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ABSTRACT

Sequential, multiple assignment, randomized trials (SMARTs) typically rely on a binary variable
to define response which is used in assigning the next stage treatment assignment. We develop a
function of a continuous outcome to assign a probability of staying on the same treatment and then
randomly assign the next treatment using a multinomial distribution.

First, we develop a new trial design for small sample SMARTs (snSMARTs). The overall goal
of the trial is to determine the optimal first stage treatment. We use a function, called the map-
ping function, to map the first stage outcome to a probability of staying on the same treatment
and Bayesian methods to analyze data from both stages. Re-randomization based on a mapping
function of a continuous outcome allows for snSMARTs to be conducted without requiring a bi-
nary outcome. We perform simulation studies to compare the proposed design with continuous
outcomes to standard snSMART designs with binary outcomes. The proposed design results in
more efficient treatment effect estimates and similar outcomes for trial patients. This addresses a
gap in rare disease clinical trial methodology by presenting a trial that keeps a continuous outcome
continuous, allows patients to either stay or switch treatments based on their outcome, and uses
repeated measures for improved statistical properties.

Next, we apply similar concepts to standard size SMARTs with continuous outcomes where
the goal is to determine the optimal dynamic treatment regimen (DTR). We present a new trial
design for SMARTs that use a tailoring function instead of a binary tailoring variable. Here, we
simultaneously develop a tailoring variable and estimate the DTR. We apply methods for devel-
oping DTRs from observational data: tree-based regression learning and Q-learning. We compare
this to a typical SMART design with a tailoring variable and analyzed with generalized estimat-
ing equations. This project addresses a gap in clinical trial methodology by presenting SMARTs
where second stage treatment is based on a continuous outcome. We demonstrate that data from a
SMART using a tailoring function can be used to efficiently estimate the DTR and is more flexible
under varying scenarios than a SMART with a tailoring variable.

Finally, we develop Bayesian methods to estimate overall survival for cancer patients when
COVID-19 presents a competing risk. First, we forecast local epidemic trends and daily infec-
tion risk for an individual by implementing a truncated Dirichlet state space model. We combine
the infection risk with COVID-19 cause-specific mortality to obtain predicted COVID-19 cause-
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specific mortality. We then combine the COVID-19 cause-specific mortality as a competing risk
with Bayesian, pre-COVID-19 overall survival estimates in cancer patients. Our main outcome
of interest is the difference in restricted mean survival time under immediate treatment (7 days
after diagnosis) versus delayed treatment (60 days after diagnosis). We present example cases to
demonstrate the use of our methods. The goal of our method is to create an overall personalized
predicted survival curve with posterior prediction intervals to allow health care providers to make
more informed decisions on immediate versus delayed treatment for cancer patients.
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CHAPTER 1

Introduction

Dynamic treatment regimens (DTRs) are sequences of treatments that are tailored for each patient
based on the evolution of the patient’s disease and response to prior treatments. A DTR may take
the form of: “Start with treatment A. If X, then proceed to treatment B. Otherwise, proceed to
treatment C.” This DTR may be written (A, B, C) to indicate the appropriate sequence of treat-
ments. “X” is an intermediate outcome and is called the tailoring variable as it is used to tailor
the sequence of treatments that a patient receives. The tailoring variable is an short-term outcome
that is observed after the first treatment has been given. DTRs are useful when there are certain
patient characteristics that may influence how a person responds to treatment. This allows patients
with the same condition to potentially receive different treatments in order to have the greatest
improvement.

Sequential, multiple assignment, randomized trials (SMARTs) are a category of trial design
that allow researchers to estimate the optimal DTR. SMARTs were described in Murphy (2005)
using weighted and replicated regression (WRR) with generalized estimating equations (GEE) to
estimate the optimal DTR. In a SMART, patients are randomized to a first stage treatment. After
some pre-defined interval, the tailoring variable is measured. The tailoring variable is typically
defined as response or non-response to the first stage treatment and must be selected prior to the
start of the trial. Then, based on the tailoring variable and design, a second stage treatment is
assigned either randomly or deterministically. Once the trial is complete, researchers can use GEE
and the replicated and weighting method for analysis (Kidwell et al., 2018; Nahum-Shani et al.,
2012a).

SMARTs have since been used in a wide range of fields from oncology (Thall, 2015) to ad-
diction (Lei et al., 2012). For example, the CATIE investigation examined optimal treatment se-
quences for patients with chronic schizophrenia (McEvoy et al., 2006). In this trial, one outcome
of interest was identifying the optimal treatment for patients who have an inadequate response to
their first stage treatment. This study found that for patients that didn’t improve on their first stage
treatment, clozapine was the best next treatment despite the increased risk of serious side effects.
Another example is in oncology where patients frequently receive multiple forms of treatment until
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they find one that works for their specific cancer. In a prostate cancer study, the overall goal was
to identify the best overall regimen of treatments by comparing 12 different two-stage treatment
regimens Thall et al., 2007. Both of these studies were designed to better treat diseases where it
is common for patients to try multiple treatments. These studies aim to identify the best first stage
treatment that maximizes the probability of success, and then the best second stage treatment if the
first treatment is not successful.

A similar trial design, called a small sample, sequential, multiple assignment, randomized trial
(snSMART), has been developed for rare diseases (Tamura et al., 2016). The progression of the
trial is similar, but instead of estimating the optimal DTR, the goal is to estimate the optimal first
stage treatment. snSMARTs leverage data from both stages to jointly estimate the best first stage
treatment within a Bayesian framework (Wei et al., 2018). snSMARTs also include a dichotomous
definition of response to determine the set of possible second stage treatments (Wei et al., 2018).

That is, both SMARTs and snSMARTs require a predefined tailoring variable. There are many
issues that arise when using a tailoring variable. First, it can be challenging for researchers to
identify what classifies response and non-response, so that defining response could require time
consuming and expensive research such as conducting a pilot trial. In many cases, especially
in rare diseases, this is not feasible due to lack of funding and available patients. Further, in
many cases, the tailoring variable is a dichotomized continuous variable. For example, a tailoring
variable may be if a patient’s score is above some or below threshold. There are a multitude of
outcomes that are not naturally binary that would require developing a dichotomization strategy to
be used as a tailoring variable including percent change, patient reported outcomes (PROs), utility
measures, and biomarker measurements. Dichotomizing continuous variables can have statistical
consequences and result in a loss of information (Altman, 1994; Altman and Royston, 2006; Cox,
2018; Day et al., 2018) which is not trivial in small samples. In the case of snSMARTs, rare
disease trials aim to have holistic outcomes that incorporate both clinical features and PROs which
may make requiring a binary outcome difficult (Day et al., 2018). In this dissertation, we develop
a clinical trial design which does not require the use of a binary tailoring variable to determine
the next stage treatment We apply this design in both standard to large sample sizes where interest
is in DTRs and in small samples where interest is in pooling data to identify the best first stage
treatment.

In Chapter 2, we develop an snSMART design that uses a function to map a continuous out-
come to a probability of staying on the same treatment. We call this function a mapping function.
In this new snSMART design, patients are randomly assigned to one of three treatments with equal
probability. At the end of the first stage, a continuous outcome is measured. Then, based on that
outcome and the mapping function, the patient is assigned a probability of staying on the same
treatment. Better outcomes map to values closer to 1 so that patients that are doing well on the
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treatment have a higher probability of staying on the same treatment. Those that are randomized to
switch treatments are then randomized to one of the two remaining treatments with equal probabil-
ity. After the second stage, the same continuous outcome is measured again. The outcomes from
the first and second stage are jointly analyzed using Bayesian models to estimate the first stage
treatment effects. We simulated trials to compare this design to a typical snSMART design where
the continuous outcome is dichotomized. We compare the accuracy and efficacy of the treatment
effect estimates, patient outcomes on the trial, and the percentage of patients on each trial arm.
This work has been published in Statistics in Medicine (Hartman et al., 2021). Here, we address a
gap in rare disease clinical trial methodology by presenting a trial that keeps a continuous outcome
continuous, allows patients to either stay or switch treatments based on their outcome, and uses
repeated measures for improved statistical properties.

In Chapter 3, we implement a similar trial design as that in Chapter 2, but in larger samples
with the overall goal of determining the optimal DTR. Our objective with this SMART design
is to define the DTR in terms of the first and second stage treatments and the tailoring variable.
This design allows for more flexibility in that it does not require a predefined definition or dichoto-
mous tailoring variable. In order to accomplish this, we implement a generalization of the tailoring
variable we term the tailoring function. The tailoring function, like the mapping function from
Chapter 2, assigns probabilities of receiving each second stage treatment based on the intermediate
outcome. We compare analytic modalities for this design drawing on the methods that have been
used in developing DTRs from observational data including Q-learning and tree-based reinforce-
ment learning (TBRL). To compare the designs and analytic methods, we simulate trials under
different settings and apply the resulting estimated DTR to a new population of 10,000 patients
and compare average second stage outcomes. The goal of this design is to identify the DTR that
maximizes the expected second stage outcome. We compare the analytic method (Q-learning vs
TBRL) as well as the design (tailoring function vs pre-selected tailoring variable). This project ad-
dresses a gap in clinical trial methodology by presenting SMARTs where second stage treatment
is based on a continuous outcome.

The next chapter shifts focus from clinical trial design to predicting the optimal timing of cancer
treatment in the midst of a pandemic. In areas majorly impacted by the COVID-19 pandemic,
health care systems needed new models to prioritize patient care. These measures are needed
both to create space for the influx of COVID-19 patients as well as to minimize risk to patients
coming in for other types of care. One group of patients particularly impacted by care disruption
is cancer patients. Cancer patients may be at increased risk of dying from COVID-19 (Landman
et al., 2020; Williams et al., 2020) so it is critical to use epidemiological data of the community
surrounding the health care facility (HCF) to determine the patients risk of contracting COVID-
19 due to coming to the HCF for cancer treatment. Some forms of treatment require coming
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into the HCF multiple times over the course of several weeks or months which may increase the
risk of contracting COVID-19 (Center for Disease Control and Prevention, 2020; Nguyen et al.,
2020). However, delaying cancer treatment can result in increased cancer mortality (Khorana et al.,
2019). In order to help clinicians and patients balance these risks, we developed an online webapp
called OncCOVID. This app takes input data regarding the patient’s demographics, cancer, and
community to output personalized survival curves under both immediate treatment and delayed
treatment. This work was also published in JAMA Oncology (Hartman et al., 2020). In this chapter,
we further develop the methods used in this webapp by applying Bayesian methods to obtain
posterior survival estimates and posterior predictive intervals under a range of potential treatment
start dates. The methods presented in this chapter introduce an infectious disease as a competing
risk to a chronic disease to estimate survival curves and corresponding predictive intervals. We
draw on methods across disciplines to estimate survival for cancer patients who either delay their
cancer care or proceed with immediate cancer care. The overall goal of this project is to take into
account all patient, environment, and disease characteristics that influence cancer and/or COVID-
19 survival to output highly personalized survival estimates. Our main outcome of interest is the
difference in restricted mean survival time (RMST) defined as the average survival time up until a
fixed time-point under immediate treatment (7 days after diagnosis) versus delayed treatment (60
days after diagnosis). These estimates can then be used to guide treatment planning.
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CHAPTER 2

Design and Analysis Considerations for Utilizing a
Mapping Function in a Small Sample, Sequential,

Multiple Assignment, Randomized Trials with
Continuous Outcomes

2.1 Introduction

Recent developments have been made in small sample, sequential, multiple assignment, random-
ized trials (snSMARTs) (Tamura et al., 2016; Wei et al., 2018) where the primary goal is iden-
tifying the optimal first stage treatment by sharing information across the two stages of the trial.
In snSMARTs, patients are randomly assigned to a first treatment and a binary outcome (e.g. re-
sponse) is measured at a fixed time point. The second stage treatment is assigned randomly or
deterministically based on the design and response to first stage treatment. The same binary out-
come is again measured at the end of the second stage. Data from the first and second stages are
shared to determine the single optimal first stage treatment. This information-sharing design is
beneficial in the setting of rare diseases. The attractiveness of using an snSMART design over a
traditional single-stage design is that each patient contributes more information than in a single-
stage design. snSMARTs may be preferable to traditional crossover designs in that patients who
respond remain on treatment and those who do not respond switch to other treatments. While
snSMARTs designs are similar to sequential, multiple assignment, randomized trials (SMARTs)
(Murphy, 2005), they differ in their primary goal. Unlike SMARTs, the focus of an snSMART
is not on estimating the effects of the embedded dynamic treatment regimens (DTRs) or tailored
sequences of treatments, but rather in efficiently using two stages of information from the same
individuals to find the optimal first stage treatment.

One ongoing snSMART is the A Randomized Multicenter Study for Isolated Skin Vasculitis
(ARAMIS) trial (Micheletti et al., 2020). The goal of this trial is to determine the optimal treatment
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for isolated skin vasculitis, a rare disease. Currently, there are three treatments available for patients
and all are prescribed routinely, and none are considered standard of care for this disease. As such,
this trial has three active treatments as the three arms and there is no control arm. The snSMART
design is appropriate since the number of patients a more major limiting factor relative to the
duration of the trial. Therefore, the longer duration of the trial due to the two stages was seen as
a lower priority than needing to obtain as much information as possible from a limited number of
patients.

One benefit of a multistage trial in rare disease settings is that there is more information ob-
tained from an individual patient. The International Rare Diseases Research Consortium (IRDiRC)
published a list of recommendations for rare disease clinical trial design in 2018 (Day et al.,
2018). In these recommendations, they include using longitudinal data and using patients more
than once. Multistage designs have been shown to have increased power relative to single stage
designs (Tamura et al., 2011, 2016). This is due to having more information about the sources of
variation (Senn, 2016). Single stage designs can only identify between treatment variation (Senn,
2016). Crossover designs and other multistage designs also can identify the between-patient vari-
ation (Senn, 2016) resulting in less variation in the error term and more statistical efficiency. Even
more powerful are snSMARTs where patients may stay on the same treatment so the variation
between treatments and the variation between patients receiving the same treatment (Senn, 2016)
can both be identified.

Multistage designs such as crossover designs do not incorporate the patient outcome in the de-
sign. This is not ideal for rare diseases (Hilgers et al., 2018; Mullins et al., 2014). Second stage
treatment assignment in snSMARTs and other multistage designs is often based on a binary out-
come such that the trial protocol must specify a binary rule for what qualifies as a “response.”
Some procedures may dichotomize a continuous variable such as change in prostate specific anti-
gen (PSA) in a prostate cancer trial (Thall, 2015) or response may be determined using defined
criteria such as Response Evaluation Criteria In Solid Tumors (RECIST). In an snSMART, the
binary outcome must be the same at the end of the first and second stages and must be selected and
agreed upon before the start of the trial (Lei et al., 2012).

However, in many studies the outcome of interest may not be a binary variable or there may
not be enough information known about a continuous variable to dichotomize it for use in second
stage randomization. Another recommendation from IRDiRC is to not dichotomize continuous
endpoints (Day et al., 2018). Dichotomizing a continuous outcome often results in lowered statis-
tical efficiency (Altman, 1994; Altman and Royston, 2006; Cox, 2018; Day et al., 2018). In rare
diseases, ensuring statistical efficiency is critical due to the inherently low number of patients in
the trial (Cox, 2018). Further, results may vary based on the dichotomization strategy and cut off
selected (Schellingerhout et al., 2009).
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In rare diseases and rare cancers, selecting a robust, holistic outcome is ideal to capture the
patient’s subjective experience and individual variations in the disease (Cox, 2018; Day et al., 2018;
Tudur Smith et al., 2014). Patient reported outcomes (PROs) can be used to measure treatment
benefit or risk (US Department of Health and Human Services Food and Drug Administration,
2009) and can record the full patient experience with a treatment. The primary endpoint of the
ARAMIS trial is a dichotomized composite endpoint that incorporates PROs and clinical outcomes
(Micheletti et al., 2020). The goal of the composite endpoint is to holistically capture both the
disease clinical progression and the patient experience on the treatment. Dichotomized outcomes
may miss critical information and may obfuscate results. A major drawback of implementing an
snSMART in oncology and other chronic diseases is that efficacy and toxicity are both important
outcomes and creating a dichotomous binary outcome that captures both outcomes effectively
can be challenging (Thall, 2015). Dichotomizing a continuous outcome, such as a PRO or other
composite endpoint, requires expansive knowledge on the outcome and treatment effects in order
to select an appropriate dichotomization strategy.

Moreover, when the outcome of interest is a continuous variable, a clear choice for a di-
chotomization method or binary surrogate may not always be available prior to the start of a study.
If a continuous variable is dichotomized, the cut off selected will play a critical role in the trial
progression. If the cut off selected is too high and the majority of participants are categorized as
non-responders, then most patients will switch treatments and the long term benefits of a treatment
may not be observed. Conversely, if a cut off is selected that is too low and the majority of partic-
ipants are categorized as responders, then most patients will stay on the treatment and the effects
of switching treatments will not be adequately observed and estimation errors in treatment effects
may occur.

In small samples, this problem of identifying an appropriate cut off is magnified as fewer pa-
tients in each treatment pathway will be observed with poorly selected cut offs. Further, if a
dichotomous response is used for the endpoint or outcome of a trial, as in a responder analysis,
there is potential for significant loss in statistical power (Cox, 2018; Snapinn and Jiang, 2007). In
small samples and rare disease settings, there may be few prior studies and less knowledge regard-
ing the treatment effects on the outcome which further hinders the ability to select a suitable binary
outcome. Additionally, the time and resources to run a pilot study to determine an appropriate cut
off are often not available in diseases and disorders that affect a small number of individuals.

Here we examine an snSMART design with a continuous outcome measured at the end of stages
one and two where re-randomization depends on a mapping function of a continuous outcome as
opposed to a binary outcome. This design leverages the additional information gained by a mul-
tistage design and better captures the effect of the treatment by using a continuous outcome. The
ultimate aim is to estimate the expected first stage treatment effects for the multiple treatments be-
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ing investigated in the snSMART. As in the ARAMIS trial, we assume that all treatments are used
in practice and the goal is to identify the optimal first stage treatment. Examples of continuous out-
comes with no clear dichotomization strategy are percent change, PROs, utility measures (or some
combination of efficacy and toxicity), probabilities of response, or other composite endpoints. The
trial design presented here allows for the implementation of an snSMART without requiring a bi-
nary first stage outcome to determine the next stage treatment for a patient. This method maintains
the patient benefit of an snSMART by having an increased probability of switching treatments if
an individual is not responding well on the current treatment and increased probability of staying
on that treatment if the individual is responding well. It also maintains the benefit of being able
to identify variation between treatments and between patients resulting in a more powerful design.
In addition to allowing randomization to depend on a continuous outcome in the snSMART de-
sign, the methods presented here allow for continuous first and second stage outcomes as opposed
to previous methods to analyze snSMART data that only applied to binary outcomes. Thus, due
to the use of continuous outcomes, we cannot use previously proposed methods for snSMARTs
(Wei et al., 2018) and due to on second stage randomization depending on a continuous outcome
and sharing information across stages for the first stage treatment effect, we cannot use standard
SMART methods.

2.2 Methods

2.2.1 snSMART design with a continuous mapping function

Here we present the proposed snSMART design which allows for a continuous outcome measured
at the end of the first and second stages. This design does not require a binary outcome. In this
design, all patients are randomized with equal probability to a first stage treatment. We measure
the continuous outcome at the end of stage one for patient i, Yi1, at a set time point, t. The
probability of staying on the same treatment for patient i is a function of Yi1, and we call this
function, f(Y1), the mapping function. The mapping function ranges between 0 to 1 in order
to yield valid probabilities. This is similar to the idea of treatment effect mappings introduced
by Rosenberger (1993), but only relies on the patient’s individual outcome and not the outcome of
others. Patients randomized to switch treatments are randomized to one of the remaining treatments
with equal probability. At a set final time point, 2t, the outcome at the end of stage two, Yi2,
is measured. A schematic of the traditional snSMART design is given in Figure 2.1A and the
proposed snSMART design is presented in Figure 2.1B.

The randomization at the end of the first stage can be thought equivalently as a one-step ran-
domization process or a two-step randomization process. The one step randomization proceeds as
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presented in Figure 2.1B where the next treatment is decided by a multinomial distribution with
probabilities [f(Y1), 0.5(1− f(Y1)), 0.5(1− f(Y1))] for staying on the same treatment and switch-
ing to either other treatment, respectively. It can also be thought of as a two-step randomization
process with two binomial distributions (Figure 2.2). The first randomization determines if the
patient stays or switches treatment and has probability of staying equal to f(Y1). If the person
switches treatments, then there is a second randomization with probability 0.5 for each remaining
treatment.

