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2.1

A comparison in the Milky Way of measured circular velocities as a function of radius
(grey) with expected theoretical contributions from various mass components within
the galaxy. The galactic bulge (blue) and the galactic disk (green) are baryonic mat-
ter distributions that dominate within the inner galaxy. The expected rotation curves
associated with a Milky Way that consisted only of the observed baryonic matter are
shown in dashed black and are visibly incompatible with the data at large radii. The
contribution of the DM to the circular velocity (red) becomes appreciable at large
radii. The rotational velocities expected for the combination of galactic bulge, galac-
tic disk, and DM halo are shown in solid black, demonstrating good agreement with
the observed data. Adapted with permission from [3] using data from [4]. . . . . . . .
A depiction of inferred mass distributions within the Bullet Cluster. Bright blobs
indicate the location of X-ray-luminous baryonic matter, while the contours indicate
the central location of the inferred mass distributions of the two merging clusters.
See [13] for further details. . . . . . . . . . . . .
In grey, the Planck TT spectrum, which measures the angular scales at which tempera-
ture inhomogeneities in CMB appear. In blue, we depict the predictions of the best-fit
ACDM cosmology obtained in the Planck 2018 analysis. This cosmology describes a
universe in which 84% of matter is comprised of DM, and its predictions demonstrate
excellent agreement with the data [15]. If we hold the total matter abundance fixed
but reduce the amount of DM by 10%, then we would expect the spectrum shown
in dashed green, which is visibly a poor description of the data. Here, the predicted
CMB spectra have been generated with the CLASS code package [16]. . . . . .. ..
The axion parameter space in terms of the axion mass, m,, and the strength of
its coupling to photons, g,,,. Green, blue, red, and gray regions are excluded by
various searches. The orange band indicates the mass-coupling relation for an ax-
ion which solves the Strong CP Problem. White space is unconstrained. Sev-
eral of these constraints have been produced by works included in this thesis. See
https://cajohare.github.io/AxionLimits/ and accompanying refer-
ences fordetails. . . . . ... L

Each panel illustrates the string network (yellow strings), domain walls (red mesh),
and energy density of the axion field (blue-white intensity) before (left), during (mid-
dle), and after (right) the QCD phase transition (see animation). . . . . .. .. ... .

vil

3


https://cajohare.github.io/AxionLimits/
https://youtu.be/1By1DMq1EpI

22

2.3

24

3.1
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(Left) A portion of a 2-D slice through the overdensity field §(z) at the end of the
QCD stage of our most realistic simulation with 7. = 3.6 and A = 5504. Large over-
densities and rings of relativistic radiation arise from oscillon decay. Slices through
the clustered minihalos are outlined in red. (Right) As in the left panel, except the
field is evolved to matter-radiation equality. The large overdensities largely disperse

and the field is everywhere non-relativistic. . . . . . . . ... ... Lo

Differential mass distribution for axion minihalos for our most realistic simulation, as
described in Fig. 2.2, computed by clustering the overdensity field at 7yr. The shaded
“unresolved” region denotes the parameter space that is beyond our resolution limit.

Small statistical uncertainties are displayed as grey errorbands. . . . . . . ... ...

The DM density €, as a function of the axion decay constant f,, with statistical uncer-
tainties (black) and correlated systematic uncertainties (red) indicated, for our top four
simulations. We compare our results to those in [112] (Klaer and Moore), which agree
relatively well with our own, and [118] (Kawasaki et al.), which predicts significantly

higher €2, relative to what we find. . . . . .. ... .. ... ... . ... ... ...

(Left) A comparison between the mean of 500 Monte Carlo simulations of a signal
only PSD dataset (blue) and the analytic expectation given in (3.26) (black). The
inset shows the distribution of the 500 simulated S¢4 versus the predicted exponential
distribution, as in (3.24), at the frequency where the signal distribution is maximized,
w/m, = 1.003. This example was generated assuming the unphysical but illustrative
parameters A = 1 Wb?, m, = 27 Hz, and vy = vops = 220,000 km/s. Importantly
the simulations were generated by constructing the full axion field starting from (3.3),
and so the agreement between theory and Monte Carlo is a non-trivial confirmation
of the framework. (Right) As on the left, but with Gaussian distributed white noise
added into the time-series data with variance \p/At, and taking A\p = 500 Wh? Hz L.
Again we see the theory prediction in good agreement with the average data, whilst at
an individual frequency point the simulated data is exponentially distributed. See text

fordetails. . . . . . . e

A comparison between the look elsewhere effect improved survival function approx-
imate result derived between (3.60) and (3.62), and the equivalent values derived di-
rectly from Monte Carlo simulations. The good agreement between the two, espe-
cially at large T'S¢y,,esn demonstrates that our approximate result is useful for estimat-
ing how often the background can fluctuate to fake the signal at a given confidence
level. Note the values plotted here correspond to signals varying from O to 4o, for
derived values of A\p given in (3.28) and 2.5 million Monte Carlo simulations. We
do not extend the plot up to the 50 value relevant for discovery, as this would require
roughly 100 times as many simulations. This statement in itself already demonstrated

the utility of our approximate analyticresult. . . . . .. ... .. ... ... ... ..
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(Left) A comparison of the projected sensitivities for a hypothetical version of the
ABRACADABRA (ABRA) experiment [71], with inner toroidal radius R = 0.85
m, an outer toroidal radius double this value, and a height » = 4 R. A maximum
magnetic field of 10 T is assumed, along with an interrogation time of 1 year. (Right)
An equivalent comparison of projections for a future ADMX experiment. Here we
take a total run time of 5 years, a volume of 500 L, quality factor of 10°, magnetic
field of 7 T, and a system temperature of 148 mK. In both panels the exact sensitivities
are contrasted with an estimate obtained from the signal-to-noise ratio, S/N = 1.

An actual limit obtained from a single Monte Carlo simulation, with the broadband
readout, compared to the various expectations for the broadband ABRACADABRA
framework used in Fig. 3.3. The data was simulated with an injected signal corre-
sponding to m, = 107% eV and g,,, = 2.21 x 107! GeV~!, and indeed we can
see that right near the frequency corresponding to the axion mass, we are unable to

exclude the corresponding signal strength. . . . . . . . ... ... ... .......

The posterior distribution for a model with annual modulation where the signal
strength is at the threshold of annual modulation detection at 5o. The true param-
eter values are indicated in blue, with the 1o confidence intervals on the parameter
estimations indicated by the dashed black lines in the one parameter posteriors. The
two parameter posteriors show the 1 and 20 contours. The axion mass, m,, was also
scanned over, and is recovered accurately but not shown here. Note that this example
uses the Asimov dataset. All times are measured in days and velocities in km/s, while

the units of A are arbitrary. . . . . . .. ...

As in Fig. 3.5, but this time the data includes gravitational focusing and the model
only includes the parameters A, « and t. (Left) Gravitational focusing, while present
in the Asimov data, is excluded from the model template. The estimations of A and
t are off at the ~20 and ~10 levels, respectively. (Right) As in the left panel but
including gravitational focusing in the model template. As expected, the parameter

estimation is quite accurate inthiscase. . . . . . . . . . ... ...

The enhancement expected in the TS in the presence of a coherent DM stream. The
TS is shown as a ratio with respect to the case where only the bulk halo is present and

as a function of the fraction of the local DM within the substructure. . . . . .. . ..

The axion contribution to the PSD as a function of frequency in the presence of DM
substructure. (Left) We show the effect of a Sagittarius-like stream that makes up
~5% of the local DM density at two different times of year, corresponding to the
dates of maximum TS (June 5) and minimum TS (November 23), where all dates are
for 2017. Annual modulation plays an important role for cold substructure because
the Earth’s orbital velocity may be larger than the substructure velocity dispersion.
(Right) As in the left panel, but for a dark disk that makes up ~20% of the local
DM density. The dark-disk is co-rotating with the baryonic disk, with a lag speed
~50 km/s, and so the contribution to the PSD is at lower speeds compared to the
stream case. Gravitational focusing also plays an important role for the disk since the
solar-frame velocities are relatively low. In this case the maximum and minimum TS
occur on November 18 and June 5 respectively. For both of these panels, the signal is
generated using m, = 1 MHz, A set to the value for the threshold for detection of the

SHM, and A set to the minimum SQUID noise. . . . . . . ... ... ........
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3.10
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4.2

4.3

A Monte Carlo parameter estimation for the bulk halo parameters at the threshold of
detection for annual modulation in the presence of a Sagittarius-like stream containing
5% of the DM and with a narrow velocity dispersion of 10 km/s. The accuracy of
the parameter scan is worsened by the failure to account for the substructure in the
analysis. . ..o e e e e e e e
A simultaneous Monte Carlo parameter estimation for a signal containing a bulk halo
and a Sagittarius-like stream with 5% of the DM using identical seed parameters as
Fig. 3.9. Scanning for the bulk halo and substructure simultaneously allows us to
accurately recover the signal parameters. Left, the bulk parameter scan results, right,
the stream parameter scanresults. . . . . . . . . .. ... oo

The imprint of DM interferometry. A single wave-like DM experiment is sensitive
to the DM speed distribution f(v). Two detectors separated by a vector x;2, how-
ever, are sensitive to the speed distribution modulated by the k - x5 phase of the DM
wave, replacing f(v) with functions F73 (v) as defined in (4.3). As the figures demon-
strate, the modified speed distributions exhibit daily modulation and carry additional
information about the velocity distribution f(v) that would be invisible to a single
detector. For this example we take mp, = 25.2 peV [79], near the window where
the HAYSTAC collaboration is searching for axion DM. Taking the Standard Halo
Model ansatz for f(v) in (4.50), we place one detector at a latitude and longitude
of (41° N, 73° W), and a second instrument ~ 20 m to the North, corresponding to
d ~ 2)\.. A curve is shown for every ten minutes starting from midnight on January
Ist of 2020. Note that as F73’(v) are functions of mp,d, qualitatively similar effects
exist for e.g. mpy ~ 1072 eV, in the mass range probed by ABRACADABRA and
DM-Radio, ford ~ 500km. . . . . . . . . ...
The modified speed distribution, F7,(v), that carries the imprint of DM interferome-
try. Here we show the particularly simple example of an isotropic SHM for N = 2
detectors, in which case the expression is given in (4.40). The result is shown for
various choices of the two detector separation d as compared to the axion coherence
length A\, = (m,v) !, with vg = 220 km/s. The limiting cases of F¢,(v) — f(v) for
d < A. and F{y(v) — 0 for d > \. are apparent. For d ~ )., however, the profile
is modulated with the interference inherent in the cross-spectrum. In this simple case,
there is no additional information about the velocity distribution that may be extracted
by having multiple detectors. . . . . . . . . . .. ...
The expected uncertainty on the angle between the detector axis and solar velocity,
0 = arccos(Vg - X12), as a function of d/\. = d X m,vy. In this example we have set
the true orientation to 6% = /4. With this configuration, we find that the maximum
precision is obtained for d ~ 2\.. . . . . . .. ... L o
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4.5

4.6

4.7

(Left) A Mollweide projection of the Asimov test statistic é(@, ¢) for the SHM di-
vided by the co-located detection significance T'Sy. The detectors are configured so
that the displacement vector between them is parallel to the SHM boost velocity, and
the Mollweide plot is rotated so that it is centered on the maximum test statistic. (Cen-
ter) As on the left, but for a detector configuration where the displacement vector is at
a 45° angle to the North (9t® = 7/4) with respect to the SHM boost velocity. (Right)
As on the left, but for a detector configuration where the displacement vector is per-
pendicular to the SHM boost velocity (6, = 7/2). In this configuration the location
of the boost velocity can only be localized to a great circle on the celestial sphere. . .
(Left) As in Fig. 4.3, but for the Sagittarius (SGR) stream rather than for the SHM. As
before, the maximum precision for the inferred value of 0, is achieved at m,vod ~
2, although the overall dependence is somewhat softened outside of the extremes at
mquod = 0 and myvod = 2m. The values of gy, x /TSy are also considerably
smaller than those found in the SHM example, indicating that the angle 4, can be
reconstructed with much greater precision for the SGR stream as compared to the
SHM. (Right) The Asimov TS ©(fy,) for the SGR stream rescaled by the co-located
detection significance T'Sy as a function of g, for a detector configuration where the
true stream direction is 6%, = m/4 (dashed vertical line). We have fixed m,vod =
2. The TS é(Gm) is maximized at the true value of 0., but there is considerable
nontrivial global structure with a large number of local minima and maxima in~(:3. ..
As in Fig. 4.4, we construct Mollweide projections of the Asimov test statistic O(6, ¢)
for the SHM rescaled by the co-located detection significance T'Sy. However, we now
perform a joint likelihood over data collected over a 24-hour period so that the daily
modulation of the detector displacement vector produces a time-varying signal, which
helps break degeneracies in the reconstructed directional parameters. The Mollweide
projection for a configuration in which the detectors are oriented along an East-West
(North-South) orientation is shown on the left (right). While the results of obtained in
an East-West configuration do not depend on the latitude of the detectors, the North-
South configuration results do, so for definiteness, we have taken the detectors to be
located in New Haven, CT, the site of the HAYSTAC detector. In both configurations,
the SHM boost velocity direction can be localized effectively, although there remains
a non-trivial degeneracy in the East-West map between two points on the sphere.

As in Fig. 4.6, but for the Sagittarius stream example. For a fixed axion mass, the
physical detector separation d = 2. is a factor of 20 larger than in Fig. 4.6 be-
cause of the larger coherence length of the stream. While there are many local max-
ima in both configurations, the North-South orientation produces only a single global
maximum, at the true detector localization, while the East-West orientation leads to
two degenerate global maxima (one at the true detector location and the other dis-
placed). An animated version of these figures, showing how the localization im-
proves throughout the day as more orientations of x;5 are sampled, can be found

at github.com/joshwfoster/DM _Interferometry. . . . . . ... ... ... ... ....
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5.1

5.2

53

The posterior distribution for a model with daily modulation where the signal strength
is at the threshold of an expected 50 detection for a 100 second observation with a
single detector. Monte Carlo data is generated for 24 hours of data collection with two
detectors separated along the North-South direction by a distance with 2 x (m,vg) .
The true parameters are indicated in blue, with the 1o confidence intervals on the
parameter estimations are indicated by the dashed black lines in the single-parameter
posteriors. The two parameter posteriors show the 1o and 20 contours. On the left, we
display the posterior distributions for the overall signal strength, the boost speed of the
SHM, and the velocity dispersion of the SHM, all of which are parameters accessible
in a single detector configuration. On the right, we display the posterior distributions
for the angles A, = 0, — 0% and Ape, = ¢o — ¢, which specify the orientation
of SHM boost velocity and are only accessible in a multiple-detector configuration.

Both 6 and ¢, are determined at degree precision in this scenario. . . ... ... ..

Left: Rendering of the ABRACADABRA-10cm setup. The primary magnetic field
is driven by 1,280 superconducting windings around a polyoxymethylene (POM)
support frame (green). The axion-induced field is measured by a superconducting
pickup loop mounted on a PTFE support (white). A second superconducting loop
runs through the volume of the magnet to produce a calibration signal. All of this is
mounted inside a superconducting shield. Right: Picture of the exposed toroid during

assembly. . . ...

Flux spectrum averaged over the the data used in this analysis. (a) The spectrum
over the frequency range 11 kHz < f < 3 MHz, corrected for the pre-digitizer filters
(blue). For comparison, we also show the digitizer noise floor, corrected for pre-
digitizer filters (gray) and the characteristic SQUID flux floor (green dashed). The
axion search range is between the dotted black lines. (b) A zoomed view of the
10 MS/s spectrum (blue) with Af = 100 mHz and and an example axion signal at
the 95% upper limit (red dashed). (c¢) A zoomed view of the 1 MS/s spectrum with
Af = 10mHz. Note that the digitizer data was collected at a different time from the
SQUID data, and shows a few transient peaks that are not present in the SQUID data.
The limit on the axion-photon coupling ¢,,, constructed from ABRACADABRA-
10cm data described in this work. We compare the observed limit, which has been
down-sampled in the number of mass points by a factor of 10* for clarity of presenta-
tion, to the expectation for the power-constrained limit under the null hypothesis. This
down-sampling excludes the 87 isolated mass points vetoed in the discovery analysis;
further details will be presented in [82]. Additionally, we show the astrophysical con-
straint on g,+~ in this mass range from the CAST helioscope experiment [263]; the

region above the grey lineisexcluded. . . . ... ... ... .. .. .........
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6.1

6.2

6.3

6.4

7.1

Top: Schematic of ABRACADABRA-10 cm showing the effective axion-induced cur-
rent (blue), sourced by the toroidal magnetic field, generating a magnetic flux (ma-
genta) through the pickup cylinder (green) in the toroid bore. Bottom: Simplified
schematic of the ABRACADABRA-10cm readout (full circuit diagram in Fig. E.1).
The pickup cylinder L, is inductively coupled to the axion effective current J.g. The
power spectrum of the induced current is read out through a DC SQUID inductively
coupled to the circuit through L;,. An axion signal would appear as excess power
above the noise floor at a frequency corresponding to the axion mass. . . . . . . . ..
The gain shown here is defined as the change in amplifier output voltage over a cor-
responding change in input flux amplitude on the pickup cylinder (0V,,;/0®,). Both
transfer functions roll off at high frequencies due to the amplifier bandwidth, which
we estimate to have a cutoff frequency of approximately 1 MHz. We believe the dif-
ference in calculated and measured gain is due to inconsistency in the total inductance
of the pickupcircuit. . . . . . . . . ...
The survival function of TS values from the likelihood analysis of the Run 3 results.
The y-axis indicates the fraction of mass points tested with a discovery TS at or above
the value on the x-axis. Under the null hypothesis, the distribution should follow
the survival function of the one-sided x? distribution with one degree of freedom
(“Expected,” dotted gray). This is indeed the case after data cleaning for e.g. single-
channel excesses in time slices, magnet-off vetoes, and the inclusion of a systematic
nuisance parameter, which is tuned in a sliding window at 4o local significance to
give the correct number of excesses at or above that significance, masking the signal
of interest. No excesses are found beyond our indicated 5o LEE-corrected discovery
threshold. . . . . . . . . L
(Left) The one-sided 95% upper limit (U.L.) on g4, from this work excludes pre-
viously unexplored regions of ADM parameter space. The 1o and 20 containment
regions are constructed by taking the appropriate percentiles of the distributions of
the limits over narrow mass ranges; note that this means that ~16% of the upper lim-
its lie at the bottom of the green band. Around 11.1 million mass points are analyzed,
so the plotted data is smoothed for clarity. Our limits surpass those from a number of
indicated astrophysical and laboratory searches in this mass range, including CAST
(solid grey region), super star cluster constraints (dashed grey line), and SHAFT (solid
grey line). See text for details. (Right) The un-smoothed limit in a narrow mass range
between 2.99790 and 2.99798 neV. This provides a detailed view of variations in the
limit at each axion mass that arise from statistical fluctuations across the collected
data that are not visible in the smoothed data shown in the left plot. This range also
depicts the location where our maximum sensitivity is achieved, with our strongest
limitat o, S3.2x 107 GeV T Lo

The 95% upper limits on the signal flux for the indicated sources from the GBT and
Effelsberg observations. These upper limits apply to monochromatic signals at the
widths ¢ fsq given in Tab. 7.1. These curves have been down-sampled for visualiza-
tion purposes. We compare these limits with the 95% upper limits expected from
the ideal radiometer equation under the assumption that the only source of statistical
uncertainty is thermal noise at the total system temperature. . . . . . ... ... ...
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7.2

8.1

8.2

8.3

9.1

9.2

The one-sided 95% upper limits on g,-~ as a function of the axion mass m, from this
work are shown as colored lines (GBT INS observations) and black lines (Effelsberg
GC observations). Previous limits from the CAST helioscope and the UF and RBF
haloscopes are shown in shaded grey. The range of couplings expected for the QCD
axion is shaded in orange. Note that the fiducial GC limits assume an NFW DM
profile and the conservative NS population model (Model II) from [104]. The green
band depicts theoretical uncertainties on the g, limit associated with the GC analysis
for the Effelsberg data. The top of the band assumes an NFW DM density profile with
a 0.6 kpc core, while the bottom of the band uses the alternate NS population model
in[104] Model I). . . . . . ... 140

The stacked and pixelated background-subtracted count data (10 - 80 keV) from the
NuSTAR observations of the Quintuplet SSC. The locations of the stars are indicated
in black, while the 90% energy containment region for emission associated with the
SSCis indicated by the black circle, accounting for the NuSTAR point spread function
(PSF). RA; and DEC, denote the locations of the cluster center. We find no evidence
for axion-induced emission from this SSC, which would follow the spatial counts
template illustrated in the insetpanel. . . . . . . . ... ... ... ... ... ..., 143
The spectra associated with the axion-induced templates from the Quintuplet and
Wd1 SSCs constructed from the NuSTAR data analyses, with best-fit points and 1o
uncertainties indicated. In red we show the predicted spectra from an axion with
m, < 107! eV and indicated g,,~. Note that for Wd1l we do not analyze the 10 - 15
keV energy bin because of ghost-ray contamination. . . . . .. . ... ... ... .. 149
The 95% upper limits (black) on g,.~ as a function of the axion mass from the Quin-
tuplet and Wdl data analyses. We compare the limits to the 1o (green band) and 20
(yellow band) expectations under the null hypothesis, along with the median expec-
tations (dotted). The joint 95% upper limit, combining Quintuplet and Wdl, is also
indicated (expected joint limit not shown). At low masses our limits may be surpassed
by those from searches for X -ray spectral modulations from NGC 1275 [364], though
we caution that those limits have been called into question recently, as discussed fur-
ther in the text [365]. . . . . . . . . e 150

Our fiducial D-factor, which is proportional to the expected DM signal flux. Values
are given in all 30 annuli, which are 6° wide in angular distance from the GC (with
|b] > 2°), and we define a signal and background ROI as shown. In each ring, we
compute the D-factor of all MOS or PN exposures, weighted according to the obser-
vation time and field of view. The horizontal line indicates Dy, the mean D-factor
inthe background ROL. . . . . . . . .. ... ... .. ... 154
The background-subtracted MOS data for the innermost annulus, downbinned by a
factor of four for presentation purposes. The indiciated best fit null and signal models,
for a 3.5 keV UXL, are constructed using the GP modeling described in the text. . . . 157
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9.3

94

Al

A2

A3

A4

(Upper) The power-constrained 95% upper limit on the DM lifetime from this work,
presented in the context of the sterile-neutrino mixing angle sin®(26), as a function
of the DM mass m,. The dark grey regions correspond to theoretical bounds for
DM underproduction in the yMSM or bounds from previous X-ray searches (1)—(5);
see text for details. (Lower) The associated sign-weighted significance for the UXL.
Vertical grey regions denote background lines and are at least partially masked. Green
and gold regions indicate 1/20 expectations under the null hypothesis. These results
are shown in the context of more general DM models as constraints on the DM lifetime

inFig. H7. . . . o o

Our decay search interpreted in the context of limits on the axion decay to two pho-
tons. Our limits, along with those from additional blank sky searches are indicated as

mFig. 03 . . o e

Double differential mass fractions for axion minihalos as a function of the concentra-
tion parameter § and mass M. In the top left we compute that mass function using
the field immediately after the QCD phase transition, at 77 = 7, while in the bottom
left we use the more correct procedure of first evolving to 1) = 7y before performing
the clustering procedure. Evolving to matter-radiation equality gives the most over-
dense regions time to expand and results in less dense overdensities, as compared to
the incorrect procedure shown in the top left. This is perhaps even more apparent
in the single differential mass fractions as a function of the mass M (top right) and
concentration parameter ¢ (bottom right). These results are based on our most real-
istic simulation with 7, = 3.6 and A = 5504. Error bars are statistical, and we do
not extend the df /dlog M curves to lower masses as we are unable to resolve those

properly. . ..o e

Ilustration of an oscillon (log(p/p)) at different times in a 2D simulation. Two sce-
narios are considered with different truncation points of the mass growth, 7. = 4.0
and 7). = 6.0. The three left panels are identical in both scenarios, while the two top
right panels are for 7). = 6.0, and the two bottom panels are for 7). = 4.0. The radius
of the oscillon is proportional to the oscillation frequency ~ m,(T)~" (circles of that
radius are shown in dashed blue) and as such is decreasing over time. The oscillon
central density slowly dissipates after the mass growth ends, as seen in the bottom

right panels for 7. =4.0. . . . . . ..

Our results for the DM density today €2, inferred at 7jyr, from simulations at different
values of A for our most realistic Ne: Ne = 3.6. The uncertainties are the inferred
statistical uncertainties arising from the spread in the DM density determinations as
a function of \. No trend is discernible for the dependence of €2, on )\, above the

statistical NOISE. . . . . . . . . . e e,

A comparison of the predictions for the relic abundance of axions dark matter as a
function of f, obtained in [118] (Kawasaki et al.) and [112] (Klaer and Moore) with
the simulation results realized in this work. Error bars are combined statistical and
correlated systematic errors, with the former dominating at ) = 7 due to large field

gradients and the latterat /) = pyp. . - . . . . oL L L
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A5

A.6

A7

A8

A9

A.10

A comparison of the power spectra realized in simulations for A = 5504 for different
choices of 7).. New features in the power spectrum emerge as we push to larger values
of 7)., and we cannot exclude the possibility that further features would emerge were
we to simulate with a greater value for the cutoff. On the other hand, the power-
spectrum is highly non-Gaussian at small scales, so the distribution A? alone is not

adequate for understanding the small-scale nature of the overdensity field. . . . . . . .

A comparison of the distribution of the squared magnitudes of Fourier components for
four different fixed reference momentum k. The expected exponential distribution for
a Gaussian field is also indicated. While the distributions are Gaussian at large scales,
they become increasingly non-Gaussian at small scales. The momentum mode |k| =
500 corresponds to approximately 6.5 grid sites. These distributions were constructed

from our most realistic simulation with A = 5504 and . =3.6. . ... ... .. ...

Comparison between differential mass fractions as a function of the minihalo mass
M from our simulations at different 7).. In this plot we have rescaled the minihalo
masses such that we achieve the correct DM density p observed in the Universe, but
for the solid curves we have not applied the Hubble volume rescaling factor to reach
our target f,. However, the dashed curves do have the Hubble volume rescaling factor
included, but here we take our target f, to be that corresponding to our most realistic
simulation with 7). = 3.6. The difference between the dashed mass functions and the
solid black mass functions gives a sense of the systematic uncertainty introduced by
applying the naive mass rescaling factors instead of simulating with the correct value

OF e (fa)e o v e e e e e e e e e

Comparison between differential mass fractions as a function of the concentration
parameter 0 and minihalo mass M for different 7). and )\ at 7 = Tmr. Error bars are
statistical. Shown as dotted lines is a fit to the df /do curves as described in the text.
We do not extend the df /dlog M curves to lower masses as we are unable to resolve

those properly. . . . . . . L

Comparison between cumulative mass fractions, defined in the text, for our simulation
at 77 = 7 (solid blue) and 7yr (solid black). We use our fit to the differential mass
fraction df /d¢ to extrapolate to high dy for our 7y data (dotted black). Error bars are
statistical. We compare our results to those from Kolb and Tkachev [430] obtained at

7) = 4 by using the fit to their data presented in [99] (red curve). . . . . .. ... ...

We depict the variation of fi, fo, and f3 as a function of 7 over the relevant range
of 7) for our simulations accounting for a varying g.. For fixed g., we would expect
f1 and f5 to be constant at value 1. We additionally show the behavior of f5, which
describes the evolution of the quantity m,(n)2/H?, normalized to f;, wherein we
compute mq(n)%/H? assuming a fixed g,.. Assuming a fixed g, causes the axion to
reach its zero-temperature value earlier in 7, but the ratio ultimately reaches unity as

the same zero-temperature massisreached. . . . . . .. .. .. ... .. ...
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A1l

A.12

A.13

A.14

A.15

B.1

B.2

Numerical evolution of the idealized circular string-domain wall collapse. (Left) A
comparison of the radius of the circular domain wall as a function of conformal time
7) for the simulation parameter A = 5504 (solid black) and for a physically-motivated
parameter value A ~ 10%. The collapse of the domain wall occurs at around 7) = 2,
i.e., after a Hubble time. (Right) The ratio of the domain wall radius as a function of 7
for the two values of A. We see that the collapse rate is largely insensitive to the value

The string length parameter £ shown as a function of the ratio of simulation tempera-
ture 7" to the temperature 7'p¢) at which the PQ phase transition occurred, including the
results of our fit to the functional form of (A.58). We observe significant evidence for
logarithmic deviation from the scaling regime. Extrapolating this result to the QCD
phase transition (vertical dashed line) gives the prediction that ¢ should be around a
factor of 15 higher at the beginning of the QCD phase transition than in the final state

of our most realistic simulation. . . . . . . . . . . ... e

The fraction of the string length in super-horizon length strings. Like [124], we find

roughly 80% of the string length resides within long strings. . . . . . .. ... .. ..

The present day axion abundance as a function of the string density parameter £ at the
beginning of the QCD simulation at 7); = 0.4. Individual data points are labeled by
their box length Lgcp. The error bars are estimates of the statistical uncertainties, and

no clear trend is visible inthe data. . . . . . . . . . . . ... ...

Differential mass spectrum as a function of the minihalo mass M for different box
sizes. Error bands include statistical errors and the uncertainty on the overall normal-

ISALION. . . v v v e e e e e e e e

A comparison between the variation in the 95% upper limit found in Monte Carlo
(MC) simulations to that derived analytically with the Asimov dataset. As shown the

two are in good agreement. . . . ... L Lo e e e e e e e e e e e

Schematic depiction of the approximation made to the model used to derive T'Stpyesh-
Specifically we assume that the signal model is non-zero only within a finite frequency
range, and equal to the background outside this, and within this range the combined

signal and backgroundisflat. . . . . .. ... ... L L oo
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C.1

D.1

D.2

D.3

D4

Monte Carlo validation that the statistics of DM interferometry are as claimed in
App. C.2. In the left figure we confirm that the variances of the real and imagi-
nary signal-only data sets, collected for the N' = 2 experiments, is as claimed in
(4.16). This was proven directly in the text, but in the plot we show that the average
of 4,000 Monte Carlo simulations provides a consistent prediction for the variances
as a function of frequency in the different cases. On the right figure, for the fre-
quency where (R RM) achieves its maximum, we show the distribution of values
across the simulations. In detail, we see that the real and imaginary components are
normally distributed, and consistent with a mean-zero normal distribution, where the
variance is given as on the left, here 02 ~ 25 Wb? /Hz. We found that the distri-
butions were consistent with the Gaussian expectation at the level of p > .05 us-
ing the D’Agostino and Pearson omnibus normality test [432,433]. In both cases,
each Monte Carlo simulation involves a direct construction of the axion field starting
from (C.16) with N, = 100, 000, taking m, = 27 Hz, and A = 1 Wb?. Further,
we take the velocity distribution to follow a variant of the SHM in (4.50), but with
vo = 0.07 and v, = (0,0.08, 0), both in natural units. The (unphysically) large veloc-
ity helps simplify the computation of the Fourier transform. The detector separation

isx;p=d(0,1,0),withd~44X.. . .. ... .

(a) Three of the 80 Delrin wedges that form the toroid structure stacked together. The
black bar indicates a ~ 1cm scale. (b) Cutaway rendering of the toroid with the
1 mm diameter wire pickup loop in the center. A 0.5 mm diameter wire runs through
the center of field region to form the calibration loop. Toroid height is ~ 12cm.
(c) Rendering of the ABRACADABRA-10 cm support structure. The pickup loop is
supported by a PTFE (white) tube through the center. The magnet is supported by an
outer G10 support structure and thermalized with two copper bands. (d) Photo of the
assembled ABRACADABRA-10cm, with the top of the superconducting shield and

support structure removed. . . ... L. oL L e

Gain of the combined high-pass and anti-aliasing filters. All spectra are corrected
for this response function — unless otherwise noted. Measured in-situ, using injected
signals at different frequencies. This also defines the usable range of data. For our

search we use the range 75SkHz-2MHz. . . . . .. .. ... ... ... .. ...,

A conceptual diagram of the ABRACADABRA-10cm calibration circuit. The cali-
bration loop, Lo ~ 300nH, is concentric with the pickup loop, Lp = 95.5nH. The
circuit is plugged into the SQUID with input inductance L;, ~ 150 nH. The parasitic

resistance in the circuit is measured as Rp ~ 13 ). . . . . . . . . ... ... ...

Low frequency SQUID spectra from ABRACADABRA-10cm taken with an ac-
celerometer attached the 300K plate. The spectrum is that of the SQUID output,
with the degree of correlation with the accelerometer indicated by color (i.e. the cor-
relation coefficient). The accelerometer begins to lose sensitivity above a few kHz,
so it is not clear from this measurement how far up the correlation continues. These
data were taken with a larger dynamic range on the digitizer, so have a relatively high
ADC noise floor of ~ 5 x 107 mV?/Hz. (Data taken without signal shaping filters.)
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D.5

D.6

D.7

D.8

E.1

E.2

E.3

Example Fiom SQUID spectra with magnet on (blue) and off (orange), along with
the digitizer noise floor (gray). SQUID spectra are averaged over ~9 h, digitizer data
averaged over ~16h. The typical SQUID noise floor is shown in green dashed line.
Note: The spectra were collected at different times and some of the transient noise

peaks are not seeninall spectra. . . . . . . . . . .. ... L e

(a) Example calibration peak at 850 kHz with 10 mVpp excitation and 90 dB of atten-
uation. Bin width is 1 Hz wide and all power is contained within a single bin. Output
voltage is measured at the output of the amplifier electronics. (b) Measured detector
response for four different input amplitudes taken with the magnet on. The measured
gain is a factor of ~ 6.5 below the expected response (dashed line at the top). The
outlier in the 20 mVpp spectrum is the result of a background line contributing power

tothemeasured peak. . . . . . . . . .. L

(a) The number of 30 excesses accounting for the look-elsewhere effect in each spec-
trum after vetoing the excesses that are present in the corresponding Magnet Off data.
(b) The distribution of local TS values in the full month of analyzed data after remov-
ing periods of transient noise. In blue is the observed distribution of local TS values
prior to vetoing the Magnet Off excesses. In green, the observed distribution of TS
values after the Magnet Off veto. In red, the expected distribution under the null hy-
pothesis. We see that after applying vetoes, there is excellent agreement down to very

low survival counts, with no remaining 5o excesses. . . . . . . . . .. .. ... ...

(Top row) The recovered signal parameters as a function of the injected signal param-
eters in four Monte Carlo realizations with identical mean background levels. Green
and yellow bands indicate the expected 1 and 20 containment for the upper 95% limit
on the axion coupling under the hypothesis of no axion signal. (Bottom row) The
observed and expected test statistic for discovery as a function of the injected signal
strength. The dashed red line indicates the threshold for a discovery at 5o significance
accounting for the LEE, while the dashed black line indicates the upper 95% limit on

the observed test statistic under the null hypothesis. . . . . . ... ... ... ... ..

ABRACADABRA-10 cm Run 3 calibration circuit diagram. A fake axion signal gen-
erated in the signal generator is attenuated by 93 dB (including 3dB loss in the com-
biner) before being coupled into the pickup cylinder analogously to an axion signal.
The resulting power excess is readout on the SQUID and measured in the ADC dig-
itizer. In Run 3, calibration is performed with the magnet turned on and the active
feedback circuit running. During data taking, the signal generator is replaced with a
50 Q2 terminator. The FLL feedback resistor and inductor are omitted for clarity. . . .
The SQUID flux for Run 3 over the 70 kHz to 2 MHz frequency range at which we
collect data. The magnet on noise level (magenta) is elevated compared to data taken
with the magnet off (gold) primarily due to vibrating fringe magnetic fields. For com-
parison, the noise level from a similar SQUID without anything plugged into its input

isplottedinteal. . . . . . . . . . . . ..

As in Fig. 6.3, but evaluated on the 10% of unblinded Run 2 data against which we

calibrated our analysis procedure. . . . . . .. .. ... Lo
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E.4

E.5

E.6

E.7

E.8

F.1

(Left) The histogrammed data acceptance fraction under the data filtering over all
masses analyzed in Run 3 data. (Right) The fraction of masses removed by magnet off
vetoes as a function of frequency in Run 3 data. The acceptance fraction is determined
within 100 log-spaced bins between the minimum and maximum axion masses within
our analysis range. Note that while we display the Run 2 results, those were used only
to develop our analysis protocols and not in the physics analysis. . . . . . . ... ...
The hyperparameter, o4, converted to the units of g,,., for the systematic nuisance
parameter, g;‘;n;, as a function of axion mass (labeled Systematic Nuisance Param.).
We compare the systematic nuisance hyperparameter to the statistical uncertainties
(labeled Hessian Statistical Error), which are computed from the Hessian for the log-
likelihood without systematic uncertainties about the best-fit axion coupling, G4---
The time evolution of the broad excess that is associated with the putative signal can-
didate in the Run 2 data that survived all analysis cuts. The excess persists after the
magnet is turned off and evolves in frequency, indicative of a background source. The
magnet off veto did not anticipate this level of time evolution and so did not remove
these excesses. Since this feature was found after unblinding, we report it here but do
not consider it to be a credible axion detection. . . . . . ... ...
A comparison of our fiducial limits that include a nuisance hyperparameter correction
(black) and those without any correction (blue). Limits set with the nuisance hyper-
parameter are slightly weaker, but the features and limit-setting power are broadly
similar. The figure is smoothed for clarity. . . . . . . .. .. ... ... ... .....
(Top row) The best fit and 95% upper limit on the recovered signal strength as a func-
tion of the injected signal strength at five mass points evaluated on the real Run 3
data. The results are compared to the 1o and 20 expectations for the 95" percentile
upper limit under the hypothesis of no axion signal as determined by 2560 Monte
Carlo (MC) realizations of the null model fits to the real data at each injected signal
strength. (Bottom row) In black, the recovered detection test statistic for the signal
injected in the real data as a function of injected signal strength. The dashed red line
indicates the threshold for a 50 detection significance account for the look-elsewhere
effect while the green and yellow bands indicate the 1o and 20 expectations for the
detection significance determined from 2560 MC realizations of the null model com-
bined with appropriately varied injected signal strength. . . . . . ... ... ... ..

