DOF. 

The joint angles of the robot arm are exchanged between the two programs to ensure 

synchronization. 
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Figure 4.5 The KUKA KR5 Robot Arm in Gazebo (Left) and rviz with MoveIt! Package (Right). 

 

Figure 4.6 The KUKA KR120 Robot Arm in Gazebo (Left) and rviz with MoveIt! Package 

(Right). 

In order to plan the specific construction task or motion, a motion planner is required in 

the module. Either MATLAB or MoveIt! can be used as the motion planner to achieve the task 

[295]. The Robotic System Toolbox in the MATLAB can plan the trajectory and solve the inverse 

kinematics of the robot. The built-in functions in the MATLAB provide faster programming ability 

to control the robot in various ways. However, it suffers from the latency issue and is not fast 

enough for real-time planning purposes. 
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On the other hand, the MoveIt! is a motion planning package for ROS, which plans the 

motion inside the rviz and sends it to the Gazebo. Figure 4.5 and Figure 4.6 right side shows the 

interface of the MoveIt! motion planning in rviz. The goal state, velocity, and time parameters can 

be customized and determined by the user as input to the motion planner. The result of the motion 

planning will then be demonstrated in rviz and sent back to Gazebo for execution. Both MATLAB 

and MoveIt! can be run on the same Linux PC as the DT or run on a different PC and connected 

through the network. 

To allow the robot to perform different construction tasks, two control modes are included 

in the DT: joint state control mode and Cartesian path control mode. In the joint state control mode, 

the user can determine the target joint angles of the robot and let the MoveIt! package plan the 

trajectory starting from the current robot joint states. This is an intuitive way for the user to control 

the robot to the desired pose. In the Cartesian path control mode, the user can specify a list of 

waypoints and let the robot end-effector follow the trajectory. The MoveIt! package will calculate 

the robot joint angles using inverse kinematics and control the robot to execute the plan. For 

example, the user extracts the waypoints from a BIM model geometry for a 3D printing robot arm 

to determine the work plan. Note that in the path-driven programming, such as 3D printing, the 

joint control mode is rarely being used. The algorithm will extract waypoints and geometric 

instructions, typically linear and circular movements, to generate the robot control commands. It 

will require significantly more waypoints to achieve the same path fidelity with joint movements 

due to the complexity of the 7 DOF robot kinematics. 

For the data exchange, only the current robot joint angles and the next robot joint angles 

are displayed within the virtual robot module. Both Gazebo and rviz read the current robot joint 

angles to visualize the robot state. The MATLAB or MoveIt! package read the robot joint angles, 
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determine the next robot joint angles, and send back to the Gazebo and rviz for execution. The 

joint state publisher (JSP) is the ROS node for publishing the current robot state to different ROS 

nodes, including the current robot joint angles from the physical robot module. 

4.4.2 Physical Robot Module 

In the proposed process-level DT system, the KUKA KR120 robot arm on the track system 

is the physical robot, as shown in Figure 4.7. The KUKA KR120 robot arm is a six-degrees-of-

freedom robot with an additional external degree-of-freedom for the track system. The 

programmable logic controller (PLC), TwinCAT software system, and robot sensor interface (RSI) 

are running on an embedded Windows PC to control the robot arm and retrieve the sensor data. 

The embedded encoders on the robot arm are used to measure the joint angles and read by the RSI. 

In the ADS communication version, the TwinCAT ADS is also running on the embedded Windows 

PC to publish and receive the messages. 

 

Figure 4.7 The KUKA KR120 Robot Arm for the Physical Robot Module. 

After activating the robot arm, the system first records the current robot joint angles as the 

origin of the robot for robot controlling purposes. The sensor readings are directly connected to 
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the TwinCAT system and correlate with the robot position data. Once the physical robot receives 

the next joint angles from the virtual robot, it will calculate the differences of the joint angles and 

then use the recorded origin to control the robot arm in the relative mode. The robot control 

command and the sensor measurement are two data exchanges inside the physical robot module, 

as shown on the right side of Figure 4.3 and Figure 4.4. 

Due to the limitation of the hardware data transmission speed and the missing data issue, 

some jitter effects might happen on the physical robot. To resolve this issue, different methods are 

used in the MQTT communication and the ADS communication. Currently, the first-order delay 

filter is applied in the TwinCAT program to smooth the robot trajectory for both MQTT and ADS 

communication. If a situation where missing data might arise, the delay filter can still interpolate 

and smooth the robot trajectory and avoid the jitter effects or sudden movements. However, the 

delay filter might produce slightly different trajectory compared to the planned trajectory. This can 

be resolved by applying the TwinCAT CNC package to generate the physical robot motion in the 

future. The CNC package can plan and interpolate the received waypoints to control the robot 

while respecting all dynamic limits and singularities of the robot. The density of the robot 

waypoints can be very high and synchronize all axes at the same time. 