2.2.1.1 The mapping function

The mapping function maps the first stage outcome, Yi1, to [0, 1] and gives the probability of
staying on the same treatment. More favorable values of the outcome map to values closer to
1 so that patients doing well on a treatment have a higher probability of staying on the same
treatment. Depending on what is known about the outcome, various mapping functions can be
selected. We provide examples of mapping functions and assume that higher values of Y indicate
more favorable performance, but the functions are generalizable in other cases. While we offer the
following suggestions, any cumulative distribution function can be used.

For areas of study with small samples such as rare diseases, there may be little information
known about the distribution of Y1. If only minimum and maximum values are known for Y1,
a linear mapping function f(Y1) = (Y1 − Ymin)/(Ymax − Ymin) can be used. This linear f(Y1)
function can be easily modified using powers for different trial characteristics. For example, if
it is desirable for high proportions of patients stay on the same treatment through both stages,
or if it is expected that the outcome may be right skewed, then using f(Y1)1/k, k > 1, may be
appropriate. Likewise, if having more people switch is of interest or if the outcome is left skewed,
then f(Y1)k, k > 1, may be appropriate.

If there are extreme values within this possible range of Y1 that rarely occur, the linear function
over the possible range of Y1 may result in very few people on certain treatment regimens. For
example, if Y1 has a distribution as seen in Figure 2.3 (iii), then a linear mapping function will
result in the majority of people switching treatments. To adjust for this, one can select a more
practical minimum and maximum and then truncate the mapping function at 0 and 1. These values
may represent safety and ethical limits in addition to the practicality of the study. The minimum
could be the lowest value of Y1 where investigators feel comfortable with a patient staying on the
same treatment. This lower lower limit is a safety measure as it represents the worst outcome
a patient will have and stay on the same treatment. The highest value of Y1 is selected where
investigators feel comfortable with a patient switching treatments, so that if a patient has a higher
outcome they will stay on the current treatment. This upper limit represents an ethical boundary
since it could be viewed as unethical to switch treatments for a patient responding this well to
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Figure 2.1: A traditional snSMART design with a binary outcome (A) and the proposed snSMART
design with a continuous outcome (B). Each stage is the same length so that Y1 is measured at time
t and Y2 is measured at time 2t. A, B, and C are treatments, R indicates a randomization point,
f(Y1) is the mapping function, expressions indicate probability of assignment to the treatment
following, Y1 is the first stage outcome, and Y2 is the second stage outcome.
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Figure 2.2: The proposed snSMART design with a mapping function and two-step randomization.
Each stage is the same length so that Y1 is measured at time t and Y2 is measured at time 2t. A, B,
and C are treatments, R indicates a randomization point, f(Y1) is the mapping function, expressions
indicate probability of assignment to the treatment following, Y1 is the first stage outcome, and Y2
is the second stage outcome.
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their current treatment. Patients can be consulted to aid in determining the upper and lower limits,
which may make the trial more patient centered and appealing to patients (Gaasterland et al., 2019).
Developing these extreme limits requires less prior knowledge regarding the treatment effects than
is needed to effectively dichotomize a continuous outcome. Additionally, even when minimums
and maximums are selected, the mapping function is more flexible than a binary outcome.

Figure 2.3: Possible distributions of outcome Y and mapping functions that balance patients stay-
ing or switching treatments. The plots labelled “Distribution of Y ” are the probability distribution
functions. The y-axis for plots labelled “Possible mapping functions” is the probability of stay-
ing on the treatment for a given value of Y . Higher values of Y are assumed to indicate better
outcomes.

 Distribution of Y

(i)

Y

(ii)

Y

(iii)

Y

Possible mapping functions

Y Y

Y Y

Y Y

2.2.2 Bayesian analysis methods

2.2.2.1 Model and likelihood

We assume the data from the snSMART design, has a multivariate normal likelihood (Zajonc,
2012): [

Yi1

Yi2

]
|Ti1, Ti2 ∼MVN

([
µ1(Ti1)

µ2(Ti1, Ti2)

]
,V(Ti1, Ti,2)

)
where Yis is a continuous outcome and Tis is the treatment for patient i in stage s, s = 1, 2. The

mean outcome for stage one, µ1, is a function of only the first stage treatment. The mean for the
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second stage, µ2, is a function of both the first and second stage treatments. The covariance matrix
is a function of the sequence of treatments the patient received.

The mean treatment effects for stage one and two are modeled as follows for treatments A, B,
and C:

µ1(Ti1) =
C∑
j=A

βjI(Ti1 = j) (2.1)

µ2(Ti1, Ti2) = α1

C∑
j=A

βjI(Ti1 = j) + α2

C∑
k=A

βkI(Ti2 = k) + α3I(Ti1 = Ti2)

The βj parameters are the expected effect of treatment j, j = A,B,C, in the first stage. The
primary goal of an snSMART is to estimate these βj parameters in order to identify the single
optimal treatment during the first stage. The first stage mean outcome depends on the treatment
effect for the treatment received in stage one. We model the second stage mean outcome as a
weighted average of the treatment effects from stage one and stage two with an additional effect if
the patient stays on the same treatment. Practically, this mean model for stage two can occur when
there is some lingering effect of the first treatment (α1) and some additional effect of the second
treatment (α2) when α1, α2 > 0. Alternatively, if the patient stays on the same treatment, the
effect of the treatment in the second stage is the first stage effect with some cumulative effect that
occurs on the treatment longer term (α3). The proposed mean models allow for shared information
between the two stages through βj . The previously proposed linkage parameters in prior work
to analyze data from an snSMART with binary outcomes (Wei et al., 2018) are similar to the α
parameters that we use in our models.

For modeling the covariance, we use V(Ti1, Ti,2) = V1I(Ti1 = Ti2) + V2I(Ti1 6= Ti2) where
V1 and V2 are both 2 × 2 variance-covariance matrices. This allows those who stay on the same
treatment to have a different correlation between stage one and stage two outcomes than those who
switch treatments.

Data from the snSMART design in Figure 2.1B can be analyzed using other mean models (e.g.
to consider non-additive effects or effects of treatment specific pathways), but since our focus is
on small samples, we present a parsimonious model where information sharing is feasible and the
primary goal is to estimate and compare first stage treatments.

2.2.2.2 Prior distributions

We propose minimally informative prior distributions for all model parameters. For the treatment
effects, βs, we use a normal prior with mean within the range of outcome Y . We suggest using the
midpoint between Ymin and Ymax for the mean.
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We impose three constraints regarding the αm parameters, m = 1, 2, 3:

Constraint 1: α2 = 1− α1, α1, α2 > 0,

Constraint 2: α2 > α1, and

Constraint 3: α3 ≥ 0.

Constraint 1 states that if a person does not stay on the same treatment then the second stage
expected outcome is a weighted average of expected first stage outcomes of the stage one and stage
two treatments. This constraint facilitates estimation by requiring fewer variables to be estimated.
Constraint 2 states that the second stage treatment has a larger effect on the second stage outcome
than the first stage treatment. Constraint 3 states that staying on the same treatment has a non-
negative effect on the expected second stage outcome. Constraints 2 and 3 reduce the parameter
space and are therefore practical in many rare disease settings.

The prior for α1 is set to be uniform from 0 to 0.5. Since we set α2 = 1 − α1 per con-
straint 1, this prior fulfills constraint 2 and forces α2 > α1 since α1 will always be less than
0.5. Since we constrain α3 to be non-negative, we use a folded normal (FN) distribution. For
the prior on the covariance matrices, we use inverse Wishart (IW) distributions since they are
the non-informative conjugate prior for multivariate normal covariances. Thus, suggested priors
are as follows: βj ∼ N(mean = 50, standard deviation (sd) = 50) for all j, α1 ∼ Unif(0, 0.5),

α3 ∼ FN(mean = 0, sd = 20), and V1 and V2 ∼ IW2

([
1 0

0 1

]
, 2

)
.

2.2.2.3 Single-stage design

To examine the efficiency of the trial design of an snSMART with a mapping function, we compare
it to a traditional single-stage design in which individuals are equally randomized to one of the
three treatments. In the single-stage design, we analyze the outcome using the following Bayesian
methods. Using the same notation as in Section 2.2.2, we assume a normal likelihood:

Yi1|Ti1 ∼ N
(
µ1(Ti1), σ

2
)

The mean µ1(Ti1) is the same as in (2.1) and the βs have the same priors as in Section 2.2.2.2.
The prior for σ is an inverse gamma, IG(1000, 1000).

2.3 Simulations

For each scenario, simulations were done with n = 100, 30, 15 in each treatment arm for total
sample sizes of 300, 90, or 45. We focus primarily on the results for n = 30. Results are based on
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2500 simulated trials. For analysis, we used the Bayesian analysis methods described in Section
2.2.2 with 1000 burn in and 5000 MCMC repetitions. We used R and rjags for simulations.

Our primary goal is accurate and efficient estimation of the effects of the treatments after the
first stage in order to identify the optimal overall treatment. As such, we examine bias and root
mean squared error (rMSE) of the estimates of βj . Additionally, we examined patient outcomes
and how many patients stayed on their current treatment or switched treatments.

2.3.1 Generation of trial data

Trial data was generated by first assigning n patients equally to each of three treatments. Stage
one outcome was generated as Y1 ∼ N(µ1(T1), σ

2) where σ2 was the marginal variance for the
first stage outcome. Based on this outcome, a patient was randomly assigned to a stay on the same
treatment with probability f(Y1) using Bernoulli(f(Y1)) where f(·) was the mapping function.
We set the parameters so that the range of Y was approximately 0-100. Correspondingly we set
Ymin = 0 and Ymax = 100. We then investigated the three following mapping functions:

MF 1 = f1(Y1) = Y1/100

MF 1/2 = f2(Y1) = (Y1/100)
1/2 (2.2)

MF 2 = f3(Y1) = (Y1/100)
2

For Y1 outside the range of 0-100, these probabilities were truncated to be 0 or 1 respec-
tively. Guidance for selecting the mapping function is provided in Section 2.2.1.1. If the pa-
tient did not stay on the same treatment, then the second treatment was randomly assigned using
Bernoulli(0.5).

Let the ith row and jth column in V(Ti1, Ti,2) be denoted Vij . Then the conditional means for
the outcomes are:

Yi1|Ti1, Ti2 ∼ N(µ1(Ti1),V11) (2.3)

Yi2|Yi1, Ti1, Ti2 ∼ N

(
µ2(Ti1, Ti2) +

√
V22√
V11

V12(Yi1 − µ1(Ti1)), (1−V2
12)V22

)
The second outcome was generated from a conditional normal distribution in equation 2.3. For

the single-stage design, only the first stage outcomes were used.
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2.3.2 Scenarios

2.3.2.1 Ideal situations

As in Section 2.2.2.1, we let the covariance matrix be V(Ti1, Ti,2) = V1I(Ti1 = Ti2) + V2I(Ti1 6=
Ti2) and we set V1 and V2 to be:

V1 = σ2

[
1 τ1

τ1 1

]
, V2 = σ2

[
1 τ2

τ2 1

]
We set τ1 = 0.8, τ2 = 0.3, and σ = 20 (based on results from a validated ANCA-associated

vasculitis PRO present in Robson et al. (2018)). For the mean model, we set α1 = 0.2, α3 = 0.8,
α3 = 5. We changed the β parameters to examine different effects of the mapping functions in
scenarios such as presented in Figure 2.3. The β parameters are presented in Table 2.1 where
Scenarios 1, 2, and 3 are ideal scenarios where the model assumptions are met. These β values
reflect possible values for a continuous outcome that has been standardized to range from 0-100
(typical in PRO development) (Robson et al., 2018; Wei et al., 2000).

Table 2.1: Simulation scenarios. Parameters are estimated as in equation 2.1 with any violations
as described in Section 2.3.2.3. TSP violates the mean model assumptions, Variance indicates
that there are more variance parameters than are estimated, and Correlation indicates that there are
more correlation parameters than estimated. βj indicates the treatment effect of treatment j after a
fixed amount of time and the study goal is to accurately and efficiently estimate these parameters.
TSP = treatment specific pathway

βj Violation in Assumptions
Scenario A B C treatment specific pathway (TSP) Variance Correlation

1 40 50 60
2 20 30 40
3 60 70 80
4 40 50 60 ×
5 40 50 60 ×
6 40 50 60 ×
7 40 50 60 × ×
8 40 50 60 × ×
9 40 50 60 × ×

10 40 50 60 × × ×

2.3.2.2 Comparison with dichotomized outcome

This trial design that does not require a binary outcome (Figure 2.1B) will be primarily useful in
cases when a binary outcome is not available. However, in simulations we are able to compare the
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proposed design with a mapping function to an snSMART with a binary outcome (Figure 2.1A),
even though in practice, a design with a well selected binary outcome may not be always feasible.
We compare the three mapping functions in equation 2.2 with three binary outcomes based on
dichotomizing the continuous outcome at the end of the first stage. If the patient’s outcome at the
end of the first stage is above the cut off, they stay on treatment, and if it is below the cut off, they
are equally randomized to one of the two remaining treatments. We investigated three cut offs of
30, 50, and 70 for the binary outcome. We use Scenarios 1, 2, and 3 (scenarios with no model
assumption violations) in table 2.1 with these cut offs to examine trial properties and compare with
the mapping functions in equation 2.2. We compare the average patient outcomes and the number
of patients on each sequence of treatments between the trial designs.

2.3.2.3 Model assumption violations

We examined three potential assumption violations individually and in combination as defined
in Table 2.1, Scenarios 4-10. In each scenario, the parts of the data generative model without
assumption violations are the same as in Scenario 1. First, we assumed the second stage mean was
fully dependent on the combination and ordering of treatments the patients received in stages one
and two (Ti1, Ti2) (i.e. not a weighted mean). We call this the treatment specific pathway (TSP)
(column “TSP” in Table 2.1; Scenarios 4, 7, 8, 10) and is essentially where there is an interaction
between treatments. We set µ2 =

∑
j

∑
kTjkI(Ti1 = j, Ti2 = k) where

T =

55 43 47

40 50 60

70 65 60


and Tjk indicates the jth row and kth column of matrix Tjk.
The second assumption violation was that we set the standard deviation of the outcome, σ, to

depend on treatment (column “Variance” in Table 2.1; Scenarios 5, 7, 9, 10). Here we set the
standard deviation to be 10, 20, and 30 for treatments A, B, and C respectively.

The third assumption violation allowed the correlation between the first and second stage out-
come to depend on the TSP (column “Correlation” in Table 2.1; Scenarios 6, 8-10). Practically,
this would arise if treatment outcomes have different correlation due to similarities in treatment
mechanism even if the actual treatments differ. We set the correlations τ =

∑
j

∑
kRjkI(Ti1 =

j, Ti2 = k) where

R =

0.85 0.6 0.2

0.6 0.8 0.5

0.2 0.2 0.9


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and Rjk indicates the jth row and kth column of matrix Rjk.
To assess sensitivity to normally distributed outcomes, we also examined scenarios where the

first stage outcome was a scaled Beta distribution rather than a normal distribution. The second
stage was still conditionally normal but no longer marginally normal. We set the parameters of the
Beta distribution such that the scaled means were the same as those in Scenarios 1, 2, and 3. We
set the variance to be 0.1 prior to scaling.

2.4 Results

2.4.1 Estimation of the treatment effect

2.4.1.1 Two-stage versus single-stage design

We first compare this two-stage snSMART design to a single-stage design with the same total
number of patients but only one stage of treatment (and thus one outcome per patient). As expected,
in Scenarios 1, 2, and 3 we found large reductions in rMSE when comparing the two-stage design
with the single-stage design regardless of the mapping function used (Table 2.2). The percent of
trials that correctly identified the optimal treatment (determined by having the highest estimated
first stage treatment effect) was consistently higher in the two-stage designs than the single-stage
designs (Table 2.2), although all simulations resulted in>95% of trials identifying the true optimal
treatment.

2.4.1.2 Mapping function versus dichotomized outcome

In ideal scenarios (1-3), where the data generation model matched the analysis model, our method
estimated the first stage treatment effects, βj with minimal bias (Figure 2.4A). Bias and efficiency
did not change substantially by changing the mapping function in Scenarios 1, 2, and 3. Since the
main goal of this trial design is to identify the optimal treatment from estimating the βj parameters,
low bias and high efficiency are both desirable trial traits.

Efficiency was similar between the mapping functions for each scenario (data not shown). Cor-
respondingly, the coverage probability of the credible interval was close to the desired 95% and
the credible interval width was consistent (Table 2.3). The coverage probability was lower for the
small sample size of 15 patients per treatment arm (Table 2.4). Overall, the selection of the map-
ping function does not appear to have a substantial impact on the operating characteristics of the
trial design when assumptions are met.

The results from using a dichotomized outcome vary considerably (Figure 2.4A). When the
median treatment effect was selected as the cut off, the bias was lowest, but the efficiency was worst
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Table 2.2: The rMSE for each βj, j = A,B,C when estimated in a single-stage design and the
proposed two-stage snSMART design. βj indicates the treatment effect. Ratio is the rMSE divided
by the rMSE of the single-stage design for that scenario. rMSE = root mean squared error, MF =
mapping function, DO = dichotomized outcome (Section 2.3.1).

rMSE Ratio
Scenario Design βA βB βC βA βB βC Percent Correct

1 Single-Stage 3.65 3.69 3.51 1.00 1.00 1.00 97.40
MF 1 2.97 3.01 2.87 0.82 0.82 0.80 99.52

MF 1/2 3.02 2.93 2.84 0.83 0.79 0.81 99.40
MF 2 3.00 3.09 3.15 0.82 0.84 0.90 99.24
DO 50 5.57 5.58 5.15 1.53 1.51 1.47 99.16
DO 30 5.32 3.92 3.19 1.46 1.06 0.91 99.35
DO 70 2.87 3.52 4.80 0.79 0.95 1.37 99.15

2 Single-Stage 3.51 3.66 3.66 1.00 1.00 1.00 96.64
MF 1 3.08 2.96 2.91 0.88 0.81 0.79 99.68

MF 1/2 3.22 2.99 2.91 0.92 0.82 0.79 99.52
MF 2 2.94 2.87 2.97 0.84 0.78 0.81 99.44
DO 50 2.95 3.51 4.79 0.84 0.96 1.31 99.68
DO 30 5.75 5.50 5.03 1.64 1.51 1.37 99.32
DO 70 2.98 3.11 3.31 0.85 0.85 0.91 99.64

3 Single-Stage 3.64 3.66 3.67 1.00 1.00 1.00 97.36
MF 1 3.04 3.00 2.92 0.83 0.82 0.79 99.28

MF 1/2 3.02 2.90 2.87 0.83 0.79 0.78 99.60
MF 2 3.19 3.22 3.19 0.88 0.88 0.87 99.08
DO 50 5.20 3.81 3.15 1.43 1.04 0.86 98.67
DO 30 2.99 2.96 2.89 0.82 0.81 0.79 99.40
DO 70 5.65 5.74 5.23 1.55 1.57 1.43 96.87
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Figure 2.4: A. Box plots of bias averaged across the three βj, j = A,B,C parameters for ideal
scenarios where βj indicates the treatment effect. A single point represent the average bias for
one simulated trial. Light gray boxes are mapping functions (MF, Section 2.3.1) and dark gray
boxes are dichotomized outcomes (DO, Section 2.3.2.2). B. Box plots of bias for each of the three
βj parameters in scenarios where assumptions are violated using MF 1. A single point represent
the bias for one βj in one simulated trial. Top labels indicate which scenario is being presented.
Shades indicate the different βj parameters.
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Table 2.3: Coverage probability (CP) and credible interval width (CW) for the ideal Scenarios 1-3
(Section 2.3.2.1) where n = 30 for mapping functions and dichotomized outcomes. CP should be
close to 0.95 and for CW smaller is better. MF = mapping function, DO = dichotomized outcome,
βj, j = A,B,C parameters indicate treatment effects.