(Left) A comparison of the 95% upper limits of the flux density spectra measured
with our windowed analysis for the GBT and Effelsberg observations of the Galac-
tic Center and radiometer expectations. Data are analyzed at an approximately 1.831
MHz frequency resolution corresponding to the fiducial resolution for the GBT anal-
ysis. Although the Effelsberg data is consistent with the radiometer expectations at its
original resolution, when down-binned to the GBT resolution, it demonstrates similar
incompatibility with the radiometer expectations. (Right) The 95% upper limits on
the signal flux for the indicated sources from the GBT observations. These signal flux
limits are compared to the expected flux density limit appropriately computed from
the radiometer equation. The analysis is performed at the fiducial analysis bandwidth,
seeTab. F1. . . . . o oo o
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F2

E3

F4

E5

F.6

(Upper Left) The raw, uncalibrated Effelsberg data collected in the L-Band at the GC
and in the Off Position at frequencies between 1.3-1.45 GHz. Detector features much
larger than the expected width of an axion signal and coincident RFI lines in On and
Off data are clearly visible. (Upper Right) The raw, uncalibrated GBT data collected
from the INSs RX J0720 and RX JO806. For visual clarity, we do not show the corre-
sponding Off Position data. Thickets of RFI are especially visible around 1.575 GHz
and 1.62 GHz. (Lower Left) The flux density limits as a function of frequency ob-
tained from our analysis of the Effelsberg GC data. With the exception of locations
of narrow RFI, the limits are flat and characterized by the expected statistical varia-
tions from channel to channel. (Lower Right) The flux density limits as a function of
frequency obtained from our analysis of the GBT INSdata. . . ... ... ... ...
The interval-by-interval acceptance for two adjacent frequency channels for data taken
from the GC observation by the GBT. Channels I and II are located at 1.61908569
GHz and 1.61899414 GHz, respectively. Data for each channel are shown in black
and blue, respectively, with correspondingly colored highlighted regions identifying
the reference interval for each channel. The antenna response is shown in arbitrary
units. Time intervals accepted in both channels are highlighted in green, with those
rejected in both channels highlighted in red. Intervals which are accepted in only one
channel are not highlighted. . . . . . .. ... ... ... ... ... .. ... ...,
The channel-by-channel acceptance fraction for each ON-position measurements of
the observation target in each observing session. Acceptances are averaged over the
two polarizations and downsampled by a factor of 50 for presentation purposes. In the
top row, we display the acceptances in the ON observing position; in the bottom row,
the acceptances in the OFF observing position. . . . . . .. ... ... ... .....
A comparison of the calibrated flux density for the GBT observation of the GC (blue)
to the Effelsberg observations of the GC in the L-Band and S-Band (green). Note that
the Effelsberg data is calibrated to follow the black curve, averaged over large fre-
quency scales. The calibrated L-band Effelsberg data is around 20% different than the
calibrated GBT data, suggesting that errors from the calibration procedure impacting
sensitivity to g, are only on the order of 10% and subdominant compared to other
sources of UnCertainty. . . . . . . . . ... e e e e e e e e e e
(Top Left) A noise-free example flux density spectra for an axion of mass m, = 3.467
GHz with a coupling strength of g,., = 107! GeV ! generated for the GBT obser-
vation of the GC at § fzqg = 1.831 MHz. We assume Model I for the NS population
(the model with more NSs participating in the conversion process) and take the DM
to follow an NFW density profile. (Top Right) As in the top left, but using a cored
DM density profile with a core radius of 600 pc. (Bottom Left) As in the top left, but
assuming the conservative Model II for the NS population. (Bottom Right) As in the
top right, but assuming the conservative Model II for the NS population. . . . . . . . .
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E7

F.8

F9

F.10

F.11

As in Fig. F.6 but for the Effelsberg observations of the GC in the S-band, for an axion
with m, = 27 x 2.5 GHz and g,, = 107'* GeV ™. The panels indicate the assumed
DM density profile for the Milky Way (NFW or cored NFW with a core radius of 0.6
kpc) and also the NS population model (Model I or Model II, as described in the text).
Note that in this case we search for the brightest converting NS. We have shifted each
of the MC realizations around in frequency space such that the brightest converting
NS appears at f = 2.5 GHz. Note that in the scenario with Model 1 and a cored DM
profile, the brightest converting NS is not always that much brighter than the signal
flux in the sidebands, from other NSs within the Effelsberg beam, which makes it
harder to discover an axion signal in thiscase. . . . . ... ... ... ... .....
(Above) The ON-position antenna temperature and raw antenna data for ON- and
OFF-position measurements for the M31 observation. A narrow feature appears at
the indicated central frequency channel in each of the datasets, although with larger
relative magnitude in the antenna temperature. The fact that the feature appears in all
datasets suggests it is not an axion signal. (Below) The test statistics for the central
channel excess as a function of the central channel for the analysis of the ON-position
antenna temperature and the raw antenna data for ON- and OFF-position measure-
ments for the M31 observation. At the location of the narrow feature, the test statistic
is quite large for all analyzed datasets, and the excess in the antenna temperature is
vetoed as the test statistic in the OFF-position data exceeds the veto threshold.

(Left) The one-sided 95% upper limit on the axion-photon coupling as a function of the
injected signal strength. The limit lies above the injected signal strength, indicating
that we are not excluding an axion signal when present. (Right) The test statistic (TS)
for discovery as a function of the injected signal strength. For sufficiently large signal
strengths the TS exceeds our T'S = 100 threshold for an axion signal to be discovered.
Maser lines as detected in the GBT data. For each maser line, we show the antenna
temperature (black) and the raw OFF data (blue), with each independently rescaled
so as to fit within the same figure. The expected frequency location and width of the
maser line, which is set by the line-of-sight velocity of W3OH, is indicated by the
light red band. The width of the central frequency channel in which the maser line is
detected is indicated by the light blue band. We additionally provide the TS associated
with the maser line detection in the antenna temperature and the maximum percentile
of the variable-width OFF position TS for each line. None of the detections are vetoed
as none the maximum OFF position TS percentiles exceed the 97.5'" percentile value
that triggers VetoINg. . . . . . . . . o i i e e e e e e e e e e
(Left) The discovery TS survival function for all of the observations considered in this
Letter. Note that the survival function is defined as the fraction of TSs observed at
or above the indicated value. This figure excludes frequencies that are vetoed from
the OFF position observation analyses. The “MC Expected” curve shows the expec-
tation under the null hypothesis, as determined by MC simulations. We note that all
observations are from GBT except those labeled “Eff”, which are from the Effelsberg
telescope. (Right) As in the left panel, but including frequencies that would be ve-
toed by the OFF data. Without the OFF vetoes there would be a significant number
of frequencies with TSs exceeding the TS detection threshold, which emphasizes the
importance of the OFF position vetoing procedure. . . . . . . ... ... ... ....
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F.12

F.13

F.14

F.15

F.16

F.17
F.18

(Top Left) The Effelsberg data shown in the analysis window around the excess can-
didate located at a central frequency of approximately 2.51 GHz in the S-band ob-
servation of the GC. Frequencies are plotted relative to the frequency corresponding
to the excess channel frequency. This excess has T'S ~ 41. While this excess is not
vetoed by the OFF data analysis, the OFF data does should a feature at the central
frequency. (Top Right) Similarly, the Effelsberg data shown in the analysis window
around the excess candidate located at a central frequency of approximately 2.69 GHz
in the S-band observation of the GC. This excess is also not vetoed, but like the previ-
ous excess there does appear to be a corresponding feature in the OFF data. (Bottom
Left) The Effelsberg data shown in the analysis window around the excess candidate
located at a central frequency of approximately 1.34 GHz in the L-band observation
of the GC. It also appears that there is a similar, though not so significant, feature in
the OFF data. (Bottom Right) The GBT data shown in the analysis window around
the excess candidate located at a central frequency of approximately 1.59 GHz in the
observation of RX J0720.4—3125. As before, frequencies are plotted relative to the
frequency corresponding to the excess channel frequency. The excess only appears at
high significance in the antenna temperature; similar coincident features are observed
in both ON and OFF data, coincident features appear in the raw ON and OFF data,
although not at high enough significance in the OFF data to result in a veto of the
excess. As before, this excess does not exceed our detection threshold, although it
does come closer, with TS ~ 90. . . . . . . . . . . . .
A comparison of survival functions for various polynomial background models for
the analysis of Effelsberg S-Band data. The flat background model is unable to ac-
curately model the null hypothesis and a significant improvement in the quality of
the fits is seen by going to the linear background model. On the other hand, there is
little improvement to the quality of the fits when going from the linear to quadratic
background models, except at very high TS values. Note that we use the quadratic
background model in our fiducial analyses. Cubic background models produce simi-
lar results but are most computationally intensive to implement. . . . . .. ... ...
The discovery TS survival function for the INSs analyzed with and without time-series
data filtering applied. Applying the time-series filtering eliminates a number of high
significance excesses that appear due to transient noise that appears in the data. . . . .
Limits on the axion-photon coupling for different combinations of assumptions about
the DM density profiles in the observed galaxies and the properties of the NSs within
those galaxies (see [104] and text for details). . . ... ... ... ... .......
Comparison between the profile likelihood and percentile upper limits methods for
M54 observations with GBT. The black line (green area) shows the 95% C.L upper
limits (1o containment band) obtained with the percentile method. The red line shows
the upper limits obtained with the profile likelihood method and calibration used as
default in our main pipeline; these flux limit curves are used in the main text. . . . . .
Same as Fig. F.16, for Effelsberg GC observations. . . . . . ... ... ........
An illustration of how outgoing electromagnetic waves are refracted towards the nor-
mal vector to the conversion surface, labeled hereby z. . . . . . . .. ... ... ...
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G.1

G.2

G.3

G.4

G.S5

G.6

G.7

(Left) The HR diagram for the Quintuplet template star of mass 85 M, and initial
surface rotation of 300 km/s. The coloring indicates the year before the run was
stopped, approximately a few years from supernova. We mark with black squares, in
order of occurrence, when the star enters the WNh phase, when it is 3 Myr old, when
its core undergoes helium ignition, when it enters the WN, WC, and WO phases, and
finally when the run ends at 3.85 Myr. (Right) A logT-log p diagram for the template
star with the same points of interest marked. We also show the relevant degeneracy
zones, showing that the star is entirely in the nonrelativistic nondegenerate regime. .
(Left) The abundances of hydrogen (black), helium (red), carbon (yellow), and oxygen
(green) in the center of the star as a function of time, for the simulation described
in Fig. G.1. With dashed-black vertical lines, we mark several points of interest:
“WNh” indicates the time the star enters the WNh phase, “He ignition” when its core
undergoes helium ignition, and “WN”,“WC”, and “WO” indicate the beginning of the
WN, WC, and WO phases, respectively. (Right) The same as in the left panel, but for

surface abundances. . . . . . . . .. e,

(Left) The stellar core temperature as a function of time for the simulation described
in Fig. G.1. (Right) The hydrogen and helium luminosities in the core through the
CNO cycle and the triple-alpha process, respectively. The dashed-black vertical lines

retain their meanings from Fig. G.2. . . . . . ... ... o 0oL

The stellar mass (black) and radius (red) as a function of time from the simulation
described in Fig. G.1. The dashed-black vertical lines retain their meanings from

Fig 2. oot ot e

(Left) Axion volume emissivity over the interior of the star. In this figure we have
taken the stellar model to be the one at the start of the WC stage and fixed g,,, = 1072
GeV~!. For comparison purposes, we also show the temperature profile. (Right)

Axion luminosity spectrum for those same stages marked in Fig. G.2. . . . ... ...

We denote the projections of the Galactic magnetic field onto the plane normal to the
propagation direction by By, Bs. (Left) The transverse magnetic field components in
our fiducial model (the JF12 model, black) and alternate model (PTKNI11, orange)
towards the Quintuplet and Arches clusters. Note that in our fiducial B-field model
we extend the JF12 model to distances less than 1 kpc from the GC using the field
values at 1 kpc. The true magnetic field values in the inner kpc almost certainly
surpass those from this conservative model (see text for details). (Right) The two
field components towards the Wd1 cluster, which is taken to be at a distance of 2.6
kpc from the Sun. The conversion probabilities towards Wdl are much larger in the
alternate model (PTKN11) than in our fiducial model (JF12), though we stress that
random fields are not included and could play an important role in the conversion

probabilities towards Wdl. . . . . . . .. .o

(Left) The free electron density n. towards the GC in our fiducial model (YMW16)
and the alternate model (ne2001). (Right) As in the left panel but towards the Wdl
cluster. The free-electron density gives the photon an effective mass and thus affects

the axion-photon conversion probability. . . . . . ... ... L 0oL
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G.8

G.9

G.10

G.11

G.12
G.13

(Left Column) The axion-photon conversion probabilities p,_,,, assuming g, , =
10712 GeV~!, computed as a function of the axion energy E (and assuming m, <
101 eV) using the formula given in (G.5). (Top Left) The conversion probabilities
for axions produced in the Quintuplet or Arches clusters for different modeling as-
sumptions for the Galactic magnetic field and free-electron density. Our fiducial result
is shown in solid black. Note that the plasma mass, induced by the free-electron den-
sity, becomes more important at lower axion energies and induces the lower-energy
features. The dashed black curve shows the effect of changing from the YMW16
free-electron model to the ne2001 model. Removing the B-field within the inner
kpc leads to the results in red, while only modeling a 50 ¢G field in the inner 400 pc
leads to the results in blue. Changing to the PTKN11 model (and masking the inner
kpc) gives the results in orange. We estimate that if the axions traverse the GC ra-
dio arc, located near the Quintuplet and Arches clusters, the conversion probabilities
could be enhanced to the values shown in grey. (Bottom Left) As in the top left panel
but for axions emitted from the Wdl cluster. (Right Column) The effects of the dif-
ferent conversion probability models on the 95% upper limits on g, for Quintuplet
(top right) and Wdl (bottom right). Note that Arches is similar to Quintuplet, since
they are both assumed to have the same conversion-probability models. . . . . . . ..
(Left) As in Fig. 8.1, but for the total observed counts between 10 - 80 keV instead of
the background-subtracted counts. (Center) The best-fit background model, summed
from 10 - 80 keV, for the Quintuplet data set shown in the left panel. (Right) The
predicted axion-induced signal template from Quintuplet, in counts, normalized for
an axion with g,,, =7 x 1072 GeV tand m, < 107teV. ... .. ... L.
(Upper Left) The Quintuplet axion spectrum assuming g,., = 1072 GeV~! (black)
plotted against the NuSTAR effective area (blue). The analysis range, from 10 - 80
keV, is shaded in red. (Upper Right) The individual contributions of each stellar clas-
sification to the Quintuplet axion spectrum. The analysis range is again shaded. (Bot-
tom) The 10-80 keV luminosity distribution assigned to each stellar classification (per
star) in Quintuplet. In red we show the frequency with which each luminosity occurs,
while the black error bars show the mean and loband. . . . . . ... ... ... ...
(Left) We inject a synthetic axion signal into the Quintuplet NuSTAR data with axion
coupling gf{%. We then pass the hybrid synthetic plus real data through our analysis
pipeline and show the best-fit coupling ¢, , along with the recovered lo and 20
uncertainties. (Middle) The discovery TS for the axion signal for the test illustrated in
the left panel. The square root of the TS is approximately the discovery significance.
(Right) The 95% upper limit recovered for the injected signal test. Importantly, the
95% upper limit is above the injected signal value, for all injected signal strengths,
and the upper limit is consistent with the 68% and 95% expectations for the upper
limit under the null hypothesis, which are indicated in green and gold, respectively.

As in Fig. 8.2, except for different ROl sizes, as indicated. . . . . . .. ... ... ..
As in Fig. G.9, but for the Wd1 cluster NuSTAR analysis. The red star indicates the
location of the magnetar CXOU J164710.2-45521, which is masked at 0.5°. Also
shown is the background-subtracted count data, asin Fig. 8.1. . . . . .. .. ... ..
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G.14 (Upper Left) The Wdl axion spectrum assuming g, = 1072 GeV ! (black) plotted
against the NuSTAR effective area (blue). The analysis range, from 15 - 80 keV, is
shaded in gray. (Upper Right) The individual contributions of each stellar classifica-
tion to the Wdl axion spectrum. The analysis range is again shaded. (Bottom) The
10-80 keV luminosity distribution assigned to each stellar classification in Wdl. In
red we show the frequency with which each luminosity occurs, while the black error
bars show the mean and loband. . . . . . .. ... ... .. ... ... .. ...

G.15 As in Fig. G.12 but for the Wd1 analysis. Note that we only include energies above
15 keV in our analysis because of ghost-ray contamination. . . . ... ... .. ...

G.16 (Upper Left) The Arches axion spectrum assuming g, = 107" GeV~! (black) plot-
ted against the NuSTAR effective area (blue). The analysis range, from 20 - 80 keV, is
shaded in gray. (Upper Right) The individual contributions of each stellar classifica-
tion to the Arches axion spectrum. The analysis range is again shaded. (Bottom) The
10-80 keV luminosity distribution assigned to each stellar classification in Arches. In
red we show the frequency with which each luminosity occurs, while the black error
bars show the meanand loband. . . . . . .. .. ... ... ... .. L.

G.17 (Top Panel) As in Fig. G.9, but for the Arches cluster. (Bottom left) We show the
best-fit emission associated with the halo template that describes emission from the
nearby molecular cloud. (Bottom right) As in in Fig. 8.1, but for Arches. . . . . . ..

G.18 (Left) The Arches spectrum measured with and without the halo template. Note that
we use the spectrum with the halo template in our fiducial analysis, though the dif-
ference between the two results is relatively minor above ~20 keV. (Right) As in
Fig. G.12 but for the Quintuplet analysis. Note that these spectra are computed while
profiling over halo emission. Above ~20 keV the different ROIs produce consistent
results. . ..o

G.19 As in Fig. 8.3 but from the analysis towards the Arches SSC. No evidence for axions
is found from this search. . . . . . . . .. .o L o oL

G.20 (Left) The evolution of the nitrogen abundance Z(N) over time from MESA simula-
tions of a non-rotating 85 M, star with initial metallicity Z = 0.01 to Z = 0.04.
The bolded sections of the lines correspond to the WNh phase. The gray shaded re-
gion indicates the measurements of nitrogren abundances of the Arches WNh stars
from [329]. . . . .. e e

G.21 (Left) The variation to the 95% upper limit found by varying the initial metallicity and
rotation in the range Z € (0.018,0.035) and ¢ € (50, 150) km/s for the Quintuplet
analysis. The blue region indicates the maximum and minimum limit found, while the
black curve shows our fiducial limit. (Right) As in the left panel but for Wdl.

H.1 Examples of the signal region spectra for MOS (top panels) and PN (bottom pan-
els) in Ring 1 (left panels) and Ring 8 (right panels) with and without background
subtraction in red and black, respectively. The background-region spectra are shown
in grey. Many of the large instrumental features that are removed when looking at
the background-subtracted data. Note that for visual clarity these spectra have been
down-binned by a factorof4. . . . . ... L Lo
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H.2

H.3

H.A4

H.5

H.6

H.7

The same background-subtracted data sets illustrated in Fig. H.1 (also down-binned),
but now shown along with their best-fits under the null hypothesis. The best-fit model
prediction is shown in black, which may be decomposed into the contribution from the
GP model (dark red) and the contributions from the individual background lines (col-
ored curves). Note that the background lines to include in the analysis are determined

independently in each annulus, as described inthe text. . . . . . . .. ... ... ..

The spurious-signal hyperparameter agpunm (labeled MOS Sys. and PN Sys.), as com-
puted in (H.9), as a function of the DM mass. For both MOS and PN the nuisance
parameter Ay, is predominantly active at low energies, and it plays a more significant
role in PN than in MOS. We compare the hyperparameter to the statistical uncertain-
ties (labeled MOS Stat. and PN Stat.), which are computed from the Hessian of the
log-likelihood (without the spurious-signal) about the best-fit mixing angle at a fixed
energy. We note that several of the sharp variations of the expected sensitivity shown

in Fig. 9.3 arise as a result of the variations of the spurious signal hyperparameter

shown here. . . . . . . . e,

(Left) The survival function of the test statistic for discovery in the analysis of the
MOS data. Under the null hypothesis, and for a large number of samples, the survival
fractions are expected to follow the x? distribution, as verified by MC (as labeled). At
a finite number of samples the expected chi-square distributions are found from MC to
be expected to be contained within the green and gold shaded regions at 68% and 95%
confidence, respectively. The negligible effect of the systematic nuisance parameter
can be seen by comparing the survival function without the nuisance parameter (red,
labelled “Data”) and with the nuisance parameter (blue, labeled “Data w/ Nuisance
Parameter”). (Center) As in the left panel, but for the PN analysis. (Right) The sur-
vival function for the joint analysis of MOS and PN data. In blue, the survival function
for the joined PN and MOS analysis without systematic nuisance parameters; in red,
the survival function for the joint analysis when the PN and MOS results are corrected
by their independently-tuned systematic nuisance parameters prior to joining.

As in Fig. 9.3, but for the MOS (left panel) and PN (right panel) analyses individually
and with and without the spurious-signal nuisance parameter. The 10 and 20 expec-
tations are shown only for the case with the spurious-signal nuisance parameter. The
limits without the nuisance parameter are slightly stronger at low masses. The sharp
variations in the expected sensitivity, especially visible in the PN results, arise from
how the spurious-signal hyperparameter is determined through the sliding window

procedure. . . . .. .. e e e e e e e e e

A comparison of all results obtained in the joint analysis of PN data with and without
the inclusion of Ring 3, which may be subject to systematic mismodeling. Note that
for this comparison we do not profile over the spurious-signal nuisance parameter.

As in Fig. 9.3, but interpreted as limits on the DM lifetime. This figure applies for
DM whose decays produce a single mono-energetic photon at energy m, /2. If the
DM decay produces two photons (as in an axion model), then the lifetime limits are

tWICE @S SLIONZ. . . . . . o v i e e e e e e e e e e e
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H.8

H.9

H.10
H.11
H.12
H.13
H.14
H.15
H.16

H.17
H.18

H.19

(Upper Left) The best-fit signal flux, and 1 and 20 uncertainties, as a function of the
central UXL energy across our full energy range for the innermost MOS ring. (Lower
Left) The corresponding significance in favor of the signal model, multiplied by the
sign of the best fit UXL normalization at that energy, along with the 1/20 expectations
under the null hypothesis. (Right Panel) As in the left panel but for the innermost PN
annulus. . . . Lo e e e
AsinFig. H8 butforannulus 2. . . . . . .. ... ... ... L Lo
AsinFig. H8 but forannulus 3. . . . . . . . . ... ... ... .. ...
Asin Fig. H8 but forannulus 4. . . . . . . ... ... ... .. ... .. ... ...,
Asin Fig. H8 but forannulus 5. . . . . . ... ... ... ... ... .......
Asin Fig. H8 but forannulus 6. . . . . . . .. ... ... L.
AsinFig. H8 butforannulus 7. . . . . . .. ... .. ... oL
Asin Fig. H8 but forannulus 8. . . . . . . .. ... ... .. L
As in Fig. H.4 but for the individual MOS annuli. Note that the systematic nuisance
parameter has not been applied since that is only incorporated in the joint likelihood
that combines the results from the individual annuli. . . . . ... ... ... ... ..
As in Fig. H.16 but for the PN datasets. . . . . . ... ... ... ... ........
The results of the analysis of the hybrid data that consists of the real MOS and PN
data plus a synthetic DM signal. The DM signal is generated with mass m, = 7.0
keV and mixing angle sin?(20) = 2.5 x 107!! as described in the text. The top,
middle, and third rows are analogous to Figs. H.4 and H.5, but for the hybrid data set.
The last row shows the 1, 2, and 3 o recovered parameter space for the signal in the
mass and mixing angle plane. The best-fit recovered signal is indicated in dark blue,
while the red star denotes the true value injected. The synthetic signal is appropriately
recovered, adding confidence that our analysis procedure has the ability to detect real
DM signals if presentinthedata. . . . . . ... . ... ... ... ... ... ...
(Top Row) In red, the median 95" percentile upper limit on the recovered signal as a
function of the injection signal strength at two neutrino masses evaluated on synthetic
data. We additionally indicate the 1 and 20 containment intervals for the ensemble
of upper limits realized at each injected signal strength. Note that these upper lim-
its are not power constrained. These results demonstrate that our analysis framework
places robust upper limits that do not rule out an injected signal. (Botfom Row) In
black, the median recovered detection test statistic for a signal injected in the syn-
thetic data as a function of the injected signal strength, with the 1 and 20 contain-
ment intervals also indicated. Under the null hypothesis, the detection test statistic
should follow a y>-distribution; the median and 1o and 20 percentile values of the
x2-distribution are indicated by dashed grey lines. These results demonstrate that our
detection test statistic follows its theoretically expected distribution under the null hy-
pothesis (sin(26;,;) = 0) and that our analysis framework can robustly identify a
signal which is present in the data. The results are smoothed with a Savitzky—Golay
filter for clarity. . . . . . . . . . .. e
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H.26

H.27

H.28
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As in Fig. 9.3, but for three different DM density profiles, all based upon Ref. [416].
In solid curve we show our fiducial results, corresponding to the uncontracted NFW
profile with a conservative density. The dashed curve then shows our results using the
best fit NFW profile, whereas in dashed we show the stronger limits that would be
obtained with a contracted DM distribution. Details of the distributions are provided
Inthe text. . . . . . . . o L e e 334
The analogues of Figs. H.4 and H.5, but changing the kernel correlation length to
o = 0.2 (c.f. our fiducial value of o = 0.3). The differences between the o = 0.2

and 0.3 resultsare minor. . . . . . . . ...l 335
As in Fig. H.21 but with o = 0.4. The limit is slightly strengthened, although again
the differences are not significant. . . . . . .. ... ..o L L oL 336

As in Fig. H.21 but with oy treated as a profiled nuisance parameter. The results
demonstrate that even providing our background model this additional freedom does
not have a significant impact on the limit. . . . . . . ... ... ... ... ... .. 337
As in Fig. H.21 but with the alternate GP kernel, in (H.10), with 02 = 0.5 keV2.. . . . 338
As in Fig. H.24 but with 02 = 1.0 keV2. Adopting a large scale length again slightly
strengthens the limits, although again the systematic variation of our results with the
kernel is relatively small. . . . . . . . . .. .. L 339
A comparison of the limits obtained across the full mass range for each variation of
the GP correlation-length hyperparameter considered. In particular we show results
for variations of the relative-scale and fixed-scale kernels (denoted o and o2 respec-
tively), as well as the relative-scale kernel where the scale profiled independently in
eachannulus. . . . . . ... L 339
As in Fig. H.21, but with the fiducial GP kernel at 0y = 0.3 and the inclusion of 3.32
and 3.68 keV lines in all analyzed annuli. The newly masked region associated with
these two lines is highlighted in lightred. . . . . . . . ... ... ... ... ..... 340
A close inspection of the limits set in our fiducial analysis and the modified analysis
that includes a 3.32 and 3.68 keV line in each annulus. We compare the limits set in
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our systematic nuisance parameter designed to test for and correct possible mismodeling.341
The same results as presented in Figs. H.4 and H.5, however on a modified data set
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H.31 Here we compare our fiducial results using a GP model, shown in black, to the re-
sult of an approach where the continuum background contribution is modeled with
a second order polynomial, shown in red, as described in the text. Both results are
shown without imposing a systematic nuisance parameter. While our fiducial ap-
proach uses the background-subtracted signal-ROI data, the alternate approach uses
the un-subtracted data. We see that in both cases the expected and resulting limits are
in qualitative agreement, demonstrating that our choice of GP modeling in our fiducial
analysis does not drive the sensitivity of ourresults. . . . . . . .. ... ... ... ..
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ABSTRACT

The majority of the matter in the Universe is non-luminous and unaccounted for by any known
particle, making the unknown nature of dark matter one of the most urgent problems in funda-
mental physics. Amidst a broad landscape of particles proposed to explain the dark matter, axions
have emerged as a particularly well-motivated candidate as they naturally arise in extensions of
the Standard Model and can simultaneously reproduce the observed dark matter abundance while
solving other outstanding mysteries in particle physics. Despite this, axions have remained largely
unprobed, and new insights and innovative approaches are required to carefully test the axion dark
matter hypothesis. This thesis aims to advance prospects for axion detection by identifying how
axion signals may appear, developing optimized searches for these signals, and implementing ro-
bust analysis strategies. I will begin by showing how simulations of axion production in the early
universe can direct search efforts toward the best-motivated mass range for axions that solve the
Strong CP Problem related to the absence of a neutron electric dipole moment in quantum chro-
modynamics. I will then discuss the development of rigorous analysis frameworks for axion direct
detection and their application to the search for axion dark matter with the ABRACADABRA de-
tector. Lastly, I will show how astrophysical observations with X-ray and radio telescopes can be
used in novel searches for axion dark matter. This thesis contributes to an increasingly compre-

hensive search program that will either discover or exclude axion dark matter in the coming years.
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CHAPTER 1

Introduction

The unknown nature of dark matter (DM) is one of the most significant unsolved problems in
physics. An overwhelming accumulation of evidence in the form of observations of gravitational
interactions on astrophysical and cosmological scales suggests that a form of cold, nonluminous
matter exists in nearly five times greater abundance than the so-called ordinary matter described by
the well-established Standard Model (SM) of particle physics. Gravitational interactions of DM are
unlikely to provide a complete characterization of this unidentified form of matter since all forms
of matter interact gravitationally. Instead, the discovery of the microphysical nature of DM will
require identifying its presently unknown interactions through the development of well-motivated
hypotheses with detailed phenomenologies, the design of precise experimental and observational
probes, and the execution of sensitive analyses that can untangle the signals of new physics from
enormous datasets in the presence of potentially confounding backgrounds.

Despite the associated challenges, work toward identifying DM represents arguably the best
prospect to advance understanding of particle physics. Characterizing DM and developing a more
fundamental theory that describes ordinary matter, DM, and the interactions within and between
the two sectors could lead to insights on outstanding theoretical questions. Moreover, as the dom-
inant fraction of matter in the universe, DM plays a central role in cosmological and astrophysical
histories by seeding large-scale structure and driving the dynamics of galaxies and galaxy clus-
ters. Therefore, the study of DM is highly compelling as an understanding of its precise details is
intrinsic to understanding the evolution of the universe.

This thesis will attempt to ask and answer the question of how we can work toward the detection
of arguably the best-motivated DM candidate, the axion. This chapter will serve as an introduction
to the key concepts that underlie these efforts and is structured as follows. In Sec. 1.1, we will
consider the strong evidence for the existence of DM and its nature as an unidentified particle
and provide a general discussion on particle dark matter candidates. In Sec. 1.2, we will discuss
in detail theoretical aspects of the Strong CP Problem and its solution through the introduction
of an axion. In Sec. 1.3, I will review the two strategies I have pursued in the search for DM:

direct detection with precision laboratory experiments and indirect detection through observation



of astrophysical systems. Finally, in Sec. 1.4, I will describe the organization of the remainder of
this thesis.

1.1 The Particle Dark Matter Paradigm

In this section, I will discuss several measurements that provide strong evidence for the existence
of DM, largely inspired by the excellent historical review provided in [1]. This discussion will be
far from comprehensive and instead is intended to illustrate the concordance of the many comple-
mentary probes that suggest DM is the dominant form of matter in the universe. I will then discuss
the general aspects of DM model building an the choices made in performing model-dependent

searches for DM candidates.

1.1.1 Evidence for Particle Dark Matter

The most straightforward evidence for DM comes from measuring the circular velocity of stars in
galaxies. The key concept is that the velocity of a star in a bound orbit of a galaxy must be related
to the gravitational force it experiences determined by the mass of the galaxy interior to the orbit.
If a star moves too fast, it will escape the galaxy; if it moves too slow, it will fall into the galaxy’s
potential well. In Newtonian theory, the requisite circular velocity v, for a star located a distance r

from the center of the galaxy is given by

V(1) = : (1.1)

where G is the universal gravitational constant and M (r) is the mass of the galaxy contained
within radius . By measuring the circular velocities of many stars at many different radii, one
can piece together the continuous mass distribution of a galaxy. An example of measured rotation
curves with comparison to theory expectations for the Milky Way galaxy is provided in Fig. 1.1.
Similar features are observed across a vast catalog of galaxies. Interpreted in the absence of DM,
the discrepancy between theory and observation is striking. At radii beyond the galactic disk,
beyond which there is little ordinary matter, circular velocities would be expected to scale like

~1/2_ However, the observed circular velocities are roughly constant out to much larger

ve(r) o< 7
radii. This suggests the presence of “dark” matter that results in an enclosed mass scaling like
M (r) o< r to radii much larger than that of the galactic disk [2].

However, while certainly suggestive, galaxy rotation curves are only gravitational anomalies
and do not uniquely prescribe the presence of unaccounted-for matter; galaxy rotation curves

might instead be evidence for undiscovered aspects of gravitational interactions. There is his-
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Figure 1.1: A comparison in the Milky Way of measured circular velocities as a function of radius
(grey) with expected theoretical contributions from various mass components within the galaxy.
The galactic bulge (blue) and the galactic disk (green) are baryonic matter distributions that dom-
inate within the inner galaxy. The expected rotation curves associated with a Milky Way that
consisted only of the observed baryonic matter are shown in dashed black and are visibly incom-
patible with the data at large radii. The contribution of the DM to the circular velocity (red) be-
comes appreciable at large radii. The rotational velocities expected for the combination of galactic
bulge, galactic disk, and DM halo are shown in solid black, demonstrating good agreement with
the observed data. Adapted with permission from [3] using data from [4].

torical precedent for both possibilities, as is noted in [5]. In the mid-1800s, measured deviations
of Uranus from its expected orbit did lead to the discovery of missing matter (the planet Neptune).
Later, in the early 1900s, the precession of the perihelion of Mercury, which was anomalous as in-
terpreted in Newtonian gravity, lead to the discovery of General Relativity. Similarly, an alternative
hypothesis to DM could be made for galaxy rotation curves. They could instead be explained by a
class of theories known as the MOdified Newtonian Dynamics (MOND) [6-8]. We now consider
several additional probes that provide strong evidence for DM and arguably lesser consistency with
the MOND hypothesis.! While we will not explicitly discuss the tensions of MOND with these
observations, reviews can be found in several references [5, 10—12].

Unaccounted-for matter can also be inferred on super-galactic scales from the Bullet Cluster, a
pair of merging galaxy clusters. X-ray-emitting gas in the Bullet Cluster can be used to trace its
baryonic matter distribution, while its total matter distribution can be measured from the gravita-
tional lensing of photons propagating through the potential of the massive objects. A depiction of
these inferred mass distributions is provided in Fig. 1.2. Strikingly, the baryonic matter distribu-
tion does not coincide with the total matter distribution, suggesting that not only does the Bullet

Cluster primarily consist of non-baryonic matter, but also that that non-baryonic matter must have

"'We also note with that the advent of large-scale astrometric surveys like GAIA and its planned successors, MOND
predictions may be sensitively probed on the galactic distances scales at which it is engineered to address the rotation
curve problem [9].
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Figure 1.2: A depiction of inferred mass distributions within the Bullet Cluster. Bright blobs
indicate the location of X-ray-luminous baryonic matter, while the contours indicate the central
location of the inferred mass distributions of the two merging clusters. See [13] for further details.

experienced qualitatively different dynamics during the collision event [13]. An identical conclu-
sion is reached by a similar analysis of the galaxy cluster merger MACSJ0025.4-1222 [14]. From
these observations, we infer that while the baryonic matter was slowed by friction induced by its
particle physics interactions during the collision, the DM was essentially noninteracting and went
unperturbed on its gravitational trajectory.

Finally, we consider cosmological probes of DM enabled by ACDM, a phenomenological
model describing a universe with an energy budget allowing for dark energy (A) and cold, nonin-
teracting DM (CDM) in addition to the baryonic matter.> ACDM has achieved remarkable success
in describing the CMB, large- and small-scale structure, the late-time accelerated expansion of the
universe, and relic elemental abundances [17, 18]. For simplicity, we will limit ourselves to a dis-
cussion of the CMB, where the relevant observable is the angular power spectrum of temperature
fluctuations on an otherwise uniform background. This angular power spectrum, as measured by
Planck, is presented in Fig. 1.3 alongside theory predictions in ACDM cosmologies. The power
spectrum contains three notable peaks which describe the angular scales at which the tempera-

ture inhomogeneities appear on the sky, with a variety of physical processes are imprinted within

2The description of DM as cold is in contrast with ordinary matter. Although the DM may initially be characterized
by relativistic velocities, observational constraints require that it become cold at times when ordinary matter remains
hot.
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Figure 1.3: In grey, the Planck TT spectrum, which measures the angular scales at which temper-
ature inhomogeneities in CMB appear. In blue, we depict the predictions of the best-fit ACDM
cosmology obtained in the Planck 2018 analysis. This cosmology describes a universe in which
84% of matter is comprised of DM, and its predictions demonstrate excellent agreement with the
data [15]. If we hold the total matter abundance fixed but reduce the amount of DM by 10%, then
we would expect the spectrum shown in dashed green, which is visibly a poor description of the
data. Here, the predicted CMB spectra have been generated with the CLASS code package [16].

the location and relative height of each peak. A more detailed review of CMB phenomenology
is provided by [19], but in highly simplified terms, the first peak informs us of the total energy
density content of the universe, the second tells us about the total baryonic content of the universe,
and the third is sensitive to the relative abundance of DM compared to baryonic matter. The most
recent CMB analysis from the Planck satellite provides measurements of a ACDM cosmology in
which only 16% of the matter in the universe is baryonic, with the remaining 84% accounted for
by DM [15].}

We conclude by again emphasizing that this discussion of the evidence for DM is far from a
complete one. Any attempt to construct such a list is doomed to failure, but we attempt to provide
a slightly more comprehensive catalog by noting that, among others, weak lensing [20], strong
lensing [21, 22], large-scale structure [23, 24], small-scale structure [25-27], and local measure-
ments [28] all strongly support a consistent interpretation of DM that is abundant in the Milky Way

and throughout the universe.