4.4.3 Communication Module 

Finally, the communication module links the virtual robot module and the physical robot 

module. Two different communication protocols, i.e., MQTT communication protocol and 

TwinCAT ADS communication protocol, are developed for data exchange between the ROS 

system in the virtual robot module and the PLC in the physical robot module. Both MQTT 

communication protocol and TwinCAT communication protocol are capable of real-time 

communication and thus are suitable for smooth robotic control. First, an MQTT Bridge ROS node 
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(M) is developed to connect the MQTT to the ROS system, as shown in the middle of Figure 4.3. 

The MQTT Bridge node is run on the same Linux PC as the DT system to exchange the joint 

angles with the JSP node and connect with PLC in the physical robot module through the ethernet 

cable. The data exchange frequency in the MQTT Bridge is set to be 250 Hz to ensure the 

transmission speed on the robot arm. 

The joint angles of the robot arm and the location of the track system are the primary data 

streams exchanged in the MQTT bridge ROS node. Figure 4.8 illustrates the data structure and 

exchange process in the MQTT bridge ROS node. The data stream concatenates the robot joint 

angles from A1 to A6 and the track location E1 joint with a plus-minus sign and comma. Each 

joint angle is rounded to three decimal places (E1 joint is rounded to four decimal places) and pads 

zeros to the left. Thus, the length of the data is consistent and quickly retrieved by PLC. 

 

Figure 4.8 Data Structure and Exchange in the MQTT Bridge ROS Node. 

After receiving the joint angles data from the virtual robot module through the ROS topic, 

the system first converts the data to python string for easy storage and access. Next, the data is 

converted to the MQTT string type and sent to the physical robot module. This process can also 

avoid the garbled text issue when directly converting from the ROS topic to the MQTT string type. 

The data stream from the physical robot module is also processed with the same procedure and 

data structure and sent to the virtual robot module. 
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Second, a TwinCAT ADS Bridge ROS node (ADS) is developed to connect the TwinCAT 

ADS to the ROS system, as shown in the middle of Figure 4.4. Similar to the MQTT Bridge node, 

the TwinCAT ADS Bridge node is also run on the same Linux PC as the DT system to exchange 

the joint angles with the JSP node and connect with the TwinCAT ADS and PLC in the physical 

robot module through the ethernet cable. The data exchange frequency in the TwinCAT ADS 

Bridge is set to be 1,000 Hz to ensure the transmission speed on the robot arm. The joint angles of 

the robot arm and the location of the track system are stored in an array and directly sent between 

the ADS and the ROS system. Both ADS and the ROS system can read and change the array data 

to reflect the work plan and the robot condition. 

When exchanging the data between the virtual robot module and the physical robot module, 

the system must ensure the control commands are executed completely, and the pose of the 

physical and virtual robot is synchronized. A robot pose checking algorithm is designed to confirm 

the synchronization between the two robot arms. Algorithm 5 shows the pseudo-code of the pose 

checking algorithm (PCA). The algorithm takes the current virtual robot pose 𝜃𝑣𝑖𝑟𝑡𝑢𝑎𝑙 , current 

physical robot pose 𝜃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙, and the next robot pose 𝜃𝑛𝑒𝑥𝑡 as input. 

 

Algorithm 5: Pose Checking Algorithm 

procedure 𝑁𝑒𝑥𝑡 𝑃𝑜𝑠𝑒(𝜃𝑣𝑖𝑟𝑡𝑢𝑎𝑙 , 𝜃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙, 𝜃𝑛𝑒𝑥𝑡) 

    𝑑𝑖𝑓𝑓(𝜃) ← |𝜃𝑣𝑖𝑟𝑡𝑢𝑎𝑙 − 𝜃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙| 

    if 𝑑𝑖𝑓𝑓(𝜃) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 

        𝜃𝑛𝑒𝑥𝑡 ← 𝜃𝑣𝑖𝑟𝑡𝑢𝑎𝑙 

        Re-plan the trajectory based on 𝜃𝑛𝑒𝑥𝑡 

    else 

        𝜃𝑛𝑒𝑥𝑡 ← 𝜃𝑛𝑒𝑥𝑡 

    end if 

    return 𝜃𝑛𝑒𝑥𝑡 

end procedure 
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First, the PCA calculates the difference of 𝜃𝑣𝑖𝑟𝑡𝑢𝑎𝑙 and 𝜃𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙. If the difference exceeds 

the pre-defined threshold, the next joint angle 𝜃𝑛𝑒𝑥𝑡 will be assigned with the current joint angles 

𝜃𝑣𝑖𝑟𝑡𝑢𝑎𝑙 to ensure the physical robot can reach the desired joint angles. The trajectory also needs 

to be re-planned to reflect the current joint angles. On the other hand, if the difference does not 

exceed the threshold, the robot will simply execute the following joint angles. 

