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ABSTRACT

Anosov representations were introduced by Labourie for fundamental groups of closed nega-
tively curved Riemannian manifolds in his study of the Hitchin component and further generalized
by Guichard-Wienhard for more general Gromov hyperbolic groups. Anosov representations of hy-
perbolic groups form a rich and structurally stable class of discrete subgroups of real reductive Lie
groups and are recognized as a higher rank analogue of classical convex cocompact representations
of hyperbolic groups into simple Lie groups of real rank 1. In this thesis, we obtain characteriza-
tions of Anosov representations in the spirit of the work of Guéritaud-Guichard-Kassel-Wienhard
and Kapovich-Leeb-Porti in terms of equivariant limit maps, the Cartan property, the uniform
gap summation property and weak uniform eigenvalue gaps. As an application, we obtain a char-
acterization of strongly convex cocompact subgroups of the projective linear group PGL(d,R).
We also compute the Hölder exponent of the Anosov limit maps of an Anosov representation in
terms of the Cartan and Lyapunov projection of the image of the representation. Finally, we also
provide a complete characterization of the domain groups of Borel Anosov representations into
the projective linear group PGL(4q + 2,R) for every q greater or equal than 1.
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CHAPTER I

Introduction & Statement of Results

In this chapter, we provide a brief introduction to Gromov hyperbolic spaces and groups, a
definition of Anosov representations into special linear groups along with some classes of examples
and also state our main results.

1.1 Gromov hyperbolic groups

Gromov hyperbolic spaces were introduced by Gromov during the 80’s in his seminal work
[Gro87] and since then they play a fundamental role in the study of the geometry and topology
of metric spaces with hyperbolicity. Let us provide a definition attributed to Rips in terms of
slim triangles. Given a geodesic metric space (X, d), a geodesic triangle defined by three points
p, q, r ∈ X (and geodesics between the vertices [pq], [qr], [rp]), is called δ-thin if the union of the
δ-neighbourhoods of any two of the geodesics [pq], [qr], [rp] contains the third one. A geodesic
metric space (X, d) is called Gromov hyperbolic if there exists δ ≥ 0 such that every geodesic
triangle on X is δ-thin. Gromov hyperbolic spaces can be thought as a generalization of the class
of metric spaces of strictly negative curvature. The fundamental examples of Gromov hyperbolic
spaces include Hadamards manifolds of sectional curvature at most −κ < 0 (i.e. complete simply
connected Riemannian manifolds (M, g) of sectional curvature at most −κ < 0). An important
property of Gromov hyperbolicity is that it is invariant under quasi-isometry (see [Gro87], [BH13],
[CDP06]): a geodesic metric space (Y, d) which has the same large scale geometry as a Gromov
hyperbolic space has to be Gromov hyperbolic.

Given a finitely generated group Γ and a finite generating subset S of Γ, we say that Γ is
word hyperbolic if its Cayley graph equipped with the word metric dS induced from S is a Gromov
hyperbolic space. Moreover, since Gromov hyperbolicity is invariant under quasi-isometries, the
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definition does not depend on the choice of the generating subset S of Γ. It is an immediate
consequence of the Svarc-Milnor lemma that a group Γ is word hyperbolic if and only if it admits
a proper discontinuous and cocompact action by isometries on a Gromov hyperbolic metric space.

The free group Fk of rank k, k ≥ 1, is word hyperbolic since its Cayley graph, equipped with
the word metric defined with respect to a set of free generators, is a tree and hence 0-hyperbolic.
The fundamental group π1(Σ) of a closed orientable hyperbolic surface Σ is also word hyperbolic,
since π1(Σ) admits a proper discontinuous and cocompact action by isometries on the upper half
plane H2

R =
{
(x, y) ∈ R2 : y > 0

}
equipped with the Poincare metric

(ds)2 = (dx)2 + (dy)2

y2

of constant negative curvature −1.
Another large class of examples arises from fundamental groups of certain mapping tori of

closed hyperbolic surfaces. Thurston, proved in [Thu98] (see also [Ota96]) that given a closed
orientable hyperbolic surface Σ and an orientation preserving pseudo-Anosov diffeomorphism φ :
Σ → Σ, the mapping torus Mφ = Σ × [0, 1]/

{
(s, 0) ∼ (φ(s), 1)

}
admits a hyperbolic structure.

The fundamental group of Mφ, π1(Mφ), is word hyperbolic since it admits a discrete, faithful and
cocompact representation into PSL(2,C), the group of orientation preserving isometries of the
3-dimensional real hyperbolic space H3

R =
{
(x, y, z) ∈ R3 : z > 0

}
equipped with the Riemannian

metric
(ds)2 = (dx)2 + (dy)2 + (dz)2

z2

of constant negative curvature −1. More generally, uniform lattices (i.e. discrete and co-compact
subgroups) of a simple Lie group G of real rank 1 (e.g. G = SO(n, 1), n ≥ 1) are word hyperbolic.

The Bestvina-Feighn combination theorem [BF+92] provides examples constructed as amal-
gamated free products and HNN extensions of word hyperbolic groups along certain subgroups.
More precisely, given two word hyperbolic groups Γ1 and Γ2 and a quasiconvex malnormal sub-
group Γ0 of both Γ1 and Γ2, the amalgamated free product Γ1 ∗Γ0 Γ2 is word hyperbolic. Other
examples include certain mapping tori of free groups (see [BF+92, page 85]) and certain small
cancellation groups.

The class of word hyperbolic groups generalizes, in many aspects, the class of fundamental
groups of closed negatively curved Riemannian manifolds. Associated to every word hyperbolic
group Γ there exists a finite dimensional and contractible simplicial complex, called the Rips
complex, on which Γ acts properly discontinuously and cocompactly (see [BH13] for more de-
tails). Word hyperbolic groups are finitely presented and satisfy several remarkable algorithmic
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properties. For example, the word and conjugacy problems are solvable in the class of word hy-
perbolic groups (see for example [BH13, III. Γ.2]). However, besides the remarkable properties
that word hyperbolic groups enjoy, there exist examples with features completely different from
those of uniform lattices in linear rank 1 Lie groups. For instance, there are examples which
fail to admit faithful representations into any matrix group (see the constructions of Kapovich
[Kap05] and Canary-Stover-T. [CST19]). Moreover, there are examples of word hyperbolic groups
capturing some of the pathologies occuring in non-hyperbolic finitely presented groups. The Rips
construction [Rip82] and its generalizations (see [Wis03]) exhibit such examples.

1.2 Anosov representations of hyperbolic groups and a defini-

tion into special linear groups

Higher Teichmüller theory is the study of spaces of discrete and faithful representations of
finitely generated groups into real Lie groups by using tools from several areas of Mathematics
such as differential geometry, Lie theory, dynamical systems, geometric group theory and many
more. The prototypical example of a collection of (classes of) discrete faithful representations is
the Teichmüller space T (S), where S is a closed orientable hyperbolic surface of genus greater or
equal than 2. The space T (S) can be identified with the set of discrete and faithful representations
of the fundamental group π1(S) into PSL(2,R), up to conjugation by elements of the projective
linear group PGL(2,R). Teichmüller space, and its quotient moduli space, play a central role in
diverse fields including algebraic geometry, complex analysis, low-dimensional topology, dynamics
and geometric group theory. Higher Teichmüller spaces can be thought as the higher rank analogue
of the space T (S), i.e. a collection of connected components of the space of representations of a
finitely generated infinite group Γ into a non-compact linear semisimple Lie group G.

An important class of discrete faithful representations into linear semisimple Lie groups are
Anosov representations. Anosov representations of word hyperbolic groups form a rich and struc-
turally stable class of discrete subgroups of real semisimple Lie groups with special dynamical and
geometric properties, playing central role in the study of Higher Teichmuüler spaces. They were
introduced by Labourie [Lab06] for fundamental groups of closed negatively curved Riemannian
manifolds in his work on the Hitchin component. Guichard-Wienhard later extended Labourie’s
dynamical definition for more general word hyperbolic groups in [GW12] by using the Gromov
geodesic flow space associated to a word hyperbolic group (see [Gro87], [Cha94], [Min05]). In
several cases, Anosov representations of a word hyperbolic group Γ form an entire connected
component of the representation variety Hom(Γ, G). For example, this is the case for Hitchin
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representations see [Lab06] and Benoist representations (see [Ben05]).
Labourie’s dynamical definition of Anosov representations is inspired by the definition of an

Anosov flow on a compact C∞-manifold [Ano67]. The prototypical example of an Anosov flow
is the geodesic flow {gt}t∈R on the unit tangent bundle T 1M of a closed Riemannian manifold
M of negative sectional curvature established by Anosov in [Ano67]. More precisely, let us fix a
Riemannian metric g = || · || on the compact manifold N := T 1M . Then, there exist {gt}t∈R-
invariant sub-bundles Eu, E0 and Es of the tangent bundle TN with the following properties:
(i) E0 is one dimensional and spanned by vector field on TN , m̂ 7→ d

dtgt(m̂)
∣∣
t=0, m̂ ∈ N .

(ii) TN = Eu ⊕ E0 ⊕ Es.

(iii) The geodesic flow on Eu (resp. Es) is uniformly dilating (resp. uniformly contracting). In
other words, there exist C, c > 0 such that for every m̂ ∈ N , t ≥ 0, v+ ∈ Eu

m̂ and v− ∈ Es
m̂:

∣∣∣∣∣∣dg−t(u+)∣∣∣∣∣∣
g−t(m̂)

≤ Ce−ct
∣∣∣∣∣∣u+

∣∣∣∣∣∣
m̂∣∣∣∣∣∣dgt(u−)∣∣∣∣∣∣

gt(m̂)
≤ Ce−ct

∣∣∣∣∣∣u−∣∣∣∣∣∣
m̂

The Gromov geodesic flow
(
Γ̂, ϕt

)
associated to a word hyperbolic group Γ, introduced by Gromov

[Gro87] (see also [Cha94] and [Min05] for other contructions), is a metric space on which Γ acts
properly discontinuously and cocompactly by isometries and has similar properties as the unit
tangent bundle of the universal cover of a closed negatively curved Riemannian manifold. For
every Anosov representation ρ : Γ→ G into a semisimple Lie group G, there exist explicit vector
bundles E±ρ over the flow space

(
Γ̂, ϕt

)
, obtained from Γ̂, ρ and the Anosov limit maps of ρ with

the following properties (see [Lab06], [GW12], or subsection 2.5 for the precise definition):

(i) there exists a lift of the geodesic flow {ϕt}t∈R on Γ̂ on the bundles E+
ρ and E−ρ .

(ii) the geodesic flow on E+
ρ (resp. E−ρ ) is uniformly dilating (resp. uniformly contracting).

Now let us provide an alternative definiton of Anosov representations into the special linear
groups PSL(d,R) and SL(d,R), in terms of eigenvalue and singular value gaps established by the
work of [KLP18], [BPS16] and [KP20]. For an introduction to Anosov representations we also
refer the reader to Canary’s lecture notes [Can20].

Let us fix d ≥ 2. For an element g ∈ SL(d,R), let λ1(g) ≥ λ2(g) ≥ ... ≥ λd(g) denote the
logarithms of the moduli of the eigenvalues of g in non-increasing order (counting multiplicity).
We denote by µ1(g) ≥ µ2(g) ≥ ... ≥ µd(g) the logarithms of the singular values of g (defined by
the relation µi(g) = 1

2λi(gg
t)) in non-increasing order. The definition of an Anosov representation

ρ : Γ → SL(d,R) depends on the choice of a pair of opposite parabolic subgroups (P+, P−) of
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SL(d,R). Up to conjugation, every pair of opposite parabolic subgroups (P+, P−) arises as the
stabilizer of a k-plane and a complementary (d − k)-plane for some 1 ≤ k ≤ d

2 . In this case, we
say that ρ is Pk-Anosov.

Definition 1.2.1. ([KLP18], [BPS16], [KP20]) Let Γ be a finitely generated group and dS : Γ×Γ→
N be a left invariant word metric on Γ induced by a finite generating subset S of Γ. For γ ∈ Γ we
set |γ|Γ = d(γ, e) and let |γ|Γ,∞ = limn→∞

|γn|Γ
n be the stable translation length of γ. For d ≥ 2,

1 ≤ k ≤ d
2 and a representation ρ : Γ→ SL(d,R) the following are equivalent:

(i) ρ is Pk-Anosov.

(ii) There exist constants C, a > 0 with the property:

µk(ρ(γ))− µk+1(ρ(γ)) ≥ a|γ|Γ − C ∀γ ∈ Γ.

(iii) Γ is word hyperbolic and there exists c > 0 with the property:

λk(ρ(γ))− λk+1(ρ(γ)) ≥ c|γ|Γ,∞ ∀γ ∈ Γ.

The equivalence (i)⇔(ii) has been established by Kapovich-Leeb-Porti [KLP18] and Bochi-Potrie-
Sambarino [BPS16]. The equivalence (iii)⇔(ii) was established by Kassel-Potrie [KP20] answering
a question of Bochi-Potrie-Sambarino in [BPS16].

In general, discrete representations of word hyperbolic groups into semisimple Lie groups
are not very well understood. Even restricting to the case of Anosov representations, there are
several open questions concerning word hyperbolic groups admitting Anosov representations. Some
restrictions on groups admitting projective Anosov representations into SL(3,R) and SL(4,R) have
been estabilshed in [CT20]. However, there is no known classification of which word hyperbolic
groups are P1-Anosov into SL(d,R) for any d ≥ 5. Moreover, as of now, there is no known
example of a linear word hyperbolic group which fails to admit Anosov representations into any
linear semisimple Lie group (see for example [Kas18, page 24]). One hope for the construction of
such examples is to consider amalgamated free products involving super-rigid lattices in the rank
1 Lie group Sp(d, 1), d ≥ 2, following the point of view of the constructions in [CST19].

During the last decade several results have been established for Anosov representations in-
cluding various characterizations completely different from Labourie’s original dynamical defini-
tion [Gué+17], [KLP17], [KLP18], [KLP14], constructions of domains of discontinuity associated
to Anosov representations [GW12], constructions of Riemannian metrics on higher Teichmüller
spaces containing Anosov representations [Bri+15], analogues of the collar lemma for Hitchin and
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maximal representations (see [LZ17] and [BP17] respectively), generalizations of the notion of
Anosov representation for relatively hyperbolic groups [KL18], [Zhu19] and many more.

Recently, the work of Danciger-Guéritaud-Kassel [DGK17] and Zimmer [Zim17] offers a con-
nection of Anosov representations with real projective structures. More precisely, their work shows
that, up to composing an Anosov representation with an explicit Lie group homomorphism, the
image of the composition acts convex cocompactly on a properly convex domain of some real
projective space. In particular, Anosov representations of word hyperbolic groups can be thought
as a generalization of convex cocompact representations into simple rank 1 Lie groups.

1.3 Examples of Anosov representations

Let us now provide some examples of Anosov representations into SL(d,R). A linear represen-
tation ρ : Γ→ SL(d,R) is called Borel Anosov if ρ is Pk-Anosov for every 1 ≤ k ≤ d

2 .

(i) Convex cocompact subgroups of rank 1 Lie groups. Let G be the full isometry group of the
locally symmetric hyperbolic space Hm

k , where m ≥ 2 and k = R,C or the ring of Hamiltonian
quaternions H (i.e. G is locally isomorphic to SO(m, 1), SU(m, 1) or Sp(m, 1)). Let x0 ∈ Hm

k be a
fixed basepoint. The visual boundary ∂∞Hm

k of the Gromov hyperbolic space Hm
k is by definition

the equivalence classes of geodesic rays starting at x0, where two geodesics σ1, σ2 : [0,∞)→ Hm
k

are equivalent if there exists M > 0 such that dHmk (σ1(t), σ2(t)) ≤ M for every t ≥ 0. The visual
boundary ∂∞Hm

k is topologically the sphere of dimension [k : R]m− 1. The topology on ∂∞Hm
k is

induced by a visual metric (see Section 2.2).
Given a subgroup Γ of G, the limit set ΛΓ of Γ in Hm

k is the set of accumulation points of
orbits of Γ in the visual boundary ∂∞Hm

k . The subgroup Γ ⊂ G is called convex cocompact if Γ is
a discrete subgroup of G and acts cocompactly on the convex hull C of its limit set ΛΓ into the
space Hm

k . It is an immediate consequence of the Svarc-Milnor lemma (see [BH13]) that Γ is a
word hyperbolic group and the inclusion Γ ↪−→ G is a quasi-isometric embedding, i.e., after fixing
a word metric dS on Γ, there exist C, c > 0 such that

dHmk
(
γx0, x0

)
≥ c|γ|Γ − C ∀γ ∈ Γ

and |γ|Γ := dS(γ, e). The inclusion representation Γ ↪−→ G is Anosov. We also remark that addi-
tional examples arise from convex cocompact subgroups of the isometry group of the octonionic
hyperbolic plane H2

O equipped with the Killing metric.
In general, given a representation ρ : Γ → G into a linear simple Lie group G of real rank 1,

6



the following are equivalent (for instance see [GW12, Theorem 1.8]).

(i) ρ is Anosov.
(ii) The kernel ker(ρ) is finite and ρ(Γ) is a convex cocompact subgroup of G.
(iii) ρ is a quasi-isometric embedding, i.e there exist A, a > 0 such that

a|γ|Γ + A ≥ dHmk
(
ρ(γ)x0, x0

)
≥ 1
a
|γ|Γ − A

for every γ ∈ Γ.

(ii) Johnson-Millson deformations. We describe here the type of deformations defined in [JM87].
Let Γ be a torsion-free and cocompact lattice (i.e. discrete with compact quotient) of the Lie group
SO(d, 1). Suppose that Γ contains a subgroup Γ0 which is a cocompact lattice of SO(d − 1, 1) ⊂
SO(d, 1) and Γ0\Hd−1

R ↪−→ Γ\Hd
R is a totally geodesic embedding. The van Kampen theorem

implies that the fundamental group of the compact hyperbolic d-manifold Γ\Hd
R, Γ, splits as

an amalgamated free product A ∗Γ0 B in the non-separating case, or as an HNN extension
C∗Γ0=φ(Γ0) =

〈
C, s

∣∣ sγs−1 = φ(γ), γ ∈ Γ0
〉
for some monomorphism φ : Γ0 ↪−→ C in the

separating case. Let ρ denote the inclusion of Γ in SO(d, 1). Let us also fix an one parameter
subgroup {ct}t∈R in SL(d+1,R) centralizing Γ0 and consider the following family of deformations{
ρt : Γ→ SL(d+ 1,R)

}
t∈R of ρ, defined as follows

ρt(γ) =

 ρ(γ), γ ∈ A
ctρ(γ)c−1

t , γ ∈ B
and ρt(γ) =

ρ(s)ct, γ = s

ρ(γ), γ ∈ C

in the non-separating and separating case respectively. The representation ρ is P1-Anosov, so for
small enough values of t, the representation ρt remains P1-Anosov by the stability of Anosov
representations (see [Lab06] and [GW12, Theorem 5.12]). In fact, Benoist’s theorem in [Ben05]
shows that ρt is P1-Anosov for every t ∈ R.

The previous examples are P1-Anosov. It is also possible to produce Pk-Anosov examples for
k 6= 1. For example, let Γ ↪−→ SL(2,C) be a torsion-free uniform lattice containing a separating
totally geodesic surface Σ and, up to conjugation, we may assume that π1(Σ) is a convex cocompact
subgroup of SL(2,R). Note that Γ splits as an amalgamated free product Γ = A ∗π1(Σ) B. Now
consider the Lie group homomorphism τ2 : SL(2,C) ↪−→ SL(4,R) defined as follows:

τ2(g) =

Re(g) −Im(g)
Im(g) Re(g)

 , g ∈ SL(2,C).
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Observe that the one parameter subgroup {cs}s∈R, cs = diag
(
es, es, e−s, e−s

)
, centralizes τ2(SL(2,R)).

The Johnson-Millson deformations
{
ρq : Γ→ SL(4,R)

}
q∈R of τ2 : Γ→ SL(4,R) defined as

ρq(γ) =

 τ2(γ), γ ∈ A
cqτ2(γ)c−1

q , γ ∈ B

are Zariski dense and P2-Anosov in SL(4,R) as soon as 0 < |q| < ε and ε > 0 is small enough.

(iii) Hitchin representations. For d ≥ 3, let id : PSL(2,R) → PSL(d,R) be the unique, up to con-
jugation, irreducible representation. For a closed orientable hyperbolic surface S, a representation
ρ : π1(S)→ PSL(d,R) is called Fuchsian, if ρ = id ◦ j for some discrete faithful representation
j : π1(S)→ PSL(2,R). A continuous deformation of a Fuchsian representation of π1(S) is called a
Hitchin representation. The Hitchin component(s) Hd(S) is (are) by definition the set of Hitchin
representations of π1(S) into PSL(d,R) up to conjugation by elements of PSL(d,R). Hitchin proved
in [Hit92] that each connected component of Hd(S) is a real analytic manifold diffeomorphic to
R(d2−1)|χ(S)|.

By using Definition 2.5(ii) and the fact that j is convex cocompact in PSL(2,R), we may
deduce that id ◦ ρ is Borel Anosov. Labourie in [Lab06] showed that every Hitchin representation
is Borel Anosov and established strong transversality properties for their Anosov limit maps. In
particular, it follows by Labourie’s work that Hd(S) is an example of a higher Teichmüller space.

(iv) Barbot type representations. Let j0 : SL(2,R) ↪−→ SL(3,R) be the reducible embedding defined
as j0(g) = diag(g, 1), g ∈ SL(2,R). Barbot proved in [Bar10] that for every convex cocompact
representation ρ : π1(S)→ SL(2,R) the composition j0 ◦ρ is P1-Anosov. By using Definition 1.2.1
(iii), we may check that the product (i2k+1 ◦ ρ)× (i2m ◦ ρ) : π1(S)→ SL(2k + 2m+ 1,R) is Borel
Anosov for every k,m ∈ N. Moreover, by stability, nearby deformations of (i2k+1 ◦ ρ) × (i2m ◦ ρ)
are also Borel Anosov.

We would like to remark that the two known classes of torsion-free word hyperbolic groups which
are known to admit Borel Anosov representations are free groups and surface groups. To us,
the only know examples of Borel Anosov representations of surface groups are either Hitchin
representations or Barbot type representations.

(v) Benoist representations. Another large class of Anosov representations arises from strictly
convex real projective structures on closed manifolds. A domain Ω of the real projective space
P(Rd) is called properly convex if it is a bounded and convex domain contained in an affine
chart of P(Rd) (i.e. the complement of a projective (d− 1)-plane) and Ω is called strictly convex
if additionally its boundary ∂Ω does not contain projective line segments. Benoist in [Ben04]
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proved that every discrete subgroup Γ of SL(d,R), d ≥ 3, acting cocompactly on a strictly convex
domain Ω of the real projective space P(Rd) is word hyperbolic and the Hilbert geodesic flow
on Γ\T 1Ω is Anosov [Ben04]. The inclusion Γ ↪−→ SL(d,R) is called a Benoist representation and
is P1-Anosov (see [GW12, Prop. 6.1]). However, for every 2 ≤ k ≤ d

2 , a Benoist representation
into SL(d,R) is not Pk-Anosov [CT20, Corollary 1.4]. Moreover, Benoist proved in [Ben05] that
the set of Benoist representations in the connected component Ci of i in Hom(Γ, SL(d,R)) is
closed. Benoist’s closedness result, combined with Koszul’s openess theorem [Kos68], implies that
Ci contains entirely Benoist representations. In particular, Ci is a higher Teichmüller space.

1.4 Statement of the results

In this thesis, we present the main results obtained by the author in [Tso20a], [Tso20b] and
a characterization of Benoist representations established by Richard Canary and the author in
[CT20] in terms of limit maps.

First, we provide characterizations of Anosov representations in the spirit of the character-
izations of Guéritaud-Guichard-Kassel-Wienhard [Gué+17] and Kapovich-Leeb-Porti [KLP17],
[KLP14], in terms of the existence of limit maps, the Cartan property and the Lyapunov and
Cartan projection. We use our main result in order to obtain characterizations of strongly convex
cocompact subgroups of the projective linear group PGL(d,R). We also study the relation between
weak Property U , introduced by Kassel-Potrie in [KP20], and the uniform gap summation prop-
erty introduced in [Gué+17]. In particular, we provide conditions for a linear representation of a
finitely generated group with weak uniform gaps in eigenvalues to be Anosov. We also introduce
a Gromov product associated to the linear forms on the Cartan projection of a representation.
For a representation satisfying the uniform gap summation property of [Gué+17] we compare the
Gromov product on the Cartan projection of its image with the usual Gromov product on the
domain group. We also compute the Hölder exponents of the limit maps of an Anosov represen-
tation in terms of the Cartan and Lyapunov projection of the image. Furthermore, by using a
result of Benoist in [Ben00], we provide a complete characterization of the domain groups of Borel
Anosov representations into the projective linear group PSL(4q + 2,R), q ≥ 2, answering in the
affirmative a question of Andrés Sambarino.

For some background on Lie theory and word hyperbolic groups, we refer the reader to Section
II. We briefly provide some notation here in order to state our main results. Let Γ be an infinite
word hyperbolic group, G be a linear, non-compact semisimple Lie group with finitely many
connected components and fixK a maximal compact subgroup of G. We also fix a Cartan subspace
a of g, a+ a closed Weyl chamber of a, a Cartan decomposition G = K exp(a+)K and consider
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the Cartan projection µ : G → a+. Given a linear form α ∈ a∗, we set α(H) = 〈α,H〉. Every
subset θ ⊂ ∆ of simple restricted roots of G defines a pair of opposite parabolic subgroups P+

θ

and P−θ , well defined up to conjugation.
Let ρ : Γ → G be a representation and ξ+ : ∂∞Γ→ G/P+

θ and ξ− : ∂∞Γ → G/P−θ be
two ρ-equivariant maps. The maps ξ+ and ξ− are called transverse if for any two distinct points
x+, x− ∈ ∂∞Γ there exists g ∈ G such that ξ+(x+) = gP+

θ and ξ−(x−) = gP−θ . The representation
ρ is called Pθ-divergent if for any infinite sequence (γn)n∈N of elements of Γ and α ∈ θ, the sequence
(〈α, µ(ρ(γn))〉)n∈N is unbounded. The map ξ+ : ∂∞Γ→ G/P+

θ satisfies the Cartan property if for
any sequence (γn)n∈N of elements of Γ which converges to a point x ∈ ∂∞Γ in the Gromov
boundary ∂∞Γ we have ξ+(x) = limn kρ(γn)P

+
θ , where ρ(γn) = kρ(γn) exp(µ(ρ(γn))k′ρ(γn) is written

in the Cartan decomposition of G. The limit maps of an Anosov representation (see sub-section
2.5 for the definition) satisfy the Cartan property, see [Gué+17, Theorem 1.3 (4) & 5.3 (4)]. We
discuss the Cartan property in more detail in Section 3.2, where we prove (see Corollary 3.2.5)
that for a Zariski dense representation ρ : Γ→ G a (necessarily unique) continuous ρ-equivariant
map ξ has to satisfy the Cartan property.

Our first characterization of Anosov representations is based on the existence of a pair of
transverse limit maps, where one of the limit maps satisfies the Cartan property:

Theorem 1.4.1. Let Γ be a word hyperbolic group, G a real semisimple Lie group, θ ⊂ ∆ a subset
of simple restricted roots of G and ρ : Γ → G a representation. Then ρ is Pθ-Anosov if and only
if the following conditions hold:

(i) ρ is Pθ-divergent.

(ii) There exists a pair of continuous, ρ-equivariant transverse maps

ξ+ : ∂∞Γ→ G/P+
θ and ξ− : ∂∞Γ→ G/P−θ

and the map ξ+ satisfies the Cartan property.

We explain how Theorem 1.4.1 is related with [KLP14, Theorem 1.7], [KLP17, Theorem 5.47]
and [Gué+17, Theorem 1.3] in sub-section 1.4.6. From Theorem 1.4.1 we deduce the following
characterization of Anosov representations entirely from the Cartan projection of the image of the
representation.

Corollary 1.4.2. Let Γ be an infinite word hyperbolic group, G a real semisimple Lie group with
Cartan projection µ : G → a+, θ ⊂ ∆ a subset of simple restricted roots of G, {ωα}α∈θ the
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associated set of fundamental weights and ρ : Γ → G a representation. We fix | · |Γ : Γ → N a
left invariant word metric on Γ. The representation ρ is Pθ-Anosov if and only if the following
conditions are simultaneously satisfied:

(i) There exist C, c > 1 such that

〈
α, µ(ρ(γ))

〉
> c log |γ|Γ − C

for every γ ∈ Γ and α ∈ θ.

(ii) There exist A, a > 0 such that

〈
ωα, 2µ

(
ρ(γ)

)
− µ

(
ρ(γ2)

)〉
6 A ·

(
2|γ|Γ − |γ2|Γ

)
+ a

for every γ ∈ Γ and α ∈ θ.

For a group Γ, we denote by Γ∞ the set of infinite order elements of Γ. For two linear repre-
sentations ρ1 : Γ→ SL(m,R) and ρ2 : Γ→ SL(d,R), where ρ2 is P1-Anosov, we define

υ−(ρ1, ρ2) := inf
γ∈Γ∞

λ1(ρ1(γ))
λ1(ρ2(γ)) and υ+(ρ1, ρ2) := sup

γ∈Γ∞

λ1(ρ1(γ))
λ1(ρ2(γ))

By using Definition 1.2.1 (iii), we may see that there exists a > 0 such that λ1(ρ2(γ)) ≥ a|γ|∞ for
every γ ∈ Γ and hence the previous two quantities are well defined. As an application of Theorem
1.4.1 we obtain the following approximation result in Section 3.8 which refines the density result
of Benoist obtained in [Ben+00].

Corollary 1.4.3. Let Γ be a word hyperbolic group and ρ1 : Γ→ SL(m,R), ρ2 : Γ→ SL(d,R) be
two representations. Suppose that ρ2 is P1-Anosov and ρ1 satisfies one of the following conditions:
(i) ρ1 is P1-Anosov.
(ii) ρ1(Γ) is contained in a semisimple P1-proximal Lie subgroup of SL(m,R) of real rank 1.

Then for any δ > 0 and p, q ∈ N with υ−(ρ1, ρ2) 6 p
q 6 υ+(ρ1, ρ2), there exists an infinite sequence

(γn)n∈N of elements of Γ such that

∣∣∣∣∣pq − µ1(ρ1(γn))
µ1(ρ2(γn))

∣∣∣∣∣ 6 δ

q
· log |γn|Γ
|γn|Γ

for every n ∈ N.
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Now let ρ : Γ→ G be a Zariski dense representation which admits a pair of ρ-equivariant limit
maps ξ+ : ∂∞Γ→ G/P+

θ and ξ− : ∂∞Γ→ G/P−θ . In [GW12, Theorem 5.11], Guichard-Wienhard
proved that ρ is Pθ-Anosov if and only if ξ+ and ξ− are compatible and transverse. By using
Theorem 1.4.1 and Corollary 3.2.5 we obtain a generalization of [GW12, Theorem 5.11]. For a
quasi-convex subgroup H of Γ (see Definitions 2.2.6 (ii)) we denote by ιH : ∂∞H ↪−→ ∂∞Γ the
Cannon-Thurston map extending the inclusion H ↪−→ Γ.

Theorem 1.4.4. Let Γ be a word hyperbolic group, H a quasiconvex subgroup of Γ, G a semisimple
Lie group, θ ⊂ ∆ a subset of simple restricted roots of G and ρ : Γ → G a Zariski dense
representation. Suppose that ρ admits continuous ρ-equivariant maps ξ+ : ∂∞Γ → G/P+

θ and
ξ− : ∂∞Γ → G/P−θ . Then ρ|H is Pθ-Anosov if and only if the maps ξ+ ◦ ιH and ξ− ◦ ιH are
transverse.

In Theorem 1.4.1 we do not assume that the image ρ(Γ) contains a proximal element in
G/P±θ or that the pair of maps (ξ+, ξ−) is compatible at some point x ∈ ∂∞Γ, i.e. StabG(ξ+(x))∩
StabG(ξ−(x)) is a parabolic subgroup of G. Under the assumption that both maps (ξ+, ξ−) satisfy
the Cartan property, Theorem 1.4.1 also follows from [KLP14, Theorem 1.7].

1.4.1 Strongly convex cocompact groups

Classical examples of Anosov representations arise from convex cocompact subgroups of real
rank 1 simple Lie groups and their nearby deformations (e.g. Johnson-Millson deformations) into
higher rank Lie groups. In general, Anosov representations into higher rank semisimple Lie groups
(e.g. SL(d,R), d ≥ 3) have many connections with real projective geometry and geometric struc-
tures. Let us fix an integer d > 3. Let Γ be a discrete subgroup of PGL(d,R) which preserves
a properly convex domain Ω of P(Rd). The full orbital limit set ΛΩ(Γ) of Γ in Ω is the set of
accumulation points of all Γ-orbits in ∂Ω (see [DGK17, Definition 1.10]). The group Γ acts convex
cocompactly on Ω if the convex hull of ΛΩ(Γ) in Ω is non-empty and has compact quotient by Γ
(see [DGK17, Definition 1.11]). The group Γ is called strongly convex cocompact in P(Rd) if it acts
convex cocompactly on some properly convex domain Ω with strictly convex and C1-boundary.
The work of Danciger-Guéritaud-Kassel [DGK17] and Zimmer [Zim17] shows that Anosov rep-
resentations can be realized as convex cocompact actions on properly convex domains of real
projective spaces. More precisely, suppose that ρ : Γ → PGL(d,R) is a P1-Anosov representation
with Anosov limit map ξ : ∂∞Γ→ P(Rd) and suppose that ρ(Γ) preserves a properly convex do-
main of P(Rd). Then there exists a ρ(Γ)-invariant properly convex domain Ω on which ρ(Γ) acts
convex cocompactly. The proximal limit ΛP

ρ(Γ) (see sub-section 2.1.2) of ρ(Γ) in P(Rd) is exactly
ξ(∂∞Γ) ⊂ ∂Ω, and ρ(Γ) acts cocompactly on the convex hull of ξ(∂∞Γ) in Ω.
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The following result of Danciger-Guéritaud-Kassel [DGK17] offers a connection between Anosov
representations and strongly convex cocompact actions:

Theorem 1.4.5. ([DGK17, Theorem 1.4]) Let Γ be an infinite discrete subgroup of PGL(d,R)
which preserves a properly convex domain of P(Rd). Then Γ is strongly convex cocompact in
P(Rd) if and only if Γ is word hyperbolic and the natural inclusion Γ ↪−→ PGL(d,R) is P1-Anosov.

For a properly convex domain Ω let dΩ be the Hilbert metric defined on Ω. By using Theorem
1.4.1 we prove the following geometric characterization of strongly convex cocompact subgroups
of PGL(d,R) which are semisimple, i.e. their Zariski closure in PGL(d,R) is a reductive Lie group.

Theorem 1.4.6. Let Γ be a finitely generated subgroup of PGL(d,R). Suppose that Γ preserves
a strictly convex domain of P(Rd) with C1-boundary and the natural inclusion Γ ↪−→ PGL(d,R) is
semisimple. Then the following conditions are equivalent:

(i) Γ is strongly convex cocompact in P(Rd).

(ii) Γ ↪−→ PGL(d,R) is a quasi-isometric embedding, Γ preserves a properly convex domain Ω of
P(Rd) and there exists a Γ-invariant closed convex subset C of Ω such that

(
C, dΩ

)
is Gromov

hyperbolic.

The previous theorem generalizes the well known fact that a subgroup Γ of PO(n, 1), n ≥ 2,
is convex cocompact if and only if its is quasi-isometrically embedded in PO(n, 1). We remark
that the assumption that the inclusion Γ ↪−→ PGL(d,R) is a quasi-isometric embedding cannot be
dropped.

For a torsion-free word hyperbolic group Γ, cd(Γ) denotes the cohomological dimension of Γ.
Note that given a convex a representation ρ : Γ→ GL(d,R) whose image acts convex cocompactly
on a properly convex domain Ω of P(Rd) is a Benoist representation if and only if cd(Γ) = d− 1.
We also obtain the following characterization of P1-Anosov representations into GL(d,R) whose
domain group is of cohomolical dimension at least d− 1.

Theorem 1.4.7. ([CT20, Theorem 1.5 & 1.7]). Let Γ be a torsion free word hyperbolic group of
cohomological dimension at least d− 1 ≥ 3 and suppose that ρ : Γ→ SL(d,R) is a representation.
The following conditions are equivalent:

(i) ρ is a Benoist representation.

(ii) ρ is P1-Anosov.