3In fact, ordinary matter and DM only account for 32% of the total energy budget. The remaining 68% is described
by the mysterious dark energy. There is relatively less effort toward identifying dark energy within the particle physics
community due to the limited scope of well-motivated models testable with present-day technology. Nonetheless, a
successful characterization of dark energy would be equally significant, if not more so, as the identification of DM in
advancing fundamental physics.



1.1.2 Particle Models for Dark Matter

Since all forms of matter interact gravitationally, gravitational probes tell us little about its particle
physics nature. Moreover, the universe as we observe it today tells us that the non-gravitational
interactions of DM with itself or with ordinary matter must be either very weak or very infrequent.
If this were not the case, DM would not admit a good effective description in ACDM cosmology
as noninteracting. As a result, the design of effective search strategies requires detailed models
that enable us to identify how weak DM signals may manifest and which of those signals can be
sensitively probed. This section will provide a brief overview of several DM models and their
motivations before proceeding to a more detailed discussion of axions and axion-like particles,
which are the primary focus of this thesis.

For my model-building colleagues, constructing Beyond the SM theories with DM is not too
difficult a task. Because DM must have weak interactions, it is fairly straightforward to add new
sectors to the theory that include DM candidates without disrupting agreement with the SM. The
much greater challenge is to identify DM candidates which might be considered natural or well-
motivated in order to make use of limited resources in the search for new physics.*

One widely adopted guideline is to search for new physics candidates that can resolve an ex-
isting shortcoming of the SM while also accounting for the observed abundance of DM. This
has motivated a considerable focus on weakly interacting massive particles (WIMPS) and axions.
WIMPS might be related to the resolution of the hierarchy problem related to the mass of the higgs
boson in the SM and have been the target of decades of direct, indirect, and accelerator-based
searches [29]. Axions, which will be discussed at greater length later in this section, are motivated
as a DM candidate that may also solve the Strong CP problem in quantum chromodynamics related
to the absence of the neutron electric dipole moment [30]. An alternative principle is to consider
DM candidates that may not solve other problems but instead are sufficiently qualitatively similar
to the particles already known to us such that their addition to existing fundamental theories might
be considered a “minimal” extension. For example, sterile neutrinos and dark photons, in analogy
to the active neutrinos and photons of the SM, might be considered DM candidates within this
category [31,32]. Finally, we must acknowledge nature may not be simple or well-aligned with
the assumptions that underlie these perspectives. In that sense, it is valuable to perform searches
underneath the lamppost of existing experiments and observations so that our theory biases do not
preclude the discovery of an “exotic” DM candidate within our reach.

This question of how we choose which DM models to search for might seem academic, but
it is a necessary first step in performing any search. In addition to being challenging to detect

by construction, different DM candidates produce qualitatively distinct signals that require unique

“Note that “natural” has a technical meaning, but we restrict ourselves to its nontechnical meaning here.



search strategies. Although there may be synergies between searches for various DM candidates,
DM will likely not be identified in a model-agnostic search. As a result, we must decide what we
are searching for before searching for it, and the principles and perspectives we have discussed are

merely ways of navigating a model landscape that may be too broad to ever be fully explored.

1.2 Axion and Axion-like Particle Dark Matter

In light of the challenging decisions required in searches for DM, this section aims to introduce the
axion as a DM candidate and explain its status as a particularly well-motivated one. Here, we are
adopting the perspective that one should look for DM candidates that relate to existing problems
within the SM, and in the case of the axion, we are motivated by the Strong CP Problem in QCD.
Following along the lines of [33], we will begin with a nontechnical discussion that provides an
intuitive picture of the Strong CP Problem before we proceed to its more technical statement and

resolution with the introduction of the axion.

1.2.1 A Classical Analogy for the Strong CP Problem

We start with a classical analogy for the Strong CP problem by considering a neutron, a familiar
SM particle comprised of one up quark and two down quarks. All these quarks have an electric
charge, but because the up quark has charge +2¢/3 and each down quark —e/3, the neutron has
no total electric charge, i.e., it has no electric monopole moment. This means that if we expose
a neutron at rest to an electric field, the neutron will stay exactly where we placed it. Similarly,
we can think about a compass and its needle. The needle has zero total magnetic charge, i.e. no
magnetic monopole moment,” which is why it stays on the compass rather than flying off in the
direction of the Earth’s magnetic field. However, the needle has “positive” and “negative” ends,
making it a magnetic dipole and causing point north to aligns with the Earth’s magnetic field. As
we have now seen in this example, having zero monopole moment while having nonzero dipole
moment is perfectly acceptable and readily realized in nature.

This line of reasoning leads us to the natural question of whether the neutron has an electric
dipole moment, which we can imagine testing by observing whether or not a neutron aligns itself in
a particular direction in the presence of an electric field. But before we perform such an experiment,
we would want to equip ourselves with some theory expectations to understand our result. If we
treat the quarks inside the neutron as point charges, we can compute the expected electric dipole

moment by integrating the charge density weighted by the displacement vector over the neutron

>Magnetic monopoles do not appear to be realized in nature.



volume to obtain
d= / dVrp(r) = §(2ru — Ty — Ta2) (1.2)

where r,, is the location of the up quark and ry; and rq» are the locations of the two down quarks
within the neutron. In this problem, we have nine unknowns (three spatial coordinates for each of
the three quarks) and three constraints imposed by the vanishing of each component of the dipole
vector. This tells us that generic configurations of the quarks will typically have some nonvanishing
dipole moment, and only special configurations of the quarks, such as when the three are collinear,
and each of the down quarks is an equal distance from the up quark, will produce a vanishing
neutron electric dipole moment (NEDM). Moreover, the distribution of quarks inside the neutron
is governed by the strong force of QCD. Because the QCD interactions are independent of electric
charge, it would be surprising if QCD conspired to arrange the quarks so that the electric dipole
would vanish. Without an informed guess for the precise charge distribution of a neutron, we can

make a rough dimensional estimate of the size of the dipole moment by
d= erys ~ 107 "% e x cm (1.3)

where we have used the neutron radius of approximately 1 fm.

Our estimate for the NEDM is small but not so small that it cannot be measured in the lab.
The most sensitive existing measurements would be able to detect the NEDM so long as d 2
10726 ¢ x cm. So it is somewhat surprising that all attempts at measuring the NEDM have resulted
in a measurement perfectly consistent with zero [34].

The absence of an NEDM has interesting implications for QCD. To see this, we consider the
action of a charge-parity (CP) transformation on a neutron. For the NEDM, the CP transformation
roughly acts as ¢ —+ —g and r — —r. We can then see that the dipole is invariant under the CP

transformation since

e e
d= §(2ru —Tg1 — I'd72) — —g(—Qru =+ g1 + I‘d,g) =d. (14)

We must also recall that neutrons are characterized by an intrinsic spin, which we will take to
point in the direction §, that transforms under a CP transformation s — —3. Hence, the quantity
s-d, transforms to —S5-d, showing us that the neutron is not CP invariant if it is characterized
by an NEDM. However, since the NEDM appears to be zero, s-d = 0 is preserved under a
CP transformation, suggesting that the QCD interactions which govern the structure of a neutron
respect CP symmetry. As we will now see, given the structure of the theory of QCD, this is

unexpected.



1.2.2 The Strong CP Problem in QCD

We can advance beyond our crude estimate through a calculation of the NEDM in QCD using
quantum field theory, the framework used to describe particle physics interactions. For simplicity,
we consider QCD restricted to the neutron’s consistuents, the gluons, up quarks, and down quarks,
but the generalization to the full theory of QCD is straightforward.

For our two-flavor theory of QCD, we have the lagrangian density

Locw = —3 GG + 3 [iaDg — myae™y] (1.5)

4
q€{u,d}

where G is the gluon field strength tensor, u and d are the four-component quark spinors, I is the
covariant derivative contracted with the gamma matrices, and m,, and m, are the magnitudes of the
quark masses. The quark masses are generally complex, which generally produces CP violation,
as they arise through electroweak dynamics which also mix the quark mass eigenstates through the
Cabibbo—Kobayashi—-Maskawa matrix. We therefore define ¢, and 6 as the complex phases of the
quark masses.

One possibility is that although the complex-valued quark masses might be expected to produce
CP violating effects, these are in turn removed by an underlying symmetry of QCD. Indeed, we

can consider the action of a chiral rotation with angle o, on our quarks, which acts as
q— g, q— qe' (1.6)

In a classical theory, if we chirally rotate both the up quark and down quark by angles, «,, and oy,

respectively, then we obtain the lagrangian

: 1 ' >
Egzés]sjlcal — _Z_LGZVGCL,MV + Z [zqmq — mq(jel(Gq-i-Qaq)’Y ql - (17)
q€{u,d}

In the massless quark limit, the lagrangian is invariant under chiral rotations of the quarks, a prop-
erty we refer to as a U(1) 4 symmetry. In the presence of quark masses, choosing o, = 6,/2 would
remove the quark phases, thereby eliminating CP violation from the QCD sector. However, this
U(1) 4 symmetry of the lagrangian is anomalous, meaning that it is broken in the quantized theory.

After attempting to rotate away the quark mass phases in quantized QCD, we instead obtain

1 2(0, + 0
’CQCD = —_G* G g ( + d)

4 3272 Gy, GO+ Y [ialPg — mqda] (1.8)

qe€{u,d}

where GW = €,wasG*? /2 is the Hodge dual of the gluon field strength tensor and g is the QCD



coupling constant. Even though we have removed the CP violation from the quark mass terms,
this GG term, which is a total derivative, is also CP-violating, showing us that CP violation is a
inescapable feature of our QCD lagrangian.

Observing that our theory in Eq. 1.5 was hiding a G G interaction term motivates a more general

QCD lagrangian of the form

1 g0
L=—-G G —
4 " 32m?

G, G 7 i — myge ™) (1.9)

q€{u,d}

where 6 is an angular phase setting the strength of the new GG interaction. After rotating away the
phases from the quark masses, we obtain

29 ~ »
SGo, G+ [ighbq — madq) | (1.10)

q€{u,d}

1 g
_ Ga Ga,,uu _
4 327
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where we have defined § = § — 6, — 6. It is then clear that generalizing our argument to include
all known quark flavors merely requires including additional 6, within the definition of §. With the
lagrangian cast in this form, we can see that the strength of CP violating effects in QCD, such as
an NEDM, is determined by 6. The full field-theoretic calculation for the NEDM in terms of f was
performed in [35], finding

d~3.6x10"f0e x cm. (1.11)

This calculation, in combination with existing NEDM constraints, requires |#| < 107, This very
small value of @ is surprising as it requires 6, a free parameter of the theory which could take values
between 0 and 27, to precisely cancel the sum of the phases of the quark masses. This mystery
of why such a unnecessarily precise cancellation resulting in the absence of CP violation in QCD

would be realized in nature is then referred to as the Strong CP Problem.

1.2.3 Solving the Strong CP Problem and Dark Matter with the Axion

The empirically small value of the theta angle that is without anthropic resolution [36] suggests
the possibility of as-of-yet undiscovered dynamics that demand § = 0.° The discovery of those
dynamics would then resolve the Strong CP Problem. A possible solution was introduced by
Roberto Peccei and Helen Quinn, who suggested the introduction of a new degree of freedom

called the axion, which would enter the CP-violating interaction term as

9°(0 —a/fa)
3272

By this we mean that our existence as observers of the universe seems possible for any value of 6.

L£L> - Ga, GO (1.12)
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where a is the axion field, and f, is the axion decay constant. As a result of the axion’s interactions

with gluons, the axion experiences a potential at low energies of the form

V(a) = m2f>2 [1—008 (9‘— fﬁ)} (1.13)
where m, is the QCD-induced axion mass [37]. In order to minimize its potential, the axion will
take on a vacuum expectation value (vev) of @ = f,0, eliminating the interaction term that appears
in Eq. 1.12. This process is known as the Peccei-Quinn (PQ) mechanism, and it represents the
leading candidate for the solution to the Strong CP Problem [38,39].

Arguably the simplest axion model that solves the Strong CP Problem was introduced in [40]
and is known as the KSVZ axion. In this model, we consider a new quark v which interacts with

gluons as well as a complex scalar ¢ described by

m2

2—fQ|¢>|4, (1.14)

LD iy + (phrvr + ¢ rir) + 100> — m?|of* +
where 11,/ are the left- and right-handed two-component spinors of the quark, m is the complex
scalar mass, and f, is a dimensionful constant that sets the strength of the complex scalar’s quartic
interaction. The introduction of a new quark provides us a new anomalous U (1) symmetry through
which phases can be rotated in and out of §. An inspection of the scalar potential reveals that
the theory will undergo a spontaneous symmetry breaking in which the magnitude of the scalar
acquires a vev of ¢y = f, while its phase is still free to vary. Neglecting fluctuations of the scalar
magnitude about its vev, we can parametrize the complex scalar in terms of the axion phase a by

¢ = ¢oexp(ia/f,). Our lagrangian will then contain

LD i + i fel®r for), (1.15)

where we have neglected the axion kinetic term. We have now realized a dynamical phase for the
quark mass term, which will enter @ precisely as in Eq. 1.12, allowing us to solve the Strong CP
Problem. Alternative constructions, such as the DFSZ axion [41,42] or the PQWW axion [43,44]
offer additional model realizations.’

Shortly after the PQ mechanism was proposed and realistic models for realizing the axion were
introduced, it was observed that small fluctuations of the axion field about its vev could be detected
and could also account for the DM [43—46], spurring excitement for axions as the solution to two
outstanding problems in fundamental physics. We note, however, that other mechanisms could

solve the Strong CP Problem, such as the Nelson-Barr mechanism, a massless up quark, and

"While the KSVZ and the DFSZ axions represent current axion model benchmarks, the PQWW is now excluded
by various experiments.
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mirror SM sectors [47-50].

1.2.4 Additional Axion Motivations

There exist many additional theoretical motivations for axion DM beyond just the Strong CP prob-
lem. Typically, however, they require sacrificing the assumption that the QCD axion which solves
the Strong CP Problem is the same as the axion which comprises the DM. This is not to say that
invoking alternate motivations for the axion requires an alternate solution for Strong CP Problem;
there might exist several species of axions, one of which could be the QCD axion, with the re-
maining having alternate roles in particle physics, including accounting for the DM. This precise
scenario may even be expected in String Theory, which predicts a spectrum of axions across a
broad range of masses [51,52]. Axions may also be features of Grand Unified Theories of the
three® fundamental forces [53] or explain the universe’s matter-antimatter asymmetry [54]. While
a full review of the diverse set of theories that include axions or the outstanding problems they
could solve is beyond the scope of this thesis, suffice it to say that compelling models give us every

reason to believe they might be realized in the spectrum of nature.

1.3 Searching for Axion Dark Matter

Having laid out the multitude of reasons axions are considered a well-motivated DM candidate,
we transition to a discussion of efforts toward detecting axion DM. We begin with a review of
the status of experimental and observational constraints on the axion parameter space. We then
provide an overview of the strategies used in search of axions through their coupling to photons in
direct and indirect detection efforts, both of which are considered in work presented in this thesis.
Finally, we conclude the section with a brief discussion of the basic techniques used to analyze
data from direct and indirect detection searches that address the unique statistical challenges faced

in axion detection.

1.3.1 Existing Constraints on Axion Dark Matter

Physically, axion detection is challenging because the range of viable masses for axion DM spans
over ten orders of magnitude with a diverse set of physical observables that require various tech-
nologies for detection. This problem was exacerbated by the comparatively greater focus on

WIMPs, which have been considered a leading DM candidate for decades, and it is only recently

81 have excluded gravity from this accounting as there are no obvious prospects for its inclusion in a realistic
quantized theory, nor does the inclusion of gravity appear to be necessary for the unification of the remaining three
forces.
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that considerable efforts have been invested in axion searches. This makes it a particularly exciting
time to search for axions. A raft of new experiments are coming online alongside the long-running
ADMX experiment, allowing for the very real possibility that axion DM will be either discovered

or excluded in the relatively near future.’

CAST

Horizontal branch
Neutron stars

&
2
4
=
2

surds ajoy >perg

9 % 1 6 5 & 3 ) 5 6
10730107010 %40 4001040040 e AP A0 AT AT 48 AT A 40

my [eV]

Figure 1.4: The axion parameter space in terms of the axion mass, m,, and the strength of its
coupling to photons, g,,~. Green, blue, red, and gray regions are excluded by various searches. The
orange band indicates the mass-coupling relation for an axion which solves the Strong CP Problem.
White space is unconstrained. Several of these constraints have been produced by works included
in this thesis. See https://cajohare.github.io/AxionLimits/ and accompanying
references for details.

To illustrate the current status of the axion parameter space, we have included Fig. 1.4, which
depicts the the plane of axion mass, m,, and axion photon coupling strength, g,,~. While axions
may couple to many SM particles, we feature the axion-photon coupling as it is the coupling
on which the work presented in this thesis is exclusively focused. Many existing exclusions are
colorfully indicated in the figure, but for continued search efforts, the most relevant feature is the
expanse of white in the figure, corresponding to unconstrained but theoretically viable axion DM
parameter space. Likewise, the QCD axion band that depicts the expected strength of the axion-
photon coupling for an axion that solves the Strong CP Problem, indicated in orange, remains

unprobed above 10~ eV and below 1075 requiring the development and execution of new search

9“Relatively” is doing some heavy lifting here. The effort will take decades, but the relevant perspective is that it
took over 40 years from the proposal of the PQ mechanism for a comprehensive detection program to begin in earnest.
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strategies. In practice, this band is merely illustrative, as the axion-photon coupling is a model-
dependent quantity. For instance, the two canonical QCD axion models, the KSVZ and DFSZ
axions, predict a one-to-one relationship between the axion mass and its photon coupling, but
alternative models which realize larger or much smaller photon couplings at a given mass are also
possible. Discussion of the parameter space in terms of the similarly unconstrained axion couplings

to other SM particles, including neutrons, protons, and electrons, can be found in [55-57].

1.3.2 Searching for the Axion through its Photon Coupling

With a some exceptions, such as the CASPEr experiment [58], the arguably best prospects for
axion detection come from probes of the axion-photon coupling. This coupling is generically ex-
pected for axions or axion like particles, and appears as an additional term in the electromagnetism
lagrangian as

L= —igawaFm,F‘“’ = —gurya(E-B) (1.16)
where « is the axion field, F' the electromagnetic field strength tensor, and Fits dual; this term can
be alternatively formulated in terms of the axion field’s coupling to the dot product of the electric
field E and the magnetic field B. This coupling of axions to photons is generically induced by
the interaction of the axion with charged quarks. Schematically, we can think of this term as an
interaction that occurs between a single axion and two photons. However, because axions are very
light, if they are the DM, their number density is quite high, allowing for their description in the
macroscopic limit as a classical field rather than individual particles.'® From this perspective, we
can consider the inclusion of an axion in our physical theory as a new classical scalar field that

modifies the well-known Maxwell’s equations for electromagnetism. These equations are:

—i+ V?a=m’a— g, E-B (1.17)
V-E=p—g,,B-Va (1.18)
V-B=0 (1.19)
VxE=-B (1.20)
VxB=E+J— g, (Ex Va—aB) (1.21)

where p is the charge density, J is the current density, and dotted quantities indicate their partial

differentiation with respect to time [59].!!

10]dentical reasoning in a more familiar context leads us to consider classical fields rather than the dynamics of
individual photons when discussing electromagnetism.

""We have chosen to present Maxwell’s equations in vacuum here, but they are straightforwardly modified to their
form in various media through use of constitutive equations.
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We refer to this set of partial differential equations (PDEs) as the equations of axion electro-
dynamics, and they encapsulate various physical effects by which axions can be detected through
their interactions with photons.'”> The modification to Gauss’ law in Eq. 1.18 causes an electric
field to be sourced by the axion field acting as an effective charge density in the presence of a
magnetic field. Similarly, the modification to Ampere’s law in Eq. 1.21 tells us that an axion field,
in the presence of either an electric or magnetic field, will act as an effective current density and in-
duce a magnetic field.'* Finally, from Eq. 1.17, we see that the axion behaves as a time-oscillating
field propagating through space that can be sourced in the presence of nonvanishing E - B. Because
the axion field is time-varying, so too will be the electromagnetic fields it sources. Moreover, by
rewriting Maxwell’s equations as a pair of second-order PDE:s, it can be shown that a time-varying
axion field in an electromagnetic background can induce propagating electromagnetic fields that
can be detected as coherent photon waves. This process can be thought of as the conversion of
axions to photons [61-63].

The physical processes primarily considered in this thesis are the induction of time-varying
magnetic fields and propagating photon emission by the axion DM background. Axions may
also be probed by “light shining through walls” experiments that generate axions from an E-B
background that are then subsequently converted to photons [64]. We note that the study in Ch. 8
is qualitatively similar, though the axions are produced through the slightly more complicated
Primakoff process. We will now describe the relevance of these mechanisms for both laboratory-
based direct detection and astrophysical indirect detection.

1.3.2.1 Direct Detection

Laboratory-based direct detection experiments seek to identify the physical observables associ-
ated with the presence of axion DM through precision measurements of nearly background-free
environments. These observables are expected to be present, if weak, due to measurements of a
local DM density in the solar neighborhood of 0.4 GeV /cm? [65,66]. As we see from the equa-
tions of axion electrodynamics, the axion can only induce a signal in the presence of background
electromagnetic fields, with the strength of the interaction scaling linearly with the strength of the
background field. Most experimental approaches provide a background magnetic field since large
magnetic fields are more readily realized in the laboratory than large electric fields.

A class of experiments known as axion haloscopes represent the most mature axion detection

strategy and search for the conversion of peV-scale axions into detectable microwave photons in

12Qther effects, like the possible decay of axions into two photons, are not conveniently captured in this formalism
but may also be of relevance.

BTypically, dominant effects are realized by the @B term as the contribution of E x Va is suppressed by the
nonrelativistic velocities of axion DM. In the presence of a relativistic axion background, this may no longer be true,
see, e.g., [60].
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static O(1 — 10) T background magnetic fields. Notably, ADMX [67], HAYSTAC [68], and CAPP
[69] have reached or are near benchmark QCD axion sensitivity. These experiments compensate
for the small probability of axion conversion by engineering tunable resonant cavities that enhance
the signal power. Cavity-based approaches have limited sensitivity to m, = 50 ueV, and larger
axion masses are targeted by the MADMAX experiment, which enhances the signal of higher-
mass axion conversion with dielectric materials [70].

Lumped-element experiments, which instead aim to measure the time-varying magnetic field
induced by an axion in the presence of a static background magnetic field, are of primary relevance
to this thesis. A simplified description adapted from [71] is as follows. In the absence of an electric
field, the solution to the axion’s equation of motion at a fixed location is approximately

a(t) = @ sin(mgt), (1.22)
Mg
where we have determined the normalization of the field from the local DM density ppy. This

axion field acts as an effective current of the form

Jeﬂ‘ = GayyV 2pDM COS(mat)Bo (123)

where By, is the static background field in the modified form of Ampere’s law. Casting Ampere’s
law in its integral form, rather than differential form as in Eq. 1.21, we then see that the axion
induces a time-varying magnetic flux ® which can be measured with a superconducting pickup

loop with expected magnitude

P(t) ~ garry BoVB A/ 2ppM cos(myt) (1.24)

where Vg is roughly the volume in which the static magnetic field of strength B, appears. This
signal can then be readily identified as a monochromatic spectral excess at frequency f = m, /27!

An interesting feature of lumped element searches is that they can operate as a broadband
search, which is to say that long integration times and high-frequency readout make them sensitive
to axions in the broad mass range of 107'* to 107% eV in a single data collection. This contrasts
with resonant haloscope experiments, which, by merit of their resonance, are only sensitive to a
small range of masses with each data collection and must step through their narrower range of mass
sensitivity with repeated tunings of their experiment. In addition to their broadband sensitivity,
lumped element searches can simultaneously operate in a resonant readout mode that provides

even greater sensitivity to targeted regions of parameter space. Several experiments, including

*In fact, the signal is only quasi-monochromatic as it is broadened by the finite velocity dispersion of DM in the
Milky Way galactic halo, which we will study in Chs. 3 and 4.
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ABRACADABRA [71-73], SHAFT [74,75], and DM-Radio [76], are using the lumped element
strategy, and much of the content of this thesis is devoted to work on statistical frameworks for
these searches along with my work as a member of the ABRACADABRA collaboration.

1.3.2.2 Indirect Detection

An alternative to laboratory-based direct detection is to instead search for astrophysical signals
by pointing telescopes at locations on the sky we expect to be bright in the signal of DM. There
are several notable advantages to the indirect detection strategy. First, the freedom to point our
telescopes at any point in the sky allows us to target locations where DM is more abundant. While
direction detection experiments are limited in their sensitivity by the local DM density, indirect
detection enables to probe locations like the Galactic Center, where DM may be as much as 10°
times more abundant. Moreover, extreme astrophysical environments can realize conditions more
conducive to generating axion signals than we can engineer in the lab. For instance, while axion
conversion experiments may be capable of generating 10T magnetic fields on the meter scale,
neutron stars can have magnetic fields as strong as 10'* T over kilometer scales. Moreover, the
broad range of viable axion masses results in the possibility of axion signals at many energy scales,
which can, in turn, be probed by telescopes operating at the appropriate energy. In this thesis, we
consider signals that would appear in radio or X-ray, but DM may also produce signals at other
frequencies.

However, there are several challenges associated with indirect detection. First, astrophysical
systems are very far away from us; other than the sun, the nearest star to us is over a parsec away,
with most sources of DM signals another thousand times further away, drastically reducing the
intensity of any signal, which scales like 1/d?. Moreover, astrophysical environments have con-
siderably larger modeling uncertainties and confounding backgrounds than carefully engineered
laboratories. Finally, in the specific case of axion DM, because we need the DM signal to reach
Earth, we depend on propagating photon signals and are forced to abandon the strategy of measur-
ing time-varying axion-induced magnetic fields used to great success in lumped element searches
and depend exclusively on the conversion process.

Given the diverse array of astrophysical observables that can be probed, we defer a more de-
tailed discussion to individual chapters within this thesis, which treat searches for DM from three
qualitatively different channels. We will merely remark that robust indirect detection searches re-
quire a careful balance in selecting on-sky locations that could contain bright DM signals but are
also characterized by backgrounds that can be accurately modeled and do not introduce statistical
or systematic uncertainties larger than a candidate signal. This notion smoothly transitions us to

the final topic of discussion in this section.
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1.3.3 Statistics for Dark Matter Detection

Direct and indirect searches alike collect data, and a key step in the search for a DM is a statistical
analysis. Adopting a frequentist perspective, we develop a null hypothesis that the data do not con-
tain a DM signal and an alternate hypothesis, that the data does indeed contain a DM signal, and
then attempt to quantify the statistical evidence in favor of adopting the alternate hypothesis.'> If
we do not make a discovery, we then seek to set limits on the DM signal, akin to saying that had the
signal been brighter than some threshold, we would have expected to see it. In practice, we con-
struct nested hypotheses, infer model parameters with a technique known as maximum likelihood
estimation, determine detection significances from the likelihood ratio, and construct confidence
intervals to set limits, making use of a number of results in frequentist statistics which are excel-
lently reviewed in [77]. In this section, we will provide a schematic overview of these procedures,

followed by a brief discussion of the statistical challenges associated with DM detection.

1.3.3.1 The Basics of Frequentist Analysis

Suppose we are operating a telescope and recording the number of photons at particular energies,
obtaining a dataset d = {d;,ds, ..., d,} corresponding to d; counts at energy £, do counts at
energy Fs, and so on. In this scenario, we would expect the number of photons at each energy
to be drawn from a Poisson distribution characterized by some asymptotic event rate c¢; at energy
Ey, etc. We would then first construct a null model M, which attempts to predict the values of
1, ..., Cp. A very simple model hypothesis might be that the event rate at each energy is the same,
which is to say ¢; = ¢ = ... = ¢, = b and that our model M, is now parametrized by the
unknown background rate parameter b. We could then ask, for an assumed value of b, how likely
are the data we observed. This likelihood denoted £(d| M (b)), is then given by

£Mob) = P} pldob) x . x pla ) = [ (). (1.25)

where p(d|b) is the probability of drawing d counts from a Poisson distribution with count rate b.
Since the number of observed counts at each energy is assumed to be independent, the likelihood
is then directly computed by multiplying the individual probabilities of the data given the model
at each energy. If we treat b as an unknown parameter we want to infer, we can ask what value
of b maximizes the likelihood of the observed data. That value of b, denoted 13, 1s the maximum
likelihood estimate of the parameter under the null hypothesis.

We can similarly treat our alternate hypothesis, which includes the possibility of a DM signal.

SViable statistical analyses can also be performed with bayesian methodologies, which will not be discussed at
length in this thesis and are relatively less commonly used in particle physics.
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We will call this model M, and it will be somewhat different from M,. The DM physics tells
us the “shape” of the signal, which is to say that if DM is indeed present, we would expect more
photon counts in some energies and fewer in others. We will now additionally include a new
parameter, A, which describes the total number of photons we expect in our model to come from

DM. We can now compute the likelihood for our alternate hypothesis as
L(d| M (A, b)) = p(di|Asy +b) X p(da] Asy +b) x ... = [ [ p(di|As; + ), (1.26)

where s; is describing the shape of the DM photon spectrum. Just as we determined a maximum
likelihood for b under the null, we can determine A and 8 by maximizing the likelihood of our
alternate hypothesis under the joint choices of A and b.'°

We have now computed our maximum likelihoods under each hypothesis, and the simplest
question we could ask is whether data are more or less likely under the alternate hypothesis than
the null hypothesis. Quantitatively, this question asks if the ratio of the maximum likelihoods,

denoted A and given by o
A = LUMi(A D))

L(d[Mo(b))

is greater than 1. However, there is a subtlety. The alternate hypothesis was constructed to contain

(1.27)

the null hypothesis, which is realized in the A — 0 limit. As a result, the alternate hypothesis
can never result in a maximum likelihood that is less than the maximum likelihood under the null
hypothesis, and A > 1. Moreover, because the alternate hypothesis has one more free parameter
than the null hypothesis, we would typically expect that A > 1, even if the “true” underlying
physical model from which the data were drawn was indeed the null model, due to statistical error.

The more informed question we could ask is if the likelihood ratio is so much greater than 1
that it exceeds our threshold for belief that the data came from a realization of the null hypothesis,
leading us to accept the alternate hypothesis. This question can be answered in a precise way by
invoking Wilks’ theorem [78], which tells us that the quantity T'S defined by

TS = —2log(A) (1.28)

asymptotically follows as a y2-distribution with one degree of freedom under the assumption that
the null hypothesis is the true description of the data.!” The conventional threshold for accepting

the alternate hypothesis in particle physics is the 50 threshold, corresponding to when TS > 25.

16Since b and ?) were determined under different hypotheses, generically b #* Ié
"More generally, for nested hypotheses, the TS will follow a x2-distribution where the number of degrees of
freedom is equal to the number of model parameters in the alternate hypothesis but not in the null hypothesis.
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This is merely a sophisticated way of saying that we will only accept the alternate hypothesis if
the TS is so large that if the null model did perfectly describe the data and we were to repeat
our experiment 10° times, we would never expect to see such a TS larger than the one we have
observed.

Once we have determined our T'S and decided whether or not to accept the alternate hypoth-
esis, it is a relatively straightforward task to determine statistical uncertainties on our maximum
likelihood estimated parameters. If we have not detected DM in our experiment, Fisher informa-
tion considerations allow us to estimate a 95" percentile upper limit on the DM signal strength

parameter A by

A 1.65
Ay~ A1+ —]. 1.29
RTARLY i

In a realistic context, this signal strength parameter is determined by many factors, but assuming
a well-characterized instrumental sensitivity and DM signal generation mechanism, we may ex-
tract a limit on the DM coupling from Ag;. We also note in passing that this discussion has been
structured to be didactic rather than rigorous. In careful analyses, null and alternate hypotheses are
constructed before examining the data; otherwise, one risks building models biased either for or
against discovery. Moreover, in many instances, the application of Wilks’ theorem is invalid for
one or many reasons, such as parameter degeneracies, failure of the data to reach the asymptotic
limit, and improperly nested hypotheses, that result in nongaussian likelihoods. Much of the work
presented in this thesis is focused on a posteriori validations of statistical analyses performed with
Wilks’ theorem and the development of more appropriate statistical tests and limit-setting proce-

dures, e.g, through Monte Carlo simulation and data-driven estimates of systematic uncertainties.

1.3.3.2 Statistical Challenges for Dark Matter Detection

While the previous section laid out a relatively straightforward methodology for the statistical anal-
ysis of data collected in DM searches, working with non-idealized data is rarely straightforward.
Moreover we have seen that the DM parameter space, even when restricted to just the axion, is
broad. As a result, we may not have the luxury of multiple independent, complementary probes,
and without high-performing analysis frameworks with well-understood sensitivities, we risk never
discovering a DM particle that was within our reach. Critically, the likelihood-ratio tests we have
discussed are merely comparative tests of the goodness-of-fits of null and alternate hypotheses. If
neither hypothesis provides good descriptions of the data, we can expect spurious discoveries or
failures to discover real signals, and addressing this problem requires developing physically moti-
vated models that accurately describe the potentially complex phenomena contributing to statistical
and systematic backgrounds.

Moreover, the search for DM has rapidly become a big data problem. Many of the DM searches

20



discussed in this thesis produce terabyte-sized datasets and contain somewhere between hundreds
and millions of statistically independent locations of data. Thus, not only must our analysis frame-
works be accurate, they must be efficient while also enabling the quantification of uncertainties and
the accurate interpretation of global significances of candidate detection. For instance, in the data
collected by ABRACADABRA, there exist nearly 107 statistically possible signal locations, which,
in the perfectly modeled limit, we would expect to contain ~ 5 excesses with T'S > 25. Moreover,
the analysis methodologies should be sufficiently flexible enough to describe the variations in back-
ground effects that may appear at those numerous possible signal locations while simultaneously
preserving detection sensitivity. Finally, our analyses must be sophisticated in using experimental
and observational controls to diagnose systematic failures our modelling assumptions and detector
performance. Continuing with the ABRACADABRA example, one of our single largest sources of
unanticipated background power was the collection of AM radio stations operating within the state
of Massachusetts, and our failure to diagnose them would have represented the difference between

presenting null results and announcing the discovery of dozens of strongly-coupled axions.

1.3.3.3 A Summarizing Remark and Overall Perspective

We have spent nearly equal time discussing the statistical methods and challenges for axion de-
tection as we have in reviewing the theoretical motivations, signal generation mechanisms, and
experimental and observation prospects for axion DM. This is not an accident. The objective of
the work presented in this thesis is three-fold: the identification of promising detection strategies
for axion DM (or DM more generally), the development of the robust analysis frameworks for
the search of those signals, and the execution of novel searches for axions using the multitude of
existing and planned probes, even those which were not originally designed with DM in mind but

nonetheless may reveal the nature of DM to us.

1.4 Organization of this Thesis

In Chapter 2, we use high-performance computing techniques to simulate the production of axion
DM in the early universe beginning at times after the end inflation but before the breaking of
the PQ symmetry and ending when the axion has acquired its zero-temperature mass through the
QCD phase transition. By performing these simulations for a range of possible axion masses,
we find a relationship between the axion mass and its late-time cosmological abundance. This
allows a specific prediction for the mass of an axion that comprises the DM, providing direction
to experiments and observations which seek to detect axion DM. We also study the spectrum of

overdensity perturbations that arise in the axion field due to nonlinearities in the axion’s equations
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of motion and O(1) differences in the axion field at the time it acquires at mass. This spectrum
of overdensities suggests that axion DM may produce small-scale gravitationally bound structures
known as axion minihalos with masses at and below 1072 M.

Based on:

» Early-Universe Simulations of the Cosmological Axion with Malte Buschmann and Ben-
jamin R. Safdi; Phys. Rev. Lett., 124(16):161103, 2020; arXiv:1906.00967 [79]

In Chapter 3, our attention shifts to axion direct detection, and we study the statistics of mea-
surements of local axion field amplitude performed by generic laboratory-based experiments. We
treat the axion field as a gaussian random field measured at a single spatial location with a coher-
ence time determined by astrophysical DM velocity distribution. Using this as a starting point, we
develop a statistical analysis framework for axion direct detection data. We also explore the sen-
sitivity of direct detection experiments to that underlying velocity distribution, a prospect known
as axion astronomy, showing how the expected modulation of an axion signal can be used to vali-
date a candidate detection and how velocity substructure in the axion phase-space distribution can
enhance detection significance.