4.5 Experiment and Results 

The online process-level robot Digital Twin system is implemented and deployed in the 

Digital Fabrication Laboratory at the Taubman College of Architecture and Urban Planning, and 

the Structural Laboratory at the Department of Civil and Environmental Engineering at the 

University of Michigan. Three KUKA KR120 robot arms are the target physical robots, as shown 

in Figure 4.1 and Figure 4.7. 

4.5.1 Experimental Setup 

To evaluate the proposed system, experiments are conducted to verify the transmission 

time between the ROS system and PLC, and the pose between the physical robot and its DT is 

synchronized during trajectory execution. In the first experiment, a local network between two 

computers is set up to build the MQTT communication protocol and the TwinCAT ADS 

communication protocol to test the ROS Bridge node. Figure 4.9 shows the first experimental setup 

and the data exchange. The robot motion is planned on the first computer, and the trajectory is sent 

to the second computer through the MQTT or ADS for execution. The Cartesian path control mode 

is applied to plan four different motions, i.e., X-axis motion, Y-axis motion, Z-axis motion, and 

triangle motion. During the experiment, the timer is triggered when sending the pose from the 1st 
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computer and stopped when receiving the corresponding pose from the second computer to record 

the data transmission time. 

 

Figure 4.9 Two Virtual Robots are Used to Evaluate the MQTT and ADS Data Transmission 

Time. 

In the second experiment, the MATLAB package is used to plan the robot trajectory and 

send the work plan through the MQTT or TwinCAT ADS Bridge node. One reaching task 

trajectory is prepared and executed in the MATLAB and Gazebo DT, then the joint angles are sent 

to the physical robot using MQTT or ADS communication. The robot poses are generated by the 

Inverse Kinematic package in the MATLAB. Figure 4.10 shows the planned reaching task 

trajectory (pink line) in the MATLAB. The embedded encoders on the KUKA robot arm are used 

to measure and record the joint angles of the physical robot. Figure 4.11 shows the procedure of 

the second process-level robot Digital Twin system experiment. 

 

Figure 4.10 The Planned Reaching Task Trajectory (Pink Line) in MATLAB. 
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Figure 4.11 Procedure of the MATLAB Planned Digital Twin Experiment Using the MQTT or 

ADS Communication Protocol. 

In the third experiment, the MoveIt! package is used to plan the robot trajectory and 

compare the accuracy of the trajectory execution between the two communication methods. Figure 

4.12 shows the procedure of the MoveIt! planned process-level robot Digital Twin system 

experiment using the MQTT or ADS communication. The joint angles control mode is evaluated 

in this experiment. Ten different goal joint angles are randomly generated and planned the 

trajectories using the MoveIt! package. This information is then executed in the Gazebo DT and 

sent to the physical robot. Finally, the joint angles of the physical robot arm are measured and 

recorded to compare with the joint angles of the virtual robot arm. 
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Figure 4.12 Procedure of the MoveIt! Planned Digital Twin Experiment Using the MQTT or 

ADS Communication Protocol. 

In the final experiment, the MoveIt! package is used to plan the trajectory using Cartesian 

path control mode. Four different sets of end-effector waypoints are prepared (x-axis motion, y-

axis motion, z-axis motion, and triangle motion) and executed in the Gazebo DT and sent to the 

physical robot. The pose of the physical robot arm end-effector is measured and recorded to 

compare with the planned waypoints and the end-effector of the virtual robot arm. 

4.5.2 Experiment Results 

In the first experiment, the data transmission time between two virtual robots is recorded 

and compared with the virtual to physical robot transmission time using both MQTT and ADS 

communication. Table 4.1 shows the result of the data transmission time experiment. MQTT 

(VtoV), ADS (VtoV), MQTT (VtoP), and ADS (VtoP) are four different settings, where VtoV 

represents Virtual robot to Virtual robot and VtoP represents Virtual robot to Physical robot. We 



 134 

executed four trajectories (x-axis, y-axis, z-axis, and triangle motion) 100 times and collected 400 

data points for two VtoV settings. For two VtoP settings, we executed four trajectories four times 

and collected 16 data points. The average data transmission time for MQTT (VtoV) is 8.786ms, 

and for ADS (VtoV) is 5.173ms due to the transmission frequency limitation of the MQTT 

communication protocol (250hz). For MQTT (VtoP), the average data transmission time is 

12.547ms. Finally, ADS (VtoP) has an average of 9.483ms of data transmission time to exchange 

data between the DT and the physical robot to execute the work plan. 