(iii) There exists a non-constant continuous ρ-equivariant map ξ : ∂∞Γ→ P(Rd).
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1.4.2 Gromov products.

We also give the following definition of a Gromov product on G×G which we use in the proofs
of our previous characterization (see Lemma 3.7.1).

Definition 1.4.8. Let G be a real semisimple Lie group, a a Cartan subspace of g and let µ :
G → a+ be the Cartan projection. For every linear form ϕ ∈ a∗ the map ( · )ϕ : G × G → R is
called the Gromov product relative to ϕ and is defined as follows: for g, h ∈ G

(
g · h)ϕ := 1

4
〈
ϕ, µ(g) + µ(g−1) + µ(h) + µ(h−1)− µ(g−1h)− µ(h−1g)

〉

We prove that for every Pθ-Anosov representation ρ : Γ → G, the restriction of the Gromov
product on ρ(Γ) × ρ(Γ), with respect to a fundamental weight ωα for α ∈ θ, is comparable with
the usual Gromov product on Γ × Γ. We fix | · |Γ : Γ → N a left invariant word metric on Γ and
for γ ∈ Γ and recall that |γ|Γ,∞ = limn

|γn|Γ
n denotes the stable translation length of γ.

Proposition 1.4.9. Let G be a real semisimple Lie group, a a Cartan subspace of g and let
µ : G → a+ and λ : G → a+ be the Cartan and Lyapunov projections respectively. We fix θ ⊂ ∆
a subset of simple restricted roots of G and {ωα}α∈θ the associated set of fundamental weights.
Suppose that Γ is a word hyperbolic group and ρ : Γ → G is a Pθ-Anosov representation. There
exist constants C, c > 0 such that

(i) 1
C (γ · δ)e − c 6

(
ρ(γ) · ρ(δ)

)
ωα
6 C(γ · δ)e + c for every α ∈ θ and γ, δ ∈ Γ.

(ii) If θ = ∆, then 1
C (γ · δ)e − c 6

(
ρ(γ) · ρ(δ)

)
α
6 C(γ · δ)e + c for every α ∈ Σ+ and γ, δ ∈ Γ.

(iii) 1
C

(
|γ|Γ − |γ|Γ,∞

)
− c 6

〈
ωα, µ(ρ(γ)) − λ(ρ(γ))

〉
6 C

(
|γ|Γ − |γ|Γ,∞

)
+ c for every α ∈ θ and

γ ∈ Γ.

We remark that in the case where ωα = ε1, statement (i) of the previous proposition is not
enough to guarantee that ρ is a P1-Anosov representation (see Example 3.10.3). However, ρ is P1-
Anosov if we additionally assume that ρ(Γ) preserves a properly convex domain Ω of P(Rd) with
strictly convex and C1-boundary (see Proposition 3.7.1). Proposition 1.4.9 is proved as follows:
by [Gué+17, Proposition 1.8] we may replace ρ with its semisimplification, then we compare
the Gromov product relative to the fundamental weight {ωα}α∈θ with the Gromov product with
respect to the Hilbert metric dΩ for some properly convex domain and then use Theorem 1.4.5.

1.4.3 Eigenvalue gaps and the uniform gap summation property

Kassel-Potrie introduced the following definition in [KP20]:
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Definition 1.4.10. Let Γ be a finitely generated group, ρ : Γ→ GL(d,R) be a representation and
fix 1 6 i 6 d − 1. The representation ρ has a weak uniform i-gap in eigenvalues if there exists
c > 0 such that

λi(ρ(γ))− λi+1(ρ(γ)) > c|γ|Γ,∞

for every γ ∈ Γ.

Guéritaud-Guichard-Kassel-Wienhard in [Gué+17, Theorem 1.7 (c)] proved that if Γ is word
hyperbolic, ρ has a uniform i-gap into eigenvalues and admits a pair of continuous, ρ-equivariant,
dynamics preserving and transverse maps ξ+ : ∂∞Γ→ Gri(Rd) and ξ− : ∂∞Γ→ Grd−i(Rd), then ρ
is Pi-Anosov. Kassel-Potrie proved (see [KP20, Proposition 4.12]) that if Γ satisfies weak Property
U (see Definition 3.5.1) and ρ has a weak uniform i-gap in eigenvalues, then ρ has a strong i-gap in
singular values: there exist L, ` > 0 such that µi(ρ(γ))− µi+1(ρ(γ)) > `|γ|Γ − L for every γ ∈ Γ.
The work of Kapovich-Leeb-Porti [KLP18] and Bochi-Potrie-Sambarino [BPS16] then shows that
Γ is word hyperbolic and ρ is Pi-Anosov.

A function f : N→ R+ satisfying the following two conditions:

(i)
∑∞
n=1 f(n) < +∞.

(ii) there exists m > 0 such that f(k + 1) 6 f(k) 6 mf(k + 1) for every k ∈ N,

is called a Floyd function. For the statement of our next theorem, we need the following definition
(see also [Gué+17, Definition 5.2] and Definition 3.2.6 for a more general definition).

Definition 1.4.11. Let Γ be a finitely generated group, ρ : Γ→ GL(d,R) be a representation. We
say that ρ satisfies the uniform gap summation property if there exists C > 0, a Floyd function f
(e.g. f(x) = x−1−κ, κ > 0) and 1 ≤ k ≤ d

2 such that

µk(ρ(γ))− µk+1(ρ(γ)) > − log
(
f(|γ|Γ)

)
− C ∀γ ∈ Γ.

The following theorem, motivated by [KP20, Question 4.9], provides further conditions under
which a representation ρ : Γ→ GL(d,R) with a weak i-uniform gap in eigenvalues is Pi-Anosov.

Theorem 1.4.12. Let Γ be a non-virtually cyclic finitely generated group and | · |Γ : Γ → N be
a left invariant word metric on Γ. Suppose that ρ : Γ→ GL(d,R) is a representation which has a
weak uniform i-gap in eigenvalues for some 1 6 i 6 d− 1. Then the following are equivalent:

(i) Γ is word hyperbolic and ρ is Pi-Anosov.

(ii) There exists a Floyd function f : N→ R+ such that the Floyd boundary ∂fΓ of Γ contains at
least three points.
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(iii) Γ admits a representation ρ1 : Γ→ GL(m,R) satisfying the uniform gap summation property.

(iv) Γ admits a semisimple representation ρ2 : Γ→ GL(p,R) with the property

lim
|γ|Γ→∞

µ1(ρ2(γ))− µp(ρ2(γ))
log |γ|Γ

= +∞

We prove that conditions (ii), (iii) and (iv) imply that Γ satisfies weak Property U , so (i) follows
by [KP20, Proposition 1.2]. In particular, in Theorem 3.5.3 we prove that every finitely generated
group with non-trivial Floyd boundary has to satisfy weak Property U .

1.4.4 Hölder exponents

Sambarino in [Sam16] used the Hölder exponent of the Anosov limit maps in order to pro-
vide upper bounds for the entropy of a P1-Anosov representation of the fundamental group of a
hyperbolic manifold. Let (X1, d1) and (X2, d2) be two metric spaces and f : (X1, d1)→ (X2, d2)
be a Hölder continuous map. The Hölder exponent af (d1, d2) of f is defined as the supremum
among all numbers α > 0 such that there exists C > 0 with d2(f(x), f(y)) 6 C · d1(x, y)α for
every x, y ∈ X1. We give a computation of the Hölder exponent of the Anosov limit map ξ of a
(not necessarily semisimple) P1-Anosov representation of a word hyperbolic group in the following
theorem:

Theorem 1.4.13. Let (X, d) be a Gromov hyperbolic space and let Γ be a word hyperbolic group
acting properly discontinuously and cocompactly on X by isometries. We fix x0 ∈ X and a >

0 such that there exists a visual metric da on ∂∞X with da(x, y) � a−(x·y)x0 for x, y ∈ ∂∞X.
Suppose that q > 2 and ρ : Γ → SL(q,R) is a P1-Anosov representation whose Anosov limit map
ξ :
(
∂∞X, da

)
→
(
P(Rq), dP

)
is spanning. Then

αξ
(
da, dP

)
= 1

log a · sup
n>1

inf
|γ|X>n

µ1(ρ(γ))− µ2(ρ(γ))
|γ|X

where |γ|X = d(γx0, x0).

In Theorem 1.4.13, dP denotes the angle metric defined as dP([u], [v]) =
∣∣ sin](u, v)

∣∣ for u, v ∈ Rd

unit vectors. Moreover, in the case where ρ is irreducible we may replace the singular values with
eigenvalues in the previous formula (see Corollary 3.9.2).

Now let us fix the visual metric on the real hyperbolic spaceHd
R defined as follows: dv(x, y) � e−(x·y)

for x, y ∈ ∂∞Hd (see [BH13, Chapter III.H.3]). We remark that every Anosov subgroup Γ of
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PO(d, 1) is quasi-isometrically embedded and acts convex cocompactly on the real hyperbolic
space Hd

R. As a corollary of the previous theorem we have:

Corollary 1.4.14. Let d > 2 and Γ be a convex cocompact subgroup of PO(d, 1) with limit set
ΛΓ ⊂ ∂∞Hd. Suppose that q > 2 and ρ : Γ→ PGL(q,R) is an irreducible P1-Anosov representation
with Anosov limit map ξ :

(
ΛΓ, dv

)
→
(
P(Rq), dP

)
. Then we have

αξ
(
dv, dP

)
= inf

γ∈Γ∞

λ1(ρ(γ))− λ2(ρ(γ))
`Hd(γ)

where `Hd(γ) is the translation length of γ and Γ∞ ⊂ Γ denotes the set of all infinite order elements
of Γ. Moreover, if Γ is a cocompact lattice in PO(d, 1), then for every ε > 0 there exists γ ∈ Γ
such that

λ1(ρ(γ))− λ2(ρ(γ)) 6 (1 + ε) · `Hd(γ)

1.4.5 Borel Anosov representations in even dimensions

Let us recall that a representation ρ : Γ → GL(d,R) is called Borel Anosov if ρ is Pk-Anosov
for every 1 ≤ k ≤ d

2 . We address the following question of Andrés Sambarino and provide a
positive answer when d = 4q + 2 and q ∈ N.

Sambarino’s Question: Suppose that Γ is a torsion free word hyperbolic group which admits a
Borel Anosov representation into SL(d,R). Is Γ necessarily free or a surface group?

The only known examples of Borel Anosov representations are constructed from representa-
tions of free groups or surface groups (i.e. the fundamental group of a closed surface of negative
Euler characteristic). Hitchin representations are the only known examples of Borel Anosov repre-
sentations of surface groups in even dimensions. In odd dimensions, Barbot type representations
and their nearby deformations are the only known examples except from Hitchin representations
(see sub-section 1.3 (iii)).

A positive answer to Sambarino’s question was given in [CT20] for d = 3 or 4. By using results
of Benoist in [Ben00] and [Ben05], we prove that a torsion free word hyperbolic group admitting a
P2q+1-Anosov representation into GL(4q+2,R) has to be either free or a surface group. Moreover,
by using Wilton’s result [Wil18] on the existence of quasiconvex surface groups or rigid subgroups
in one ended-word hyperbolic groups and a theorem of Kapovich-Leeb-Porti in [KLP18] (see also
[KLP14, Theorem 6]), we prove the following stronger statement obtained in [Tso20b]:
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Theorem 1.4.15. Let Γ be a word hyperbolic group and ρ : Γ → GL(4q + 2,R) a representa-
tion. Suppose that there exists a continuous, ρ-equivariant dynamics preserving map ξ : ∂∞Γ →
Gr2q+1(R4q+2). Then Γ is virtually free or virtually a surface group.

The group Γ is virtually free (resp. a surface group) if it contains a finite-index subgroup which is
free (resp. a surface group). The map ξ is called dynamics preserving whenever γ ∈ Γ is an infinite
order element, ρ(γ) is Pk-proximal and ξ(γ+) is its attracting fixed point in Gr2q+1(R4q+2). An
analogue of Theorem 1.4.15 does not hold in dimensions which are multiples of 4, see Section 4.3.

Corollary 1.4.16. Let G4q+2 be either GL(4q+ 2,R) or PGL(4q+ 2,R). If Γ is a word hyperbolic
group and ρ : Γ→ G4q+2 is a P2q+1-Anosov representation, then Γ is virtually free or virtually a
surface group.

A torsion-free word hyperbolic group Γ is called rigid if Γ does not admit a non-trivial splitting
over a cyclic subgroup. Let τ+

k : Grk(Rd) → P(∧kRd) be the Plücker embedding (see subsection
2.1.2). By using the connectedness properties of the boundary of a rigid hyperbolic group with
the methods of the proof of Theorem 1.4.15 we have:

Corollary 1.4.17. Let Γ be a torsion free rigid word hyperbolic group and ρ : Γ→ GL(4q+2,R) be
a representation. Suppose there exists a continuous ρ-equivariant map ξ : ∂∞Γ→ Gr2q+1(R4q+2).
Then the map ξ is nowhere dynamics preserving and τ+

2q+1 ◦ ξ is not spanning.

The map ξ is called nowhere dynamics preserving if for every infinite order element γ ∈ Γ the
restriction of ξ on {γ−, γ+} is not dynamics preserving.

1.4.6 Historical remarks

We first explain how Theorem 1.4.1 is related with the equivalence (3)⇔ (5) in [KLP14, The-
orem 1.7], see also [KLP17, Theorem 5.47]. A subgroup Γ of a real reductive Lie group G is called
τmod-asymptotically embedded [KLP14, Definition 6.12], if it is τmod-regular, τmod-antipodal, word
hyperbolic and there exists a Γ-equivariant homeomorphism α : ∂∞Γ→ Λτmod(Γ). Here τmod cor-
responds to the choice of a subset of simple restricted roots η ⊂ ∆ of G, τmod-antipodal means that
the map α is transverse to itself i.e. for x 6= y the pair (α(x), α(y)) is transverse and τmod-regular
corresponds to Pη-divergence. Theorem 1.4.1 follows from [KLP14, Theorem 1.7] in the case
both maps ξ+ : ∂∞Γ→ G/P+

θ and ξ− : ∂∞Γ→ G/P−θ are assumed to satisfy the Cartan prop-
erty (see Definition 3.2.1). In this case, we obtain a ρ-equivariant embedding ξ : ∂∞Γ→ G/P with
P = P+

θ ∩ P
+
θ? . Here, ? : ∆ → ∆ denotes the opposition involution and θ? = {α? : α ∈ θ}. Note
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that the pair of maps (ξ+, ξ−) is compatible and transverse, hence ξ is injective. The map ξ satis-
fies the Cartan property, maps onto the τmod-limit set Λτmod(ρ(Γ)) and ρ(Γ) is τmod-asymptotically
embedded.

We also remark that Theorem 1.3 of Guéritaud-Guichard-Kassel-Wienhard (see [Gué+17,
Theorem 1.3, (1)⇔ (2)]) implies that a representation ρ : Γ→ G is Pθ-Anosov if and only if ρ is
Pθ-divergent and admits a pair of continuous, ρ-equivariant, dynamics preserving and transverse
maps ξ± : ∂∞Γ→ G/P±θ . If we assume that ρ is semisimple, the argument of the proof of Corollary
3.2.5 shows that ξ+ satisfies the Cartan property and ρ has to be Anosov by Theorem 1.4.1.

In case (i) of Corollary 1.4.3, by [Gué+17, Proposition 1.8], we may replace both ρ1 and ρ2

with their semisimplifications ρss1 and ρss2 . In this case the inequality also follows from Benoist’s
main result in [Ben+00].

The upper bound of Corollary 3.9.2 (i), αη+(da, dP) 6 1
log a inf

γ∈Γ∞
λ1(ρ(γ))−λ2(ρ(γ))

|γ|X,∞ , has been es-
tablished by Sambarino in [Sam16, Lemma 6.8]. We prove the other bound by using Theorem
1.4.13 and Benoist’s approximation result for the Cartan projection by the Lyapunov projection
(see [Ben97] and [Gué+17, Theorem 4.12]).
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CHAPTER II

Background

In this chapter, we recall definitions from Lie theory, review several facts for hyperbolic groups
and the Floyd boundary and provide the dynamical definition of Anosov representations from
[Lab06] and [GW12] along with some of their main properties and also discuss several facts for
semisimple representations. We will mainly follow the notation from §2 of [Gué+17]. For more
background on reductive Lie groups we refer the reader to [Kna02].

2.1 Lie theory

We will always consider G to be a semisimple Lie subgroup of SL(m,R) for some m > 2, of
non-compact type which has finitely many connected components. The Zariski topology on G is
the subspace topology induced from real algebraic subsets of SL(m,R). The group G has finite-
index into a Zariski closed real semsimple subgroup of SL(m,R). We denote by Ad : G → GL(g)
the adjoint representation and by ad : g → gl(g) its derivative. The Killing form B : g × g → R

is the bilinear form B(X, Y ) = tr
(
adXadY

)
and is non-degenerate as soon as g is semisimple.

2.1.1 Root space decomposition, Cartan subspaces and parabolic subgroups.

We fix a maximal compact subgroupK ofG, unique up to conjugation, a Cartan decomposition
g = t⊕p where t = Lie(K), p is the orthogonal complement of t with respect to B and the Cartan
subspace a which is a maximal abelian subalgebra of g contained in p. The real rank of G is the
dimension of a as a real vector space. For a linear form β ∈ a∗ we use the notation 〈β,H〉 = β(H)
for H ∈ a. The transformations adH : g → g, H ∈ a are diagonizable and mutually commute.
Thus we obtain a decomposition of g into the common eigenspaces of adH , H ∈ a called the
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restricted root decomposition
g = g0 ⊕

⊕
α∈Σ

gα

where gα =
{
X ∈ g : adH(X) = 〈α,H〉X ∀H ∈ a

}
and Σ =

{
α ∈ a∗ : gα 6= 0

}
is the

set of restricted roots of G. We fix H0 ∈ a with α(H0) 6= 0 for every α ∈ Σ. We denote by
Σ+ =

{
α ∈ Σ : 〈α,H0〉 > 0

}
the set of positive roots and fix ∆ ⊂ Σ+ the set of simple positive

roots.
Note also that there exists a unique vector Hβ ∈ a such that 〈β,H〉 = B(H,Hβ), since B|a×a

is a positive inner product. For two elements α, β ∈ a∗ we set (α, β) = B(Hα,, Hβ). For a simple
restricted root α ∈ ∆, we consider the associated fundamental weight ωα ∈ a∗ satisfying

2(ωα, β)
(β, β) = δαβ ∀β ∈ ∆

For every θ ⊂ ∆, Σθ = Σ ∩
(∑

α∈θ Zα
)
denotes the set of all roots in Σ which are linear combi-

nations of elements of θ. We consider the parabolic Lie algebras

p±θ = g0 ⊕
⊕

α∈Σ±∪Σ∆−θ

gα

and denote by P±θ =
{
g ∈ G : Ad(g)p±θ = p±θ

}
to be the normalizer of p±θ in G. A subgroup P of

G is called parabolic if it is the normalizer in G of some parabolic sub-algebra of g. Two parabolic
subgroups P+ and P− of G are called opposite if there θ ⊂ ∆ and g ∈ G such that P+ = gP+

θ g
−1

and P− = gP−θ g
−1.

Let a+ := ∩
α∈Σ+

{
H ∈ a : 〈α,H〉 > 0

}
. There exists a decomposition G = K exp(a+)K called the

Cartan decomposition where each element g ∈ G is written as g = kg exp(µ(g))k′g, kg, k′g ∈ K and
µ(g) denotes the Cartan projection of g. The Lyapunov projection λ : G→ a+ is defined as

λ(g) = lim
n→∞

µ(gn)
n

Example 2.1. The case of G = SL(d,R). The unique (up to conjugation) maximal compact sub-
group of G is the special orthogonal group SO(d) = {g ∈ SL(d,R) : ggt = Id

}
. A Cartan subspace

for g is the subspace a = diag0(d) of all diagonal matrices with zero trace. Let εi ∈ a∗ be the pro-
jection to the (i, i)-entry. The closed dominant Weyl chamber of a is a+ :=

{
diag(a1, ..., ad) : a1 >

... > ad,
∑d
i=1 ai = 0

}
and we have the Cartan decomposition SL(d,R) = SO(d) exp(a+)SO(d).

The restricted root decomposition is sl(d,R) = a ⊕
⊕

i 6=j REij , where Eij denotes the d × d el-
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ementary matrix with 1 at the (i, j) entry and 0 everywhere else. The set of restricted roots is{
εi− εj : i 6= j

}
and of simple positive roots is

{
εi− εi+1 : i = 1, ..., d− 1

}
. For each 1 6 i 6 d− 1

the associated fundamental weight is ωεi−εi+1 =
∑i
k=1 εk. For an element g ∈ SL(d,R) we denote

by λi(g) (resp. µi(g)) the logarithm of the modulus of the i-th eigenvalue (resp. singular value) of
g. We recall that the µi(g) = 1

2λi(g
tg). The Cartan and Lyapunov projections of g ∈ SL(d,R) are

given by the diagonal matrices:

µ(g) = diag
(
µ1(g), ..., µd(g)

)
and λ(g) = diag

(
log λ1(g), ..., λd(g)

)
.

2.1.2 Proximality.

An element g ∈ G is called Pθ-proximal if 〈α, λ(ρ(γ))〉 > 0 for all α ∈ θ. Equivalently, g has
two fixed points x+

g ∈ G/P+
θ and V −g ∈ G/P−θ such that the pair (x+

g , V
−
g ) is transverse and for

every x ∈ G/P+
θ transverse to V −g , we have limn g

nx = x+
g . The element g is called Pθ-biproximal

if g and g−1 are both Pθ-proximal. In this case, we denote by x−g the attracting fixed point of g−1

in G/P−θ .
Let d > 2 and e1, ..., ed be the canonical basis of Rd. We denote by (e1, ..., ed) the canonical

basis of Rd and set e⊥j = ⊕j 6=iRej . The group K = SO(d) is the unique, up to conjugation,
maximal compact subgroup of SL(d,R). For 1 6 k 6 d

2 , we denote by P+
k the stabilizer of the

plane 〈e1, .., ek〉 and by P−k the stabilizer of the complementary (d − k)-plane 〈ek+1, ..., ed〉. The
Grassmannian of k-planes, Grk(Rd) is identified with the quotient manifold SL(d,R)/P+

k . Similarly
Grd−k(Rd) is identified with GL(d,R)/P−k . A pair of planes (V +, V −) ∈ Grk(Rd) × Grd−k(Rd) is
transverse if there exists h ∈ SL(d,R) such that V + = h〈e1, ..., ek〉 and V − = h〈ek+1, .., ed〉. An
element g ∈ SL(d,R) is called Pk-proximal if λk(g) > λk+1(g). Equivalently, g has two fixed points
x+
g ∈ Grk(Rd) and V −g ∈ Grd−k(Rd) such that the pair (x+

g , V
−
g ) is transverse and for every k-plane

V0 transverse to V −g we have limn g
nV0 = x+

g . The element g is called Pk-biproximal if g and g−1

are Pk-proximal. We denote by x−g the attracting fixed point of g−1 in Grk(Rd). For k = 1, a
P1-proximal element g ∈ GL(d,R) in P(Rd) has a unique eigenvalue, `1(g), of maximum modulus
with multiplicity exactly one. The matrix g is called P1-positively proximal if `1(g) > 0.

The Plücker embeddings τ+
k : Grk(Rd) → P(∧kRd) and τ−k : Grd−k(Rd) → Grdk−1(∧kRd),

dk =
(d
k

)
, are defined as follows

τ+
k (gPk) = [ge1 ∧ ... ∧ gek] and τ−k (gP−k ) = [(∧kg)Wk]
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where Wk =
〈
ei1 ∧ ... ∧ eik : {i1, ..., ik} 6= {1, ..., k}

〉
. The maps τ+

k and τ−k define embeddings
of Grk(Rd) and Grd−k(Rd) into P(∧kRd) and Grdk−1(∧kRd) respectively. An element g ∈ SL(d,R)
is Pk-proximal if and only if τ+

k (g) is P1-proximal (see also [Gué+17, Proposition 3.3] for more
details).

Limit sets. For a subgroup Γ of G, the Pθ-proximal limit set ΛG/P+
θ

Γ of Γ in G/P+
θ is defined to be

the closure of the attracting fixed points of Pθ-proximal elements of Γ in G/P+
θ . In the case where

G = SL(d,R) and Γ is an irreducible subgroup containing a P1-proximal element, the action of Γ
on ΛP

Γ in P(Rd) is minimal (i.e. for every x ∈ ΛP
Γ, Γx := {γx : γ ∈ Γ} is a dense subset of ΛP

Γ) (see
[Ben00, Lemma 2.5]).

A linear representation ρ : Γ → GL(d,R) is irreducible if ρ(Γ) does not preserve a proper
subspace of Rd. The representation ρ is called strongly irreducible if for every finite-index subgroup
H of Γ the restriction ρ|H is irreducible.

Let G be a semisimple linear Lie group. A representation τ : G→ GL(d,R) is called proximal if
τ(G) contains a P1-proximal element. For an irreducible and proximal representation τ we denote
by χτ the highest weight of τ . The functional χτ ∈ a∗ is of the form χτ =

∑
α∈∆ nαωα and the

representation τ is called θ-compatible if θ =
{
α ∈ ∆ : nα > 0

}
.

The restricted Weyl group of a in g is the group W = NK(a)/ZK(a), where NK(a) (resp.
ZK(a)) is the normalizer (resp. centralizer) of a in K. The group W is a finite group, acts simply
transitively on the set of Weyl chambers of a and contains a unique order two element wZK(a) ∈ W
such that Ad(w)a+ = −a+. The element w ∈ K defines an involution ? : ∆ → ∆ on the set of
simple restricted roots ∆ as follows: if α ∈ ∆ then α? ∈ ∆ is the unique root with α?(H) =
−α(Ad(w)H) for every H ∈ a. By the definition of ? we have 〈α, µ(g)〉 = 〈α?, µ(g−1)〉 for every
α ∈ ∆ and g ∈ G. Now let θ ⊂ ∆ be a subset of simple restricted roots of G determining the pair
of opposite parabolic subgroups P+

θ and P−θ . The homogeneous spaces G/P+
θ and G/P−θ admit

K-invariant metrics. We first fix an irreducible linear θ-proximal representation τ : G→ GL(d,R)
such that P+

θ = StabG(Re1), P−θ = StabG(e⊥1 ) and τ(K) ⊂ O(d) (see [Gué+17, Proposition 3.3]).
The metrics dG/P+

θ
and dG/P−

θ
are defined as follows: for g1, g2 ∈ O(d) we have

dG/P+
θ

(
g1P

+
θ , g2P

+
θ

)
:= dP

(
τ(g1)P+

1 , τ(g2)P+
1
)

dG/P−
θ

(
g1P

−
θ , g2P

−
θ

)
:= dP

(
τ(g1)∗P+

1 , τ(g2)∗P+
1
)

where dP is the angle metric on P(Rd) with

dP
(
g1P

+
1 , g2P

+
1
)

=
∣∣ sin](g1e1, g2e1)

∣∣ =
√

1− 〈g1e1, g2e1〉2
||g1e1||2 · ||g2e1||2
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and τ(gi)∗ = τ(gi)−t for i = 1, 2.
Let g ∈ G such that 〈α, µ(g)〉 > 0 (resp. 〈α, µ(g−1)〉 > 0) for every α ∈ θ. If we write g =

kg exp(µ(g))k′g in the Cartan decomposition of G, the coset kgP+
θ (resp. kgwP−θ ) is independent

of the choice of the element kg ∈ K (see [Gué+17] and the references therein). Hence we define

Ξ+
θ (g) = kgP

+
θ

(
resp. Ξ−θ (g) = kgwP

−
θ

)

2.2 Gromov hyperbolic spaces.

In this section, we provide some background on Gromov hyperbolic spaces. We also refer
the reader to [BH13], [CDP06], [Gro87], [KB02] and [Väi05] for a detailed discussion and more
background on Gromov hyperbolic spaces and their boundaries. By default, all metric spaces we
consider will be assumed to be locally compact and proper.

Let (X, d) be a metric space. A curve σ : [0, a] → X, a > 0 will be called a geodesic if
d(σ(t), σ(s)) = |t − s| for every 0 ≤ t ≤ a. The space (X, d) is called geodesic if for every two
points x, y ∈ X there exists a geodesic connecting x with y.

Let (X, d) be proper geodesic metric and x0 ∈ X a fixed basepoint. For an isometry γ : X → X

we define |γ|X = d(γx0, x0). The translation length and the stable translation length of the isometry
γ are:

`X(γ) = inf
x∈X

d(γx, x) and |γ|X,∞ = lim
n→∞

|γn|X
n

respectively.

Remark: Note that the stable transaltion length of γ, |γ|X∞, is well defined and limn
|γn|X
n =

infn≥1
|γn|X
n (see for example [BH13, p. 230]).

Let Γ be a finitely generated group and S be a finite generating subset of Γ. The left invariant
word metric dS on the Cayley graph CΓ is defined as follows: for g, h ∈ Γ we set

dS(g, h) = inf
{
k : g−1h = s1 · · · sk, si ∈ S ∪ S−1}

For an element γ ∈ Γ we set |γ|Γ = dS(γ, e) and |γ|Γ,∞ = limn
dS(γn,e)

n denotes the stable transla-
tion length of γ.
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2.2.1 Quasi-Isometries

Definitions 2.2.1. A map f : (X, d)→ (Y, d′) is called a (K, c)-quasi-isometric embedding if

1
K
d(x, y)− c ≤ d′(f(x), f(y)) ≤ Kd(x, y) + c

for every x, y ∈ X. The map f is called a quasi-isometry if:

(i) f is a (K, c)-quasi-isometric embedding for some K, c > 0.

(ii) f is coarsely onto, i.e. there exists M > 0 such that for every y ∈ Y , there exists x ∈ X with
d(y, f(x)) ≤M .

A (K, ε)-quasi-isometric embedding σ : [0, R] → X, R ∈ [0,∞], will be called a (K, ε)-quasi
geodesic. The following proposition is a fundamental observation in geometric group theory known
as the Svarc-Milnor lemma (see for example [BH13]).

Proposition 2.2.2. (Svarc-Milnor lemma) Let Γ be a group acting properly discontinuously and
cocompactly by isometries on a proper geodesic metric space (X, d). Then:

(i) Γ is finitely generated.

(ii) If S is a finitely generated subset of Γ and x0 ∈ X, the orbit map x0 7→ γx0 is a quasi-isometry
between (Γ, dS) and (X, d).

2.2.2 Gromov hyperbolicity

The Gromov product on a metric space (X, d) with respect to x0 ∈ X is defined as follows

(x · y)x0 := 1
2
(
d(x, x0) + d(y, x0)− d(x, y)

)

The triangle inequality shows that (x ·y)x0 6 distX(x0, [x, y]) for every geodesic [x, y] ⊂ X joining
x and y.

Definitions 2.2.3. The metric space (X, d) is called Gromov hyperbolic if there exists δ > 0 with
the following property: for every x, y, z ∈ X

(x · y)x0 > min
{
(x · z)x0 , (z · y)x0

}
− δ
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An infinite sequence of elements (xn)n∈N in X is called a Gromov sequence if limn,m(xn · xm)x0

exists and is infinite. Two Gromov sequences (xn)n∈N and (yn)n∈N are equivalent if limn(xn ·
yn)x0 = +∞. The Gromov boundary of X, denoted ∂∞X, is the set of equivalence classes of
Gromov sequences.

Given a Gromov hyperbolic space (X, d), the Gromov product with respect to x0 ∈ X extends
also to ∂∞X × ∂∞X as follows: for x, y ∈ ∂∞X define

(x · y)x0 := sup
{

lim
m,n→∞

(xm · yn)x0 : lim
m→∞

xm = x and lim
n→∞

yn = y
}

The Gromov boundary ∂∞X is metrizable (see [Gro87] and [BH13, Proposition 3.2]): there exist
constants C, a > 1 and a visual metric da : ∂∞X × ∂∞X → R+ such that for every x, y ∈ ∂∞X:

1
C
a−(x·y)x0 6 da(x, y) 6 Ca−(x·y)x0

For more details on boundaries of Gromov hyperbolic spaces we refer the reader to [KB02].

Given a subset A of X and M > 0, the M -neighbourhood of A in X is the set BM (A) :=
∪x∈A

{
y ∈ X : d(x, y) ≤M

}
. One of the key properties of Gromov hyperbolic spaces is that they

satisfy the following stability property for quasi-geodesics known as the fellow traveler property
(see for example [BH13, Theorem 1.7, Chapter III.H.1]):

Theorem 2.2.4. Suppose that (X, d) is a geodesic metric space which is δ-hyperbolic. For every
K, ε > 0 there exists M = M(δ, ε,K) > 0 with the following property: for every two (K, ε)-quasi-
geodesics α1 : I1 → X and α2 : I2 → X with the same endpoints then α1(I1) ⊂ BM

(
α2(I2)

)
and

α2(I2) ⊂ BM
(
α1(I1)

)
.

An immediate consequence of the fellow traveller property is the fact that Gromov hyperbol-
icity is invariant under quasi-isometries (see for example [BH13], [KB02]):

Proposition 2.2.5. Let (X, d) and (Y, d′) be two proper geodesic spaces and suppose that f :
(X, d)→ (Y, d′) is a quasi-isometry.

(i) (X, d) is Gromov hyperbolic if and only if (Y, d′) is.

(ii) Suppose that (X, d) and (Y, d′) are Gromov hyperbolic and fix two visual metrics da and db,
a, b > 0, on ∂∞X and ∂∞Y . The map f induces the homeomorphism ∂f : (∂∞, da) → (∂∞Y, db)
defined as follows

∂f([(xn)n]) = [(f(xn))n]
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Moreover, tha map ∂f is bi-Hölder continuous, i.e. there exist C, α, β > 0 such that

1
C
da(x, y)β ≤ db

(
∂f(x), ∂f(y)

)
≤ Cda(x, y)α

for every x, y,∈ ∂∞X.

Definitions 2.2.6. Let Γ be a finitely generated group, S a finite generating subset of Γ and let
CΓ be the Cayley graph of Γ with respect to S.

(i) The group Γ is word hyperbolic if CΓ equipped with the word metric dS is a Gromov hyperbolic
space. The Gromov boundary of Γ, ∂∞Γ, is by definition the Gromov boundary of the space (Γ, dS).
(ii) Let H be a finitely generated subgroup of a word hyperbolic group Γ. The subgroup H is called
quasiconvex in Γ if there exists L > 0 with the following property: for every g, h ∈ H, every
geodesic [g, h] in (CΓ, dS) is contained in the L-neighbourhood of H in CΓ (with respect to dS).

Remarks: (i) Given a word hyperbolic group Γ, the definition of the Gromov boundary ∂∞Γ is
independent of the choice of the generating subset S of Γ. Note that for every generating subset
S′ of Γ, the spaces (Γ, dS) and (Γ, dS′) are quasi-isometric, hence a sequence (γn)n∈N is a Gromov
sequence with respect to dS if and only if it is a Gromov sequence with respect to dS′ .

(ii) Theorem 3.5.4 implies that the definition of a quasi-convex subgroup H of a word hyperbolic
group Γ does not depend on the choice of the generating subset S of Γ. In addition, H is a word
hyperbolic group and the inclusion ι : H ↪−→ Γ is a quasi-isometric embedding.

For a word hyperbolic group Γ and γ ∈ Γ an infinite order element, the map Z→ Γ, n 7→ γn,
is a quasi-isometric embedding and hence |γ|Γ,∞ > 0. Moreover, γ has exactly two fixed points
γ+ and γ− in ∂∞Γ, represented by the sequences:

γ+ =
[
(γn)n∈N

]
and γ− =

[
(γ−n)n∈N

]

called the attracting and repelling fixed points of γ respectively.

We shall use the following inequality relating the stable translation length and the word length
of an element of a group Γ acting isometrically, properly discontinously and cocompactly on a
Gromov hyperbolic space.

Lemma 2.2.7. Let (X, d) be a Gromov hyperbolic space and x0 ∈ X. Suppose that Γ is a group
acting properly discontinously and cocompactly by isometries on X. There exists C > 0 depending
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only on X such that for every infinite order element γ ∈ Γ we have

∣∣∣(γ+ · γ−1x0
)
x0
− 1

2
(
|γ|X − |γ|X,∞

)∣∣∣ 6 C

where γ+ = limn γ
nx0.