Based on:

* Revealing the Dark Matter Halo with Axion Direct Detection with Nicholas L. Rodd and
Benjamin R. Safdi; Phys. Rev. D, 97(12):123006, 2018; arXiv:1711.10489 [80]

In Chapter 4, we continue our work on the statistics of axion direct detection to explore the im-
provements in sensitivity that can be achieved with a network of axion detection experiments, a
prospect that may be soon achieved by rapidly maturing experimental collaborations. This rep-
resents a generalization of the work discussed in Chapter 3, where just as the astrophysical DM
velocity distribution defines a temporal coherence scale, it also defines a coherence length that
correlates the simultaneous measurements made by spatially separated detectors. We show that
for detectors separated by distances greater than the coherence length, the sensitivity to the axion
scales with the number of detectors like N'/* while sensitivity for detectors within the coherence
length scales like N'/2. For detectors separated by distances comparable to the coherence length,
increased sensitivity to the axion velocity distribution may be obtained using the analysis frame-
work which we develop.

Based on:

* Dark Matter Interferometry with Yonatan Kahn, Rachel Nguyen, Nicholas L. Rodd, and
Benjamin R. Safdi; Phys. Rev. D, 103(7):076018, 2021; arXiv:2009.14201 [81]

In Chapter 5, our consideration of the statistics of axion direct detection advances beyond a
purely theoretical one within the ABRACADABRA collaboration. We design and implement the
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ABRACADABRA-10 cm prototype detector, which we use to collect approximately one month of
data used to search for a small time-varying magnetic flux induced by the coupling of the axion
field to the background magnetic field following the statistical procedures developed in Chapter 3.
This search produced new laboratory-based constraints on sub-peV axion DM and paves the way
for future searches with lumped-element detection strategies.

Based on:

» First Results from ABRACADABRA-10 cm: A Search for Sub-jp.eV Axion Dark Matter with
Jonathan L. Ouellet et al.; Phys. Rev. Lett., 122(12):121802, 2019; arXiv:1810.12257 [72]

* Design and implementation of the ABRACADABRA-10 cm axion dark matter search with
Jonathan L. Ouellet et al.; Phys. Rev. D, 99(5):052012, 2019; arXiv:1901.10652 [82]

In Chapter 6, we continue our work within the ABRACADABRA collaboration to search for
axions with an improved ABRACADABRA-10 cm prototype detector that achieves greater sen-
sitivity to the local axion field. We also develop improved analysis controls designed to address
the increased significance of systematic backgrounds associated with our greater sensitivity. This
work produces leading constraints on the axion DM hypothesis for neV mass axions.

Based on:

* The search for low-mass axion dark matter with ABRACADABRA-10 cm with Chiara Salemi
et al.; Accepted in Phys. Rev. Lett; arXiv:2102.06722 [73]

In Chapter 7, our focus again shifts, this time to the indirect detection of axion DM. Through their
interaction with photons, axions can convert to photons in the strong magnetic fields of neutron star
magnetospheres, producing nearly monochromatic radio frequency emission. In this work, we use
dedicated radio observations of several neutron star dense targets, including the Galactic Center,
M54, M31, as well as two isolated neutron stars with the Effelsberg 100-m Radio Telescope and
the Robert C. Byrd Green Bank Telescope in L- and S-Band radio frequencies for searches for an
axion conversion signal. We find no evidence for axion DM, producing novel leading constraints
on previously unprobed parameter space and setting the stage for future radio searches.

Based on:

* Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in
Neutron Star Magnetospheres with Benjamin R. Safdi et al.; Phys. Rev. Lett., Phys. Rev. D,
103(7):076018, 2021; arXiv:2004.00011 [83]

In Chapter 8, we continue to consider the indirect detection of axions using X-ray observations
of super star clusters (SSCs). SSCs are home to hot young stars that can be luminous in ax-

ions produced in thermal processes inside the stellar cores, and these axions can, in turn, convert
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to X-ray photons as they propagate through the Galactic Magnetic Field. Because the axions
are produced in the stars before generating an observable X-ray signal, this probe does not de-
pend on axions comprising all of the DM, unlike all other searches discussed in this thesis. We
combine stellar modeling performed with the Modules for Experiments in Stellar
Astrophysics code package and analyze archival data collected by the NuSTAR X-ray tele-
scope to set constraints on the axion-photon coupling for axions with masses below 50 peV.

Based on

* X-ray Searches for Axions from Super Star Clusters with Christopher Dessert and Benjamin
R. Safdi; Phys. Rev. Lett., 125(26):261102, 2020; arXiv:2008.03305 [84]

In Chapter 9, we make use of 20 years of X-ray data collected by the XMM-Newton telescope
totaling 547 Ms of exposure to search for signals of decaying DM. We find no evidence for and
thereby setting leading constraints on decaying dark matter in the 5-16 keV mass range. Most of the
discussion in this chapter is cast in the language of searches for sterile neutrinos that decay in the
Milky Way galactic halo to produce diffuse X-ray spectral line emission with a spatial morphology
determined by the DM spatial distribution as they represent the benchmark model for keV-scale for
decaying DM. However, this work has been included within this thesis on axion detection for two
reasons: these constraints on decaying DM also place strong limits on the axion-photon coupling
for keV-scale axions, which may decay to two photons, and because the observation and analysis
strategies used in sterile neutrino searches are highly similar to those used in axion searches. In
particular, this chapter represents the first application of a non-parametric inference tool called
Gaussian process modeling to astrophysical searches for DM and paves the way for its application
to future analyses in the search for axion DM.

Based on

* Deep search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations with
Marius Kongsore, Christopher Dessert, Yujin Park, Nicholas L. Rodd, Kyle Cranmer, and
Benjamin R. Safdi; Phys. Rev. Lett., 127:051101, 2021; arXiv:2102.02207 [85]

Finally, in Chapter 10, we offer brief concluding remarks.
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CHAPTER 2

Simulations of Axion Production in the

Post-Inflationary Misalignment Scenario

The quantum chromodynamics (QCD) axion is a well-motivated dark-matter (DM) candidate ca-
pable of producing the present-day abundance of DM while also resolving the strong CP problem
of the neutron electric dipole moment [38,39,43-46, 86]. The axion is an ultralight pseudo-scalar
particle whose mass primarily arises from the operator aGG// f,, with a the axion field, G the QCD
field strength, G its dual, and f, the axion decay constant. Below the QCD confinement scale, this
operator generates a potential for the axion; when the axion minimizes this potential it dynamically
removes the neutron electric dipole moment, thus solving the strong CP problem. In the process
the axion acquires a mass m, ~ Agcp/ fa» With Aqep the QCD confinement scale. The standard
ultraviolet completion of the axion low-energy effective field theory is that the axion is a pseudo-
Goldstone boson of a symmetry, called the Peccei-Quinn (PQ) symmetry, which is broken at the
scale f, [40-42,87,88].

The cosmology of the axion depends crucially on the ordering of PQ symmetry breaking and
inflation. If the PQ symmetry is broken before or during inflation, then inflation produces homo-
geneous initial conditions for axion field and generically the cosmology is relatively straightfor-
ward [89]. In this work we focus on the more complex scenario where the PQ symmetry is broken
after reheating. Immediately after PQ symmetry breaking, the initial axion field is uncorrelated
on scales larger than the horizon, with neighboring Hubble patches coming into causal contact in
the subsequent evolution of the Universe. This leads to complicated dynamical phenomena, such
as global axion strings, domain walls, and non-linear field configurations called oscillons (also
referred to as axitons) [90-96].

We perform numerical simulations to evolve the axion field from the epoch directly before
PQ symmetry breaking to directly after the QCD phase transition. Once the field has entered
the linear regime after the QCD phase transition, we analytically evolve the free-field axion to
matter-radiation equality. The central motivations for this work are to (i) quantify the spectrum

of small-scale ultracompact minihalos that emerges through the non-trivial axion self-interactions
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and initial conditions, and (ii) to determine the m, that leads to the correct DM density in this
scenario.

The post-inflation PQ symmetry breaking cosmological scenario has been the subject of con-
siderable numerical and analytic studies. It has been conjectured that this cosmology gives rise
to ultra-dense compact DM minihalos with characteristic masses ~10713-107*! M, though we
show that the typical masses are actually smaller than this, and initial DM overdensities of order
unity [91-93,96-99]. In this work we compute the minihalo mass function precisely, combining
state-of-the-art numerical simulations with a self-consistent cosmological picture. Understanding
this mass function is important as it affects the ways that we look for axions in this cosmologi-
cal scenario. For example, it has been claimed that microlensing by minihalos and pulsar timing
surveys [100] may constrain the post-inflation PQ symmetry breaking axion scenario [99], but
these analyses rely crucially on the form of the mass function at high overdensities and masses.
The axion minihalos may also impact indirect efforts to detect axion DM through radio signa-
tures [101-106].

A precise knowledge of the m, that gives the observed DM density is of critical importance for
axion direct detection experiments [67,70-72,76,82,107-111]. We find m, = 25.2 + 11.0 ueV,
which is within range of e.g. the HAYSTAC program [110]. Our axion mass estimate is similar
to that found in recent simulations [112] but disagrees substantially with earlier semi-analytic
estimates [113-119]. The minihalo mass function is also important for interpreting the results of
the laboratory experiments. If a large fraction of the energy density of DM is in compact minihalos,
it is possible that the expected DM density at Earth is quite low or highly time dependent, which
means that direct detection experiments would need to be more sensitive than previously thought
or use an alternate observing strategy.

The original simulations that tried to estimate the minihalo mass function were performed
in [92] on a grid of size 1003. Ref. [92] found oscillons (soliton-like oscillatory solutions) that
contribute to the high-overdensity tail of the mass function. Note that oscillons are analogous to
the breather solutions found in the Sine-Gordon equation (see e.g. [120]). Recently [96] performed
updated simulations on a grid of size 81923. Our results expand on and differ from those presented
in [96] in many ways, such as through our initial state that begins before the PQ phase transition,
measurement of the overall DM density, evolution to matter-radiation equality, and accounting of

non-Gaussianities.
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Figure 2.1: Each panel illustrates the string network (yellow strings), domain walls (red mesh),
and energy density of the axion field (blue-white intensity) before (left), during (middle), and after
(right) the QCD phase transition (see animation).

2.1 Simulation Setup

We begin our simulations with a complex scalar PQ field ®, with Lagrangian

1 A
Lrq =500 = 5 (1P - 12)°

T2
2

IO — ma(T)f2[1 — cos Arg(®)], (2D

with T the temperature, A the PQ quartic coupling strength, and m,(T") the temperature-dependent
axion mass generated by QCD [121]. The parametrization of the temperature-dependent mass is
adopted from the leading-order term in the fit in [116]. Explicitly, the axion mass is parametrized
by

(2.2)

A4
mo(T)* = min{ Qa 2} :

OO
for a, = 1.68 x 1077, A = 400 MeV and n = 6.68. The growth of the mass is truncated when it
reaches its zero-temperature value, which occurs at 7' ~ 100 MeV independent of the axion decay
constant. The zero-temperature mass is given by m, ~ 5.707 x 1075(10'* GeV/f,) eV [122]. We
present results using a similar but more recent mass parametrization from [123] in the Appendices;
the difference between these results is used to quantify a source of systematic uncertainty.

For the PQ-epoch simulations we begin well before the breaking of the PQ symmetry at a time
when the PQ field is described by a thermal spectrum. We fix A = 1 for definiteness. The simu-
lation is performed by evolving the equations of motion on a uniformly spaced grid of side-length
Lpg = 8000 in units of 1/(a; H;), with a; (H;) the scale factor (Hubble parameter) at the tempera-
ture when H; = f,, at aresolution of 10242 grid-sites. We use a standard leap-frog algorithm in the
kick-drift-kick form with an adaptive time-step size and with the numerical Laplacian calculated
by the seven-point stencil. It is convenient to use the rescaled conformal time 77 = 7/1,, where

is the conformal time at which point H(n;) = H; = f,. The simulation begins at 77; = 0.0001
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and proceeds with initial time-step A7); = 0.004 until 7 = 250, after which a variable time-step
calculated by A7;(250/7) is used to maintain temporal resolution of the oscillating PQ fields. Con-
vergence was tested by re-running small time intervals of the simulation at smaller time steps. The
PQ fields evolve from their initial thermal configuration until the PQ phase transition occurs at
1 ~ 280, after which the radial mode |®/ f,| acquires its vacuum expectation value (VEV). We
simulate until 77y = 800 in order to proceed to a time at which fluctuations around the radial mode
VEV have become highly damped.

Note that the difference in 77 between 77 = 1 and the PQ phase transition is proportional to
\/m, with m, the Planck mass. The actual choice of f, here does not play an important role
since we evolve the axion-string network into the scaling regime. In the left panel of Fig. 2.1 we
show the final state of our simulation at the completion of the PQ simulation. The string network
is seen in yellow, with the blue colors indicating regions of higher than average axion density. The
length of the simulation box at this point is around 8000/ (a(7)H (7)), and we indeed find that
there is around one string per Hubble patch as would be expected in the scaling regime.

We use the final state of the PQ-epoch simulation as the initial state in our QCD-epoch simu-
lation. To do so we assume that the axion-string network remains in the scaling regime between
the two phase transitions (see, e.g., [117]). Recently [124] found evidence for a logarithmic devia-
tion to the scaling solution and we confirm this behavior in the appendices. However, we perform
tests to show that this deviation to scaling likely has a minimal impact on both the minihalo mass
function and on the DM density, though we still assign a systematic uncertainty to our DM density
estimate from the scaling violation.

Anticipating requiring greater spatial resolution for late-times in our QCD simulation, we in-
creased the resolution of our simulation to 20483 grid-sites with a nearest-neighbor interpolation
algorithm. We re-interpreted the physical dimensions of our box from side-length Lpg = 8000
in PQ spatial units to Locp = 4 in units of 1/(a;H,). These units are defined such that
Hy, = HnP) = ma(n2") at conformal time 7*“P. Further, we use the dimensionless pa-
rameter 1 = 7/ leCD. While our PQ simulation ended at 1y = 800 in PQ units, the start time in
the QCD phase transition is taken to be 7; = 0.4 in the QCD units. Modes enter the horizon as
their co-moving wavenumber becomes comparable to the co-moving horizon scale, which scales
linearly with 7). Therefore, by maintaining the ratio Lpq/7; = Lqcp/7)i, we preserve the status of
our modes with respect to horizon re-entry.

We then evolve the equations of motion with our initial step size now chosen to be A7; = 0.001.
As before, we adaptively refine our time step size, using time-step A7);(1.8/7)33* after ) = 1.8,
to maintain resolution of the oscillating axion field. We simulate until 7y = 7.0, periodically
checking if all topological defects have collapsed. When this occurs, we switch to axion-only

equations of motion for computational efficiency, since past this point the radial mode does not
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play an important role.

The conformal time 7). at which the mass growth was cut off corresponds to the physical value
of the axion decay constant since it relates the temperature 77 at which the axion begins to oscillate
and the cutoff temperature 7. ~ 100 MeV at which the axion reaches its zero-temperature mass.
We performed simulations at five values of 7). uniformly spaced between 2.8 and 3.6. These values
are chosen to access different values of f, while still preserving a hierarchy between 7). and our
simulation end time in order to provide sufficient time for the field to relax. At each of the five
values of 7)., we performed simulations at five different values of the parameter ), defined by
A=A 12 /mq(n1)?. This parameter can be interpreted as the squared mass of the radial PQ mode
relative to the axion mass, at conformal time 7);. In order for excitations of the radial mode to
be well-resolved in our simulation, we require that the resolution of our simulation AZ, with
I = ayHyz and z the spatial coordinate, be such that 1/(7A\'/2AZ) > 1, making simulations
for realistic axion parameters \ impossible. We break the relation between A and f, and consider
A = (1024, 1448, 3072, 3584, 5504] in order to study the impact of this parameter. We provide
additional arguments in the appendices supporting that while not physical these ) values should
preserve the correct timescale for physical defect network collapse (see also [125]).

We illustrate three important phases of the QCD-epoch simulation in Fig. 2.1. The left-most
panel is the initial state discussed previously in the context of the PQ-epoch simulation final-state.
When m, (1) = 3H(7) at ) ~ 1.22, strings grow longer and become less numerous, with domain
walls forming on surfaces bounded by the strings. This is illustrated in the middle panel, with
red colors indicating domain walls. As the temperature continues to decrease with increasing 1),
strings and domain walls tighten and decrease in size until they collapse. By 7 2 2.0, the network
collapses in its entirety. Shortly thereafter, we observe the formation of oscillons [92,96,126]. We
note that the oscillon field configuration is relativistic, so that near the origin of the oscillons the
oscillation wavelength is ~m, (7)) ™!, which is rapidly shrinking with increasing time. After the
zero-temperature mass is reached, oscillons stop shrinking and slowly dissipate at varying rates
until the full field enters the linear regime. White regions in the right-most panel of Fig. 2.1 denote
regions of high axion energy density, which are mostly inhabited by oscillons.

At the end of the simulation, the field has relaxed into the linear regime (e.g., axion self-
interactions are unimportant), but the field remains mildly relativistic because axion radiation is
produced during the string-network collapse and during the oscillon collapse. It is therefore im-
portant to continue evolving the axion field until a time nearer to matter-radiation equality to allow
the field to become non-relativistic everywhere and also to allow the compact but high-momentum
overdensities to spread out. We perform this evolution analytically by exactly solving the linear
axion equations of motion in Fourier space. We end this evolution shortly before matter-radiation

equality (7' ~ keV), at which time proper velocities have frozen out but local radiation domination

29



is preserved at all locations in our simulation box so that gravitational effects remain negligible.

2.2 Analysis and Results

We provide Supplementary Data [127] containing the final state from our most realistic QCD-
epoch simulation, after having performed the evolution to near matter-radiation equality. Note that
the axion field after the QCD phase transition is highly non-Gaussian and phase-correlated at small
scales and cannot accurately be reconstructed from the power spectrum. In fact considering that we
find large overdensities § (§ ~ 10), with 6 = (p — p)/p and p (p) the average (local) DM density,
the field could not possibly be Gaussian at these scales, considering that Gaussian random fields
have symmetric over and under-densities but under-densities with § < —1 would have negative
DM density.

We may try to estimate the present-day mass function by performing a clustering analysis on
the final states. In particular, we expect that the large overdensities will detach from the cosmic
expansion, due to reaching locally matter-radiation equality before the rest of the Universe, and
collapse onto themselves under gravity. Thus by clustering the 3-D spatial energy density distribu-
tion from the simulation slightly before matter-radiation equality and quantifying the distribution
of masses and overdensities that we find, we can make predictions for the spectrum of minihalo
masses and concentrations today.

From the final-state we construct an overdensity field d(z), and we identify overdensities as
closed regions of positive 0. Under this definition 50% of the total mass is in overdensities. In
practice, we identify these regions by first finding all positive local maxima, then recursively iden-
tifying all neighboring grid sites that are larger than 20% of the corresponding local maxima. We
assign to each overdensity with at least 80 grid sites a mass M and a single mean concentration
parameter 0. The final mass function is not strongly dependent on the specific choice of the 20%
and 80 grid sites threshold.

An illustration of our clustering procedure is shown in Fig. 2.2. In that figure we show a 2-
dimensional slice through the overdensity field for our most realistic simulation with 7). = 3.6 and
A = 5504. Note that in the left panel we show the field at ) = 7 at the end of the QCD simulation
while in the right panel we show the same slice slightly before matter-radiation equality, denoted
by Aimr = 10° and corresponding to 7' ~ keV. While a large overdensity left over from oscillon
decay, along with corresponding rings of relativistic axion radiation, is visible in the left panel, that
structure largely disperses in the subsequent evolution to 7yg. Two-dimensional slices through the
boundaries of the clustered regions are shown in red in Fig. 2.2.

We characterize the minihalo mass function through the distribution d* f /d(log M) /dd, where f

represents the fraction of mass in overdensities of mean overdensity ¢ and mass M with respect to
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Figure 2.2: (Left) A portion of a 2-D slice through the overdensity field 6(z) at the end of the
QCD stage of our most realistic simulation with 7). = 3.6 and A = 5504. Large overdensities and
rings of relativistic radiation arise from oscillon decay. Slices through the clustered minihalos are
outlined in red. (Right) As in the left panel, except the field is evolved to matter-radiation equality.
The large overdensities largely disperse and the field is everywhere non-relativistic.

the total mass in minihalos. We compute the mass function for all of the 25 simulations at varying
A and .. To perform the extrapolation to the physical f, (7).), we use the following procedure.
First, we normalize the total DM density found in the simulation at 7j\g to the value that would
give the observed DM density today. Then we perform the clustering algorithm to determine
d*f/d(log M)/dé. We rescale all of the masses by [(a; H1)™/(ai Hy )] °. where (ay Hy)*™ is
the simulated horizon size at 77 = 1 and (a; H;)™*" is the horizon size at the target f,. The shift
accounts for the fact that the characteristic scale of the overdensities is expected to be set by the
horizon volume when the axion field begins to oscillate (see, e.g., [96,99] and the appendices).
The effect of this shift is to move all of the masses to lower values, since the target m, is larger
than those we simulate. The resulting mass function for our most realistic simulation is shown in
Fig. 2.3. As we show in the appendices, after applying the mass shift the mass functions appear
to give relatively consistent results between the different 7., though the agreement is not perfect at
high M. As a result, we cannot exclude the possibility that simulating to the target 7). would give
different results, especially at high masses, compared to our extrapolations. On the other hand,
the effect of A appears to be minimal, since this parameter only affects the decay of the string
network. We additionally caution that these minihalo masses have been defined in a non-standard
way by calculating the total overdensity mass. For realistic projections associated with minicluster

observables, N-body simulation using the late-time axion field as an initial state evolving under
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Figure 2.3: Differential mass distribution for axion minihalos for our most realistic simulation,
as described in Fig. 2.2, computed by clustering the overdensity field at 7yr. The shaded “unre-
solved” region denotes the parameter space that is beyond our resolution limit. Small statistical
uncertainties are displayed as grey error bands.

gravitation is necessary. However, our accounting, which has neglected gravity, is useful in that it
provides an estimate of the minimum mass of gravitationally collapsed structure that arises in this
scenario.

We may also compare our determinations of the total DM density produced during the QCD
phase transition to previous analyses (see e.g. [112—119]). Our results are summarized in Fig. 2.4,
where we show the DM density today that we find for our top four 7)., converted to f,, for our most
physical . The uncertainties in our p. measurements are determined from the variance between
the different \ simulations, and while some small dependence on ) is expected, we find that this
dependence is subdominant to statistical noise and no trend is detectable in our data. We also
include a conservative 10% systematic uncertainty that accounts for our unphysical fixing of the
effective number of degrees of freedom g, throughout our simulation, a 15% systematic uncertainty
from violations to scaling between the PQ and QCD phase transitions, and the uncertainty on the
measured value of €2, in our Universe [128] (see the appendices for details).

In Fig. 2.4 we compare our results to the best-fit simulation result from [112], which like us
numerically evolved the axion-string system through the QCD phase transition, albeit with a dif-
ferent formalism, and also the semi-analytic calculations from [118]. Our results are in reason-
able agreement with those in [112] and significantly disagree with those in [118]. Note that we
self-consistently account for all production mechanisms for axion DM in our simulation, includ-
ing string decay in the few decades before the QCD phase-transition. It is the late-time axion

production, right before the QCD phase transition, which is most important since it is the least
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Figure 2.4: The DM density €2, as a function of the axion decay constant f,, with statistical uncer-
tainties (black) and correlated systematic uncertainties (red) indicated, for our top four simulations.
We compare our results to those in [112] (Klaer and Moore), which agree relatively well with our
own, and [118] (Kawasaki et al.), which predicts significantly higher {2, relative to what we find.

redshifted [118]. The source of the discrepancy could be due in part to the fact that by artificially
separating the production mechanisms, [118] over-counted the DM density produced (see [112]).
Additionally, the highly non-linear axion dynamics at the QCD epoch likely violate the number-
conserving assumptions made by [118].

We may estimate the f, that gives the correct DM density by fitting our results to a power-
law €, ~ f& We find the best-fit index o« = 1.24 £ 0.04, only including statistical uncer-
tainties, which is marginally compatible with the analytic calculations in [112, 118] that pre-
dict « = (n+6)/(n+4) ~ 1.187. Fixing « to the theoretical value, we find ©, = (0.102 +
0.02) x (f,/10"GeV) 187 now incorporating the correlated systematic uncertainties, which leads
to the prediction that the correct DM density is achieved for f, = (2.27 & 0.33) x 10" GeV
(m, = 25.2+£ 3.6 peV) in agreement with [112]. Note that if we fit for « instead of fixing « to the
theoretical value we find m, = 17.4+4.5 pueV; the difference between the two m,, estimates could
be due to a systematic difference between the theoretically predicted « and the actual dependence
of 2, on f,. In light of this we use the difference between the two m,, estimates as an estimate
of the systematic uncertainty from the extrapolation to f, below those simulated. We additionally
include a ~27% uncertainty on m, from uncertainties in the mass growth of the axion (see the

appendices for details), leading to the prediction m, = 25.2 & 11.0 peV.

2.3 Conclusion

We performed high-resolution simulations of axion DM in the cosmological scenario where the

PQ symmetry is broken after inflation, starting from the epoch before the PQ phase transition and
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evolving the field until matter-radiation equality. After matter-radiation equality one should still
evolve the axion field gravitationally down to lower redshifts, which we plan to do in future work.
Our mass function is an estimate of the resulting mass function one would find after simulating the
gravitational collapse. It is possible that the true halos will be slightly larger in mass due to e.g.
accretion of surrounding DM.

We may try to estimate the halo sizes based upon when we expect the halos to collapse grav-
itationally. Under the assumption, for example, that the final density profile is a constant-density
sphere of radius R (which is likely not a good approximation but still is useful to get a sense of
the halo sizes), then the halo density today was argued to be approximately p & 140p.,0%(d + 1),
where p.q 1s the DM density at matter-radiation equality [93]. This implies, for example, that a
M = 107* My, subhalo with an initial average overdensity § = 3 will have a characteristic size
of ~1 x 10% km. The implications for direct and indirect axion detection efforts (e.g., non-trivial
time dependence) are likely substantial and will be the subject of future work. One immediate im-
plication, however, is that the axion minihalos are likely out of reach for microlensing and pulsar

timing surveys [100], given the small minihalo masses.
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CHAPTER 3

The Statistics of Axion Direct Detection

The local distribution of dark matter (DM) leaves a unique fingerprint on an emerging signal at
axion direct detection experiments. While it has long been recognized that the local phase-space
distribution of DM may be partially uncovered with direct-detection experiments searching for
heavy DM candidates with masses mpy = MeV (for a recent review, see [129]), the role of the
DM distribution at axion direct detection experiments, where mpy < meV, remains less explored.
In this work, we develop a likelihood-function-based analysis framework for analyzing the output
of axion DM direct detection experiments. Using this framework, we explore in detail the impact
of the DM phase-space distribution on the experimental sensitivity to the axion; in the presence
of a signal, we show that many aspects of the full time-dependent phase-space distribution can be
uncovered.

The need for understanding how the DM phase-space distribution is manifest in axion direct de-
tection experiments has taken on a new sense of urgency recently due to a multitude of new experi-
mental efforts. In addition to the long-running ADMX experiment [107,130, 131], there has been a
raft of new ideas for directly detecting axion DM, including ABRACADABRA [71], CASPEr [58],
CULTASK [132], DM Radio [76, 111], MADMAX [70, 133-135], HAYSTAC [108-110],
nEDM [136, 137], ORGAN [138], QUAX [139-141], TASTE [142], and more [143-165]. Our
statistical framework allows us to better quantify limits and detection thresholds for the proposed
experiments. Moreover, it also shows how various features of the DM distribution, for example
annual modulation, gravitational focusing, and potential substructure such as local DM streams,
can affect the sensitivity of these experiments and how they can be searched for in the data.

The resurgence of effort towards detecting axion DM is driven by a combination of factors,
including the increasing tension that heavier DM candidates are facing from null searches, tech-
nological advancements that make axion searches more feasible, and new ideas for how to detect
axion DM in the laboratory. However, axion DM is also a focus point due to its strong theoreti-
cal motivation. The quantum chromodynamics (QCD) axion was originally invoked to solve the

strong CP problem of the neutron electric dipole moment [38,39,43,44]. It was later realized that
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the QCD axion behaves like cold DM for cosmological and astrophysical purposes [45, 46, 86].

The axion interacts with the electromagnetic sector through the following operator:
1 =
L,= _ZgawaF/wF , (3.1

where F),, is the electromagnetic field strength, a is the axion field, and g, is the coupling.! We
may parametrize the coupling as g, = gagrwm/ (27 f,), Where f, is the axion decay constant, oy
is the electromagnetic fine structure constant, and ¢ is a model dependent parameter, which takes
a value —1.95 (0.72) for the KSVZ [40, 87] (DFSZ [41,42]) QCD axion, although the space of
models covers an even broader range (see, e.g., [166]). The axion decay constant determines the
axion mass through the coupling of the axion to QCD:

e
a fa )

which is given in terms of the pion mass and decay constant, m, and f,, respectively. Depending

(3.2)

on the detailed cosmological scenario, the QCD axion may make up all of the DM for axion masses
roughly in the range ~ 1072 eV to ~ 1075 eV (see [89] for a review). Lower masses are disfavored
by requiring the axion decay constant, which is the scale of new physics that generates the axion, to
be sub-Planckian. At higher masses it becomes more difficult to generate the required abundance
of DM through the misalignment mechanism and the decay of topological defects (see, e.g., [167]).
In addition to the QCD axion, it is also possible to have more general axion-like DM particles that
still couple to electromagnetism, but not to QCD. The mass of these axion-like particles is a free
parameter, since there is no contribution from QCD; however, axion-like particles do not address
the strong CP problem.

Most axion direct detection experiments exploit the fact that axion DM may be described by a
coherently-oscillating classical field a that acts as a source of FH,,F #_ The oscillation frequency
of a is set by its mass m,, while the coherence of the oscillations is set by the local DM velocity
distribution. Locally, we expect the velocity dispersion of the bulk DM halo to be ~10~3 in natural
units, which leads to the expectation that the axion coherence time is 7 ~ 10% x (27 /m,). Con-
sequently, the axion sources a coherent signal that experiments can repeatedly sample by taking
time-series data sensitive to the possible interactions of the axion. For example, in ADMX, which

is the only experiment so far to constrain part of the QCD axion parameter space,’ the coherent

'Throughout this work we will consider exclusively the electromagnetic coupling, but the framework we introduce
can be straightforwardly extended to nucleon couplings.

’This, of course, depends on the exact definition of what constitutes a QCD axion. Recent studies have suggested
the window could be broader than what we discuss in this work, see, e.g., [168, 169]. Under such extended definitions,
results from the HAYSTAC experiment may already probe the QCD parameter space [108].
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axion background sources electromagnetic modes in a resonant cavity. The experiment tunes the
resonant frequency of the cavity to scan over different possible masses. Most axion experiments
make use of high-() oscillators or cavities to build up the otherwise small signal. However, some
experiments, such as ABRACADABRA and MADMAX, can operate in a broadband mode that
allows multiple masses to be searched for simultaneously, albeit with slightly reduced sensitivity.

Resonant experiments, such as ADMX, typically analyze their data by comparing the power
output from the resonator, measured across the frequency bandwidth of the signal as determined
by the coherence time, to the expectation under the null hypothesis using, for example, the Dicke
radiometer equation [ 170], supplemented with Monte Carlo simulations as described in [130,171].
In this work, we present a likelihood-function based approach to analyzing the data at resonant and
broadband axion experiments that takes as input the Fourier components of the time-series data,
with frequency spacing potentially much smaller than the bandwidth of the signal. We show that
the velocity distribution of the local halo is uniquely encoded in the spectral shape of the Fourier
components, within the frequency range set by the coherence time, and that it may be extracted
from the data in the event of a detection.

We present an analytic analysis of the likelihood function using the Asimov dataset [172], which
also allows us to calculate the sensitivity of axion experiments to DM substructure such as cold
DM streams and a co-rotating dark disk. For example, we show that soon after the discovery
of axion DM from the bulk DM halo, the DM component of the Sagittarius stream, which has
been extensively discussed in the context of electroweak-scale direct detection [173—176], should
become visible in the data through the likelihood analysis. Moreover, we may use the formalism
to accurately predict exclusion and discovery regions analytically.

Most previous studies of axion direct detection have not addressed the question of how to ex-
tract measures of the local phase-space distribution from the data. In [177], it was demonstrated
that effects of the non-zero axion velocity will need to be accounted for in future versions of the
MADMAX experiment. Ref. [178] recently performed simulations to show how the sensitivity of
ADMX changes for different assumptions about the velocity distribution, such as the possibility of
a co-rotating dark disk or cold flows from late infall, using the analysis method used by ADMX in
previous searches (see, for example, [179, 180]). In [181] (see also [182]) it was pointed out that
the width of the resonance should modulate annually due to the motion of the Earth around the
Sun, which slightly shifts the DM velocity distribution. Recently, [183] took an approach similar
to that presented in this work and considered a likelihood-based approach to annual modulation
and reconstructing the halo velocity distribution. We extend this approach to accurately account
for the statistics of the axion field, to include previously-neglected but important phenomena such
as gravitational focusing [184] induced by the Sun’s gravitational potential, and to analytically

understand, using the Asimov formalism [172], the effect of DM substructure.
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3.1 Organization of this Chapter

We organize the remainder of this work as follows. To begin with, in Sec. 3.2 we derive a likelihood
for axion direct detection. The result is derived for both broadband and resonant experimental con-
figurations. Section 3.3 determines the expected limit and detection thresholds from this likelihood.
In Sec. 3.4 we discuss our results in the context of an axion population following a time indepen-
dent bulk halo. Finally, Sec. 3.5 extends the discussion of the axion phase space to include an-
nual modulation, gravitational focusing, and the possibility of local DM substructure such as cold
streams. We note that the analysis framework presented in this work is also provided in the form of
publicly available code and can be accessed at https://github.com/bsafdi/AxiScan.

3.2 A Likelihood for Axion Direct Detection

In this section we derive a likelihood that describes how the statistics of the local DM velocity
distribution are transformed into signals at axion direct detection experiments. The main result
that will be used throughout the rest of the paper is the likelihood presented in (3.29); however,
there will be several intermediate steps. In particular, in the first subsection we show how to write
the local axion field as a sum over Rayleigh-distributed random variables, as specified in (3.10). In
the following subsection we will show that when coupled to an experiment sensitive to the axion,
if data is taken in the form of a power spectral density (PSD), it will be exponentially distributed,
as given in (3.24). In the main body we will only derive the distribution of the signal, but in
App. B.1 we will show that the background only, and signal plus background distributions, are
both exponentially distributed also. Combining these, we then arrive at a form for the likelihood
function.

In the initial derivation of the likelihood we will focus on how our formalism applies to a
broadband experiment. However, the modification to a resonant framework is straightforward and
we present the details in the final subsection.

3.2.1 The Statistics of the Local Axion Field

Our goal in this section is to build up the local axion field from the underlying distribution of
fields describing individual axions. Thus as a starting point let us consider an individual axion-like

particle, which we think of as a non-relativistic classical field.> If we assume that there are N,

3Individual axion-like particles should technically be described as quantum objects not classical fields. Neverthe-
less the local occupancy numbers of these quantum particles is enormous. For example, taking axion dark matter with
mg ~ 10710 eV, the number of axions within a de Broglie volume is ~103%. Accordingly the distinction is unimpor-
tant since formally when we say single particles we really mean a collection of particles in the same state with high
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such particles locally that make up the local DM density ppy;, then we can write down the field

describing an individual particle as

/o TN 2
a;(v,t) = M cos [ma (1 + U—Z) t+ Qﬁi} , (3.3)

My 2

where 7 € 1,2, ..., N, is an index that identifies this specific axion particle, m, is the axion mass,
v; s the velocity of this axion, and ¢; € [0, 27) is a random phase. The phase coherence of the full
axion field constructed from the sum each of these particles is dominated by the common mass they
share and to a lesser extent by velocity corrections which are drawn from a common DM velocity
distribution. Beyond this we take the fields to be entirely uncorrelated, which is represented by
the random phase. Axion self interactions could induce additional coherence. However, given the
feeble expected strength of these interactions we assume such contributions are far subdominant
to those written.

From here to build up the full axion distribution we need to sum (3.3) over all 7. We proceed,
though, through an intermediate step that takes advantage of the fact that there will be many parti-
cles with effectively indistinguishable speeds. As such let us partition the full list of N, particles
into subsets §2;, which contain the Ng particles with speeds between v; and v; + Av, where Av is
small enough that we can ignore the difference between their speeds. In this way the contribution

from all particles in subset {2 is given by

o (13) o]
a;(t) = ———cos |mg [ 1+ = | t+ i) . (3.4)
’ lezﬂzj mav/N, 2

Note that it is only the random phase that differs between elements of the sum:

2
Zcos [ma (1 + %]) t+¢i:|

€82,

2
=Re < exp {imu (1 + %) t} Z exp [ig;]

iEQj

(3.5)

To proceed further, we recognize that the sum over phases is equivalent to a 2-dimensional random

walk; this allows us to write

> explio] = e (3.6)

1€8);

where ¢; € [0,27) is again a random phase and «; is a random number describing the root-

enough occupancy number such that the ensemble is described by a classical wave. For simplicity, however, we refer
to these classical building blocks as “particles.”
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mean-squared distance traversed in a 2-dimensional random walk of N7 steps. These distances are

governed by the Rayleigh distribution, which takes the form

200, _a2/N?
P[Ozj]:ﬁe i/Na (3.7)

For future convenience, we remove N/ from the distribution by rescaling av; — a4/ N} /2, so that

we can complete our result for this velocity component as follows:

V N v
a;(t) = ozjﬂ — cos [ma <1 + —]> t+ gﬁ]} ;

My N, 2
Play] = aje™®3/2. (3.8)

The final step to obtain the full local axion field is to sum over all j. Before doing so, how-
ever, we note the important fact that the speeds, v;, are being drawn from the local DM speed
distribution, f(v). A simple ansatz for f(v) is given by the standard halo model (SHM):*

v
fSHM(U|U07U0bs) = me
0ob0s

Avvgps /V2
><<e ob/()_l)7

_(U+'U(7bs)2/'u(2)

(3.9)

where in conventional units vy ~ 220 km/s is the speed of the local rotation curve, and vy,s ~
232 km/s is the speed of the Sun relative to the halo rest frame.” As shown in Sec. 3.5, small
variations on this simple model can induce large changes to the expected experimental sensitivity,
but fsmv(v) is likely to approximately describe the bulk of the local DM speed distribution and so
gives a good initial proxy for f(v). As a first use of f(v), we can rewrite N7 in terms of f(v), as
from the definition of j we have N7 = N, f(v;)Av. With this we arrive at the main goal of this

section, a form for the local axion distribution:

a(t) = —‘:;jvl Z a\/ flvj)Av

2
X COS [ma (1+5]> t+¢j:| ,

where note the sum over j is effectively a sum over velocities, and again we emphasize that each

(3.10)

“We note in passing that data from the Gaia satellite is likely to lead to updates to this simple model [185, 186].
Further, there is also likely a cut-off at the Galactic escape velocity, ~550 km/s, though this will not play an important
role in the analyses in this work.