Table 4.1 Data Transmission Time Between Two Robots Using MQTT and ADS Communication 

 Average Time Maximum Time Minimum Time 

MQTT (VtoV) 8.786 ms 9.024 ms 8.141 ms 

ADS (VtoV) 3.173 ms 3.905 ms 3.237 ms 

MQTT (VtoP) 12.547 ms 15.771 ms 11.754 ms 

ADS (VtoP) 7.483 ms 9.688 ms 6.595 ms 

VtoV: Virtual to Virtual robot; VtoP: Virtual to Physical robot 

 

In the second experiment, the joint angles of the physical robot and the MATLAB planned 

virtual robot are recorded and compared with each other. The stationary robot arm is used in this 

experiment, that is, excluding the track system (E1) joint. Figure 4.13 shows the results of the 

MQTT communicated virtual and physical robot joint angles using the MATLAB planned 

reaching trajectory. Each line represents the angle of each joint (A1, A2, A3, A4, A5, and A6) in 

radians. The trajectory from the virtual robot consists of 1,500 waypoints, and the measurement 

from the physical robot includes 18,802 data points. The results showed that the line of each joint 

angle had the same trend in the two robots, which demonstrated the consistency of the 

synchronization between the two robots using the MQTT communication protocol. 
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Figure 4.13 Results of the MQTT Communicated Virtual and Physical Robot Joint Angles Using 

the MATLAB Planned Reaching Trajectory. 

On the other hand, the ADS version is also evaluated using the same procedure. Figure 

4.14 shows the results of the ADS communicated virtual and physical robot joint angles using the 

same MATLAB planned reaching trajectory. The trajectory from the virtual robot consists of 1,500 

waypoints, and the measurement from the physical robot includes 17,145 data points. The results 

showed that the ADS communication could also synchronize the joint angles between two robots. 

 

Figure 4.14 Results of the ADS Communicated Virtual and Physical Robot Joint Angles Using 

the MATLAB Planned Reaching Trajectory. 
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To further evaluate the accuracy of the synchronization, the average error and the 

maximum error of each joint angle between the two robots are calculated. Virtual robot and 

physical robot results are first aligned to obtain the same numbers of data from two robots in order 

to calculate the mean square error. Table 4.2 lists the results of the average and maximum joint 

angle error using the MATLAB planned trajectory in the MQTT and ADS communication. In the 

MQTT communication, the average errors of each joint angle are less than 0.0013 in radians, and 

the maximum errors of each joint angle are less than 0.0025 in radians. In the ADS communication, 

the average errors of each joint angle are less than 0.0012 in radians, and the maximum errors of 

each joint angle are less than 0.003 in radians. Note that there are numerous translations of the 

datatype between ROS and the physical robot. The joint angles were scaled up by 1,000 in the RSI 

layer for data processing, and then scaled down in the ROS system to convert to angles for the 

virtual robot. Therefore, the number under 0.001 radians is insignificant. These results indicated 

that the synchronization of the virtual and the physical robot demonstrated high accuracy. The 

proposed pose checking algorithm (PCA) also helps minimize the discrepancy between two robots 

during the data transmission. 

Table 4.2 Average and Maximum Joint Angle Errors Between the Virtual and Physical Robot 

Using the MATLAB Planned Trajectory. 

Joint 

(rad) 

MQTT ADS 

Average Error Maximum Error Average Error Maximum Error 

A1 0.00024 0.00056 0.00034 0.00136 

A2 0.00040 0.00076 0.00032 0.00073 

A3 0.00077 0.00149 0.00077 0.00148 

A4 0.00127 0.00241 0.00120 0.00293 

A5 0.00030 0.00068 0.00037 0.00068 

A6 3.535e-05 7.623e-05 4.345e-05 0.00017 

 

In the third experiment, the joint angles of the physical robot and the MoveIt! joint angle 

control mode planned virtual robot are recorded and compared with each other. The track system 
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is included in this experiment (E1). Figure 4.15 and Figure 4.16 show the results of the MQTT and 

ADS communicated virtual and physical robot joint angles using the MoveIt! joint angle control 

mode planned trajectory. The trajectory from the virtual robot consists of 10 random goal poses, 

which includes 2,507 waypoints, and the measurement from the physical robot includes 2,513 data 

points. The trajectory patterns of the virtual and the physical robot are similar and only have minor 

errors. 