Proof. Since (X, d) is Gromov hyperbolic, we may choose δ > 0 such that

(x · y)x0 > min
{
(x · z)x0 , (z · y)x0

}
− δ

for every x, y, z ∈ X∪∂∞X. Observe that since the orbit map x0 7→ δx0, δ ∈ Γ, is a quasi-isometry,
(γnx0)n∈N is a Gromov sequence and limn γ

nx0 is well defined. Since |γ|X,∞ = limn
|γn|X
n , it is not

hard to check that

lim
n→∞

(
|γn+1|X − |γn|X

)
6 |γ|X,∞ 6 lim

n→∞

(
|γn+1|X − |γn|X

)

Let (kn)n∈N ⊂ N be a sequence such that limn

(
|γn+1|X −|γn|X

)
= limn

(
|γkn+1|X −|γkn |X

)
. Note

that for large n ∈ N we have
(
γ+ · γknx0

)
x0
>
(
γ+ · γ−1x0

)
x0
, so

(
γ+ · γ−1x0

)
x0
6 lim

n→∞

(
γknx0 · γ−1x0

)
x0

+ δ

= 1
2 lim
n→∞

(
|γ|X +

∣∣γkn ∣∣
X
−
∣∣γkn+1∣∣

X

)
+ δ

6
1
2
(
|γ|X − |γ|X,∞

)
+ δ

Similarly, let (mn)n∈N be a sequence with limn

(
|γn+1|X − |γn|X

)
= limn

(
|γmn+1|X − |γmn |X

)
. Then

(
γ+ · γ−1x0

)
x0
> lim

n→∞

(
γmnx0 · γ−1x0

)
x0
− δ

= 1
2 lim
n→∞

(
|γ|X +

∣∣γmn
∣∣
X
−
∣∣γmn+1∣∣

X

)
− δ

>
1
2
(
|γ|X − |γ|X,∞

)
− δ

The inequality follows. �
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2.3 The Floyd boundary.

Let Γ be a finitely generated group, S a finite generating subset of Γ defining the left invariant
metric dS and let |γ|Γ = dS(γ, e) for γ ∈ Γ. A function f : N → R+ satisfying the following two
conditions:

(i)
∑∞
n=1 f(n) < +∞.

(ii) there exists m > 0 such that f(k + 1) 6 f(k) 6 mf(k + 1) for every k ∈ N,

is called a Floyd function. There exists a metric df on Γ defined as follows (see [Flo80]): for two
adjacent vertices g, h ∈ Γ the distance is df (g, h) = f

(
max{|g|Γ, |h|Γ}

)
. The length of a finite path

p defined by the sequence of adjacent vertices p = {x0, x1, ..., xk} is Lf (p) =
∑k−1
i=0 df (xi, xi+1).

For two arbitrary vertices g, h ∈ Γ their distance is defined as:

df (g, h) = inf
{
Lf (p) : p is a path from g to h

}

It is easy to verify that df defines a metric on Γ and let Γ be the the metric completion of Γ with
respect to df . Every two elements x, y ∈ Γ are represented by Cauchy sequences (γn)n∈N, (δn)n∈N
with respect to df and their distance is df (x, y) = limn df (γn, δn). The Floyd boundary of Γ with
respect to f is defined to be the complement ∂fΓ := Γ − Γ equipped with the metric df . The
Floyd boundary ∂fΓ is called non-trivial if it contains at least three points. For every infinite
order element γ ∈ Γ the limit limn γ

±n exists (see for example [Kar03, Proposition 4]) and is
denoted by γ±.

If Γ is a word hyperbolic group, there exists k > 0 such that the Floyd boundary of Γ with
respect to f(x) = e−kx is the Gromov boundary of Γ equipped with a visual metric (see [Gro87]).
For more details and properties of the Floyd boundary we refer the reader to [Flo80] and [Kar03].

2.4 Flow spaces for hyperbolic groups.

Flow spaces for hyperbolic groups were introduced by Gromov in [Gro87] and further developed
by Mineyev [Min05] and Champetier [Cha94]. Associated to any word hyperbolic group Γ there
exists a metric space

(
Γ̂, dΓ̂

)
equipped with an R-action {ϕt}t∈R called the geodesic flow of Γ

having the following properties:

(a) The action of Γ on Γ̂ commutes with the action of the geodesic flow.

(b) The group Γ acts properly discontinuously and cocompactly by isometries on the flow space
Γ̂.
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(c) There exist C, c > 0 such that for every m̂ ∈ Γ̂, the map t 7→ ϕt(m̂) is a (C, c)-quasi-isometric
embedding (R, dE)→ (Γ̂, dΓ̂).

It follows by property (a) that the flow {ϕt}t∈R descends to a well defined flow on the quotient
Γ\Γ̂ which we also denote by {ϕt}t∈R. Moreover, property (c) guarantees that the map (τ+, τ−) :
Γ̂→ ∂∞Γ× ∂∞Γ−

{
(x, x) | x ∈ ∂∞Γ

}

(τ+, τ−)(m̂) =
(

lim
t→∞

ϕt(m̂), lim
t→∞

ϕ−t(m̂)
)

is well defined, continuous and equivariant with respect to the action of Γ on Γ̂.
For example, if Γ = π1(M), where (M, g) is a closed negatively curved Riemannian manifold, a

flow space for Γ satisfying the previous conditions is the unit tangent bundle T 1M̃ equipped with
the usual geodesic flow. Let Γ be a torsion free, discrete subgroup of PGL(d,R) acting properly
discontinuously and cocompactly on a strictly convex domain Ω of P(Rd). By Benoist’s theorem
[Ben04, Théorème 1] the group Γ is word hyperbolic. A flow space for Γ is the manifold Γ\T 1Ω
equipped with the Hilbert geodesic flow.

2.5 Anosov representations

Let Γ be a word hyperbolic group, ρ : Γ→ G a representation and fix θ ⊂ ∆ a subset of simple
restricted roots of G. We denote by Lθ = P+

θ ∩ P
−
θ the common Levi subgroup. There exists a

G-equivariant map G/Lθ → G/P+
θ ×G/P

−
θ mapping the coset gLθ to the pair (gP−θ , gP

−
θ ). The

tangent space of G/Lθ at (gP+
θ , gP

−
θ ) splits as the direct sum TgP+

θ
G/P+

θ ⊕TgP−θ G/P
−
θ and hence

we obtain a G-equivariant splitting of the tangent bundle T (G/Lθ) = E ⊕ E−. We consider the
quotient spaces:

Xρ = Γ\
(
Γ̂×G/Lθ

)
and E±ρ = Γ\

(
Γ̂× E±

)
where the action of γ ∈ Γ on T (G/Lθ) is given by the differential of the left translation Lρ(γ) :
G/Lθ → G/Lθ. Let π : Xρ → Γ\Γ̂ and π± : E±ρ → Xρ be the natural projections. the maps
π± define vector bundles over the space Xρ where the fiber over the point [m̂, (gP+

θ , gP
−
θ )]Γ is

identified with the vector space TgP±
θ
G/P±θ .

Given a flow space (Γ̂, {ϕt}t∈R) associated to Γ, there is a natural flow, which we continue to
denote by {ϕt}t∈R, on the quotients E±ρ and Xρ defined as follows:

ϕt
(
[m̂, gLθ]Γ) = [ϕt(m̂),

(
gP+

θ , gP
−
θ

)
]Γ and ϕt

(
[m̂, gLθ]Γ) = [ϕt(m̂), u]Γ
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for every m̂ ∈ Γ̂, g ∈ G and u ∈ E± ⊂ T (G/Lθ).

Now we are ready to provide the dynamical definition of an Anosov representation introduced
by Labourie in [Lab06] for fundamental groups of negatively curved closed Riemannian manifolds,
extended by Guichard-Wienhard in [GW12] for more general word hyperbolic groups. We also refer
the reader to Canary’s lecture notes [Can20] for more background on Anosov representations.

For the defintion, we shall need the following definition.

Definitions 2.5.1. Let θ ⊂ ∆ be a subset of simple restricted roots of G, Γ be a word hyperbolic
group and ρ : Γ→ G a representation. For a coset gP±θ , the stabilizer StabG(gP±θ ) is the parabolic
subgroup gP±θ g

−1 of G. Suppose that ξ+ : ∂∞Γ → G/P+
θ and ξ− : ∂∞Γ → G/P−θ are two

continuous ρ-equivariant maps.

(i) The maps ξ+ and ξ− are called compatible if for every x ∈ ∂∞Γ the intersection StabG(ξ+(x))∩
StabG(ξ−(x)) is a parabolic subgroup of G.

(ii) The map ξ+ (resp. ξ−) is dynamics preserving if for every infinite order element γ ∈ Γ, ρ(γ)
is proximal in G/P+

θ (resp. G/P−θ ) and ξ+(γ+) (resp. ξ−(γ+)) is the attracting fixed point of ρ(γ)
in G/P+

θ (resp. G/P−θ ).

(iii) Two maps ξ+ and ξ− are called transverse if for for every x, y ∈ ∂∞Γ with x 6= y, there exists
h ∈ G such that (ξ−(x), ξ−(y)) = (hP+

θ , hP
−
θ ).

Definition 2.5.2. ([GW12], [Lab06]) Let Γ be a word hyperbolic group and fix θ ⊂ ∆ a subset of
restricted roots of G. A representation ρ : Γ→ G is called Pθ-Anosov if:

(i) There exists a section σ : Γ\Γ̂→ Xρ flat along the flow lines.

(ii) The lift of the geodesic flow {ϕt}t∈R on the pullback bundle σ∗E+ (resp. σ∗E−) is dilating
(resp. contracting).

The previous definition is equivalent to the existence of a pair of continuous ρ-equivariant trans-
verse maps ξ+ : ∂∞Γ→ G/P+

θ and ξ− : ∂∞Γ→ G/P−θ defining the flat section σ : Xρ → G/Lθ

σ([m̂]Γ) =
[
m̂, ξ+(τ+(m̂)), ξ−(τ−(m̂))

]
Γ ∀ m̂ ∈ Γ̂

and a continuous equivariant family of norms (|| · ||x)x∈Γ\Γ̂ with the property:
There exist C, a > 0 such that for every x = [m̂]Γ, t > 0, v ∈ Tξ+(τ+(m̂))G/P

+
θ and u ∈
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Tξ−(τ−(m̂))G/P
−
θ :

∣∣∣∣∣∣ϕ−t(X+
v

)∣∣∣∣∣∣
ϕ−t(x)

6 Ce−at
∣∣∣∣∣∣X+

v

∣∣∣∣∣∣
x∣∣∣∣∣∣ϕt(X−u )∣∣∣∣∣∣

ϕt(x)
6 Ce−at

∣∣∣∣∣∣X−u ∣∣∣∣∣∣
x

whereX+
v andX−u denote copies of the vectors v and u in the fibers π−1

+ (x) and π−1
− (x) respectively.

We summarize here some of the main properties of Anosov representations obtained by
Labourie [Lab06] and Guichard-Wienhard [GW12]. A represention ρ : Γ → G is called a quasi-
isometric embedding if there exist C,K > 0 such that

1
C
|γ|Γ −K 6

∣∣∣∣∣∣µ(ρ(γ))
∣∣∣∣∣∣ 6 C|γ|Γ +K

for every γ ∈ Γ.

Theorem 2.5.3. ([GW12], [Lab06]) Let Γ be a word hyperbolic group and θ ⊂ ∆ a subset of
simple restricted roots of G. Suppose that ρ : Γ→ G is a Pθ-Anosov representation. Then

(i) The kernel of ρ is finite and ρ(Γ) is a discrete subgroup of G.

(ii) There exist C, c > 0 such that
〈
α, µ(ρ(γ))

〉
> C|γ|Γ − c for every γ ∈ Γ and α ∈ θ. In

particular, ρ is a quasi-isometric embedding.

(iii) There exists a pair of compatible continuous ρ-equivariant maps

ξ+ : ∂∞Γ→ G/P+
θ and ξ− : ∂∞Γ→ G/P−θ

which are dynamics preserving and transverse. Moreover ξ±(∂∞Γ) identifies with the P±θ -proximal
limit set of ρ(Γ) is G/P±θ .

(iv) The set of Pθ-Anosov representations of Γ in G is an open subset of Hom(Γ, G) and the map
assigning a Pθ-Anosov representation to its Anosov limit maps is continuous.

Remark: Let G be a higher rank semisimple Lie group and θ ⊂ ∆ be a subset of simple restricted
roots of G. A quasi-isometric embedding ρ : Γ → G might fail to be Pθ-Anosov (see Example
3.10.1). Moreover, if G = SL(d,R), d ≥ 4, for every 1 ≤ i ≤ d

2 , ρ might even fail to be in the
closure of Pi-Anosov representations of Γ into G (see [Tso20c]).
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The following result is the content of [GW12, Proposition 4.3], [Gué+17, Propostion 3.6]
and [Gué+17, Lemma 3.7] and is used to reduce statements for Pθ-Anosov representations to
statements for P1-Anosov representations.

Proposition 2.5.4. ([Gué+17], [GW12]) Let G a real semisimple Lie group, θ ⊂ ∆ a subset of
simple restricted roots of G. There exists d = d(G, θ) and an irreducible θ-proximal representation
τ : G → GL(d,R) such that τ(P+

θ ) and τ(P−θ ) stabilize the line [e1] and the hyperplane e⊥1 =
〈e1, ..., ed−1〉 respectively, so there exist continuous and τ -equivariant embeddings

ι+ : G/P+
θ ↪−→ P(Rd) and ι− : G/P−θ ↪−→ Grd−1(Rd)

Let Rd = V χτ ⊕ V χ1 ⊕ ...⊕ V χk be a decomposition of Rd into weight spaces, where V χi :=
{
v ∈

Rd : dτ(H)v = χi(H)v ∀H ∈ a
}
and χi ∈ a∗. The following properties hold:

(i) A representation ρ : Γ → G is Pθ-Anosov if and only if τ ◦ ρ : Γ → GL(d,R) is P1-Anosov.
The pair of Anosov limit maps of τ ◦ ρ is (ι+ ◦ ξ+, ι− ◦ ξ−), where (ξ+, ξ−) is the pair of the limit
maps of ρ.

(ii) For each 1 6 i 6 k, χτ − χi =
∑
β∈Σ+

θ
nβ,iβ where nβ,i ∈ N and Σ+

θ := Σ+ − span(∆− θ).

(iii) For each α ∈ θ there exists 1 6 i 6 k such that χi = χτ − α.

(iv) min
α∈θ

〈
α, µ(g)

〉
= µ1(τ(g))− µ2(τ(g)) and min

α∈θ

〈
α, λ(g)

〉
= λ1(τ(g))− λ2(τ(g)) for every g ∈ G.

We need the following estimates which help us verify, in several cases, the Cartan property
(see Section 3.2) of limit maps into the homogeneous spaces G/P+

θ and G/P−θ . The second part
of the following proposition has been established in [BPS16, Lemma A4] and [Gué+17, Lemma
5.8], but for completeness we give a short proof.

Proposition 2.5.5. Let G be a real semisimple Lie group, θ ⊂ ∆ a subset of simple restricted roots
of G and τ : G→ GL(d,R) an irreducible, θ-proximal representation such that τ(P+

θ ) stabilizes the
line [e1] in Rd. Let χτ be the highest weight of τ and g, r ∈ G.

(i) If g is Pθ-proximal in G/P+
θ with attracting fixed point x+

g , then

dG/P+
θ

(
x+
g ,Ξ+

θ (g)
)
6 exp

(
−min

α∈θ

〈
α, µ(g)

〉
+
〈
χτ , µ(g)− λ(g)

〉)

(ii)
dG/P+

θ

(
Ξ+
θ (gr),Ξ+

θ (g)
)
6 Cd,r exp

(
−min

α∈θ

〈
α, µ(g)

〉)
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where Cd,r = σ1(τ(r))σ1(τ(r−1))
√
d− 1.

Proof. By the definition of the metric dG/P+
θ

and Proposition 2.5.4 we may assume that G =
SL(d,R), θ = {ε1 − ε2} and G/P+

θ = P(Rd).
(i) Since g is P1-proximal there exist h ∈ GL(d,R), Ag ∈ GL(d− 1,R) and kg, k′g ∈ O(d) such that

g = h

`′1(g) 0
0 Ag

h−1 = kg exp(µ(g))k′g and |`′1(g)| = `1(g).

We can write Ξ+
1 (g) = kgP

+
1 and x+

g = hP+
1 = w1P

+
1 for some w1 ∈ O(d). Note that

h

`′1(g) 0
0 Ag

h−1 = w1

`′1(g) ∗
0 ∗

w−1
1

hence k−1
g w1

`′1(g) ∗
0 ∗

 = exp(µ(g))k′gw1 and
∣∣∣〈k−1

g w1e1, ei
〉∣∣∣ = σi(g)

`1(g)

∣∣∣〈k′gw1e1, ei
〉∣∣∣ for 2 6 i 6 d.

Therefore,

dP(x+
g ,Ξ+

1 (g))2 = 1−
〈
k−1
g w1e1, e1

〉2
=

d∑
i=2

σi(g)2

`1(g)2

〈
k′gw1e1, ei

〉2
6
σ2(g)2

`1(g)2

(ii) We have kgr exp(µ(gr))k′gr = kg exp(µ(g))k′gr and in particular

〈
k−1
g kgre1, ei

〉
= σi(g)
σ1(gr)

〈
k′gr(k′gr)−1e1, ei

〉

for every 2 6 i 6 d. Note that since σ1(gr) > σ1(g)
σ1(r−1) and

∣∣∣〈k′gr(k′gr)−1e1, ei
〉∣∣∣ 6 σ1(r), we have

∣∣∣〈k−1
g kgre1, ei

〉∣∣∣ 6 σi(g)
σ1(g)σ1(r)σ1(r−1)

Finally,

dP
(
Ξ+

1 (gr),Ξ+
1 (g)

)2
=

d∑
i=2
〈k−1
g kgre1, ei〉2 =

d∑
i=2

σi(g)2

σ1(gr)2

〈
k′gr(k′gr)−1e1, ei

〉2
6 C2

d,r

σ2(g)2

σ1(g)2

�
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2.6 Semisimple representations.

Let Γ be a finitely generated group and ρ : Γ→ SL(d,R) be a representation. The representa-
tion ρ is called semisimple if the Zariski closure H := ρ(Γ)Zar of ρ(Γ) in SL(d,R) is a real reductive
Lie group. Equivalently ρ is semisimple if one of the following conditions are satisfied:

(i) If h := Lie(H) denotes the Lie algebra of H, [h, h] is a semisimple Lie algbera and h =
z(h)⊕ [h, h], where z(h) is the center of h.

(ii) There exists a decomposition Rd = V1 ⊕ · · · ⊕ Vk and irreducible representations ψi : H →
GL(Vi), i = 1, ..., k, such that the inclusion i : H ↪−→ SL(d,R) decomposes as the direct sum
i = ψ1 ⊕ · · · ⊕ ψk.

Let us fix an Euclidean norm || · || on the Cartan subspace a ⊂ g. The following result was
established by Benoist using a result of Abels-Margulis-Soifer [AMS95] and allows one to control
the Lyapunov projection of a semisimple representation in terms of its Cartan projection. We refer
to [Gué+17, Theorem 4.12] for a proof.

Theorem 2.6.1. ([Ben97]) Let G be a real reductive Lie group, Γ be a finitely generated group
and ρi : Γ → G, 1 6 i 6 s be semisimple representations. Then there exists C > 0 and a finite
subset F of Γ such that for every γ ∈ Γ there exists f ∈ F with the property:

max
16i6s

∣∣∣∣∣∣λ(ρi(γf))− µ(ρi(γ))
∣∣∣∣∣∣ 6 C

Let H be a real algebraic subgroup of GL(d,R). There exists a unique connected normal
unipotent subgroup of H, Ru(H), called the unipotent radical of H and a semisimple subgroup L
(isomorphic to the quotient H/Ru(H)) such that H = Ru(H)L.

Let ρ : Γ→ GL(d,R) be a representation. Guéritaud-Guichard-Kassel-Wienhard in [Gué+17]
observe that from ρ one may define the semisimplification ρss as follows: let H be the Zariski
closure of ρ(Γ), Ru(H) be the unipotent radical of H and fix L a semisimple Lie subgroup of h
with H = Ru(H)L. Let π : H → L be the projection onto L. The representation ρss := ρ ◦ π is
a semisimple representation into SL(d,R). We shall use several times the following result for the
semisimplification ρss established in [Gué+17].

Proposition 2.6.2. ([Gué+17, Proposition 1.8]) Let Γ be a finitely generated group, G a real
semisimple Lie group, θ ⊂ ∆ a subset of simple restricted roots of G and ρ : Γ → G a represen-
tation with semisimplification ρss : Γ → G. Then, λ(ρ(γ)) = λ(ρss(γ)) for every γ ∈ Γ and ρ is
Pθ-Anosov if and only if ρss is Pθ-Anosov.
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2.7 Convex cocompact groups

Let us recall that a subset Ω of the projective space P(Rd) is properly convex if it is contained
in an affine chart of P(Rd) in which Ω is bounded and convex. The domain Ω is called strictly
convex if it is properly convex and ∂Ω does not contain projective line segments. Suppose that Ω
is bounded and convex in some affine chart A. We fix an Euclidean metric dE on A. We denote
by dΩ the Hilbert metric on Ω defined as follows

dΩ(x, y) = 1
2 log dE(y, a) · dE(x, b)

dE(a, x) · dE(y, b)

where a, b are the intersection points of the projective line [x, y] with ∂Ω, x is between a and y,
and y is between x and b. The group

Aut(Ω) =
{
g ∈ PGL(d,R) : gΩ = Ω

}

is a Lie subgroup of PGL(d,R) and acts by isometries for the Hilbert metric dΩ. Any discrete
subgroup of Aut(Ω) acts properly discontinuously on Ω.

We shall use the following estimate obtained by Danciger-Guéritaud-Kassel in [DGK17] which
implies that convex cocompact subgroups ofG = PGL(d,R) are quasi-isometrically embedded in G.

Proposition 2.7.1. ([DGK17, Proposition 10.1]) Let Ω be a properly convex domain of P(Rd).
For any x0 ∈ Ω, there exists κ > 0 such that for any g ∈ Aut(Ω),

µ1(g)− µd(g) > 2dΩ(gx0, x0)− κ

Let Γ be a subgroup of PGL(d,R) preserving a properly convex domain Ω. Recall that the definition
of the Gromov product with respect to a linear form on a∗ was given in Definition 3.6.1. By using
the previous proposition we can control the Gromov product with respect to ε1 ∈ a∗ as follows:

Lemma 2.7.2. Let Γ be a subgroup of PGL(d,R) which preserves a properly convex domain Ω of
P(Rd). Suppose that the natural inclusion of Γ ↪−→ PGL(d,R) is semisimple. Then for every x0 ∈ Ω
there exists C > 0 such that

∣∣∣(µ1(γ)− µd(γ)
)
− 2dΩ(γx0, x0)

∣∣∣ 6 C and
∣∣∣(γ · δ)ε1 − (γx0 · δx0)x0

∣∣∣ 6 C

for every γ, δ ∈ Γ of infinite order.

36



Proof. By Theorem 2.6.1 there exists a finite subset F of Γ and M > 0 such that for every γ ∈ Γ
there exists f ∈ F such that λ1(γf)− λd(γf) > µ1(γ)− µd(γ)−M . The translation length of an
isometry g ∈ Aut(Ω) is exactly 1

2(λ1(g) − λd(g)), see [CLT15, Proposition 2.1]. In particular, if
γ ∈ Γ and f ∈ F are as previously we have that

2dΩ(γx0, x0) > 2dΩ(γfx0, x0)− 2 sup
f∈F

dΩ(fx0, x0)

> λ1(γf)− λd(γf)− 2 sup
f∈F

dΩ(fx0, x0)

> µ1(γf)− µd(γf)−M − 2 sup
f∈F

dΩ(fx0, x0)

> µ1(γ)− µd(γ)− (µ1(f)− µd(f))− 2 sup
f∈F

dΩ(fx0, x0)

Then, by Proposition 2.7.1, we obtain a uniform constant L > 0 such that

∣∣∣(µ1(γ)− µd(γ)
)
− 2dΩ(γx0, x0)

∣∣∣ 6 L

for every γ ∈ Γ. The conclusion follows.

Definitions 2.7.3. ([DGK17]) Let Γ be an infinite discrete subgroup of PGL(d,R) and suppose
that Γ preserves a properly convex domain Ω of P(Rd). Let ΛΩ(Γ) be the set of accumulation points
of all Γ-orbits in ∂Ω. The group Γ acts convex cocompactly on Ω if the convex hull of ΛΩ(Γ) in Ω
is non-empty and acted on cocompactly by Γ. The group Γ is called strongly convex cocompact in
P(Rd) if Γ acts convex cocompactly on some strictly convex domain Ω with C1-boundary.

The following lemma follows immediately from [DGK17, Theorem 1.4] and [Zim17, Theorem
1.27] and is used to replace an arbitrary P1-Anosov representation with a convex cocompact one.

Lemma 2.7.4. ([DGK17],[Zim17]) Let Vd be the vector space of d × d-symmetric matrices and
Sd : GL(d,R) → GL(Vd) be the representation defined as follows Sd(g)X = gXgt for X ∈ Vd.
For every P1-Anosov representation ρ : Γ→ GL(d,R), the representation Sd ◦ ρ is P1-Anosov and
Sd(ρ(Γ)) is a strongly convex cocompact subgroup of GL(Vd).

We will also need the following lemma which allows us to control the Cartan projection
of an Anosov representation ρ in terms of the Cartan projection of a semisimplification ρss of
ρ. This follows by the techniques of Guichard-Wienhard in §5 of [GW], showing that Anosov
representations have strong proximality properties. Given two representations ρ1 : Γ→ GL(n,R)
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and ρ2 : Γ → GL(m,R), we say that ρ1 uniformly dominates ρ2 is there exists δ > 0 with the
property

(1− δ)λ1(ρ1(γ)) > λ1(ρ2(γ))

for every γ ∈ Γ.

Lemma 2.7.5. Let Γ be a word hyperbolic group, G a real semisimple Lie group, θ ⊂ ∆ a
subset of simple restricted roots of G. Suppose ψ : Γ → G is a Pθ-Anosov representation with
semisimplification ψss : Γ→ G. Then there exists a constant C > 0 such that

∣∣∣〈ωα, µ(ψ(γ))− µ(ψss(γ))
〉∣∣∣ 6 C

for every γ ∈ Γ and α ∈ θ.

Proof. By Proposition 2.5.4, we may compose ψ with an irreducible representation τ : G →
GL(n,R) such that ρ := τ ◦ψ is P1-Anosov. We remark that ρss = τ ◦ψss. Note also µ1(Sn(ρ(γ))) =
2µ(ρ(γ)) for every γ ∈ Γ, where Sn is defined as in Lemma 2.7.4. Therefore, by Lemma 2.7.4, we
may further assume that ρ(Γ) preserves a properly convex domain Ω in P(Rn).

Note that if ρ is irreducible, then its Zariski closure is a reductive Lie group and the conclu-
sion is immediate. Therefore we continue by assuming that ρ is reducible. Notice that the dual
representation ρ∗(γ) = ρ(γ−1)t for γ ∈ Γ, also preserves a properly convex domain Ω′ of P(Rn).
Then, up to conjugating ρ and considering possibly the dual of this conjugate, we may assume
that ρ(Γ) still preserves a properly convex domain Ω0 of P(Rn) and there exists a decomposition
Rn = V1 ⊕ ...⊕ V` such that

ρ =


ρ1 ∗ ∗ ∗
0 ρ2 ∗ ∗

0 0 . . . ∗
0 0 0 ρ`

 and ρss =


ρ1 0 0 0
0 ρ2 0 0

0 0 . . . 0
0 0 0 ρ`



where ρi : Γ → GL(Vi) are irreducible representations, ρ1 is P1-Anosov and uniformly dominates
ρi for 2 6 i 6 `. In particular, ρ1 is the restriction of ρss on the vector subspace 〈ξρss

(
∂∞Γ

)
〉. We

conclude that for every γ ∈ Γ, µ1(ρ(γ)) ≥ µ1(ρss(γ)) so 〈ωα, µ(ψ(γ))〉 ≥ 〈ωα, µ(ψss(γ))〉.
Now we prove that there exists C > 0 such that 〈ωα, µ(ψ(γ)−µ(ψss(γ))〉 6 C for every γ ∈ Γ.
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By using induction, it is enough to consider the case when ` = 2 and

ρ(γ) =

ρ1(γ) u(γ)
0 ρ2(γ)

 , γ ∈ Γ

for some matrix valued function u : Γ → Hom(V2, V1). The group ρ1(Γ) preserves the properly
convex domain Ω0 ∩ P(V1) of P(V1). By [DGK17], [Zim17], there exists a closed ρ1(Γ)-invariant
properly convex domain Ω1 ⊂ P(V1) and a ρ1(Γ)-invariant closed convex subset C ⊂ Ω1 such
that ρ1(Γ)\C is compact. We fix a basepoint x0 ∈ C such that every point of C is within dΩ1-
distance M from the orbit ρ1(Γ) · x0. Let g ∈ Γ and consider x0, x1, ..., xk ∈ [x0, gx0] such that
1
2 6 dΩ(xi, xi+1) 6 1. For every i, there exists gi ∈ Γ such that dΩ(ρ1(gi)x0, x0) 6 M and let
hi = g−1

i gi+1, 0 6 i 6 k− 1, where g0 = e and gk = g. A straightforward computation shows that

u(g) = u(h0 · · · hk−1) =
k−1∑
i=1

ρ2(hi+1 · · · hk−1)t · ρ1(h0 · · · hi−1) · u(hi)

By Theorem 2.6.1, there exists a finite subset F of Γ and C1 > 0, such that for every γ ∈ Γ there
exists f ∈ F with

∣∣∣∣λ(ρi(γf)) − µ(ρi(γ))
∣∣∣∣ 6 C1 for i = 1, 2. Since ρ1 is semisimple, P1-Anosov

and uniformly dominates ρ2, we can find constants A,E, a, b, ε > 0 such that for every γ ∈ Γ we
have:

bσ1(ρ1(γ))1−ε > σ1(ρ2(γ)), σ1(ρ1(γ)) > AeadΩ1 (ρ1(γ)x0,x0)

and
∣∣∣(µ1(ρ1(γ))− µd1(ρ1(γ))

)
− 2dΩ1(γx0, x0)

∣∣∣ 6 E.

For 0 ≤ i ≤ k − 1 we set wi := h0 · · · hi. The triangle inequality shows |dΩ1(ρ1(wi)x0, x0) −
dΩ1(xi, x0)| 6M and |dΩ1(ρ1(wi)x0, gx0)−dΩ1(xi, ρ1(g)x0)| 6M . There exists R > 0 independent
of g, such that hi ∈ Γ lie in a metric ball of radius R > 0 of Γ and hence there exists CR > 0
independent of g such that:

||u(g)|| 6 CR

k−1∑
i=0

σ1
(
ρ2(hi+1 · · · hk)

)
· σ1

(
ρ1(h1 · · · hi)

)
6 bCR

k−1∑
i=0

σ1(ρ1(w−1
i g))σ1(ρ1(wi))

σ1(ρ1(w−1
i g))ε

= bCR

k−1∑
i=0

1
σ1(ρ1(g−1wi))σ1(ρ1(w−1

i ))
· σ1

σd1

(ρ1(w−1
i g)) · σ1

σd1

(ρ1(wi)) ·
1

σ1(ρ1(w−1
i g))ε

6 bCR

k−1∑
i=0

1
σ1(ρ1(g−1)) · e

2dΩ1 (ρ1(w−1
i g)x0,x0)+E · e2dΩ1 (ρ1(wi)x0,x0)+E ·

(
A−εe−aε|w

−1
i g|Γ)
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= bCRe
2E

σ1(ρ1(g−1))Aε
k−1∑
i=0

e2dΩ(ρ(wix0),ρ(g)x0)+2dΩ(ρ(xi)x0,x0)e−aεdΩ(ρ1(w−1
i g)x0,x0)

6
bCRe

2E+2M+2Maε

Aεσ1(ρ1(g−1)) e2dΩ1 (ρ1(g)x0,x0)
( k−1∑
i=0

e−εa(k−i)
)
6
bCRe

2E+2M+2Maε

Aε(1− e−aε) σ1(ρ1(g))

It follows that there exists L > 0 depending only on ρ such that σ1(ρss(g)) 6 σ1(ρ(g)) 6
Lσ1(ρss(g)) for every g ∈ Γ. In particular, for the highest weight χτ we obtain L′ > 0 such that

∣∣∣〈χτ , µ(ψ(g))− µ(ψss(g))
〉∣∣∣ 6 L′

for every g ∈ Γ. Since τ is θ-compatible the conclusion follows.
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CHAPTER III

Characterizations of Anosov Representations

In this chapter, we prove our main characterizations of Anosov representations and Benoist
representations in terms of the existence of equivariant limit maps, the Cartan property and the
existsence of a weak uniform gap in eigenvalues. As an application we obtain a characterization of
strongly convex cocompact subgroups of PGL(d,R). We also provide a computation of the Hölder
exponent of the Anosov limit maps of a semisimple Pθ-Anosov rperesentation in terms of the
Cartan and Lyapunov projection.

3.1 The contraction property

Let Γ be a word hyperbolic group,
(
Γ̂, ϕt

)
a flow space on which Γ acts properly discontinuously

and cocompactly and F ⊂ Γ̂ a compact fundamental domain for the action of Γ on Γ̂. Let also
ρ : Γ → GL(d,R) be a representation which admits a pair of transverse ρ-equivariant maps
ξ+ : ∂∞Γ→ P(Rd) and ξ− : ∂∞Γ→ Grd−1(Rd) defining the flat section σ : Γ\Γ̂→ Xρ of the fiber
bundle π : Xρ → Γ\Γ̂. We fix an equivariant family of norms

(
||·||x

)
x∈Γ\Γ̂ on the fibers of the bundle

π± : E±ρ → Γ\Γ̂. For a given point m̂ ∈ Γ̂ we fix an element h ∈ G so that ξ+(τ+(m̂)) = hP+
1 and

ξ−(τ−(m̂)) = hP−1 and denote by Lh : G→ G the left translation by h ∈ G. Then we have

ThP+
1
P(Rd) =

{
dLhdπ

+ (X) : X ∈
d⊕
i=2

REi1
}

ThP−1
Grd−1(Rd) =

{
dLhdπ

− (X) : X ∈
d⊕
i=2

RE1i
}

41



For u ∈ {0} × Rd−1, we denote by X+
u and X−u the tangent vectors

X+
u =

[
m̂, ξ+(τ+(m̂)), ξ−(τ−(m̂)), dLhdπ+

0 0
u 0

]
Γ

X−u =
[
m̂, ξ+(τ+(m̂)), ξ−(τ−(m̂)), dLhdπ−

0 u

0 0

]
Γ

in the fibers of the bundles σ∗E± → Γ\Γ̂ over x = [m̂]Γ and π+, π− are the projections from
SL(d,R) to P(Rd) and Grd−1(Rd) respectively.

The following lemma shows that when the geodesic flow on σ∗E− is weakly contracting, then
the geodesic flow on σ∗E+ is weakly dilating.

Lemma 3.1.1. Let ρ : Γ→ GL(d,R) be a representation. Suppose there exists a pair of continuous,
ρ-equivariant transvserse maps ξ+ : ∂∞Γ → P(Rd) and ξ− : ∂∞Γ → Grd−1(Rd). Then for any
x = [m̂]Γ ∈ Γ̂ and u ∈ {0} × Rd−1 we have:

lim
t→∞
||ϕt(X+

u )||ϕt(x) · ||ϕt
(
X−u

)
||ϕt(x) > 0

Proof. For two sequences of positive real numbers (an)n∈N, (bn)n∈N we write an � bn if there
exists R > 0 such that 1

Ran 6 bn 6 Ran for every n ∈ N. We may assume that ρ(Γ) is
contained in SL±(d,R), otherwise we replace ρ with ρ̂(γ) = |det(ρ(γ))|−1/dρ(γ), γ ∈ Γ. Let
(tn)n∈R be an increasing unbounded sequence. For each n ∈ N, we may choose γn ∈ Γ such
that γnϕtn(m̂) lies in the compact fundamental domain F . There exist k1n, k2n ∈ K so that

ρ(γn)h = k1n

λn ∗
0 An

 = k2n

sn 0
∗ Bn

. Notice that for g ∈ P±1 we have dLg◦dπ± = dπ±◦Ad(g).