CP
MF DO

Scenario MF βA βB βC DO βA βB βC
1 MF 1 0.949 0.935 0.949 DO 50 0.816 0.772 0.820

MF 1/2 0.944 0.950 0.949 DO 30 0.675 0.811 0.875
MF 2 0.939 0.934 0.923 DO 70 0.916 0.857 0.698

2 MF 1 0.933 0.942 0.947 DO 50 0.914 0.858 0.696
MF 1/2 0.930 0.945 0.940 DO 30 0.820 0.793 0.825
MF 2 0.939 0.939 0.934 DO 70 0.926 0.915 0.898

3 MF 1 0.943 0.944 0.949 DO 50 0.687 0.822 0.888
MF 1/2 0.941 0.948 0.941 DO 30 0.947 0.934 0.937
MF 2 0.933 0.933 0.935 DO 70 0.803 0.760 0.810

CW
MF DO

Scenario MF βA βB βC DO βA βB βC
1 MF 1 11.560 11.358 11.239 DO 50 14.926 14.655 14.050

MF 1/2 11.561 11.263 11.071 DO 30 11.605 10.376 9.791
MF 2 11.192 11.187 11.260 DO 70 10.223 10.342 10.891

2 MF 1 11.395 11.221 11.164 DO 50 10.213 10.374 10.910
MF 1/2 11.840 11.356 11.091 DO 30 15.223 14.854 14.086
MF 2 11.090 10.959 11.049 DO 70 10.939 10.767 10.952

3 MF 1 11.783 11.554 11.373 DO 50 11.650 10.431 9.854
MF 1/2 11.483 11.334 11.194 DO 30 11.172 10.849 10.739
MF 2 11.863 11.837 11.727 DO 70 14.795 14.519 14.049
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Table 2.4: Coverage probability (CP) and credible interval width (CW) for ideal Scenarios 1-3
(Section 2.3.2.1), n per arm = 100, 15. MF = mapping function, βj, j = A,B,C parameters
indicate treatment effects.

CP CW
n Scenario MF βA βB βC βA βB βC
100 1 MF 1 0.949 0.943 0.951 6.511 6.393 6.387

MF 1/2 0.936 0.934 0.941 6.514 6.350 6.261
MF 2 0.929 0.918 0.907 6.228 6.185 6.368

2 MF 1 0.940 0.939 0.935 6.346 6.230 6.302
MF 1/2 0.923 0.933 0.935 6.681 6.401 6.288
MF 2 0.951 0.930 0.908 6.159 6.032 6.234

3 MF 1 0.939 0.934 0.939 6.706 6.559 6.454
MF 1/2 0.943 0.932 0.936 6.516 6.406 6.323
MF 2 0.947 0.937 0.943 6.757 6.707 6.738

15 1 MF 1 0.931 0.922 0.935 15.928 15.647 15.402
MF 1/2 0.938 0.937 0.934 15.878 15.539 15.299
MF 2 0.929 0.916 0.914 15.566 15.394 15.395

2 MF 1 0.931 0.919 0.930 15.821 15.523 15.343
MF 1/2 0.934 0.929 0.941 16.263 15.619 15.239
MF 2 0.905 0.892 0.893 15.434 15.218 14.992

3 MF 1 0.929 0.932 0.924 16.112 15.848 15.598
MF 1/2 0.913 0.920 0.913 15.787 15.669 15.467
MF 2 0.921 0.916 0.922 16.224 16.010 15.935
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as seen by the high variance (Figure 2.4A). Moderate bias was observed for other cut offs due to
poor estimates of the correlation parameters and αm,m = 1 and 3. The quality of these estimates
is dependent on the number of subjects that stay or switch and having a balance of people staying
on the same treatment and switching treatments allows for better estimation of these parameters.
The increased variance for the median cut off is also related to the correlation and αm,m = 1 and 3

parameter estimates. When these parameters and the correlation are fixed and do not need to be
estimated, the bias is negligible and the variance in the bias estimates are consistent (Figure 2.5).

Figure 2.5: Average bias across all βj, j = A,B,C parameters for various dichotomized outcome
(DO) cut offs when αi = 0, i = 1, 3 and τj = 0, j = 1, 2. βj parameters indicate treatment effect,
αi, i = 1, 3 is the relationship between the treatments between stages, and τ is the correlation
between outcomes for each stage. If a patient had a first stage outcome higher than the cut off, then
the patient stayed on the treatment. Otherwise, they were re-randomized to one of the remaining
treatments.
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chotomizing the outcome at the end of stage one than when using a continuous outcome with a
mapping function. For some scenarios, binary outcomes performed similar to the mapping func-
tions (Scenario 2, dichotomized outcome (DO) 70; Scenario 3, DO 30). However, the selection
of the dichotomized outcome cut off influences the model parameter estimation which is not ideal
since the optimal cut off value is not generally known in advance. For all scenarios, there were
binary outcomes that performed worse than all mapping functions in terms of bias and efficiency.
This indicates that poorly selected binary outcomes perform worse than any recommended map-
ping function. We additionally looked at mapping functions with a smaller range (25 to 75 instead
of 0 to 100) and found that these functions also had improved performance over the dichotomized
outcomes (Table 2.5).

Table 2.5: The root mean squared error (rMSE) for each βj, j = A,B,C when estimated in
a single-stage design and the proposed two-stage snSMART design. βj indicates the treatment
effect. Here we use mapping functions (MF) where Ymin = 25 and Ymax = 75 but are other wise
the same as those described in Section 2.3.1.

rMSE
Scenario Design βA βB βC

1 MF 1 3.700 3.520 3.520
MF 1/2 3.950 3.520 3.210
MF 2 3.410 3.930 4.300

2 MF 1 2.990 3.320 3.750
MF 2 2.820 3.020 3.440

MF 1/2 3.220 3.470 3.780
3 MF 1 3.890 3.400 3.030

MF 2 4.650 4.090 3.380
MF 1/2 3.400 3.070 2.900

The percent of trials that correctly identified the optimal treatment were similar between map-
ping functions and dichotomous outcomes where the mapping function performed slightly better
(Table 2.2, Table 2.6). In a null scenario where all treatments have treatment effect of 50, each
treatment was identified as the optimal approximately 33% of the time which is as expected (Table
2.7).

One difference between snSMARTs with a mapping function and snSMARTs with a binary
outcome was the proportion of subjects that stayed on the same treatment (Table 2.8). The pro-
portion that stayed on the same treatment had less variation under a mapping function than that
from a binary outcome. In scenarios where the dichotomization strategy was a poor fit for the
patient outcomes (i.e. the cut off is either too high or too low), extreme results occurred where
3.2% stayed on treatment (Scenario 2, DO 70) or where 96.8% switched treatments (Scenario 3,
DO 30). These same scenarios had somewhat less extreme results under a mapping function (MF)
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Table 2.6: The proportion of trials where best treatment has the highest estimated first stage treat-
ment effect when estimated under various scenarios. MF = mapping function, DO = dichotomized
outcome, n = number of patients in one arm of the 3-arm trial.

n
Scenario Design 15 30 100

1 MF 1 0.955 0.995 1
MF 1/2 0.965 0.994 1
MF 2 0.945 0.992 1
DO 50 0.953 0.992 1
DO 30 0.962 0.994 1
DO 70 0.933 0.992 1

2 MF 1 0.947 0.993 1
MF 1/2 0.963 0.996 1
MF 2 0.928 0.991 1
DO 50 0.924 0.987 1
DO 30 0.959 0.994 1
DO 70 0.913 0.969 1

3 MF 1 0.953 0.997 1
MF 1/2 0.959 0.995 1
MF 2 0.952 0.994 1
DO 50 0.956 0.997 1
DO 30 0.953 0.993 1
DO 70 0.957 0.996 1

Table 2.7: The root mean squared error (rMSE) for each βj, j = A,B,C when estimated in
a single-stage design and the proposed two-stage snSMART design. βj indicates the treatment
effect. Proportion chosen is the proportion of trials that estimated treatment j to have the highest
treatment effect. MF = mapping function, DO = dichotomized outcome (Section 2.3.1).

rMSE Percent Chosen
Scenario Design βA βB βC A B C

Null MF 1 3 2.990 2.940 0.331 0.341 0.328
MF 1/2 2.890 2.900 2.980 0.345 0.331 0.324
MF 2 3.160 3.110 3.150 0.324 0.336 0.340
DO 50 6.540 6.550 6.550 0.316 0.335 0.349
DO 30 4.120 4.140 4.140 0.325 0.327 0.348
DO 70 3.610 3.640 3.670 0.322 0.343 0.335
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where 13.5% and 85% stayed on treatment respectively (Scenario 2, MF 2; Scenario 3, MF 1/2).
Since some model parameters may be impossible to estimate if a trial concludes with no patients
on a certain treatment path (i.e. if all patients stay on the same treatment or all switch treatments)
having a moderate proportion of individuals that stay on the same treatment is preferable to avoid
such extreme circumstances. Additionally, patients all stay or switch is beneficial to the patients if
all are doing very well or very poorly respectively. However, having all patients stay may prevent
some patients from trying other treatments that perform better and having all switch may mean that
the patients do not experience the long term benefits of staying on a treatment.

Table 2.8: The proportion of patients that stayed on the same treatment for ideal Scenarios 1-
3 (Section 2.3.2.1) when using a dichotomized outcome (DO) compared to a mapping function
(MF), n = 30.

MF DO
Scenario 1 1/2 2 50 30 70

1 0.500 0.687 0.296 0.501 0.821 0.178
2 0.308 0.508 0.135 0.178 0.501 0.032
3 0.692 0.821 0.522 0.823 0.968 0.500

2.4.1.3 Model assumption violations

Here we examine the effects on the results when model assumptions are violated. Unlike the
ideal scenarios, the bias heavily depended on the β parameter being estimated (Table 2.9, Figure
2.4B). We examine when the second stage treatment effect is based on the TSP of the first and
second stage treatments rather than a weighted average (Scenarios 4, 7, 8, 10), variance is based on
treatment and stage (Scenarios 5, 7, 9, 10), and correlation is based on the two treatments received
(Scenarios 6, 8, 9, 10).

In general, the mean model violation caused the largest increase in bias (Figure 2.4B). Cor-
relation and variance assumption violations did not result in increased bias suggesting that the
estimates are some what robust to correlation and variance misspecification. Similarly, the cover-
age probability for scenarios with the mean model assumption violation was frequently less than
the expected 0.95 (Table 2.10). The variance violation changed the variance of the estimates with
estimates of βA having smaller variance and estimates of βC having larger variances (Figure 2.4B).
Correlation assumption violations did not have a large impact on any statistical performance metric
when not compounded with other assumption violations. Results were similar with other mapping
functions (Table 2.13, Table 2.11). We also examined scenarios where the first stage outcome is a
beta distribution with the same treatment effects as Scenarios 1, 2, and 3. These results show that
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Table 2.9: The bias for each β when estimated under various scenarios. MF = mapping function,
βj, j = A,B,C parameters indicate treatment effects.

Bias
Scenario MF βA βB βC

1 MF 1 −0.248 −0.304 −0.283
MF 1/2 0.247 0.124 0.089
MF 2 −0.650 −0.791 −1.075

2 MF 1 −0.260 −0.427 −0.388
MF 1/2 0.576 0.513 0.267
MF 2 −0.278 −0.463 −0.758

3 MF 1 −0.166 −0.189 −0.130
MF 1/2 −0.128 0.004 −0.191
MF 2 −0.485 −0.688 −0.730

the mapping function has better statistical efficiency than the dichotomized outcome even when
the model distribution is incorrectly specified. (Table 2.12).

Table 2.10: Performance results for Scenarios 4-10 with model assumption violations (Section
2.3.2.3), n = 30, linear mapping function (MF 1). βj, j = A,B,C parameters indicate treatment
effects.

Bias rMSE
Scenario βA βB βC βA βB βC

4 3.227 −1.117 −0.619 4.816 3.220 2.960
5 −0.247 −0.743 −1.261 1.741 3.206 4.722
6 −0.258 −0.276 −0.273 2.990 2.952 2.853
7 2.188 −2.158 −1.737 3.083 3.737 4.771
8 3.181 −1.146 −0.636 4.692 3.227 3.021
9 −0.257 −0.829 −1.228 1.777 3.212 4.604

10 2.214 −2.234 −1.824 3.101 3.890 4.775
CP CW

Scenario βA βB βC βA βB βC
4 0.792 0.930 0.954 12.500 11.728 11.740
5 0.998 0.941 0.855 11.866 12.283 13.695
6 0.943 0.941 0.951 11.556 11.330 11.208
7 0.953 0.901 0.851 12.092 12.210 13.793
8 0.801 0.930 0.942 12.469 11.689 11.704
9 0.998 0.937 0.865 11.819 12.256 13.731
10 0.953 0.889 0.842 12.077 12.202 13.771
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Table 2.11: Coverage probability (CP) and credible interval width (CW) for Scenarios 4-10 with
model assumption violations (Section 2.3.2.3) for other mapping functions. MF = mapping func-
tion, βj, j = A,B,C parameters indicate treatment effects.

CP CW
N Scenario MF βA βB βC βA βB βC
100 4 MF 1/2 0.265 0.922 0.938 6.873 6.484 6.367

MF 2 0.867 0.906 0.935 6.738 6.510 6.775
5 MF 1/2 0.999 0.943 0.851 6.769 6.869 7.270

MF 2 0.999 0.830 0.424 6.346 6.486 7.430
6 MF 1/2 0.941 0.937 0.935 6.518 6.341 6.266

MF 2 0.922 0.910 0.901 6.219 6.179 6.354
7 MF 1/2 0.414 0.870 0.872 6.870 6.894 7.304

MF 2 0.975 0.790 0.788 6.539 6.681 7.981
8 MF 1/2 0.258 0.915 0.940 6.859 6.473 6.354

MF 2 0.859 0.913 0.942 6.735 6.514 6.763
9 MF 1/2 1 0.955 0.856 6.779 6.861 7.259

MF 2 0.999 0.808 0.425 6.349 6.491 7.439
10 MF 1/2 0.445 0.878 0.885 6.864 6.908 7.303

MF 2 0.969 0.796 0.774 6.546 6.655 7.972
30 4 MF 1/2 0.692 0.928 0.925 12.182 11.504 11.340

MF 2 0.888 0.920 0.944 12.201 11.604 12.156
5 MF 1/2 0.999 0.958 0.875 11.877 12.121 12.882

MF 2 0.998 0.914 0.725 11.397 11.738 13.398
6 MF 1/2 0.942 0.936 0.944 11.514 11.217 11.035

MF 2 0.930 0.933 0.928 11.277 11.191 11.269
7 MF 1/2 0.899 0.904 0.856 12.040 12.157 12.908

MF 2 0.988 0.878 0.809 11.816 11.858 14.253
8 MF 1/2 0.701 0.918 0.939 12.184 11.493 11.323

MF 2 0.894 0.929 0.947 12.256 11.657 12.199
9 MF 1/2 0.998 0.958 0.876 11.802 12.095 12.810

MF 2 0.998 0.918 0.718 11.436 11.752 13.425
10 MF 1/2 0.896 0.893 0.847 12.042 12.061 12.842

MF 2 0.983 0.899 0.804 11.853 11.898 14.278
15 4 MF 1/2 0.827 0.925 0.916 16.716 15.853 15.653

MF 2 0.885 0.920 0.935 16.991 16.110 16.716
5 MF 1/2 0.994 0.935 0.848 15.890 16.518 17.818

MF 2 0.998 0.920 0.789 15.708 16.217 18.582
6 MF 1/2 0.933 0.932 0.930 15.889 15.541 15.274

MF 2 0.926 0.921 0.921 15.662 15.489 15.497
7 MF 1/2 0.953 0.889 0.827 16.208 16.572 17.929

MF 2 0.974 0.897 0.827 16.159 16.237 19.274
8 MF 1/2 0.832 0.919 0.923 16.685 15.858 15.615

MF 2 0.883 0.926 0.945 16.965 16.077 16.669
9 MF 1/2 0.995 0.934 0.843 15.893 16.508 17.775

MF 2 0.997 0.924 0.772 15.723 16.227 18.681
10 MF 1/2 0.947 0.889 0.836 16.195 16.525 17.981

MF 2 0.973 0.903 0.825 16.190 16.292 19.377
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Table 2.12: The root mean squared error (rMSE) for each βj, j = A,B,C when estimated in the
proposed two-stage snSMART design when the first stage outcome is distributed as a scaled beta
distribution, but analyzed as a normal distribution. βj indicates the treatment effect. MF = mapping
function, DO = dichotomized outcome (Section 2.3.1).

rMSE
Scenario Design βA βB βC
Beta - 1 MF 1 4.610 4.440 4.420

MF 1/2 4.360 4.220 4
MF 2 4.250 4.430 4.470
DO 50 10.100 9.630 9.300
DO 30 8.710 7.860 7.200
DO 70 5.660 6.330 6.860

Beta - 2 MF 1 6.100 6.800 6.880
MF 2 4.890 5.260 5.650

MF 1/2 7.530 8.140 8.380
DO 50 8.950 10.780 12.720
DO 30 13.220 17.980 22.020
DO 70 5.490 5.940 6.800

Beta - 3 MF 1 10.070 9.140 12.790
MF 2 16.130 13.770 14.900

MF 1/2 6.740 6.300 11.250
DO 50 16.270 13.240 15.700
DO 30 9.500 8.420 13.190
DO 70 25.610 19.970 18.020
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Table 2.13: Bias and root mean squared error (rMSE) for Scenarios 4-10 with model assumption
violations (Section 2.3.2.3) for other mapping functions, n = 30. βj, j = A,B,C parameters
indicate treatment effects.

Bias rMSE
Scenario MF βA βB βC βA βB βC

4 MF 1/2 4.331 −1.404 −1.295 5.417 3.192 3.145
MF 2 1.587 −1.075 0.020 3.814 3.298 3.102

5 MF 1/2 −0.163 −0.034 0.259 1.753 2.953 4.189
MF 2 −0.199 −1.656 −3.882 1.676 3.426 5.938

6 MF 1/2 0.043 0.199 0.078 2.996 3.016 2.901
MF 2 −0.607 −0.880 −1.014 3.081 3.037 3.154

7 MF 1/2 3.270 −2.137 −1.356 3.890 3.677 4.289
MF 2 1.282 −2.155 −2.953 2.469 3.721 5.430

8 MF 1/2 4.280 −1.398 −1.380 5.395 3.229 3.068
MF 2 1.594 −1.138 0.011 3.801 3.195 3.127

9 MF 1/2 −0.108 −0.077 0.167 1.777 2.965 4.089
MF 2 −0.242 −1.680 −3.964 1.723 3.417 6.068

10 MF 1/2 3.283 −2.127 −1.475 3.907 3.708 4.414
MF 2 1.367 −1.988 −2.925 2.544 3.645 5.475

2.4.2 Patient outcomes

From the patient perspective when considering whether to enroll on a clinical trial, expected out-
comes for the patients on that trial are a key consideration. Since the first stage of the trial with
the mapping function and with the dichotomized outcome are the same, we focus on the second
stage outcomes. Overall the outcomes between mapping functions and dichotomized outcomes
were very similar within scenarios (Figure 2.6). Additionally, the patient outcomes did not vary by
which mapping function was used indicating that the average patient experience in such a trial is
not heavily influenced by the selection of the mapping function.

2.5 Discussion

We demonstrated that mapping functions are a flexible way to design multistage trials and this
design can be used to efficiently estimate treatment effects while achieving similar patient out-
comes. We see that the most intuitive choice for the binary outcome, dichotomizing a contin-
uous outcome by selecting a cut off at the median treatment effect, has low bias but also has
high variance. Other cut offs had high bias, but lower variance. The mapping function does
not have this extreme bias-variance trade off and can provide efficient and unbiased estimates in
small samples. Although sample size calculations are outside of the scope of this chapter, we ex-
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Figure 2.6: Median second stage outcome across all simulated trials. Lines indicate the 25th
and 75th percentile of second stage outcomes across all simulated trials. MF = mapping function
(Section 2.3.1), DO = dichotomized outcome (Section 2.3.2.2)
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pect that the mapping function snSMART design will typically require smaller sample size than
a binary outcome snSMART due to the smaller rMSE. Our group has developed sample size cal-
culations for an snSMART with binary endpoint (Wei et al., 2020) and a corresponding applet
(https://umich-biostatistics.shinyapps.i0/snsmart sample size app). If a more refined sample size
estimate is needed, simulation is always possible and the R code that generated the simulation
results in this chapter is available from the corresponding author.

Mapping functions could take many forms. While we primarily discussed linear functions and
modifications to those functions, there may be cases where more is known about the distribution
of Y1 which could be used to generate a mapping function. For instance, Robson et al. (2018)
describes the distribution of a PRO for ANCA-associated vasculitis for both when the patient has
active disease or is in remission. In this case, the empirical distribution of this PRO for patients in
remission could be used as a mapping function. A similar approach could be used for when the
PRO or other continuous outcome is well studied and has a known empirical distribution (Wei et al.,
2000). Using the empirical cumulative distribution results in the median value of Y1 having equal
probability of staying or switching treatments. In all distributions, even when heavily skewed, this
mapping function has the trait such that if a patient has an outcome above the median, they have
a higher probability of staying on treatment and if the outcome is below the median they have
a higher probability of switching treatment, but is more efficient in terms of rMSE than using a
median cut off.