 

Figure 4.15 Results of the MQTT Communicated Virtual and Physical Robot Joint Angles Using 

the MoveIt! Joint Angle Control Mode. 

Table 4.3 shows the results of the average and maximum joint angle error using the MoveIt! 

joint control mode in the MQTT and ADS communication. In the MQTT communication, the 

average errors of each joint angle are less than 0.099 in radians and less than 0.0042 in m for the 

E1 joint. The maximum errors of each joint angle are less than 0.195 in radians and less than 

0.0011 in m for the E1 joint. The A5 joint has the highest error in the MQTT experiment. 
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Figure 4.16 Results of the ADS Communicated Virtual and Physical Robot Joint Angles Using 

the MoveIt! Joint Angle Control Mode. 

In the ADS communication, the average errors of each joint angle are less than 0.099 in 

radians and 0.0005 in m for the E1 joint. The maximum errors of each joint angle are less than 

0.196 in radians and 0.0015 in m for the E1 joint. The A5 joint also has the highest error in the 

ADS experiment, and the average error of the E1 joint in ADS is smaller than the MQTT E1 joint. 

The results showed that the joint angle control mode in the MoveIt! package can precisely control 

the robot to the goal pose with some minor errors due to the first-order delay filter and synchronize 

with the physical robot by using the proposed PCA algorithm to ensure the accuracy of the joint 

angles. 
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Table 4.3 Average and Maximum Joint Errors Between the Virtual and Physical Robot Using the 

MoveIt! Joint Control Mode. 

Joint 

(rad) 

MQTT ADS 

Average Error Maximum Error Average Error Maximum Error 

A1 0.00239 0.00549 0.00272 0.00711 

A2 9.117e-05 0.00024 0.00061 0.00099 

A3 0.00072 0.00193 0.00088 0.00269 

A4 0.00434 0.01143 0.00601 0.01600 

A5 0.09804 0.19458 0.09887 0.19594 

A6 0.00162 0.00427 0.00190 0.00565 

E1 (m) 0.00410 0.00108 0.00048 0.00144 

In the final experiment, the pose of the end-effector of the physical robot and the MoveIt! 

Cartesian path control mode planned virtual robot are recorded and compared with each other. 

Figure 4.17 shows the results of the MQTT and ADS communicated virtual and physical robot 

end-effector pose using the MoveIt! Cartesian path control mode planned trajectory. The solid blue 

line represents the planned trajectory in the virtual robot module, the red dash line represents the 

MQTT executed trajectory, and the yellow dot line represents the ADS executed trajectory. Each 

line represents the position of the robot end-effector in world coordinate (X, Y, Z). 

 

Figure 4.17 Results of the MQTT and ADS Communicated Virtual and Physical Robot’s End-

Effector Pose Using the MoveIt! Cartesian Path Control Mode. 



 140 

In addition, the average and maximum errors of the end-effector pose are also calculated, 

as listed in Table 4.4. The average errors of the robot end-effector are 1.422 mm on the X-axis, 

5.015 mm on the Y-axis, 1.967 mm on the Z-axis, and overall 6.487 mm for the MQTT 

communication protocol, where the maximum errors are 7.787 mm on the X-axis, 14.345 mm on 

the Y-axis, 7.204 mm on the Z-axis, and overall 16.052 mm. For the ADS communication protocol, 

the average errors are 1.543 mm on the X-axis, 3.667 mm on the Y-axis, 1.842 mm on the Z-axis, 

and overall 5.284 mm. The maximum errors are 8.027 mm on the X-axis, 7.695 mm on the Y-axis, 

6.854 mm on the Z-axis, and overall 10.314 mm. 

Table 4.4 Average and Maximum End-Effector Pose Errors Using the MoveIt! Cartesian Path 

Control Mode. 

(mm) 
MQTT ADS 

Average Error Maximum Error Average Error Maximum Error 

X 1.422 7.787 1.543 8.027 

Y 5.015 14.345 3.667 7.695 

Z 1.967 7.204 1.842 6.854 

Overall 6.487 16.052 5.285 10.314 

 

4.6 Discussion 

The difference in the transmission time between the MQTT communication and the ADS 

communication is less than 5 ms. The TwinCAT system is capable of running in real-time as the 

code is execute within 1 ms. The ADS communication ROS node can directly modify the joint 

angle variable in the TwinCAT system, and the MQTT communication ROS node has to convert 

joint angle data to several different formats (Figure 4.8), thus requiring extra time to process the 

data. In addition, both the ADS and MQTT communications are capable of connecting to the CNC 

package and precisely controlling the physical robot in the future. For the accuracy of the physical 

robot execution, both the MQTT and ADS communication reach similar performance, and the 
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errors of the joint angle are within 0.1 rad. The first-order delay filter causes some errors since the 

joint angle data received by TwinCAT are slightly different each time, and the smoothed 

trajectories are different. The errors are reduced by the proposed pose checking algorithm (PCA). 