Then, an elementary calculation shows that

dLρ(γn)hdπ
+

0 0
u 0

 = dLk1n

dπ+

Ad

λn ∗
0 An

0 0
u 0


= dLk1n

dπ+

 0 0
1
λn
Anu 0



and similarly

dLρ(γn)hdπ
−

0 u

0 0

 = dLk2n

dπ−
0 snB

−t
n u

0 0


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The continuity of the family of norms
(
|| · ||x

)
x∈Γ\Γ̂ and the fact that k1n, k2n lie in the compact

group K imply

∥∥ϕtn(X+
u

)∥∥
ϕtn (x) �

‖Anu‖
|λn|∥∥ϕtn(X−u )∥∥ϕtn (x) � |sn|
∥∥B−tn u

∥∥
where || · || denotes the usual Euclidean norm on Rd−1. Up to passing to a subsequence, we
may assume that limn γnϕtn(m̂) = m̂′. Since the maps τ± are continuous we conclude up to
subsequence that (γnτ+(m̂))n∈N and (γnτ−(m̂))n∈N converge to τ+(m̂′) and τ−(m̂′) respectively.
We have ξ+(τ+(γnm̂)) = k1nP

+
1 and ξ−(τ+(γnm̂)) = k2nP

−
1 and by transversality, there exist

pn ∈ P+
1 , qn ∈ P−1 and g ∈ G such that limn k1npn = limn k2nqn = g. Then there exist zn, z′n ∈ R

so that limn znk1ne1 = ge1 and limn z
′
nk2ne1 = g−te1 and we observe that |zn|, |z′n| converge

respectively to ||ge1|| and ||g−te1||. Notice that limn znz
′
n〈k1ne1, k2ne1〉 = |〈g−te1, ge1〉| = 1 and

so limn〈k1ne1, k2ne1〉 = 1
||ge1||·||g−te1|| . Recall that k

−1
2n k1n

λn ∗
0 An

 =

sn 0
∗ Bn

, hence by looking

at the (1, 1) entry of both sides we obtain
∣∣∣ snλn ∣∣∣ = |〈k1ne1, k2ne1〉| and so L := infn∈N

∣∣∣ snλn ∣∣∣ > 0.

Furthermore, we observe that

λn 0
∗ Atn

 kt1n =

sn ∗
0 Bt

n

 kt2n and hence

∗ ∗
∗ B−tn Atn

 = k−1
2n k1n

since k1nk
t
1n = k2nk

t
2n = Id. Up to extracting, we may assume that limnB

−t
n Atn = Q exists. Since

|λn|| det(An)| = |sn|| det(Bn)| we have |det (B−tn Atn)| =
∣∣∣ snλn ∣∣∣ > L > 0. In particular, Q is invertible

and there exists M > 0 with 1
M 6 max(||B−tn Atn||, ||A−tn Bt

n||) 6M for every n ∈ N. Therefore, for
every n ∈ N

‖Anu‖
|λn|

>
‖u‖2

|λn| ‖A−tn u‖
= ‖u‖2

|λn| ‖A−tn Bt
n(B−tn u)‖ >

‖u‖2

|λn| ||A−tn Bt
n|| · ‖B−tn u‖

>
L ‖u‖2

M |sn| ‖B−tn u‖

since ||Anu|| · ||A−tn u|| > ||u||2. Finally,

lim
n→∞

∥∥ϕtn(X+
u

)∥∥
ϕtn (x) ·

∥∥ϕtn(X−u )∥∥ϕtn (x) > 0

and since the sequence (tn)n∈N was arbitrary the conclusion follows.

Proposition 3.1.2. Let ρ : Γ→ GL(d,R) be a representation which admits a pair of continuous
ρ-equivariant transverse maps ξ+ : ∂∞Γ → P(Rd) and ξ− : ∂∞Γ → Grd−1(Rd). We fix x = [m̂]Γ,
u ∈ {0} × Rd−1 and suppose ξ+(τ+(m̂)) = hP+

1 and ξ−(τ−(m̂)) = hP−1 . Let (γn)n∈N be a sequence
of elements of Γ such that

(
γnϕtn(m̂)

)
n∈N lies in a compact subset of Γ̂. Then
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(i) lim
n→∞
||ϕtn

(
X+
u

)
||ϕtn (x) = +∞ if and only if

lim
n→∞

‖ρ(γn)hu‖
‖ρ(γn)he1‖

= +∞

(ii) lim
n→∞
||ϕtn

(
X−u

)
||ϕtn (x) = 0 if and only if

lim
n→∞

‖ρ∗(γn)h−tu‖
‖ρ∗(γn)h−te1‖

= 0

Proof. Suppose that ρ(γn)h = k1n

λn ∗
0 An

 = k2n

sn 0
∗ Bn

. Let (γrn)n∈N be a subsequence of

(γn)n∈N. A calculation shows that

‖Arnu‖
|λrn |

= ‖ρ(γrn)hu‖
‖ρ(γrn)he1‖

· sin]
(
ρ(γrn)he1, ρ(γrn)hu

)

where ξ+(x) = hP+
1 and hu ∈ ξ−(y). Up to subsequence, we may assume that limn γrnϕtrn (m̂)

exists and so limn γrnτ
+(m̂) 6= limn γrnτ

−(m̂). The maps ξ+ and ξ− are transverse, hence there
exists g ∈ G and pn ∈ P+

1 , qn ∈ P−1 such that limn ρ(γrn)hpn = limn ρ(γrn)hqn = g. Let v∞ ∈
e⊥1 be a limit point of the sequence

(
q−1
n u

||q−1
n u||

)
n∈N

. Then we have limn
1

||q−1
n u||ρ(γrn)hu = gv∞ and

hence limn sin]
(
ρ(γrn)he1, ρ(γrn)hu

)
= sin]

(
gv∞, ge1

)
> 0. Since we started with an arbitrary

subsequence, there exists ε > 0 with | sin]
(
ρ(γrn)he1, ρ(γrn)hu

)
| > ε for every n ∈ N. Therefore,

‖Anu‖
|λn| �

‖ρ(γn)hu‖
‖ρ(γn)he1‖ . By Proposition 3.1.1 we have that

||ϕtn(X+
u )||ϕtn (x) �

‖Anu‖
|λn|

and so part (i) follows. The argument for part (ii) is similar.

3.2 The Cartan property and the uniform gap summation prop-

erty

Let G be a linear, non-compact, semisimple Lie group with finitely many components, K a
maximal compact subgroup of G, a a Cartan subspace of g and consider the Cartan decomposition
G = K exp(a+)K with Cartan projection µ : G→ a+. Let Γ be an infinite, finitely generated group
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and ρ : Γ→ G be a representation. We say that ρ is Pθ-divergent if

lim
|γ|Γ→∞

〈α, µ(ρ(γ))〉 = +∞

for every α ∈ θ. Notice that the representation ρ is Pθ-divergent if and only if ρ is Pθ?-divergent.
Recall that for an element g = kg exp(µ(g))k′g written in the Cartan decomposition of G, we define

Ξ+
θ (g) = kgP

+
θ and Ξ−θ (g) = kgwP

−
θ

For an equivariant map ξ− : ∂∞Γ → G/P−θ , the map ξ∗ : ∂∞Γ → G/P+
θ∗ is defined as follows

ξ∗(x) = kxwP
+
θ∗ , where ξ−(x) = kxP

−
θ and kx ∈ K.

Definition 3.2.1. Let G be a real semisimple Lie group, Γ be a word hyperbolic group and suppose
that ρ : Γ→ G is a Pθ-divergent representation.

(1) Suppose that ρ admits a continuous ρ-equivariant map ξ+ : ∂∞Γ → G/P+
θ . The map ξ+

satisfies the Cartan property if for any x ∈ ∂∞Γ and every infinite sequence (γn)n∈N of elements
of Γ with limn γn = x we have

ξ+(x) = lim
n→∞

Ξ+
θ

(
ρ(γn)

)
(2) Suppose that ρ admits a continuous ρ-equivariant map ξ− : ∂∞Γ → G/P−θ . The map ξ−

satisfies the Cartan property if the map ξ∗ : ∂∞Γ→ G/P+
θ? satisfies the Cartan property. In other

words, for every x ∈ ∂∞Γ and every infinite sequence (γn)n∈N of elements of Γ with limn γn = x,
we have

ξ−(x) = lim
n→∞

Ξ−θ
(
ρ(γn)

)
Remark 3.2.2. Let ρ : Γ → G be a Pθ-divergent representation. The Cartan property for a
continuous ρ-equivariant map ξ+ : ∂∞Γ → G/P+

θ (resp. ξ−) is independent of the choice of the
Cartan decomposition of G. This follows by the fact that all Cartan subspaces of G are conjugate
under the adjoint action of G and the second part of [Gué+17, Corollary 5.9].

The following fact is immediate from the definition of the Cartan property:

Fact 3.2.3. Suppose that ρ,Γ, G and θ are defined as in Definition 3.2.1 and let ξ : ∂∞Γ→ G/P+
θ

be a continuous ρ-equivariant map. Suppose that τ : G → GL(d,R) is an irreducible θ-proximal
representation as in Proposition 2.5.4 so that τ(P+

θ ) stabilizes a line in Rd and induces a τ -
equivariant embedding ι+ : G/P+

θ ↪−→ P(Rd). The map ξ satisfies the Cartan property if and only
if ι+ ◦ ξ satisfies the Cartan property.
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Let M be a compact metrizable space and Γ a group acting on M by homeomorphisms. The
action is called a convergence group action if for any infinite sequence (γn)n∈N of elements of Γ
there exists a subsequence (γkn)n∈N and a, b ∈M such that for every compact subset C ⊂M−{a},
γkn |C converges uniformly to the constant map b. For an infinite order element γ ∈ Γ, we denote
by γ± the local uniform limit of the sequence (γ±n)n∈N. Examples of convergence group actions
include:
(i) the action of a non-elementary word hyperbolic group on its Gromov boundary (see [Gro87]).
(ii) the action of a finitely generated group Γ on its Floyd boundary ∂fΓ (see [Gro96, §8] and
[Kar03, Theorem 2]).

We prove a version of [CT20, Lemma 9.2] which shows, in many cases, that a representation
ρ is Pθ-divergent when it admits a continuous ρ-equivariant limit map.

Lemma 3.2.4. Let M be a compact metrizable perfect space and let Γ be a torsion free group
acting on M by homeomorphisms and ρ : Γ → GL(d,R) be a representation. Suppose that Γ
acts on M as a convergence group and there exists a continuous ρ-equivariant non-constant map
ξ : M → P(Rd). Then for every infinite sequence (γn)n∈N of elements of Γ we have

lim
n→∞

µ1(ρ(γn))− µd−p+2(ρ(γn)) = +∞

where p = dimR 〈ξ (M)〉.

Proof. We first prove the statement when p = d. If the result does not hold, then there exists
ε > 0 and a subsequence which we continue to denote by (γn)n∈N such that σ2(ρ(γn))

σ1(ρ(γn)) > ε. We may
write ρ(γn) = kn exp(µ(ρ(γn))k′n, where kn, k′n ∈ O(d). Up to subsequence, there exist η, η′ ∈ M
such that if x 6= η′ then limn γnx = η and hence limn ρ(γn)ξ(x) = ξ(η). We may also assume that
the sequences (kn)n∈N, (k′n)n∈N converge to k, k′ ∈ O(d) respectively and σ2(ρ(γn))

σ1(ρ(γn)) converges to
some C > 0. Let x 6= η and write ξ(x) = kxP

+
1 for some kx ∈ O(d). Since limn ρ(γn)ξ(x) = ξ(η),

up to passing to a subsequence, we may assume that

lim
n→∞

exp
(
µ(ρ(γn))

)
k′nkxe1

|| exp
(
µ(ρ(γn))

)
k′nkxe1||

= ε · k−1kηe1

where ξ(η) = kηP
+
1 and ε ∈ {−1, 1}. We conclude that for every x ∈ X, there exits λx ∈ R such

that
〈
k′kxe1, e1

〉
= λx

〈
k−1kηe1, e1

〉
and

〈
k′kxe1, e2

〉
= λx

C

〈
k−1kηe1, e2

〉
. Since 〈ξ (M \ {η′})〉 = Rd

and M is perfect, there exists x0 6= η′ such that λx0 6= 0. Then for every x 6= η′ we observe that

〈
k′kxe1, e1

〉
= λx
λx0

〈
kkx0e1, e1

〉
and

〈
k′kxe1, e2

〉
= λx
λx0

〈
kkx0e1, e2

〉
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Therefore, for every x 6= η′, kξ(x) lies in the subspace V = 〈kkx0e1〉 + e⊥1 ∩ e⊥2 , a contradiction
since dim(V ) 6 d− 1.

In the case where p < d, we consider the subspace V = 〈ξ(M)〉 and the restriction ρ̂ : Γ →
GL(V ) of ρ. The map ξ is ρ̂-equivariant and a spanning map for ρ̂. The conclusion follows by
observing that for any γ ∈ Γ we have σ1(ρ̂(γ))

σ2(ρ̂(γ)) 6
σ1(ρ(γ))

σd−p+2(ρ(γ)) .

Corollary 3.2.5. Let Γ be a word hyperbolic group, G a real semisimple Lie group and θ ⊂ ∆ a
subset of simple restricted roots of G.

(i) Suppose that ρ : Γ → SL(d,R) is an irreducible representation which admits a continuous
ρ-equivariant map ξ : ∂∞Γ→ P(Rd). Then ρ is P1-divergent and ξ satisfies the Cartan property.

(ii) Suppose that ρ′ : Γ → G is a Zariski dense representation which admits a continuous ρ′-
equivariant map ξ′ : ∂∞Γ→ G/P+

θ . Then ρ′ is Pθ-divergent and ξ′ satisfies the Cartan property.

Proof. (i) We first claim that if ρ(γ) is P1-proximal, then ξ(γ+) is the attracting fixed point in
P(Rd). Indeed, since ρ is irreducible we have 〈ξ(∂∞Γ)〉 = Rd. If ρ(γ) is P1-proximal, we can find
x ∈ ∂∞Γ − {γ−} such that ξ(x) is not in the repelling hyperplane V −γ . Since limn γ

nx = γ+, we
have ξ(γ+) = x+

ρ(γ).
Since ρ is irreducible it follows by Lemma 3.2.4 that ρ is P1-divergent. Let (γn)n∈N be an infinite

sequence of elements of Γ such that limn γn = x. By the sub-additivity of the Cartan projection
µ (see [Gué+17, Fact 2.18]) and Theorem 2.6.1, there exists a finite subset F and C > 0 such
that for every γ ∈ Γ, there exists f ∈ F with ||λ(ρ(γf)) − µ(ρ(γf))|| 6 C. Then, for large
n ∈ N there exist fn ∈ F such that ρ(γnfn) is P1-proximal and λ1(ρ(γnfn))− µ1(ρ(γnfn)) > −C.
Notice also limn γn = limn γnfn = limn(γnfn)+ = x in the compactification Γ ∪ ∂∞Γ and so
limn x

+
ρ(γnfn) = limn ξ((γnfn)+) = ξ(x). Then, by using Proposition 2.5.5, for every n ∈ N we

obtain the estimate:

dP
(
x+
ρ(γnfn),Ξ

+
1
(
ρ(γn)

))
6 dP

(
x+
ρ(γnfn),Ξ

+
1
(
ρ(γnfn)

))
+ dP

(
Ξ+

1
(
ρ(γnfn)

)
,Ξ+

1
(
ρ(γn)

))
6
(
eC + sup

f∈F
Cd,f

)σ2(ρ(γn))
σ1(ρ(γn))

where Cd,f > 0 is defined as in Proposition 2.5.5 (ii). This shows ξ(x) = limn Ξ+
1
(
ρ(γn)

)
and finally

that ξ satisfies the Cartan property.

(ii) Let τ be as in Proposition 2.5.4. Since ρ′ is Zariski dense the representation τ ◦ρ′ is irreducible.
By Lemma 3.2.4 the representation τ ◦ ρ′ is P1-divergent and hence ρ′ is Pθ-divergent. By part
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(i), the τ ◦ ρ′-equivariant map ι+ ◦ ξ′ satisfies the Cartan property. It follows by Fact 3.2.3 that ξ′

satisfies the Cartan property.

3.2.1 The uniform gap summation property

We are now aiming to generalize the uniform gap summation property (see [Gué+17, Definition
5.2]) for representations of arbitrary finitely generated groups.

Definition 3.2.6. Let Γ be a finitely generated group, ρ : Γ→ G be a representation and θ ⊂ ∆ a
finite subset of restricted roots of G. We say that ρ satisfies the uniform gap summation property
with respect to θ and the Floyd function f : N→ R+ if there exists C > 0 such that

〈
α, µ(ρ(γ))

〉
> − log

(
f(|γ|Γ)

)
− C

for every γ ∈ Γ and α ∈ θ.
We say that the representation ρ satisfies the uniform gap summation property if there exists

a Floyd function f , a subset of simple roots θ ⊂ ∆ and C > 0 with the previous properties.

Let ρ : Γ→ G be a representation. In [Gué+17, Theorem 5.3 (3)] it is proved that if Γ is word
hyperbolic group and ρ satisfies the uniform gap summation property, then it admits a pair of ρ-
equivariant, continuous limit maps which satisfy the Cartan property. If Γ is not word hyperbolic,
we may obtain a pair of ρ-equivariant maps from a Floyd boundary ∂fΓ of Γ into the flag spaces
G/P+

θ and G/P−θ . Note that when ∂fΓ is non-trivial, the action of Γ on ∂fΓ is a convergence
group action (see [Kar03, Theorem 2]) so we obtain additional information for the action of ρ(Γ)
on its limit set in G/P±θ .

Lemma 3.2.7. Let Γ be a finitely generated group, G a real semsimiple Lie group, θ ⊂ ∆ a
subset of simple restricted roots of G and ρ : Γ → G a representation. Suppose that ρ satisfies
the uniform gap summation property with respect to θ and the Floyd function f : N→ R+. Then,
there exists a constant C > 0 with

dG/P±
θ

(
Ξ±θ
(
ρ(g)

)
,Ξ±θ

(
ρ(h)

))
6 C · df (g, h)

for all but finitely many g, h ∈ Γ. In particular, there exists a pair of continuous ρ-equivariant
maps

ξ+
f : ∂fΓ→ G/P+

θ and ξ−f : ∂fΓ→ G/P−θ .
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Moreover, if ρ(Γ) contains a Pθ-proximal element, then ξ+
f (∂fΓ) maps onto the Pθ-proximal limit

set of ρ(Γ) in G/P+
θ .

Proof. As in the proof of Proposition 2.5.4, we may assume that θ = {ε1 − ε2} and G = SL(d,R)
and G/P+

θ = P(Rd). Let S be a fixed generating set of Γ defining a left invariant metric |·|Γ. There
exists a constant K > 0 such that σ2(ρ(γ)

σ1(ρ(γ)) 6 Kf(|γ|Γ) for all γ ∈ Γ. Let p be a path in the Cayley
graph of Γ defined by the sequence of adjacent vertices g0 = g, ..., h = gn with Lf (p) = df (g, h).
Then, by using Proposition 2.5.5, we may find C ′ > 0 depending only on S and ρ such that:

dP
(
Ξ+

1
(
ρ(g)

)
,Ξ+

1
(
ρ(h)

))
6

n−1∑
i=0

dP
(
Ξ+

1
(
ρ(gi)

)
,Ξ+

1
(
ρ(gi+1)

))

6 C ′
n−1∑
i=0

σ2(ρ(gi))
σ1(ρ(gi))

6 C ′K
n−1∑
i=0

f(|gi|Γ) = C ′Kdf (g, h)

Now define the map ξ+
f : ∂fΓ→ P(Rd) as follows: for a point x ∈ ∂fΓ represented by a Cauchy

sequence (γn)n∈N (with respect to df ), then

ξ+
f (x) = lim

n→∞
Ξ+

1
(
ρ(γn)

)

The previous inequality shows that the limit limn Ξ+
1
(
ρ(γn)

)
is independent of the choice of the

sequence (γn)n∈N representing x, since for any other sequence (γ′n)n∈N with x = limn γ
′
n, we have

limn df (γn, γ′n) = 0. Finally, ξ+
f is well defined and Lipshitz and hence continuous. By identifying

G/P−θ with G/P+
θ? , we similarly obtain the limit map ξ−f .

Suppose that ρ(Γ) is P1-proximal. By the definition of the map ξ+
f , if ρ(γ0) is P1-proximal,

then ξ+
f (γ+

0 ) is the unique attracting fixed point of ρ(γ0) in P(Rd). Since Γ acts minimally on ∂fΓ
we have ξ+

f (∂fΓ) = ΛΓ.

We remark that in the case where Γ is a geometrically finite Kleinian subgroup of SO(3, 1),
the natural inclusion Γ ↪−→ SL(4,R) satisfies the uniform gap summation property (see [Flo80]).

3.3 Proof of Theorem 1.4.1 and 1.4.4

This section is devoted to the proof of Theorems 1.4.1 and 1.4.4. Note that in the statement
of Theorem 1.4.1 we do not assume that the group ρ(Γ) contains a Pθ-proximal element, the pair
of limit maps (ξ+, ξ−) is compatible or the map ξ− satisfies the Cartan property.

Theorem 1.4.1. Let Γ be a word hyperbolic group, G a real semisimple Lie group, θ ⊂ ∆ a subset
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of simple restricted roots of G and ρ : Γ → G a representation. Then ρ is Pθ-Anosov if and only
if the following conditions hold:

(i) ρ is Pθ-divergent.

(ii) There exists a pair of continuous, ρ-equivariant transverse maps

ξ+ : ∂∞Γ→ G/P+
θ and ξ− : ∂∞Γ→ G/P−θ

and the map ξ+ satisfies the Cartan property.

Proof. If ρ is Pθ-Anosov, the Anosov limit maps of ρ are transverse and dynamics preserving and
ρ is Pθ-divergent by Theorem 2.5.3 (ii). Also, the fact that the Anosov limit maps satisfy the
Cartan property is contained in [Gué+17, Theorem 1.3 (4) & 5.3 (4)].

Now we assume that ρ satisfies (i) and (ii). We first reduce to the case where Γ is torsion
free. Since ρ is Pθ-divergent, every element of the kernel ker(ρ) has finite order, hence ker(ρ) is
finite. The quotient group H = Γ/ker(ρ) is quasi-isometric to Γ and by Selberg’s lemma [Sel62]
H contains a torsion free and finite-index subgroup H1. It is enough to prove that the induced
representation ρ̂ : H1 → G is Pθ-Anosov. Notice that ρ̂ satisfies the same assumptions as ρ and
the source group is torsion free.

By Proposition 2.5.4, we may assume that G = SL(d,R), θ =
{
ε1− ε2

}
, P+

θ = Stab(Re1) and
P−θ = Stab(e⊥1 ). We consider the section σ : Γ\Γ̂ → Xρ, σ([m̂]Γ) =

[
m̂, ξ+(τ+(m̂)), ξ−(τ−(m̂))

]
Γ

inducing the splitting σ∗E = σ∗E+ ⊕ σ∗E−. Then we fix x = [m̂]Γ and choose an element h ∈ G so
that ξ+(τ+(m̂)) = hP+

1 and ξ−(τ−(m̂)) = hP−1 . Let (tn)n∈N be an increasing unbounded sequence.
We consider a sequence (γn)n∈N of elements of Γ such that (γnϕtn(m̂))n∈N lies in a compact
subset of Γ̂. We observe that limn γ

−1
n = τ+(m̂) in the bordification Γ ∪ ∂∞Γ. We write ρ(γ−1

n ) =
(k′n)−1w exp(µ(ρ(γ−1

n ))wk−1
n in the Cartan decomposition of G, where w =

∑d
i=1 Ei(d+1−i) ∈

O(d). Since ξ+ is assumed to satisfy the Cartan property and (γn)n∈N is Pθ-divergent, up to
subsequence, we may assume that limn Ξ+

1
(
ρ(γ−1

n )
)

= limn(k′n)−1wP+
θ = hP+

θ . Equivalently, if

k′ = limn k
′
n then k′h = w

s ∗
0 B

 for some B ∈ GL(d − 1,R). Fix u ∈ {0} × Rd−1. Then, since

k′(k′)t = Id, we observe that k′h−tu = wd−1B
−tu + 0ed and k′h−te1 = 1

sed +
∑d−1
i=1 ζiei for some

s 6= 0, ζ1, ..., ζd−1 ∈ R and wd−1 ∈ O(d − 1) is a permutation matrix with wd−1e1 = ed−1 and
wd−1ed−1 = e1. Equivalently, we write:

k′nh
−tu =

d∑
i=1

χi,nei and k′nh
−te1 =

d∑
i=1

ζi,nei
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we have that limn χd,n = 0 and limn ζd,n = 1
s . A computation shows that

‖ρ∗(γn)h−tu‖2

‖ρ∗(γn)h−te1‖2
=
∑d
i=1 χ

2
i,ne
−2µi(ρ(γn))∑d

i=1 ζ
2
i,ne
−2µi(ρ(γn))

=
χ2

1,ne
−2µ1(ρ(γn))+2µd(ρ(γn)) +

∑d−1
i=2 χ

2
i,ne
−2µ1(ρ(γn))+2µd(ρ(γn)) + χ2

d,n∑d−1
i=1 ζ

2
i,ne
−2µ1(ρ(γn))+2µd(ρ(γn)) + ζ2

d,n

and we deduce limn
||ρ(γn)∗h−tu||
||ρ(γn)∗h−te1|| = 0. By Proposition 3.1.2 (ii) we obtain

lim
n→∞

||ϕtn(X−u )||ϕtn (x) = 0

The sequence we started with was arbitrary, therefore the geodesic flow on σ∗E− is weakly con-
tracting. By Lemma 3.1.1 we conclude that the flow on σ∗E+ is weakly dilating. The compactness
of Γ\Γ̂ implies that the geodesic flow on σ∗E+ (resp. σ∗E−) is uniformly dilating (resp. contract-
ing). Finally, ρ is Pθ-Anosov with Anosov limit maps ξ+ and ξ−.

Proof of Corollary 1.4.2. Assume that conditions (i) and (ii) hold. Let τ : G → GL(d,R) be
an irreducible and θ-proximal representation as in Proposition 2.5.4. It is enough to prove that
ρ′ = τ ◦ρ is P1-Anosov. By using [Gué+17, Theorem 5.3 (1)] (see also Lemma 3.2.7), there exists a
pair of continuous, ρ′-equivariant maps ξ+ : ∂∞Γ→ P(Rd) and ξ− : ∂∞Γ→ Grd−1(Rd) satisfying
the Cartan property. Let x, y ∈ ∂∞Γ be two distinct points and (γn)n∈N a sequence of elements
of Γ with x = limn γn and y = limn γ

−1
n . The second condition, shows that supn〈ε1, 2µ(ρ′(γn))−

µ(ρ′(γ2
n))〉 < +∞. By Proposition 3.6.2 we have that dist(ξ+(x), ξ−(y)) · dist(ξ+(y), ξ−(y)) > 0

so the pair (ξ+(x), ξ−(y)) is transverse. The maps ξ+ and ξ− are transverse, ρ′ is P1-divergent by
(i), so by Theorem 1.4.1 ρ′ is P1-Anosov.

Conversely, part (i) follows by Theorem 2.5.3 (ii). By Proposition 1.4.9 (i) we can find A, b > 0
such that for every α ∈ θ and γ ∈ Γ,

〈
ωα, 2µ

(
ρ(γ)

)
+ 2µ

(
ρ(γ−1)

)
−µ

(
ρ(γ2)

)
−µ

(
ρ(γ−2)

)〉
6 A(γ ·

γ−1)e + b. There exists N ≥ 1 such that Nωα is the highest weight χτα of an irreducible proximal
representation τα of G (see for example [Gué+17, Lemma 3.2]). In particular, N〈ωα, µ(h)〉 =
〈ε1, µ(τα(h))〉 for every h ∈ G. Therefore,

〈
ωα, 2µ(g)− µ(g2)

〉
> 0 for every g ∈ G. Now part (ii)

follows.

Let Γ be a word hyperbolic group and H be a subgroup of Γ. The group H is quasiconvex in
Γ if and only if H is finitely generated and quasi-isometrically embedded in Γ. In this case, there
exists a continuous injective H-equivariant map ιH : ∂∞H ↪−→ ∂∞Γ called the Cannon-Thurston
map extending the inclusion H ↪−→ Γ.
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Theorem 1.4.4. Let Γ be a word hyperbolic group, H a quasiconvex subgroup of Γ, G a semisimple
Lie group, θ ⊂ ∆ a subset of simple restricted roots of G and ρ : Γ→ G a Zariski dense representa-
tion. Suppose that ρ admits continuous ρ-equivariant maps ξ+ : ∂∞Γ→ G/P+

θ and ξ− : ∂∞Γ→ G/P−θ .
Then ρ|H is Pθ-Anosov if and only if the maps ξ+ ◦ ιH and ξ− ◦ ιH are transverse.

Proof of Theorem 1.4.4. Corollary 3.2.5 shows that the representation ρ is Pθ-divergent and ξ+

satisfies the Cartan property. Since ιH is anH-equivariant embedding, the map ξ+◦ιH also satisfies
the Cartan property. Theorem 1.4.1 then implies that the representation ρ|H is Pθ-Anosov.

We observe (see Example 3.10.4) that there exists a closed hyperbolic surface S and a Zariski
dense representation ρ1 : π1(S)→ PSL(4,R) which is not P1-Anosov and admits a pair of contin-
uous ρ1-equivariant maps (ξ+, ξ−). The representation ρ1 is P1-divergent and ρ1(γ) is P1-proximal
for every γ ∈ π1(S) non-trivial. However, for every finitely generated free subgroup F of π1(S),
the maps ξ+ ◦ ιF and ξ− ◦ ιF are transverse and ρ1|F is P1-Anosov.

3.4 Proof of Theorem 1.4.7

In this section, we prove Theorem 1.4.7 which was established by Richard Canary and the
author in [CT20]. Let us first recall that a representation ρ : Γ→ SL(d,R), d ≥ 3 of a torsion-free
group Γ is a Benoist representation if and only if ρ(Γ) is a discrete subgroup of SL(d,R) which
acts properly discontinuosuly and cocompactly on a strictly convex domain Ω of P(Rd).

Theorem 1.4.7 ([CT20, Theorem 1.5 & 1.7]). Let Γ be a torsion free word hyperbolic group of
cohomological dimension at least d− 1 ≥ 3 and suppose that ρ : Γ→ SL(d,R) is a representation.
The following conditions are equivalent:

(i) ρ is a Benoist representation.

(ii) ρ is P1-Anosov.

(iii) There exists a non-constant continuous ρ-equivariant map ξ : ∂∞Γ→ P(Rd).

Since Benoist representations into SL(d,R) are P1-Anosov, the implications (i)⇒ (ii)⇒ (iii)
follow. Therefore, it is enough to establish the implication (iii)⇒ (i).

First, we prove:

Proposition 3.4.1. ([CT20, Proposition 9.3]) Suppose that Γ is a torsion-free hyperbolic group
of cohomological dimension m ≥ d− 1 which does not admit a cyclic splitting. If ρ : Γ→ SL(d,R)
is irreducible and there exists a ρ-equivariant continuous map ξ : ∂∞Γ→ P(Rd), then m = d− 1
and ρ is a Benoist representation.

52



Proof. Since ρ is irreducible we have 〈ξ(∂∞Γ)〉 = Rd. By Lemma 3.2.4, ρ is P1-divergent. Since
ρ is irreducible, by Theorem 2.6.1, we may choose γ0 ∈ Γ so that ρ(γ0) is biproximal. We may
assume that the attracting eigenlines of ρ(γ0) and ρ(γ−1

0 ) are 〈e1〉 and 〈ed〉 respectively and the
corresponding attracting hyperplanes are e⊥d and e⊥1 . In particular, since Γ acts as a convergence
group on ∂∞Γ and 〈ξ(∂∞Γ)〉 = Rd, we deduce that ξ(γ+

0 ) = [e1] and ξ(γ−0 ) = [ed]. Suppose that
x ∈ ∂∞Γ − {γ+

0 , γ
−
0 }. Since limn γ

n
0 x = γ+

0 and limn γ
−n
0 x = γ−0 , ξ(x) cannot lie in either P(e⊥1 )

or P(e⊥d ). Since the group Γ does not split over a cyclic subgroup, the set ∂Γ− {γ±0 } is connected
(see Bowditch [Bow98, Theorem 6.2]), so we may assume that ξ(∂∞Γ − {γ±0 }) is contained in
the connected component {[1 : x2 : ... : xd :] : xd > 0} of P(Rd) − P(e⊥1 ) ∪ P(e⊥d ). It follows
that ξ(∂∞Γ) lies in the affine chart P(Rd) − P(V ) where V = {(x1, ..., xd) ∈ Rn+1 : x1 = −xd}.
By [CT20, Proposition 2.8] ρ(Γ) preserves a properly convex domain Ω in P(Rd). Since ρ(Γ) is
P1-divergent, it is discrete and faithful, so it must acts properly discontinuously on Ω (see [Ben05,
Fact 2.10]). Since ρ(Γ) has cohomological dimension m ≥ d − 1, it must have compact quotient.
Hence, by Benoist [Ben04, Theorem 1.1], Ω is strictly convex, so ρ is a Benoist representation and
m = d− 1.

In order to complete the proof of Theorem 1.4.7 we need to reject the cases where ρ is reducible
or Γ admits a non-trivial cyclic splitting.

Proposition 3.4.2. Let Γ be a word hyperbolic group and ρ : Γ→ GL(d,R) be a representation.
If there exists a continuous ρ-equivariant non-constant map ξ : ∂∞Γ → P(Rd), then ρ is discrete
and ker(ρ) is finite.

Proof. Assume that there exists an infinite sequence (γn)n∈N of distinct elements of Γ with
limn ρ(γn) = Id. The group Γ acts on ∂∞Γ as a convergence group, hence up to subsequence,
there exists η, η′ ∈ ∂∞Γ with limn γnx = η for x 6= η′ and ξ(x) = ξ(η) for x 6= η′. Since ∂∞Γ is
perfect, ξ has to be constant, a contradiction.

We also need the following lemma which asserts that for a non-elementary hyperbolic group
Γ and a linear representation ρ : Γ → SL(d,R), a continuous, spanning ρ-equivariant limit map
ξ : ∂∞Γ→ P(Rd) is non-constant when restricted on the Gromov boundary ∂∞Γ0 of a quasiconvex
non-cyclic subgroup Γ0 of Γ.

Lemma 3.4.3. ([CT20, Lemma 9.5]) Suppose that Γ is a torsion-free hyperbolic group and Γ0 is
a non-abelian quasiconvex subgroup of Γ. If ρ : Γ → SL(d,R) admits a continuous ρ-equivariant
map ξ : ∂∞Γ→ P(Rd) so that ξ(∂Γ) spans Rd, then the restriction of ξ to ∂∞Γ0 is non-constant.
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Proof. Proposition 3.4.2 implies that ρ is discrete and faithful. Suppose that ξ is constant on
∂∞Γ0. By conjugating, we may assume ξ(∂∞Γ0) = {[e1]}. Then ρ|Γ0 has the form

ρ(γ) =

ε(γ) u(γ)
0 |ε(γ)|−

1
d−1 ρ0(γ)



for some homomorphism ε : Γ→ R∗ and some representation ρ0 : Γ0 → SL(d− 1,R). Notice that
the representation of ρ̂ : Γ0 → SL(d,R) given by

ρ̂(γ) =

ε(γ) 0
0 |ε(γ)|−

1
d−1 ρ0(γ)



is the limit of the discrete faithful representations {Q−1
n ◦ρ|Γ0 ◦Qn}, where Qn is a diagonal matrix

with a11 = n and all other diagonal entries equal to 1, so ρ̂ is discrete and faithful (see Kapovich
[KK01, Theorem 8.4]). We next show that if γ ∈ Γ0 and ε(γ) = 1, then λi(ρ̂(γ)) = 1 for all i.
Suppose that there exists γ ∈ Γ0 which has an eigenvalue of modulus strictly greater than 1. We
may consider the Jordan normal formal for ρ0(γ), regarded as a matrix in SL(d− 1,C), i.e.

ρ0(γ) = P


Jq1,k1

. . .