While we focused on a continuous outcome in a small sample setting, this trial design is very
flexible in terms of the number of treatments, Bayesian analysis, and distribution of the outcome.
We presented the design with three treatments, but it is easily extendable to more treatments.
The probability of staying on the same treatment would still be determined by the mapping func-
tion. If a patients switches treatments, the second treatment would be randomly selected from
the remaining treatments with each remaining treatment having equal probability. The Bayesian
analysis framework is also very adaptable. Baseline measures and covariates measured up until
the re-randomization can be added to the mean models for stages one and two. Other covariates
measured during the second stage of the trial up until the final outcome measurement can be added
to mean model in equation 2.1. However, with small samples, parsimony in the model is im-
portant. Likewise, if treatment specific pathway effects are the primary interest, the mean model
could be changed to be unique for each treatment regimen rather than a parsimonious model using
weighted means. Since an incorrectly specified mean model resulted in the largest increase in bias,
we suggest sensitivity analysis of the mean model specification. Similarly, if the distributions of
the outcome are not expected to be normal, other multivariate distributions can be used for the
likelihood to be more suited to the outcome of interest.

It is not surprising that we did not see improved patient outcomes when using a mapping func-
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tion relative to a binary outcome. This design is primarily focused on improving statistical ef-
ficiency while maintaining similar outcomes for patients enrolled in the trial. One possibility to
improve patient outcomes would be to incorporate an adaptive re-randomization scheme where
prior patient outcomes are included in the mapping function in addition to the patient’s own out-
come. This could be similar to the non-dichotomous randomized play-the-winner proposed in
Rosenberger (1993).

This trial design still has many benefits to patients. Patient input could help guide the selection
of the outcome or determine the minimum and maximum values where switching treatment and
remaining on treatment are possible. Rare disease patient representatives stated that increasing
patient involvement would improve clinical trials (Gaasterland et al., 2019). Additionally, patients
have the potential to receive two treatments or stay on treatment if it is working. This lessens time
on treatments that are less effective for the patient which may be viewed as a benefit to patients
(Gaasterland et al., 2019). Informing patients about the clinical trial procedure and ensuring that
patients understand that they may not receive the treatment they prefer due to randomization is
also critical (Gaasterland et al., 2019). While the mapping function increases the probability of
switching if a treatment is not working and staying if it is, there is no guarantee since there is
randomization for all treatment assignments. To further patient involvement, the upper and lower
values of re-randomization could potentially vary for each patient depending on their goals and
needs. Future work will investigate adaptive randomization components to potentially improve
patient outcomes and to consider individualized mapping functions to fully incorporate patient-
specific willingness to stay on or switch treatment.

Overall, this snSMART design with a mapping function has improved statistical efficiency and
lower bias over using a dichotomized outcome. The proposed design with a mapping function
allows trials to proceed without the need for a pilot study or extensive knowledge of the treat-
ment effects and outcome and may be particularly useful in estimating treatment effects in small
samples.
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CHAPTER 3

A Sequential, Multiple Assignment, Randomized
Trial Design with a Tailoring Function

3.1 Introduction

Dynamic treatment regimens (DTRs) are a sequence of decision rules that provide guidelines for
treatments based a patient’s their individual characteristics and disease progression (Chakraborty
and Murphy, 2014). These treatment sequences are a form of personalized medicine where patients
with the same condition may receive different treatments based on the evolution of the condition,
additional patient characteristics, and response to prior treatments. A decision rule tailors treatment
at each time point for each patient by implementing a tailoring variable (Almirall et al., 2012; Lei
et al., 2012). An example of a two-stage DTR would be “Start all patients on treatment A. After
6 months, if the patient responds, maintain treatment A. Otherwise, give the patient treatment B.”
This DTR could be written as the treatment triplet (A, A, B) to indicate the first treatment and then
the second two treatment options based on response to the initial treatment. The tailoring variable
here is response to treatment A where response would have a predetermined definition.

One way to develop DTRs is through observational studies (Moodie et al., 2012; Murphy et al.,
2001; Tao et al., 2018). In observational studies, often the second stage treatment may be chosen
based on multiple factors and not a single binary variable as presented in the example above (i.e.
repsonse/non-response to treatment). Thus, methods to estimate DTRs from observational data
must determine the categorical variables that dictate which treatment is optimal at each time point.

Another way to develop DTRs is through randomized trials, most often sequential, multiple as-
signment, randomized trials (SMARTs). SMARTs integrate the tailoring variable into the design to
assign a second stage treatment based on the patient’s response to the previous treatment (Murphy,
2005). In SMARTs, DTRs are embedded into the design so that the effects of each DTR can be
estimated from the resulting data. In a two-stage SMART, participants are randomly assigned to a
first treatment and a first stage outcome or tailoring variable is measured. The second treatment is
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assigned probabilistically or deterministically based on the design and the selected tailoring vari-
able. The final outcome is measured at the end of the second stage. Data from both stages are used
to estimate DTRs using weighted and replicated regression (WRR) with generalized estimating
equations (GEE) (Kidwell et al., 2018; Murphy, 2005; Nahum-Shani et al., 2012a) or more per-
sonalized DTRs including baseline and time varying covariates can be developed using Q-learning
(Nahum-Shani et al., 2012b).

The tailoring variable in a SMART is often based on response or non-response to treatment,
thus requiring that the trial protocol specify a binary rule for what qualifies as a “response.” The
tailoring variable must be selected and agreed upon before the start of the trial (Lei et al., 2012).
While there is some guidance in selecting the tailoring variable (Almirall et al., 2012), there is
a lack of guidance on how to proceed if a reasonable tailoring variable cannot be established. In
many studies, the outcome of interest may not be a binary variable and selecting a tailoring variable
may not be an easy or practical task.

In this chapter, we propose a SMART design where the second stage treatment is assigned based
on a tailoring function. A tailoring function, similar to a mapping function in Hartman et al. (2021)
and Chapter 2, takes a continuous outcome at the end of the first stage and assigns a probability of
receiving each possible second stage treatment. In the design presented here, we assume a binary
response tailoring variable is not available, and thus traditional methods for analyzing data from a
SMART are no longer applicable. Therefore, to develop DTRs, we apply methods for developing
DTRs using observational data such as Q-learning and tree-based reinforcement learning (TBRL).
This project addresses a gap in clinical trial methodology by presenting SMARTs where second
stage treatment is based on a continuous outcome.

In this chapter, we first present the proposed SMART design, a SMART which uses a tailoring
function (TF-SMART), with a goal of estimating a DTR in flexible manner without needing to
pre-specify a tailoring variable. Next, we discuss several methods for developing DTRs from
observational studies in the context of a SMART thereby eliminating the need for a pilot study
to select a definition of response and non-response. Lastly, we show results from simulations
to compare the estimated DTR from a TF-SMART to a traditional SMART using a predefined
tailoring variable (TV-SMART). This new SMART design will simultaneously define decision
rules and the appropriate sequence of treatments within the context of randomized trial, a novel
approach to using randomized trials to develop DTRs.

3.2 Trial designs

We examine two TF-SMART designs presented in Figures 3.1 and 3.2. In these designs, patients
are first randomized with equal probability to one of two treatments. Then, a continuous outcome is
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measured at the end of the first stage, Y1. The second stage treatment is assigned using a tailoring
function (more details in Section 3.2.1). The tailoring function takes Y1 as input and outputs a
probability. The output probability is then used to assign probabilities of the patient receiving
each second stage treatment. In Figures 3.1 and 3.2, we present distinct second stage treatments
for generalizability, but the first stage treatments could be treatment options in the second stage.
Second stage treatment options may include continuing the same treatment, alternate treatments, a
change in dosage, a combination of treatments, or maintenance therapy. Examples of these designs
with first stage treatments included as options for second stage treatments are shown in Figures 3.3
and 3.4.

Figure 3.1: Design I: Patients with more favorable responses are more likely to go to one treatment
and patients with less favorable responses are more likely to go to a different single treatment. A,
B, C, D, E, and F are treatments, Y1 is the first stage outcome, R indicates a randomization point,
f(Y1) is the tailoring function, and the expressions along the lines indicates the randomization
probability of the treatment following.

In Design I (Figure 3.1), there are two first stage treatments, A and B, and two second stage
treatments for each arm, C and D or E and F. At the end of the first stage, a patient is randomly
assigned to one of the two second stage treatments based on Y1. When a tailoring variable is
used in place of a tailoring function, then patients are assigned to either C/E or D/F based on
their response to the first stage treatment and there is no second randomization point. In this case,
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Figure 3.2: Design II: Patients with more favorable responses are more likely to go to one specific
treatment and those with less favorable responses are more likely to be re-randomized to two
treatments. A, B, C, D, E, F, G, and H are treatments, Y1 is the first stage outcome, R indicates a
randomization point, f(Y1) is the tailoring function, and the expressions along the lines indicates
the randomization probability of the treatment following.
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Figure 3.3: Example of Design I: Patients with more favorable responses are more likely to stay on
the same treatment and patients with less favorable responses are more likely to add the treatment
they did not receive in the first stage. A and B are treatments, Y1 is the first stage outcome, R
indicates a randomization point, f(Y1) is the tailoring function, and the expressions along the lines
indicates the randomization probability of the treatment following.

38



Figure 3.4: Example of Design II: Patients with more favorable responses are more likely to stay
on the same treatment and patients with less favorable responses are more likely to either add
the treatment they did not receive in the first stage or switch to a different treatment. A, B, and
C are treatments, Y1 is the first stage outcome, R indicates a randomization point, f(Y1) is the
tailoring function, and the expressions along the lines indicates the randomization probability of
the treatment following.
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f(Y1) = 1 or 0 so the second stage treatments are assigned deterministically based on Y1. Thus,
when a tailoring variable is used, this design is not a SMART as there is only one randomization
point, not sequential randomization.

In Design II (Figure 3.2), patients are assigned a second stage treatment in two steps. First,
patients are assigned to either receive one treatment, C or F in the figure, or receive one of the
two other treatments, D and E or G and H with equal probability. One common example of this
general design occurs when C = A and F = B so these second stage treatments may be described as
continuing first stage treatment or some form of maintenance care. The tailoring function would
be defined such that a patient who is doing well on the first stage treatment would have a higher
probability of continuing that treatment or receiving a maintenance treatment.

3.2.1 Tailoring function details

Tailoring functions are a generalization of tailoring variables and are mechanistically the same as
mapping functions presented in Hartman et al. (2021) and Chapter 2. However, interest in this
chapter is in developing DTRs in a standard size trial which differs from previous work where
the goal is to estimate the best first stage treatment in a small sample. A tailoring function takes a
continuous first stage outcome, Y1, and maps it to randomization probabilities of each second stage
treatment. For designs such as those in Figures 3.3 and 3.4, this function can map better outcomes
to values closer to 1 so that patients are more likely to stay on the treatment that worked well for
them. Conversely, patients that are not doing well on the first stage treatment are more likely to
switch to a new treatment or add an additional treatment with the goal of improving the second
stage outcome. There are many options for selecting a function. Guidance from Section 2.2.1.1
can also apply here. As in Chapter 2, the function itself can implement thresholds to limit extreme
circumstances, and the function can be linear or otherwise to modify its properties.

Tailoring variables can be thought of as a special case of tailoring functions where f(Y1) = 0

for Y1 < x and f(Y1) = 1 for Y1 ≥ x for some x which is the pre-selected cut off. Using a
tailoring variable defined as a step-wise function in this manner generates a TV-SMART design
with a binary first stage outcome that assigns second stage treatment.

3.3 Overview of DTR estimation methods

The goal of a DTR is to maximize the expected second stage outcome when applied to the pop-
ulation. In a traditional SMART design with a binary intermediate outcome, WRR with GEE is
commonly used to analyze data and estimate a DTR (Kidwell et al., 2018; Liang and Zeger, 1986;
Murphy, 2005; Nahum-Shani et al., 2012b). This requires a predefined tailoring variable as there
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is no way to develop a tailoring variable within the WRR framework. Q-learning may also be used
to analyze data from a SMART to develop more personalized DTRs which include baseline and
time varying covariates (Nahum-Shani et al., 2012b).

Published methods for DTR estimation from observational data include outcome weighted
learning (OWL) (Zhao et al., 2012), Q-learning (Moodie et al., 2012; Nahum-Shani et al., 2012b;
Wu et al., 2015), TBRL (Laber and Zhao, 2015; Tao et al., 2018), and Bayesian machine learn-
ing (Murray et al., 2018). Here, we present WRR in the context of a TV-SMART design and we
present Q-learning and TBRL in the context of the TF-SMART designs shown in Figures 3.1 and
3.2.

Let Y1 and Y2 be the first and second stage outcomes, respectively. Let A1 and A2 be the first
and second stage treatment assignments, respectively. The goal of a SMART is to identify the DTR
which maximizes the expected second stage outcome, Y2, for patients in a new population.

3.3.1 Generalized estimating equations

The WRR method to analyze SMART data weights observations based on their probability of
receiving the treatment regimen they received. In a traditional SMART, there are multiple DTRs
embedded within the trial design. In some cases, people may be on a sequence of treatments which
could have resulted due to following multiple DTRs. Thus, those patients must be replicated and
each replicate is assigned one of the possible DTRs they could be following. Patients are also
weighted to account for the randomization scheme. Then a fully saturated model is often used.
The weighting and replicating method allows the data to be analyzed by standard software (Kid-
well et al., 2018; Nahum-Shani et al., 2012a). Due to our proposed TF-SMART design not having
a pre-specified decision rule for defining a binary tailoring variable, this method cannot be used to
estimate DTRs for our proposed TF-SMART design as WRR only estimates DTRs with a prede-
fined tailoring variable. The analytic methods we use must both develop the tailoring variable and
define the treatment regimen, whereas WRR assumes a predetermined tailoring variable and only
defines the treatment regimen. We use this analytic method to analyze data from a TV-SMART
and compare results with a TF-SMART using other methods.

3.3.2 Q-learning

Q-learning is a method to maximize an outcome based on a sequence of decisions (Nahum-Shani
et al., 2012b). First, the optimal decision rule at the second stage is determined by identify-
ing A2 that maximizes Q2(A1, A2, Y1) = E(Y2|A1, A2, Y1). Then, the optimal first stage deci-
sion rule is constructed by selecting A1 that maximizes Q1(A1) = E (maxA2 Q2(A1, A2, Y1)).
The quantity E (maxA2 Q2(A1, A2, Y1)) is called a pseudo-outcome. This represents the ex-
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pected second stage outcome if the patient received the best second stage treatment. Q-
learning can include covariates measured before the first stage (X1) and up to the second
stage (X2) so that Q2(A1, A2, Y1, X1, X2) = E(Y2|A1, A2, Y1, X1, X2) and Q1(A1, X1) =

E (maxA2 Q2(A1, A2, X2, X2, Y1)). Q1 and Q2 are called Q-functions. While Q-learning can be
done with a variety of techniques and models, here we focus on linear regression so that Q2 is
modeled as a linear combination of A1, A2, and Y1 and Q1 is modeled as a linear combination of
A1.

In order to account for the randomization scheme, we use inverse probability of treatment
weighting (IPTW) (Moodie et al., 2012). For each patient, the probability of their treatment is
the product of the probability of first stage treatment assignment ( 1

K
for K first stage treatments

assuming equal randomization) and the probability of their second stage treatment which is dic-
tated by the tailoring function for that patient and the randomization scheme.

3.3.3 Tree-based reinforcement learning

We follow methods from Tao et al. (2018) and Laber and Zhao (2015) for TBRL using IPTW
in the TF-SMART setting. As with Q-learning, we start by identifying the optimal second stage
treatment and then use a pseudo-outcome to identify the optimal first stage treatment. With TBRL,
a tree is built to create decision rules for the second stage treatment assignment that maximizes the
second stage outcome. Then, a tree is built for the first stage treatment assignment to maximize
the expected second stage outcome using pseudo-outcomes.

Decision trees start with all patients and use binary rules to create groups of patients that should
all receive the same treatment. An example is shown in Figure 3.5. Here, the blue and green
squares are termed nodes. The blue squares are terminal nodes. Nodes are terminal when no
additional split follows. The orange squares are the treatments assigned to each terminal node.

To build a tree, we first define a node purity measure which represents how well a tree has
classified the groups and is a measure of homogeneity within a node. We use the purity measure
described in (Laber and Zhao, 2015):

P(r,R) = max
a,a′∈A

En

[
[Y − m̂(X)] I(X ∈ R)I(A = πra,a′(X))

P (πr,a,a′(X)|X)

]
(
En

[
I(X ∈ R)I(A = πr,a,a′(X))

P (πr,a,a′(X)|X)

])−1
(3.1)

where A is the treatment, R is the node to be split into groups r and rC , X are patient char-
acteristics for that specific stage, πr,a,a′ is the decision rule that assigns treatment a to subjects
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Figure 3.5: An example of a potential decision tree for a cancer patient. The blue and green squares
are nodes. The blue squares are terminal nodes. The orange squares are the treatments estimated
to be optimal for patients in that node.

in group r and treatment a′ to subjects in rC , and m̂(X) is maxa∈AE(Y |A = a,X). En is the
empirical expectation. Then P (πr,a,a′(X)|X) is the propensity score for the patient defined by the
inverse of the probability of receiving the treatment that they received. This purity measure is the
percent change in the expected outcome when the patients in a given node are split (i.e. patients in
r receive treatment a and those in rC receive a′) relative to the expected outcome if patients in that
node are not split (i.e. all patients in the node receive the same treatment).

One distinct difference in this TF-SMART setting versus the observational data setting is that
we do not need to estimate propensity score since the probability of each treatment is a known
function of the first stage outcome via the tailoring function and randomization probability.

With the node purity measure, we then define splitting rules. Each split must only depend on
one covariate. In the scenario without covariates, this means that there will be at most one split
which is solely based on the first stage outcome. If there are other patient covariates that could be
considered, then the split is based on one out of all covariates measured up until randomization.
The split is chosen to optimize the purity metric defined in equation 3.1. Node size is defined as
the number of patients in that node. Define n0 as the minimum node size accepted where n0 is a
positive integer. Define λ as the minimum improved node purity to warrant a split where λ is a
positive constant. Then we define our splitting rules as follows:

Rule 1 If a node size is smaller than 2n0, the node will not be split.

Rule 2 If all possible splits result in a child node having fewer than n0 items, the node will not be
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split.

Rule 3 If the tree-depth (or number of splits) has reached a pre-specified limit, the node will not
be split.

If these criteria are met, then the node is split by selecting r such that P(r,R) is maximized
and the node size of r and rC are both at least size n0. Let | · | indicate node size. Then the optimal
split is:

r̂opt = argmax
r

[P(r,R) : min(|r|, |rC |) ≥ n0]

Once this optimal split has been determined, we apply the last rule:

Rule 4 If the purity improvement is less than λ (i.e. P(r,R) − P(R) < λ), then do not split the
node.

This splitting rule forces the expected outcome to improve by some set amount in order to
warrant a split. We follow these splitting rules until all nodes are terminal (i.e. no split follows all
rules defined above) which results in an estimate of the optimal DTR.

3.4 Simulation Methods

3.4.1 Generation of trial data

Patients are randomly assigned to one first stage treatment so that there are equal numbers of
patients in all treatment arms. Assume there are s possible first stage treatments and t possible
second stage treatments. Then all possible first stage treatments are A1 = {a11, . . . , a1s} and all
possible second stage treatments are A2 = {a21, . . . , a2t}. Then the first and second treatments
a patient receives (A1 and A2 respectively) are such that A1 ∈ A1 and A2 ∈ A2. The first stage
outcome is distributed:

Y1|A1 ∼ N

(
s∑
i=1

αiI(A1 = a1i), σ
2

)
Each treatment a11, . . . , a1s has its own mean treatment effect on the first stage outcome. Here,
since s = 2 such that a11 = A and a12 = B, the distribution of Y1 is:

Y1|A1 ∼ N
(
αAI(A1 = A) + αBI(A1 = B), σ2

)
.

The second stage treatment is randomly assigned using a tailoring function based on the first
stage outcome, Y1 and the first stage treatment, A1. Let πππ(Y1, A1) be the vector of probabilities
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of each second stage treatment as dictated by the trial design and the tailoring function. Then the
second stage treatment assignment is:

A2|Y1, A1 ∼Multinomial(πππ(Y1, A1)).

The distribution of the final outcome Y2, is dependent on all previous treatments and the first
stage outcome. We assume a linear relationship between Y1 and Y2 given A1 and A2. Thus the
distribution of Y2 is:

Y2|A2, Y1, A1 ∼ Normal(µ(A2, Y1, A1), σ
2)

where:

µ(A2, Y1, A1) =
s∑
i=1

t∑
j=1

βa1ia2jI(A1 = a1i)I(A2 = a2i)+

s∑
i=1

t∑
j=1

γa1ia2jI(A1 = a1i)I(A2 = a2i)Y1. (3.2)

This model is a general formulation and there are more parsimonious models that would be
special cases of this model by imposing additional constraints on the γ and/or β parameters.