Both MATLAB and the MoveIt! package achieve similar performance on planning the robot 

motion by joint control mode and Cartesian path mode and communicating with the 

communication module. However, the MATLAB package has limited the data communication 

frequency (up to 100 Hz) and requires a code generation function to improve the execution speed. 

The advantages of using the proposed bi-directional communication protocol to 

synchronize the virtual and real robot arms are to ensure that the collaborating human worker is 

informed of the work plan of the robot, to supervise and review the robot’s work plan, and to 

control the robot accurately. The use of the ROS framework also has the advantage of adapting to 

various robot systems or controlling software. For example, instead of using MATLAB or MoveIt! 

package, the modeling software such as Rhino can be used to directly extract the trajectory from 

components and send it to the communication module to exchange with the physical robot module. 

However, there are several limitations of the proposed system that need to be addressed in 

future work. First, the pose of the physical robot is measured by the onboard sensors. If any of the 

sensors fail, the virtual robot will not be able to synchronize with the physical robot. In the 

industrial robots, a failed encoder will cause an error state stopping all motion, and there is failsafe 

component to ensure the data correctness. This can be resolved by applying additional sensors, 

such as camera [71], to supplement the pose estimation and fusing with the onboard sensor data. 

Second, some of the limitations of the physical robot are not reflected in the virtual robot. 

For example, the velocity and the acceleration limits of the robot joints are not incorporated into 

the path planning correctly and the physical robot will stop due to the sudden high acceleration. 
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The dynamic limits can be reflected in the TwinCAT CNC package to control the physical robot. 

Third, the detailed information of the surrounding environment, e.g., obstacles in the workspace, 

is not included in the proposed Digital Twin system. When planning the robot trajectory, those 

obstacles need to be considered to avoid the collision. 

4.7 Conclusions and Future Work 

This chapter presents the development of the online process-level robot Digital Twin 

system for human-robot collaboration in the construction and digital fabrication. The system 

includes the virtual robot module, the physical robot module, and the communication module. The 

ROS Gazebo and rviz were leveraged to develop the virtual robot module, i.e., Digital Twin of the 

physical robot, and connected to the physical robot module through the MQTT Bridge or 

TwinCAT ADS Bridge in the communication module. The joint angles of the robot arm were 

exchanged and synchronized between two robots. The MATLAB or MoveIt! package was also 

utilized to plan and control the robot arm in the virtual robot module, then sent the command to 

the physical robot module for execution. In addition, two different control modes, i.e., joint angle 

control mode and Cartesian path control mode, were implemented in the MoveIt! program to 

control the virtual robot by joint angles or end-effector pose. Finally, a pose checking algorithm 

(PCA) was developed to ensure the pose of the two robots were synchronized. 

The system was implemented and deployed on a KUKA KR120 robot arm in the Digital 

Fabrication Laboratory and the Structural Laboratory to evaluate the synchronization and the data 

transmission time. Although the system was developed for the specific KUKA robot arm, it can 

be easily adapted to other robot models. The system was evaluated by comparing the data 

transmission time, joint angles, and end-effector pose between the virtual and physical robot using 

several planned trajectories and calculated the average and maximum mean square errors. The 
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results showed that the proposed online process-level robot Digital Twin system can plan the robot 

trajectory inside the virtual environment and execute it in the physical environment with high 

accuracy and real-time performance. 

In future work, the user interface will be designed for displaying the information of the 

physical robot in the Digital Twin. The robot planning mechanism will also be developed such that 

the robot can first demonstrate the planned trajectory inside the Digital Twin before executing by 

the physical robot. The human can thus expect the movement of the robot in advance and approve 

the task. 
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Conclusion 

5.1 Significance of the Research 

Robots have the potential to benefit construction workers by assisting with dirty, dull, and 

dangerous work, such as lifting and installing heavy components, while letting human workers 

focus on high-level sequential planning and supervising jobs. This research focuses on three key 

aspects to enable construction robots to work with human workers as a human-robot collaboration 

on construction sites performing quasi-repetitive tasks while ensuring the safety between human 

workers and their robot apprentices. In addition, the use of robot pose estimation, robot Learning 

from Demonstration, and robot Digital Twin can also benefit the construction work in other 

applications. For example, the robot pose estimation method can be applied to productivity 

analysis to locate multiple machines on-site and identify their working cycles. 