Jqr,kr

P−1

where P ∈ SL(d−1,C) and Jq,k is the k-dimensional Jordan block with the value q ∈ C along the
diagonal. We may assume that |q1| > · · · > |qr| and that if |qi| = |qi+1|, then ki ≥ ki+1. Notice
that, if n is sufficiently large, the co-efficient of Jnq,k with largest modulus has modulus exactly( n
k−1
)
|q|n−k+1 It follows that there exists C > 1 so that

1
C
nk1−1|q1|n−k1+1 ≤ ‖ρ0(γn)‖ ≤ Cnk1−1|q1|n−k1+1

for all n ∈ N. Therefore,
{(
nk1−1|q1|n−k1+1)−1

ρ0(γn)
}
n∈N

has a subsequence which converges to a
non-zero matrix A∞ ∈ GL(d− 1,R). Now let us choose w = x1e1 + v, where v ∈ Rd−1− ker(A∞).
Note that we can write:

ρ(γn) =

1 un

0 ρ0(γn)

 , un =
n∑
i=0

ρ0(γi)tu(γ)
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ρ(γn)w = xne1 + ρ0(γn)v, xn := x1 +
n∑
i=0

〈
ρ0(γi)v, u(γ0)

〉
and observe that

|xn| ≤ |x1|+
n∑
i=0
||ρ0(γi)|| · ||u(γ0)|| · ||v|| ≤ C1

n∑
i=0

ik1−1|q1|i ≤ C2n
k1−1|q1|n

for some constants C1, C2 > 0 independent of n. Up to passing to a sub-sequence, we deduce that

lim
n→∞

1
nk1−1|q1|n−k1+1 ρ(γn)w =

(
lim
n→∞

xn
nk1−1|q1|k1−1

)
e1 + A∞v

We conclude that {[ρ(γ)n(w)]} does not converge to [e1]. Since ξ(∂∞Γ) spans Rd and ker(A∞) is
a proper subspace of Rd, there exists x ∈ ∂∞Γ − ∂∞Γ0 so that ξ(x) /∈ P

(
R × ker(A∞)

)
. Since ξ

is ρ-equivariant, {ρ(γ)n(ξ(x))}n∈N must converge to ξ(γ+) = [e1], which contradicts the previous
calculation. Therefore, it follows that for every γ ∈ Γ0 with ε(γ0) = 1, all of the eigenvalues of the
matrix ρ̂(γ) have modulus 1.

Notice that if N is the commutator subgroup of Γ0, then ε(N) = {1}. Since Γ0 is a non-
abelian torsion-free hyperbolic group, N contains a free subgroup ∆ of rank 2. Let ψ = ρ̂|ss∆ be a
semisimplification of ρ̂|∆. Since ψ is a limit of conjugates of ρ̂|∆ and ρ̂|∆ is discrete and faithful,
ψ is also discrete and faithful [KK01, Theorem 8.4]. Since λi(ψ(γ)) = λi(ρ̂(γ)) = 0 for all γ ∈ ∆
and all i, Theorem 2.6.1 guarantees that there exists M so that

∣∣µi(ψ(γ))
∣∣ ≤ M for all γ ∈ ∆

and all 1 ≤ i ≤ d. Therefore, ψ(∆) is bounded which contradicts the fact that ψ is discrete and
faithful and that ∆ is infinite.

Moreover, we need the following proposition showing that when Γ does not split over a cyclic
subgroup and has large cohomological dimension, a representation of Γ which admits a spanning
limit map has to be irreducible:

Proposition 3.4.4. ([CT20, Proposition 9.4]) Suppose that Γ is a torsion-free hyperbolic group of
cohomological dimension d− 1 ≥ 3 which does not admit a cyclic splitting. If ρ : Γ→ SL(d,R) is
a representation and there exists a ρ-equivariant continuous non-constant map ξ : ∂∞Γ→ P(Rd)
so that ξ(∂∞Γ) spans Rd, then ρ is irredicuble.
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Proof. If ρ is reducible, one may conjugate it to have the form


ρ1 ∗ ∗ ∗
0 ρ2 ∗ ∗

0 0 . . . ∗
0 0 0 ρk



where k ≥ 2, each ρi : Γ→ GL(Vi) is an di-dimensional irreducible representation and Rd = ⊕ki=1Vi.
Notice that if x ∈ ∂∞Γ and ξ(x) lies in V̂ = Rd−dk × {0}dk then, since Γ acts minimally on ∂∞Γ
and ρ(Γ) preserves V̂ , ξ(∂∞Γ) would be contained in the proper subspace V̂ , which would con-
tradict our assumption that ξ(∂∞Γ) spans Rd. It follows that there exists a ρk-equivariant map
ξk : ∂∞Γ → P(Rdk), obtained by letting ξk(x) denote the orthogonal projection of ξ(x) onto Vk.
Notice that ξk(∂∞Γ) spans Vk, since ξ(∂∞Γ) spans Rd. Proposition 3.4.1, applied to the represen-
tation ρk, implies that Γ has cohomological dimension dk − 1, which is a contradiction.

We also need the following result, following by the work of Louder-Touikan [LT17] and allows
us to find quasiconvex subgroups in a torsion-free word hyperbolic group Γ which do not split.

Proposition 3.4.5. ([CT20, Proposition 9.6]) Let Γ be a torsion-free hyperbolic group of coho-
mological dimension ≥ 3 which splits over a cyclic subgroup. Then Γ contains an infinite index,
quasiconvex subgroup of cohomological dimension cd(Γ) which does not split over a cyclic subgroup.

Proof. One first considers a maximal splitting of Γ along cyclic subgroups. One of the factors, say
∆ has cohomological dimension m (see Bieri [Bie75, Corollary 4.1] and Swan [Swa69, Theorem
2.3]). A result of Bowditch [Bow98, Proposition 1.2], implies that ∆ is a quasiconvex subgroup of
Γ. If ∆ itself splits along a cyclic subgroup, we consider a maximal splitting of ∆ along cyclic sub-
groups. We then again find a factor ∆1 of this decomposition which has cohomological dimension
m and is quasiconvex in ∆, hence in Γ. Louder and Touikan [LT17, Corollary 2.7] implies that
this process terminates after finitely many steps, so one obtains the desired quasiconvex subgroup
of cohomological dimension cd(Γ).

Proof of Theorem 1.4.7 (iii)⇒ (i). Suppose that Γ has cohomological dimension d− 1 and there
is a non-constant ρ-equivariant map ξ : ∂∞Γ→ P(Rd). There are two cases to consider.

Case 1. Suppose that Γ does not admit a non-trivial splitting over a cyclic subgroup. If W =
〈ξ(∂∞Γ)〉 = Rd, by Proposition 3.4.4, ρ is irreducible. Therefore, by Proposition 3.4.1 ρ is a
Benoist representation.
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Now suppose that V := 〈ξ(∂∞Γ)〉 is a proper subspace of Rd. Let πW : GL(V ) → SL±(V )
be the obvious projection map. Consider ρ̂ = πV ◦ ρ|V : Γ → SL±(V ) and the non-constant ρ̂-
equivariant map ξ̂ : ∂∞Γ → P(V ) (which is simply ξ with the range regarded as P(V )). Since ξ
is non-constant, V has dimension at least 2. If V has dimension 2, then, by Proposition 3.4.2,
ρ is discrete and faithful, which implies that Γ is a free group or surface group, contradicting
our assumptions on Γ. If W has dimension at least 3, then Proposition 3.4.4 implies that ρ̂ is
irreducible, while Proposition 3.4.1 provides a contradiction in this case.

Case 2. Suppose that Γ admits a non-trivial splitting over a cyclic group. We will derive a con-
tradiction. By Proposition 3.4.5, Γ contains an infinite index, quasiconvex subgroup Γ1 of coho-
mological dimension d− 1 which does not split over a cyclic subgroup.

We next observe that ξ(∂∞Γ1) must span Rd. If it doesn’t, let W be the subspace spanned
by ξ(∂∞Γ1). We obtain a representation ρ̂ : Γ → SL±(W ), given by πW ◦ ρ|W and a continuous
ρ̂-equivariant map ξ̂ : ∂∞Γ→ P(W ), which is simply ξ with the range regarded as P(W ), so that
ξ̂(∂∞Γ) spans W . There exists a subgroup Γ2 of index at most two, so that ρ̂(Γ2) lies in SL(W ).
Notice that Γ2 also has cohomological dimension d−1. By Lemma 3.4.3, ξ̂|∂∞Γ2 is non-constant, so
Propositions 3.4.1 and 3.4.4 imply that ρ̂|Γ2 is a Benoist representation and thatW has dimension
d, which is a contradiction. It follows that 〈ξ(∂∞Γ1)〉 = 〈ξ(∂∞Γ)〉 = Rd.

Lemma 3.4.3 implies that ξ|∂∞Γ2 is non-constant, so Proposition 3.4.1 implies that ρ1 = ρ|Γ1

is a Benoist representation. Therefore, ρ(Γ1) acts properly discontinuously and cocompactly on

Ω = P
(
Rd
)
−

⋃
x∈∂∞Γ1

P
(
ξd−1
ρ1 (x)

)

where ξd−1
ρ1 is the limit map for ρ1. Moreover, ξ(∂∞Γ1) = ∂Ω.

Let ρ(α) be a bi-proximal element of ρ(Γ)− ρ(Γ1) and let V −ρ(α) be the repelling hyperplane of
ρ(α). Since ξ is equivariant, if [v] ∈ ∂Ω, then {[ρ(αn)v]}n∈N converges to ξ(α+). Therefore, V −ρ(α)

is disjoint from ∂Ω. It follows that P(Rd) − Ω is the closure of the set of repelling hyperplanes
of biproximal elements o ρ(Γ). Therefore, the complement of Ω, and hence Ω itself, is invariant
under the full group ρ(Γ). By Proposition 3.4.2, ρ(Γ) is discrete and since ρ(Γ1) acts cocompactly
on Ω, ρ(Γ1) must have finite index in ρ(Γ) which contradicts the fact that ρ is faithful. �
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3.5 Property U , weak eigenvalue gaps and the uniform gap sum-

mation property

In this section, we discuss Property U , its relation with the uniform gap summation property
and prove Theorem 1.4.12.

Property U and weak Property U were introduced by Delzant-Guichard-Labourie-Mozes
[Del+11] and Kassel-Potrie [KP20] respectively and are related with the growth of the trans-
lation length and stable translation length of group elements in terms of their word length.

Definition 3.5.1. Let Γ be a finitely generated group and fix | · |Γ : Γ→ N a left invariant word
metric on Γ. The group Γ satisfies Property U (resp. weak Property U) if there exists a finite
subset F of Γ and C, c > 0 with the following property: for every γ ∈ Γ there exists f ∈ F such
that

`Γ(fγ) > c|γ|Γ − C
(
resp. |fγ|∞ > c|γ|Γ − C

)

Fact 3.5.2. (a) Note that (weak) Property U is independent of the choice of the left invariant
word metric on Γ since any two such metrics on Γ are quasi-isometric. Moreover, for every γ ∈ Γ,
`Γ(γ) > |γ|Γ,∞, so if Γ satisfies weak Property U then Γ also satisfies Property U .

(b) Let Γ1 and Γ2 be two finitely generated groups satisfying (weak) Property U . The product
Γ1 × Γ2 also satisfies (weak) Property U . In particular, finitely generated abelian groups satisfy
weak Property U .

(c) Suppose that φ : Γ1 → Γ2 is a surjective group homomorphism which is also a quasi-isometry.
If Γ1 satisfies (weak) Property U then so does the group Γ2. In particular, (weak) Property U is
preserved under taking finite extensions.

Delzant-Guichard-Labourie-Mozes [Del+11] proved that the following classes of groups satisfy
Property U :
(i) the class of word hyperbolic groups.
(ii) every finitely generated group Γ admitting a semisimple quasi-isometric embedding into a
reductive real algebraic Lie group.

We prove that a virtually torsion free finitely generated group with non-trivial Floyd boundary
satisfies weak Property U . Recall that the Floyd boundary ∂fΓ of Γ with respect to f is called non-
trivial if |∂fΓ| ≥ 3. Let H be subgroup of Γ. We define Λ(H) ⊂ ∂fΓ to be the set of accumulation
points of infinite sequences of elements of H in ∂fΓ.
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Theorem 3.5.3. Let Γ be a finitely generated group and fix |·|Γ : Γ→ N a left invariant metric on
Γ. Suppose that the Floyd boundary ∂fΓ of Γ is non-trivial for some Floyd function f : N→ R+.
Let H be a torsion free subgroup of Γ with |Λ(H)| ≥ 3. Then there exists a finite subset F of H
and L > 0 with the property: for every γ ∈ H there exists g ∈ F such that |gγ|Γ − |gγ|Γ,∞ 6 L.
In particular, if Γ is virtually torsion free then it satisfies weak Property U.

Proof. Let G : [1,∞)→ R+ be the function G(x) := 10
∑∞
k=bx/2c f(k). Note that G is decreasing

and since f is a Floyd function we have lim
x→∞

G(x) = 0. By Karlsson’s estimate [Kar03, Lemma 1]
we have

df
(
g, h

)
6 G

(
(g · h)e

)
and df

(
g, g+) 6 G

(1
2 |g|Γ

)
for every g, h ∈ Γ, where g has infinite order. The group H is torsion free, so the second inequality
shows that Λ(H) is the closure of the attracting fixed points of elements of H. Since Λ(H)
contains at least 3 points, by [Kar03, Proposition 5] we may find f1, f2 ∈ H non-trivial such
that the sets {f+

1 , f
−
1 } and {f+

2 , f
−
2 } are disjoint. Let ε = 1

100 min{df (f+
1 , f

±
2 ), df

(
f−1 , f

±
2
)
}. We

make the following three choices of constants M,R,N > 0. First, we choose M > 0 such that
G(x) > ε

100 if and only if x ≤ M . We also choose R > 0 such that G(x) ≤ ε
100 for every x > R.

We also consider N > 0 large enough such that min
{∣∣fN1 ∣∣Γ, ∣∣fN2 ∣∣Γ} > 10(M +R).

Let F :=
{
fN1 , f

N
2 , e

}
. Now we claim that for every non-trivial γ ∈ H, there exists g ∈ F such

that df
(
gγ+, γ−

)
> ε. If df (γ+, γ−) > ε we choose g = e. So we may assume that df (γ+, γ−) 6 ε.

We can choose n0 ∈ N such that G
(1

2 |γ
n|Γ
)
< ε for n > n0. Notice that we can find i ∈ {1, 2} such

that df (γ+, f+
i ) > 50ε and df (γ+, f−i ) > 50ε. Indeed, if we assume that dist

(
γ+,

{
f+

1 , f
−
1
})
< 50ε

then df (γ+, f±2 ) > dist(f±2 , {f+
1 , f

−
1 }) − 50ε > 50ε. Without loss of generality we may assume

that df (γ+, f+
1 ) > 50ε and df (γ+, f−1 ) > 50ε. By our choices of N and n0 we have that

df
(
γn, f−N1

)
> df

(
γ+, f−1

)
− df

(
f−1 , f

−N
1
)
− df

(
γ+, γn

)

> 50ε−G
(1

2 |f
N
1 |Γ

)
−G

(1
2 |γ

n|Γ
)
> 48ε

hence G
((
γn · f−N1

)
e

)
≥ ε for n > n0. By the choice of M > 0 we have that

(
γn · f−N1

)
e
6M for

n > n0. Then, we choose a sequence (kn)n∈N such that
∣∣fkn−N1

∣∣
Γ <

∣∣fkn1
∣∣
Γ for every n ∈ N. For

n > n0 we have

2
(
fN1 γ

n · fkn1
)
e

=
∣∣fN1 γn∣∣Γ +

∣∣fkn1
∣∣
Γ −

∣∣fN−kn1 γn
∣∣
Γ

=
∣∣γn∣∣Γ +

∣∣fN1 ∣∣Γ − 2
(
γn · f−N1

)
e

+
∣∣fkn1

∣∣
Γ −

∣∣fN−kn1 γn
∣∣
Γ
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> −2M +
∣∣fN1 ∣∣Γ +

∣∣fkn1
∣∣
Γ −

∣∣fN−kn1
∣∣
Γ

>
∣∣fN1 ∣∣Γ − 2M >

∣∣fN1 ∣∣Γ
2 > 2R

Therefore, by the choice of R > 0 we have G
((
fN1 γ

n · fkn1
)
e

)
≤ ε for n > n0. It follows that

df
(
fN1 γ

+, f+
1
)
6 ε so

df
(
fN1 γ

+, γ−
)
> df (γ+, f+

1 )− df
(
fN1 γ

+, f+
1 )− df

(
γ+, γ−) > 48ε

The claim follows.
Now, let L := 10 maxg∈F |g|Γ + 2R and A :=

{
γ ∈ H : |γ|Γ > L

}
. If γ /∈ A then we choose

g = e and obviously |γ|Γ − |γ|Γ,∞ ≤ L. Suppose that γ ∈ A. We may choose g ∈ F such that
df
(
(gγg−1)+, γ−

)
> ε, where (gγg−1)+ = gγ+ in ∂fΓ. We observe that

df
(
(gγg−1)+, (gγ)+) 6 df

(
(gγg−1)+, gγg−1)+ df

(
gγg−1, gγ

)
+ df

(
(gγ)+, gγ

)
6 G

(1
2
∣∣gγg−1∣∣

Γ

)
+G

(
(gγg−1 · gγ)e

)
+G

(1
2
∣∣gγ∣∣Γ)

6 3G
(1

2 |γ|Γ − 2|g|Γ
)
6

3ε
100

and df
(
γ−, γ−1g−1) 6 df

(
γ−, γ−1)+ df

(
γ−1, γ−1g−1)

6 G
(1

2
∣∣γ∣∣Γ)+G

(
(γ−1 · γ−1g−1)e

)
6 2G

(1
2 |γ|Γ − 2|g|Γ

)
6

ε

50

since |γ|Γ − 2|g|Γ > R. Therefore, we have

df
(
(gγ)+, γ−1g−1) > df

(
gγ+, γ−

)
− df (gγ+, (gγ)+)− df(γ−1, γ−1g−1) > ε

2

This shows that there exists n1 > 0 such that G
((

(gγ)kn ·(gγ)−1)
e

)
> ε

3 and
(
(gγ)n ·(gγ)−1)

e
6M

for n > n1. We can find a sequence (mn)n∈N such that

lim
n→∞

(∣∣(gγ)mn+1∣∣
Γ −

∣∣(gγ)mn
∣∣
Γ
)
6 |gγ|Γ,∞

so limn 2
(
(gγ)mn · (gγ)−1)

e
> |gγ|Γ − |gγ|Γ,∞. Finally, since R > M , we conclude that

|gγ|Γ − |gγ|Γ,∞ 6 2M 6 L
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This completes the proof of the theorem.

We need the following proposition which allows us to control the quasi-isometry constants of
the induced quasi-isometry between two Gromov hyperbolic spaces (X, dX) and (Y, dY ) acted on
geometrically by the discrete group Γ.

Proposition 3.5.4. Let Γ be a non-elementary torsion free word hyperbolic group acting properly
discontinously and cocompactly by isometries on the Gromov hyperbolic spaces (X, dX) and (Y, dY )
respectively. We set a−X,Y := infγ∈Γ∞

|γ|X,∞
|γ|Y,∞ and a+

X,Y := supγ∈Γ∞
|γ|X,∞
|γ|Y,∞ . Suppose that x0 ∈ X and

y0 ∈ Y are two given points. Then there exists M > 0 such that

a−X,Y
(
γy0 · δy0

)
y0
−M 6

(
γx0 · δx0

)
x0
6 a+

X,Y

(
γy0 · δy0

)
y0

+M

for every γ, δ ∈ Γ.

Proof. For γ ∈ Γ, let |γ|X = dX(γx0, x0) and |γ|Y = dY (γy0, y0). By the Svarc-Milnor lemma (see
Proposition 2.2.2) and the fellow traveller property for Gromov hyperbolic spaces (see Theorem
3.5.4) we can find constants C, c > 0 such that

max
{(
γ+ · γ−1x0

)
x0
,
(
γ+ · γ−1y0

)
y0

}
6 C

(
γ+ · γ−1)

e
+ c

for every γ ∈ Γ. By Lemma 2.2.7 we obtain a constant m > 0 such that

max
{
|γ|X − |γ|X,∞, |γ|Y − |γ|Y,∞

}
6 C

(
|γ|Γ − |γ|Γ,∞

)
+m

for every γ ∈ Γ. By using Theorem 3.5.3 and the previous inequalities, we can find a finite subset F
of Γ and L > 0 with the property: for every γ ∈ Γ there exists f ∈ F such that

∣∣|fγ|X,∞−|fγ|X ∣∣ 6
L and

∣∣|fγ|Y,∞−|fγ|Y ∣∣ 6 L. By definition we have a−X,Y
∣∣fγ|Y,∞ 6 |fγ|X,∞ 6 a+

X,Y |fγ|Y,∞, hence

|fγ|X > |fγ|X,∞ > a−X,Y |fγ|Y,∞ > a−X,Y |fγ|Y − a
−
X,Y L

a+
X,Y |fγ|Y > a+

X,Y |fγ|Y,∞ > |fγ|X,∞ > |fγ|X − a
+
X,Y L

Therefore, since
∣∣|fγ|X − |γ|X ∣∣ ≤ |f |X and

∣∣|fγ|Y − |γ|Y ∣∣ ≤ |f |Y for every γ ∈ Γ, there exists
K > 0 with

a−X,Y |γ|Y −K 6 |γ|X 6 a+
X,Y |γ|Y +K
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for every γ ∈ Γ. The fellow traveller property combined with previous double inequality shows
that

−K ′ + a−X,Y distY
(
y0, [γy0, δy0]

)
6 distX

(
x0, [γx0, δx0]

)
6 a+

X,Y distY
(
y0, [γy0, δy0]

)
+K ′

for some K ′ > 0. The conclusion follows since X and Y are Gromov hyperbolic.

Remark 3.5.5. Kassel-Potrie established an analogue of the Abels-Margulis-Soifer lemma [AMS95,
Theorem 5.17] simultaneously for a linear representation ρ : Γ → GL(d,R) of a word hyperbolic
group and the abstract group Γ equipped with a left invariant word metric (see [KP20, page 16]).
Note that in the case Γ is word hyperbolic, Theorem 3.5.3 follows by their result.

3.5.1 Weak uniform gaps in eigenvalues.

Recall that a linear representation ρ : Γ→ GL(d,R) has a weak uniform i-gap in eigenvalues
if there exists c > 0 such that λi(ρ(γ))− λi+1(ρ(γ)) ≥ c|γ|Γ,∞ for every γ ∈ Γ.
For a group Γ the lower central series

... E g3(Γ) E g2(Γ) E g1(Γ) E g0(Γ) := Γ

is inductively defined as gk+1(Γ) =
[
Γ,gk(Γ)

]
for k ≥ 1. For every k, gk(Γ) is a characteristic

subgroup of Γ and the quotient gk(Γ)/gk+1(Γ) is a central subgroup of Γ/gk+1(Γ). The group Γ
is nilpotent if there exists m > 0 with gm(Γ) = 1.

First, we prove that a nilpotent group Γ admitting a representation with a uniform weak
eigenvalue i-gap has to be virtually cyclic. We remark that the following proposition fails to
be true when Γ is assumed to be solvable. For example, the solvable Baumslag-Solitar group
BS(1, 2) =

〈
a, t|ta−1t−1a2〉 admits a faithful representation into GL(2,R) with a weak uniform

1-gap (see [KP20, Example 4.8]).

Proposition 3.5.6. Let Γ be a finitely generated nilpotent group. Suppose that ρ : Γ→ GL(d,R)
has a weak uniform i-gap in eigenvalues for some 1 ≤ i ≤ d− 1. Then Γ is virtually cyclic.

Proof. Let G1 be a group and G2 ⊂ Z(G1) be a central subgroup of G1. Observe that if the
quotient G1/G2 is virtually cyclic, then G1 is virtually abelian.

Let G be the Zariski closure of ρ(Γ) in GL(d,R). We consider the Levi decomposition G =
Ln U , where U is a connected normal unipotent subgroup of G and L is a reductive Lie group.
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The projection π ◦ ρ : Γ → L is Zariski dense and λ(π(ρ(γ)) = λ(ρ(γ)) for every γ ∈ Γ. The Lie
group L is reductive and π(ρ(Γ)) is solvable, so L has to be virtually abelian since it has finitely
many connected components. We may find a finite-index subgroup H of Γ such that g1(H) is
a subgroup of ker(π ◦ ρ). Therefore, for every k > 1 we obtain a well defined representation
ρk : H/gk(H) → GL(d,R) such that ρk ◦ πk = π ◦ ρ, where πk : H → H/gk(H) is the quotient
map. Note that for every k ≥ 1 there exists ck ≥ 1 such that |πk(h)|H/gk(H),∞ 6 ck|h|H,∞ for every
h ∈ H. Since λ(ρk(h)) = λ(ρ(h)) for every h ∈ H, ρk has a weak uniform i-gap in eigenvalues
for every k ≥ 1. We may use induction on k to see that H/gk(H) is virtually cyclic. The group
H/g1(H) is abelian and satisfies weak Property U , so ρ1 is Pi-Anosov by [KP20, Proposition 4.12]
and H/g1(H) has to be virtually cyclic. Now suppose that H/gk(H) is virtually cyclic. Note that
gk(H)/gk+1(H) is a central subgroup of H/gk+1(H) with virtually cyclic quotient H/gk(H). It
follows that H/gk+1(H) is virtually abelian. In particular, H/gk+1(H) satisfies weak Property U ,
so ρk+1 is Pi-Anosov and H/gk+1(H) is virtually cyclic. Therefore, H/gk(H) has to be virtually
cylic for every k ≥ 1 and H is virtually cyclic since gm(H) = 1 for some m ≥ 1.

By using Theorem 3.5.3 we obtain the following relation between the uniform gap summation
property and weak Property U .

Corollary 3.5.7. Let Γ be a finitely generated group which is not virtually nilpotent, G be a
semisimple Lie group and θ ⊂ ∆ a subset of simple restricted roots of G. Suppose that there exists
a representation ρ : Γ→ G satisfying the uniform gap summation property with respect to θ. Then
Γ satisfies weak Property U .

Proof. By Proposition 2.5.4 we may assume that G = SL(d,R) and θ = {ε1 − ε2}. Since ρ
satisfies the uniform gap summation property ker(ρ) is finite. It suffices to prove that a finite-
index subgroup of Γ′ = Γ/ker(ρ) satisfies weak Property U . By Selberg’s lemma [Sel62] Γ′ is
virtually torsion free, so we may assume that Γ is torsion free and ρ is faithful. By Lemma 3.2.7
there exists a continuous ρ-equivariant map ξf : ∂fΓ→ P(Rd) for some Floyd function f . We first
prove that ∂fΓ is not a singleton.

Suppose that |∂fΓ| = 1. By the definition of the map ξf , the image ξf (∂fΓ) identifies with the
τmod-limit set of Γ in P(Rd). Since Γ is not virtually nilpotent, we may use [KL18, Corollary 5.10] to
reach a contradiction. We provide here the following different argument. Since ∂fΓ is a singleton,
up to conjugation, we may assume that ξf (∂fΓ) = [e1] and find a group homomorphism a : Γ→ R∗

such that ρ(γ)e1 = a(γ)e1 for every γ ∈ Γ. We consider the representation ρ̂(γ) = 1
a(γ)ρ(γ).

Note that ρ̂ satisfies the uniform gap summation property, ξf is ρ̂-equivariant and we can write

ρ̂(γ) =

1 u(γ)
0 ρ0(γ)

 for some group homomorphism ρ0 : Γ → GL(d − 1,R). Let g ∈ Γ be a non-
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trivial element. Since ξf is constant we have limn Ξ+
1 (ρ̂(gn)) = limn Ξ+

1 (ρ̂(g−n)) = [e1]. Let us write
ρ̂(gn) = kn exp

(
µ(ρ̂(gn))

)
k′n in the Cartan decomposition of G. Up to passing to a subsequence

we may assume that limn kn = k∞ and limn k
′
n = k′∞. Then k′∞P+

1 = wP+
1 , 〈k′∞e1, e1〉 = 0 and

|〈k∞e1, e1〉| = 1, so limn
1

σ1(ρ̂(gn)) ρ̂(gn) = k∞E11k
′
∞ ∈ ⊕di=2RE1i. If `1(ρ̂(g)) > 1, then `1(ρ0(g)) =

`1(ρ̂(g)). Let p1 and p2 be the largest possible dimension of a Jordan block for an eigenvalue
of maximum modulus of ρ̂(g) and ρ0(g) respectively. We have σ1(ρ̂(gn)) � np1−1`1(ρ̂(gn)) and
σ1(ρ0(gn)) � np2−1`1(ρ̂(gn)) and p1 > p2 since limn

1
σ1(ρ̂(gn))ρ0(gn) = 0. We can find C > 0 such

that ∣∣∣∣u(gn)
∣∣∣∣ =

∣∣∣∣∣∣ n∑
i=0

ρ0(gi)tu(g)
∣∣∣∣∣∣ 6 ∣∣∣∣u(g)

∣∣∣∣ n∑
i=0

ip2−1`1(ρ̂(g))i ≤ Cnp2−1`1(ρ̂(g))n

for every n ∈ N. Since p1 > p2 and `1(ρ0(g)) > 1 we have limn
1

np1−1`1(ρ̂(gn))
∑n
i=0 i

p2−1`1(ρ̂(g))i = 0.
Therefore, limn

1
σ1(ρ̂(gn)) ||u(gn)|| = 0 which is impossible since limn

ρ̂(gn)
σ1(ρ̂(gn)) has at least one of its

(1, 2), ..., (1, d) entries non-zero. It follows that `1(ρ̂(g)) ≤ 1 and `1(ρ(g)) ≤ |a(g)|. Similarly, we
obtain 1

`d(ρ(g)) = `1(ρ(g−1)) ≤ 1
|a(g)| . It follows that all the eigenvalues of ρ(g) have modulus equal

to 1. Therefore, by Theorem 2.6.1, any semisimplification of ρ has compact Zariski closure. Then,
by using [Aus61, Theorem 3] and [KL18, Theorem 10.1], we conclude that ρ(Γ) (and hence Γ) is
virtually nilpotent. We have reached a contradiction. Therefore, ξf is non-constant and |∂fΓ| > 2.

Now we conclude that Γ has weak Property U . If |∂fΓ| = 2, we consider the restriction
ρV : Γ→ GL(V ) where V =

〈
ξf (∂fΓ)

〉
and dim(V ) = 2. Since ξf (∂fΓ) contains two points, up to

passing to a finite-index subgroup of Γ and conjugating ρV , we may assume that ρV (Γ) lies in the
diagonal subgroup GL(V ). Let g ∈ ker(ρV ). We may write ρ(gn) = kn exp(µ(gn))k′n and assume
that k∞P+

1 = P+
1 . We see that limn

ρ(g)n
||ρ(g)n|| = k∞E11k

′
∞ ∈

∑d
i=1 RE1i. We may write

ρ(gn) =

I2
(∑n

i=0 A
i
)t
B

0 An

 , ρ(g) =

I2 B

0 A



and so limn
1

||ρ(gn)||A
n is the zero matrix. If A has an eigenvalue of modulus greater than 1,

then `1(A) = `1(ρ(g)). By working similarly as before, we have limn
1

||ρ(gn)||
∑n
i=0 ||Ai|| = 0. This

would show that limn
1

||ρ(gn)||ρ(gn) has all of its (1, i) entries equal to zero, a contradiction. It
follows that all elements of ρ(ker(ρV )) have all of their eigenvalues of modulus 1. We deduce
that ρ(ker(ρV )) (and hence ker(ρV )) is virtually nilpotent and finitely generated. The quotient
Γ/ker(ρV ) is abelian, so Γ has to be virtually polycyclic. Since |∂fΓ| > 1, a theorem of Floyd
[Flo80, page 211] implies that Γ has two ends, so Γ is virtually cyclic. Since Γ is assumed not to
be virtually nilpotent, this is again a contradiction.

Finally, it follows that |∂fΓ| ≥ 3. Therefore, Theorem 3.5.3 shows that Γ satisfies weak Prop-
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erty U .

We obtain the following theorem providing consitions under which a linear representation
ρ : Γ → GL(d,R) of a finitely generated group Γ with a weak uniform i-gap in eiganvalues is
Pi-Anosov.

Theorem 1.4.12. Let Γ be a non-virtually cyclic finitely generated group and | · |Γ : Γ→ N be a
left invariant word metric on Γ. Suppose that ρ : Γ → GL(d,R) is a representation which has a
weak uniform i-gap in eigenvalues for some 1 6 i 6 d− 1. Then the following are equivalent:

(i) Γ is word hyperbolic and ρ is Pi-Anosov.

(ii) There exists a Floyd function f : N→ R+ such that the Floyd boundary ∂fΓ of Γ contains at
least three points.

(iii) Γ admits a representation ρ1 : Γ→ GL(m,R) satisfying the uniform gap summation property.

(iv) Γ admits a semisimple representation ρ2 : Γ→ GL(n,R) with the property

lim
|γ|Γ→∞

∣∣∣∣µ(ρ2(γ)
)∣∣∣∣

log |γ|Γ
= +∞

Proof. Suppose that (i) holds. Then (ii) holds since the Floyd boundary identifies with the Gromov
boundary of Γ. Moreover, by Theorem 2.5.3 and Proposition 2.6.2, (iii) and (iv) hold true for any
semisimplification ρss of the Pi-Anosov representation ρ. Now let us prove the other implications.
There exists c > 0 such that λi(ρ(γ))−λi+1(ρ(γ)) > c|γ|Γ,∞ for every γ ∈ Γ. By [KP20, Proposition
4.12] it is enough to prove that Γ satisfies weak Property U .
(ii) ⇒ (i). We first observe that for every element g ∈ ker(ρ) we have |g|Γ,∞ = 0. We next show
that N := kerρ is finite. If not, N is an infinite normal subgroup of Γ and Λ(N) = ∂fΓ since Γ
acts minimally on ∂fΓ. By [Kar03, Theorem 1] there exists a free subgroup H of N of rank at
least 2 and |Λ(H)| ≥ 3. By Theorem 3.5.3 we can find γ ∈ H such that |γ|Γ,∞ > 0. This is a
contradiction since γ ∈ N . It follows that N is finite.

The Floyd boundary of Γ′ = Γ/N is non-trivial since Γ′ is quasi-isometric to Γ. Note that
the representation ρ induces a faithful representation ρ′ : Γ′ → GL(d,R) which also has a weak
uniform i-gap in eigenvalues. Selberg’s lemma [Sel62] implies that Γ′ is virtually torsion free so,
by Theorem 3.5.3, Γ′ satisfies weak Property U . We conclude that Γ′ and Γ are word hyperbolic
and ρ is Pi-Anosov.
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(iii) ⇒ (i). If Γ is virtually nilpotent, Proposition 3.5.6 implies that Γ is virtually cyclic, a con-
tradiction. Therefore, Γ is not virtually nilpotent. Since ρ1 satisfies the uniform gap summation
property, by Corollary 3.5.7, Γ has to satisfy weak Property U . Therefore, (i) holds.

(iv) ⇒ (i). Let ρss be a semisimplification of ρ. By Proposition 2.6.2, λ(ρ(γ)) = λ(ρss(γ)) for
every γ ∈ Γ so there exists δ > 0 such that

λi(ρss(γ))− λi+1(ρss(γ)) > c|γ|Γ,∞ > δ
∣∣∣∣λ(ρ2(γ))

∣∣∣∣
for every γ ∈ Γ. By Theorem 2.6.1 there exists a finite subset F of Γ and C > 0 such that for every
γ ∈ Γ there exists f ∈ F with

∣∣∣∣µ(ρss(γ))− λ(ρ(γf))
∣∣∣∣ 6 C and

∣∣∣∣µ(ρ2(γ))− λ(ρ2(γf))
∣∣∣∣ 6 C. By

the previous two inequalities we obtain K > 0 such that

µi(ρss(g))− µi+1(ρss(g)) > δ
∣∣∣∣µ(ρ2(g))

∣∣∣∣−K
for all g ∈ Γ. By assumption, for all but finitely many g ∈ Γ we have

∣∣∣∣µ(ρ2(g))
∣∣∣∣ > 2

δ log |g|Γ, so
there exists K ′ > 0 such that

µi(ρss(g))− µi+1(ρss(g)) > 2 log |g|Γ −K ′

for all g ∈ Γ. In particular, ρss satisfies the uniform gap summation property. The conclusion
follows by the implication (iii)⇒ (i).

Remark 3.5.8. The representation ρ2 : Γ→ GL(p,R) in condition (iv) of Theorem 1.4.12 is far
from being a quasi-isometric embedding. As mentioned above, it follows by [Del+11] that any
group Γ admitting a semisimple quasi-isometric embedding into GL(d,R), d ≥ 2, satisfies (weak)
Property U .

3.6 Gromov products

In this section, we define the Gromov product associated to an Anosov representation of a
word hyperbolic group Γ and prove Proposition 1.4.9, showing that it is comparable with the usual
Gromov product on the group Γ. We also prove an analogue of Proposition 1.4.9 for representations
satisfying the uniform gap summation property. First, let us recall the definition of the Gromov
product:
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Definition 3.6.1. Let G be a real semisimple Lie group, a a Cartan subspace of g and let µ :
G → a+ be the Cartan projection. For every linear form ϕ ∈ a∗ the map ( · )ϕ : G × G → R is
called the Gromov product relative to ϕ and is defined as follows: for g, h ∈ G

(
g · h)ϕ := 1

4
〈
ϕ, µ(g) + µ(g−1) + µ(h) + µ(h−1)− µ(g−1h)− µ(h−1g)

〉

For a line ` ∈ P(Rd) and a hyperplane V ∈ Grd−1(Rd), the distance dist(`, V ) is computed by
the formula

dist(`, V ) =
∣∣〈k`e1, kV ed

〉∣∣
where ` = [k`e1], V = [kV e⊥d ] and kV , k` ∈ O(d). The following proposition relates the Gromov
product with the limit maps of a representation ρ and will be used in the following chapters.