3.4.2 Analysis methods

3.4.2.1 Weights

For both Q-learning and TBRL, we use IPTW. Weights for the first stage analyses in both
TF-SMART Designs I and II (Figures 3.1 and 3.2) are w1 = 1

2
due to the equal stage random-

ization to the two first stage treatments. Since all patients are weighted equally, we do not need to
weight at this stage. The weights for patients vary in the second stage and are defined for Design I
as:

w2 =
2

f(y1)
I(A2 ∈ (C,E)) +

2

(1− f(y1))
I(A2 ∈ (D,F )) (3.3)

and Design II as:

w2 =
2

f(y1)
I(A2 ∈ (C,F )) +

4

(1− f(y1))
I(A2 ∈ (D,E, F,G)). (3.4)
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3.4.2.2 Q-Learning

To implement Q-learning in our design settings, we use linear models to identify the optimal treat-
ment at each randomization point in the specific design. For Design I, this means we separately
identify which is the best second stage treatment for patients that received treatment A in the first
stage (C or D) and the best second stage treatment for patients that received treatment B in the first
stage (E or F). In Design II, we identify the best second stage treatments for those that received
A in the first stage (C, D, or E) and those that received B in the first stage (F, G, or H). Lastly, in
both designs, we identify which is the best treatment to start with to maximize the second stage
outcome (A or B). Let βij and γij be the model parameters for when A1 = i and A2 = j. The
model to identify the best second stage treatment for those starting with treatment A in Design I is:

Y2 ∼ βACI(A2 = C) + βADI(A2 = D) + γACY1I(A2 = C) + γADY1I(A2 = D) (3.5)

Likewise, the model for identifying the best second stage treatment for those starting with
treatment B is:

Y2 ∼ βBEI(A2 = E) + βBF I(A2 = F ) + γBEY1I(A2 = E) + γBFY1I(A2 = F ) (3.6)

The equivalent models for Design II are:

Y2 ∼ βACI(A2 = C) + βADI(A2 = D) + βAEI(A2 = E)+

γACY1I(A2 = C) + γADY1I(A2 = D) + γAEY1I(A2 = E) (3.7)

and

Y2 ∼ βBF I(A2 = F ) + βBGI(A2 = G) + βBHI(A2 = H)+

γBFY1I(A2 = F ) + γBGY1I(A2 = G) + γBHY1I(A2 = H). (3.8)

We use the linear regression with the above models and IPTW with the appropriate weights
from equation 3.3 or 3.4 to obtain estimates for all βs and γs.

Let Ŷ2 indicate the predicted second stage outcome based on the parameter estimates from the
models above. Then the pseudo outcome to analyze the stage 1 data for Design I is:

Ỹ2 = max
A2∈C,D

Ŷ2I(A1 = A) + max
A2∈E,F

Ŷ2I(A1 = B) (3.9)
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and for Design II is:

Ỹ2 = max
A2∈C,D,E

Ŷ2I(A1 = A) + max
A2∈F,G,H

Ŷ2I(A1 = B). (3.10)

We then model to estimate the best first stage treatment:

Ỹ2 ∼ βAI(A1 = A) + βBI(A1 = B)

The first stage treatment with the largest β̂ is then selected.

3.4.2.3 Tree-based reinforcement learning

For the TBRL method with IPTW, we start similarly to Q-learning by using the appropriate
weighted linear regression models from equations 3.5 and 3.6 or 3.7 and 3.8. We then calcu-
late the 100-percentiles of the observed outcomes and test each as a potential cut point using the
methods described in Section 3.3.3. The cut point that results in the highest E(Y2) based on the
parameter estimates is selected if it meets all splitting criteria. For tree building, we follow Tao
et al. (2018) and use n0 = 5 as our minimum node size. We set λ = 0.01 as our minimum node
purity improvement so that there is at least a 1% improvement in the predicted second stage out-
come by allowing a split. Since we do not include covariates, we only have one possible variable
for splitting (Y1) and thus we do not need to implement Rule 3 regarding maximum tree-depth.

As with the Q-learning method, we estimate the best first stage treatment by maximizing
psuedo-outcome, Ỹ2 as defined in 3.9 or 3.10. We select the first stage treatment with the largest β̂.

3.4.2.4 Weighted and Replicated Regression

For the TV-SMART designs, we do not need to estimate the cut point as it is predefined. Addition-
ally, it is uncommon for SMARTs using a tailoring variable to re-estimate the optimal cut off as
it is assumed to be known. Therefore, we do not apply Q-learning or TBRL to the data from the
TV-SMART design as this would not be done in practice.

For Design I, we only need to estimate two predefined DTRs that either start with treatment A
or start with treatment B. Since patients are randomized to either A or B we only need to compare
the second stage outcomes based on first stage treatment so the model is:

Y2 ∼ β1I(A1 = A) + β2I(A1 = B)

For Design II, we must select a second stage treatment for people whose Y1 values fall below
the pre-defined threshold. To do this, we use the weighting and replication method described in
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Nahum-Shani et al. (2012a) and Kidwell et al. (2018). Here, we examine four possible DTRs: (A,
C, D), (A, C, E), (B, F, G), and (B, F, H). Thus, for participants that receive treatment C, they could
be following either of the first two DTRs, and for participants that receive treatment F, they could
be following either of the second two DTRs. Thus we replicate those participants, one replicate
for each DTR they could be following, to get an accurate estimate of the second stage outcome
on each DTR. To account for imbalance by design, we weight participants using the weights in
Equation 3.4. Let the selected cut off for the tailoring variable be x. Then f(Y1) in a TV-SMART
is defined as:

f(Y1) =

0 Y1 ≤ x

1 Y1 > x.

We then use linear regression with IPTW to model:

Y2 ∼ β1I(DTR = (A,C,D)) + β2I(DTR = (A,C,E))+

β3I(DTR = (B,F,G)) + β4I(DTR = (B,F,H))

The DTR is then selected based on which has the highest estimated β, β̂.

3.4.3 Design Settings

We simulated 1000 trials that had a total of 300 patients with 150 patients on each of the first stage
treatments, A and B.

3.4.3.1 Parameters for data generation models

For all designs and settings we set αA = 50, αB = 30, and all standard deviations to be σ = 15. We
vary the second stage intercept, β, and slope, γ, parameters to create different scenarios (Tables
3.1 and 3.2). Scenarios I-i and II-i have the same cut off for the DTRs that start with either
treatment A or treatment B. This follows most literature on estimating DTRs where there is not
an interaction between A1 and Y1. Scenarios I-ii and II-ii have different cut offs for the DTRs
depending on which first stage treatment is selected. In Scenarios I-iii and II-iii, E(Y2|A2, A1 =

A) = E(Y2|A2, A1 = B) meaning there is no difference between second stage outcomes for
treatmentsA1 = A andA1 = B conditional on Y1. There is still a difference in first stage outcomes
so treatment A is the optimal first stage treatment. In scenarios I-iv and II-iv, the cut point is not
within a reasonable range of Y1 (within ±3σ of the true cut off) so a DTR is not needed. Thus the
optimal treatment sequence is (A, C) for all patients. For scenarios I-v and II-v, the optimal DTR is
not clear from only examining the second stage expected outcome, µ(A2, Y1, A1). In Scenario I-vi,
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Y1 is prognostic but not predictive, such that Y1 is yields information about Y2 but does not yield
information about the association of A2 with Y2 conditional on A1. In Scenario II-vi, the optimal
DTR has two cut points, so there are three possible second stage treatment options as opposed to
the traditional two second stage treatments.

3.4.3.2 Tailoring functions and tailoring variables

In our simulations, we consider three different tailoring functions. For all, if Y1 > 100, f(Y1) = 1

and if Y1 < 0, f(Y1) = 0. Then the three functions used are:

TF 1: f(Y1) = Y1/100

TF 1/2: f(Y1) = (Y1/100)
1/2

TF 2: f(Y1) = (Y1/100)
2

We also consider six different tailoring variables by assigning a cut point of the first stage
outcome. If Y1 is higher than the cut point, then f(Y1) = 1 and if Y1 is below the cut point then
f(Y1) = 0. The cut offs used in simulation are 30, 40, 50, 60, 70, 80. These are labelled as TV 30,
TV 40, TV 50, TV 60, TV 70, and TV 80, respectively.

3.4.4 Performance metrics

3.4.4.1 Definition of the optimal DTR and optimal cut off

In order to compare results from the SMARTs to a defined standard, we use the optimal DTR
defined for each scenario by the sets of treatments and cut offs listed in Tables 3.1 and 3.2. Since
we present simulations with a known data generation model, we know the optimal DTRs, but this
is not true in practice. For example, for Scenario I-i, the optimal DTR is to start all patients on
treatment A. Then if the patient’s Y1 is greater than 60, they receive treatment C. If the patient’s
Y1 is less than or equal to 60, they receive treatment D. In this scenario, the optimal cut off is 60.
For scenarios that have only two treatments listed, (A, C), and “None” as the optimal DTR cut
off for Y1, the optimal DTR is to have everyone receive treatment A and then receive treatment
C regardless of Y1. There is no optimal cut off. For Scenario II-vi, the optimal DTR is to start
everyone on treatment A. Then if Y1 > 60, the patient receives C, if 40 < Y1 ≤ 60 the patient
receives D, and if Y1 ≤ 40 the patient receives E. This scenario has two optimal cut offs, 60 and
40. All optimal DTRs and associated optimal cut offs were calculated based on the known data
generation parameters in Tables 3.1 and 3.2 as well as the known first stage treatment effects in
Section 3.4.1.
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3.4.4.2 Definition of an estimated DTR

We estimate a DTR for each simulated trial data set using Q-learning and TBRL for TF-SMARTs
and WRR for TV-SMARTs. For TF-SMARTs, the estimated DTR includes the treatments that
make up the DTR and the estimation of the cut off for Y1 (i.e. the definition of the tailoring
variable). For TV-SMARTs, the estimated DTR includes the treatments that make up the DTR and
the predefined cut off for Y1 which is the same as the tailoring variable used in the trial.

3.4.4.3 Comparisons of SMART designs

For each design, scenario, and tailoring function/variable, we simulated 1000 trials and evaluate
outcomes under each estimated DTR in sample of 10000 patients from the target population. We
then estimated the DTR from one trial using the appropriate method(s) (Q-learning and TBRL
for TF-SMARTs and WRR for TV-SMARTs). We apply resulting estimated DTR and apply it
in a new population of 10,000 patients. We then average the second stage outcomes in the new
population. We compare the average second stage outcomes, Y 2, between TF-SMARTs and TV-
SMARTs with higher being better. We also compare Y 2 within TF-SMARTs for TF 1, TF 2, and
TF 1/2 and within TV-SMARTs for TV 30, TV 40, TV 50, TV 60, TV 70, and TV 80 defined in
Section 3.4.3.2. Additionally, we compare Y 2 resulting from applying the estimated DTRs in the
new population to the Y 2 resulting from applying the optimal DTRs in the new population. We
also examine the proportion of patients in the new population of 10,000 that are assigned the same
treatments under the estimated DTRs as they would be under the optimal DTR. Lastly, we examine
the proportion of trials that correctly selected treatment A as the optimal first stage treatment. In
all scenarios, A is the optimal first stage treatment (Tables 3.1 and 3.2).

3.4.4.4 Comparison of analytic methods for TF-SMARTs

We compare Q-learning and TBRL as analytic methods for TF-SMARTs. To do this we examine
the same metrics as described in Section 3.4.4.3: Y 2, proportion of patients on the same treatment
under the estimated DTR as they would be under the optimal DTR, and the proportion of trials that
correctly selected treatment A as the optimal first stage treatment. For scenarios that had a single
optimal cut off for Y1 (Scenarios I-i, I-ii, I-iii, I-v, II-i, II-ii, II-iii, and II-v; Tables 3.1 and 3.2),
we also examined how well the methods estimated the optimal DTR cut off for Y1. To do this we
looked at bias defined as the difference between the estimated cut off and the optimal DTR cut off.
For Scenarios I-i, I-ii, I-iii, I-v, II-i, II-ii, and II-iii, the optimal DTR cut off is 60. For Scenario
II-v, the optimal DTR cut off is 33.33.
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3.5 Results

3.5.1 Comparison between tailoring functions and tailoring variables

The average second stage outcome, Y 2, when applying the estimated DTRs from the TF-SMARTs
to the a population of 10,000 was fairly consistent regardless of what tailoring function was used
(Figure 3.6). However, there was significant variation in Y 2 when using a pre-selected cut off
tailoring variable in the TV-SMARTs. For most scenarios there was at least one cut off that per-
formed similarly to the tailoring functions. As expected, the TV-SMARTs using the cut off of 60
as a tailoring variable (TV 60) performs well in most settings since that is the optimal cut off in
scenarios I-i, I-ii, I-iii, I-v, II-i, II-ii, and II-iii. In these scenarios with the TV-SMART design
using TV 60, 100% of patients in the new population end up on the same treatment as they would
with the optimal DTR (Figure 3.7). Thus, these trials yield nearly equivalent performance to the
optimal DTR. However, there were also cut offs that did not perform as well. Overall, there was a
wider variation in Y 2 when conducting a TV-SMART compared to a TF-SMART.

Interestingly, in Scenario II-v where there was not a clear DTR based on second stage models,
there is extreme variance of the average second stage outcome based on which tailoring variable
was used. This was due to the WRR method described in Section 3.4.2.4 selecting a DTR with the
incorrect first stage treatment. In this scenario, the TV-SMART using TV 80 selected treatment B
for the first stage treatment over treatment A 29.2% of the time. In Scenario I-v, the TF-SMART
using TF 2 selected treatment B in 0.7% of simulations when using Q-learning and 0.8% when
using TBRL. These results explain the outliers for the TF-SMART using TF 2 with Q-learning in
Figure 3.6. In Scenario II-v, all tailoring function methods selected treatment B at least 0.3% of
the time. All other design, settings, and methods selected treatment A 100% of the time. In trials
that selected the incorrect first stage treatment, none of the patients then received the treatments
recommended by the optimal DTR (Figure 3.7).

In scenarios where no DTR was useful (I-iv and II-iv), the TV-SMARTs had worse second
stage outcomes than the TF-SMARTs. TF-SMARTs have the flexibility to select no DTR, whereas
TV-SMARTs do not. Assigning any cut point for a tailoring variable had poor performance. Perfor-
mance decreased as the cut off increased since more people were assigned to a different treatment.
In Scenario II-iv where the optimal DTR was composed of three second stage treatment options as
opposed to two, the TV-SMARTs never reached the same performance in Y 2 as the TF-SMARTs
which allow for the flexibility to identify three second stage treatment options. However, the per-
cent of patients that receive the same treatments as would be assigned based on the optimal DTR
is nearly equivalent between trials using TV 60 and the trials using tailoring functions.

For both Designs I and II, Scenarios i, ii, and iii had very similar results for the expected second
stage outcome. This is because the optimal DTR including the optimal cut off point for Y1 are
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identical between these settings.

3.5.2 Comparison of analysis methods for TF-SMART designs

Q-learning tended to perform better than TBRL in terms of maximizing Y 2 (Figure 3.6). The
average second stage outcomes are higher with Q-learning, but there is also wider range of average
second stage outcomes when using Q-learning. The performance of Q-learning varies greatly,
especially when using TF 2. This is likely due to having very few patients that are randomized
to certain treatment arms. The low number of patients in turn results in poor slope and intercept
parameter estimates (β̂s and γ̂s, respectively) when modeling equations 3.5-3.8. Since the slope
and intercept parameter estimates are directly used to estimate the DTR and cut off in Q-learning,
more accurate estimation of the slope and intercept parameters yields better estimation of the cut
off. Meanwhile, TBRL relies on the estimated parameters, splitting rules, and observed outcomes
to define a cut off so it may be more robust to having fewer patients on certain treatment arms.

Next we wanted to compare the ability to estimate the correct optimal DTR cut off in a
TF-SMART between Q-learning and TBRL by examining the bias as defined in Section 3.4.4.4.
We only included simulations in which the estimated cut off was within±3σ of the optimal cut off
as this is where the majority of first stage outcomes would lie based on the known distribution of
Y1. We also excluded cases when the TBRL did not make any splits based on the splitting rules
defined in Section 3.3.3. The TBRL method did not select a cut off in over 40% of trials where the
optimal DTR does include a cut off (Table 3.3). We found that analyzing the data using Q-learning
resulted in less bias in the estimation of the cut off, but wider variance than using TBRL (Figure
3.8). For Q-learning, the median bias of the estimated cut off ranged between -0.754 to 0.856
across all scenarios. Meanwhile, for TBRL, the median bias of the estimated cut off ranged be-
tween -6.31 and 4.63 across all scenarios. The pattern where TBRL has larger bias than Q-learning
also held in simulations where the trial size was 1000 patients with 500 on each initial arm (Figure
3.9) indicating that this bias is not due to insufficient patients on the trial to estimate the optimal
split and cut off. When we changed the minimum purity requirement to allow a split from λ = 0.01

to λ = 0.00001, we saw improvement in the bias for this method (Figure 3.10). This also resulted
in a smaller proportion of trials that incorrectly recommended no DTR (Table 3.4). This suggests
that if the minimum improvement is set too high, the TBRL algorithm will have bias when esti-
mating the optimal cut off. Additionally, when the minimum improvement parameter is set lower,
the performance in terms of average second stage outcomes of the TBRL method becomes com-
parable to the performance of Q-learning (Figure 3.11). This suggests that this method requires
tuning the minimum improvement parameter, λ, to achieve better performance. Despite the bias in
the estimated DTR cut off when using TBRL with sample size of 300 and λ = 0.01, the majority
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of patients still ended up on the same treatment as they would receive when using the optimal DTR
(Figure 3.7).

Table 3.3: Proportion of trials that result in no DTR being selected such that all patients receive the
same treatments when the total sample size is 300 and the minimum purity improvement λ = 0.01.
Proportions should be 0 as all scenarios presented in this table have an optimal DTR and optimal
cut off as defined in Section 3.4.4.1. DTR = dynamic treatment regimen, TBRL = tree-based
reinforcement learning, TF = tailoring function

Analysis method TF I-i I-ii I-iii I-v II-i II-ii II-iii II-v
Q-Learning TF 1 0.021 0.021 0.021 0.021 0.052 0.052 0.052 0.025
Q-Learning TF 2 0.025 0.025 0.025 0.025 0.048 0.048 0.048 0.078
Q-Learning TF 1/2 0.041 0.041 0.041 0.041 0.088 0.088 0.088 0.053

TBRL TF 1 0.431 0.431 0.431 0.431 0.441 0.441 0.441 0.582
TBRL TF 2 0.403 0.403 0.403 0.403 0.435 0.435 0.435 0.583
TBRL TF 1/2 0.419 0.419 0.419 0.419 0.453 0.453 0.453 0.578

Table 3.4: Proportion of trials analyzed using TBRL that result in no DTR being selected such that
all patients receive the same treatments when the total sample size is 300 and the minimum purity
improvement parameter is set to λ = 0.00001. Proportions should be 0 as all scenarios presented in
this table have an optimal DTR and optimal cut off as defined in Section 3.4.4.1. DTR = dynamic
treatment regimen, TBRL = tree-based reinforcement learning, TF = tailoring function

TF I-i I-ii I-iii I-v II-i II-ii II-iii II-v
TF 1 0.046 0.046 0.046 0.046 0.073 0.073 0.073 0.119
TF 2 0.056 0.056 0.056 0.056 0.086 0.086 0.086 0.202

TF 1/2 0.094 0.094 0.094 0.094 0.120 0.120 0.120 0.103

3.6 Discussion

Here we present a novel TF-SMART design that estimates the optimal DTR, including the cut
off within the DTR, using a continuous intermediate outcome. This flexible design can result
in better patient outcomes when applying the estimated DTR when compared to a TV-SMART
design while circumventing the need to define a binary or categorical tailoring variable a priori.
When the tailoring variable is a dichotomization of a continuous variable, there is wide variation in
average second stage outcomes based on what cut off is used. When the cut off selected is not the
true optimal cut off, there is a decrease in performance. Tailoring functions circumvent the need
to select a cut off before the trial has been conducted. This allows researchers greater flexibility
while maintaining good statistical properties.
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Figure 3.8: The bias in the estimated cut offs relative to the optimal cut off with total sample size
of 300 and the minimum purity measure λ = 0.01. The optimal cut off is defined in Section 3.4.4.1
and Tables 3.1 and 3.2. The bias is defined in Section 3.4.4.4. DTR = dynamic treatment regimen,
TBRL = tree-based reinforcement learning, TF = tailoring function
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Figure 3.9: The bias in the estimated cut offs relative to the optimal cut off with total sample size of
1000 and the minimum purity measure λ = 0.01. The optimal cut off is defined in Section 3.4.4.1
and Tables 3.1 and 3.2. The bias is defined in Section 3.4.4.4. DTR = dynamic treatment regimen,
TBRL = tree-based reinforcement learning, TF = tailoring function
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Figure 3.10: The bias in the estimated cut offs relative to the optimal cut off with total sample size
of 300 and the minimum purity measure λ = 0.00001. The optimal cut off is defined in Section
3.4.4.1 and Tables 3.1 and 3.2. The bias is defined in Section 3.4.4.4. DTR = dynamic treatment
regimen, TBRL = tree-based reinforcement learning, TF = tailoring function
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Figure 3.11: The average second stage outcome when applying the estimated DTR to a new sample
of 10,000 patients from the target population. TBRL is done using a minimum purity improvement
parameter of λ = 0.00001. DTR = dynamic treatment regimen, Y2 = second stage outcome, TBRL
= tree-based reinforcement learning, WRR = weighted and replicated regression, TF = tailoring
function, TV = tailoring variable
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In our analysis methods, we focused on Q-learning and TBRL both use IPTW. However, there
are many other methods that could be used as well as extensions to the methods presented here.
There are methods that allow TBRL to estimate the minimum purity parameter improvement pa-
rameter in order to accurately predict when a split is warranted (Laber and Zhao, 2015; Tao et al.,
2018). Since we saw a change in performance based on the minimum purity parameter, this may
result in improved performance for this method. TBRL can also be implemented with random
forests as opposed to linear regression (Tao et al., 2018). Additionally, there are other methods
that have been used to estimate DTRs with observational data that could be implemented in the
TF-SMART setting such as OWL (Zhao et al., 2012), sequential outcome weighted multicategory
learning (Zhou et al., 2018), and Bayesian machine learning (Murray et al., 2018).