The proposed robot Learning from Demonstration method can also be applied to teach new 

construction worker recruits different tasks. For example, when a skilled worker is unavailable, 

the robots can demonstrate the construction task they learned before to a group of novice workers. 

Then, the robots can observe how recruits perform and practice the task. The observation by the 

robots can be used for updating the knowledge for future demonstration. The proposed robot 

Digital Twin method can be extended to BIM model synchronization. For instance, the virtual 

robot module gathers the geometric information from the BIM model and plans the construction 
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task. The physical robot module will execute the work plan, gather the geometric outcome from 

the environment, and send it back to the virtual robot module to update the BIM model. 

Finally, the proposed human-robot-environment collaboration can be applied to field 

robots in a built environment, such as resilient infrastructure robots. These robots have to navigate 

in an open and environmentally hostile workspace to different locations or in an underground 

hazardous environment to perform tasks for disaster recovery. The ability to learn from human 

workers and accomplish the work plan in a dangerous working environment can benefit 

community resilience and provide sustainable construction. 

5.2 Research Contributions 

This research investigates the collaboration and interaction between humans, robots, and 

the environment on construction sites by leveraging pose estimation, Learning from 

Demonstration (LfD), and Digital Twins. The contributions of each research topic are listed as 

follows. 

1. Vision-based and fusion-based pose estimation methods for large-scale articulated 

construction robots 

• A DNN-based 2D and 3D vision pose estimation system was modified and applied 

to articulated construction robots. 

• A fast dataset collection approach was proposed to rapidly collect image data and 

3D ground truth data of the robot. 

• A sensor-based (IMU) pose estimation system was implemented to evaluate the 

performance of the proposed vision pose estimation system. 
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• A DNN-based sensor fusion pose estimation system was proposed to combine 

vision pose and sensor pose and improve the accuracy and consistency in highly 

occluded construction environments. 

• The proposed 2D, 3D, and fusion pose estimation systems were tested using the 

excavator dataset collected by the fast dataset collection approach and 

demonstrated the applicable for proximity-related applications. 

2. Teaching robots quasi-repetitive construction tasks using Learning from human 

Demonstration 

• A robot Learning from Demonstration method was adapted for quasi-repetitive 

construction tasks using visual demonstration. 

• A trajectory-based Learning from Demonstration method was proposed to teach 

robots construction processes involving manipulation. 

• A trajectory adaptation approach and a human-in-the-loop refinement approach 

were designed to refine the robot trajectory in unforeseen scenarios and avoid 

obstacles. 

• The proposed visual LfD and trajectory LfD methods were tested in a virtual 

simulator with a KUKA KR120 robot arm performing the ceiling tile installation 

process. 

3. Online process-level Digital Twin and bi-directional state synchronization 

• A process-level Digital Twin and a bi-directional state synchronization method 

were developed to bridge the virtual and physical robot for construction and digital 

fabrication processes. 
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• Two different communication protocols were implemented in the process-level 

Digital Twin. 

• A pose checking algorithm was developed to ensure the state synchronization 

between two robots. 

• The proposed Digital Twin was evaluated with several robot trajectories and shown 

to be feasible for construction robot precise motion control. 

5.3 Future Directions 

This section discusses future research directions in the human-robot-environment interplay 

for the performance of construction work.  

5.3.1 Pose Estimation and Localization 

In order to improve the performance of the pose estimation system, additional research can 

be conducted to analyze the camera coverage and determine the optimal camera deployment 

network. Furthermore, the advanced robot localization methods can be investigated that adapt to 

the circumstances on unstructured and cluttered construction sites. Specifically, the reinforcement 

learning, occupancy grid mapping, and simultaneous localization and mapping (SLAM) [60,203] 

algorithm could be incorporated to enable construction robots to navigate and localize in 

unstructured environments. 

5.3.2 Learning from Demonstration 

The robot LfD, IL, or programming by demonstration methods [30,296,297] open avenues 

to new research areas of teaching robots complicated construction tasks. The human workers can 

transition their work profiles to that of demonstrators and supervisors without the need to harbor 
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any concerns about being displaced by robots. Since the human demonstrates the task to the robot, 

additional interaction methods are mandatory, such as voice or gesture [298], to control or indicate 

intentions to the robot. Moreover, Michalos et al. [299] proposed the enhancement of LfD by using 

voice and natural language to command robots and using visual recognition methods and force 

sensors to demonstrate the tasks. The sensor fusion methods are also required to obtain a reliable 

LfD result by combining different types of demonstration data [300]. 