>When manipulating the velocity distribution, we will often work in natural units.
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a; 1s a random number drawn from the distribution given in (3.8).

3.2.2 Coupling the Axion to a Broadband Experiment

We now discuss how to quantify the coupling of the DM axion field to an experiment sensitive to
the coupling in (3.1), using the form of the local axion field given in (3.10). Then, we write down
a likelihood function that may be used to describe the experimental data. Here we focus on deter-
mining the statistics of the signal alone; combining the signal with background is straightforward
and described in more detail in App. B.1. To make the discussion concrete, we frame the problem
in the context of the recently proposed ABRACADABRA experiment [71], operating in the broad-
band readout mode. We emphasize, however, that the results we derive are much more general
and are applicable to any experiment which seeks to measure time-series data based upon the local
axion field. An example of this generality is provided in the next section, where we extend the
formalism to the resonant case.

Let us briefly review the operation of ABRACADABRA, a 10-cm version of which is currently
under development [187]. This experiment exploits the fact that the coupling between the axion
and QED, given by the operator in (3.1), induces the following modification to Ampere’s circuital
law

oa

OE
VxB—EJrJ—gaW(ExVa—BE). (3.11)

The final term in this equation implies that in the presence of a magnetic field and axion DM,
there is an effective current induced that follows the primary laboratory magnetic field lines and
oscillates at the axion frequency. ABRACADABRA sources this effective current via a toroidal
magnet, which generates a large static magnetic field. The axion then generates an oscillating
current parallel to the magnetic field lines, which in turn sources an oscillating magnetic flux
through the center of the torus. By placing a pickup loop in the center of the torus, this oscillating

magnetic field will induce an oscillating magnetic flux of the form

(I)pickup(t) = ga’y'meaXVBmaa'(t) ) (312)

where B,.x 1S the magnetic field at the inner radius of the torus, and V5 is a factor that accounts
for the geometry of the toroidal magnet and pickup loop and has units of m?. In the broadband
configuration, the pickup loop, which is taken to have inductance L,, is inductively coupled to a

DC SQUID magnetometer of inductance L, which will then see a magnetic flux of

a | L

CI)SQUID ~ 5 L_(I)pickupa (313)
p
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where « is an O(1) number characterizing how the SQUID geometry impacts the mutual in-
ductance of the SQUID and pickup loop circuit. A typical value we will use in calculations is

= 1/+/2. The coupling will also induce a frequency independent phase difference between
the pickup loop and magnetometer fluxes, but as we show below such an overall phase will not
contribute to the measured PSD and so we do not keep track of it.

In this way, through repeated measurements of the magnetic flux detected by the SQUID,
ABRACADABRA is able to build up a time series of data proportional to the local axion field.
If the experiment is sampling the magnetic flux at a frequency f over a time period 7', then it will
collect a total of N = fT data points separated by a time spacing At = 1/f. Storing all of the
experimental data may pose a challenge.® In Sec. 3.3 we will introduce a stacking procedure to
cut down on the amount of stored data while maintaining the same level of sensitivity, but for now
we will put this issue aside and assume that all the data is stored and analyzed. Combining (3.10),
(3.12), and (3.13), we find that

\/_Zo‘ﬂ/ fv, Avxcos[ ( 2)nAt+¢]], (3.14)

wheren € 0,1,..., N — 1 indexes the measurement at time ¢ = nAt, and for future convenience
we have defined
_ L 2 2
A= 4 L ga'y'meaxVBpDM . (315)

A is proportional to the terms that dictate the size of the axion signal in the experiment, and the
specific form here is peculiar to ABRACADABRA. We note that A caries the SI units of Wh?,
which conveniently makes it dimensionless in natural units.

To pick the axion signal out of this time-series data, given the signal is oscillating almost at a
specific frequency m,, plus small corrections coming from the velocity components, it is convenient

to instead consider the discrete Fourier transform of the data:

N-1

O =Y DN (3.16)

where now k£ € 0,1,..., N — 1. In practice it is more useful to work with the PSD of the magnetic
flux, given by

2
(At) 21& —i27kn/N
Sk o= L |B]* = Z Z ajy/ f(vj)Avcos [wjnAt + ¢;le . 3.17)
n=0 g

To quantify this, if we take the realistic values of f = 100 MHz and T = 1 year, this amounts to almost 13 PB of
data.
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Note that in the second equality we defined w; = m, (1 + UJQ- / 2). For the moment, it is helpful
to rewrite the PSD as a function of the angular frequency w, which we can do by noting that
k=wTl/(21) = wAtN/(27), giving

N-1
Z ot/ %At Z cos [winAt + ¢;] e At
J 0

2

Sea(w) = A (3.18)

n=

Our experimental resolution to frequency differences is dictated by the time the experiment is
run for, specifically Af = 1/T. Then, given the definition of w;, for large enough 7" we have
approximately 1/7" ~ m,v;Av/(27), and so

N-1
) == UJ mav] e e WAV Z cos [wnAt + ¢;] e iwnat

In a realistic experimental run, 7" will usually be much larger than any other time scale in the

2

Soa(w (3.19)

problem considered so far. Exceptions to this occur when there are ultra-coherent features in the
dark matter distribution, which we discuss in detail in Sec. 3.5. Putting the exceptions aside for
now, we can approximate 7' — oo, which means we can also treat Av — dv, At — dt, and

replace the sum over j with an integral over v as follows:

2

/dv « Mdt NZI cos [wyndt + ¢,] e~ (3.20)
v 2ﬂ' v v .

Sq,cp (w) ~ A

Note in the above result we have a subscript v on «,, and ¢,,, indicating that for every value of v in
the integral we have a different random draw of these numbers.
At this point, to make further progress we focus specifically on the sum over n in the second

line above. In detail,
N-1

dt Z cos [wyndt + ¢,] e~

n=0

dt{ iy l—exp[[zng )) ]]
2 1 —exp|i(w,y
—exp [—i (w, + w) T }
Wy + w) dt] (32D
w)T]

n |z (w, —
L(wy — w)

—

+e*w“
Z

—

-
1 —exp|[—
i (Bv+(wo—w)T/2) {s1
sin

22

1
+€_Z(2¢u+va) |:§ w’l) + CL) Tj|
H(wy +w) ’
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Figure 3.1: (Left) A comparison between the mean of 500 Monte Carlo simulations of a signal
only PSD dataset (blue) and the analytic expectation given in (3.26) (black). The inset shows the
distribution of the 500 simulated Sg¢ versus the predicted exponential distribution, as in (3.24),
at the frequency where the signal distribution is maximized, w/m, = 1.003. This example was
generated assuming the unphysical but illustrative parameters A = 1 Wb?, m, = 27 Hz, and
Vg = Uobs = 220,000 km/s. Importantly the simulations were generated by constructing the full
axion field starting from (3.3), and so the agreement between theory and Monte Carlo is a non-
trivial confirmation of the framework. (Right) As on the left, but with Gaussian distributed white
noise added into the time-series data with variance A\p/At, and taking A\p = 500 Wh? Hz .
Again we see the theory prediction in good agreement with the average data, whilst at an individual
frequency point the simulated data is exponentially distributed. See text for details.

where in the final step we expanded using (w, +w)dt < 1. Then, taking the (w, +w)T — oo limit
we can use the result that lim, o sin(z/e)/x = wd(x) to rewrite the terms in angled brackets in
terms of Dirac-9 functions which we can use to perform the integral over speeds. There are terms
associated with both positive and negative frequencies, but as we have w, > 0 we only keep the

positive result, and so conclude:

N-1
dt Z cos [wyndt + ¢,] e” i Wei(‘z’“’L(“”_“)T/Q)(S(wU —w). (3.22)

n=0

With the above arguments we may perform the velocity integral in (3.20), obtaining

Spa(w) = A moﬂ : (3.23)

2mav v=1/2w/Mq—2

Note that w ~ m,, up to corrections that are O(vz); where the distinction is not important, we write
m, instead of w, as in the denominator above. Further, in (3.23) we have dropped the subscript v

from q, as it is just a single Rayleigh distributed number as given in (3.8). Since a? is exponentially
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distributed, this then implies that the PSD is also exponentially distributed:

L —Sual)/@)

Aw)
AMw) = (Spe(w)) = A

P [Spe(w)] =
7Tf(2}) (3.24)

mqv v=4/2w/mg—2

Recall that A, which is effectively dictating the strength of the axion signal, has units of Wb?, so

Spe carries units Wh? /Hz, or in natural units eVl

In any real experiment there will also be background sources of noise in the dataset. For most
sources we can think of this as mean zero Gaussian distributed noise in the time domain.” For
example, in ABRACADABRA the main background sources are expected to be noise within the
SQUID for the broadband configuration or thermal noise in the resonant circuit [71]. Both of these
are well described by normally-distributed noise sources, and so they fall under this class of back-
grounds. In ADMX the dominant background is also thermal noise, and the Gaussian nature of
this source has been discussed in Refs. [188, 189]; indeed, in [189] they noted the power due to
thermal noise in the experiment should be exponentially distributed. It is likely that most other
noise sources will also be normally distributed. However, it may well be possible that certain ax-
ion direct detection experiments do suffer from background sources that are not well described by
Gaussian noise. In such a case the framework we present in this work will not go through directly,
but the same logic can be used to derive a new likelihood that accounts for the specific back-
ground distribution. Restricting ourselves to the Gaussian approximation, then, as demonstrated
in App. B.1, if we have a series of Gaussian distributed backgrounds of variance \5/At, where
1 indexes the various backgrounds, then the PSD formed from the combinations of all these will

again be exponentially distributed with mean
(Sa(w)) =Ap =D Ay (3.25)

It is important to note that in general Az will be a function of w, reflecting an underlying time
variation in the backgrounds.

Given that the individual signal and background only cases are exponentially distributed, it is
perhaps not surprising that the combined signal plus background is exponentially distributed also.
This fact is demonstrated in App. B.1, however we point out here that the correct way to think

about this is that the two are combined at the level of the time-series data, not at the level of the

7If the mean of the background distribution is non-zero, then this will only impact the k¥ = 0 mode of the PSD. For
reasons discussed in App. B.1, we will not include this mode in our likelihood, and as such we are only sensitive to
the variance of the distributions, and so can choose them to have mean zero without loss of generality.
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PSD. To highlight this, the sum of two exponential distributions is not another exponential. Taking
this fact, we arrive at the result that the full PSD will be exponentially distributed, with mean

AMw) = A /) +Ap. (3.26)

mqv v=1/2w/Mmq—2
As noted above, in the broadband mode noise within the SQUID magnetometer is expected to
be the dominant source of background for ABRACADABRA, making it a useful example to keep

in mind. At high frequencies this noise source becomes frequency independent, with magnitude:
VA ~ 107%®,/vHz, (3.27)

which is written in terms of the flux quantum, ®y = h/(2¢) ~ 2.1 x 107'°> Wb. As such the typical

value for the background is
A~ 4.4x 1072 Wh?Hz ! = 1.6 x 10°eV L. (3.28)

With this example in mind, we will often assume we have a frequency independent background
in our analysis to simplify results, but the formalism can in general account for an arbitrary de-
pendence. Despite this we note that in a real DC SQUID, there will also be a contribution to the
noise scaling as 1/ f, that should dominate below ~ 50 Hz. We refer to [71] for a more detailed
discussion of these backgrounds.

To demonstrate how mock datasets compare to the theoretical expectations derived above, in
Fig. 3.1 we show the comparison directly, with (right) and without (left) background noise. In both
cases we show the PSD as a function of frequency averaged over 500 realization of the simulated
data. In the main figures we see that the frequency dependence of the mean of the signal only
and signal plus background distributions, constructed from the simulations, are well described by
the analytic relation in (3.26). The insets demonstrate that at a given frequency the simulated
data is exponentially distributed in both cases, as predicted by (3.24). The agreement is a non-
trivial check of the validity of the framework. We emphasize that the Monte Carlo simulations are
constructed in the time domain using (3.3) in the signal case and by drawing mean zero Gaussian
noise with variance A\p/At for the background at each time step. To generate these results we
picked numerically convenient rather than physically realistic values. Specifically we used A = 1
Wb?, m, = 27 Hz, A\ = 500 Wb? Hz"!, and we assumed the signal was drawn from an SHM
as given in (3.9), but with vy = v,ps = 220,000 km/s instead of the physical values. However, we
emphasize that these values were chosen for presentation purposes only and that we have explicitly

verified that the formalism above is also valid for more realistic signal and background parameters.
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Knowing how the data is distributed means we can now write down a likelihood function to
constrain a signal and background model M, with model parameters 6, for a given dataset d. The
dataset is given, in the case of ABRACADABRA, by N measurements of the magnetic flux in the
SQUID at time intervals A¢. This data is then converted into a PSD distribution S¥, measured
at N frequencies given by w = 2wk/T, for k € 0,1,..., N — 1. The likelihood function for the
model M then takes the form®

N-1

1

Ldm.0) =[] ™ 0)€—s§>¢/xk<e> : (3.29)
k=1

where we have used an index k to denote quantities evaluated at a frequency w = 27k/T. Note
that the @ completely specify the model expectation given in (3.26). Specifically, € includes pa-
rameters controlling the background contribution in Ag, the DM halo velocity distribution f(v),
and the axion coupling ¢,,~ that appears in A. We have boxed this expression to emphasize its out-
sized importance within the context of this work. All results subsequently derived will represent
particular evaluations of the likelihood (or ratios of the likelihood) under assumptions about the
experimental sensitivity parameter A or the local DM velocity distribution f(v). In the following
section, we will show how to use this likelihood to set a limit on or claim a discovery of the axion,
as well as constrain properties of the axion velocity distribution in the event of a detection. First,

however, we describe how the formalism above is modified for a resonant readout.

3.2.3 Coupling to a Resonant Experiment

The discussion above was premised upon a broadband experimental set up. The broadband circuit
has the advantage of being able to search across a broad range of axion masses with the same
dataset. A common alternative is the resonant framework, where the resonant frequency is tuned
to the axion mass under consideration before reading out the signal [190]. Resonant experiments
provide increased sensitivity at the frequencies under consideration. The resonators may include
physical resonators, such as that used by the ADMX experiment, or resonant circuits as used, for
example, in Ref. [147].

In this section we demonstrate how the framework above is modified in these cases, and im-

portantly will find that the same likelihood function applies, with a simple modification to the

8The omission of k& = 0 from the likelihood is deliberate. As described in App. B.1, the background is in fact
not exponentially distributed for this value. In addition the signal cannot contribute to the £k = 0 mode, as this would
correspond to probing the velocity distribution at an imaginary value. As such the k£ = 0 or DC mode is only probing
a constant contribution to the background, which we can always simply set to be zero and neglected, implying that we
lose no sensitivity by simply excluding this case. Moreover, in practice it is likely only necessary to include k£ modes
corresponding to frequencies in the vicinity of the mass under question.

47



expected PSD given in (3.26). As a consequence, this will show that the various applications of
the likelihood framework that we demonstrate throughout the rest of this work are applicable to
resonant experiments, even though our examples will generally be couched in the language of a
broadband framework for simplicity.

To avoid the discussion becoming too abstract, we will again work with the concrete set up of
ABRACADABRA, this time in the resonant mode. We assume, for simplicity, a simple resonant
circuit, where the pickup loop is connected to an RLC circuit that is inductively coupled to the
SQUID, though more complicated circuits, such as feedback damping circuits [111, 191, 192],
may be preferable in practice [71]. However, the analysis formalism described below should apply
to any resonant circuit where thermal noise is the dominant noise source.

Our starting point is the magnetic flux due to the axion through the pickup loop, ®piciup, as
given in (3.12). Instead of directly inductively coupling the pickup loop to the SQUID, this time
we run the pickup loop through an RLC circuit with inductance L;, resonant frequency wp, and
quality factor Q. The strategy is to vary wy over time in order to probe a range of axion masses;
we will discuss a strategy for how to choose the time variation later in this work. Note that the
quality factor also determines the bandwidth of the circuit, and so choosing a () corresponding
to the width of the signal or better is preferable, though we leave a detailed optimization of the
resonant strategy to future work. If we inductively couple this circuit directly to the SQUID, then

the flux received will be

v LL;
(I)SQUID - aQO V T(ma>L—T(Dpickup ) (330)

where we ignore constant phase shifts. Note that we have defined the total inductance of the pickup

loop and the RLC circuit as Ly = L; + L, and also a transfer function for the RLC circuit:

1
(1 - wi/w?)* Qf + wi/w?

T (w) (3.31)

Following through the same steps as in the broadband case, we find that now our expected signal

PSD is 1)
TT\v
)\res — Ares 2
(@) = A™QiT () 22
res LLl
A =2 L% gsziaxVBQPDM ,

(3.32)

where again velocities are evaluated at v = \/m . Comparing the expected resonant signal
PSD, \"*(w), with the expected broadband result, A(w) given in (3.24), we see that other than the
additional frequency dependence in 7 (w) the two only differ in experimental prefactors.

In the resonant case we also need to rethink what constitutes the dominant background source.

In particular, the addition of a resistor in the RLC circuit will generate a new source of background:
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Johnson—-Nyquist or thermal noise. This background is again expected to be normally distributed,

with a variance A'5°™ /At and

LL wWo
Ly

AL () = 20

QoT (w), (3.33)

where 7' is in this context the temperature of the circuit. At the resonance frequency, for typical
values of the parameters of interest, it may be verified that thermal noise dominates the intrinsic
noise in the SQUID [71, 111]. Accordingly, we neglect the background from the SQUID noise,

and our full resonant model prediction is given by:’

)\res(w) AresQ f(v) :\%wrm(w) QOT(W) ’

a

LL wWo
LT w2

Atherm (1)) = 2¢ (3.34)
As we will see below, the fact that the transfer function is common to both the signal and back-
ground will mean its dependence vanishes when computing our experimental sensitivity. This
point will be demonstrated in the next section.

Finally we note in passing several limitations with the simple configuration described above.
Firstly above we envisioned using a DC SQUID, which should be functional for the frequency
range 100 Hz to ~10 MHz. At higher frequencies, the SQUID noise may begin to dominate over
the thermal noise; moving to an AC SQUID can stave off this transition to 1 GHz [111]. Beyond
this an entirely different set up would be required to read out the flux through the pickup loop, one
example being provided by a parametric amplifier. We refer to [111] for a detailed discussion of
each of these regimes. Importantly, while more complicated circuits may lead to more complicated
transfer functions in (3.31), so long as the frequency-dependent factors are common to both the
signal and the noise, the analysis formalism described below goes through unchanged. Going
forward, we assume that whenever discussing the resonant readout technique that we are in a

thermal background dominated regime so the form of the transfer function is irrelevant.

3.3 Experimental Sensitivity

Armed with the likelihood given in (3.29), we will now determine the experimental sensitivity we

can achieve.'” Below we will firstly define a series of useful statistics that will be the basic tools

°In practice, we can often approximate L = L; for a resonant configuration.

10T this and subsequent sections, we will predominantly use a frequentist statistical framework when applying the
likelihood. Nevertheless, we emphasize that our likelihood can be applied equally well within a Bayesian setting. In
particular, in Sec. 3.5, we will use the Bayesian posterior as a tool for analyzing data in the presence of a putative
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in our analysis. After this we will then use an Asimov based analysis, following [172], to study
the expected background and signal distributions. We then introduce a procedure for stacking
the data, which will reduce the computational demands associated with analyzing the enormous
datasets axion direct detection experiments could potentially collect. Following on from this, we
will show how to use the Asimov framework to estimate our expected upper limits and discovery
threshold, fully accounting for the look elsewhere effect. Finally we will contrast our method to
the simple S/N = 1 approach commonly used in the literature. An alternative analysis strategy to
the one described in this section is to instead consider the average power in some frequency range
near the expected signal location. Such an approach is less sensitive to the one presented here, and
so we have relegated its discussion to App. B.2.

The starting point for our analysis is the likelihood £(d| M, 8). To claim a discovery or set lim-
its on the axion, we need to know properties of the likelihood as a function of the coupling strength,
which is effectively given by A, and the axion mass m,. As such we separate out the parameters 0
into those of interest, { A, m, }, and those describing the background, 85: 8 = {A, m,,05}. Note
that for now we fix the halo velocity distribution, though in the next two sections we generalize
the model parameters to include ones that describe the DM velocity distribution. With this distinc-
tion, we can now set up our basic frequentist tool for testing the axion model, based on the profile
likelihood: A

O(mg, A) =2[In L(d|M, {A,m,,05})

. (3.35)
—InL(d|Mp,05)],

where in each of these terms 6 denotes the values of the background parameters that maximize the
likelihood for that dataset and model. Note in the second line we have defined the background-only
model M g that has A = 0 and model parameters 0.

In terms of this basic object we can now define two useful quantities. The first of these is a test

statistic used for setting upper limits on A and hence g, :

~

O(mg, A) — O(mg, A) A>
A<

A
- 3.36
0 A, (-39)

Q(may A) = {
where A is the value of A that results in the maximum value of © (mg, A) at fixed m,. The rationale
for setting this test statistic to zero for A < A is that when setting upper limits, the best we can

hope to do is constrain a parameter corresponding to one stronger than the best fit value. Observe
that when A > fl, we have

q(ma, A > A) = 2[In L(dM, {A, ma, 05} —In L(d|M, {A, m,,05}], (3.37)

signal.
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and so this corresponds to the degradation in the likelihood as we increase A beyond the best
fit point. According to Wilks’ theorem, the statistic ¢, at fixed m,, is asymptotically a half-chi-
squared distributed with one degree of freedom. It is a half and not full chi-squared distribution, as
from the definition in (3.36), ¢ vanished by definition for A < A. This implies, in particular, that
for a given m,, the 95% limit on A will be set when ¢(m,, Ags%) ~ —2.71. Note also that when
setting limits we allow A to float negative.

The second object of interest is a test statistic for discovery, denoted TS, which quantifies by
how much a model with an axion of a given mass provides a better fit to the data than one without
it. This is defined as:

TS(myg) = O(my, A). (3.38)
Below we will use the TS to quantify the 3 and 5o discovery thresholds, giving an accounting for
the look elsewhere effect. But the intuition is that the larger the T'S the more preferred the axion.

Importantly both ¢ and TS are defined in terms of ©, implying that through an understanding
of this object we can determine everything about our two test statistics. As this will be the central
object of interest, we will write out its form explicitly. Combining (3.35) with our form of the

likelihood in (3.29), we arrive at:
N-1
1 1 Ak
0 A) =2 b ~——— ) —In—=]| . 3.39
@(m ) > ; |:S<I>‘1> <>\B Ak) n AB} ( )

Recall that here S, represents the data, whilst A, and \p represent the signal plus background and
background only contributions respectively. We also reiterate that only )\ is a function of m,, and
A, and further that A\p can also be k dependent if the background varies with frequency. Moreover,
we stress that all £ modes need not be included in (3.39) in practice, but rather only the £ modes

corresponding to frequencies in the vicinity of m,,.

3.3.1 Asymptotic Distribution of the Test Statistics

The object defined in (3.35) can be used immediately to quantify the preference for an axion signal
in an experimental dataset, through the two test statistics defined above. Before looking at any
data, however, it is often useful to know what the expected sensitivity is of an experiment using
these statistics. Traditionally this is obtained via Monte Carlo simulations of the experiment, and
through many realizations the expected distribution of ¢ and TS can be constructed. The problem
is also analytically tractable, however, using the method of the Asimov dataset [172], which allows
us to determine the asymptotic properties of the test statistics over many realization of the data. In

this subsection we will exploit the Asimov approach to derive the asymptotic distribution of ©, and
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then in subsequent sections we use this formalism to determine the expected limit and discovery
potential of a prospective experiment.

The key step in the Asimov approach for our purposes is to take the dataset to be equal to the
mean predictions of the model under question, neglecting statistical fluctuations. Consider the
case where we have a dataset that contains a signal of the axion with signal strength A;, where the

subscript ¢ indicates this is the true value. In this case, the Asimov dataset is given by:

Sé:),ﬁsimov = )\Z — Atﬂri(v) + )\Ba (340)

a

which is just (3.26) with A — A;. Note that this expression should be evaluated at v =

V4rk/(m,T) — 2, but here and below we leave the relation between v and & implicit. Now

using this Asimov dataset, © becomes (suppressing the dependence on m,,):
- 11 A
O(A) =2 M (— -] -t 3.41
=23 % (5 -5 ) -], 341

where © denotes the asymptotic form of ©. Importantly, one can check that this object is maxi-

mized exactly at A = A;; in detail,
max O(A) = O(A,). (3.42)

Now if we assume that the experiment has been run long enough that the width of frequency
bins is much smaller than the range over which )\, or g varies,'! then we can approximate the

sum over k modes as an integral over velocity, just as we did in Sec. 3.2:

(A) = LM /dvv KAt”f(”) +)\B)

T MLV
1 1
s (E A (@) (man) AB) G4
h (1+A”f(”> )} |
MLUAB

To further simplify the expression above, we note a signal will likely be much smaller than the
background in any individual bin, such that A7 f(v)/(mgv), Airf(v)/(mav) < Ap. Expanding
to leading order in A and A;, we then find

Note that in general we would expect the signal to at least have a spread set by the velocity dispersion of the SHM,
although in the presence of substructure the dispersion could be much smaller.
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2
O(A) ~ AT (At _ é) / %f i";) , (3.44)
B

where we have left Ap in the integral, as in general it will depend on frequency and hence velocity
according to w = mq(1 + v%/2). As before, we have boxed this equation due to its importance.
In particular, we see already the dependence of our test statistic for detection on the local velocity
distribution as it enters the integral in (3.44) that implies interesting results for axion direct detec-
tion. If we assume that the background is frequency independent, then this result tells us that the
experimental sensitivity to the axion coupling gflw scales as

1
g2~ ——— (Field), (3.45)

fooo dv LL°

with the DM velocity distribution. This should be contrasted with the rate at WIMP'? direct detec-
tion experiments, which scales with the mean inverse speed (see, for example, [193]). In particular,
the limit on the DM cross-section opp to scatter off ordinary matter, which generically scales with
the coupling g to ordinary matter as g2, scales with the velocity distribution as

1

ODD ™~ %5 . ) dvm
v

J

Umin

(Particle) , (3.46)

where vy, 1s the minimum speed required to cause the target nucleus in the detector to recoil at a
given recoil energy. This cut off scales with the inverse reduced mass of the WIMP nucleon system,
Umin X 1/p, so that for lighter DM particles the rate is particularly sensitive to the upper end of the
speed profile. In the axion case, the significance of an axion signal depends on an integral over the
full speed profile. Importantly, the quadratic scaling of the integrand with the speed distribution
implies that axion direct detection experiments are particularly sensitive to small scale structures
in the speed profile, such as those that can be induced by local DM substructure. This stands in
contrast to WIMP direct detection, where substructure is generally thought to only have a minimal
impact, see, e.g., [194].

We will explore the sensitivity of axion direct detection experiments to DM substructure in
Sec. 3.5, but for now we illustrate the difference between axion and WIMP experiments noted
above with a simple example. Suppose that there is a contribution to the local DM velocity dis-
tribution that can be modeled as a cold stream, with fy,.(v) = 1/dv for vy, < v < vy + dv and

zero otherwise. We assume that the stream width Jv < vy, where vy, is the stream boost speed

2Here, we use weakly interacting massive particle (WIMP) direct detection to simply refer to the direct detection
of massive DM particles at the ~MeV scale and above, even if the particle models are not directly related to the WIMP
paradigm.
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in the Earth frame. Then, then in the WIMP case we find opp ~ vy, where we have assumed
Usr > Umin. HOWever, in the axion case there is an extra enhancement for small stream widths such
that gg,w ~ V/vg0v. Note that this implies that as dv decreases we can probe smaller values of
Jay~ 10 the axion case, while conversely decreasing dv does not improve our sensitivity to opp in
the WIMP case.

Finally we note that if we repeated the analysis leading to (3.44) for the resonant case, we would

instead have arrived at

B 2AresT Ares 2
®re5<Ares) — QO ﬂ—_ (A;es — ) X /d—vﬂi, (3.47)

e 2 v (Atherm)2

which is essentially the same result but with the broadband quantities replaced with their appropri-
ate resonant counterparts. Importantly, note that the transfer function and its associated frequency
dependence has dropped out of this result because it involved a ratio of the signal to the back-
ground, both of which are linear in 7 (w). This justifies the claim that going forward our estimates
for the resonant case can be obtained straightforwardly from the broadband results provided we

make the substitutions:
A _) QOAI’QS ,

- (3.48)
Ap — AT

3.3.2 A Procedure for Stacking the Data

We would like a method to reduce the number of PSD components that need to be stored, with-
out sacrificing sensitivity, given that if we are sampling at a high rate, for example ~100 MHz
or higher, over an extended time, the amount of data to be stored and analyzed could become
substantial. As we will now show, stacking the PSD data provides exactly such a method."?

The central idea is to break the data up into N subintervals of duration AT = T'/ Ny, each with
AN = N/Nr PSD components.'* In each of these subintervals we calculate the PSD SM, where
now k only indexes the integers from 0 to AN — 1, and we have the new index ¢/ = 0,1,..., Np—1

that identifies the relevant subinterval. Using this data, our likelihood takes the form

Nr—1AN-1

k,l
L(d|0) = H H Ak e~ Sva/ () (3.49)

Importantly, we assume that the model prediction in each subinterval is identical, which we com-

13We thank Jon Ouellet for conversations related to this point.
“The choice of notation here is used to emphasize that for Ny > 1 we have AT < T and AN < N, but of
course neither quantity should ever be thought of as infinitesimal.
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ment on more below. With this assumption, it is natural to define a stacked PSD
skt (3.50)

The averaged PSD components will be distributed as the average of a sum of exponentially dis-

tributed random variables with mean A\, which is given by the Erlang distribution:

NT gk NT—l B
Ny ( <I><I>) e~ NTS§a/ M

P[She) = 3.51
[ @I)] (NT_ 1); )\éVT ( )
Using this stacked data, we can simplify (3.49) by removing the sum over /:
AN-1 1 B
£(d)) = e TS5/ M) 3.52
(dl6) g WL : (3.52)

where in this result we can already see the reduction in computational requirements as it only
involves a product over AN < N numbers, since the S, can be precomputed and updated as
more data comes in.

Our next task is to determine how this choice will impact our sensitivity, using the test statistics
defined in the previous subsections. It is sufficient to consider ©(m,, A), defined in (3.35) and
from which the other statistics of interest can be derived. Doing so, we can repeat the Asimov

analysis from the previous subsection to determine the asymptotic form of the stacked ©, given by

2
(:)stacked<A) == M (At - é) /@f(v) . (353)

me 2 v A

Yet as NyAT = T, the stacked and unstacked form of © are identical. This implies that our
stacking procedure, which for Ny > 1 dramatically reduces the required computation, has no
impact on our sensitivity to an axion signal.

There is, however, a catch. Stacking implies that we are only sensitive to frequency shifts of
size Af = 1/AT, which can be much larger than the shifts we were sensitive to in the full dataset,
where Af = 1/T <« 1/AT. This could mean, depending on the size of the frequency spacings,
that ultra-cold local DM substructure is no longer resolved, and therefore the enhancement it would
have given to the integral over velocity discussed above is lost. In this sense stacking can lead
to a degradation in sensitivity, and so choosing a stacking strategy should be done with careful
consideration of the features being searched for. To provide some intuition, if we are searching
for an axion at a mass corresponding to a frequency f and drawn from a velocity distribution

with dispersion vy, then the coherence time is ~ 1/(fvgveps). To be able to fully resolve the
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axion signal we would then want AT > 1/( fvgveps). For the SHM, and scanning in frequencies
from 100 MHz down to 100 Hz, the coherence time varies from 20 ms up to 5 hours. In such a
scenario, if data were collected for a year, many stacking procedures would be feasible. On the
other hand if searching for the signal from a cold stream with a dispersion of vy = 1 km/s, then
over the same frequency range the coherence time varies from 4 seconds up to 45 days. For the
lowest frequencies in this case, any stacking procedure would be sacrificing sensitivity to such cold
substructure. On the other hand, at the lowest frequencies high sampling rates are not necessary.
Thus, a hybrid approach may be preferable in practice, where the data is stacked in Fourier space at
high frequencies while at low frequencies the data is stacked in time (i.e. down-sampled) in order
to reduce the data size without sacrificing the sensitivity to cold substructure at any possible axion
mass.

Another relevant consideration is that due to the Earth’s acceleration, lab-frame frequencies
may shift throughout the day and year, which would invalidate our assumption that the model
predictions are identical between subintervals. The rotational speed of the Earth’s surface about
its axis is roughly 0.46 cos(d) km/s, where 0 is the latitude. This value is small enough that it
can safely neglected for any cold flow with a velocity dispersion greater than this. The rotation
of the Earth about the Sun, however, occurs at roughly 30 km/s and is thus harder to ignore when
searching for cold substructure, as we discuss later in this work. Annual and daily modulation can

lead to striking additional signatures, which we explore in detail in Sec. 3.5.

3.3.3 Expected Upper Limit

We are now in a position to write down the expected 95% limit on A. In the case of a limit, the
appropriate Asimov dataset to use is a background only distribution, so that A, = 0. Then by
combining our definition of the likelihood profile in (3.36) with our Asimov result in (3.44), we

arrive at the 95% limit where q(m,, Ags) = —2.71, given by

S Tr [ dvf(v)2]™"
= o [ [ IR) 354

Note that again the tilde indicates this is an Asimov, or median, quantity. This result is particularly

relevant as it can be interpreted for any experiment provided the definition of appropriate A and
Ap. For the particular example of ABRACADABRA we can insert the form of A given in (3.15),
yielding

s 2TV L [ Tr /@f@)?‘”‘*‘ (3.55)

ga -
7 aBraxVBA/PDM 2m, ) v A%
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One of the real powers of the Asimov analysis is that not only can we determine the median
expected limit, we can also derive analytically the expected size of fluctuations away from the
central value, without having to revert to Monte Carlo simulations. The details of this statistical
procedure are discussed in [172]. As we are constructing power-constrained 95% one-sided limits,

we obtain confidence intervals via
¢(Ma, Agsriane) = — (71[0.95] £ N)* (3.56)

where @ is the cumulative distribution function of the standard normal distribution (zero mean and
unit variance), and ®~! is the inverse of this (so @1 [0.95] ~ 1.64). Note that if we take N = 0,
then the above just reduces to q(m,, Ags) = —2.71, but this more general result contains the
information about the error bands in the expected limit. In this way, by replacing the 2.71 that

appears in (3.55) with the appropriate value for the No uncertainty band on the 95% limit, we can

~95%

construct the median and uncertainty bands on g,-*

analytically. For completeness, in App. B.3
we verify that the bands constructed in this manner agree with those generated using Monte Carlo
simulations. Finally, to be conservative we use power-constrained limits [195], which in practice

means we do not allow ourself to set a limit below our 10 uncertainty band on the upper limit.

3.3.4 Expected Discovery Reach

In order to find evidence for a signal, we need to understand the expected distribution of the TS
under the null hypothesis. The reason is that this distribution determines how likely the background
is to produce a given TS value, and hence what threshold TSy, We should set to establish the
existence of a signal at a given confidence level. Once we have such a threshold test statistic,
applying our Asimov results above to the case of discovery, we find we would be sensitive to

discover a signal with the following strength

1/4 —1/4
gthresh — Tstliresh V LP/L % T /@f(v)z / (357)
@y aBraxVBA/PDM R2m, ) v N, '

Locally, the significance in favor of the axion model is expected to be approximated by
VTS [172]; that is, a value TS = 25 corresponds to approximately 5o local significance. However,
when scanning over multiple independent mass points, the look elsewhere effect must be accounted
for in quoting values for the global rather than local significance. The look elsewhere effect may
be determined through Monte Carlo simulations. However, in this section we will derive an ana-
lytic approximation to T'Siyesn, Which accounts for the look elsewhere effect, and as we will show
provides an accurate representation to the output from such Monte Carlo studies. The result will be

a mapping between the desired global significance threshold and the value of T'Sy,eqn that should
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be taken, depending on the mass range scanned. We note that there are also other proposals in the
literature for approaching this problem; for a recent one see, e.g., [196].