Proposition 3.6.2. Let Γ be a word hyperbolic group and ρ : Γ→ PGL(d,R) be a representation.
Suppose that ρ is P1-divergent and there exists a pair of continuous ρ-equivariant maps ξ : ∂∞Γ→
P(Rd) and ξ− : ∂∞Γ → Grd−1(Rd) which satisfy the Cartan property. Then for x, y ∈ ∂∞Γ and
two sequences (γn)n∈N, (δn)n∈N of elements of Γ with limn γn = x and limn δn = y we have

lim
n→∞

exp
(
− 4

(
ρ(γn) · ρ(δn)

)
ε1

)
= dist(ξ(x), ξ−(y)) · dist(ξ(y), ξ−(x))

Proof. We may write ρ(γn) = wγn exp(µ(ρ(γn)))w′γn and ρ(δn) = wδn exp(µ(ρ(δn)))w′δn where
wγn , w

′
γn , wδn , w

′
δn
∈ PO(d). Since ρ is P1-divergent we have limn

σd(ρ(γn))
σj(ρ(γn) = limn

σd(ρ(δn))
σj(ρ(δn) = 0 for

1 ≤ j ≤ d− 1. Then we notice that

lim
n→∞

exp
(
− 4

(
ρ(γn) · ρ(δn)

)
ε1

)
= lim

n→∞

σ1(ρ(γ−1
n δn))σ1(ρ(δ−1

n γn))
σ1(ρ(γn))σ1(ρ(γ−1

n ))σ1(ρ(δn))σ1(ρ(δ−1
n ))

= lim
n→∞

(∣∣∣∣∣∣((w′δn)−1diag
(σd(ρ(δn))
σ1(ρ(δn)) , ..., 1

)
w−1
δn
wγndiag

(
1, ..., σd(ρ(γn))

σ1(ρ(γn))
)
w′γn

∣∣∣∣∣∣·
∣∣∣∣∣∣((w′γn)−1diag

(σd(ρ(γn))
σ1(ρ(γn)) , ..., 1

)
w−1
γn wδndiag

(
1, ..., σd(ρ(δn))

σ1(ρ(δn))
)
w′δn

∣∣∣∣∣∣)
P1div.= lim

n→∞

∣∣∣∣∣∣E1dw
−1
γn wδnE11

∣∣∣∣∣∣ · ∣∣∣∣∣∣E1dw
−1
δn
wγnE11

∣∣∣∣∣∣
= lim

n→∞

∣∣〈w−1
γn wδne1, ed〉 · 〈w−1

δn
wγne1, ed〉

∣∣
= lim

n→∞
dist

(
Ξ+

1
(
ρ(γn)

)
,Ξ−1

(
ρ(δn)

))
· dist

(
Ξ+

1
(
ρ(δn)

)
,Ξ−1

(
ρ(γn)

))
= dist

(
ξ(x), ξ−(y)

)
· dist

(
ξ(y), ξ−(x)

)
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since ξ and ξ− satisfy the Cartan property. The proposition follows.

Proof of Proposition 1.4.9. (i) Fix α ∈ θ. By [Gué+17, Lemma 3.2], there exists Nα > 0 and an
irreducible θ-proximal representation τα of highest weight Nαωα. Since ρ is P{α}-Anosov, the rep-
resentation τα◦ρ is P1-Anosov. The difference between

(
ρ(γ)·ρ(δ)

)
ωα

and Nα

(
τα(ρ(γ))·τα(ρ(δ))

)
ε1

is bounded above and below by uniform constants depending only on τα and ρ. Therefore, for
the proofs of (i) and (iii) it suffices to restrict to the case where G = SL(d,R), θ = {ε1 − ε2}
and ρ is P1-Anosov. By Lemmas 2.7.4 and 2.7.5, we may further assume that ρ is semisimple
and ρ(Γ) also preserves a properly convex open subset Ω of P(Rd). By Lemma 2.7.2 we can find
M > 0 such that

∣∣(ρ(γ) · ρ(δ))ε1 −
(
ρ(γ)x0 · ρ(δ)x0

)
x0

∣∣ 6 M . Then ρ(Γ) acts cocompactly on a
closed convex subset C ⊂ Ω. Fix x0 ∈ C. By applying Proposition 3.5.4 for

(
X, dX

)
=
(
C, dΩ

)
and(

Y, dY
)

= (Γ, dΓ) we can find C > 0 such that

a−C,Γ(γ · δ)e − C 6
(
ρ(γ)) · ρ(δ)

)
ε1
6 a+

C,Γ(γ · δ)e + C

This finishes the proof of (i).

By using Proposition 3.6.2 and our previous argument we deduce the following corollary:

Corollary 3.6.3. Let (X, d) be a Gromov hyperbolic space and suppose that Γ is a word hyper-
bolic group acting properly discontinuously and cocompactly on X by isometries and fix x0 ∈ X.
Suppose that ρ : Γ → GL(d,R) is a P1-Anosov representation and with Anosov limit maps
ξ+ : ∂∞Γ → P(Rd) and ξ− : ∂∞Γ → Grd−1(Rd). We set a−ρ := infγ∈Γ∞

λ1(ρ(γ))−λd(ρ(γ))
|γ|X,∞ and

a+
ρ := supγ∈Γ∞

λ1(ρ(γ))−λd(ρ(γ))
|γ|X,∞ . There exists C > 0 such that

1
C
e−4a+

ρ (x·y)x0 ≤ dist
(
ξ+(x), ξ−(y)

)
· dist

(
ξ+(y), ξ−(x)

)
≤ dP

(
ξ+(x), ξ+(y)

)2
dist

(
ξ+(x), ξ−(y)

)
· dist

(
ξ+(y), ξ−(x)

)
≤ Ce−4a−ρ (x·y)x0

for every x, y ∈ ∂∞X.

For the proof of Proposition 1.4.9 (ii) we need the following sharper bounds for the Gromov
product. For a group Γ, we denote by Γ∞ the set of all infinite order elements of Γ.

Lemma 3.6.4. Let Γ be a word hyperbolic group, ρ1 : Γ → GL(d1,R) and ρ2 : Γ → GL(d2,R) be
two P1-Anosov representations and set

A−ρ1,ρ2 := inf
γ∈Γ∞

λ1(ρ2(γ))− λd2(ρ2(γ))
λ1(ρ1(γ))− λd1(ρ1(γ)) and A+

ρ1,ρ2 := sup
γ∈Γ∞

λ1(ρ2(γ))− λd2(ρ2(γ))
λ1(ρ1(γ))− λd1(ρ1(γ))
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There exists C > 0 such that

A−ρ1,ρ2

(
ρ1(γ) · ρ1(δ)

)
ε1
− C 6

(
ρ2(γ) · ρ2(δ)

)
ε1
6 A+

ρ1,ρ2

(
ρ1(γ) · ρ1(δ)

)
ε1

+ C

for every γ, δ ∈ Γ.

Proof. By Selberg’s lemma [Sel62] we may find a finite-index subgroup Γ0 such that ρi(Γ0) is
torsion free for i = 1, 2. By Lemma 2.7.5 we may also assume that ρ1 and ρ2 are semisimple.
Furthermore, by Lemma 2.7.4, for i = 1, 2, we may assume that ρi(Γ) preserves a properly convex
domain Ωi of P(Rdi) and acts cocompactly on a closed convex subset Ci of Ωi. By applying
Proposition 3.5.4 for (X, dX) = (C2, dΩ2) and (Y, dY ) = (C1, dΩ1

)
the inequality follows.

Proof of Proposition 1.4.9 (ii). Suppose that ρ is P∆-Anosov. We fix α ∈ ∆. By Proposition 2.5.4,
there exists an irreducible {α}-proximal representation τ : G → GL(V ) such that P+

{a} stabilizes
a line of V and τ ◦ ρ is P1-Anosov. Let χτ be the highest weight of τ . For each restricted weight
χi ∈ a∗ of τ we have χi = χτ −niα−

∑
β∈∆−{α} nβ,iβ for some ni ∈ N+, nβ,i ≥ 0 and χ1 = χτ −α.

If k = dim
(
V χ1

)
and g ∈ G, then

〈
εi, µ(τ(g))

〉
=
〈
χτ − α, µ(τ(g))

〉
for 2 6 i 6 k + 1 and〈

εk+1−εk+2, µ(τ(g))
〉

= mini≥2
〈
χτ −α−χi, µ(g)

〉
. Since ρ is P∆-Anosov there exist C, c > 0 with

minα∈∆
〈
α, µ(ρ(γ))

〉
> C|γ|Γ− c, hence we can find L, ` > 0 with

〈
χτ − α− χi, µ(g)

〉
> L|γ|Γ− `

for every γ ∈ Γ and i ≥ 2. By [BPS16], [KLP18] the representation φ := τ ◦ρ is Pk+1-Anosov. For
every γ, δ ∈ Γ we have

k
(
ρ(γ) · ρ(δ)

)
α

= (k + 1)
(
φ(γ) · φ(δ)

)
ε1
−
(
∧k+1 φ(γ) · ∧k+1φ(ρ(δ))

)
ε1

and

k + 1− A+
φ,∧k+1φ = k · inf

γ∈Γ∞

〈
α, λ(ρ(γ)) + λ(ρ(γ−1))

〉〈
χτ , λ(ρ(γ)) + λ(ρ(γ−1))

〉
k + 1− A−φ,∧k+1φ = k · sup

γ∈Γ∞

〈
α, λ(ρ(γ)) + λ(ρ(γ−1))

〉〈
χτ , λ(ρ(γ)) + λ(ρ(γ−1))

〉
are well defined and positive since ρ is P{α}-Anosov. By applying Lemma 3.6.4 for ρ1 := φ and
ρ2 := ∧k+1φ we obtain M > 0 such that

1
k

(
k + 1−A+

φ,∧k+1φ

)
(φ(γ) · φ(δ))ε1 −M 6 (ρ(γ) · ρ(δ))α 6

1
k

(
k + 1−A−φ,∧k+1φ

)
(φ(γ) · φ(δ))ε1 +M

for every γ, δ ∈ Γ. The conclusion follows by part (i) since φ is P1-Anosov.
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Remark 3.6.5. Note that when G = SL(d,R) and ρ is P1 and P2-Anosov the previous proof
shows that the Gromov product with respect to the simple root {ε1 − ε2} also grows linearly in
terms of the Gromov product on Γ with respect to the metric | · |Γ.

We prove the following analogue of Proposition 1.4.9 for representations which satisfy the
uniform gap summation property. For simplicity, we assume that f(x) = x−κ−1 for some κ > 0,
G = SL(d,R) and θ = {ε1 − ε2}. In particular, part (i) of the following proposition shows that
the Gromov product of ρ(Γ) with respect to ε1 ∈ a∗ grows at least logarithmically in terms of the
Gromov product on Γ.

Proposition 3.6.6. Let Γ be a finitely generated group and | · |Γ : Γ → N be a left invariant
word metric on Γ. Suppose that ρ : Γ → SL(d,R) is a representation satisfying the uniform gap
summation property with respect to the set θ = {ε1 − ε2} and f(x) = x−1−κ where κ > 0.
(i) There exists R > 0 with the property

(g · h)e 6 R

(
σ1(ρ(g−1))σ1(ρ(h))

σ1(ρ(g−1h))

)1/κ

for every g, h ∈ Γ.

(ii) There exists L > 0 with the property

|γ|Γ − |γ|Γ,∞ 6 L

(
σ1(ρ(γ))
`1(ρ(γ))

)1/κ

for every γ ∈ Γ of infinite order.

We remark that the domain group of a representation with the uniform gap summation prop-
erty is not necessarily hyperbolic and the representation might not be convex cocompact. We will
need the following estimates. In the following lemma w ∈ O(d) is the permutation matrix with
w =

∑d
i=1 Ei(d+1−i).

Lemma 3.6.7. Let g, h ∈ SL(d,R). Suppose that g = kg exp(µ(g))k′g and h = kh exp(µ(h))k′h are
written in the standard Cartan decomposition of SL(d,R) and kg, k′g, kh, k′h ∈ SO(d).

(i) The following inequality holds

σ1(gh)
σ1(g)σ1(h) 6

σ2(g)
σ1(g) + σ2(h)

σ1(h) + σ2(g)
σ1(g) ·

σ2(h)
σ1(h) + dP

(
khP

+
1 , (k′g)−1wP+

1
)
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(ii) Suppose that limn
σ1(gn)
σ2(gn) = +∞. Then

`1(g)
σ1(g) 6

σ2(g)
σ1(g) + lim

n→∞
dP
(
Ξ+

1 (gn), (k′g)−1wP+
1
)

Proof. (i) We may write exp(µ(g)) = σ1(g)E11 +Sg and exp(µ(h)) = σ1(h)E11 +Sh where Sg and
Sh are diagonal matrices such that ||Sg|| 6 σ2(g) and ||Sh|| 6 σ2(h). Then we notice that

σ1(gh)
σ1(g)σ1(h) = 1

σ1(g)σ1(h)

∣∣∣∣∣∣kg(σ1(g)E11 + Sg
)
k′gkh

(
σ1(h)E11 + Sh

)′
k′h

∣∣∣∣∣∣
= 1
σ1(g)σ1(h)

∣∣∣∣∣∣σ1(g)σ1(h)E11k
′
gkhE11 + σ1(g)E11k

′
gkhSh + σ1(h)Sgk′gkhE11 + Sgk

′
gkhSh

∣∣∣∣∣∣
6
∣∣∣∣E11k

′
gkhE11

∣∣∣∣+ 1
σ1(h)

∣∣∣∣E11k
′
gkhSh

∣∣∣∣+ 1
σ1(g)

∣∣∣∣Sgk′gkhE11
∣∣∣∣+ 1

σ1(g)σ1(h)
∣∣∣∣Sgk′gkhSh∣∣∣∣

6
∣∣〈k′gkhe1, e1

〉∣∣+ 1
σ1(h)

∣∣∣∣Sh∣∣∣∣+ 1
σ1(g)

∣∣∣∣Sg∣∣∣∣+ 1
σ1(g)σ1(h)

∣∣∣∣Sg∣∣∣∣ · ∣∣∣∣Sh∣∣∣∣
6 dP

(
khP

+
1 , (k′g)−1wP+

1
)

+ σ2(h)
σ1(h) + σ2(g)

σ1(g) + σ2(h)
σ1(h) ·

σ2(g)
σ1(g)

The inequality follows.

(ii) We note that since `1(g) = limn σ1(gn)1/n we also have

`1(g) 6 lim
n→∞

σ1(gn+1)
σ1(gn)

We may choose a sequence (mn)n∈N such that `1(g) 6 limn
σ1(gmn+1)
σ1(gmn ) . Let us write

gmn = kndiag
(
σ1
(
gmn

)
, ..., σd

(
gmn

))
k′n

in the standard Cartan decomposition of GL(d,R). Note that Ξ+
1 (gmn) = knP

+
1 and up to passing

to a subsequence we may assume that limn kn = k∞ ∈ O(d). Therefore, we obtain

lim
n→∞

dP
(
Ξ+

1 (gmn), (k′g)−1wP+
1
)

= dP
(
k∞P

+
1 , (k′g)−1wP+

1
)
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Since limn
σ1(gn)
σ2(gn) = +∞, by part (i) we have that

`1(g)
σ1(g) 6 lim

n→∞

σ1(gmn+1)
σ1(gmn)σ1(g) 6 lim

n→∞
dP
(
Ξ+

1 (gmn), (k′g)−1wP+
1
)

+ σ2(g)
σ1(g)

Proof of Proposition 3.6.6. By assumption, there exists C > 0 such that σ1(ρ(γ))
σ2(ρ(γ)) > C|γ|κ+1

Γ for
every γ ∈ Γ. Karlsson’s estimate for the Floyd distance (see [Kar03, Lemma 1]) shows that there
existsM > 0 such that df

(
g, h

)
6 M

(g·h)κe
for every g, h ∈ Γ. Hence, by Lemma 3.2.7 (i) there exists

C1 > 0 and a finite subset A of Γ such that

dP
(
Ξ+

1 (ρ(g)),Ξ+
1 (ρ(h))

)
6

C1

(g · h)κe

for all g, h ∈ Γ− A.

(i) We note that k′g−1 = wk−1
g . By using Lemma 3.6.7 (i) and since min{|g|Γ, |h|Γ} > max{1, (g ·

h)e} we obtain:

σ1
(
ρ(g−1h)

)
σ1
(
ρ(g−1)

)
σ1
(
ρ(h)

) 6 σ2(ρ(h))
σ1(ρ(h)) + σd−1(ρ(g))

σd(ρ(g)) + σ2(ρ(h))
σ1(ρ(h)) ·

σd−1(ρ(g))
σd(ρ(g)) + dP

(
Ξ+

1 (ρ(g)),Ξ+
1 (ρ(h))

)
6

1
C|g|κ+1

Γ
+ 1
C|h|κ+1

Γ
+ 1
C2|g|κ+1

Γ |h|κ+1
Γ

+ C1

(g · h)κe
6

M

(g · h)κe

where M = 2
C + 1

C2 + 1
C1

. Since A is finite, part (i) follows.

(ii) Let γ ∈ Γ−A be of infinite order. We recall that limn
|γn|Γ
n = |γ|Γ,∞ and hence limn

(
|γn+1|Γ−

|γn|Γ
)
6 |γ|Γ,∞. We may find a sequence (mn)n∈N such that limn

(
|γmn+1|Γ − |γmn |Γ

)
6 |γ|Γ,∞. It

follows that
lim
n→∞

(γmn · γ−1)e >
1
2
(
|γ|Γ − |γ|Γ,∞

)
The uniform gap summation property implies that the limit limn Ξ+

1 (ρ(γn)) exists. We obtain the
bound

dP
(

lim
n→∞

Ξ+
1 (ρ(γn)),Ξ+

1
(
ρ(γ−1)

))
= lim

n→∞
dP
(
Ξ+

1
(
ρ(γmn)

)
,Ξ+

1
(
ρ(γ−1)

))
6

2κC1(
|γ|Γ − |γ|Γ,∞

)κ .
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By Lemma 3.6.7 (ii) we have that

`1(ρ(γ))
σ1(ρ(γ)) 6

σ2(ρ(γ))
σ1(ρ(γ)) + 2κC1(

|γ|Γ − |γ|Γ,∞
)κ 6 1

C|γ|1+κ
Γ

+ 2κC1(
|γ|Γ − |γ|Γ,∞

)κ 6 2κC1 + 1/C(
|γ|Γ − |γ|Γ,∞

)κ .
Since A is a finite subset of Γ, the inequality follows.

Now we can finish the proof of Proposition 1.4.9.

Proof of Proposition 1.4.9 (iii). We may assume that G = SL±(d,R), ρ is semisimple and P1-
Anosov, ρ(Γ) preserves a properly convex domain Ω of P(Rd) and acts cocompactly on a closed
convex subset C of Ω. For γ ∈ Γ, let ρ(γ)+ be the attracting fixed point of ρ(γ) in the Gromov
boundary of C. By applying Proposition 3.5.4 for

(
X, dX

)
=
(
Γ, dΓ

)
and

(
Y, dY

)
=
(
C, dΩ

)
and

Lemma 2.2.7 we can find L,L′, a > 0 such that

(
ρ(γ)+ · ρ(γ)−1x0

)
x0
6 a

(
γ+ · γ−1)

e
+ L 6

a

2
(
|γ|Γ − |γ|Γ,∞

)
+ L′

for every γ ∈ Γ. By Lemma 2.2.7 we obtain uniform constants M,m > 0 such that

1
4 log σ1(ρ(γ))

`1(ρ(γ)) 6
1
4 log σ1(ρ(γ))`d(ρ(γ))

σd(ρ(γ))`1(ρ(γ))

6
1
2
(
dΩ(ρ(γ)x0, x0)− |ρ(γ)|C,∞

)
+m

6
(
ρ(γ)+ · ρ(γ)−1x0

)
x0

+M

for every γ ∈ Γ. The upper bound follows.
Let us fix da a visual metric on the compactification Γ ∪ ∂∞Γ. Since ρ is P1-Anosov, the map

Ξ+ ∪ ξ+ :
(
∂∞Γ ∪ Γ, da

)
→
(
P(Rd), dP

)
is s-Hölder for some s > 0 (see for example Section 3.9).

By Lemma 3.6.7 (ii) and Lemma 2.2.7 there exist C ′, C ′′, a1 > 0 such that:

`1(ρ(γ))
σ1(ρ(γ)) 6

σ2(ρ(γ))
σ1(ρ(γ)) + dP

(
x+
ρ(γ),Ξ

+
1
(
ρ(γ−1)

))
6 C ′e−a1|γ|Γ + dP

(
x+
ρ(γ),Ξ

+
1
(
ρ(γ−1)

))
6 C ′e−a1|γ|Γ + C ′′a−s(γ

+·γ−1)e

6 C ′e−a1
(
|γ|Γ−|γ|Γ,∞

)
+ C ′′e−

s log a
2

(
|γ|Γ−|γ|Γ,∞

)
6 (C ′ + C ′′)e−ζ

(
|γ|Γ−|γ|Γ,∞

)

where ζ = min{a1,
s log a

2 }. This concludes the proof of the lower bound.
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3.7 Strongly convex cocompact subgroups of PGL(d,R)

In this section, we prove Theorem 1.4.6 which we recall here.

Theorem 1.4.6. Let Γ be a finitely generated subgroup of PGL(d,R). Suppose that Γ preserves
a strictly convex domain of P(Rd) with C1-boundary and the natural inclusion Γ ↪−→ PGL(d,R) is
semisimple. Then the following conditions are equivalent:

(i) Γ is strongly convex cocompact in P(Rd).

(ii) Γ ↪−→ PGL(d,R) is a quasi-isometric embedding, Γ preserves a properly convex domain Ω of
P(Rd) and there exists a Γ-invariant closed convex subset C of Ω such that

(
C, dΩ

)
is Gromov

hyperbolic.

For our proof we need the following proposition characterizing P1-Anosov representations in
terms of the Gromov product under the assumption that the group preserves a domain with
strictly convex and C1-boundary.

Proposition 3.7.1. Let Γ be a word hyperbolic subgroup of PGL(d,R) which preserves a strictly
convex domain Ω of P(Rd) with C1-boundary. Then the following are equivalent.

(i) The natural inclusion Γ ↪−→ PGL(d,R) is P1-Anosov.

(ii) There exist constants J, k > 0 such that

1
J

(γ · δ)e − k 6 (γ · δ)ε1 6 J(γ · δ)e + k

for every γ, δ ∈ Γ.

Proof. (ii)⇒ (i). We observe that Γ is a discrete subgroup of PGL(d,R). Let (γn)n∈N be an infinite
sequence of elements of Γ and x0 ∈ Ω. We may pass to a subsequence such that limn γknx0 ∈ ∂Ω
exists. Since ∂Ω is strictly convex we conclude that limn γknx0 is independent of the basepoint x0.
Therefore, as in [DGK17, Lemma 7.5] or Lemma 3.2.4, we conclude that limn

σ2
σ1

(γkn) = 0 and Γ
has to be P1-divergent.

Now let (γn)n∈N, (δn)n∈N be two sequences of elements of Γ which converge to a point x ∈ ∂∞Γ.
We claim that the limits limn γnx0, limn δnx0 exist and are equal. Note that the limits will be
independent of the choice of x0. We may write

γn = wγn exp(µ(γn))w′γn and δn = wδn exp(µ(δn))w′δn
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where wγn , w′γn , wδn , w′δn ∈ PO(d). Since Γ is P1-divergent, there exist subsequences (γkn)n∈N,
(δsn)n∈N such that a1 = limn γknx0 = limn Ξ+

1 (γkn), a2 = limn δsnx0 = limn Ξ+
1 (δsn), limn Ξ−1 (γkn) =

a−1 and limn Ξ−1 (δsn) = a−2 , where Ξ+
1 (γkn) = [wγkn e1] and Ξ−1 (γkn) = [wγkn e

⊥
d ]. Proposition 3.6.2

and the fact that (γkn · δsn)ε1 →∞ show that

lim
n→∞

dist
(
Ξ+

1 (γkn),Ξ−1 (δsn)
)
· dist

(
Ξ+

1 (δsn),Ξ−1 (γkn)
)

= 0

so either a1 ∈ a−2 or a2 ∈ a−1 . Using the same argument, we see that

lim
n→∞

dist
(
Ξ+

1 (γkn),Ξ−1 (γkn)
)

= lim
n→∞

dist
(
Ξ+

1 (δsn),Ξ−1 (δsn)
)

= 0

so ai ∈ a−i for i = 1, 2. In each case, the previous calculation shows that a1, a2 ∈ a−1 or a1, a2 ∈ a−2 .
Without loss of generality, assume that a2 ∈ a−1 , so the projective line segment [a1, a2] is contained
in the projective hyperplane a−1 and Ω. Since Γ is P1-divergent, there exist x∗0 ∈ Ω∗ such that
limn Ξ−1 (γkn) = limn γknx

∗
0 and a−1 ∈ ∂Ω∗. Therefore, a−1 avoids Ω. We conclude that [a1, a2] is

contained in ∂Ω and a1 = a2.
Finally, for any two sequences of (γn)n∈N and (δn)n∈N converging to x ∈ ∂∞Γ the limits

limn γnx0 and limn δnx0 exist and are equal. We obtain a Γ-equivariant map ξ : ∂∞Γ → P(Rd)
defined by the formula ξ(limn γn) = limn γnx0. Let x = limn δn and suppose limn xn = x in ∂∞Γ.
We may write xn = limm γn,m. For every n there exists kn,mn ∈ N, such that (γn,kn · δmn)e > n

and dP
(
γn,knx0, ξ(xn)

)
6 1

n . Then, limn γn,knx0 exists and is equal to ξ(x) = limn δnx0. It follows,
that limn ξ(xn) = ξ(x). So the map ξ is continuous. By definition ξ has the Cartan property.

The dual convex set Ω∗ has strictly convex boundary since the boundary of Ω is of class C1.
By considering the standard identification of P((Rd)∗) with P(Rd), we obtain a properly convex
domain Ω′ of P(Rd) which is Γ∗-invariant and has strictly convex boundary. Since (γ−t · δ−t)ε1 =
(γ ·δ)ε1 , we obtain a continuous Γ∗-equivariant limit map ξ∗ : ∂∞Γ→ P(Rd) satisfying the Cartan
property. From ξ∗ we obtain a Γ-equivariant continuous map ξ− : ∂∞Γ→ Grd−1(Rd) as follows: if
ξ∗(x) = [kxe1] where kx ∈ PO(d) then ξ−(x) = [kxe⊥1 ].

For two distinct points x, y ∈ ∂∞Γ, we choose sequences (αn)n∈N, (βn)n∈N with x = limn αn,
y = limn βn and (x · y)e = limn(αn ·βn)e. By Proposition 3.6.2 and the assumption, we obtain the
lower bound

dist
(
ξ(x), ξ−(y)

)
· dist

(
ξ(y), ξ−(x)

)
> e−4J(x·y)e−4k > 0

Therefore, the pair of maps (ξ, ξ−) is transverse. Finally, the inclusion Γ ↪−→ PGL(d,R) is P1-
divergent, admits a pair (ξ, ξ−) of Γ-equivariant, continuous transverse maps with the Cartan
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property, so Theorem 1.4.1 shows that the inclusion Γ ↪−→ PGL(d,R) is P1-Anosov.
The converse is a consequence of Corollary 1.4.9.

Proof of Theorem 1.4.6. The implication (i)⇒ (ii) follows immediately by the Svarc-Milnor lemma.
Now assume that (ii) holds. By [DGK17, Theorem 1.4] it is enough to prove that Γ ↪−→ PGL(d,R)
is P1-Anosov. Let x0 ∈ C. Lemma 2.7.2 shows that the orbit map x0 7→ γx0 is a quasi-isometric
embedding of Γ into (C, dΩ), hence Γ is word hyperbolic. By Proposition 3.5.4 and Lemma 2.7.2
there exist constants J, k > 0 such that for every γ, δ ∈ Γ

1
J

(γ · δ)e − k 6
(
ρ(γ) · ρ(δ)

)
ε1
6 J(γ · δ)e + k

Proposition 3.7.1 then finishes the proof.

3.8 Distribution of singular values

Let Γ be a word hyperbolic group and ρL : Γ → SL(m,R) and ρR : Γ → SL(d,R) be two
representations. By using Theorem 1.4.1 we exhibit conditions guaranteeing that the products
ρL × ρR and ρL ⊗ ρR are P1-Anosov and P2-Anosov respectively. We deduce estimates on the
distribution of the Cartan projections of the images of the representations ρL and ρR.

Recall that for a matrix g ∈ GL(d,R) and 1 6 i 6 d, µi(g) (resp. λi(g)) is the logarithm
of the i-th singular value (resp. modulus of the i-th eigenvalue) of g. For q ∈ N, let Symq(Rd)
be the q-symmetric power of V = Rd and symq : GL(d,R) → GL(Symq(Rd)) the corresponding
representation. Note that with respect to the standard Cartan decomposition we have σ1(symqg) =
(σ1((g))q.

Theorem 3.8.1. Let Γ be a word hyperbolic group and let ρL : Γ → SL(m,R), ρR : Γ →
SL(d,R) be two representations such that there exists an infinite order element γ0 ∈ Γ with
λ1(ρL(γ0)) > λ1(ρR(γ0)). Furthermore, suppose that ρL is P1-Anosov and ρR satisfies one of the
following conditions:

(i) ρR is P1-Anosov.

(ii) ρR(Γ) is contained in a semisimple proximal Lie subgroup of SL(d,R) of real rank 1.

Then, the following conditions are equivalent:

(1) The representation ρL × ρR : Γ→ SL(m+ d,R) is P1-Anosov.

(2) lim
|γ|Γ→∞

µ1(ρL(γ))− µ1(ρR(γ)) = +∞.
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(3) There exist C, c > 0 such that

∣∣µ1(ρL(γ))− µ1(ρR(γ))
∣∣ > c log |γ|Γ − C

for every γ ∈ Γ.

(4) lim
|γ|∞→∞

λ1(ρL(γ))− λ1(ρR(γ)) = +∞.

(5) There exist C, c > 0 such that

∣∣λ1(ρL(γ))− λ1ρR((γ))
∣∣ > c log |γ|Γ,∞ − C

for every γ ∈ Γ of infinite order.

Proof. Let G be a P1-proximal Lie subgroup of SL(d,R) of real rank 1 with Cartan projection
µG : G→ R. Up to conjugation, we may writeG = KG exp

(
µG(G)X0

)
KG, whereKG ⊂ hSO(d)h−1

for some h ∈ SL(d,R) and exp(tX0) = diag(eta1 , ..., etak) with a1 > a2 ≥ ... ≥ ad−1 > ad. The sub-
additivity of the Cartan projection shows that there existsM > 0 such that

∣∣µi(g)−aiµG(g)
∣∣ 6M

for every g ∈ G and 1 ≤ i ≤ d. In particular, there exists M ′ > 0 such that

µ1(g)− µ2(g) ≥ a1 − a2

a1
µ1(g)−M ′ ∀g ∈ G.

Since we assume that ρR is P1-Anosov or µ(ρR(Γ)) is contained in a proximal, rank 1 Lie
subgroup G of SL(d,R), by the previous remarks we can find A, a > 0 such that

λ1(ρR(γ))− λ2(ρR(γ)) > aλ1(ρR(γ))

µ1(ρR(γ))− µ2(ρR(γ)) > aµ1(ρR(γ))− A

Let ρ := ρL×ρR. We obtain continuous, ρ-equivariant and transverse maps ξ+
LR : ∂∞Γ→ P(Rm+d)

and ξ+
LR : ∂∞Γ→ Grm+d−1(Rm+d) defined as follows:

ξ+
LR(x) = ξ+

L (x) and ξ−LR(x) = ξ−L (x)⊕ Rd

where ξ+
L and ξ−L are the Anosov limit maps of ρL. For every element γ ∈ Γ we observe that the
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following estimates hold:

(a)
∣∣µ1(ρL(γ))− µ1(ρR(γ))

∣∣ > µ1(ρ(γ))− µ2(ρ(γ))∣∣λ1(ρL(γ))− λ1(ρR(γ))
∣∣ > λ1(ρ(γ))− λ2(ρ(γ))

(b) µ1(ρ(γ))− µ2(ρ(γ)) > min
(∣∣µ1(ρL(γ))− µ1(ρR(γ))

∣∣, µ1(ρL,R(γ))− µ2(ρL,R(γ))
)

λ1(ρ(γ))− λ2(ρ(γ)) > min
(∣∣λ1(ρL(γ))− λ1(ρR(γ))

∣∣, λ1(ρL,R(γ))− λ2(ρL,R(γ))
)

(2) ⇒ (1). We observe that condition (2) and estimate (b) together show that ρ is P1-divergent.
Since ξ+

L satisfies the Cartan property and ε1, µ1(ρL(γ)) − µ1(ρR(γ)) > 0 as |γ|Γ → ∞, the map
ξ+
LR has the Cartan property. The maps ξ+

LR and ξ−LR are transverse, hence Theorem 1.4.1 shows
that ρL × ρR is P1-Anosov.

(3)⇒ (1). We first assume that c > 1. By estimate (b), there exists a constant C1 > 0 such that

µ1(ρ(γ))− µ2(ρ(γ)) > c log |γ|Γ − C1

for every γ ∈ Γ. Therefore, by [Gué+17, Theorem 5.3], we obtain a ρ-equivariant map ξ : ∂∞Γ→
P(Rm+d) which satisfies the Cartan property. Then, since ρ(γ0) is P1-proximal, we have ξ(γ+

0 ) =
ξ+
LR(γ+

0 ). The minimality of the action of Γ on ∂∞Γ shows that ξ = ξ+
LR. Then ξ+

LR satisfies the
Cartan property, ξ−LR and ξ+

LR are transverse and ρ is P1-divergent. Theorem 1.4.1 shows that
ρ is P1-Anosov. If c 6 1, we choose n ∈ N large enough and consider the symmetric powers
symnρL, symnρR of ρL, ρR respectively. Then symnρL is P1-Anosov and symnρR satisfies either
(i) or (ii). Since µ1(symnρR(γ)) = nµ1(ρR(γ)) for γ ∈ Γ, the representation symnρL × symnρR

satisfies condition (3) for c > 1. Therefore, the previous argument implies that the representation
symnρL×symnρR is P1-Anosov. Therefore, by estimate (a), we obtain uniform constants k,K > 0
such that

∣∣µ1(ρL(γ))− µ1(ρR(γ))
∣∣ > k|γ|Γ −K for every γ ∈ Γ. The first part again verifies that

ρ is P1-Anosov.

(4)⇒ (1). We are proving that (4)⇒ (2). Let ρssL , ρssR be semisimplifications of ρL, ρR respectively.
By Proposition 2.6.2, it is enough to show that ρssL × ρssR is P1-Anosov. By Theorem 2.6.1 there
exists C > 0 and a finite subset F of Γ such that for every γ ∈ Γ, there exists f ∈ F such
that

∣∣λ1(ρL(γf))−µ1(ρssL (γ))
∣∣ 6 C and

∣∣λ1(ρR(γf))− µ1(ρssR (γ))
∣∣ 6 C. Let (γn)n∈N be an infinite

sequence of elements of Γ. For every n ∈ N we choose fn ∈ F satisfying the previous bounds. The
triangle inequality shows ||λ(ρL(γnfn)|| > ||µ(ρL(γn))|| − C, hence limn |γnfn|∞ = +∞. There-
fore, limn λ1(ρssL (γnfn)) − λ1(ρssR (γnfn)) = +∞ so limn µ1(ρssL (γn)) − µ1(ρssR (γn)) = +∞. The
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claim now follows by (2)⇒ (1).

(5) ⇒ (1). It is enough to prove that the semisimplification ρssL × ρssR of ρ is P1-Anosov. Note
that the representation ρssL is P1-Anosov and ρssR satisfies either (i) or (ii). By Theorem 2.6.1
there exists L > 0 and a finite subset F of Γ such that for every γ ∈ Γ there exists f ∈ F with
||λ(ρL(γf)) − µ(ρssL (γ))|| 6 L and ||λ(ρR(γf))− µ(ρssR (γ))|| 6 L. Since ρL is a quasi-isometric
embedding, by using the previous inequality, we may findM > 0 such that |γf |Γ,∞ > 1

M |γ|Γ−M ,
where γ ∈ Γ and f ∈ F are as previously. Finally, we obtain L′, c > 0 such that for every γ ∈ Γ
we have ∣∣µ1(ρssL (γ))− µ1(ρssR (γ))

∣∣ > c log |γ|Γ − L′

Therefore, ρssL × ρssR is P1-Anosov from (3)⇒ (1).