When randomization is appropriate, one major advantage to developing DTRs in a TF-SMART
as opposed to using observational data is that propensity weights are known by design. We do not
require a model to estimate the propensity weights. This is especially beneficial as estimates can
be biased when the propensity model is misspecified (Drake, 1993; Lee et al., 2009; Rosenbaum
and Rubin, 1983).

Although we presented models without covariates to illustrate the analysis of our trial design,
it is easy to incorporate covariates. Both Q-learning and TBRL have been used to analyze obser-
vational data with a multitude of covariates to define DTRs and this can easily be translated to
a randomized trial setting. The final product would be a DTR that could include covariates and
the first stage outcome for a more personalized treatment regimen. While estimating sample size
is outside the scope of this paper, incorporating covariates may require a larger sample size than
a design that does not incorporate covariates. Simulations could be run to estimate the required
sample size. In addition to including covariates in the tailoring variable for the estimated DTR,
the tailoring function could also include covariates in the design stage. The tailoring function is
flexible and could could be defined to accept more input than a single first stage outcome and still
output a probability of receiving each second stage treatment.

In some trials, the difference in outcome between treatments and DTRs may be much smaller
than what we presented here. If this is the case, then the sample size will need to be larger to be
able to effectively identify the optimal DTR

Additional variations of the TF-SMART design beyond figures 3.1 and 3.2 are also feasible.
The presented analytic methods can incorporate as many treatments and stages as practical. The
methods here can also handle if there are uneven treatment arms where there are a different number
of second stage treatment options based on first stage treatment. The weights in Section 3.4.2.1
and the models in Section 3.4.2.2 would need to be modified to match the design.

While the TF-SMART design presented here has the advantage that researchers do not need
extensive knowledge about the optimal cut off a priori, if there is a wealth of knowledge, then
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a traditional TV-SMART may be more appropriate. Alternatively, data from a TF-SMART de-
sign could be analyzed using Bayesian methods for defining a DTR (such as Bayesian Machine
Learning as proposed by Murray et al. (2018)) with a strong prior to leverage that knowledge.

Overall, we demonstrated the use of a tailoring function in a SMART which offers a new and
flexible way to develop DTRs in a clinical trial setting. By using a tailoring function to assign
probabilities of receiving each treatment and applying methods for observational studies to our
trial data, we expect to expand the scope of SMARTs and enable the development of effective
DTRs across a wide variety of diseases and disorders.
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CHAPTER 4

A Bayesian Approach to Comparing Overall
Survival in Cancer Patients During the COVID-19

Pandemic Under Varying Treatment Timing
Strategies

4.1 Introduction

When the COVID-19 pandemic hit, it interrupted all aspects of our society. One major dilemma
facing oncologists was how to treat patients during the pandemic. Some hospitals had no choice
but to close all departments to make room for the influx of COVID-19 patients. Other health care
facilities (HCFs) were concerned that they would become overwhelmed with COVID-19 patients
and needed to determine the optimal way to prioritize care for non-COVID-19 patients. Those
HCFs that were able to remain open had to balance the risk of patients contracting COVID-19 by
coming in for cancer treatment with the risk of worse cancer outcomes due to delaying treatment to
minimize COVID-19 exposure. In addition, cancer patients may have higher mortality rates from
COVID-19 (Landman et al., 2020; Williams et al., 2020) and vaccines may be less effective in
immunocompromised patients such as those receiving chemotherapy (Center for Disease Control
and Prevention, 2021). Simplistic tier systems were developed to determine if a cancer patient
should receive cancer care as usual or if they should postpone their cancer treatment to reduce
risk of contracting COVID-19 (American College of Surgeons, 2020; Association of Community
Cancer Centers, 2020). These tier systems are limited since they do not take into consideration
many patient and community factors that impact both cancer survival and COVID-19 infection
risk and survival.

We previously developed a personalized model that predicts the overall survival of cancer pa-
tients during COVID-19 under both immediate cancer treatment and delayed cancer treatment.
This project involved combining epidemiologic methods to estimate COVID-19 infection risk and
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statistical methods for competing risks in survival analysis. In this tool we used a determinis-
tic Susceptible-Infected-Recovered/Removed (SIR) model to estimate the current status of the
pandemic in a patient’s local region. We incorporated separate networks to allow for a higher
rate of COVID-19 infection in HCFs. This assumption of higher risk in HCFs is supported by
data showing that health care workers (HCWs) have a higher incidence rate than the general
public (Center for Disease Control and Prevention, 2020; Nguyen et al., 2020). We used infor-
mation about the individual patient’s cancer (disease site, stage, patient age) to estimate overall
survival in a pre-COVID-19 era. We also estimated the effect of cancer treatment delay on the
patient’s overall survival. We combined all of these estimates to develop estimates of overall
survival for cancer patients during COVID-19. This model (OncCOVID) is published online at
http://onccovid.med.umich.edu/ and in JAMA Oncology (Hartman et al., 2020). This model can be
used worldwide for comparing treatment timing in patients with solid tumors.

In this manuscript, we further develop our previous methods and develop methodology to com-
bine epidemic predictions of time-varying population infection and mortality rates as a competing
risk to personalized survival estimates in a Bayesian framework. While much of the work involv-
ing pandemics and epidemics has been retrospective to examine properties of the disease and the
population behavior, this work is prospective and integrates data that is changing daily to provide
personalized patient level survival estimates that can be used in treatment decision making.

The methods presented here better capture the uncertainty and variance of our estimates. To
do this, we use Bayesian methods to derive estimates for several quantities. First, we estimate
the COVID-19 infection risk for both when the patient is receiving cancer treatment and when the
patient is not. These estimates are based on the patient’s county, the cancer treatment plan and
timing, and the local epidemic properties of COVID-19. We use Bayesian extensions of the SIR
model to develop these estimates. Next, we estimate the COVID-19 case fatality rate (CFR) for
the patient given their age and number of comorbidities using a Bayesian logistic model. Math-
ematically, the CFR is the probability of death conditional on COVID-19 infection. To estimate
the overall probability of dying from COVID-19 under a specific cancer treatment plan, we use the
product of the estimates of the probability of COVID-19 infection and the CFR. We then estimate
the patient’s survival in the absence of COVID-19 using the Surveillance, Epidemiology, and End
Results (SEER) data and perform a Bayesian survival analysis for each disease site, disease stage,
and 5-year age group. To estimate the survival under a delay of cancer treatment, we estimate
the hazard ratio (HR) for the effect of delaying cancer treatment using published literature and the
National Cancer Database (NCDB) data. Finally, we combine the pre-COVID-19 overall survival
estimate with the COVID-19 cause-specific survival estimate to derive a new overall survival es-
timate considering cancer treatment amidst a pandemic. Doing this within a Bayesian framework
allows us to develop posterior predictive intervals for the estimated survival curves. Our primary
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outcome of interest is the difference in restricted mean survival time (RMST) between immediate
(treatment beginning 7 days after diagnosis) and delayed (treatment beginning 60 days after diag-
nosis) cancer treatment for an individual patient based on their specific covariates. These results
can then be combined with physician’s expertise and patient preferences to optimize the timing of
cancer treatment thereby maximizing expected survival for the patient.

4.2 Methods

4.2.1 Overall procedure

Below is an outline of our procedure to estimate overall survival in cancer patients during the
COVID-19 pandemic under delayed or immediate treatment. An overview of the methods, data
sources, and resulting estimates are also shown in Figure 4.1.

1. Using the data from New York Times (2020) and models from the R package EpiEstim,
simulate from posterior distribution for the current reproduction number (the average number
of people infected from one infected person, R) for COVID-19 (Section 4.2.3.3).

2. Develop posterior distributions for the proportion of people currently infected with COVID-
19 and the variance metric κ for the Dirichlet distribution using the Dirichlet beta state space
model (Section 4.2.2.2; Osthus et al., 2017; Wang, Zhou, et al., 2020) and data from New
York Times (2020).

3. Using a six state set up (susceptible, infected, and recovered for both the general public and
HCWs) and a truncated Dirichlet method, estimate the posterior distribution of the COVID-
19 epidemic curve based on the patient county’s and our stated assumptions about COVID-19
(Section 4.2.3.1).

4. Estimate the COVID-19 CFR posterior distribution for each 10-year age group, sex, and
number of comorbidities by conducting a Bayesian logistic regression using data from a
small nested case-control study which is then standardized and normalized to data from a
large cohort study (Section 4.2.4).

5. Estimate the posterior distribution of pre-COVID-19 survival for cancer patients using a
piecewise constant hazard function model with a gamma process prior (Section 4.2.6.1).

6. Repeat the following 500 times for a given patient with a set treatment plan:

(a) Estimate the posterior distribution of individualized COVID-19 specific survival
curves:
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i. Draw an epidemic curve from the posterior distribution from step 3.

ii. Based on the patient’s cancer treatment plan (days in HCF) obtain the daily proba-
bility of becoming infected with COVID-19 using the drawn epidemic curve (Sec-
tion 4.2.3.5).

iii. Draw a CFR from the posterior distribution in step 4 using the patient’s age, sex,
and number of comorbidities.

iv. Use the CFR draw and the daily probabilities of becoming infected to estimate the
daily probability of dying from COVID-19 (Section 4.2.5).

(b) If considering delayed treatment, combine the pre-COVID-19 survival estimate with
the appropriate HR (Section 4.2.6.2).

(c) Combine estimates of pre-COVID-19 survival and COVID-19 survival by multiplying
survival estimates at time t for all t (Section 4.2.7).

4.2.2 Overview of methods to predict infectious disease spread

4.2.2.1 Deterministic Susceptible-Infected-Recovered Model

One commonly used method for estimating the trajectory of an epidemic or a pandemic is the SIR
model (Cummings and Lessler, 2014). LetN be the population size, It be the number currently in-
fected at time t, and Rt be the number recovered/removed. Then the number of people susceptible,
St is St = N − It −Rt.

Let D is the duration of infectiousness and γ is 1/D. β is the number of infectious contacts
made during one day, also called the transmission rate.

The number of new infections on day t+1 is β StIt
N

. The number currently infected on day t+1

is It+1 = It+ β StIt
N
− γIt. The number susceptible on day t+1 is St+1 = St− β StIt

N
. The number

recovered/removed on day t+ 1 is Rt+1 = Rt + γIt.
The SIR model (shown via a directed acyclic graph in Figure 4.2) can be viewed as the following

set of ordinary differential equations:

dS

dt
= −βSI dI

dt
= −βSI − γI dR

dt
= γI

R0 is the number of other people infected from each infectious person, also called the reproduc-
tive number. This value is usually considered a constant property of an infectious disease based
on unconstrained social interactions. However, through social distancing measures and as people
become immune to COVID-19, the actual reproductive number can vary. The average number of
people infected from one person on day t is R. Then β = R/D (Cummings and Lessler, 2014).
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Figure 4.2: The susceptible-infected-recovered directed acyclic graph.

Susceptible Infected Removed/Recovered
βθSt θ

I
t γθIt

4.2.2.2 Dirichlet-Beta State-Space Model

This deterministic SIR was expanded to incorporate randomness in the Dirichlet-Beta state-space
model (Osthus et al., 2017). In the Dirichlet-Beta state-space model, there are multiple states in
which a person can be: susceptible, infected, or removed/recovered. The transition between these
states is determined by a set of probabilities and distributions.

Let yt be the proportion of the population that are a confirmed cases of COVID-19 at time t,
θt = (θSt , θ

I
t , θ

R
t )
′ be the true proportion of susceptible, infectious, and recovered in the population,

respectively. Let β and γ be as defined before. Let φ = {θ0, γ, β, κ, λ} where κ is a variance
measure for the true proportion of people in each state and λ is a variance measure for the observed
proportion of people in each state. In order to allow for uncertainty in the parameters, the disease
transmission mechanism, and the case positive data, this method assumes that the proportion of
confirmed cases follows a Beta distribution and the true underlying distribution of proportion of
people in each state follows a Dirichlet distribution:

yt|θt, φ ∼ Beta(λθIt , λ(1− θIt ))

θt|θt−1, φ ∼ Dirichlet(κf(θt−1, β, γ))

From this, we see that E(yt) = θIt so the average proportion observed to be in the infected state
on day t is equal to the true proportion of people in the infected state on day t. We define the
function f(·) as the solution to the following ordinary differential equations:

dθSt
dt

= −βθSt θIt
dθIt
dt

= −βθSt θIt − γθIt
dθRt
dt

= γθIt

Here dθSt
dt

is the change in the proportion of the population that is susceptible. This proportion is
monotonically decreasing as people become infected. dθIt

dt
is the change in proportion of people that

are currently infected. This increases when people become newly infected and decreases as people
recover. dθRt

dt
is the change in the proportion of people that are recovered/deceased. This increases

as people who were previously infected either recover from or succumb to the disease. Since a
numerical solution is not known explicitly, f(·) is set to be equal to the fourth order Runge-Kutta
approximation of the above equations (Osthus et al., 2017; Wang, Zhou, et al., 2020).

This method is used to produce posterior distributions for the number of people currently in-
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fected with COVID-19, θIg1 , and the variance metric of the Dirichlet distribution, κ.

4.2.3 Estimating COVID-19 infection probability

4.2.3.1 Probabilistic state-space model with differential infection rate in mixing populations

As in a SIR model (Section 4.2.2.1; Cummings and Lessler, 2014), let R be the average number of
other people infected from one infectious person, D be the duration of infectiousness, γ be 1/D,
and β be the number of infectious contacts made during one day (also called the transmission rate).
Then β = R/D = Rγ.

We use a Dirichlet-Beta state space model to derive the posterior distribution of the current
proportion of the population that are susceptible to COVID-19, infected with COVID-19, or re-
covered/deceased from to COVID-19 (Section 4.2.2.2; Osthus et al., 2017; Wang, Zhou, et al.,
2020).

For predicting the pandemic trajectory (i.e. forecasting), we use models that allow for two
populations (HCWs and non-HCWs/general public) with differing transmission rates. The general
public includes cancer patients in our context. The general public may go to a HCF and interact
with HCWs. On days when the cancer patient is receiving treatment for their cancer, they are
included as part of the general public that visits the HCF. Let h be proportion of the general public
go to the HCF each day and H be the proportion of the overall population that are HCWs.

Let βg be the transmission rate of COVID-19 in the general public and let βH be the transmission
rate at the HCF. Individuals that receive health care services on a given day have the risk of
contracting COVID-19 both in the HCF and also in the general public. By adding two positive
risks (risk in the HCF and risk in the general public), this forces a non-negative change in the
probability of infection for the general public who go to the HCF which is appropriate given the
current evidence that going to the HCF increases the risk of infection (Center for Disease Control
and Prevention, 2020; Nguyen et al., 2020).

Let θgt = (θ
Sg

t , θ
Ig
t , θ

Rg

t ) be the proportion of the general public in each state on day t (suscep-
tible: θSg

t , infected: θIgt , recovered: θRg

t ). Similarly, let θht = (θSh
t , θ

Ih
t , θ

Rh
t ) be the proportion of

HCWs in each of the states.
Let θSH

t be the proportion of susceptible people in the HCF. This includes the general public
that at the HCF for care and HCWs that staff the HCF. Then this proportion, θSH

t , is the weighted
average of the proportion susceptible in the general public and the proportion susceptible among
HCWs as follows:

gS =
h

h+H
θ
Sg

t , hS =
H

h+H
θSh
t ,

θSH
t = gS + hS.
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Similarly, for the proportion infectious at the HCF is expressed as follows:

θIHt =
h

h+H
θ
Ig
t +

H

h+H
θIht .

The mixing population Susceptible-Infected-Recovered/Removed (mpSIR) model (Figure 4.3)
is equivalent to the following set of ordinary differential equations:

dθ
Sg

t

dt
=− h

(
gS

θSH
t

βHθ
SH
t θIHt

)
− (1− h)

(
βgθ

Sg

t θ
Ig
t

)
dθ

Ig
t

dt
=h

(
gS

θSH
t

βHθ
SH
t θIHt

)
+ (1− h)

(
βgθ

Sg

t θ
Ig
t

)
− γθIgt

dθ
Rg

t

dt
=γθ

Ig
t

dθSh
t

dt
=− hS

θSH
t

βHθ
SH
t θIHt

dθIht
dt

=
hS

θSH
t

βHθ
SH
t θIHt − γθ

Ih
t

dθRh
t

dt
=γθIht

(4.1)

Figure 4.3: The susceptible-infected-recovered directed acyclic graph where there is a separate
infection risk when at health care facilities.

Susceptible Infected Removed/Recovered

Susceptible at HCF Infected at HCF

hθ
Sg

t −
h
(

gS

θ
SH
t

βHθ
SH
t θIHt

)
hθ

Sg

t

βgθ
Sg

t θ
Ig
t γθ

Ig
t

βHθ
SH
t θIHt

h
[
θ
Ig
t +(

gS

θ
SH
t

βHθ
SH
t θIHt

)
−

γθ
Ig
t

]hθ
Ig
t γθIHt

Here dθ
Sg
t

dt
and dθ

Sh
t

dt
are the change in the proportion of the general public and HCWs that are

susceptible, respectively. dθ
Ig
t

dt
and dθ

Ih
t

dt
are the change in proportion of people that are currently
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infected in the general public and HCW population, respectively. dθ
Rg
t

dt
and dθ

Rh
t

dt
are the change

in proportion of people that are recovered/removed in the general public and HCW population,
respectively.

The change in the number of people infected is entirely dependent on the change in the number
of people who are susceptible and recovered. People who are no longer susceptible are infected
and people who are no longer infected are recovered. Thus, the change in the number of people
infected is equal to the number of people that are no longer susceptible minus the number of people
that are newly recovered. Then:

dθ
Ig
t

dt
=
dθ

Sg

t

dt
− dθ

Rg

t

dt
and

dθIht
dt

=
dθSh

t

dt
− dθRh

t

dt
.

4.2.3.2 Truncated Dirichlet Distribution for Forecasting

One issue with the Dirichlet-Beta state space model for forecasting is that it allows for non-
monotonicity in the true proportions of susceptible and recovered groups (i.e. the proportions
in these groups can both increase and decrease) which is impossible under our assumptions. If
violated, this would mean that people who have contracted COVID-19 can be reinfected which
has been shown to be rare (Hall et al., 2021). Thus, we use truncated Dirichlet distributions for
predicting the future trajectory of the pandemic. To draw from this truncated Dirichlet distribution
we used methods described in Fang et al. (2000). Here we present an overview of this method, and
more details can be found in Fang et al. (2000).

Let x = (x1, · · · , xn)T ∼ TD(g,h; γ1, · · · , γn) be a truncated Dirichlet distribution. Here g

and h are vectors of length n indicating the minimum values and maximum values respectively
and γ1, · · · , γn are the parameters of the Dirichlet distribution.