Our starting point is to note that the asymptotic form of the survival function for the local TS
under the null hypothesis is given by

S[Tsthresh] =1-9 (\/ Tsthresh) ) (358)

where S[TS¢nresn] is the probability that the TS, under the null hypothesis, takes a value greater
than T'S¢yesn- This is derived explicitly in App. B.4 starting from the likelihood function, and it is
equivalent to the statement that the asymptotic local significance is given by v/TS. However in any
realistic experiment, we will look in a number of independent frequency windows corresponding
to different axion masses. To account for this we need to note that in any of these windows there
could be an upward fluctuation. To do so let us say that we look at /V,,,, independent mass points,
and we want to set the threshold test statistic, T'S¢p.esn, Such that the probability that the background
will not fake the signal in any bin is 1 — p. To relate these two quantities, if we assume that p is
small enough, we can write the probability that at least one of the TSs, from the set over all mass

points, is greater than TSy eqn as
p=1= (1= S[TSumrest]))"™ = Ny, S| TS hrest] - (3.59)

From here we can then substitute the survival function from (3.58), and expanding this out gives

2
TSthresh = |:(I)1 <1 - NLW>:| . (360)

Using this result, as soon as we know /V,,, we can determine T'S¢pesn @s it should be used in

thresh
ayy

elsewhere effect and set N,,,, = 1, then the 30 requirement is that p ~ 1.35 x 1073, yielding

our formula for g in (3.57). To give some intuition, in the case where we ignore the look
T'Stnresh = 9, as expected. Importantly, note that the p values here correspond to that for 1-sided
fluctuations [172].

In any realistic experiment, we expect N,,,, > 1. However, estimating the correct value for
N, 1s complicated by the fact that we may scan over a continuum of different possible mass
points in practice, though not all of the mass points have independent data. We expect a mass point
as frequency m, to extend over a frequency bandwidth ~m,v2, for the SHM. Thus, we expect to
be able to characterize a set of independent mass point by the relation

m® = mO (1 + avgvews)" | (3.61)

a
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where m, ~ is the first mass point, ¢ = 0, ..., N,,,, — 1, and « is a number order unity that should

be tuned to Monte Carlo simulations. Given the parameterization in (3.61), we may estimate the
number of mass points by relating m? with the minimum frequency fi;, and mia D with the

highest frequency fiax; solving for IV, in the limit /V,,, > 1 then gives

N,, ~ L g fmax (3.62)

& VpUobs f min

In Fig. 3.2 we compare the analytic prediction in (3.60), combined with (3.62), with the result of
2.5 million Monte Carlo simulations. From the ensemble of simulations, we are able to compute
the value of p for each value of TSysn. Note that in each simulation we scan for axion DM
over a frequency range fuax/fmin ~ 1.0007; setting vy = 220 km/s and veps = 232 km/s then
gives, through (3.62), N,,,. ~ 1.23 x 103/a. The analytic results are found to agree well with the
simulations for a &~ 3/4; this value may also be understood by thinking more carefully about the
extent of the SHM. Note that the real power of the analytic formalism is that once we have tuned
the relations in (3.60) and (3.62) to Monte Carlo, in order to find the appropriate value of o, we
may extrapolate to smaller values of p, where the number of Monte Carlo simulations required to
directly determine TSy,..sn would be intractable.

To give some more realistic examples, if we assume the experiments scans from 100 Hz to
100 MHz, using the SHM values we obtain N,,, ~ 3 X 107. This then increases the 30 (50)
threshold TS to 40.9 (57.5). To contrast if instead our significance was dominated by a stream with
dispersion roughly 20 km/s, then instead we would find N,,,, ~ 4 x 10°, and the 30 (50) threshold
TS becomes 50.3 (67.0).

3.3.5 Comparison with S/N =1

In the absence of a full likelihood framework, a common method employed for estimating sensitiv-
ity is obtained by setting the signal equal to the expected background, or S/N = 1. For example,
this approach was used in the original ABRACADABRA proposal [71] and also for the proposed
CASPEr experiment [58]. In this section we want to contrast this simple estimate to the output
from our full likelihood machinery.

Now, following these earlier references, in our notation the signal-to-noise ratio can be written

as

SIN = |®squin| (T7)"*/\/| A5, (3.63)

where 7 is the signal coherence time. This S/N oc T/* scaling occurs when the collection time
is longer than the coherence time. If T' < 7, instead the significance grows as S/N oc T2, as

demonstrated in [58]. In App. B.5 we demonstrate that this same scaling can also be seen directly
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Figure 3.2: A comparison between the look elsewhere effect improved survival function approx-
imate result derived between (3.60) and (3.62), and the equivalent values derived directly from
Monte Carlo simulations. The good agreement between the two, especially at large T'Sipiesn
demonstrates that our approximate result is useful for estimating how often the background can
fluctuate to fake the signal at a given confidence level. Note the values plotted here correspond to
signals varying from O to 40, for derived values of Ap given in (3.28) and 2.5 million Monte Carlo
simulations. We do not extend the plot up to the 5o value relevant for discovery, as this would
require roughly 100 times as many simulations. This statement in itself already demonstrated the
utility of our approximate analytic result.

from our likelihood.

In order to make a concrete comparison, we consider ABRACADABRA with the axion follow-
ing only the bulk velocity distribution. In this case, the coherence of the bulk halo, as discussed
above, will effectively ensure we always have 7' > 7, implying the signal grows as T%/4. To
simplify (3.63), firstly consider |®gquip|. Combining (3.13) and (3.12), we have:

o | L

’(I)SQUID| = = _ga'y'meaxVBma ‘a(t)‘ . (364)
2\ L,

For the purposes of determining the average axion field over a time 7' > 7, we can simply consider

the axion field in the zero velocity limit, where

2PDM |cos(mgt)| = = PO (3.65)

Mg Mg

la(t)] =
Note that since it is the PSD that is measured in practice, we calculate the average as
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V/]cos2(m,t)| = 1/v/2. The coherence time is determined by the kinetic energy 2m,v?, which
perturbs the axion frequency. Once the phase shift from this correction equals 7, the field will be

fully out of phase, so we take
T = _ , (3.66)
MaVoVobs
where again with the bulk halo in mind, we took values appropriate for the SHM. Finally, we
assume that we have a frequency independent background PSD ). Combining these results with

the threshold S/N = 1, we obtain a sensitivity estimate of

o 2\/ )\B\/ Lp/L (mavovobs)l/4
ga’Y’Y B aBmaxVB\/ PDM 2rT .

(3.67)

We want to contrast this estimate with the exact value we obtain from the analysis method
outlined in this section. For this purpose we take our result, but evaluated at some TS, which is
schematic—it can be 2.71 for the case of a 95% limit, or ~58 for a 50 discovery accounting for
the look elsewhere effect. If we assume f(v) follows the SHM and further take vops = v, then the

equivalent result is:

1/4
(64TS g vEr L VAsVL/L (mavg)1/4 (3.68)
gll"/’V N erf [\/5] aBmaXVB\/ PDM 2n’T '

Note that the formula above is equivalent to the statement that

S/N ~ 1.8 TSL/* (3.69)

req °

For example, the 95% expected upper limit would require S/N = 2.31, whilst a 5o discovery
accounting for the look elsewhere effect assuming the SHM, requires S/N = 4.97. We will see
in the next section that the comparisons are similar for a resonant experiment also. In general the
various thresholds are achieved with a larger signal than the naive S/N = 1 suggests. Nonetheless,
the standard estimate is not a terrible approximation to the true results, especially considering that
S ~ ggw. We emphasize, however, that there is a lot more that can be extracted from having the

full likelihood framework, which we turn to in the subsequent sections.

3.4 Application to the Bulk Halo

In this section we apply the formalism developed so far to ABRACADABRA and ADMX. For
this purpose we take a simple concrete example, where f(v) describes only the bulk halo, which

we further assume follows the SHM as defined in (3.9). Additionally we assume that over the
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frequency band of the signal,'® the mean of the background distribution in frequency space is ap-
proximately frequency independent. These assumptions imply that the integral appearing in (3.55)

and (3.57) can be evaluated exactly:

/d_vf(v)2 _ert [ﬂvobs/vo] (3.70)

=
UG \/27w0v0bs/\23

with v Ap ~ 1076®,/ V/Hz as given in (3.27). In the following subsections, we will demonstrate
explicitly how to construct projected limits and detection sensitivities, under the assumption of
the SHM velocity distribution, and we will show in the event of a detection the parameters of the
SHM may be determined using the likelihood framework. We will extend this framework to more
realistic f(v), including DM substructure, in the next section.
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Figure 3.3: (Left) A comparison of the projected sensitivities for a hypothetical version of the
ABRACADABRA (ABRA) experiment [71], with inner toroidal radius £ = 0.85 m, an outer
toroidal radius double this value, and a height A = 4 R. A maximum magnetic field of 10 T
is assumed, along with an interrogation time of 1 year. (Right) An equivalent comparison of
projections for a future ADMX experiment. Here we take a total run time of 5 years, a volume
of 500 L, quality factor of 10°, magnetic field of 7 T, and a system temperature of 148 mK. In

both panels the exact sensitivities are contrasted with an estimate obtained from the signal-to-noise
ratio, S/N = 1.

3.4.1 Sensitivity

In Fig. 3.3 we illustrate the formalism introduced in Sec. 3.3 for hypothetical future versions of the
ABRACADABRA and ADMX experiments. To be specific, for ABRACADABRA we assumed

5By the frequency band we simply mean the range of frequencies over which the signal will be significant, which
for the SHM is approximately [mq, m4 (1 4+ vovobs)]-
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that the radius of the pickup loop is identical to the inner radius of the torus, R, and also equal
to the width of the torus, so that the total radius out to the outer edge of the toroid is 2R. For
concreteness, we took R = (.85 m and then set the height of the torus to be h = 4 R. For
the remaining parameters we generally follow [71], taking o* = 0.5, pickup-loop inductance
L, = wR?/h, SQUID inductance L = 1 nH, and local DM density ppy = 0.4 GeV/cm?®. In
the broadband mode we assume a flat spectrum of SQUID noise of /A5 = 1076®, / vHz. In the
resonant mode, we take a temperature of 100 mK and @ = 10° for the RLC circuit. Note that we
cut off our projections when the Compton wavelength of the axion is equal to the inner radius of
the detector. The reason for this is that at high frequencies the magnetoquasistatic approximation
used in the original analysis of [71], which we follow, breaks down. ABRACADABRA is still
expected to set limits in this regime, albeit weaker, however in the absence of a detailed treatment
we leave this region out. '

For ADMX, we use the projected values recently presented in [197], which updated the earlier
projections from [107,198]. We take the volume V' = 500 L, quality factor Q = 10°, magnetic field
B = 7T, and system temperature 75 = 148 mK. So far, we have not described how our analysis
framework is modified for the case of ADMX. Nevertheless, it is again a simple modification of
the framework presented in Sec. 3.2. Starting from the power the axion field and thermal noise
sources generate in the ADMX cavity, which is described in detail in a number of references, see
e.g.,[151,157,183,188,199,200], we find

ADMX _ 2
A —Jayy

PO B2V Gy
Mg (3.71)
NADMX _po

where Cyy19 = 0.692 is the cavity form factor for the TMg;o mode, which dominates for the ADMX
configuration. In terms of these quantities, the mean PSD is given by

MgV

)\ADMX(w) _ (AADMX mf(v) 4 AgDMX) % TADMX(w) ’

v=4/2w/Mmaq—2

where TAPMX () is the transfer function for the ADMX resonant cavity. The transfer function has
support over a frequency interval of width ~wQ ™!, where wy is the resonant frequency, in analogy
to (3.31). However, the exact form of this transfer function is not important for our purposes, since
it is common to the noise and signal contributions. In addition to computing the sensitivity of
ADMX using our likelihood framework, we also derive an S/N = 1 estimate for the sensitivity

from the Dicke radiometer equation [170].

16Preliminary simulations indicate that good sensitivity is likely maintained to somewhat higher frequency values.
We thank Kevin Zhou for these preliminary results.
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In Fig. 3.3, the dashed curves represents the sensitivity for a 5o discovery, using the formalism
derived in Sec. 3.3.4, including the look elsewhere effect.'” We also show the median expected
95% limit, as well as the 1 and 20 bands on the expectations for these quantities, derived using the
procedure described in Sec. 3.3.3. We reiterate that we present power-constrained limits [195], so
that we do not allow ourselves to set limits stronger than the expected 10 downward fluctuation. In
addition we have also added the naive S/N = 1 estimated sensitivity line for the broadband mode,
as given in (3.67). As shown in Sec. 3.3.5, the 95% limit and detection threshold differ only from
the naive estimate by factors of order unity. The figure also includes the theoretically motivated
region for the QCD axion in orange.

For the resonant results shown in Fig. 3.3, we adjusted the scanning strategy such that the
mean limit under the null hypothesis is parallel to the QCD line in the ¢,,, — m, plane. For
ABRACADABRA, we chose a minimum mass m, = 2.8 x 10~® eV and a maximum mass m, =
2.3 x 1077 eV, and the total number of bins scanned in the resonant search was 1.3 x 10°. A
total scanning time of 1 year was used. The lowest-frequency bin was scanned for 7' = 704 s,
while the highest-frequency bin was scanned for 7' = 0.0175 s; the amount of time spent at the
™ mass scales as T' o< (m!)~°. Note that we have not considered the possibility of incorporating
an additional broadband readout in the resonant scan to increase the sensitivity, though such an
approach may be feasible. For ADMX, we instead scanned between masses of 1.0 x 1075 and
20.1 x 1079 eV, using a total of 1.8 x 10° mass bins. Here a total scanning time of 5 years was
broken up as follows: the smallest and largest masses were scanned for 268 and 13.5 s, and now
the time spent at the i mass scales as T" o< (m?)~L.

To simulate what an actual limit would look like as derived from real data, we generate Monte
Carlo data for the mock broadband ABRACADABRA experimental setup under the assumption
that the axion explains all of DM with m, = 1078 eV and g,,, = 2.21 x 1071GeV~"'. Fig. 3.4
shows the resulting limit in the vicinity of the true mass; the region has been magnified so that
the bin to bin fluctuations can be seen. The figure shows that in general the limit moves around
between the expected bands, however right at the center, at the location of the true mass, the limit

weakens considerably.

3.4.2 Parameter Estimation

In this section, we show how to estimate the DM coupling to photons and aspects of the DM phase-

space distribution in the event of a detection or a detection candidate. This is done in practice by

17We caution that in the resonant case, looking for upwards fluctuations in excess of the 5o look elsewhere effect
enhanced detection thresholds is unlikely to be the optimal discovery strategy. Instead, one could, for example, further
interrogate masses where a 20 upward fluctuation is observed. For example, ADMX implements exactly such a
strategy, as described in [130]. We make no attempt to determine the ideal resonant discovery strategy in this work.
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Figure 3.4: An actual limit obtained from a single Monte Carlo simulation, with the broadband
readout, compared to the various expectations for the broadband ABRACADABRA framework
used in Fig. 3.3. The data was simulated with an injected signal corresponding to m, = 1078 eV
and g,,, = 2.21x 1071 GeV~!, and indeed we can see that right near the frequency corresponding
to the axion mass, we are unable to exclude the corresponding signal strength.

scanning over the likelihood function with the relevant degrees of freedom given to the parameters
of interest. In this section, we show how to anticipate the uncertainties on the parameter estimates
using the Asimov framework. We proceed in an analogous fashion to previous sections, where
we studied the asymptotic form of the background only distribution; in this section, we study the
asymptotic form of the likelihood in the presence of a signal.

As a starting point, consider estimating the signal strength A from a dataset drawn from a
distribution where the true value is A;. Note that we use A rather than g, only to simplify the
expressions; the extension to the actual parameter of interest is straightforward. Recall we have
actually already shown in the previous section that the asymptotic form of © given in (3.44) has the
key property that it is maximized at the correct value of the signal strength, A;.'> We can determine

the uncertainty on the estimated A from the curvature around the maximum. In detail,

2
73 = 3R = 5 [ L) 3.72)

2 )
2mg ) v A

where o0 4 is the expected uncertainty on the measurement. Using the SHM velocity distribution,

'8Recall we assumed A7 f(v)/(mqv) < Ap in deriving that expression.
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this simplifies to

= . 7
T/ erf [\/ﬁvobs/vo} VTS ©73)

From this we can see that, as expected, the uncertainty on the signal strength increases with the

\/ 2\/§ma AQB VoVobs At
op =

background, decreases with a longer experimental run time, and scales inversely proportional to
the square root of the TS for detection. The last point is important because it says that the central
value A, is /TS standard deviations away from zero, which matches our interpretation of /TS as
the significance.

We can readily extend this strategy to the estimation of other signal parameters. For example,
we can use this to estimate the best fit SHM parameters, vy and v,,s, and their associated uncer-
tainties. Let us denote by f;(v) = fsum(v|vf, vl,,) the speed distribution given by the true SHM
parameters, and then f(v) = fsam(v|vo, V%, ,) represents the distribution for some arbitrary value

of vy. To repeat the Asimov analysis, we now use the dataset and model predictions given by

mfu(v) + Ap

mev
* (3.74)
nf0)

a

k,Asimov __ \t __
GhAsimov _ \t _ 4,

)\k :At

respectively. Then, through the same process as above we arrive at

O(vy) = A?Tﬂ/@ﬂ”) (ft(v) - M) . (3.75)

me vy 2

Again this asymptotic expression satisfies the central Asimov requirement that

max O(vg) = O(vf). (3.76)

vo

Beyond this, however, we can again estimate the uncertainty on the best fit velocity dispersion:

_ 1,5~
Uvoz = _5830@(?]0”@0:’06 =

ATz / v (Ou f(0)ly—t)’ (3.77)

2 Y
2m, v g

so that if we assume \p is independent of frequency, we have

-1/2
t t t2 t2 —20t2 /yt2 t
Yo (3 Uobs (9U0 B 4vobs> € obs/ U0 ) ~ 1.02 Vo

7o = VTS \ 4 2mof erf [v/20!, /vb] VTS

Above, we have taken the SHM values for the approximate result. Applying the same strategy for

Uobss We would find the maximum is again obtained at the true value, with the uncertainty now
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given by

W (| i e g
Tvopes = — ~ 1. :
= VTS Vervherf [V2ul, /] VTS

From these three results for parameter estimation using our likelihood we can see that in general
if we are estimating a parameter «, the estimated mean value will be 1, = a4, and the uncertainty

1/2

tends to scale as o, ~ TS™"/“. Thus exactly as expected, the more significant the detection of ax-

ion, or specifically the larger the TS, the greater precision with which we can estimate parameters.

3.5 Impact of a Realistic and Time-Varying DM Distribution

In the previous sections, we have developed a framework for the analysis of a signal sourced by
axion DM drawn from the SHM distribution fspn(v|vg, vens). However, this neglects a number
of effects that modify the DM speed distribution; in particular: annual modulation, gravitational
focusing, and the possible presence of local velocity substructure. As we have verified by Monte
Carlo simulations, the exclusion of these features from our analysis has a negligible effect on
our ability to successfully constrain or discover an axion signal in our data, even when features
excluded from the analysis are included in the data sets. Consequently, the framework of Sec. 3.4
is sufficient for the first stage of the data analysis. Nonetheless, since we do expect these effects to
be manifest in a hypothetically discovered signal, they present opportunities to gain sharper insight
on the local DM distribution. Moreover, because annual modulation and gravitational focusing
result in distinct signatures expected to be present only in the presence of a genuine axion signal,
the identification of these features would further strengthen any candidate detection. In addition,
if we are within a cold stream or debris flow, a significant enhancement to the signal is possible.
In this section, we specify the details of annual modulation, gravitational focusing, and velocity
substructure and their inclusion in the DM speed distribution.

Because the signatures of annual modulation, gravitational focusing, and velocity substructure
are necessarily time-dependent, we are forced to promote our likelihood to incorporate variation in
time." To do so, we will make use of the stacking procedure described in Sec. 3.3. We assume that
the full dataset is broken into N subintervals of duration AT" = T'/Nr containing AN = N/Nyp
PSD measurements. Now, however, we will assume that AT is sufficiently small that the speed

distribution does not change appreciably within a given interval. As the distribution will change

9Cold velocity substructure is more subject to annual and daily modulation, which is why these effects are time-
dependent in the Earth frame even if they are not in the Solar frame.
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over the full collection time 7', we have a different model prediction in each time interval given by:

wf(v,ty)

MgV

Aeg = A + A5, (3.78)

which leads to the following modified likelihood

Nr—1AN-1

L£(d|6) = H H —Sgp/Me,e(8) (3.79)

This is the form of the likelihood we will use throughout this section. Note that the ¢ dependence
on the model prediction invalidates the stacking analysis performed in Sec. 3.3, though the data
may still be stacked over time intervals that are sufficiently smaller than a year (day) for annual

(daily) modulation.

3.5.1 Halo Annual Modulation

Before studying how annual modulation impacts the expected axion signal, we first review how
it modifies the DM speed distribution.?’ Our starting point for this is the SHM distribution given
in (3.9). Throughout the year the detector’s speed in the Galactic halo frame, v, 1s expected
to oscillate as the Earth orbits the Sun. In the lab frame, this results in an effectively time-
dependent halo distribution fgy(v,t). All of the time dependence, neglecting that from grav-
itational focusing, which will be dealt with separately, can be accounted for by upgrading the
relative detector-halo speed to a time-dependent parameter v,s(t). To determine this speed, first
note that vs(t) = v + vg(t), where v, and vg (t) are the velocity of the Sun with respect to
the Galactic frame and the velocity of the Earth with respect to the Sun, respectively. These are
specified by
Ve = v5(0.0473,0.9984,0.0301) ,
Vo (t) = vg (cos [w(t —t1)] € +sin [w(t — t1)] &)

where the magnitudes are given by v, ~ 232.37 km/s and vg, ~ 29.79 km/s. We have further

(3.80)

introduced w = 27/(365 days) as the period of the Earth’s revolution, ¢; as the time of the vernal
equinox (which occurred on March 20 in 2017), and the unit vectors €; and €, specifying the

20We refer to [201] for a comprehensive review of these details.
2ICorrections to vg (t) are suppressed by the eccentricity of the Earth’s orbit, given by e ~ 0.016722, and so can
safely be neglected.
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ecliptic plane. These vectors are given in Galactic coordinates by

€1 ~ (0.9940,0.1095,0.0031) ,

(3.81)
€ ~ (—0.0517,0.4945, —0.8677) .
We may then find the time-varying Galactic-frame speed
Vobs(t) = A/ V3 + V3 + 2vpvga cos [w(t — )], (3.82)
given in terms of the parameters
o = \/({/'@ . é1)2 —+ (\A/'@ . é2>2 ~ 0491 ,
_ 1 Vo€ (3.83)
t =t; + — arctan (YQ 52> ~ t1 + 72.5 days.
w Vo - €

Whilst we have given the accepted values for the various parameters above, if a definitive axion
signal was detected we could then take for example ve, «, and ¢ as unknown parameters to be
estimated from the likelihood. Their agreement with the accepted values would be a highly non-
trivial test of the signal. We will show an example of this below, but before doing so we use the
Asimov formalism to estimate how significant a signal we would need to detect annual modulation
from the bulk halo.

Ignoring annual modulation, the detection significance of a SHM signal scales with the param-

eters of interest as
_ A’Tr erf [V/2001s /0]

B 2ma)\QB \% 27TvOUobs

where here and throughout this section we assume the background is frequency independent over

TS (3.84)

the width of the signal. The relevant question is, on average, at what value of TS do we detect
annual modulation at a given significance? To estimate this, we calculate the test statistics between
models with and without annual modulation included; in order to discover annual modulation we
can think of the model without it included as the null hypothesis. We denote this test statistic by
TS.m.. We can estimate the median value for TS, ,,, as a function of the model parameters using the
asymptotic form of © and the Asimov formalism; in this case, the Asimov dataset includes annual

modulation. Specifically, we find

TS,y = LT / i {ft(v)Q —f(v) (ﬂ(v) - M)} . (3.85)

S omaL ) 2

Above, f; features annual modulation while f does not. In order to simplify the calculation, we
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define an expansion parameter:

e=— 2% ~0.126, (3.86)
Vo T Vg
in terms of which we can write:
Vobs(t) & Uops (1 + eavcos [w(t —1)]) , (3.87)

with vops /&~ 232 km/s. Using this and averaging all time dependence over one period in the final
result, we calculate the ratio of TS, ;, to TS in the SHM as

TSa.m. . OézGQUCQ)bS 4U0bse_2vgbs/v(2)
TS 205 V2mvgerf [\/ivobs /o]
~0.00173. (3.88)

From the discussion above, we see that if it took a time 7' to detect the axion at a given signif-
icance, it would take a time 5807 to detect annual modulation at the same significance. Alterna-
tively, as the test statistic scales like giw, the coupling for the threshold of discovery for annual
modulation will be ~5 times larger, on average, than the coupling for the threshold of discovery of
a signal. On the other hand, in the resonant setup large increases in the TS are readily obtainable
since after the axion mass is known we can stay at the correct frequency for an extended period
instead of scanning over multiple frequencies.

In Fig. 3.5 we show the posterior distribution generated in a Bayesian framework from an
analysis of the Asimov dataset with g, at the threshold for detection of annual modulation at 5o.
Note that we float A, my,, vy, v, @, and ¢ as model parameters with linear-flat priors in the fit. All
model parameters are seen to be well converged, including m, which is not shown in the figure.
This analysis was performed using Multinest [202,203] with 500 live points. The Asimov

results are consistent with those found from an ensemble of simulated datasets, as expected.

3.5.2 Halo Gravitational Focusing

An additional source of annual modulation in the axion signal is sourced by the focusing of the
axion flux by the Sun’s gravitational potential. This effect is already known to have a significant
impact on annual modulation in the context of WIMP direct detection, as pointed out in [184]. The
intuition behind gravitational focusing is that in the frame of the Sun the DM velocity distribution
appears as a wind. The gravitational field of the Sun focuses the DM “down-wind” of the Sun,
leading to an enhanced rate when the Earth is “down-wind” relative to when the Earth is “up-

wind.” Here we investigate the impact of gravitational focusing on the corresponding axion signal.
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In [184] an exact closed-form expression was used to model the perturbation to the DM phase-
space distribution from the Sun’s potential. The perturbed phase-space distribution is derived using
Liouville’s theorem and exactly solving for the trajectories of the DM particles in the gravitational
field. However, in this work we take advantage of a perturbative result (to leading order in New-
ton’s constant), valid when the DM speeds are much larger than the Solar escape velocity, that

allows us to write [204]
f(vv t) - fhalo(va t) + fGF(Ua t) 5 (389)

where fa10(v, t) is the unperturbed velocity distribution in the Earth frame, and where the pertur-

bation by gravitational focusing fgr is given by

Far(v.1) 2G M, / 02dQ) e~ VHve®+ve)? /it (V4 Vg (t) + Vo) - (i@(t) - |:i:$8|>
GF\U, 1) = — 3 5 X - v+v, )
vell) Jombg 1 - %) (e

(3.90)

Note that in this equation, v2d( is written out explicitly to account for the measure. Here, x4 ()
denotes the position of the Earth in the Solar frame; an explicit form for this in Galactic coordinates
can be found in [201]. Note that f (v, t) is no longer normalized to integrate to unity, but rather the
change in [ dvf(v,t) throughout the year indicates the fractional change in the DM density do to
gravitational focusing. We have explicitly verified that the perturbative formalism for gravitational
focusing is a good approximation to the exact formalism used in [184] for the SHM.

To determine the impact of gravitational focusing, we perform two analyses using the Asimov
dataset at the S0 detection threshold for annual modulation but this time including gravitational
focusing. We analyze the Asimov data in the Bayesian framework including with two models; the
first model does not account for gravitational focusing, while the second one does. The results
of these analyses are shown in Fig. 3.6. The use of a limited number of live points is the most
likely source of the residual disagreement between the injected and median value of ¢ in the right
panel. Note that in these analyses we only float A, o, and ¢ for simplicity. Neglecting gravitational
focusing in the model (left panel) only leads to a approximately 20 overestimate in the value of
the A parameter, while the central value of ¢ is on average off by ~10 days. On the other hand,
when gravitational focusing is included in the model (right panel), the halo parameters and the

normalization are correctly inferred.

3.5.3 Local DM Substructure

So far, we have only considered an axion signal sourced by dark matter contained within the

bulk halo, but there additionally exist a number of well-motivated classes of velocity substructure
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that have the potential to leave dramatic signatures in the direct detection data. One large class of
substructure relates to the DM subhalos that are expected to be present in the Milky Way [205]. DM
subhalos are believe to persist down to very small mass scales, potentially ~10~% M and below,
due to the nearly scale-invariant spectrum of density perturbations generated during inflation. Low-
mass DM subhalos have low velocity dispersions, and so if we happen to be sitting in a DM
subhalo, even if it only makes up a small fraction of the local DM density, it could show up as
a narrow spike in velocity space over the bulk SHM contribution. Even if we are not directly
in a bound DM subhalo, we could still be affected by the tidally stripped debris that in-falling
subhalos leave throughout the Galaxy. There are two types of tidally-stripped substructure, in
velocity space, that are important for direct detection (for a review of the importance of tidal debris
at WIMP experiments, see [193]): DM streams and debris flows.

As an in-falling subhalo descends through the potential of the Milky Way, the outer re-
gions of the DM subhalo are expected to become tidally stripped and form an ultra-cold trailing
stream [194,205]. Such streams should trail from DM subhalos of all sizes, with smaller subhalos
having colder streams. Eventually, the tidal debris dragged away from in-falling subhalos will be-
come fully virialized. However, before that occurs the debris becomes homogeneously distributed
in position space but remains coherent in velocity space, forming the substructure known as debris
flow [206]. While it is unlikely that a DM substructure from in-falling subhalos dominates the
local DM density [194,205], as we show in this subsection, even if the substructure only makes
up a small fraction of the local DM density, due to the coherence in velocity space the signature of
substructure at axion experiments can be substantial and even dominate over the SHM contribu-
tion. This can be contrasted to the case in WIMP direct detection experiments, where substructure
is expected to play an important role in annual modulation studies but not necessarily have a signif-
icant impact on the total rate [193,201,207]. DM streams were recently considered in the context
of axion direct detection in [183].

One DM stream in particular has received a significant amount of attention with regards to
WIMP direct detection and that is the potential DM component of the Sagittarius stream. The
Sagittarius stream consists of a winding stream of stars wrapping through the Milky Way that
is thought to have formed from tidal stripping of the Sagittarius dwarf galaxy. It is possible
that the DM component of the Sagittarius stream contributes at the few percent level to the lo-
cal DM density (see, e.g., [194,205]). We follow [173,175,176] and model the stream as a boosted
Maxwellian distribution with a narrow velocity dispersion of vy = 10 km/s and a stream velocity
of vsy = (0,93.2, —388) km/s, in Galactic coordinates. Further we assume that the Sagittarius
stream constitutes 5% of the local DM. We will show that even though the stream may only be a
small component of the local DM density, it can still leave an important signature in axion direct

detection experiments, due to its small velocity dispersion.
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Another possible source of DM substructure that has low velocity dispersion is a dark disk. Co-
rotating thick dark disks are found to form in certain N-body simulations with baryons [208-211]
due to the disruption of merging satellites galaxies that are pulled into the disk. In the simulations,
the dark disks are found to be co-rotating with lag speeds and velocity dispersions both ~50 km/s.
They may even dominate the local DM density [208,210]; however, as we will see, even if the dark
disk is only a small fraction of the local DM density, it can still leave a significant signature in the
direct detection data due to the small velocity dispersion and lag speed.

To develop some intuition for how important substructure could be, let us take the oversimpli-
fied scenario in which the substructure of interest makes up a fraction x of the local DM distribution
and also follows the Maxwellian distribution with the same v, as in the SHM, but with a much

smaller dispersion parameter v§”. Then we can write

f(U) :(1 - x)fSHM<'U|UOa Uobs) + foHM(U|U(S)tr7 Uobs) . (391)

Using this we can explicitly calculate the expected test statistic (in favor of the model of the SHM
plus the stream over the null hypothesis of no DM) of a signal with a frequency independent back-
ground, though we do not provide the expression here as its cumbersome form is not particularly
informative. In Fig. 3.7 we show this TS plotted as a function of the fraction of the DM in the
stream x for various values of US“, normalized to the TS when no stream is present. The figure
makes it clear that if the detector is within an ultra-cold DM stream the impact on the expected
axion signal can be significant, even if the stream only makes up a small fraction of the DM. For
example, if 5% of the local DM is in a stream with vg“ ~ 0.1 km/s, then the TS in favor of
the model with DM is nearly 10 times larger when the stream is modeled versus when it is not.
This emphasizes the importance of searching for cold DM substructure in addition to the SHM
component.

Even though velocity substructures are not intrinsically time-dependent features, annual mod-
ulation is considerably more important for the detection of substructure, which is typically char-
acterized by a speed dispersion less than the peak-to-peak variation of the Earth’s velocity with
respect to a given substructure frame. The result is an observational signature of a given substruc-
ture feature poorly localized in frequency data collected over a year. Therefore we need a more
careful treatment than the one above, as we can only search for these features in a model framework
which accounts for time-varying signals.

Under the assumption that velocity substructure can still be reasonably modeled by a boosted
Maxwellian distribution, it is easily accommodated within our time-dependent model template.?

The direction of the stream in the ecliptic plane is specified through the parameters o**® and *°,

22Even if the velocity distribution is not Maxwellian, the relevant signal template is a straightforward generalization
of that presented here for a Maxwellian.
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which are defined in analogy to (3.83) but where v%‘b = U%lb{/%lb is the stream boost velocity in the

Solar frame. The generalized velocity distribution, including gravitational focusing, for both the

SHM and the substructure components is then given by
f=1=2)Mlve, a,t,v0) + 2 (03", o™, P, 05™) (3.92)

where the superscripts “sub” and “SHM” denote the generalized substructure and SHM velocity
distributions, respectively, after gravitational focusing has been accounted for. The generalization
to multiple substructure components is straightforward.

The importance of annual modulation for cold substructure is illustrated in Fig. 3.8, where we
show, in the left panel, the mean PSD assuming the Sagittarius stream parameters taken at two
different times throughout the year. We have chosen the dates where the TS in favor of the stream
1s maximized, June 5, and minimized, November 23, both for 2017. Since the stream is narrow in
frequency space, the sharp peaks at these two different times of year are almost completely non-
overlapping. On the contrary, at frequencies where the stream does not contribute appreciably,
annual modulation does not significantly affect the contribution from the SHM.

Just as we performed parameter estimations for the bulk halo component, we can also estimate
the parameters defining the contribution of velocity substructure to the speed distribution. It should
be noted that the parameter estimation for the bulk halo component can be substantially affected by
the presence of velocity substructure if the substructure is not properly accounted for. An example
of this can be seen in Fig. 3.9, where we have included a stream with Sagittarius-like parameters
in the data, as given earlier, and used the Asimov dataset. However, we have not accounted for the
stream in the model that is fit to the data. Note that the TS in favor of DM in this case is ~10%.
Our estimates for the SHM parameters vy and v, are significantly affected by the presence of the
stream and disagree with the true values by multiple standard deviations. In contrast, in Fig. 3.10
we display the posterior distribution for a fit including a Maxwellian stream. Note that while both
the SHM and the stream parameters are floated at the same time, we display the posteriors for the
SHM and stream model parameters separately. In this case both the stream and the SHM model
parameters are accurately estimated. Comparing the model that included the stream to that without,
we find a TS value ~400 in favor of the model with the stream over that without.?

Note that for our fiducial set of model parameters for the Sagittarius stream, we find that when
the SHM is detected at 5o significance (TS ~ 58), including the look elsewhere effect, the stream
may barely start to become visible at ~1.60 significance. We stress, however, that is possible that

2To simplify the analysis, we have neglected gravitational focusing in considering this Sagittarius-like stream.
Gravitational focusing is more important at lower speeds, and therefore is generally less relevant for such a stream
than it would be in considering, for example, a dark disk. We note, however, that if the stream is well-aligned with the
ecliptic plane, it is possible to get large enhancements to the rate over short periods of time during the year [212-214],
although such a configuration is not present for the Sagittarius stream.
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other, colder DM streams would contribute more substantially even if they are a smaller fraction
of the local DM density. While we illustrated the stream example for simplicity, the effects of
the other types of velocity substructure may be worked out similarly. For example, we find that
with our fiducial choice of parameters for the dark disk lag speed and velocity dispersion, the dark
disk would be detectable at the same significance as the SHM even if the dark disk only makes
up ~20% of the local DM density. Moreover, the dark disk should be more affected by annual
modulation and gravitational focusing than the SHM component, since the DM in the dark disk is
on average slower moving in the Solar frame. The PSD template is illustrated, assuming the dark
disk makes up 20% of the local DM density, in the right panel of Fig. 3.8. The dark disk leads
to a significant increase in the PSD at low velocities, corresponding to frequencies near the axion
mass. As in the stream case, we show the PSD at two different times of year, corresponding to the

date of maximal TS, November 18, and minimal TS, June 5.

3.6 Conclusion

The QCD axion, and axion like particles more generally, is a well motivated class of DM can-
didates, and if it constitutes the DM of our universe, then the burgeoning experimental program
searching for such DM could be on the verge of a discovery. With such possibilities it is important
to be able to clearly and accurately quantify any emerging signal and set limits in their absence.
The likelihood framework we have introduced allows for exactly this. In addition, through the use
of the Asimov dataset, we have derived a number of analytic results that make quantifying these
thresholds possible without recourse to Monte Carlo simulations.