(1)⇒ (2),(3),(4),(5). Since 〈ε1, λρL(γ0))〉 > 〈ε1, λ(ρR(γ0))〉, ξ+
LR(γ+

0 ) is the attracting fixed point
of ρ(γ0) in P(Rm+d). The action of Γ on ∂∞Γ is minimal, hence ξ+

LR is the Anosov limit map of
ρ. In particular, ξ+

LR satisfies the Cartan property. This shows that for any sequence (γn)n∈N of
elements of Γ we have limn

〈
ε1, µ(ρL(γn))−µ(ρR(γn))

〉
= +∞. The Anosov limit map of ρ has to

be the map ξ+
LR since ξ+

LR(γ+
0 ) is the attracting fixed point of ρ(γ) in P(Rm+d) and hence there

exists ε > 0 such that (1 − ε)〈ε1, λ(ρL(γ))〉 > 〈ε1, λ(ρR(γ))〉 for every γ ∈ Γ. By estimates (a),
(b) and Theorem 2.5.3 (ii) we deduce that (3), (4), (5) hold.

Let ρi : Γ→ SL(mi,R), i = 1, 2 be two representations such that ρ2 is P1-Anosov. The stretch
factors associated with the representations ρ1 and ρ2 are:

υ+(ρ1, ρ2) = sup
γ∈Γ∞

λ1(ρ1(γ))
λ1(ρ2(γ)) and υ−(ρ1, ρ2) = inf

γ∈Γ∞

λ1(ρ1(γ))
λ1(ρ2(γ))

where Γ∞ denotes the set of infinite order elements of Γ. Since ρ2 is a quasi-isometric embedding
both quantities are well defined.

Proof of Corollary 1.4.3. We consider the representation ρ = symqρ1×sympρ2. The representation
sympρ2 is P1-Anosov and symqρ1 satisfies either condition (i) or (ii) of Theorem 3.8.1. We consider
the following cases:

Case 1. λ1(ρ1(γ))
λ1(ρ2(γ)) = p

q for every γ ∈ Γ of infinite order. Note that ρ1 is a quasi-isometric embedding.
If ρ1(Γ) lies in a proximal semisimple rank 1 subgroup of SL(d,R), then ρ1 is P1-Anosov. In each
case both ρ1 and ρ2 are P1-Anosov and the conclusion follows immediately by Lemma 2.7.5 and
Theorem 2.6.1.

Case 2. v−(ρ1, ρ2) < p
q ≤ v+(ρ1, ρ2). We may find γ0 ∈ Γ of infinite order such that pλ1(ρ2(γ0)) >
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qλ1(ρ1(γ0)) and λ1(sympρ2(γ0)) > λ1(symqρ1(γ0)). Suppose that there exists δ > 0 such that∣∣µ1(symqρ1(γ))− µ1(sympρ2(γ))
∣∣ ≥ δ log |γ|Γ for every γ ∈ Γ. Theorem 3.8.1 (3) implies that ρ is

P1-Anosov and sympρ2 uniformly dominates symqρ1. This contradicts the fact that p
q ≤ v+(ρ1, ρ2).

Case 3. p
q = v−(ρ1, ρ2) and λ1(ρ1(γ)) ≥ p

qλ1(ρ2(γ)) for every γ ∈ Γ. We deduce that ρ1 is a
quasi-isometric embedding. In each case, under the assumption of the corollary, ρ1 is P1-Anosov.
By Case 1, we may find γ1 ∈ Γ of infinite order such that qλ1(ρ1(γ1)) > pλ1(ρ2(γ1)) and hence
λ1(symqρ1(γ1)) > λ1(sympρ2(γ1)). If the conclusion fails to hold for some δ > 0, by Theorem 3.8.1
(3) we deduce that ρ is P1-Anosov and symqρ1 uniformly dominates sympρ2. This contradicts the
fact that p

q = v−(ρ1, ρ2).

Remarks 3.8.2. (i) In Theorem 3.8.1, when both ρL(Γ) and ρR(Γ) are contained in a proximal
real rank 1 subgroup of SL(m,R) and SL(d,R) respectively, the equivalences (1) ⇔ (2) ⇔ (3)
follow by [Gué+17, Theorem 1.14]. If ρL and ρR take values in Autk(b) (k = R,C,H) for some
bilinear form b (see [Gué+17, §7] for background), the implications (1)⇔ (2)⇔ (3)⇒ (5)⇒ (4)
of Theorem 3.8.1 follow by [Gué+17, Proposition 7.13 & Lemma 7.11 & Theorem 1.3].

(ii) By Theorem 2.6.1 and Corollary 1.4.3 we deduce that the closure of the set

{
λ1(ρ1(γ))
λ1(ρ2(γ)) : γ ∈ Γ∞

}

is the closed interval
[
υ−(ρ1, ρ2), υ+(ρ1, ρ2)

]
. We may replace both ρ1 and ρ2 with their semisim-

plifications, so this fact also follows by the limit cone theorem of Benoist in [Ben97]. In the case
where ρ1 and ρ2 are convex cocompact into a Lie group of real rank 1, the previous fact also
follows by [Bur93, Theorem 2].

By using similar arguments as in Theorem 3.8.1 we obtain the following conditions for the
tensor product ρL ⊗ ρR to be P2-Anosov.

Proposition 3.8.3. Let m, d ≥ 2, Γ be a word hyperbolic group and ρL : Γ→ GL(m,R), ρR : Γ→
GL(d,R) be two P1 and P2-Anosov representations. Then the following conditions are equivalent:

(1) The representation ρL ⊗ ρR : Γ→ GL(md,R) is P2-Anosov.

(2) There exist C, c > 1 such that

∣∣(µ1 − µ2)(ρL(γ))− (µ1 − µ2)(ρR(γ))
∣∣ > c log |γ|Γ − C

for every γ ∈ Γ.
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(3) There exist C, c > 1 such that

∣∣(λ1 − λ2)(ρL(γ))− (λ1 − λ2)(ρR(γ))
∣∣ > c log |γ|Γ,∞ − C

for every γ ∈ Γ of infinite order.

Proof. We observe that for any γ ∈ Γ the following estimates hold:

(a)
∣∣(µ1 − µ2)(ρL(γ))− (µ1 − µ2)(ρR(γ))

∣∣ > (µ2 − µ3)((ρL ⊗ ρR)(γ))∣∣(λ1 − λ2)(ρL(γ))− (λ1 − λ2)(ρR(γ))
∣∣ > (λ2 − λ3)((ρL ⊗ ρR)(γ))

(b) (µ2 − µ3)((ρL ⊗ ρR)(γ)) > min
(∣∣(µ1 − µ2)(ρL(γ))− (µ1 − µ2)(ρR(γ))

∣∣, (µ2 − µ3)(ρL,R(γ))
)

(λ2 − λ3)((ρL ⊗ ρR)(γ)) > min
(∣∣(λ1 − λ2)(ρL(γ))− (λ1 − λ2)(ρR(γ))

∣∣, (λ2 − λ3)(ρL,R(γ))
)

The two estimates in (a) immediately imply (1) ⇒ (2), (3). Note that for this part, we did not
use the fact that ρL, ρR are P1-Anosov.

Suppose that (2) holds. Notice that since ρL and ρR are P2-Anosov, by estimate (b) the
representation ρL⊗ρR satisfies the uniform gap summation property with respect to θ = {ε2−ε3}.
Moreover, since ρL and ρR satisfy condition (ii) of Corollary 1.4.2 for α = ε1− ε2 and ε2− ε3 , by
the previous estimates we deduce that ρL ⊗ ρR also satisfies condition (ii) of Corollary 1.4.2 for
α = ε2 − ε3. Then ρL ⊗ ρR is P2-Anosov and (2)⇒ (1) follows.

For the implication (3) ⇒ (1), let ρssL and ρssR be two semsimplifications of ρL and ρR re-
spectively. It is enough to prove that ρssL ⊗ ρssR is P2-Anosov. We may work as in Theorem 3.8.1
(5) ⇒ (1), to see that (2) holds for ρssL and ρssR . Then, ρssL ⊗ ρssR is P2-Anosov by (2) ⇒ (1). The
proof follows.

Let S be a closed orientable surface of genus at least 2. Recall that a Fuchsian representation is
the composition of a discrete faithful representation j : π1(S)→ PSL(2,R) with the (unique up to
conjugation) irreducible representation id : PSL(2,R) ↪−→ PSL(d,R) and a continuous deformation
of a Fuchsian representation is called a Hitchin representation. We use the calculation of the simple
root entropy for Hitchin representations by Potrie-Sambarino in [PS17] to prove that the tensor
product of two Hitchin representations is not P2-Anosov and hence, by using Proposition 3.8.3,
we deduce the following:

Corollary 3.8.4. Let d1, d2 > 2, Γ := π1(S) and ρ1 : Γ → PSL(d1,R), ρ2 : Γ → PSL(d2,R) be
two Hitchin representations. There exists a constant C > 0 depending only on ρ1 and an infinite
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sequence of elements (γn)n∈N of Γ such that

∣∣∣∣∣1− µ1(ρ2(γn))− µ2(ρ2(γn))
µ1(ρ1(γn))− µ2(ρ1(γn))

∣∣∣∣∣ 6 C log |γn|Γ
|γn|Γ

for every n ∈ N.

Proof. We first conclude that the tensor product ρ1 ⊗ ρ2 is not P2-Anosov. We fix a hyperbolic
structure on Sg and let {gt}t∈R be the geodesic flow on T 1S. For a Hölder continuous function
f : T 1S → R we denote by {gft }t∈R the reparametrization of {gt}t∈R by f . For more details on
the thermodynamical formalism we refer the reader to [Bri+15] and the references therein. Since
ρ1, ρ2 are Borel Anosov [Lab06], there exist positive, Hölder continuous functions fρi : T 1S → R,
i = 1, 2 with the following property: a periodic orbit represented by the conjugacy class of an
element γ ∈ Γ has period `ρi(γ) := λ1(ρi(γ)) − λ2(ρi(γ)) as a g

fρi
t -periodic orbit. Note that

for a point x in this periodic orbit we have
∫ `ρ1 (γ)

0
fρ2
fρ1

(gfρ2s (x))ds = `ρ2(γ). By the theorem of
Potrie-Sambarino [PS17], the topological entropy of gfρ1 and gfρ2 is equal to 1. Then, [Bri+15,
Proposition 3.8] applied to fρ1 and fρ2 , provides sequences (δn)n∈N and (δ′n)n∈N of elements of
Γ with limn

`ρ2 (δ′n)
`ρ1(δ′n) 6 1 6 limn

`ρ2 (δn)
`ρ1(δn) . Up to passing to a subsequence, let m1 and m2 be the

weak limit of the gfρ1 -invariant measures supported on the periodic orbits represented by δn and
δ′n respectively. Then,

∫
T 1S

fρ2
fρ1
dm1 6 1 6

∫
T 1S

fρ2
fρ1
dm2 and we can find 0 6 t 6 1 such that∫

T 1S
fρ2
fρ1
dm = 1, where m = tm1 + (1− t)m2. By the Anosov closing lemma we obtain a sequence

of periodic orbits represented by the elements (γ′n)n∈N such that limn
`ρ2 (γ′n)
`ρ1 (γ′n) =

∫
T 1S

fρ2
fρ1
dm = 1.

Therefore, estimate (a) of the proof of Proposition 3.8.3 shows that the representation ρ1 ⊗
ρ2 cannot be P2-Anosov. For every n > 2, Proposition 3.8.3 (2) provides an element γn ∈ Γ
with |γn|Γ > n and

∣∣(µ1 − µ2)(ρ1(γn))− (µ1 − µ2)(ρ2(γn))
∣∣ 6 (1 + 1

n) log |γn|Γ. The conclusion
follows.

3.9 The Hölder exponent of the Anosov limit maps

In this section, we express the Hölder exponent of the limit map of an Anosov representation
ρ : Γ→ G in terms of the Cartan and Lyapunov projection of ρ(Γ). Let us recall the definition of
the Hölder exponent of a continuous map between two metric spaces.

Definition 3.9.1. Let (X1, d1) and (X2, d2) be two metric spaces and f : (X1, d1)→ (X2, d2) be
a Hölder continuous map. The Hölder exponent of f is defined to be

αf (d1, d2) := sup
{
α > 0 : ∃ C > 0, d2

(
f(x), f(y)

)
6 C · d1(x, y)α ∀ x, y ∈ X1

}
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We have the following computation for the Hölder exponent of the limit map ξ : ∂∞Γ→ P(Rq) of
a P1-Anosov representation ρ : Γ→ GL(q,R) when ξ is spanning. In the case where V = 〈ξ(∂∞Γ)〉
is a proper subspace of Rq, we can always consider the restirction of ρ|V which is also P1-Anosov
and its Anosov limit map ξ is spanning.

Theorem 1.4.13. Let (X, d) be a Gromov hyperbolic space and let Γ be a word hyperbolic group
acting properly discontinuously and cocompactly on X by isometries. We fix x0 ∈ X and a >

0 such that there exists a visual metric da on ∂∞X with da(x, y) � a−(x·y)x0 for x, y ∈ ∂∞X.
Suppose that q > 2 and ρ : Γ → SL(q,R) is a P1-Anosov representation whose Anosov limit map
ξ :
(
∂∞X, da

)
→
(
P(Rq), dP

)
is spanning. Then

αξ
(
da, dP

)
= 1

log a · sup
n>1

inf
|γ|X>n

µ1(ρ(γ))− µ2(ρ(γ))
|γ|X

where |γ|X = d(γx0, x0).

Proof. We set am := inf |γ|X>m
1
|γ|X 〈ε1 − ε2, µ(ρ(γ))〉 for m > 1. First, we prove that α(da, dP) >

1
log a

(
supm>1 am

)
. Fix ε > 0. Let g, h ∈ Γ be two elements and [gx0, hx0] ⊂ X be a geodesic joining

gx0 and hx0. Let p ∈ [gx0, hx0] such that d(x0,m) = dist(x0, [gx0, hx0]). Then, we consider points
y0 = p, x1, ..., xk = gx0 and y0 = p, y1, ..., y` = hx0 with the property 1

2 6 d(xi, xi+1) 6 1
and 1

2 6 d(yj , yj+1) 6 1 for every i, j. We can find L > 0 and g0, .., gk, h1, ..., h` ∈ Γ, with
gk = g, h` = h, d(gix0, xi) 6 L and d(hix0, yi) 6 L. We note that g−1

i gi+1 and h−1
j hj+1 always

lie in a finite subset F of Γ. By Proposition 2.5.5 (i), there exists a constant Cρ > 0 such that
dP
(
Ξ+

1 (ρ(gf)),Ξ+
1 (ρ(g))

)
6 Cρ

σ2(ρ(g))
σ1(ρ(g)) for every f ∈ F and g ∈ Γ. By using the previous inequality

and arguing as in [Kar03, Lemma 1] we obtain the bounds:

dP
(
Ξ+

1
(
ρ(g)

))
,Ξ+

1
(
ρ(h)

))
6

k∑
i=1

dP
(
Ξ+

1
(
ρ(gi)

)
,Ξ+

1
(
ρ(gi+1)

))
+
∑̀
i=1

dP
(
Ξ+

1
(
ρ(hi)

)
,Ξ+

1
(
ρ(hi+1)

))
= Cρ

∑
i:|gi|X>m

σ2(ρ(gi))
σ1(ρ(gi))

+ Cρ
∑

i:|hi|X>m

σ2(ρ(hi))
σ1(ρ(hi))

+ Cρ
∑

i:|gi|X<m

σ2(ρ(gi))
σ1(ρ(gi))

+ Cρ
∑

i:|hi|X<m

σ2(ρ(hi))
σ1(ρ(hi))

6 Cρ
∑

i:|gi|X>m

e−am|gi|X + Cρ
∑

i:|hi|X>m

e−am|hi|X+

+ Cρ
∑

i:|gi|X<m
e(am−a1)me−am|gi|Γ + Cρ

∑
i:|hi|X<m

e(am−a1)me−am|hi|X

6 Cρe
(am−a1)m

k∑
i=1

e−am|gi|X + Cρe
(am−a1)m

k∑
i=1

e−am|hi|X
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The choice of the midpoint p ∈ X and the triangle inequality show that:

|gi|X > max
{
i− d(x0, p)− L, d(x0, p)− L

}
and |hj |X > max

{
j − d(x0, p)− L, d(x0, p)− L

}

for every 1 6 i 6 k and 1 6 j 6 `. Therefore, for every g, h ∈ Γ

dP
(
Ξ+

1
(
ρ(g)

)
,Ξ+

1
(
ρ(h)

))
6 2Cρe(am−a1)m

(
2d(x0, p) + eamL

1− e−am
)
e−amd(x0,p)

Since (X, d) is Gromov hyperbolic, there exists δ > 0 such that
∣∣d(x0, [gx0, hx0])−(gx0 ·hx0)x0

∣∣ 6 δ

for every g, h ∈ Γ. If we set Rm := eamL

1−e−am then:

dP
(
Ξ+

1
(
ρ(g)

)
,Ξ+

1
(
ρ(h)

))
6

2Cρ
ε
· e(am−a1)m · eεRm · e−(am−2ε)d(x0,p)

6
(2Cρ
ε
· e(am−a1)m+εRm+(am−2ε)δ

)
e−(am−2ε)(gx0·hx0)x0

for every g, h ∈ Γ. Since ξ satisfies the Cartan property we have

dP
(
ξ(x), ξ(y)

)
6
(2Cρ
ε
· e(am−a1)m+εRm+(am−2ε)δ

)
e−(am−2ε)(x·y)x0 � da(x, y)

am−2ε
log a

for every x, y ∈ ∂∞X. It follows that that ξ is 1
log a(am − 2ε)-Hölder. Note that since ε > 0 and

m > 1 were arbitrary we have αξ(da, dP) > 1
log a

(
supm>1 am

)
.

Let (γn)n∈N be an infinite sequence of elements of Γ such that limn
〈ε1−ε2,µ(ρ(γn))〉

|γn|X = supm>1 am.
We may write ρ(γn) = kρ(γn) exp(µ(ρ(γn))k′ρ(γn) in the standard Cartan decomposition of SL(q,R)
and up to extracting we may assume that limn k

′
ρ(γn) = k′. Since ξ is spanning and Γ acts minimally

on ∂∞Γ, for every open subset W of ∂∞Γ, the image ξ(W ) cannot be contained in a union of
projective hyperplanes. Hence, we may choose W to satisfy:
-if y ∈ W and ξ(y) = kyP

+
1 , then 〈k′kye1, e1〉〈k′kye1, e2〉 6= 0.

-the function ay := 〈k′kye1,e2〉
〈k′kye1,e1〉 , where y ∈ W and ξ(y) = kyP

+
1 , is not constant.

Therefore, we may choose z, z′ ∈ W such that az 6= az′ and also z, z′ 6= limn γ
−1
n . Then we observe

that if we write

az,i,n := σi(ρ(γn))
σ1(ρ(γn)) ·

〈k′ρ(γn)kze1, ei〉
〈k′ρ(γn)kze1, e1〉

az′,i,n := σi(ρ(γn))
σ1(ρ(γn)) ·

〈k′ρ(γn)kz′e1, ei〉
〈k′ρ(γn)kz′e1, e1〉
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vz,n =
∑d
i=3 az,i,nei and vz′,n =

∑d
i=3 az′,i,nei, we have that

dP
(
ρ(γn)ξ(z), ρ(γn)ξ(z′)

)2 = dP
(

exp(µ(ρ(γn))k′ρ(γn)kzP
+
1 , exp(µ(ρ(γn))k′ρ(γn)kz′P

+
1

)2

= 1−
(
1 + az,2,naz′,2,n′ + 〈vz,n, vz′,n〉

)2(
1 + a2

z,2,n + ||vz,n||2
)(

1 + a2
z′,2,n + ||vz′,n||2

)
= (az,2,n − az′,2,n)2 + ||az′,2,nvz,n − az,2,nvz′,n||2 + ||vz,n − vz′,n||2 + ||vz,n||2||vz′,n||2 − 〈vz,n, vz′,n〉2(

1 + a2
z,n + ||vz,n||2

)(
1 + a2

z′,2,n + ||vz′,n||2
)

> (az,2,n − az′,2,n)2 ·
〈k′ρ(γn)kze1, e1〉2

d− 1 + 〈k′ρ(γn)kze1, e1〉2
·

〈k′ρ(γn)kz′e1, e1〉2

d− 1 + 〈k′ρ(γn)kz′e1, e1〉2

Note that by the choice of z, z′ ∈ W we have limn
σ1(ρ(γn))
σ2(ρ(γn))

(
az,2,n − az′,2,n) = az − az′ 6= 0 as

well as there exists δ > 0 such that |〈kρ(γn)kze1, e1〉| > δ and |〈kρ(γn)kz′e1, e1〉| > δ for every
n ∈ N. Therefore, we can find ν = νz,z′ > 0 such that dP

(
ξ(γnz), ξ(γnz′)) > ν σ2(ρ(γn))

σ1(ρ(γn)) for every
n ∈ N. Since z, z′ 6= limn γ

−1
n , we can find M > 0 with the following property: for every pair

of sequences (zs)s∈N and (z′s)s∈N in X converging to z and z′ respectively and n ∈ N we have
lims

(
γ−1
n x0 · zs

)
x0
6 M , lims

(
γ−1
n x0 · z′s

)
x0
6 M and lims

(
zs · z′s

)
x0
6 M . Notice that we can

write (
γnzs · γnz′s

)
x0

= |γn|X + (zs · z′s)x0 −
(
γ−1
n x0 · zs

)
x0
−
(
γ−1
n x0 · z′s

)
x0

Therefore,
∣∣(γnz · γnz′)x0

− |γn|X
∣∣ 6 3M for every n ∈ N. Now suppose that there exists

C > 0 such that dP(ξ(x), ξ(y)) 6 Ca−κ(x·y)x0 for every x, y ∈ ∂∞X. Then, dP
(
ξ(γnz), ξ(γnz′)

)
6

Ca−κ(γnz·γnz′)x0 for every n ∈ N and by the previous step we conclude

σ1(ρ(γn))
σ2(ρ(γn)) >

ν

C
aκ(γnz·γnz′)x0 >

νa3κM

C
aκ|γn|X

for every n ∈ N. We finally obtain κ 6 1
log a limn

1
|γn|X (µ1(ρ(γn)) − µ2(ρ(γn))) = 1

log a supm>1 an.
This gives the upper bound α(da, dP) 6 1

log a
(

supm>1 am
)
and the theorem follows.

The previous formula works also for reducible P1-Anosov representations which are not semisim-
ple and whose Anosov limit map ξ is spanning. For Zariski dense Anosov representations we obtain
the following general formula for the Hölder exponent of its Anosov limits maps in terms of the
Lyapunov projection. The first equality between the exponents of the Anosov limit maps is in
analogy to Guichard’s result [Gui05, Corollaire 12] for the Hölder regularity of the boundary of
a divisible properly convex domain in the projective space and its dual. Zhang-Zimmer in [ZZ19]
established conditions under which the proximal limit set of a P1-Anosov representation is a Cα-
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submanifold of the corresponding projective space. In [ZZ19, Theorem 1.12] they provide a formula
for the optimal value of α in terms of the Lyapunov projection of the image of the representation.

Recall that for a group Γ, Γ∞ denotes the subset of infinite order elements of Γ. In the case
where ρ is semisimple we are able to replace the Cartan projection in the formula of Theorem
1.4.13 with the Lyapunov projection as follows:

Corollary 3.9.2. Let (X, d) be a Gromov hyperbolic space and let Γ be a word hyperbolic group
acting properly discontinuously and cocompactly on X by isometries. We fix x0 ∈ X and a > 0
such that there exists a visual metric da on ∂∞X with da(x, y) � a−(x·y)x0 for x, y ∈ ∂∞X. Let G
be a real semisimple Lie group and fix θ ⊂ ∆ a subset of restricted roots of G.

(i) Suppose that d > 2 and ρ : Γ → GL(d,R) is an irreducible P1-Anosov representation and
let η+ :

(
∂∞X, da

)
→
(
P(Rd), dP

)
and η− :

(
∂∞X, da

)
→
(
Grd−1(Rd), dGrd−1

)
be the Anosov limit

maps of ρ. Then

αη+
(
da, dP

)
= αη−

(
da, dGrd−1

)
= 1

log a · inf
γ∈Γ∞

λ1(ρ(γ))− λ2(ρ(γ))
|γ|X,∞

Moreover, if ρ(Γ) is a subgroup of SO(d− 1, 1) then αη+(da, dP) is attained.

(ii) Suppose that ρ′ : Γ→ G is a Zariski dense Pθ-Anosov representation and let ξ+ :
(
∂∞X, da

)
→(

P+
θ , dG/P+

θ

)
and ξ− :

(
∂∞X, da

)
→
(
G/P−θ , dG/P−

θ

)
be the Anosov limit maps of ρ′. Then

αξ+
(
da, dG/P+

θ

)
= αξ−

(
da, dG/P+

θ

)
= 1

log a · inf
γ∈Γ∞

minϕ∈θ
〈
ϕ, λ(ρ′(γ))

〉
|γ|X,∞

Proof. (i) Let β := inf
γ∈Γ∞

λ1(ρ(γ))−λ2(ρ(γ))
|γ|X,∞ . The inequality αη+(da, dP) 6 β

log a follows by Sambarino’s

lemma [Sam16, Lemma 6.8]. It is enough to prove the bound αη+(da, dP) > β
log a .

By Theorem 1.4.13 there exists an infinite sequence of elements (γn)n∈N such that

lim
n→∞

µ1(ρ(γn))− µ2(ρ(γn))
|γn|X

= log a · αη+
(
da, dP

)

Since ρ is semisimple, there exists a finite subset F of Γ and C > 0 satisfying the conclusion of The-
orem 2.6.1. Up to passing to a subsequence, we may assume that limn γnx0 = x and limn γ

−1
n x0 = y

for some x, y ∈ ∂∞X. Since ∂∞X is perfect, we may choose b ∈ Γ such that b−1f−1y 6= x for every
f ∈ F . Hence, limn(γnbf)−1 6= limn(γnbf) for every f ∈ F . By applying Theorem 2.6.1 for the se-
quence (γnb)n∈N and the sub-additivity of the Cartan projection, we may pass to a subsequence still
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denoted by (γn)n∈N and find f0 ∈ F such that
∣∣(µ1 − µ2)(ρ(γn))− (λ1 − λ2)(ρ(γnbf0))

∣∣ 6 C for ev-
ery n ∈ N. Let δn := γnbf0 and notice that b ∈ Γ was chosen so that limn δn 6= limn δ

−1
n . Note that

since limn δ
+
n = limn δnx0 we have that supn∈N

(
δ+
n · δnx0

)
x0
< +∞. By Lemma 2.2.7, we may find

L > 0 such that 0 6 |δn|X − |δn|X,∞ 6 L for every n ∈ N. Note that limn
|γn|X
|δn|X = limn

|δn|X,∞
|δn|X = 1,

hence limn
µ1(ρ(γn))−µ2(ρ(γn))

|γn|X = limn
λ1(ρ(γn))−λ2(ρ(γn))

|γn|X . This shows log a·αη+
(
da, dP

)
> β and proves

the formula for the Hölder exponent of the map η+.
Similarly, we obtain the formula for the exponent of the the Anosov limit map η∗ : ∂∞Γ →

P(Rd) of the dual representation ρ∗. By definition of the metric dGrd−1 we have αη−
(
da, dGrd−1

)
=

αη∗
(
da, dP

)
. Since for γ ∈ Γ we have λ1(ρ(γ−1))−λ2(ρ(γ−1)) = λ1(ρ∗(γ))−λ2(ρ∗(γ)) the conclusion

follows.

Suppose that ρ(Γ) is a subgroup of SO(d− 1, 1). Let (γn)n∈N and (δn)n∈N be two sequences of
Γ with x = limn γnx0 and y = limn δnx0. We may find kn, k′n ∈ O(d− 1)× O(1) and write

Ξ+
1 (ρ(γn)) = [knge1] Ξ+

1 (ρ(δn)) = [k′nge1] and Ξ−1 (ρ(δn)) = k′nge
⊥
d

where g = 1√
2

(
E11 + Ed1 + E1d − Edd

)
+
∑d−1
i=2 Eii ∈ O(d). A straightforward calculation shows

that
dP
(
Ξ+

1 (ρ(γn)),Ξ+
1 (ρ(δn))

)
6
√

2
√
dist

(
Ξ+

1 (ρ(γn)),Ξ−1 (ρ(δn))
)

for every n ∈ N. Therefore, for x, y ∈ ∂∞Γ we conclude dP
(
η+(x), η+(y)

)
6
√

2
√
dist(η+(x), η−(y)).

By Lemma 3.6.4, since σ2(ρ(γ)) = 1 for γ ∈ Γ, we can find L > 0 such that

(ρ(γ) · ρ(δ))ε1 > log a · αη+(da, dP)(γ · δ)e − L

for every γ, δ ∈ Γ. By Corollary 3.6.3 we have that

dist(η+(y), η−(x)) · dist(η+(x), η−(y)) 6 e4La−4αη+ (da,dP)(x·y)e

and therefore,

dP
(
η+(x), η+(y)

)
6
√

2 4
√
dist(η+(y), η−(x)) · dist(η+(x), η−(y)) 6

√
2eL · a−αη+ (da,dP)

for every x, y ∈ ∂∞Γ. In particular, αη+(da, dP) is attained.

(ii) Let τ be as in Proposition 2.5.4 so that τ ◦ ρ′ is irreducible and P1-Anosov. Let η and η∗ be
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the Anosov limit maps of τ ◦ρ′ and (τ ◦ρ′)∗ in P(Rm) respectively. By the definition of the metrics
dG/P+

θ
and dG/P−

θ
we have αξ+

(
da, dG/P+

θ

)
= αη+

(
da, dP

)
and αξ−

(
da, dG/P−

θ

)
= αη∗

(
da, dP

)
. The

conclusion follows by the previous part and Proposition 2.5.4 (iv).

For a metric space (X, d) denote by dim(X, d) its Hausdorff dimension.

Proof of Corollary 1.4.14. The first part of the corollary follows immediately by applying Theorem
1.4.13 where X is the convex hull of the limit set ΛΓ in Hd.

For δ > 0 small, the Anosov limit map ξ is (αξ(dv, dP)− δ)-Hölder, therefore by the definition
of Hausdorff dimension we obtain dim

(
Λρ(Γ), dP

)
6 1

αξ(daC ,dP)dim(ΛΓ, dv). Now assume that Γ is a
uniform lattice in PO(d, 1). The Hausdorff dimension of the limit set ΛΓ equipped with dv is exactly
d− 1. On the other hand, since Λρ(Γ) is homeomorphic to ∂∞Γ, we have that dim(Λρ(Γ), dP) is at
least the topological dimension of ∂∞Γ which is exactly d− 1. Therefore, the previous inequality
immediately shows that αξ(daC , dP) 6 1. The conclusion now follows by Corollary 3.9.2 (i).

Remarks 3.9.3. (i) Let Γ, X, ρ, ξ and a > 0 be as in Theorem 1.4.13. The Hölder exponent
α(da, dP) can be arbitrarily large when Γ is virtually a free group. However, when Γ is not virtually
free, α(da, dP) satisfies the upper bound

α(da, dP) 6 HΓ

vcd(Γ)− 1 ·
1

log a

where vcd(Γ) denotes the cohomological dimension of a torsion free and finite-index subgroup of
Γ and HΓ = lim

n→∞
1
n log

∣∣{γ ∈ Γ : |γ|X ≤ n
}∣∣ is the critical exponent of Γ.

(ii) In Corollary 3.9.2 (i) the formula for the exponent αη+
(
da, dP

)
in terms of the Lyapunov

projection remains valid when ρ is P1 and P2-Anosov (e.g. d = 3) and η+ is spanning.

3.10 Examples and counterexamples

In this section, we discuss examples of representations of surface groups with nice properties
which are not P1-Anosov. The examples show that the assumptions of the main results of this
paper are necessary. Throughout this section S denotes a closed orientable surface of genus at
least 2.

Example 3.10.1. There exists a strongly irreducible representation ρ : π1(S)→ SL(12,R) which
satisfies the following properties:
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• ρ is a quasi-isometric embedding, P1-divergent and preserves a properly convex domain Ω of
P(R12).
• ρ admits continuous, injective, ρ-equivariant maps ξ1 : ∂∞π1(S)→ P(R12) and ξ11 : ∂∞π1(S)→
Gr11(R12) which satisfy the Cartan property. The proximal limit set of ρ(π1(S)) in P(R12) is
ξ1(∂∞π1(S)) and does not contain projective line segments.
• ρ admits continuous, ρ-equivariant and transverse maps ξ4 : ∂∞π1(S) → Gr4(R12) and ξ8 :
∂∞π1(S)→ Gr8(R12).
• ρ is not Pk-Anosov for any 1 6 k 6 6.

The previous example shows that the assumption of transversality in Theorem 1.4.1 is necessary.
Moreover, the maps ξ4 and ξ8 are transverse although ρ is not P4-Anosov, therefore Zariski density
is also necessary in Theorem 1.4.4.

Proof. Let S be a closed orientable surface of genus at least 2 and φ : S → S be a pseudo Anosov
homeomorphism of S. The mapping torus M of S with respect to φ is a closed 3-manifold whose
fundamental group is isomorphic to the HNN extension

π1(M) =
〈
π1(S), t

∣∣∣ tat−1 = φ∗(a), a ∈ π1(S)
〉

where φ∗ is the automorphism of π1(S) induced by φ. Thurston in [Thu98] (see also Otal [Ota96])
proved that there exists a convex cocompact reprsentation ρ0 : π1(M) → PO(3, 1). The rep-
resentation ρ0 lifts to a P1-Anosov representation in SL(4,R) which we continue to denote by
ρ0 and let ρFiber := ρ0|π1(S). By a result of Cannon-Thurston [CT07], there exists a continuous
equivariant surjection θ : ∂∞π1(S)� ∂∞π1(M). By precomposing θ with the Anosov limit map
of ρ0 in P(R4), we obtain a ρFiber-equivariant continuous map ξFiber : ∂∞π1(S) → P(R4). Let
γ ∈ π1(S) be an element representing a separating simple closed curve on S. We may choose a
Zariski dense, Hitchin representation ρH : π1(S)→ SL(3,R) with 2λ1(ρFiber(γ)) = λ1(ρH(γ)). We
claim that ρ = ρFiber ⊗ ρH : π1(S)→ SL(12,R) satisfies the required properties.

Let ⊗ : SO(3, 1)×SL(3,R)→ SL(12,R) be the tensor product representation sending the pair
(g1, g2) to the matrix g1⊗ g2. The representation ⊗ is irreducible. Let G be the Zariski closure of
ρFiber × ρH into SO(3, 1) × SL(3,R). Note that the projection of the identity component G0 into
SO(3, 1) (resp. SL(3,R)) is normalized by ρFiber(π1(S)) (resp. ρH(π1(S))), so it has to be surjective.
Since the Zariski closures of ρFiber and ρH are simple and not locally isomorphic, it follows by
Goursat’s lemma that G = SO(3, 1)× SL(3,R). We conclude that ρ is strongly irreducible.