When the human supervisor and the robot apprentice are collaborating on an actual 

construction site, the way they interact with each other is critical. There is a need for seamless 

communication regardless of whether the human is directly observing the robot or doing general 

work planning in the vicinity. The use of extended reality (XR) can be explored by developing 

mechanisms to encode the robot’s perception of their environment and display their planned 

trajectory to the human worker for approval. Mixed Reality (MR) can be employed to develop the 

human-robot supervision system and combine with Digital Twin. The construction robot will first 

use the learned knowledge to determine the control policy and trajectory and let its Digital Twin 

perform the task in MR. The human supervisor will then confirm whether the steps demonstrated 

by the virtual robot are acceptable and permit the real robot to perform the construction task. 

In addition, the improvisation method of the robot work plan can be further explored. If 

the work plan of the robot displayed in the MR is unacceptable or prone to failure, improvisation 

intervention from the human worker is required to resolve the issue. One option is to ask the 

supervisor to wear haptic gloves and interact with the construction component in MR to 

demonstrate the improvised actions to the robot apprentice. The robot will then imbibe the 

improvisation steps, determine a new control policy and trajectory, and demonstrate to the 

supervisor again for approval. Once approved, the robot can perform the task accordingly. 
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5.3.3 Process-Level Digital Twin 

This research assumes the geometric information of the environment is available and thus 

only focuses on the robot. The nature of the unstructured and dynamic-changing construction sites 

needs to be considered to develop the fully functional Digital Twin. Future study can investigate 

the object recognition methods by computer vision approaches to identify real-world objects, point 

cloud generation methods by SLAM algorithm to create the 3D model, and model registration 

methods to register the object in the 3D model, which can then be used to update the Digital Twin 

and the underlying BIM model representing the project’s design. 
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Appendix A 

Links to Datasets 

 

Excavator 3D Dataset 

The excavator 3D dataset can be found at this link. The annotation of the dataset is 

documented as follows: 

• bbox represents the bounding box (𝑋𝑡𝑜𝑝_𝑙𝑒𝑓𝑡, 𝑌𝑡𝑜𝑝_𝑙𝑒𝑓𝑡, 𝑋𝑏𝑜𝑡𝑡𝑜𝑚_𝑟𝑖𝑔ℎ𝑡, 𝑌𝑏𝑜𝑡𝑡𝑜𝑚_𝑟𝑖𝑔ℎ𝑡). 

• camPose represents the camera pose (𝑋, 𝑌, 𝑍, 𝑌𝑎𝑤, 𝑃𝑖𝑡𝑐ℎ, 𝑅𝑜𝑙𝑙). 

• image_train indicates the training images. 

• Y2d represents the 2D pose ground truth data (𝑋𝑐, 𝑌𝑐, 𝑋𝑏𝑜, 𝑌𝑏𝑜 , 𝑋𝑠, 𝑌𝑠, 𝑋𝑏𝑢, 𝑌𝑏𝑢). 

• Y3d represents the 3D pose ground truth data 

(𝑋𝑐, 𝑌𝑐, 𝑍𝑐 , 𝑋𝑏𝑜 , 𝑌𝑏𝑜, 𝑍𝑏𝑜 , 𝑋𝑠, 𝑌𝑠, 𝑍𝑠, 𝑋𝑏𝑢, 𝑌𝑏𝑢, 𝑍𝑏𝑢). 

Excavator 2D Dataset 

The excavator 2D dataset can be found at this link. The annotation of the dataset is 

documented as follows: 

• objpos represents the center of the bounding box (𝑋, 𝑌). 

• joint_self represents the 2D pose ground truth data 

(𝑋𝑐, 𝑌𝑐, 𝑉𝑐, 𝑋𝑏𝑜, 𝑌𝑏𝑜, 𝑉𝑏𝑜, 𝑋𝑠, 𝑌𝑠, 𝑉𝑠, 𝑋𝑏𝑢, 𝑌𝑏𝑢, 𝑉𝑏𝑢), where 𝑉 indicates the visibility. 

• scale_provided represents the excavator scale w.r.t. 200 px height. 

https://drive.google.com/drive/folders/123YWNsZYrPXQpPIq2jI1fkaTfy4ubPA_?usp=sharing
https://drive.google.com/drive/folders/1_bnOGoju3REEMEBY2aLR9np_Hl59gzp1?usp=sharing
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• isValidation indicates the validating images. 

Ceiling Tile Demonstration Video 

The ceiling tile demonstration videos can be found at this link. 

 

 

https://drive.google.com/drive/folders/1K86fxWVyvzy6dehQywuv723zVi7Vk6KA?usp=sharing
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