In the event of an emerging signal, one would always worry about the possibility of unantic-
ipated backgrounds. Nevertheless DM provides its own way of addressing this concern through
unique fingerprints in the frequency and time domains. For example, we showed the form the local
DM velocity distribution uniquely determines the frequency dependence of the PSD data, and that
by exploiting this knowledge one is able to, through the likelihood framework, constrain properties
of the local velocity distribution. Since the bulk of the DM halo is expected, locally, to follow a
Maxwellian distribution with velocity dispersion set by the local rotation speed, correctly mea-
suring the Maxwellian parameters will provide a non-trivial check of the nature of the signal. In
the time domain, any true signal should undergo annual modulation, including the subtle effect of
gravitational focusing, and we quantified how this may be verified using the likelihood formalism.
Further, the likelihood is sensitive to the presence of local DM substructure such as cold streams,
which can enhance the expected signal through an associated increase in the axion coherence time.
For example, we showed that the Sagittarius stream could leave a unique signature in the PSD data.

Nevertheless there are a great many possible types of DM substructure, beyond those considered
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here, that could be present at the position of the Earth, and we leave a careful study of these to
future work.

Taken together the results of this work provide a set of tools that will prove useful in moving
towards a possible DM axion detection, and, if we should be so lucky, into the era of axion as-
tronomy that would follow. Towards that end, we have provided an open-source code package
athttps://github.com/bsafdi/AxiScan for performing all the likelihood analyses dis-
cussed in this work and also simulating data at axion direct detection experiments for different

background and signal models.
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Figure 3.5: The posterior distribution for a model with annual modulation where the signal strength
is at the threshold of annual modulation detection at So. The true parameter values are indicated in
blue, with the 10 confidence intervals on the parameter estimations indicated by the dashed black
lines in the one parameter posteriors. The two parameter posteriors show the 1 and 20 contours.
The axion mass, m,, was also scanned over, and is recovered accurately but not shown here. Note
that this example uses the Asimov dataset. All times are measured in days and velocities in km/s,
while the units of A are arbitrary.
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levels, respectively. (Right) As in the left panel but including gravitational focusing in the model
template. As expected, the parameter estimation is quite accurate in this case.
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Figure 3.8: The axion contribution to the PSD as a function of frequency in the presence of DM
substructure. (Left) We show the effect of a Sagittarius-like stream that makes up ~5% of the local
DM density at two different times of year, corresponding to the dates of maximum TS (June 5) and
minimum TS (November 23), where all dates are for 2017. Annual modulation plays an important
role for cold substructure because the Earth’s orbital velocity may be larger than the substructure
velocity dispersion. (Right) As in the left panel, but for a dark disk that makes up ~20% of the
local DM density. The dark-disk is co-rotating with the baryonic disk, with a lag speed ~50 km/s,
and so the contribution to the PSD is at lower speeds compared to the stream case. Gravitational
focusing also plays an important role for the disk since the solar-frame velocities are relatively low.
In this case the maximum and minimum TS occur on November 18 and June 5 respectively. For
both of these panels, the signal is generated using m, = 1 MHz, A set to the value for the threshold
for detection of the SHM, and )\ set to the minimum SQUID noise.
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worsened by the failure to account for the substructure in the analysis.
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Figure 3.10: A simultaneous Monte Carlo parameter estimation for a signal containing a bulk
halo and a Sagittarius-like stream with 5% of the DM using identical seed parameters as Fig. 3.9.
Scanning for the bulk halo and substructure simultaneously allows us to accurately recover the
signal parameters. Left, the bulk parameter scan results, right, the stream parameter scan results.
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CHAPTER 4

The Statistics of Axion Direct Detection with

Multiple Detectors

Cold, bosonic dark matter (DM) candidates with masses much smaller than the eV scale have
macroscopic occupation numbers and may be described in the solar vicinity by classical fields.
Two well-studied DM candidates in this category, which we broadly refer to as wave-like DM, are
axions [38-46, 86, 87] and dark photons [215-217]. Wave-like DM candidates require distinctive
experimental techniques for discovery that take advantage of their spatial and temporal coherence
(see, e.g., [187]). The spatial coherence length of the DM waves, )., and the coherence time 7 are
given by! [80]
1 1

) T~ — )
mMpmUo mpmU Vo

A ~ 4.1)
where vy parameterizes the DM velocity dispersion, v is the mean velocity, and my,, is the DM
mass. In the solar neighborhood we expect 7 ~ vy ~ 1073 for the bulk of the DM, in natural units,
such that the coherence length is around 10° times the Compton wavelength, and the coherence
time is around 10° times the oscillation period for the DM wave. In this work we show that
multiple phase-sensitive wave-like DM detectors separated by distances of order \. may join their
data — through a process we refer to as “DM interferometry” — to measure properties of the DM
phase-space distribution that are inaccessible to single experiments operating in isolation.

Many axion and dark-photon detection strategies already leverage the axion coherence time as a
“quality factor” that amplifies the DM signal in the experiment. For example, axion haloscopes [67,
68,110,138,190,218] use a resonant cavity with a strong static magnetic field to convert axion DM
into electromagnetic cavity modes, which build up coherently over the DM coherence time; in this
setup the DM Compton wavelength is of order the size of the experiment. Experiments operating
in the quasistatic regime (where the DM Compton wavelength is much larger than the experiment)

—including searches for the axion-photon coupling [71,72,74,75,82,219], axion interactions with

"We briefly review both concepts in App. C.1.
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Figure 4.1: The imprint of DM interferometry. A single wave-like DM experiment is sensitive
to the DM speed distribution f(v). Two detectors separated by a vector x;2, however, are sen-
sitive to the speed distribution modulated by the k - x5 phase of the DM wave, replacing f(v)
with functions F73’(v) as defined in (4.3). As the figures demonstrate, the modified speed distri-
butions exhibit daily modulation and carry additional information about the velocity distribution
f(v) that would be invisible to a single detector. For this example we take mpy = 25.2 peV [79],
near the window where the HAYSTAC collaboration is searching for axion DM. Taking the Stan-
dard Halo Model ansatz for f(v) in (4.50), we place one detector at a latitude and longitude of
(41° N, 73° W), and a second instrument ~ 20 m to the North, corresponding to d ~ 2\.. A curve
is shown for every ten minutes starting from midnight on January 1st of 2020. Note that as F3 (v)
are functions of mpyd, qualitatively similar effects exist for e.g. mpy ~ 1079 eV, in the mass
range probed by ABRACADABRA and DM-Radio, for d ~ 500 km.

nuclear spins [58], or dark photons [111] — aim to detect a time-varying magnetic flux through a
pickup loop, which can build up coherently in a lumped-element circuit [220, 221].

In this paper, we explore the phenomenology of spatial coherence for wave-like DM by exploit-
ing spatially-separated detectors that probe the same DM field. It is straightforward to understand
why multiple detectors offer unique insights for wave-like DM. Generically, the wave-like DM
field may be written as a(x,t) = ag cos(wt — k-x + ¢), where w is the oscillation frequency, k is
the wave vector, ¢ is a random phase, and ay is the amplitude.? If the DM wave is traveling in the
direction k with speed v < 1, then w ~ mpy (1 +v?/2) and k ~ Moy K. For a single detector we
may always choose coordinates such that x = 0. This means that a single detector is only sensitive

to the speed through w and is not sensitive to the direction of the DM velocity.® By contrast, two

2Vector DM also has a polarization component with nontrivial coherence properties, but in this work we focus only
on the amplitude, as appropriate for scalar or pseudoscalar DM.

3Exceptions would be experiments that make use of Va, but such signals are suppressed by v ~ 1072 relative to
experiments that are also sensitive to 0;a. Experiments only sensitive to the speed distribution may also detect annual
modulation signals through shifts in the DM speed [183], though these are typically quite small because the Earth’s
speed relative to the Sun is small compared to the solar speed relative to the Galactic Center.
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experiments located at positions x; and x, will be sensitive to phase factors k - x; and k - x5. Only
one of these can be removed by a coordinate choice, leaving a residual k - x5, with X5 = X — Xo,
which manifestly probes the velocity rather than the speed. The interferometry proposed in this
work is directly at the level of the DM field: the effect arises due to the phase difference wave-like
DM exhibits between spatially separated points.* Indeed, due to the nonzero velocity dispersion
v9, DM waves are coherent up to distances of order \.; as we will show, phase-sensitive data

combined from two experiments exhibits maximal modulation when d = |xj3| ~ A, or

—9
g 1 570 km (220 km/s) (10 e\/) . 42)

MpnUo Vo Mpnm

As we will demonstrate, this opens up striking new signatures, such as a unique daily modulation
signal applicable only to wave-like DM with multiple detectors, because the direction of x5 rotates
over a sidereal day with respect to the DM field.’

The main result of this paper is that interference effects between a pair of detectors separated

by a distance x5 are fully characterized by the modified speed distributions

(V) = /d3vf(v) cos(mpyV - X12)0[|v| — v],
4.3)
< (1) = / v F(v) sin(may - x12)0[[v] — 0],

with f(v) the DM velocity distribution. Examples of these distributions at various times through-
out the day are shown in Fig. 4.1 for optimally-separated detectors. If the goal is simply to enhance
the total signal reach, we should maximize the constructive interference and take d < \., in which
case Fi,(v) = 0 and Fi,(v) = f(v), with f(v) the DM speed distribution. The observation that
there is an enhanced sensitivity for an array of detectors located within the DM coherence length
has been made previously in Ref. [228]; this is also the basis for the multiplexed cavity setup pro-
posed by ADMX [107]. However, if the goal is to extract information about the full 3-dimensional
DM phase space distribution, which encodes e.g. the boost of the Solar System with respect to the
Galactic Center as well as possible DM substructure (including the Sagittarius stream [229] and
the Gaia Sausage [230,231]), we should take d ~ \. as in (4.2). Ref. [228] points out the pos-
sibility of observing this daily modulation effect for experiments separated by distances of order
Ae; here we extend this analysis by focusing on constraining directional parameters in the phase

space distribution. We will show that the sensitivity to the phase space information that may be

4This is conceptually distinct from the interferometry proposed in Refs. [222-224], where the interference results
from a phase shift developed by electromagnetic fields as they propagate through axion DM.

3Several experimental proposals have noted or exploited sensitivity to the coherence length, see e.g. [70, 134, 165,
177,225-227], but here we focus specifically on combining data between different experiments.
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extracted from multiple detectors is comparable to the sensitivity to the initial discovery, since
the interference effects have an O(1) effect on the data when d ~ A.. As such, in principle these
unique signatures could be used to immediately verify a putative axion signal. More optimistically,
DM interferometry would allow for the detailed mapping of the local DM phase space distribution
after an initial detection.

For concreteness, we focus in this work on the case of axion DM coupled to electromagnetic
signals, but our results would apply equally well to scalar and vector DM as long as the readout
is proportional to the DM field. Similarly, for simplicity we will present most results for the case
of two experiments, but our formalism holds for any number N' > 2 of experiments, and we will
provide our key results for a general N also. Our results also apply equally well to resonant-type
experiments and to broadband-type experiments (such as ABRACADABRA-10 cm [72, 82]), so
long as the resonant experiments are able to preserve the phase of the data, as opposed to e.g.
recording the power directly. One advantage of resonant experiments for wave-like DM, in addi-
tion to generically having enhanced sensitivity [220,221], is that putative signal candidates may
immediately yield detailed and high-significance studies, since the signal-to-noise ratio rapidly
grows with measurement time when frequency-scanning is no longer necessary.

We organize the remaining discussion as follows. In Sec. 4.1, we sketch a derivation for the
statistics of the correlated Fourier-transformed data from multiple experiments. A more exten-
sive derivation and discussion is presented in App. C.2, with some useful orthogonality relations
summarized in App. C.3. In Sec. 4.2, we construct a likelihood function for the axion signal as
observed at N experiments, following the formalism of [80]; a practical data-stacking procedure
is outlined in App. C.4. In Sec. 4.3 we use several simplified toy examples to illustrate analytic
estimates of uncertainties on parameters of the velocity distribution using the Asimov data set —
a technique where the asymptotic properties of the data are assumed in order to replace Monte
Carlo simulations with analytic estimates (see Sec. 4.2) — and demonstrate that uncertainties on
directional parameters in several simple examples with two detectors are minimized for d ~ 2.
We also highlight the important distinction between the de Broglie wavelength and the coherence
length for cold but boosted DM substructure. Furthermore, we show that there is a rotational sym-
metry of the likelihood which can lead to degenerate best-fit parameters for N' = 2 experiments. In
Sec. 4.4, we extend the likelihood analysis to include daily modulation from the changing detector
orientation throughout the day. We also perform analyses of simulated data sets to demonstrate how
the likelihood may be implemented in practice to constrain the morphology of the DM phase-space
distribution. Using the realistic examples of the Standard Halo Model (SHM) velocity distribution
and the Sagittarius Stream, we show how daily modulation breaks the symmetry discussed in Sec.
4.3 and use this to perform parameter estimation using the effect. In App. C.1 we provide a brief

review of the coherence length and time.
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4.1 The Statistics of Multiple Detectors

In this section we describe the statistics of an axion DM signal collected by two or more spatially-
separated detectors. In particular, while we expect background sources to be generally uncorrelated
between detectors, the axion will induce non-trivial cross-correlations indicative of DM interfer-
ometry. These correlations will be the source of the additional information available to two or
more experiments that we will extract using a likelihood formalism introduced in Sec. 4.2.

We imagine that a given detector, located at a position X, is sensitive to the axion through a

time-varying signal ¢ proportional to the axion field,
D(x,t) = myk; a(x,t). 4.4)

The flux ® is generated by the axion effective current, J, ~ 0,a ~ mg,a, which is the origin
of m, in the expression. Accordingly, ® ~ x;J,, revealing x; as characterizing the individual
experimental response to the axion field. In the notation of Ref. [80], we take x; = \/m.
The dimensionful constant A; is characteristic of the individual experimental response to the axion
field; for instance, in the case of ABRACADABRA [71, 72, 82], the magnetic flux induced in
the pickup loop at the center of the detector is related to the axion field by A = ppmg..,, B3V,
where g, 1s the axion-photon coupling, By is the toroidal magnetic field strength, and V5 is
an effective magnetic field volume associated with the detector. In addition to the experimental
factors, A; has been defined to include ppy ggw, which determines the mean power in the axion
field. We assume for simplicity that the detector response A; is purely real and does not include
phase delays. Similar expressions are available for other detectors [80]. For our discussion, all
that is required is a measurement linear in the axion field, in order to ensure direct access to the
axion phase. Measurements intrinsically proportional to a?, such as the power in the cavity of an
axion haloscope, cannot be directly ported to our formalism. Nevertheless, interferometry can still
be performed by these resonant cavity experiments, as long as the phase information is extracted.
This may be achieved for example by reading out electromagnetic signals with phase-sensitive
amplifiers (e.g., [68,232]).

Ultimately, we envision a set of measurements ®; of the same axion field, made by N detectors
at different spatial locations x;. The correlations between these data sets will arise due to the
statistics of the underlying axion field, as we will describe in the following subsections, leaving
the full derivation to App. C.2.
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4.1.1 Construction of the Axion Field

It is useful to recall the underlying statistics in the axion field that result from its finite velocity
dispersion and wave-like nature. In [80] it was shown that we may represent the axion field as seen

by a single detector as

a(t) = Y223 0y f(v) Avcos gt + 6] 45)

Here, the sum over j indicates a sum over subsets of particles with speeds in the interval v to
v + Av. The phase is controlled by w; = m, (1 + v7/2) and a random contribution ¢; € [0, 27),
and further f(v) is the DM speed distribution in the laboratory frame. In Ref. [80] the continuum
limit for speeds Av — 0 is taken; below (and in App. C.2) we will generalize to the continuum
limit for velocities. In addition to the random phase, the random nature of the axion field is captured
in the random variate cv; drawn from the Rayleigh distribution p[a] = o e=*"/2,

While (4.5) represents the axion field constructed from the discretized frequency modes spec-
ified by the local DM velocity distribution, a more fundamental approach can be understood by
considering the local DM field made up of NV, axion particles (or wave packets), as detailed in [80].
The enormous occupation numbers characteristic of wave-like DM will then allow us to eventually
convert this sum to an integral by taking the N, — oo limit; in detail, we should have nDM)\le > 1,
where n,, is the DM number density, which is satisfied locally for m, < 1 eV. We note that the
above construction also assumes DM is a non-interacting wave, which means that self-interactions
should be negligible.

The axion field described in (4.5) is appropriate for a single detector, but to reveal the effects
of DM interferometry we need to extend the description to include the spatial dependence of the
DM wave. In particular, the phase will also include a contribution k - x, with k = m,v for a non-
relativistic wave. As k depends on the velocity, and not speed, we need to extend the above sum to
three independent components, V.. = v,X + Uy + v.Z, where the indexes a, b, ¢ are integers. We

may then write

a(x, t) - % Z AabeV/ f(Vabc) (AU)B X CO8 [wabct - kabc X+ ¢abc] ) (46)

abc

where wqp. depends on Ve = |[Vape|, and gy and ¢y are Rayleigh and uniform random variables,
respectively, as in (4.5). Here, (Av)? is a discretization of the 3-dimensional velocity, generalizing
Av for speeds; we will take the continuum limit in App. C.2.

In (4.6) we have written the axion field in a convenient form for revealing DM interferometry.

To reiterate the point, if we measure the axion field at a single location, we can always choose our
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coordinates such that x = 0. In this case, the velocity information in k is lost, and we are now
only sensitive to the speed v = |v| through w. This collapses f(v) — f(v), and (4.6) to (4.5);
information about the phase space is lost. However, if we measure the axion field at two locations,
an irreducible k dependence remains, and the full velocity information is imprinted in the multi-
detector covariance matrix.

We implicitly assume throughout this work that the non-interacting plane-wave superposition
in (4.6) applies for all x. Corrections to this picture should arise from e.g. the gravitational field
of the Earth, which would slightly bend the DM trajectories between detectors. However, the DM
velocities we consider in this work are much larger than the Earth’s escape velocity, and also the
detector separations are typically much smaller than the radius of the Earth, so we are justified in

neglecting this effect.

4.1.2 The Multi-Detector Covariance Matrix

We will now outline how the statistics of the axion field, as described above, lead to a non-trivial
covariance matrix in the data collected by A experiments. In this section we will simply state the
key results, leaving a derivation to App. C.2.

We begin by considering the minimal case of N' = 1. Suppose that a single experiment takes a
time-series of N measurements {®, (x) = ®(x,nAt)}, withn =0,1,..., N — 1, collected over a
time 7', so that At = T'/N. In order to isolate a signal oscillating at a particular frequency, as we

expect the axion to do, we calculate the discrete Fourier transform

=

-1

Dp(x) =) D, (x) e Zrkn/N (4.7)

3
I
o

The transform is indexed by an integer £ = 0,1,..., N — 1, which is related to the angular fre-
quency, w = 27k/T. We will switch back and forth between talking about frequency w and
wave-number k as convenient. It is convenient to partition the Fourier transform into appropriately

normalized real and imaginary parts as follows,

At
Ri(x) = —=Re [®(x)]
k g k (4.8)
Ik(X) = —Im [(I)k(X)] .

VT

We can then write the power spectral density (PSD) as,

(At)*

Sk =
P T

|Pr(x)* = Ri(x) + I (). 4.9)
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We will assume throughout that 7" is long enough such that the signal is sufficiently well resolved,
i.e. the bandwidth of the Fourier transform 27 /7" is much smaller than the width of the signal in
frequency space. When specifying Fourier components by frequency as opposed to wave-number
we use notation as in S&4 (x) — Sea(x,w).

As shown in [80], both R(x,w) and I(x,w) are normally distributed with zero mean and vari-

ance given by

(R2(x,0)) = (2(x,w)) = 27S () (4.10)

2 Mmyv,

where we have defined v, = /2w/m, — 2 as the axion velocity corresponding to a frequency w,
and the speed distribution is defined as

flv) = / v f(v)d(v = |v]) (4.11)
This implies, for example, that Spq(x) is an exponentially distributed quantity, with mean
7 f (U
<Sq>¢,(w)> =A f( ) . (412)
MgV,

We can understand the velocity dependence by looking back to (4.5); the signal measured by a
detector ® is proportional to the time-dependent axion axion field, and since a is proportional to
\/m , we obtain a power spectrum Sgq proportional to f(v).

In any real experiment there will also be background. However, as long as the background is
normally distributed in the time domain — as expected for, for example, thermal noise, SQUID flux
noise, or Josephson parametric amplifier noise — then both R(x,w) and /(x,w) remain normally

distributed but with variance

(4.13)

where Ap(w) encapsulates the variance of the potentially frequency-dependent noise from the
background sources only.
Note that Ry (x) and I;(x) are uncorrelated; in particular, the 2 x 2 covariance matrix for these

two quantities is simply

S = (éﬂf(”‘”) + AB(“’)) [1 0] . (4.14)

2 Mgy, 2 01

This implies that for a single detector, all information about the signal is contained in the PSD
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Sea(x). Further, as shown in (4.14), the location x never enters for N = 1. Even if we chose
our coordinates such that k - x # 0, the overall phase remains unphysical as it would vanish when
computing the modulus squared in (4.9).

Now let us extend the discussion to the case of interest: data collected by A experiments at
positions x;, withi = 1,2,..., N. For each data set, we calculate the real and imaginary parts of
the Fourier transform as above. The information collected by all detectors can then be organized

into the following 2" dimensional data vector,
di = [Ri(x1), Tu(x1), - . ., Ri(x), Ri(xa)]" (4.15)

Correlations between the real and imaginary part for any given detector will be identical to the
N = 1 case discussed above. However, DM interferometry will reveal itself through non-trivial
correlations amongst the different detectors.® Indeed, as justified in App. C.2, d;, will be a 2N/-
dimensional Gaussian random variable with zero mean and a symmetric (2N x 2/N)-dimensional

covariance matrix given by

(R Ruet)) (R Til) (ReGe) Re)) - {Relxa) eoew)
g _ | BGORG) (BGaL) e Rufse)) . (TG i)
(Gon) Ruer)) (Tl i(0)) (TGon) Belx)) - (TG Tue))] (416)
(R Re() = () (%) = 5 e () + ()],
(Re(x)06) = ~(Tu(x) Bul3) = 553,

Here \p;(w) is the background observed by the i*" experiment, and its contribution is purely
diagonal. The axion signal, however, induces off-diagonal correlations, which we quantify in

terms of

cij(w) = ij
T iy
sij(w) = Wjﬁj(%),

Qur analysis assumes that the experiments have identical timestamps on the data, or equivalently that the relative
phase of the signal at each experiment is precisely known. Of course, this is not exactly true and in general there will
be an additional contribution to the phase of ® in (4.7) of the form wAT, where A7 is the timing error. As long as
AT < |x;;|v, this contribution can be safely neglected. For two detectors with |x12| ~ 50 m and v ~ 200 km/s, this
implies AT < 10710 5. Typical atomic clocks have timing error of 10~? s/day, so the required A7 can be achieved by
synchronizing the two experiments to an atomic clock over data-taking intervals of about 2.5 hours, which is sufficient
for the daily modulation analysis in Sec. 4.4.
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with

.7-"5(1)) = /d3vf(v) cos(mqVv - x;5)0[|v| — v],
(4.18)

Fi () = / dv F(v) sin(mav - xi,)3[v] — o).

By translation invariance, the entries of the correlation matrix only depend on the relative distances
X;; = X; — X;. These expressions then simplify for the correlations amongst a single detector, as
Ff(v) = f(v)and Fj(v) = 0. But for i # j, the expressions in (4.18) contain a modulated version
of the full velocity distribution, allowing us to extract non-trivial directional information about the
velocity distribution f(v) with multiple detectors separated by distances of order the de Broglie
wavelength, where the integrand in (4.18) exhibits maximal variation. We note that the formalism
we have developed assumes that the velocity distribution is stationary, or at least varies slowly
on timescales compared to the axion coherence time. In Sec. 4.4 we will develop a formalism to
take into account the daily modulation of f(v) through a joint likelihood over multiple data-taking

intervals.

4.2 A Likelihood for Multi-Detector Axion Direct Detection

Having understood the statistics underlying the data collected by multiple detectors, we now out-
line how to incorporate these lessons into an appropriate likelihood. The likelihood will be a simple
generalization of the axion likelihood (generally applicable to wave-like DM) introduced in [80],
and we will closely follow their approach. However, unlike in [80], we work explicitly with the
data as represented in R;, and I rather than the PSD, as the former notation exposes the full set
of multi-detector correlations, as captured by X in (4.16). We will then outline how we can ex-
tract information about the parameters of f(v) using this likelihood, exploiting where possible the
asymptotic Asimov procedure [172] to determine results analytically. In Sec. 4.3 we will then put
the formalism to use in the context of several toy examples designed to highlight where interfer-
ometry opens up new avenues, and build intuition for the more realistic scenarios considered in
Sec. 4.4.

4.2.1 The Multi-Detector Likelihood

As detailed in Sec. 4.1, we imagine we have a data set collected by A experiments, which each
perform a time series of N measurements collected at a frequency f = 1/At of a quantity ¢  a.
The real and imaginary part of the discrete Fourier transform of each experiments data set is con-

structed according to (4.8), and then arranged into a single data set d = {dg, d,...,dy_1}, with
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d;, as given in (4.15). We then define a model M with parameter vector 6 that has nuisance pa-
rameters 6,,,,;s describing the backgrounds in the individual experiments (encapsulated by A\p ;(w))
and signal parameters 6g;, that characterize the axion contribution. For example, O, includes g,
m,, and model parameters that describe the DM velocity distribution f(v). Then, as the data set is

distributed according to a multivariate Gaussian, the appropriate likelihood is given by,

N7 e [3dE 5 (0) - d]
L(dIM,0) = g} V2m)N[EL(0)]

: (4.19)

where |X;(0)] is the determinant of the covariance matrix.

The utility of the likelihood function is that it facilitates inferences regarding the signal param-
eters, Oy, from the data. The ultimate goal of the axion DM program would be to infer a nonzero
value of A, and hence the existence of a coupling between the Standard Model and DM, for ex-
ample g,.~. Taking a frequentist approach to that problem, it is useful to define the following test
statistic (TS) from the profile likelihood:

O(0s,) = 2[In L(d|M, {Opuis, Bsig }) — In L(d| M, {Bris, Osie = O})]. (4.20)

In each likelihood, énuis denotes the value of the nuisance parameters that maximizes the likeli-
hood for the given signal parameters. The TS is then a function of the signal model parameters.
In particular, this means that in the first term in (4.20) the nuisance parameters are uniquely de-
termined at each 6, point by the values which maximize the log likelihood. The second term
in (4.20) is evaluated on the null model 8, = 0, which can be achieved by setting the signal
strength parameter A to zero.

The TS in (4.20) is convenient for quantifying the significance of a putative signal, and we will
use it throughout the following analysis. In App. C.4 we describe a data-stacking procedure which

reduces the data storage requirements for practical applications of our formalism.

4.2.2 Asimov Test Statistic

In order to build intuition for the information accessible to multiple detectors, we will use the Asi-
mov data set [172] to study the asymptotic TS analytically. More precisely, the Asimov analogue
of the TS in (4.20) is the average value taken over data realization,

®(esig) = <®(esig)> ) (4.21)

92



where the expectation value is taken on the data. In order to evaluate the asymptotic TS, it is
convenient to separate the model prediction, which enters through 32, into background and signal

contributions:
X=B+S. (4.22)
Referring back to (4.16), recall that the background is purely diagonal:
1.
B = édlag(/\BJ, /\3717 Cee ABJ\“ )\37/\[). (423)

Using this partitioning of the model prediction, we can then express the TS as follows

1

0=y

— | 3|
k=1

(df B! —=;']dy —In {—D : (4.24)
|Br|

Note that the values of B appearing in this expression are understood as being set to the value re-
quired by the profile likelihood technique. In order to evaluate the Asimov form of this expression,
we only need to evaluate the average on the first term, as the average is taken over the data. This

can be evaluated as follows,
(di [B;' =3 di) =Tr ((didy) [B;' — 3 1]) (4.25)

and then as the data has mean zero, we know the above expected value is simply given by the true

covariance matrix,
(dd}) = Zp(0 = Opuen) = I, (4.26)

Here the truth parameters can be considered as, for example, the parameters one would use when
generating Monte Carlo to simulate expected experimental results. For instance, to estimate the
expected limit, the truth parameters would commonly have A = 0, whereas if we are estimating
our sensitivity to features in f(v), we will take A # 0 in the Asimov data. In this work we are
interested in the latter case, and therefore we will further assume the background has been fixed to

the true value as a result of the profile likelihood technique,

3 =S, + Bi, (4.27)
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where S! is the true signal model and the same B appears in both the Asimov and model predic-
tions. We further assume that the signal is always parametrically smaller than the background,
which is the regime we will be in for any realistic experimental setup.” Implementing these as-

sumptions, the Asimov form of (4.24) is®

N—1
1 _ _
O.) Z Tr ng - 5sk> BklskBkl] : (4.28)
=1

In (4.28) we have a convenient form of the expected TS that is amenable to analytic study.
In the present work, our particular interest is the information contained in f(v) that we can only
access as a result of DM interferometry. As such, it is convenient to evaluate a form of the Asimov
TS, where all parameters except for those that control f(v), as encoded in F;(v) and F;(v) in
(4.18), are set to their true values in the presence of a non-zero signal. If we further assume that
our frequency resolution is sufficiently fine with respect to the scales over which the signal and
background vary, then we can approximate the sum over Fourier components k& with an integral
over frequencies w, or equivalently speeds v = /2w/m, — 2. Under these assumptions, the TS

becomes

Much of the remainder of this work is devoted to studying the implications of this result.

4.2.3 Limiting Cases of Zero and Infinite Separation

We can use (4.29) to confirm basic asymptotic scalings expected for an analysis performed with
DM interferometry. To begin with, the Asimov TS for a single detector with response A and
background g, recalling F;;(v) = 0 and F;(v) = f(v), is given by

By =L / do () (ft(v) — %f(@) - (4.30)

M, v Ay

This expression agrees with the result in [80], which was derived for a single detector when ana-

lyzing the PSD. Importantly, we emphasize once more that (4.30) is only dependent on the speed

"This assumption also ensures the validity of the fixed background being the same in e.g. (4.27) and (4.24); if the
signal is comparable to the background, then varying A will generically alter the background determined by the profile
likelihood technique.

8To derive this result, the following identity is useful: In [M| = TrIn M, for a matrix M.
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distribution, so directional parameters which affect the velocity distribution but not the DM speed
distribution are inaccessible. Before moving on to multiple detectors, we note that the expected
discovery significance, which we denote TS, is given by the Asimov © evaluated at the model
parameters that maximize the likelihood, which are the truth parameters. Setting f(v) = f*(v)

in (4.30) above gives

2 2
TSy, ~ T”/d—”f(”) . 4.31)

2m, voAL

In order to extract directional parameters we need at least two detectors. To that end, consider
our expression in (4.29) for N' = 2. For simplicity, we take A; = Ay = Aand A\g; = A\g2 = Ap,

in which case the Asimov TS becomes

6 = T8 [0 0 (10 - 3100
+750) (Fi50) - 3750 @32)

'S S 1 S
v 730 (F50) - 5750) |
In particular, the discovery TS is given by

TSn=2 =

AT / v f(0)° + Fy(v)* + Fy(v)* (4.33)

2
a v g

Through F7, and F7,, the discovery TS depends on the spatial separation of the two experiments
d = |X12|. In the limit where the experiments are close with respect to the DM coherence length,
i.e. d < )., then the two experiments see the same phase of the DM wave (k- x does not vary
appreciably between them). In this case, we would expect a coherent enhancement in the signal.

Defining for future use

(4.34)

2 2
TS, :}lin%TS _ 2A Tﬂ/d_vf(v)

mg vy

we see from (4.18) that for x12 = 0 we have F{,(v) = f(v) and F}y(v) = 0, s0 TSy = 4TSy~ .
The N? = 4 enhancement of the TS represents a coherent enhancement, a point emphasized
in [228]. This configuration provides a benchmark for the largest TS we can achieve for a gen-
eral NV = 2 configuration, and therefore will provide a convenient benchmark in the studies that
follows. On the other hand, for widely separated detectors with d > ., the DM fields will add

incoherently. For the problem at hand, again returning to (4.18), we see that the sine and cosine
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factors will oscillate rapidly, driving the integrals to zero. What remains is,

lim TS =

d—00 mg

2 2
AT / W IO _ oty (4.35)

2
UG

so that the TS now only scales as A/, an incoherent enhancement.

The above argument can be readily generalized to N detectors. Typically the signal strength
A is proportional to ggw, so for \ experiments all with pairwise separations d < \., we expect
our sensitivity to g, should scale coherently as N 172 1f instead all experiments have d >> A,
the scaling is reduced to N/ 1/4 " and for scenarios outside these two extremes the scaling will be
somewhere in between. However, it is precisely this intermediate regime, where neither F reduces
to the speed distribution nor vanishes, where we expect to be able to extract additional information
about f(v). We turn to the problem of estimating parameters of f(v) in the context of the Asimov

data set in the next section.

4.3 Asimov Parameter Estimation

In this section we will use (4.32) to perform frequentist parameter estimation and show explicitly
that additional information about f(v) can be extracted via DM interferometry. For the purpose
of simplifying the discussion, we will restrict our attention to the case of two detectors with equal
background and detector responses as given in (4.32). However, the entire discussion can be readily
generalized to N arbitrary detectors by using the asymptotic TS expression in (4.29).

To be specific, imagine we are interested estimating a set of signal parameters «, which are a
subset of the full set of signal parameters cv C Oy, related to f(v), and which have true values .
The Asimov procedure allows us to study our ability to infer these parameters. For example, it is
straightforward to confirm that é(a) is maximized for @ = a'.” Beyond the best fit values, we are
interested in determining the associated expected uncertainties and correlations between the vari-
ous parameters, which are encompassed in the covariance matrix between the parameters, which
we denote C. An estimator for this covariance matrix is given by the inverse Fisher information
evaluated at the maximum likelihood, C~! = I(&) (again & are the parameters that maximize the
likelihood), where

I  PhnL(a)  10°0(e)

— = 4.
Z](a) 00@80@- 2 (90@80@‘ ’ ( 36)

where we use (4.20). Given this relation, asymptotically our estimate for the covariance matrix is

9We emphasize that there is no guarantee that other parameters besides o’ cannot also maximize the likelihood.
Indeed we will see exactly this possibility realized in a number of examples considered below.
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given by

[C ™y =— % g @é%) (4.37)
ATt o
2T [ o))

+ (0iF12(0))(9;F12(v) + (0iF72(0))(9;F72(v))] -

This expression involves the following shorthand for derivatives of functions then evaluated at their
truth values, 9; = 0/0q; |ai:a§. The expression in the first line of this result lays bare a simple fact:
if © has no dependence on a particular parameter, for example the incident direction of a DM
stream, or orientation of the Sun’s motion through the DM halo, then the associated entries of the
inverse covariance matrix vanish along with our ability to estimate that parameter. For the case
of a single parameter o, we can readily invert the covariance matrix, and the above expression
simplifies to

-2 _AQTW c 2 s 2
oot =5 [ S [0 PO, Fa0) + (0T ()], @38)

Mg

where again all parameters are evaluated at their truth values after derivatives. We can already
calibrate our basic expectation for parameter estimation from this result. Optimal estimation of
« amounts to maximizing the right hand side of the expression; indeed, as expected, increasing
the signal strength, A, or the integration time, 7', both achieve this. If a parameter can be esti-
mated from the speed distribution f(v) (in other words, 0, f(v) # 0), then that parameter may
be estimated by a detector configuration with d < A\.. However, the true power in the multi de-
tector setup arises for parameters invisible to a single detector, defined by 0, f(v) = 0, but where
0o F13 (v) # 0. In generic cases, such parameters are optimally estimated for d ~ ).

Continuing, let us assume that A\ is independent of frequency, in which case (4.38) becomes

9 2

ot = o | [ 2o [ 2 0w + 0700 + @Fuw]} L @9

expressed in terms of TS, as introduced in (4.34). In particular, this result demonstrates the ex-
pected scaling of o, ~ (TSg)~'/?; the exact details will require a specific f(v) and experimental
configuration. In the following subsections we will continue this line of thinking, demonstrat-
ing in several toy examples that a second detector can lift degeneracies from the single detector
likelihood.
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Figure 4.2: The modified speed distribution, F{,(v), that carries the imprint of DM interferometry.
Here we show the particularly simple example of an isotropic SHM for N = 2 detectors, in which
case the expression is given in (4.40). The result is shown for various choices of the two detector
separation d as compared to the axion coherence length \. = (m,vg)~!, with vy = 220 km/s.
The limiting cases of F7,(v) — f(v) for d < A. and F{,(v) — 0 for d > \. are apparent. For
d ~ )., however, the profile is modulated with the interference inherent in the cross-spectrum.
In this simple case, there is no additional information about the velocity distribution that may be
extracted by having multiple detectors.

4.3.1 The Minimal N’ = 2 Example

We begin our exploration of the above parameter estimation formalism with a simple scenario:
N = 2 detectors measuring DM drawn from an isotropic velocity in the laboratory frame,
4mv?f(v) = f(v). This example is obviously idealized; in reality, the finite boost velocity of
the Sun about the Galactic Center implies that even an isotropic velocity distribution in the Galac-
tic frame will become anisotropic in the laboratory frame. Nonetheless, this example will provide
basic intuition for the impact of interferometry.