To draw from this truncated Dirichlet distribution we used methods outlined in Fang et al.
(2000). Let TBeta(g, h; γ1, γ2) be a truncated Beta distribution with shape and scale parameters γ1
and γ2, respectively, a minimum value of g, and maximum value h. Let u1, · · · , un−1 be distributed
i.i.d Uniform(0, 1). Fang proposes that if x = (x1, · · · , xn)T ∼ TD(g,h; γ1, · · · , γn) then x has
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the properties that:

xn−1
d
= F−1n−1(un−1),

xk
d
=

(
1−

n−1∑
j=k+1

xj

)
F−1k (uk), k = n− 2, n− 3, · · · 1,

xn
d
= 1−

n−1∑
k=1

xk,

where d
= indicates the quantities have the same distribution, F−1k is the inverse of the truncated

Beta distribution:

TBeta(ξk, ηk; γk,
n∑
i=1

γi −
n−1∑
j=k

γj)

where

ξk = max

(
gk

1−
∑n−1

j=k+1 xj
, 1−

∑n
i=1 hi −

∑n−1
j=k hj

1−
∑n−1

j=k+1 xj

)
and

ηk = max

(
hk

1−
∑n−1

j=k+1 xj
, 1−

∑n
i=1 gi −

∑n−1
j=k gj

1−
∑n−1

j=k+1 xj

)
.

We use the same relationships defined in Section 4.2.3.1 equation 4.1 and assign the estimated
differential equations as the parameters of the truncated Dirichlet distributions.

θgt ∼ TD((0, 0, θ
Rg

t−1), (θ
Sg

t−1, 1, 1);κ(θ
Sg

t−1 +
dθ

Sg

t

dt
, θ
Ig
t−1 +

dθ
Ig
t

dt
, θ
Rg

t−1 +
dθ

Rg

t

dt
)

θht ∼ TD((0, 0, θRh
t−1), (θ

Sh
t−1, 1, 1);κ(θ

Sh
t−1 +

dθSh
t

dt
, θIht−1 +

dθIht
dt

, θRh
t−1 +

dθRh
t

dt
)

Thus, using the results from Fang et al. (2000), the distributions for the proportion of the general
public in each of the states of recovered, susceptible, and infected can be written as transformations
of inverse truncated Beta distributions.

θ
Rg

t
d
= F−1Rg

(u1),

θ
Sg

t
d
= (1− θRg

t )F−1Sg
(u2),

θ
Ig
t

d
= 1− θSg

t − θ
Rg

t

where d
= indicates the quantities have the same distribution, u1 and u2 are independent
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Uniform(0, 1) variables, F−1Rg
is the inverse of the truncated Beta distribution:

TBeta(θ
Rg

t−1, 1;κ(θ
Rg

t−1 +
dθ

Rg

t

dt
), κ(θ

Ig
t−1 +

dθ
Ig
t

dt
+ θ

Sg

t−1 +
dθ

Sg

t

dt
)),

and F−1Sg
is the inverse of the truncated Beta distribution:

TBeta(0,
θ
Sg

t−1

1− θRg

t

;κ(θ
Sg

t−1 +
dθ

Sg

t

dt
), κ(θ

Ig
t−1 +

dθ
Ig
t

dt
))

4.2.3.3 Compilation of required estimates and published COVID-19 literature

In order to estimate the trajectory of the pandemic in a patient’s county, we need estimates of
the duration of infectiousness, D, and the time to recovery or death due to COVID-19, γ. The
estimates of D and γ can be obtained from published data or literature.

To estimate the reproduction number R, we used COVID-19 case data over time from the New
York Times (New York Times, 2020) and implemented the package EpiEstim in R (Cori et al.,
2013). US county population size was obtained from 2019 US census estimates (US Census, 2020)
and used to estimate the proportion of people in each state at t = 0. With these values, we can
estimate the transmission rate in the general public, βg.

4.2.3.4 Prediction method validation

We compared predictions using our mpSIR method with predictions from the Institute for Health
Metrics and Evaluation (2020) for that same date, and the true number of confirmed cases accord-
ing to the New York Times data (New York Times, 2020). Since Institute or Health Metrics and
Evaluation (IHME) does not provide county level predictions, we applied our method to whole
states. For our mpSIR method, we used data up until a pre-defined historic start date and then
made predictions for 90 days after that date. We selected start dates where IHME had published
predictions to ensure fair comparisons. The start dates selected were May 5, 2020; August 6, 2020;
November 12, 2020; and February 4, 2021. We accessed the confirmed cases from the New York
Times (denoted “truth” or “true confirmed cases”, although we acknowledge that this data may be
underreporting or have other errors) up to April 14, 2021.

4.2.3.5 Estimating an individuals risk of contracting COVID-19 based on treatment plan

The proportion of new infections in the general public that are due to exposure in the HCF on day
t is:
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Nt =
h
(

h
h+H

βHθ
SH
t θIHt

)
h
(

h
h+H

βHθ
SH
t θIHt

)
+ (1− h)

(
βgθ

Sg

t θ
Ig
t

) .
Let Pt indicate if the patient is going into the HCF on day t and let − d̂θ

Sg
t

dt
be the predicted

proportion newly infected on day t using the truncated Dirichlet method in Section 4.2.3.2. Then
the patient’s individual risk of contracting COVID-19 on day t is:

Ft = −(1−Nt)
d̂θ

Sg

t

dt
− PtNt

d̂θ
Sg

t

dt
.

4.2.4 Estimating the case fatality rate for COVID-19 by age and number of
comorbidities

COVID-19 mortality by age and number of comorbidities are estimated from data collected for
a nested case control study (Gu et al., 2020) using Bayesian constrained logistic regression. The
data are not restricted to cancer patients, but cancer is one of the comorbidities considered. The
other comorbidities considered were hypertension, coronary heart disease, cardiac failure, cerebral
infarction, diabetes, chronic bronchitis, chronic obstructive pulmonary disease, renal failure, and
history of surgery.

The age groups are: ≤ 50, 50-60, 60-70, 70-80, and 80+. The number of comorbidities are: 0,
1, 2, and 3+. Let a be the person’s age and c be the person’s number of comorbidities. Letting Y
be death due to COVID-19, then the model is:

logit{P (Y = 1|a, c)} = β0 + β1I(a ≥ 50) + β2I(a ≥ 60) + β3I(a ≥ 70)+

β4I(a ≥ 80) + β5I(c ≥ 1) + β6I(c ≥ 2) + β7I(c ≥ 3)

We constrain β1 to β7 to be non-negative by setting the priors to be folded normal distributions
with a mean of 0 and a variance of 1000. The prior for β0 is a normal distribution with mean 0
and variance of 1000. Since the data are from a case control study, we adjust the intercept for the
above model to obtain accurate β parameter estimates. Let β̂0 be the estimated intercept from the
model using data from Gu et al. (2020), and let π̂ be the known proportion of patients that died in
the Gu et al. (2020) study. Let π̃ be the estimated population CFR from The Novel Coronavirus
Pneumonia Emergency Response Epidemiology Team (2020). Then the new, adjusted intercept is:

β̃0 = β̂0 + log

(
π̃

1− π̃

)
− log

(
π̂

1− π̂

)
.
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The estimated log odds of dying from a COVID-19 infection for a person of age a and c comor-
bidities is:

B̂ac = ̂logit(Y |a, c) = β̃0 + β̂1I(a ≥ 50) + β̂2I(a ≥ 60) + β̂3I(a ≥ 70)+

β̂4I(a ≥ 80) + β̂5I(c ≥ 1) + β̂6I(c ≥ 2) + β̂7I(c ≥ 3),

and the case fatality rate estimate is:

Êac =
exp

(
B̂ac

)
1 + exp

(
B̂ac

) .
Since the sample used to get these estimates consisted of 275 patients, we used a larger study

(444,921 patients) to standardize the estimates so that the overall age CFRs were equal to the
results from the larger study (Undurraga et al., 2021). This study provided case fatality rates by
age group and sex. It did not provide age and comorbidity case fatality rates jointly. We also did
not have access to this raw data and only summary statistics were published. Thus, to standardize,
we obtained estimates of the percent of individuals in each age group with varying numbers of
comorbidities from The National Health and Nutrition Examination Survey (NHANES) (Centers
for Disease Control and Prevention, 2020). Data from the 2005-2006 cycle was used, and restricted
to patients ages greater than 40 years old with complete information on age and sex and at least
one non-missing entry for the comorbidities we considered. This yielded a final sample size of
3,056 US adults. Age specific prevalence values of having 0 to ≥3 comorbidities were used to
calculate weighted average CFRs for each age decade. This results in age group CFRs that match
the larger study, but maintain the relationships between the age and comorbidity levels seen in the
Gu et al. (2020) data. We removed any estimates that resulted in probabilities greater than 1 after
normalization.

4.2.5 Combining COVID-19 infection risk and COVID-19 case fatality rate
to develop COVID-19 specific survival estimates

Let M1 be the patient’s COVID-19 CFR before cancer treatment and M2 be the patient’s CFR after
cancer treatment begins. Note that M1 = M2 if the patient is not receiving chemotherapy. The
immunosuppressive effect of chemotherapy is assumed to last 28 days after the end of treatment
(Breastcancer.org, 2014). Let τ indicate the day when treatment starts and ω be when the treatment
ends. We assume that when death occurs due to COVID-19 that it occurs 18 days after infection
(Zhou et al., 2020). Thus, the mortality risk on day t depends on the probability of infection on day
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t − 18. Letting Ft be the individual risk of contracting COVID-19 on day t as defined in Section
4.2.3.5 and t18 = t− 18, the COVID-19 mortality risk for day t is:

MCOV ID(t) = [I(t18 < τ or t18 ≥ ω + 28)M1 + I(t18 ≥ τ and t18 < ω + 28)M2]Ft18 .

The probability MCOV ID(t) is absolute and is not conditional on survival up to time t. Thus cu-
mulative probability of mortality over time T is additive rather than multiplicative and is calculated
as:

T∑
t=1

MCOV ID(t)

We assume that Ft−18 = 0 for t < 18. Then the COVID-19 specific survival is at time T for a
patient with covariates x is:

SCOV ID(t|x) = 1−
T∑
t=1

MCOV ID(t).

4.2.6 Estimating pre-COVID-19 overall mortality

Next, we estimated survival in cancer patients pre-COVID-19 using SEER data. Patients with in-
vasive cancer were abstracted from the National Cancer Institute’s SEER program. SEER collects
data from 28% of the US population via a network of population-based incident tumor registries
from geographically distinct regions in the US. The SEER 18 registry was used and all patients
with an invasive cancer diagnosis were included from years 2005-2006. Patients with hemato-
logic malignancies and patients diagnosed with cancer via autopsy or death certificate (<1.5% of
patients) were excluded. The years of diagnoses were chosen in order to be both representative
of contemporary cancer patients diagnosed in the US, and have the ability to generate long-term
survival estimates post-diagnosis. A total of 691,854 patients met eligibility criteria with up to 12
years of follow up. Mortality codes in SEER are assigned from death certificates, completed by
the doctor caring for the patient at the time of demise. From this dataset, 25 cancer types were
extracted.

4.2.6.1 Estimating pre-COVID-19 mortality under standard of care

Using SEER data, we developed survival estimates for cancer patients and posterior predictive
intervals by age, stage, and cancer type. We conducted a Bayesian survival analysis using a gamma
process prior with a piecewise constant baseline hazard out to 10 years (Ibrahim et al., 2001; Sinha
and Dey, 1997). We subset the SEER data by age group (5 year intervals), stage, and cancer type
and estimated posterior survival curves for each subset separately.
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This process is described further in Ibrahim et al. (2001), however the details of our process
for developing a posterior survival curves are also described here. First, we estimate the posterior
cumulative hazard. To do this, we set intervals equal to the observed event times, s1, s2, ..., sJ .
Then we compute the number at risk (rj) and the number of events/deaths (dj) for each of the
j ∈ J time intervals. Let c0 to be a weight (or mass) for the gamma process prior. We set the
cumulative baseline hazard to be equal to the empirical Bayes estimate:

λ =
Total number of deaths
Total observation time

.

Then the estimated hazard at each time interval is:

αj = c0λsj.

The approximate posterior distribution for the increment in baseline hazard for the jth interval
is (Ibrahim et al., 2001):

hj ∼ G(αj − αj−1 + dj, c0 + rj + dj).

The estimated pre-COVID-19 survival at time t for a patient with covariates x is calculated as:

Spre(t|x) =
∏
j:sj<t

1− hj.

We set c0 = 1.
Lastly, to estimate the posterior survival curves, we repeatedly draw from the posterior distri-

bution of the survival probability at time t, Spre(t|x), for t = 1, 2, · · · , 120 being each month over
the 10 years.

4.2.6.2 Estimating the increased hazard due to delaying cancer treatment for pre-COVID-
19 mortality

Let y be the number of days of the delay, HRy be the hazard ratio for delaying cancer treatment
by y days, and Sprei (t|x) be a draw from the posterior distribution of survival pre-COVID-19 under
standard treatment that has not been delayed at time t for a patient with covariates x. Then the
estimated survival at time t with a treatment delay of length y is Sprey,i (t|x) = Sprei (t|x)HRy . By
repeating this, we can draw from the posterior distribution of survival pre-COVID-19 for a cancer
patient with delayed treatment.

We obtained estimates of the HR of delaying cancer treatment in the absence of COVID-19
from NCDB as described in Hartman et al. (2020) with collaborators from Penn State College of
Medicine. We utilized the NCDB including patients treated between 2004 and 2014 (n=5,436,896).
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Time to treatment from diagnosis (any treatment) was calculated for each patient. Patients were
excluded if their time-to-treatment was greater than 180 days after diagnosis or missing, time to
death or last contact was missing, or clinical stage was missing. Stratified Cox proportional hazard
models for each cancer type (with year of diagnosis as stratum) were fit. In addition to clinical
stage, the models included covariates for race (white, black, other), rurality (urban, rural), age
groups (<50, 50-60, 60-70, 70-80, 80-90, >90 years old), insurance status, education, income,
facility type, facility location, and distance to hospital.

4.2.7 Estimating predicted survival curves and posterior prediction inter-
vals for overall survival under differing treatment patterns

In order to estimate the overall survival of a patient, we combined the cause-specific COVID-19
survival and the pre-COVID-19 overall survival. We assumed that failure time from COVID-19
and non-COVID-19 causes are independent conditional on the covariates we use to estimate each
survival function (i.e. age, comorbidities, cancer type, and stage). Thus, the overall survival
function is (Pfeiffer and Gail, 2017):

S(t|x) = Spre(t|x)SCOV ID(t|x).

We draw repeatedly from the posterior distribution of cause-specific COVID-19 survival,
SCOV ID(t|x), and the posterior distribution of pre-COVID-19 overall survival, Spre(t|x), to sim-
ulate the posterior distribution of S(t). We then selected the 2.5th percentile and the 97.5th per-
centile to be the posterior prediction interval.

We then calculated RMST for time for interval [0, T ] as:

T∑
t=0

S(t|x)

Our primary outcome of interest is the difference in RMST between immediate (treatment be-
ginning 7 days after diagnosis) and delayed (treatment beginning 60 days after diagnosis) cancer
treatment for an individual patient based on their specific covariates.

4.2.8 Sensitivity analyses

To assess the sensitivity of our model, we conducted two sensitivity analyses. As our knowledge
of the properties of COVID-19 is constantly growing, it is important that our method be robust to
misspecifications. At the time of work, there were two main issues facing COVID-19 prediction
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modeling. One was the estimation of the rate of vaccination. The other was the underreporting of
COVID-19 infections, possibly due to asymptomatic COVID-19 cases. We explored both of these
to examine the robustness of our method. We compared the difference in RMST between immedi-
ate treatment and delayed treatment under different assumptions regarding either vaccination rates
or underreporting of cases.

4.2.8.1 Vaccination

Data on the number of people in a state that have received all doses of a vaccine over time were
obtained from Centers for Civic Impact at Johns Hopkins (2021). Limited data is available at
more granular levels. We added the most recent estimates of the proportion of currently vaccinated
individuals to the recovered/removed category. We also added a transition probability from sus-
ceptible to recovered/removed as people become vaccinated. We call ξt the vaccination rate which
can vary over time (Figure 4.4). As an approximation to the complex reality, we assumed that 75%
of HCWs will be vaccinated before the general public. We fit a Bayesian linear model to number
of new vaccinations administered by day and use draws from the posterior distribution for ξt.

4.2.8.2 Under reporting number of true COVID-19 cases

We explore the effects of under reporting the number of true infections or cases, which would
impact the number of susceptible people later in the course of the pandemic. In this scenario, we
start with a higher proportion of people in the recovered and infected categories. To do this, we
no longer assume the mean number of observed cases (yt) is the true number of true cases (θI)
in the Dirichlet-Beta state space model as described in Section 4.2.2.2. Instead, we assume that
E(yt) = αθI where 0 < α < 1 is some constant. We perform the analyses under the assumption
of under reporting cases to determine the robustness of our method.

4.3 Results

4.3.1 Literature values

Since we model HCWs and the general population separately, we assume that H = 12% of the
population work in healthcare (Kaiser Family Foundation, 2018). We also assume that h = 0.23%
of the general population receives care in a health care setting each day (Centers for Disease Con-
trol and Prevention, 2017). We set βH = 3.47βg (Wang, Liu, et al., 2020) and D = 14 (World
Health Organization, 2020).
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Figure 4.4: The susceptible-infected-recovered directed acyclic graph where there is a separate
infection risk when at health care facilities and people become vaccinated at a set rate.
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4.3.2 Validation of mpSIR model with truncated Dirichlet method

Overall, our method performed well when there was no major policy change or event that have
disrupted the transmission or tracking of COVID-19 (Figure 4.5). We suggest that this model be
revisited and re-run regularly when making treatment decisions.

We see that when strategies for reducing the spread of COVID-19 were implemented, our model
fails to accurately predict the true number of cases (Figure 4.6). Similarly, when restrictions were
lifted, the increase in cases was not accurately predicted by our model (Figure 4.6).

The IHME method aims to account for under reporting in the number of COVID-19 cases so it
frequently had higher estimates than the New York Times confirmed cases and our method. The
IHME method should be compared to other methods and the truth only in the shape of the curve
and not necessarily the height to account for this fundamental difference in approach. Additionally,
IHME only presents predictions about 110 days out, where our method makes predictions over
longer time periods. However, this may not be practically beneficial if significant policy changes
are expected.

4.3.3 Estimating case fatality rate of COVID-19 by number of comorbidi-
ties, age, and sex

We calculated the CFR and normalized the data. The estimates for fatality and the 95% credible
intervals by age, gender, and number of comorbidities are presented in Table 4.1.

We see that there is a wide range of CFRs from 0.61% for a female between the ages of 51-60
with no comorbidities up to 70.8% for a male over 81 years old with three or more comorbidities.
This wide range is consistent with other reports of COVID-19 CFRs estimated by age or by number
of comorbidities (The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team,
2020; Undurraga et al., 2021). The larger values for people 81+ with 3+ comorbidities are likely
due to the small number of people actually in that category (Table 4.2). In our NHANES analysis,
we estimated that only 2.9% of the US population that is 81 and older has 3+ comorbidities. For
the age groups 81+, 71-80, 61-70, the most common number of comorbidities was 1. For the age
group 51-60, the most common number of comorbidities was 0.

4.3.4 Estimating pre-COVID-19 survival with SEER data

The posterior distributions for survival by disease site and age group were calculated for the ma-
jority of cancer stages. In the case of no deaths for a given age range, site, and stage, we were
unable to calculate the posterior distribution.

Two examples of the produced survival curves are shown in Figure 4.7 and Figure 4.8. There
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Figure 4.5: The proportion of the general public predicted to be infected with COVID-19 as pre-
dicted by IHME and the mpSIR method. Solid line is the median and dashed lines are the 95%
credible intervals. The solid blue line indicates the proportion infected as measured by confirmed
cases. The plots are annotated with events that may have an impact on the number of confirmed
cases. mpSIR = mixing population Susceptible-Infected-Recovered/Removed model, IHME = In-
stitute or Health Metrics and Evaluation model, Truth = confirmed cases as reported by the New
York Times.
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Figure 4.6: The proportion of the general public predicted to be infected with COVID-19 as pre-
dicted by IHME and the mpSIR method. Solid line is the median and dashed lines are the 95%
credible intervals. The solid blue line indicates the proportion infected as measured by confirmed
cases. The plots are annotated with events that may have an impact on the number of confirmed
cases. mpSIR = mixing population Susceptible-Infected-Recovered/Removed model, IHME = In-
stitute or Health Metrics and Evaluation model, Truth = confirmed cases as reported by the New
York Times.
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were 110,950 lung cancer patients between the ages 60 and 64 that included in the analyses that
produced Figure 4.7 and there were 1,100 nasopharynx cancer patients between the ages of 60 and
64 that were included in the analyses that produced Figure 4.8. As expected, when the data used
includes fewer patients with the specific type of cancer, the posterior prediction intervals are wider
than when based on data with more patients.