We obtain a properly convex domain Ω of P(R12) preserved by ρ(π1(S)) as follows. Let Ω1

and Ω2 be properly convex domains of P(R4) and P(R3) preserved by ρFiber(π1(S)) and ρH(π1(S))
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respectively. Let Ω′i be a properly convex cone lifting Ωi for i = 1, 2. The compact set C ={
[u1 ⊗ u2] : ui ∈ Ω′i, i = 1, 2

}
is connected, spans R12 and is contained in an affine chart A of

P(R12). We finally take Ω to be the interior of the convex hull of C in A.
The representations ρFiber and ρH are P1-divergent hence ρ is also P1-divergent. Moreover, we

notice that for δ ∈ π1(S) we have µ1(ρ(δ)) = µ1(ρFiber(δ))+µ1(ρH(δ)), hence ρ is a quasi-isometric
embedding. Let ξH : ∂∞π1(S)→ P(R3) and ξ−H : ∂∞π1(S)→ Gr2(R3) be the Anosov limit maps
of ρH. The map ξ1 : ∂∞π1(S)→ P(R12) defined as ξ1(x) = [kxe1 ⊗ k′xe1], where ξFiber(x) = [kxe1]
and ξH(x) = [k′xe1], is continuous and ρ-equivariant. Since ρ is strongly irreducible, the proof
of Corollary 3.2.5 shows that the map ξ1 satisfies the Cartan property. The image of ξ1 is the
P1-proximal limit set of ρ(π1(S)) in P(R12). Similarly, the dual reprsentation ρ∗ = ρ∗Fiber ⊗ ρ∗H

admits a ρ∗-equivariant map ξ∗1 : ∂∞π1(S)→ P(R12), so we obtain the ρ-equivariant map ξ11.
The maps ξ4 : ∂∞π1(S)→ Gr4(R12) and ξ8 : ∂∞π1(S)→ Gr8(R12) defined as

ξ4(x) = R4 ⊗R ξH(x) and ξ8(x) = R4 ⊗R ξ
−
H (x)

are ρ-equivariant, continuous and transverse. Also for every x ∈ ∂∞π1(S) we have ξ1(x) ∈ ξ4(x),
and hence ξ1 is injective. It follows that ξ1(∂∞π1(S)) = Λρ(π1(S)) ∼= S1. For x 6= y the projective
line segment [ξH(x), ξH(y)] intersects ΛρH(Γ) at exactly {ξH(x), ξH(y)} hence [ξ1(x), ξ1(y)]∩Λρ(Γ) =
{ξ1(x), ξ1(y)}.

The choice of the element γ ∈ π1(S) in the first paragraph shows that ρ(γ) cannot be Pk-
proximal for k = 2, 4, 6, so ρ is not Pk-Anosov for k = 2, 4, 6. Let g ∈ π1(S) be a non-trivial
element. The infinite sequence of elements gn := φ

(n)
∗ (g) has the property that (|gn|π1(S),∞)n∈N

is unbounded and there exists M > 0 such that
∣∣λ1(ρFiber(gn)) − λ2(ρFiber(gn))

∣∣ 6 M for every
n ∈ N. Then, it is easy to check that the differences λ1(ρ(gn))− λ2(ρ(gn)), λ3(ρ(gn))− λ4(ρ(gn))
and λ5(ρ(gn))− λ6(ρ(gn)) are uniformly bounded, so ρ is not Pk-Anosov for k = 1, 3, 5.

Example 3.10.2. Necessity of the Cartan property. The representation ρ×ρH : π1(S)→ SL(15,R)
(where ρ and ρH are from Example 3.10.1) is P1-divergent and admits a pair of continuous, equiv-
ariant, compatible and transverse maps ξ+ : ∂∞π1(S) → P(R15) and ξ− : ∂∞π1(S)→ Gr14(R15)
induced from the Anosov limit maps of ρH. However, ρ × ρH is not P1-Anosov since ρ cannot
uniformly dominate ρH. This shows that the assumption of the Cartan property for the map ξ+

in Theorem 1.4.1 is necessary.

Example 3.10.3. Necessity of regularity of ∂Ω in Proposition 3.7.1. Let n > 2 and Γ be an
convex cocompact subgroup of SU(n, 1) ⊂ SL(n+ 1,C). Let τ2 : SL(n+ 1,C) ↪−→ SL(2n+ 2,R) be
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the standard inclusion defined as

τ2(g) =

Re(g) −Im(g)
Im(g) Re(g)

 , g ∈ SL(n+ 1,C)

The group sym2(τ2(Γ)
)
⊂ SL(2n+ 2,R) is a P2-Anosov subgroup for which there exist J, k > 0

such that
1
J

(γ · δ)e − k ≤ (sym2(τ2(γ)) · sym2(τ2(δ))
)
ε1
≤ J(γ · δ)e + k

for every γ, δ ∈ Γ. Moreover, sym2(τ2(Γ)
)
preserves a properly convex domain in P

(
Sym2R2n+2)

but it cannot preserve a strictly convex domain since it is not P1-divergent. Similar counterexam-
ples are given by convex cocompact subgroups of the rank 1 Lie group Sp(n, 1) ⊂ GL(n+ 1,H).

Example 3.10.4. Necessity of transversality in Theorem 1.4.1 in the Zariski dense case. There
exists a Zariski dense representation ρ1 : π1(S) → PSL(4,R) which admits a pair of continuous
ρ1-equivariant maps ξ+ : ∂∞π1(S) → P(R4) and ξ− : ∂∞π1(S) → Gr3(R4) but is not P1-Anosov.
LetM be a closed hyperbolic 3-manifold fibering over the circle (with fiber S) which also contains
a totally geodesic surface. By Johnson-Millson [JM87] the natural inclusion j : π1(M) ↪−→ PO(3, 1)
admits a non-trivial Zariski dense deformation j′ : π1(M) → PSL(4,R) which by Theorem 2.5.3
can be chosen to be P1-Anosov. Let ξ+

1 and ξ−1 be the Anosov limit maps of j′ into P(R4) and
Gr3(R4) respectively. By the theorem of Cannon-Thurston [CT07] there exists a continuous, π1(S)-
equivariant map θ : ∂∞π1(S) → ∂∞π1(M). The restriction ρ1 := j′|π1(S) is Zariski dense, not a
quasi-isometric embedding and ξ+

1 ◦θ and ξ−1 ◦θ are continuous, non-transverse and ρ1-equivariant
maps. In addition, by [Can96], every finitely generated free subgroup F of π1(S) is a quasiconvex
subgroup of π1(M). Hence, ι′|F is P1-Anosov and ξ+ ◦ ιF and ξ− ◦ ιF are transverse.
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CHAPTER IV

Borel Anosov Representations in Even Dimensions

In this chapter, we prove Theorem 1.4.15 and Corollary 1.4.16, providing a characterization
of the domain group of a Borel Anosov representation into PSL(4q + 2,R), q ≥ 1.

Let us recall that an element g ∈ GL(d,R) is called P1-proximal if λ1(g) > λ2(g). In this
case, g admits a unique eigenvalue of maximum modulus which we denote by `1(g). The element
g ∈ GL(d,R) is called positively proximal if g is P1-proximal and `1(g) > 0. From now, when we
say that g is proximal we mean that g is P1-proximal. A subgroup Γ of GL(d,R) is called positively
proximal if it contains a proximal element and every proximal element of Γ is positively proximal.

4.1 The work of Benoist

First, let us summarize here some results that we use from [Ben00] and [Ben05]. An open cone
C ⊂ Rd is called properly convex if it does not contain an affine line. A domain Ω ⊂ P(Rd) is
called properly convex if it is contained in some affine chart of P(Rd) in which Ω is bounded and
convex.

Lemma 4.1.1. ([Ben05, Lemma 3.2]) Let Γ be a subgroup of GL(d,R) which preserves a properly
convex open cone C in Rd. Then every γ ∈ Γ is positively semi-proximal. In particular, every
proximal element γ ∈ Γ is positively proximal.

Benoist characterized irreducible subgroups of GL(d,R) which preserve a properly convex cone
in Rd as follows:

Theorem 4.1.2. ([Ben00, Proposition 1.1]) Let Γ be an irreducible subgroup of GL(d,R). Then
Γ preserves a properly convex open cone C in Rd if and only if Γ is positively proximal.
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We also have the following fact for subgroups of GL(d,R) which preserve properly convex
domains in P(Rd):

Fact 4.1.3. Let Γ be a subgroup of GL(d,R) which preserves a properly convex domain Ω ⊂ P(Rd).
There exists a representation ι̃ : Γ → GL(d,R) and a group homomorphism ε : Γ → Z/2 such
that: ι̃(γ) = (−1)ε(γ)γ for every γ ∈ Γ and ι̃(Γ) preserves a properly convex open cone C lifting
Ω. Thus, if Γ is also finitely generated the group Γ2 :=

⋂
{H : [Γ : H] 6 2} has finite-index in Γ

and preserves the properly convex cone C.

Let Fk be the free group on k generators. We close this section with the following proposition
which follows by the work of Breuillard-Green-Guralnick-Tao (see [Bre+12, Theorem 4.1]):

Proposition 4.1.4. ([Bre+12]) The set of Zariski dense representations from F2 in SL(d,R) is
dense in the representation variety Hom(F2, SL(d,R)).

4.2 Proof of Theorem 1.4.15

We need the following lemma which is proved using a theorem of Kapovich-Leeb-Porti [KLP18]
(see also [CLS17]).

Lemma 4.2.1. Let Γ be a torsion free non-elementary word hyperbolic group and ρ : Γ→ GL(d,R)
be a representation which admits a continuous ρ-equivariant map ξ : ∂∞Γ → P(Rd). Suppose
there exists γ ∈ Γ such that ρ(γ) is biproximal, ξ(γ+) = x+

ρ(γ) and ξ(γ−) = x−ρ(γ). Then, there
exist a, b ∈ Γ such that 〈a, b〉 is a free quasiconvex subgroup of Γ of rank 2 and the restricted
representation ρ : 〈a, b〉 → GL(d,R) is P1-Anosov with Anosov limit map ξ.

Proof. By Proposition 3.4.2, the representation ρ is discrete and faithful. Let t ∈ Γ be an infinite
order element such that {γ+, γ−}∩{t+, t−} is empty. Note that limn t

nγ± = t+ and limn t
−nγ± =

t−, so we may find m > 0 such that {tmγ+, tmγ−}∩{γ+, γ−} and {t−mγ+, t−mγ−}∩{γ+, γ−} are
empty. Up to conjugating ρ we may assume that x+

ρ(γ) = [e1], x+
ρ(γ−1) = [ed] and V −ρ(γ) = 〈e2, ..., ed〉,

V −ρ(γ−1) = 〈e1, ..., ed−1〉. Then we notice that

ρ(t±m)x+
ρ(γ) /∈ P(V −ρ(γ)) ∪ P(V −ρ(γ−1)) and ρ(t±m)x−ρ(γ) /∈ P(V −ρ(γ)) ∪ P(V −ρ(γ−1))

For example, suppose that ρ(tm)x+
ρ(γ) ∈ P(V −ρ(γ)), then limn ρ(γn)ρ(tm)x+

ρ(γ) = limn ξ(γntmγ+) =
ξ(γ+) = [e1] has to be in P(V −ρ(γ)), a contradiction. Note that limn γ

nt−mγ+ = γ+, hence
limn ρ(γnt−m)ξ(γ+) = x+

ρ(γ) and ρ(t−m)x+
ρ(γ−1) /∈ P(V −ρ(γ)). Then, by [KLP18, Theorem 7.40] (see

also [CLS17, Theorem A2]), there exists N > 0 such that the group H = 〈γN , tmγN t−m〉 is a free
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group of rank 2 and the restriction ρ|H is P1-Anosov. The restriction ρ|H is also a quasi-isometric
embedding, hence H is a quasiconvex subgroup of Γ and its Anosov limit map is the restriction
of ξ on ∂∞H considered as a subset of ∂∞Γ.

Recall that for a finitely generated group Γ, Γ2 is defined to be the intersection of all finite-
index subgroups of Γ of index at most 2.

Lemma 4.2.2. Let Γ be a torsion free one-ended word hyperbolic group and ρ : Γ∗Z→ GL(d,R) be
a representation which admits a ρ-equivariant continuous map ξ : ∂∞(Γ∗Z)→ P(Rd). Suppose that
δ ∈ Γ2 is a non-trivial element such that ρ(δ) is biproximal and ξ(δ+) = x+

ρ(δ) and ξ(δ−) = x−ρ(δ).
Then ρ(δ) is positively proximal.

Proof. Let s be a generator of the free cyclic factor, t = sδs−1 ∈ Γ and notice that ρ(t) is proximal
with ρ(s)x+

ρ(δ) = x+
ρ(t) = ξ(t+) and t± /∈ ∂∞Γ. If x ∈ ∂∞Γ, limn ρ(tn)ξ(x) = limn ξ(tnx) = ξ(t+).

Since ρ(t) preserves V −ρ(t) and limn t
nx = t+, ξ(x) cannot lie in P(V −ρ(t)). It follows that ξ(∂∞Γ)

lies in the affine chart P(Rd) − P(V −ρ(t)). Let V = 〈ξ(∂∞Γ)〉 and we consider the representation
ρ′ : Γ→ GL(V ) where ρ′(γ) = ρ|V (γ), γ ∈ Γ. The map ξ is not constant, hence ρ′ is discrete and
faithful. The map ξ : ∂∞Γ→ P(V ) is ρ′-equivariant, ρ′(δ) is proximal with attracting fixed point
ξ(δ+) and `1(ρ(δ)) = `1(ρ′(δ)).

Then we notice that ξ(∂∞Γ) also lies in the affine chart A = P(V ) − P(V ∩ V −ρ(t)) of P(V ).
Since Γ is one-ended, ∂∞Γ and ξ(∂∞Γ) are connected. The convex hull of ξ(∂∞Γ) in A, say C, is
bounded and convex in A and has non-empty interior since ξ(∂∞Γ) spans V . Then ρ′(Γ) preserves
ξ(∂∞Γ) and by [CT20, Proposition 2.8] it also preserves C. It follows that ρ′(Γ) preserves the non-
empty properly convex set Ω = Int(C) ⊂ P(V ). Fact 4.1.3 shows that there exists a representation
ρ̃′ : Γ→ GL(V ) which preserves a properly convex cone C ⊂ V and ρ′(γ) = ρ̃′(γ) for every γ ∈ Γ2.
By Lemma 4.1.1, ρ(δ) is positively proximal in P(V ) and hence in P(Rd).

A torsion free word hyperbolic group Γ is called rigid if it does not admit a non-trivial
splitting over a cyclic subgroup. For example, the fundamental group of a closed negatively curved
Riemannian manifold of dimension at least 3 is rigid. By a theorem of Bowditch [Bow98] the
Gromov boundary ∂∞Γ of a rigid hyperbolic group Γ does not contain local cut points.

Lemma 4.2.3. Let Γ be a torsion free rigid one-ended word hyperbolic group. Let ρ : Γ→ GL(d,R)
be a representation which admits a continuous ρ-equivariant map ξ : ∂∞Γ→ P(Rd). Suppose that
δ ∈ Γ2 is a non-trivial element such that ρ(δ) is biproximal and ξ(δ+) = x+

ρ(δ) and ξ(δ−) = x−ρ(δ).
Then ρ(δ) is positively proximal.

Proof. Since ∂∞Γ does not have any local cut points, the set ∂∞Γ − {δ+, δ−} is connected. For
x 6= δ+, δ− we have that limn δ

±nx = δ± and, as in Lemma 4.2.2, the conected set ξ
(
∂∞Γ −
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{δ+, δ−}
)
is contained in P(Rd)− P(V −ρ(δ)) ∪ P(V −ρ(δ−1)). Note that the two (d−1)-planes V −ρ(δ) and

V −ρ(δ−1) are distinct, hence by the connectedness of ∂∞Γ − {δ+, δ−} we can find a hyperplane V0

such that ξ(∂∞Γ) is contained in P(Rd)−P(V0). Then we consider the restriction ρ′ : Γ→ GL(V ),
V = 〈ξ(∂∞Γ)〉, whose image preserves the compact connected subset ξ(∂∞Γ) of the affine chart
P(V ) − P(V ∩ V0) of P(V ). The element ρ′(γ) is proximal in P(V ) and `1(ρ(γ)) = `1(ρ′(γ)). We
similarly conclude that ρ′(Γ) preserves a properly convex domain Ω of P(V ). Again, Fact 4.1.3
guarantees that ρ′(Γ2) preserves a properly convex cone of V and `1(ρ′(δ)) > 0.

Now we combine the previous results to prove Theorem 1.4.15.

Theorem 1.4.15: Let Γ be a word hyperbolic group and ρ : Γ → GL(4q + 2,R) a representa-
tion. Suppose that there exists a continuous, ρ-equivariant dynamics preserving map ξ : ∂∞Γ →
Gr2q+1(R4q+2). Then Γ is virtually free or virtually a surface group.

Proof. We first assume that Γ is a torsion free hyperbolic group. By Proposition 3.4.2, ρ is
faithful and we may assume that ρ(Γ) is a subgroup of SL(4q + 2,R). If not, we replace ρ with
the representation ρ̂ : Γ → SL±(n,R), ρ̂(γ) = |det(ρ(γ))|−1/(4q+2)ρ(γ) and Γ with a finite-index
subgroup Γ0 such that ρ̂(Γ0) is a subgroup of SL(4q+ 2,R). Notice that ρ̂ has to be faithful since
ξ is ρ̂-equivariant and dynamics preserving for ρ̂.

Let Vq = ∧2q+1R4q+2, and notice by assumption that ξq = τ+
2q+1 ◦ ξ is ∧2k+1ρ-equivariant and

dynamics preserving. We consider the following two cases:

Case 1. Suppose that Γ has infinitely many ends. Then we show that Γ is free. If not, by Stallings’
theorem [Sta68], there exists a splitting Γ = Γ1 ∗ ... ∗ Γk ∗ Fs, where s > 0 and for 1 6 i 6 k,
Γi is an one-ended word hyperbolic group. In particular, there exists a quasiconvex subgroup of
Γ of the form ∆ ∗ Z, with ∆ one-ended. Lemma 4.2.1, shows that there exists a quasiconvex
free subgroup H0 of ∆2 such that ∧2q+1ρ(H0) is P1-Anosov in SL(Vq) and its limit map is the
restriction ξq : ∂∞H0 → P(Vq).

Since ∧2q+1ρ(δ) is proximal for every δ ∈ H0 ⊂ ∆2, by Lemma 4.2.2, `1(∧2q+1(ρ(δ))) > 0.
The representation ρ : H0 → SL(4q + 2,R) is P2q+1-Anosov and ∧2q+1ρ(γ) is positively prox-
imal for every non-trivial γ ∈ H0. By Theorem 2.5.3 (iii), we can find a path connected open
neighbourhood U of ρ0 := ρ|H0 in Hom(H0, SL(4q + 2,R)) consisting of entirely of P2q+1-Anosov
representations. Proposition 4.1.4 guarantees that there exists ρ1 ∈ U such that ρ1(Fk) is Zariski
dense in SL(4q+2,R). Let {ρt}06t61 be a continuous path between ρ0 and ρ1 contained entirely in
U . Observe that for every γ ∈ H0, the map t 7→ `1(∧2q+1ρt(γ)) is continuous with real values and
nowhere vanishing. Hence `1(∧2q+1ρ1(γ)) > 0 for every γ ∈ H0. Therefore, since ∧2k+1 is an irre-
ducible representation, the group ∧2q+1ρ1(H0) is a strongly irreducible subgroup of SL(Vq) which
is positively proximal. By Theorem 4.1.2, the group ∧2q+1ρ1(H0) preserves a properly convex cone
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and hence a properly convex domain of P(Vq). On the other hand, the group ∧2q+1SL(4q + 2,R)
(and hence ∧2q+1ρ1(H0)) preserves the symplectic non-degenerate form ωq : Vq × Vq → R given
by the formula ωq(a, b) = a∧ b ∈ 〈e1 ∧ ...∧ e4q+2〉. However, by [Ben00, Corollary 3.5], a strongly
irreducible subgroup of SL(d,R) which preserves a symplectic form cannot preserve a properly
convex domain of P(Rd). We have reached a contradiction, so Γ cannot contain any non-trivial
one-ended factors in its free product decomposition. Therefore, Γ is free.

Case 2. Suppose that Γ is one-ended and not virtually a surface group. Wilton’s result [Wil18,
Corollary B] ensures that Γ contains a quasiconvex subgroup ∆ which is either isomorphic to a
surface group or rigid. If ∆ has infinite index in Γ, then there exists a quasiconvex subgroup of Γ
isomorphic to ∆ ∗Z. However, by the previous case we obtain a contradiction. Therefore, we may
assume that ∆ is rigid and has finite index in Γ. By Lemma 4.2.1, there exists H1 a quasiconvex
free subgroup of ∆2 such that the restriction ∧2q+1ρ|H1 is P1-Anosov. By Lemma 4.2.3, for every
h ∈ H1, ∧2q+1ρ(h) is positively proximal in P(Vq). By continuing as previously, we obtain a P2q+1-
Anosov, Zariski dense deformation ρ1 of ρ|H1 such that ∧2q+1ρ1(H1) is positively proximal. Again,
by Theorem 4.1.2, ∧2q+1ρ1(H1) preserves a properly convex domain and the symplectic form ωq,
a contradiction.

We now consider the general case where Γ might have torsion or ρ is not faithful. If ρ is not
faithful, Proposition 3.4.2 shows that ker(ρ) is finite. The group Γ′ = Γ/kerρ is word hyperbolic,
∂∞Γ′ = ∂∞Γ, so ξ is a ρ′-equivariant dynamics preserving map, where ρ′ : Γ′ → GL(4q+2,R) is the
faithful representation induced by ρ. By Selberg’s lemma, there exists a torsion free finite-index
subgroup Γ1 of Γ′. The previous arguments imply that Γ1 is either a surface group or a free group.
Therefore, Γ is either a finite extension of a virtually free group or a virtually surface group. In
the second case, its boundary is the circle and by [Gab92], Γ is virtually a surface group. In the
first case, by [Dun85], Γ has infinitely many ends and splits as the fundamental group of a finite
graph of groups with finite edge groups and vertex groups of at most one end. The vertex groups
of this splitting are also finite extensions of a virtually free group hence finite. It follows that Γ is
virtually free.

By following the argument of case 1 in the proof of Theorem 1.4.1 we obtain the following
conclusion:

Theorem 4.2.4. Let F2 be the free group on two generators and ρ : F2 → GL(4q + 2,R) a
representation. Suppose that ρ is P2q+1-Anosov. Then ∧2q+1ρ(F2) is not a positively proximal
subgroup of GL(∧2q+1R4q+2).

For the proof of Corollary 1.4.16 we need the following proposition for the existence of lifts of
P2k+1-Anosov representations into PGL(d,R). The proof is similar to Lemma 4.2.2 and 4.2.3. In
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the case ρ is irreducible and k = 0, Zimmer has proved the existence of lifts in [Zim17, Theorem
3.1].

Proposition 4.2.5. Let Γ be a torsion free word hyperbolic group and ρ : Γ → PGL(d,R) is a
P2k+1-Anosov representation, where 0 6 k 6 d−1

4 .

(i) Suppose that ∆ is an infinite index, one-ended quasiconvex subgroup of Γ and ρ0 is the restric-
tion of ρ on ∆. There exists a lift ρ̃0 : ∆→ GL(d,R) such that ∧2k+1ρ̃0(∆) is positively proximal.

(ii) If Γ is a rigid word hyperbolic group then there exists a lift ρ̃ : Γ → GL(d,R) of ρ such that
∧2k+1ρ(Γ) is positively proximal.

Proof. We begin with the following observation: suppose that ϕ : Γ → PGL(V1 ⊕ V2) is a repre-
sentation such that ϕ(γ) preserves V1 for every γ ∈ Γ. If ρ(γ) = [gγ ] then the map ϕ0(γ) = [gγ |V1 ]
is a well defined representation ϕ0 : Γ → PGL(V1). If ϕ0 admits a lift ϕ̃0, then there exists a lift
ϕ̃ of ϕ such that ϕ̃(γ)|V1 = ϕ̃0(γ) for every γ ∈ Γ. The lift ϕ̃ is defined as follows: for γ ∈ Γ,
ϕ̃(γ) is the unique element hγ ∈ GL(V1 ⊕ V2) such that the restriction of hγ on V1 is ϕ̃0(γ) and
ϕ(γ) = [hγ ].

Notice that we may asssume that k = 0, because the exterior power ∧2k+1 : GL(d,R) →
GL(∧2k+1Rd) is faithful. For part (i), we may consider δ ∈ Γ with δ± /∈ ∂∞∆ and ξ(∂∞∆) is a
connected compact subset of the affine chart P(Rd) − P(V −ρ(δ)). In particular, ξ(∂∞∆) lies in the
affine chart A = P(V )−P(V ∩V −ρ(δ)) of P(V ), where V = 〈ξ(∂∞∆)〉. Since ρ0(∆) preserves V there
exists a well defined representation ρ1 : ∆ → PGL(V ). The image ρ1(∆) preserves the connected
compact set ξ(∂∞∆) and hence the interior of the convex hull of ξ(∂∞∆) in A. There exists a lift
ρ̃1 of ρ1 into GL(V ) such that ρ̃1(∆) preserves a properly convex cone C of V . The representation
ρ̃1 is P1-Anosov, faithful and by Lemma 4.1.1, ρ̃1(γ) is positively proximal for every γ ∈ ∆ non-
trivial. By our initial observation we obtain a lift ρ̃0 : ∆ → GL(d,R) of ρ0 with ρ̃0(γ)|V = ρ̃1(γ).
The representation ρ̃1 is P1-Anosov with Anosov limit map ξ. For every non-trivial γ ∈ ∆, the
attracting fixed point of ρ̃0(γ) is in V and `1(ρ̃0(γ)) = `1(ρ̃1(γ)) > 0.

The proof of (ii) follows by observing, as in Lemma 4.2.3, that the image of ∂∞Γ under the
Anosov limit map ξ lies in an affine chart of P(Rd). Then we continue as previously to obtain the
lift ρ̃.

Proof of Corollary 1.4.16. We first assume that Γ is torsion free. If Γ contains a quasiconvex
infinite index one-ended subgroup Γ0, there exists a lift ρ̃0 of ρ|Γ0 such that the group ∧2k+1ρ̃0(Γ0)
is positively proximal, contradicting Theorem 4.2.4. Also Γ cannot be rigid again by part (ii) of
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the previous proposition. Therefore, Γ is either free or has one end and by [Wil18, Corollary B]
there exists a quasiconvex surface subgroup which has to be of finite index in Γ.

Now suppose that Γ is not torsion free or kerρ is non-trivial. We may find a torsion free finite-
index subgroup Γ1 of Γ′ = Γ/ker(ρ) so that ρ induces the faithful P2q+1-Anosov representation ρ′ :
Γ1 → G4q+2. The previous step shows that ∂∞Γ1 = ∂∞Γ is either a circle or totally disconnected.
By working as in the last paragraph of Theorem 1.4.1 we conclude that Γ is virtually free or
virtually a surface group. �

Proof of Corollary 1.4.17. Let ξ : ∂∞Γ → Gr2q+1(R4q+2) be a continuous ρ-equivariant map.
We first show that ξ is nowhere dynamics preserving. Suppose not, i.e. there exists a P2q+1-
proximal element ρ(γ) ∈ ρ(Γ) with ξ(γ+) = x+

ρ(γ) and ξ(γ−) = x−ρ(γ). The map ξ+ := τ+
2q+1 ◦ ξ is

∧2q+1ρ-equivariant and by Lemma 4.2.1 there exist a free quasiconvex subgroup H of Γ2 such that
∧2q+1ρ|H is P1-Anosov. Lemma 4.2.3 shows that ∧2q+1ρ(H) is positively proximal, a contradiction
by Theorem 4.2.4.

Let Vq = ∧2q+1R4q+2 and ξ− = τ−2q+1 ◦ ξ. We show that the map ξ+ cannot be spanning.
Suppose that ξ+ is spanning and x1, ..., xr ∈ ∂∞Γ with Vq = ⊕ri=1ξ

+(xi), r = dim(Vq). Since Γ
acts minimally on ∂∞Γ, for every open subset U of ∂∞Γ, ξ+(U) spans Vq and the union ∪ri=1ξ

−(xi)
cannot contain ξ+(∂∞Γ). There exists y ∈ ∂∞Γ and 1 6 j 6 r with Vq = ξ+(xj) ⊕ ξ−(y) =
ξ+(y) ⊕ ξ−(xj). By the density of pairs {(δ+, δ−) : δ ∈ Γ} in the set of 2-tuples of ∂∞Γ, we can
find γ ∈ Γ such that Vq = ξ(γ+)⊕ ξ−(γ−) = ξ+(γ−)⊕ ξ−(γ+).

Then we claim that g = ∧2q+1ρ(γ) is a biproximal matrix. Up to conjugating g we may assume
that ξ+(γ+) = [e1∧···∧e2q+1] and ξ−(γ−) = [W2q+1], whereW2q+1 is defined as in sub-section 2.1.2.

We may write g =

a(g) 0
0 A

 for some matrix A ∈ GL(W2q+1). Suppose that |`1(A)| > |a(g)|. Let

p > 1 be the largest possible dimension of a complex Jordan block corresponding to an eigenvalue
of maximum modulus of A. Then there exists a subsequence (kn)n∈N, A∞ a non-zero matrix and
b ∈ R with

lim
n→∞

1
kp−1
n

∣∣`1(A)
∣∣kn gkn =

b 0
0 A∞


Since ∂∞Γ is perfect and ξ+(∂∞Γ) spans Vq, we may choose x ∈ ∂∞Γ − {γ−} such that the
projection of ξ+(x) into W2q+1 is not in ker(A∞). Thus, limn g

knξ+(x) = limn ξ
+(γknx) = ξ+(γ+)

cannot be the line [e1 ∧ ...∧ e2q+1], a contradiction. It follows that |a(g)| > |`1(A)| and ∧2q+1ρ(γ)
is proximal with attracting fixed point ξ+(γ+). Since Vq = ξ+(γ−)⊕ ξ−(γ+), the same argument
shows that ∧2q+1ρ(γ−1) is proximal with attracting fixed point ξ+(γ−). The map ξ+ (and hence
ξ) preserves the dynamics of {γ−, γ+}. This contradicts the fact that ξ is nowhere dynamics pre-
serving. Therefore, τ+

2q+1(ξ(∂∞Γ)) lies in some proper vector subspace of Vq. �
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4.3 Examples

In this section, we provide an example showing that the analogue of Theorem 1.4.1 does not
hold in dimensions which are multiples of 4. We also provide examples of Zariski dense Borel
Anosov representations of free groups into SL(4q,R), q ≥ 1, all of whose elements have positive
eigenvalues. Moreover, we give an example of a surface group representation ρ into SL(4q + 2,R)
which is not P2q+1-Anosov but admits a ρ-equivariant continuous dynamics preserving map ξ into
Gr2q+1(R4q+2).

Let S be a closed orientable hyperbolic surface and τ2 : SL(2,C)→ SL(4,R) be the standard
inclusion defined as

τ2(g) =

Re(g) −Im(g)
Im(g) Re(g)

 , g ∈ SL(2,C).

Example 4.3.1. P2k-Anosov representations into SL(4k,R) of non-surface groups. Let F2 be the
free group on two generators. The group Γ = π1(S) ∗ Z ∗ Z admits an Anosov representation
ρ into SL(2,C) and hence τ2 ◦ ρ is a P2-Anosov representation into SL(4,R). For k ∈ N, the
representation ρk = ×ki=1(τ2 ◦ ρ) of Γ into SL(4k,R) is P2k-Anosov. In fact, by Theorem 2.5.3 (iii)
and Proposition 4.1.4 there exists a deformation ρ′k of ρk which is Zariski dense and P2k-Anosov.

Example 4.3.2. For every q ≥ 1, there exist Zariski dense Borel Anosov representations of Z∗Z
in SL(4q,R) all of whose elements have all of their eigenvalues positive.

Let us fix a presentation of the surface group

π1(S) =
〈
a1, b1, ..., ag, bg

∣∣ [a1, b1] · · · [ag, bg]
〉

where g ≥ 2 is the genus of S. We fix ρ0 : π1(S) → SL(2,R) a discrete faithful representation
and assume that ρ0(a1) = diag(s, s−1) for some |s| > 1. Note that since {a+

1 , a
−
1 } ∩ {b+1 , b−1 } is

empty and ρ0 is P1-Anosov, ρ0(b1)x+
ρ0(a1) /∈ {x

−
ρ0(a1), x

+
ρ0(a1)} and hence the (1, 1) entry of ρ0(b1) is

non-zero. For t > 0 define the map ρt on the generating set {a1, b1, ..., ag, bg} of π1(S):

ρt(γ) :=

ρ0(γ), γ ∈ {a1, a2, b2, ..., ag, bg}
ρ0(b1)diag

(
et, e−t

)
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Note that ρt extends to a well defined representation ρt : π1(S) → SL(2,R) which is P1-Anosov
for every t > 0. Since the (1, 1) entry of ρ0(b1) is non-zero a direct computation shows that
limt e

−t∣∣∣∣ρt(b1)
∣∣∣∣ > 0. Since the representation ρ0|〈a2,b2〉 is Zariski dense in SL(2,R), by [AMS95,

Theorem 4.1], there exists C > 0 and a finite subset F0 of 〈a2, b2〉 with the property: for every t > 0
there exists ft ∈ F0 with µ1(ρt(b1ft)) = µ1(ρt(b1)ρ0(ft)) ≤ λ1(ρt(b1)ρ0(ft))+C = λ1(ρt(b1ft))+C.
Therefore, we may find t0 > 0 large enough such that λ1(ρt0(g)) > (2q − 1)λ1(ρ0(g)) where
g := b1ft0 .

Now let i2q : SL(2,R)→ SL(2q,R) be the unique up to conjugation irreducible representation
and consider the tensor product representation ρ := (i2q◦ρ0)⊗ρt0 . Our example will be constructed
as a deformation of the restriction ρ|F on a free subgroup F of π1(S).

The representation i2p ◦ ρ0 is Borel Anosov and let ξii2p◦ρ1 : ∂∞π1(S) → Gri(R2q), 1 ≤ i ≤ 2q
be the Anosov limit maps of i2p ◦ ρ0. Let also ξρt0 : ∂∞π1(S) → P(R2) be the Anosov limit
map of ρt0 . Since λ1(ρt0(g)) > (2q − 1)λ1(ρ0(g)), we may check that the matrix ρ(g) (resp.
ρ(g−1)) is Pi-proximal for every 1 ≤ i ≤ 2q and its attracting fixed point in Gri(R2q) is the
i-plane ξii2p◦ρ0(g+) ⊗ ξρt0 (g+) (resp. ξii2p◦ρ0(g−) ⊗ ξρt0 (g−)). In particular, the ρ-equivariant map
ξii2q◦ρ0 ⊗ ξρt0 : ∂∞π1(S) → Gri(R4q) is dynamics preserving restricted to {g+, g−}. By applying
Lemma 4.2.1 for the representations ∧iρ and the maps τi ◦

(
ξii2q◦ρ0 ⊗ ξρt0

)
(τi denotes the Plücker

embedding), we may find m ∈ N and h ∈ π1(S) such that F := 〈gm, hgmh−1〉 is a free group
of rank 2 and ∧iρ|F is P1-Anosov for every 1 ≤ i ≤ 2q. In particular, ρ|F is Borel Anosov into
SL(4q,R).

Now observe that since ρ0 and ρt0 are connected by a path of P1-Anosov representations into
SL(2,R), for every δ ∈ π1(S) we have `1(ρ0(δ))`1(ρt0(δ)) > 0. We deduce that for every δ ∈ F ,
ρ(δ) = (i2q ◦ ρ0)(δ)⊗ ρt0(δ) is diagonizable and all of its eigenvalues are positive. By Proposition
4.1.4 and the stability of Anosov representations, we may find a Zariski dense deformation ρ′ :
F → GL(4q,R) of ρ|F such that `1

(
∧i ρ(δ)

)
`1
(
∧i ρ′(δ)

)
> 0 for every δ ∈ F and 1 ≤ i ≤ 4q. In

particular, for every δ ∈ F all the eigenvalues of ρ′(δ) are positive. �

Example 4.3.3. Let M be the mapping torus of the closed hyperbolic surface S with re-
spect to a fixed pseudo-Anosov homeomorphism φ : S → S. Recall (see Example 3.10.1) that
the group π1(M) contains a normal and infinite index subgroup Γ isomorphic with π1(S). By
Thurston’s theorem [Thu98] (see also Otal [Ota96]), the group π1(M) admits a convex co-
compact representation ι into PSL(2,C). In fact, by [Cul86], ι lifts to a quasi-isometric em-
bedding ι̃ : π1(M)→ SL(2,C). By composing τ2 with ι̃, we obtain a P2-Anosov representation
ρ1 : π1(M)→ SL(4,R). The Cannon-Thurston map (see [CT07]), θ : ∂∞π1(S)→ ∂∞π1(M) com-
posed with the Anosov limit map ξ2

ρ1 : ∂∞π1(M) → Gr2(R4) provides a ρ1|Γ-equivariant dy-
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namics preserving map ξ0 : ∂∞Γ → Gr2(R4). Note that the representation ρ1|Γ is not a quasi-
isometric embedding, in particular not P2-Anosov, since Γ is not a quasiconvex subgroup of π1(M).
Let ρF : Γ → SL(2,R) be a Fuchsian representation with limit map ξ1

ρF . The representation
ρ = (×qi=1ρ1|Γ) × ρF into SL(4q + 2,R) is not P2q+1-Anosov, however the ρ-equivariant map
ξ = (⊕qi=1ξ0)⊕ ξ1

ρF : ∂∞Γ→ Gr2q+1(R4q+2) is dynamics preserving.
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