Figure 4.7: The posterior predicted pre-COVID-19 survival curves and 95% credible interval for
lung cancer patients aged 60-64 by stage.
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4.3.5 Combining COVID-19 survival and pre-COVID-19 overall survival
estimates

We compared immediate treatment (treatment beginning 7 days after diagnosis) versus delayed
treatment (treatment beginning 60 days after diagnosis). We used COVID-19 case data up until
April 14, 2021 for making predictions about COVID-19 infection risk.

We used an example stage II breast cancer patient that is 64 years old with two additional
comorbidities. Treatment for this patient would involve chemotherapy and surgery where she
would be go into the hospital 35 times over 180 days. The hazard ratio in pre-COVID-19 survival
for a 60 day delay is 1.14. The case fatality rate for a woman of age 64 with two additional
comorbidities is 9.22% (95% CI: 5.79%-13.47%). Once the patient begins chemotherapy, the
COVID-19 CFR increases by 1.11-fold (Lee et al., 2020). We estimated overall survival out to
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Figure 4.8: The posterior predicted pre-COVID-19 survival curves and 95% credible interval for
nasopharynx cancer patients aged 60-64 by stage.
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5 years for such a patient in Davidson County, TN (Nashville area) and in Denver County, CO
(Denver area). These results and differences in RMST for truncated times by year up to 5-years
are seen in Figure 4.9. If two patients have identical parameters and treatment plans, but are
in different locations, the credible intervals change widths and the difference between treatment
plans appears more stark. Since this type of patient has a high pre-COVID-19 survival rate, the
effect of COVID-19 can be clearly seen in the shape of the survival curves. In Denver County,
where cases were expected to increase, the patient has an immediate drop in survival probability.
In Davidson County, the initial drop is not seen. Since immediate treatment is slightly preferred
even when COVID-19 cases increased, this suggests that there is actually minimal risk associated
with going to a HCF to receive care.

The next example patient is a stage II prostate cancer patient that is 73 years old with two
additional comorbidities living in Fulton County, GA (Atlanta area). Treatment for this patient
would not involve chemotherapy or surgery. The patient would go into the hospital 20 times over
28 days for radiation treatment. The hazard ratio in pre-COVID-19 survival for a 60 day delay is
1.06. Results are seen in Figure 4.9. There is very little noticeable difference between immediate
and delayed treatment. There is a major risk for this patient in terms of COVID-19 mortality since
they are over 70 years old with additional comorbidities and the case fatality rate is 39.31% (95%
CI: 24.53%-57.88%).
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Finally, we have an example male patient with stage I lung cancer that is 72 years old with
two additional comorbidities also living in Fulton County, GA. Treatment for this patient would
include chemotherapy and surgery and the patient would go into the hospital twice over 2 days.
The hazard ratio for delaying treatment is 1.24. The survival estimates and RMSTs are seen in
Figure 4.9. This patient is also at major risk for COVID-19 mortality with a COVID-19 CFR of
39.31% (95% CI: 24.53%-57.88%).

Comparing the previous two examples, we see the results of patients in the same location but
with different cancer disease sites. We can see that the effect of COVID-19 is larger on the survival
estimates for the patient with prostate cancer since there prognosis is generally good for stage
2 prostate cancer. However, there is a small difference in RMST at 5 years between immediate
and delayed treatment (0.2 months, 95% CI: 0.19-0.21). For the lung cancer patient, there is a
preference for immediate treatment and a larger difference in RMST at 5 years (3.2 months, 95%
CI: 2.92-3.36). Since this patient’s cancer has a lower survival rate, the effect of COVID-19 on
earlier survival is not as apparent.

4.3.6 Sensitivity analyses

Overall there was very little difference in our outcome of interest, the difference in RMST under
immediate versus delayed treatment, when we incorporated vaccine data (Figure 4.10) or if we
assumed a level of under-reporting for COVID cases (Figure 4.11). Conversely, the predicted
proportion of people with COVID-19 over time did vary substantially depending on how these
factors were incorporated. As expected, when we assumed the confirmed cases was an under count
of the true number of cases, we saw that the proportion infected on the first day was dramatically
higher than when we assumed the confirmed cases was on average equal to the true number of
cases. However, this difference did not produce a large difference in the difference in RMST.
Similarly, when we took into consideration the vaccination rates of the various states, we saw
that the predicted proportion of infected individuals decreased much faster than when we ignored
data on vaccination rates. Again, this did not have a large impact on the difference in RMSTs by
treatment timing. Overall, it seems that our proposed method is fairly robust to misspecifications
in our prediction methods for COVID-19 infection risk.

The largest difference in RMST seen in these examples occurred when the true cases were
assumed to be higher than the confirmed cases in Denver County, CO. We used the example breast
cancer patient as described in Section 4.3.5. Assuming the confirmed cases are on average equal
to the true number of cases, the difference in RMST at 5 years between immediate and delayed
treatment was 0.32 months (95% CI: 0.26-0.35). When we assumed that the confirmed cases were
on average 25% of the true cases, then the 5 year difference in RMST was 0.14 months (95% CI:
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Figure 4.9: The posterior predicted survival curves and 95% credible interval for a lung cancer
patient during COVID-19 estimated using data up until April 14, 2021. RMST is calculated with
truncation time of each year up to 5 years. Solid line is the median and dashed lines are the 95%
posterior prediction intervals. RMST = restricted mean survival time, yo = years old
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Figure 4.10: Figure showing the proportion of the general public infected with COVID-19 over
time. Solid line is the median and dashed lines are the 95% credible intervals. Table shows
the RMST and 95% credible interval for cancer patients during COVID-19 under models that
incorporate COVID-19 vaccine data and models that do not. RMST = restricted mean survival
time, yo = years old
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Figure 4.11: Figure showing the proportion of the general public infected with COVID-19 over
time. Solid line is the median and dashed lines are the 95% credible intervals. Table shows the
RMST and 95% credible interval for cancer patients during COVID-19 under models that account
for under reporting COVID-19 cases. RMST = restricted mean survival time, yo = years old

0.00

0.01

0.02

0 100 200 300
Day

P
ro

po
rt

io
n 

of
 G

en
er

al
 P

ub
lic

 In
fe

ct
ed

 w
ith

 C
O

V
ID

−
19

Confirmed cases = 100% true cases Confirmed cases = 25% true cases

Confirmed cases = 50% true cases Confirmed cases = 75% true cases

Stage 2 Breast Cancer, Female, 64 yo, 2 Comorbidities, Davidson County, TN, US

100%

0.01 (0, 0.01)1 year

75%

0.04 (0.03, 0.05)2 years

50%

0.11 (0.09, 0.12)3 years

25%

0.22 (0.2, 0.24)4 years

0.38 (0.35, 0.39)5 years

0.01 (0, 0.01)

0.04 (0.03, 0.05)

0.1 (0.09, 0.11)

0.22 (0.19, 0.23)

0.37 (0.34, 0.39)

0 (0, 0.01)

0.03 (0.02, 0.04)

0.1 (0.07, 0.11)

0.21 (0.17, 0.23)

0.35 (0.31, 0.38)

0 (−0.02, 0.01)

0.02 (−0.01, 0.04)

0.07 (0.02, 0.1)

0.17 (0.1, 0.21)

0.31 (0.22, 0.37)

Difference in RMST for Treatment Timing

0.00

0.01

0.02

0.03

0.04

0 100 200 300
Day

P
ro

po
rt

io
n 

of
 G

en
er

al
 P

ub
lic

 In
fe

ct
ed

 w
ith

 C
O

V
ID

−
19

Confirmed cases = 100% true cases Confirmed cases = 25% true cases

Confirmed cases = 50% true cases Confirmed cases = 75% true cases

Stage 2 Breast Cancer, Female, 64 yo, 2 Comorbidities, Denver County, CO, US

100%

0 (−0.01, 0)1 year

75%

0.02 (0, 0.03)2 years

50%

0.08 (0.04, 0.1)3 years

25%

0.18 (0.13, 0.21)4 years

0.32 (0.26, 0.35)5 years

−0.01 (−0.02, 0)

0.01 (−0.01, 0.03)

0.06 (0.02, 0.09)

0.16 (0.1, 0.19)

0.29 (0.22, 0.34)

−0.01 (−0.03, 0)

−0.01 (−0.04, 0.02)

0.03 (−0.02, 0.07)

0.12 (0.04, 0.17)

0.24 (0.15, 0.31)

−0.03 (−0.06, −0.01)

−0.04 (−0.1, −0.01)

−0.03 (−0.11, 0.03)

0.04 (−0.08, 0.11)

0.14 (−0.01, 0.24)

Difference in RMST for Treatment Timing

0.00

0.01

0.02

0 100 200 300
Day

P
ro

po
rt

io
n 

of
 G

en
er

al
 P

ub
lic

 In
fe

ct
ed

 w
ith

 C
O

V
ID

−
19 Confirmed cases = 100% true cases Confirmed cases = 25% true cases

Confirmed cases = 50% true cases Confirmed cases = 75% true cases

Stage 2 Prostate Cancer, Male, 73 yo, 2 Comorbidities, Fulton County, GA, US

100%

0.01 (0.01, 0.01)1 year

75%

0.03 (0.03, 0.03)2 years

50%

0.07 (0.06, 0.07)3 years

25%

0.13 (0.11, 0.13)4 years

0.2 (0.19, 0.21)5 years

0.01 (0.01, 0.01)

0.03 (0.02, 0.03)

0.07 (0.06, 0.07)

0.12 (0.11, 0.13)

0.2 (0.18, 0.21)

0.01 (0.01, 0.01)

0.03 (0.02, 0.03)

0.06 (0.05, 0.07)

0.12 (0.1, 0.13)

0.19 (0.17, 0.21)

0.01 (0, 0.01)

0.02 (0.02, 0.03)

0.06 (0.04, 0.07)

0.11 (0.08, 0.12)

0.17 (0.13, 0.2)

Difference in RMST for Treatment Timing

0.00

0.01

0.02

0 100 200 300
Day

P
ro

po
rt

io
n 

of
 G

en
er

al
 P

ub
lic

 In
fe

ct
ed

 w
ith

 C
O

V
ID

−
19 Confirmed cases = 100% true cases Confirmed cases = 25% true cases

Confirmed cases = 50% true cases Confirmed cases = 75% true cases

Stage 1 Lung Cancer, Male, 72 yo, 2 Comorbidities, Fulton County, GA, US

100%

0.23 (0.21, 0.25)1 year

75%

0.78 (0.71, 0.82)2 years

50%

1.51 (1.38, 1.59)3 years

25%

2.34 (2.13, 2.45)4 years

3.21 (2.91, 3.36)5 years

0.23 (0.2, 0.24)

0.76 (0.67, 0.81)

1.47 (1.3, 1.57)

2.28 (2.03, 2.42)

3.13 (2.79, 3.32)

0.21 (0.17, 0.23)

0.72 (0.59, 0.79)

1.4 (1.17, 1.53)

2.17 (1.82, 2.37)

2.98 (2.52, 3.26)

0.17 (0.1, 0.21)

0.61 (0.4, 0.73)

1.21 (0.83, 1.43)

1.89 (1.33, 2.22)

2.62 (1.88, 3.05)

Difference in RMST for Treatment Timing

90



-0.01-0.24). However, in practical terms, 0.32 months is likely not meaningfully different from
0.14 months.

4.4 Discussion

We combined Bayesian methods for several types of analyses into a new method aimed at guiding
treatment decisions for clinicians and cancer patients. The proposed method draws on Bayesian
methods for infectious disease prediction, survival analysis, and logistic regression. The number of
analyses required for estimates for an individual patient speak to the complexity of the interactions
between environment, COVID-19, and cancer. We used appropriate methods for each component
to provide predictions along with their posterior prediction intervals and combined these results
within a Bayesian framework.

For most patients between the options of immediate or delayed treatment, there appears to be
minimal difference in RMST defined as the average survival time within a given time interval after
accounting for various levels variation and uncertainty. This likely indicates that the risk of going
into the HCF is not significant enough to warrant delaying cancer treatment on its own. However,
if HCFs need to delay treatment due to being overwhelmed, then these methods can help prioritize
patients by identifying those who’s overall survival will be most impacted by delaying treatment.

While we accounted for several layers of uncertainty, there are other factors of uncertainty that
we did not take into consideration. For example, we used fixed values for the HR of delaying
cancer treatment, the age group CFRs to which we standardized to estimate the COVID-19 CFR,
and the estimates of the proportion of the population in each age group with a given number of
comorbidities. Incorporating the variability from these estimates would likely widen the credi-
ble intervals in our final estimates of overall survival and RMST. Future work could be done to
incorporate uncertainty from these estimates into our method.

Another limitation to our approach is that we are not able to predict COVID-19 policy changes
such as opening/closing bars or restaurants. Our method faces the same limitations as all prediction
models in correctly predicting long-term risk of contracting COVID-19. Long term survival would
likely need to be continually re-evaluated to take into account the latest policies and their effect
on COVID-19 spread. Additionally, the literature on COVID-19 is expanding daily and although
we aimed to incorporate uncertainty, there is also the possibility that new research will necessitate
changes in our methods and alter these results. Despite these limitations, we show that this method
is robust to misspecifications in the properties of COVID-19 detection and spread. Since there is
still much to learn about the detection and spread of COVID-19, robustness is critical to making
this method usable. One such example is the new Delta variant of COVID-19. This variant is
causing a higher rate of reinfections than other previous variants. If reinfection becomes a more
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common occurrence, then we will need to adjust our mpSIR model to allow for reinfection and
remove the monotonicity constraint from our truncated Dirichlet forecasting analysis.

One difficulty in this project was due to combining multiple data sources in order to estimate
overall survival during a pandemic. Cancer registries interested in being able to have relevant data
for possible future pandemic or public health emergency should collect data on cancer treatment
delays as well as the cause of the delay. Being able to better understand the effects of cancer
treatment delay will allow more insight into the risks and benefits of delaying cancer treatment
during a public health emergency. Other important data includes the cause of death. Having both
the length and cause of the delay and the cause of death will allow us to see the specific effect of
delaying cancer treatment on cancer specific survival. This will reduce the amount of confounding
if a person’s cancer treatment is delayed in order to first treat another disease which may also
impact their overall survival, but not their cancer survival.

We aim to update our web app or create a secondary web app with this method to allow clin-
icians to easily access this model globally. The results will help guide patient treatment as the
COVID-19 pandemic continues. The combination of methods presented here could provide a
framework for future for integrating data in a future scenario. This may be useful in setting guide-
lines on managing care for high risk patients in cases of localized epidemics.
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Table 4.2: Percentage of the US population in a given age bracket with 0, 1, 2, or 3+ comorbidities
by age group. Rows sum to 1.

Number of Comorbidities
Age (years) 0 1 2 3+

40-50 0.457 0.361 0.152 0.030
51-60 0.363 0.331 0.244 0.062
61-70 0.257 0.399 0.241 0.104
71-80 0.261 0.413 0.239 0.087
81+ 0.312 0.440 0.219 0.029
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CHAPTER 5

Summary and Future Work

In this dissertation, I have presented a novel clinical trial design applied to small and larger sample
sizes with different goals that allow greater flexibility while maintaining reliable statistical perfor-
mance. These trials demonstrate how clinical trials can proceed without a dichotomous or categor-
ical tailoring variable. Additionally, I presented a Bayesian method for combining the competing
risk of an infectious disease with current data on cancer survival to develop personalized posterior
survival curves with corresponding prediction intervals for cancer patients during the COVID-19
pandemic.

In Chapter 2, I described a new small sample, sequential, multiple assignment, randomized
trial (snSMART) design that estimates the best first stage treatment for patient without the need
for a binary outcome. The trial progresses by first randomizing patients evenly to one of three
treatments. The first stage outcome is measured and a mapping function is used to assign each
patient a probability of staying on the same treatment. If the patient is randomized to not stay on
the first stage treatment then they are assigned to one of the remaining two treatments with equal
probability. This trial leverages data from the two stages in a Bayesian framework to estimate the
best first stage treatment. We show that the mapping function is more robust to misspecification
than the tailoring variable. Additionally, patient outcomes on the trial were similar so adding
this randomization does not result in worse patient outcomes. The mapping function used in this
snSMART design has not been used in previous trials and results in a highly flexible trial design.

Motivated by the results in Chapter 2, in Chapter 3 we apply a similar concept to full sized
sequential, multiple assignment, randomized trials (SMARTs) with the goal of estimating a
dynamic treatment regimen (DTR). As in the snSMART trial, patients are randomly assigned
to a first stage treatment with equal probability, the first stage outcome is measured, and then a
tailoring function is used to assign the second stage treatment. The tailoring variable maps the first
stage outcome to a probability of receiving each of the second stage treatment. The second stage
treatment is then selected randomly using those probabilities. The tailoring functions presented in
this chapter are a generalization of a tailoring variable which can be thought of a step-wise tailoring
function. We show that tailoring functions are more flexible and robust than tailoring variables.
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When applying the estimated DTR to a new population, we show that the average second stage
outcomes are frequently higher than when using a tailoring variable. Only when the optimal tailor-
ing variable is known a priori does the tailoring variable perform better than the tailoring function.
In practice, it is unlikely that the true optimal cut off for the tailoring variable will be known. Thus,
the tailoring function is more robust and allows researchers to estimate both the tailoring variable
and develop a DTR all with in one trial framework. We also noted that Q-learning performs better
than tree-based reinforcement learning (TBRL) in terms of having less bias and having higher av-
erage second stage outcomes when the estimated DTR was used in a new population of patients.
As with the design in Chapter 2, this method of assigning second stage treatments has not yet been
used in a SMART, but demonstrate the utility and flexibility of such a design.

The concept of using a function to map an outcome to a probability of treatment in a clinical
trial has widespread implications. There are many other types of trials that require categorical
variables for some aspect of the design that may benefit from keeping variables continuous. For
example, basket trials assign patients to a trial arm based on biomarkers. Patients are assigned
a treatment arm based on the presence or absence of particular biomarkers, and the outcome is
measured. A new design for a basket trial could allow for a continuous biomarker and then use a
tailoring function to assign a probability of each treatment arm. Drawing on the work presented
in this dissertation in SMARTs and snSMARTs, this strategy may lead to increased efficiency.
Basket trials are powered based on the interaction effects of the categorical biomarker status (pos-
itive/negative) and the treatments. Powering trials based on the interaction between a continuous
biomarker and the treatments may result in a reduction in the necessary sample size.

Another opportunity to apply these concepts is in dose finding trial designs. Often in oncol-
ogy, there is a continuous dose of one treatment (such as radiation) that warrants investigation
rather than a set of unique treatments. While this deviates from the original concept of using a
continuous variable to assign treatments, this maintains the fundamental concept of maintaining
continuous variables as continuous rather than implementing a categorization strategy. Develop-
ment of SMARTs and snSMARTs that allow for a continuous treatment would be immediately
applicable in oncology and other fields where dose finding is of interest.

In this dissertation, I also presented expanded methods for developing personalized survival
estimates for cancer patients during the COVID-19 pandemic. This work demonstrated how mul-
tiple methods and data sources can be combined to yield predictions. The overall procedure to
obtain overall survival in cancer patients during the COVID-19 pandemic first involved simulating
posterior distributions for the current reproduction number of COVID-19, the proportion of people
infected with COVID-19, the prediction of the epidemic curve, case fatality rates (CFRs) based on
multiple patient demographics, and the pre-COVID-19 predicted survival for cancer patients. This
was all done for a patient’s specific location, demographics, and cancer. We then simulated the
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posterior distribution of COVID-19 specific survival by combining the posterior distributions for
the epidemic curve, the daily probability of infection, and the relevant CFR based on the patient’s
demographics and treatment plans. Finally, the pre-COVID-19 cancer survival was combined with
the COVID-19 specific survival to obtain a posterior distribution for survival for that specific pa-
tient.

This chapter required integrating methods from epidemiology, Bayesian survival, competing
risks in survival analysis, and other fields to create cohesive predictions. These methods could be
used for other infectious diseases that may pose risks to vulnerable populations that need medi-
cal care. Additionally, this chapter provided a Bayesian framework for integrating methods from
different fields in order to develop predictions. Moreover, this work provided an example of es-
timating highly personalized survival predictions to better care for patients. The estimates from
this method were based on a patient’s age, sex, county, number of comorbidities, cancer type, and
cancer stage.

While the clinical trial development and OncCOVID algorithm are seemingly disparate
projects, the overall goal with this and all my work is to apply and develop rigorous statistical
and mathematical methods to help people. By providing more and better information to patients
and their clinicians, we can improve health outcomes.
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