Invoking isotropy to perform the angular integrals, ;3 (v) can be computed as

sin(mgvd)

12(v) = f(v) : Ta(v) =0, (4.40)

myvd
where again d is the distance between the two detectors. Thus for this example, we see explicitly
that for d — 0, we have Fi,(v) — f(v), whereas for d — oo, instead F{,(v) — 0. As we will see
in the examples below, it is the dispersion v, rather than the average speed v which determines the

crossover between small and large d.
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To progress further, we assume a concrete form for f(v): the Maxwell-Boltzmann distribution,

2
4v 1)2/1)2

e~V 4.41)
Vg

where vy is the velocity dispersion. Taking vy ~ 220 km/s, this velocity distribution is an ap-

flv) =

proximation to the SHM that is expected to describe the bulk of the local DM, neglecting the finite
velocity boost of the Sun relative to the Galactic Center, which breaks the isotropy in the laboratory
frame. We will utilize the Maxwellian ansatz repeatedly in this work as an illustrative example.
In Fig. 4.2 we show F%,(v) for various choices of d/\.; there is a clear deviation from f(v) when
d ~ M., which is a manifestation of the nontrivial correlations in the multi-detector spectrum. Note
that we have defined, for the Maxwell-Boltzmann distribution, \. = (m4vy) !, where vy is the
velocity dispersion parameter that enters into (4.41); this is a particular realization of (4.1). Antic-
ipating the more general scenario where the velocity distribution is not isotropic, it is precisely the
deviation from f(v) that we will use to extract information about the full velocity profile.

As we have chosen an isotropic f(v), there is no additional information to extract about the
velocity distribution in this case. Indeed, the distribution in (4.41) is defined by a single parameter,

v, which we can envision estimating. Evaluating (4.39) analytically in this case, we find

O'SOTSO . 85
v 9E— 3 +V2(15 + 282 + ENFIE/V2]

(4.42)

written in terms of a dimensionless distance scale { = m,vod = d /)., and Dawson’s integral F'.
We find explicitly that o, is minimized for £ — 0, i.e. d < A, since 0, f(v) # 0.

4.3.2 The Infinitely-Cold Stream

We now consider our first example of an anisotropic velocity distribution, a DM stream, and show
that we can infer the direction of this stream using DM interferometry. In addition to the bulk SHM,
it is expected that the local DM velocity distribution could contain non-virialized substructure,
such as cold tidal streams [80, 175,176, 183,233-241]. Streams are characterized by low velocity
dispersions but large velocity boosts in the solar frame. Let us suppose that in the laboratory frame
the stream is boosted at velocity v, and has velocity dispersion vy < |vg,|. In the limit vy — 0,

the velocity distribution approaches a delta function,

f(v) =0°(v — veu), (4.43)
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which has an infinite coherence length but a finite de Broglie wavelength. This is clearly an artifi-
cial example — it is the maximally anisotropic velocity distribution — but it is one we can evaluate
fully analytically. Further, a number of the conclusions that we will reach for the infinitely-cold
stream will hold also in more realistic cases. Note that for this example f(v) = 0(v — vy, ), which
has no dependence on the direction of the stream, and therefore a single detector cannot infer the
direction.

As claimed, for this simple scenario, we can compute the exact global TS using (4.32), and find
O (Bstrs bstn) = TS0 €08 [Madvsgs (Ve — Viyy) - K] - (4.44)

We consider the TS as a function of the spherical coordinates of our test stream direction, o =
{Ostr, Gstr }» With the aim being to use the TS to infer the true direction of the stream, given by

al = {0, ¢, }. In this case we can also compute TS, as defined in (4.34), and we obtain'”

:24[12211 d str = Ustr
mzz)\B Ustr

(4.45)

Now consider the angle-dependent factor in (4.44). Without loss of generality, we take X1, = Z
and define spherical coordinates with respect to X;o, so that the argument of the cosine in (4.44)

simplifies to

A

< t S t
(Vstr — Vigp) - X12 = €08 Og¢, — cos Oy,

(4.46)

where 0, and 0%, are the usual polar angles in spherical coordinates. Neither azimuthal coordinate

¢ appears in this expression, and hence the azimuthal angles are also absent in the TS. This implies

t

we cannot infer one of the angular coordinates of v,

t
str»

from the data. For our particular choice of
coordinates, we can infer the parameter ¢, , as we will describe below, but the likelihood has a flat
direction in ¢, so that we cannot infer the associated truth value. The degeneracy is physical. In
our coordinates the symmetry of the likelihood is represented by an invariance under changes in ¢,
but more generally the TS is unchanged by rotations about the detector separation axis, X15. This
can be seen from the dependence of the TS on (Vg — V.,,) - X12: any change in the test or true Vi,
that is perpendicular to X1, has no impact.

This symmetry of the TS under rotations around X;5 is in fact not a relic of our idealized
example. Our ability to infer the direction of a velocity parameter vector that defines a given

f(v) enters through the v - x;5 in F73. But as v - x5 is itself invariant to rotations of the velocity

10Note the fact that TS formally diverges, TSy o< 6(0), is an artifact of the stream having a delta-function speed
distribution. The divergence is regulated by the finite dispersion of the stream, as we discuss below.
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about the x5 axis, one can show that this flat direction in the likelihood exists generally — indeed
we will see it in more realistic cases (a direct analogue is apparent in the symmetry observed
in Fig. 4.4, related to the SHM example discussed below). This symmetry will be broken by a
dependence in the likelihood on multiple detector axes that are not parallel, provided either by a
third detector or alternatively by daily modulation, where the single x;5(¢) will vary throughout
the day at different times ¢. We will explore this latter example in detail in Sec. 4.4 — indeed the
optimal detector configuration will be determined by maximally violating this symmetry — but until
then the symmetry will represent a basic feature of the physics.

Returning to our specific coordinate system where X5 = z, we may perform parameter estima-

tion on the angle between the stream and detector. From (4.39), we have

) 2 1 1

g =
%) .
TSy (Mmavsted)? sin? 0%,

(4.47)

Note that the uncertainty on the parameter 6y, is minimized for 6, = 7/2, i.e. when the stream is

str
perpendicular to the two-detector axis. On the other hand, if the two vectors are parallel, 6%, = 0
or 7, then we see gy, diverges. Yet we can still infer 67, in this case. Indeed, looking to (4.46) we
see that the asymptotic TS depends on 6g,; the likelihood is not globally flat, and we can estimate
the angle from contours around the maximum likelihood. Instead, in this case there is a breakdown
of the quadratic approximation around the maximum likelihood. If we were to incorporate higher
derivatives than in (4.37), we would confirm that the likelihood is not truly flat at these points. This

of course should be contrasted with the true flat direction in the likelihood associated with ¢g;.

t

Note, however, that as 0,

approaches either 0 or 7, becoming parallel to x;9, the undetermined
parameter ¢y, is less relevant. In the limit where the two vectors are parallel, we can infer the true
direction of the stream, in spite of this degeneracy.

There is another interesting feature in (4.47): the result suggests that we can take d — oo to
constrain this one direction of the stream to arbitrary precision. This is a manifestation of our
assumption that the stream has no velocity dispersion: it remains coherent over arbitrary large
distances, allowing for an improved baseline over which we can measure the stream direction. To
study this feature further, imagine making this example slightly more realistic by introducing a
finite velocity dispersion vy, with vy < v, such that f(v) has support in a small volume of radius
~ vp around vg,. For small enough vy we would expect the results of the J-function stream to
hold. Yet there is an important conceptual difference: the coherence length is no longer infinite
because the different waves that constitute the local DM field now have speeds that vary by O(vy).
Parametrically, the argument of the interferometric terms scale as m,|v||x1a| ~ md(vst, +O(vo)),
but with the O(vg) term varying between states. If we now take d > (m,vg) !, then the different

waves will add incoherently, suppressing the power. But if we choose d ~ (m,vo) ™!, a degree of
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coherence can be maintained, along with the interference pattern carrying the information we seek
to extract (see also the orange curve d = 2. in Fig. 4.2). Accordingly, for the optimal separation,

the scaling of the sensitivities in (4.47) is (taking sin® #%, ~ 1/2 for definiteness)

str

2 Vo 2 )\dB

~ vV TSO Vstr - RV TS() /\c '

In the more realistic examples we will confirm the conclusion that d ~ A, provides the max-

o) (4.48)

imum sensitivity. There is another consequence of this choice. Taking d = (mqvg)~' in (4.44),
the prefactor of the dot product in (4.46) is v, /vg > 1, by definition of this being a cold stream.
Small variations in (Vg, — V., )-X12 will induce large variations in the argument of the cosine,
implying that the global structure of the TS is highly nontrivial. Although the maximum TS will
be attained at the true 6, there will be a pattern of local maxima with comparable TS (this result is

depicted in Fig. 4.5, and persists even with daily modulation as shown in Fig. 4.7).

4.3.3 The (boosted) Standard Halo Model

The bulk DM halo of the Milky Way is expected to be Maxwell-Boltzmann distributed as in (4.41)
in the Galactic frame, except for a possible cut-off around the escape velocity ~500 km/s [242].
On the other hand, the Sun is boosted with respect to the Galactic frame by [243]

ve ~ (11, 232, 7) km/s , (4.49)

in Galactic coordinates, where X points towards the Galactic Center, ¥ points in the direction of
the local rotation of the disk, and Z points towards the Galactic north pole. Thus in the laboratory

frame (neglecting the Earth’s motion), the velocity distribution becomes that of the SHM,

1 (vave)2 o2
Fv) = Zamgge (450)
0

with a velocity dispersion vy ~ 220 km/s [185, 193]. Note in particular that vy ~ |vg| = va, SO
for the SHM A\, ~ A\gp. The associated speed distribution is

fv) = \/%Z (e (el —1). 4.51)
ove

As we have emphasized many times already, single detectors are only sensitive to the speed distri-
bution, which only depends on v but not the orientation of the solar velocity v. Thus, a single

detector may constrain the model parameters vy and v (as shown in [80]), but determining the
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orientation requires multiple detectors.'!

To determine the expected sensitivity to the direction v, we need to compute the derivatives of
F13'(v) that appear in (4.39):

. Avdvge~ (Ve v _ 200
Do, 12(”)}962% = N /d951n0 exp | ——

Yo
2 2
X [[0 [ 2% $infsin 64 cosfsin b, + I [U—Z@ sin 0 sin 94 sin 6 cos 94 ,
v v

2
0 0

© cos f cos Qg] cos(mgvd cos f)

(4.52)

where I, ; are both modified Bessel functions (an analogous expression holds for F7,). In com-
puting this result we have again chosen coordinates X;5 = z, but left the direction of v, arbitrary,
defined by (0%, ¢%). The most important feature of this result is that it exhibits no dependence
upon ¢L: again, there is a symmetry in the likelihood for rotations around X;,. Beyond this, we
can also see that the derivative vanishes when vy, is parallel to the detector separation (6%, = 0).
Accordingly, in this case we will find o, diverges, as we did for the stream. But again this is not a
global flat direction in this case; the likelihood is just sufficiently flat at the maximum that the first
three derivatives vanish.

To proceed beyond these analytic insights, we will compute the remaining results numerically.
We define the angle between v, and x5 as . To begin with, we take a generic value of 0%, = /4
and consider how well we can infer this angle as a function of detector separation. The results are
shown in Fig. 4.3. Unlike for the J-function stream, there is now a minimum at a finite value of
d, and as argued on general grounds this occurs when d ~ X\, = (m,vy)~'. That the uncertainty
diverges for d — 0 is consistent with the fact that a single detector cannot infer this direction.
In more detail we find the minimum occurs at d ~ 2\., where we obtain oy, ~ 2/ V/TS,. For
example, if TSy = 25, corresponding to a 5o local significance detection with d = 0, then at
the distance d ~ 2\, corresponding to minimum uncertainty, the solar velocity direction with
respect to the detector axis could be localized to 0.4 rad ~ 20° on the sky. We can understand
the magnitude of oy, at its minimum from (4.48): the SHM has the form of a stream where vy ~
Ustr = Vg, and therefore we would expect og, x /TSy ~ 2, exactly as observed.

However, as we have emphasized already, it is important to keep in mind that our estimate
of oy, is a measure of the expected curvature of the likelihood in the vicinity of the true value
and does not capture the global structure of the expected likelihood function. To illustrate these
features we fix d = 2. for definiteness and illustrate the global map é(QQ, ¢6)/ TSy in Fig. 4.4,
for three different values of 6. Note that we have divided out the overall significance TSy, so that

exactly how well we can localize the direction will depend on how significantly the DM signal

"In principle annual modulation may be used by a single detector to infer V), as discussed in [80, 183].
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Figure 4.3: The expected uncertainty on the angle between the detector axis and solar velocity,
0, = arccos(Vg - X12), as a function of d/\. = d X m,vg. In this example we have set the true
orientation to 6% = /4. With this configuration, we find that the maximum precision is obtained

for d ~ 2.

has been measured. However, the expected global structure of the TS will be a rescaled version
of these maps. In each case the true v, that we are seeking to infer is located in the center of
the Mollweide projection maps. The left panel illustrates the scenario with X5 = v (05 = 0),
the center has 0, = 7 /4, while in the right panel two directions are perpendicular and x5 points
between the poles of the map (0, = 7/2). In all cases the symmetry of the TS around the x5 axis
is apparent. The only case where this flat direction in the maximum TS is not an obstruction to
determining the true direction of v is when 6; = 0. In that case we are still able to localize the
true direction, although we note the likelihood is relatively flat around the maximum (consistent
with the second derivative vanishing). In Sec. 4.4 we illustrate how daily modulation generically

allow us to fully determine both of the angles associated with the direction of v,.

4.3.4 The Sagittarius Stream

As a final example working with a single static X;», we return to the case of the cold stream
with non-vanishing velocity dispersion. We expect many of the conclusions reached in Sec. 4.3.3
to hold in this case. In particular, the symmetry around the X, axis will remain, but we will
see explicitly in this case the non-trivial structure induced in the global likelihood by the ratio
of vg/vstr ~ Aag/Ae > 1. To make the example concrete, the DM component of the Sagit-
tarius stream may extend to the Sun’s location, and estimates [194, 244] suggest that it could
make up ~5% of the local DM density. However, the DM associated with the stream would be
highly collimated in phase space; we follow [80] and model the Sagittarius stream DM veloc-

ity distribution by a boosted Maxwellian as in (4.50), but with vy = 10 km/s and v, replaced
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Figure 4.4: (Left) A Mollweide projection of the Asimov test statistic (:)(9, ¢) for the SHM divided
by the co-located detection significance T'Sy. The detectors are configured so that the displacement
vector between them is parallel to the SHM boost velocity, and the Mollweide plot is rotated so that
it is centered on the maximum test statistic. (Center) As on the left, but for a detector configuration
where the displacement vector is at a 45° angle to the North (¢, = 7/4) with respect to the SHM
boost velocity. (Right) As on the left, but for a detector configuration where the displacement
vector is perpendicular to the SHM boost velocity (6%, = 7/2). In this configuration the location
of the boost velocity can only be localized to a great circle on the celestial sphere.

by vi, = (0,93.2,—388) km/s [175, 176]. We consider the stream in isolation, as opposed to
in conjunction with the bulk SHM DM phase-space distribution, because even though the stream
component is sub-dominant in terms of DM density, it still dominates in the narrow region of phase
space where the Sagittarius stream has compact support. To simplify the discussion we will simply
take vy, = 400 km/s, with a direction that we will again specify by its angle with respect to the de-
tector axis (given the degeneracy in rotations about that axis). Note that this example could apply
equally well to other putative DM streams, such as the newly discovered S1 stream [239-241].

To begin with, in the left panel of Fig. 4.5 we show the expected uncertainty on the recovered
angle between the stream and detector, ,, as a function of the distance in units of \. = (mavo)_l,
for a true value 0, = 7/4. This figure is the stream analogue of what we showed for the SHM
in Fig. 4.3. Once more, following the general discussion in Sec. 4.3.2, the optimal sensitivity is
achieved for d ~ ., and from (4.48), we expect gy, X VTSy ~ 2 /Vstr ~ 0.05 at the minimum-
uncertainty distance, compatible with what we see in Fig. 4.5.

However, just like in the case of the SHM it is important to also examine the global properties
of the TS in addition to the curvature of the expected TS at the true parameter values. Towards
that end, on the right of Fig. 4.5 we show the expected TS é, normalized to TSy, as a function
of the reconstructed angle between the stream and detector, 6. For this figure we have fixed the
true orientation at 0%, = 7/4 along with the separation d = 2).. We see that ) drops off quickly
around the true value of g, = m/4 (vertical dashed), but that there is non-trivial structure with
local maxima at larger and smaller 6, values. This is a direct manifestation of the non-trivial

interference patterns discussed in Sec. 4.3.2 for cold streams: the large ratio vy, /vg enters into the
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Figure 4.5: (Left) As in Fig. 4.3, but for the Sagittarius (SGR) stream rather than for the SHM. As
before, the maximum precision for the inferred value of 6, is achieved at m,vyd ~ 2, although the
overall dependence is somewhat softened outside of the extremes at m,vod = 0 and m,vod = 27.
The values of gy, x /TS are also considerably smaller than those found in the SHM example,
indicating that the angle 6, can be reconstructed with much greater precision for the SGR stream
as compared to the SHM. (Right) The Asimov TS O (0, ) for the SGR stream rescaled by the co-
located detection significance TSy as a function of 6y, for a detector configuration where the true
stream direction is 0, = 7/4 (dashed vertical line). We have fixed m,vod = 2. The TS O (6y,)

str
is maximized at the true value of f,, but there is considerable nontrivial global structure with a

large number of local minima and maxima in O.

argument of the trigonometric functions in F73 (v).

4.4 Daily Modulation

One of the most dramatic signatures of DM interferometry is the unique daily modulation signal
available to multiple detectors. This effect, which we describe in the current section, would be a
smoking gun signature that an emerging excess has a DM origin, and it also allows two detectors
to better determine geometric parameters describing the velocity distribution. The basic idea is
simply that for two detectors fixed at generic locations on the surface of the Earth, the separation
vector x5 is rotating in the inertial Galactic frame throughout the day. This is in contrast to
the angular parameters entering in the DM velocity distribution, such as the Solar direction v,
which should always point in the same Galactic direction, regardless of the orientations of the
detectors at any point in time on Earth. The rotation of x;5 with respect to the fixed v implies
that we will sample a variety of angles between the two vectors, and therefore vary the modulation
of the speed distributions in 73 (v), as already depicted in Fig. 4.1. Critically this will lift the
flat direction in the maximum likelihood associated with rotations around x;, that we observed

repeatedly in Sec. 4.3: as the likelihood will now depend on a collection of different vectors x5 (t)
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, the symmetry that exists around any one of them will not be preserved in the full TS.

In the rest of this section we divide the discussion into three parts. Firstly, we describe how
to construct the likelihood for the generic case of A/ detectors incorporating daily modulation and
describe how it is straightforward to generalize our full formalism to this case. We then focus on
the specific case of NV = 2 and show, within the Asimov formalism, how the examples of the SHM
and Sagittarius stream discussed above are modified in the presence of daily modulation. Finally,
we turn to a Monte Carlo simulation of a realistic example and demonstrate how, within a day, a
resonant experiment could constrain the direction of the solar velocity vector, v, that controls the

SHM to sub-degree accuracy.

4.4.1 A Likelihood with Daily Modulation

So far in this work, we have envisioned a set of A experiments collecting measurements of the
signal-plus-background frequency spectra for a duration of time 7" while the detector separations
were fixed with respect to the boost velocity of the DM component under consideration. However,
this framework cannot be extended to the case of daily modulation, as the signal prediction will
fundamentally be varying over a 24-hour period. In order to properly account for this effect, the
data must be collected in time intervals of duration 7" < 24 hours and analyzed with a joint
likelihood over all the collected intervals. In detail, if we imagine that we collect M such time
intervals, indexed by r = 0, 1, ..., M —1, then for each of these we will have a data set d, = {dj,},
where again k labels the Fourier mode. For each data set d,., we can compute the likelihood as in

(4.19), and the full joint likelihood is the product of these over r. Explicitly, we have

M—-1 M—-1N— lexp Z (0> dkr
LdM,0) =[] cdIm,6)=T] |1 2 M }. (4.53)
r=0 r=0 k=0 7T |Ek ( >|

Importantly, note that we have also attached an index  to the signal prediction 3(0), as we need
to account for the variation of the detector separations x;; throughout the day.

In a similar fashion the full formalism of Secs. 4.2 and 4.3 can be extended to include the varied
detector orientation: within a given sub-interval we simply adjust x;; as appropriate, and then
we form joint quantities by combining these as in the likelihood above. To provide just a single
illustrative example, the Fisher information computed in (4.36), would become

= 9%0, ()

Lij(o) = 3 Z Donda, (4.54)
0

with other expressions similarly generalized.
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4.4.2 Asimov Examples with Daily Modulation

East-West North-South
N ] N ]
0.26 O(6, ¢)/TSy 0.68 0.26 O(6, ¢)/TS, 0.68

Figure 4.6: As in Fig. 4.4, we construct Mollweide projections of the Asimov test statistic ©(6, ¢)
for the SHM rescaled by the co-located detection significance T'S;. However, we now perform
a joint likelihood over data collected over a 24-hour period so that the daily modulation of the
detector displacement vector produces a time-varying signal, which helps break degeneracies in
the reconstructed directional parameters. The Mollweide projection for a configuration in which
the detectors are oriented along an East-West (North-South) orientation is shown on the left (right).
While the results of obtained in an East-West configuration do not depend on the latitude of the
detectors, the North-South configuration results do, so for definiteness, we have taken the detectors
to be located in New Haven, CT, the site of the HAYSTAC detector. In both configurations, the
SHM boost velocity direction can be localized effectively, although there remains a non-trivial
degeneracy in the East-West map between two points on the sphere.

While the alteration to our formalism imposed by daily modulation is minimal — as exhibited in
(4.53) — the impact on the results can be dramatic. We will demonstrate this with several examples
in this section, all within the Asimov formalism. To begin with, we consider using N' = 2 detectors
in order to determine the direction of v in the SHM. This is the same problem we considered
in Sec. 4.3.3, which produced the results shown in Fig. 4.4, where there is a clear degeneracy
associated with rotations around x;5,. We will now see explicitly that daily modulation helps lift
this degeneracy. To do so, let us suppose that the DM velocity distribution follows the SHM in
(4.50), with v9 = 220 km/s and ve = 232 km/s. Our goal, as previously, will be to infer the
direction of v,. We consider two detectors separated by d = 2\, = 2/(m,vy), and for definiteness
we place one detector at a latitude 41.3° N and longitude 72.9° W. In Fig. 4.6 we show results where
a second detector is placed a distance d to the East (left) or North (right) of this detector with data

stacked at two-hour intervals over the 24-hour period.'> For the North-South configuration, we

2Note that since the Earth’s rotation is aligned with the East-West direction, results obtained for the East-West
configuration are independent of the exact experimental locations, so long as the detector separation is much smaller
than the Earth’s radius of curvature. For any other configuration, however, the result will generically depend on
latitude.
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see that the direction can be well-localized: a high significance axion detection in this case would
lead to a precise estimation of the direction of v, as we show explicitly in Sec. 4.4.3 below. This
configuration clearly outperforms an East-West configuration, where there remains a degeneracy
that has not been fully lifted by the daily modulation. Additionally, the maximum test statistic
realized in the North-South configuration would be approximately 10% larger than one realized in

an East-West configuration for otherwise identical data collections.

East-West North-South
[ — ] [ ]
0.05 0(0,6)/TSo 0.62 0.05 0(0,6)/TSo 0.68

Figure 4.7: As in Fig. 4.6, but for the Sagittarius stream example. For a fixed axion mass, the
physical detector separation d = 2\, is a factor of 20 larger than in Fig. 4.6 because of the larger
coherence length of the stream. While there are many local maxima in both configurations, the
North-South orientation produces only a single global maximum, at the true detector localization,
while the East-West orientation leads to two degenerate global maxima (one at the true detector
location and the other displaced). An animated version of these figures, showing how the local-
ization improves throughout the day as more orientations of x;5 are sampled, can be found at
github.com/joshwfoster/DM _Interferometry.

Using the same experimental design, we can also revisit the example of the Sagittarius stream
discussed in Sec. 4.3.2. In Fig. 4.7 we construct the analogue of Fig. 4.6, but now for the much
colder stream. Note that since vy for the stream is a factor of ~ 20 smaller than for the SHM,
the optimal detector distance d = 2\, is a factor of 20 larger than in Fig. 4.6. Although in both
configurations the TS is maximized at the expected location on the sphere, nontrivial structure
due to the presence of many local maxima are apparent in both the North-South and East-West
configurations. We note that, as in the SHM example, there is only one global maximum for the
North-South configuration, located at the true direction of the stream. However, there remains a
degeneracy in the East-West configuration.

The degeneracy represented in the Mollweide maps for the SHM and the Sagittarius stream in
the East-West configuration is exact. It has its origin in the dimensionality of the space swept out by
the detector separation vector x5 over the course of the day. As studied in Sec. 4.3, for data taken

at fixed x;9, the test statistic @)(\7) evaluated as a function of the orientation of the boost velocity
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depends only on the angle between v and xy5. As a result, ©(v!) = ©(¥) where v' is the true
boost direction and v’ is a velocity obtained by reflecting v! across any plane which contains x1.
For detectors in an East-West configuration, the Earth’s rotation produces a daily modulation of
X 19 that is confined to the plane orthogonal to the Earth’s rotational velocity vector. As a result, the
TS measured at each point in the day, and therefore the sum of such TSs, will be exactly preserved
under reflections of the boost velocity across that plane. This means that accounting for daily
modulation in the East-West configuration the directional parameters can only be determined up to
a reflection across the plane perpendicular to the Earth’s rotation axis. By contrast, for detectors
in the North-South configuration, the set of detector separation vectors throughout the day will

generically not be co-planar, and thus there is no analogous degeneracy.!?

4.4.3 Monte Carlo Example with Daily Modulation

As a realistic demonstration of our ability to perform parameter estimation using the daily modu-
lation effect, we generate a Monte Carlo realization of data in the North-South SHM scenario (as
depicted in the right panel of Fig. 4.6) using A = 38.25 and Ap = 1, both of which we take to be
dimensionless without loss of generality. The values of A and m, was chosen to generate a signal
of expected 50 significance during a 100-second collection in a single detector to mimic a realistic
resonant scanning strategy in which one of two independently operated detectors detects an excess
and both are then used for a 24-hour observation of the excess candidate. We constructed 24 hours
of Monte Carlo data for this signal, taking a detector separation of d = 2\.; with these parameters,
the excess would be expected to appear at T'Sy ~ 60, 000 after 24 hours. While large, this TS is
consistent with the power of a resonant strategy once the axion mass is known.

Using uniform priors on A between [33, 43|, on v, between [212.5, 252.5] km/s, on vy between
[200, 240] km/s, on Ap between [.999, 1.001] and a uniform prior on the sphere for (0, ¢ ), we
construct a Bayesian posterior distribution for the model parameters. The results of an analysis
performed using Multinest [202,245-247] with 2,000 live points are shown in Fig. 4.8. In particu-
lar, we see that the true location of the stream has been located to degree precision. This precision
can be understood from (4.48), which gives the expectation o, ~ 0.5°, consistent with what is
shown in the figure. Let us suppose that the Sagittarius stream, as modeled in this work, comprises
10% of the local DM. In the example above, we would expect that after 24 hours the location of
the stream could be localized to ~ 10’; interestingly, this represents greater accuracy for stream lo-

calization than localization of the bulk SHM even though the stream is a sub-dominant component

13 An exception occurs if the two detectors have the same longitude and equal and opposite latitudes (i.e., opposite
sides of the equator on the same line of longitude). An extreme example would be having one detector at each pole.
Then, x5 is parallel to the rotation axis of the Earth and does not change direction throughout the day. Consequently,
daily modulation provides no additional information, and the full degeneracy that was present throughout Sec. 4.3
returns.
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Figure 4.8: The posterior distribution for a model with daily modulation where the signal strength
is at the threshold of an expected 50 detection for a 100 second observation with a single detector.
Monte Carlo data is generated for 24 hours of data collection with two detectors separated along
the North-South direction by a distance with 2 x (m4vo)~!. The true parameters are indicated in
blue, with the 1o confidence intervals on the parameter estimations are indicated by the dashed
black lines in the single-parameter posteriors. The two parameter posteriors show the 1o and 20
contours. On the left, we display the posterior distributions for the overall signal strength, the boost
speed of the SHM, and the velocity dispersion of the SHM, all of which are parameters accessible
in a single detector configuration. On the right, we display the posterior distributions for the angles
Abg = 0 — 0L and A¢ge = ¢ — ¢, which specify the orientation of SHM boost velocity and
are only accessible in a multiple-detector configuration. Both 6, and ¢, are determined at degree
precision in this scenario.

of the DM.

4.5 Conclusion

In this work we have demonstrated the power of DM interferometry for wave-like DM. The spatial
coherence of the DM field imprints phase correlations on the signals observed at spatially-separated
detectors, and these phase correlations are sensitive to parameters in the full 3-dimensional velocity
distribution f(v), whereas a single detector is blind to all effects beyond the speed distribution
f(v). As aresult, the advantages of DM interferometry go beyond a simple coherent enhancement

of the signal strength as the number of detectors is increased. By taking advantage of the fact
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that the correlation matrix of the Fourier-transformed signals at multiple detectors depends on
modified speed distributions which contain modulated forms of f(v), we have demonstrated that
parameters such as the solar velocity vector may be reliably extracted from two detectors separated
by a distance d ~ \.. Furthermore, directional parameters of coherent substructure such as DM
streams may be estimated at even higher significance, though in that case the optimal separation
A 1s parametrically different from the DM de Broglie wavelength A4p.

Our formalism has immediate practical applications for new and upcoming axion DM experi-
ments. The sensitivity to g, for resonant-cavity axion experiments which use external magnetic
fields, like ADMX and HAYSTAG, is typically BV/2, where B is the peak magnetic field strength

and V' is the magnetic field volume. In order to achieve resonant enhancement, the volume of an
3

individual cavity is fixed to be of order 1/m?, so to achieve greater sensitivity, one must either
increase the B-field or construct a multiplexed readout with multiple cavities. Assuming the latter
strategy is chosen, our results motivate placing at least one of the cavities at a distance \.: if a
signal is detected, the loss of coherent enhancement of the signal is more than compensated by the
ability to localize the boost direction of the DM velocity distribution to within 1 degree with just
24 hours of data.

While there are many challenges to the construction of additional instruments, we emphasize
that all of the important phenomenology is captured by a two-detector array. This smoking-gun
signature of DM is invisible to a multiplexed setup where all cavities lie inside a single coherence
length. A similar analysis applies to experiments in the quasistatic regime like ABRACADABRA
and DM-Radio, where the physical volume of the experiment is decoupled from m,. For both types
of experiments, our formalism may be applied to determine the optimal detector orientation for
localizing the solar velocity to the desired precision (with North-South orientations generally being
preferred to East-West). The optimal detector separation corresponds to physically reasonable
distances for well-motivated axion masses — O(10) m for the 107 eV mass range of ADMX and
HAYSTAC and O(1000) km for the 107 eV targeted by ABRACADABRA/DM-Radio — and as
such the coherence length and detector orientation can form an important design parameter for
future experiments, in much the same way as L/F determines the design of neutrino oscillation
experiments.

The future of axion detection involves readout beyond the standard quantum limit, using tools
such as Josephson parametric amplifiers and squeezed states. In this regime, it is important to
note that our variables Rj and [, are canonically conjugate, and thus cannot be simultaneously
measured to arbitrary precision. In future work, we plan to investigate how our formalism must be
modified for quantum-limited readouts. As the number of new axion experiments proliferates, this

work motivates careful consideration of the spatial configuration of multiplexed detectors.
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CHAPTER 5

First Results from ABRACADABRA-10 cm

The particle nature of dark matter (DM) in the Universe remains one of the greatest mysteries of
contemporary physics. Axions are an especially promising candidate as they can simultaneously
explain both the particle nature of DM and resolve the strong-CP problem of quantum chromo-
dynamics (QCD) [38, 43-46, 86]. axion-like particle (ALP) are generically expected to have a

coupling to electromagnetism of the form [190]
1 ~
LD _ZlgawaFquW = Jaya E-B, (5.1

where ¢, 1s the axion-photon coupling. The QCD axion is predicted to have a narrow range of
couplings proportional to the axion mass, while a general ALP may have any ¢,,.. In this work,
“axion” refers to a general ALP. axion dark datter (ADM) with mass m, < 1eV behaves today
as a classical field oscillating at a frequency f = m,/(27) [46,86]. The Lagrangian (5.1) implies
that a time-dependent background density of ADM modifies Maxwell’s equations. In particular, in
the presence of a static magnetic field By, ADM generates an oscillating magnetic field, B, as if

sourced by an effective AC current density parallel to By [59],

Jeﬂ = GayyV ZPDMBO COS(mat). (52)

Here ppy is the local DM density, which we take to be 0.4GeV/cm® [248, 249]. The
ABRACADABRA experiment, as first proposed in [71], is designed to search for the axion-
induced field, B,, generated by a toroidal magnetic field (see also [147] for a proposal using a
solenoidal field). ABRACADABRA searches for an AC magnetic flux through a superconducting
pickup loop in the center of a toroidal magnet, which should host no AC flux in the absence of
ADM. The time-averaged magnitude of the flux through the pickup loop due to B, can be written
as

|uf* = g2, oMV ?G? Bl = A, (5.3)

max
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where V' is the volume of the toroid, G is a geometric factor calculated for our toroid to be 0.027
[82], and B,,.y is the maximum B-field in the toroid. The pickup loop is read out using a SQUID
current sensor, where an axion signal would appear as a small-amplitude, narrow (Af/f ~ 1079)
peak in the power spectral densitie (PSD) of the SQUID output at a frequency given by the axion
mass. The present design uses a simplified broadband readout, but the same approach can be
significantly enhanced using resonant amplification and recent developments in powerful quantum
sensors [221,250], which is the subject of future work.

In this Letter, we present first results from ABRACADABRA-10 cm, probing the axion-photon
coupling g,,, for ADM in the frequency range f & [75kHz, 2MHz], corresponding to axion
masses m, € [3.1 x 10719 8.3 x 1079 eV. This mass range is highly motivated for QCD
axions, where the axion decay constant lies near the GUT scale and is easily compatible with pre-
inflationary Peccei-Quinn (PQ) breaking in a variety of models, including grand unified theories
[251] or string compactifications [51,52], and such low-mass axions may be favored anthropically
[252]. Additionally, such light ALPs may explain the previously-observed transparency anomaly
of the Universe to TeV gamma-rays [253-256], though in this case the ALP is not required to be
DM. Recently, this mass range has gathered significant experimental interest [58,71,76, 147,222,
224,257] to name a few, or see [56] for a comprehensive review. Furthermore, this mass range is
highly complementary to that probed by the ADMX experiment [67,258,259], HAYSTAC [260—
262], which probe m, ~ 1076—1075eV. Our result represents the most sensitive laboratory search
for ADM below 1 peV, is competitive with leading astrophysical constraints from CAST [263],
and probes a region where low-mass ALPs which can accommodate all the DM of the universe
without overclosure [264-268], as well as particular models of QCD axions with enhanced photon
couplings [169,269]. Aside from the ALP models currently being probed, this result is a crucial
first step towards a larger-scale version of ABRACADABRA sensitive to the smaller values of g,
relevant for the typical QCD axion models in the mass range where axions can probe GUT-scale

physics.

5.1 Magnet and Cryogenic Setup

ABRACADABRA-10cm consists of a superconducting persistent toroidal magnet produced by
Superconducting Systems Inc. [270] with a minimum inner radius of 3 cm, a maximum outer
radius of 6 cm, and a maximum height of 12 cm. The toroidal magnet is counter-wound to cancel
azimuthal currents; see [82] for details. We operate the magnet in a persistent field mode with a
current of 121 A, producing a maximum field of 1T at the inner radius. We confirmed this field
with a Hall sensor to a precision of ~ 1 %. Due to the toroidal geometry of the magnet, the field in

the center should be close to zero (in the absence of an axion signal).
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Figure 5.1: Left: Rendering of the ABRACADABRA-10cm setup. The primary magnetic field
is driven by 1,280 superconducting windings around a POM support frame (green). The axion-
induced field is measured by a superconducting pickup loop mounted on a PTFE support (white).
A second superconducting loop runs through the volume of the magnet to produce a calibration
signal. All of this is mounted inside a superconducting shield. Right: Picture of the exposed toroid
during assembly.

To reduce AC magnetic field noise, we use both magnetic shielding and vibrational isolation.
The toroid is mounted in a G10 support inside a tin-coated copper shell which acts as a magnetic
shield below 3.7 K, when the tin coating becomes superconducting. The toroid/shield assembly
is thermalized to the coldest stage of an Oxford Instruments Triton 400 dilution refrigerator and
cooled to an operating temperature of ~ 1.2 K. The weight of the shield and magnet is supported
by a Kevlar string which runs ~2 m to a spring attached to the top of the cryostat. This reduces the
mechanical coupling and vibration between the detector and cryostat.

We measure AC magnetic flux in the center of the toroid with a solid NbTi superconducting
pickup loop of radius 2.0 cm and wire diameter 1 mm. The induced current on this pickup loop is
carried away from the magnet through ~ 50 cm of 75 um solid NbTi twisted pair readout wire up
to a Magnicon two-stage SQUID current sensor. The 75 ym wire is shielded by superconducting
lead produced according to [271]. The majority of the 1 mm wire is inside the superconducting
shielding of the magnet, but about 15 cm is only shielded by stainless steel mesh sleeve outside the
shield.

The two-stage Magnicon SQUID current sensor is optimized for operation at < 1 K; we operate
it at 870 mK. The input inductance of the SQUID is L;,, ~ 150 nH and the inductance of the pickup
loop is L,, =~ 100 nH. The SQUID is operated with a flux-lock feedback loop (FLL) to linearize the
output, which limits the signal bandwidth to ~ 6 MHz. We read out the signal with an AlazarTech
ATS9870 8-bit digitizer, covering a voltage range of 40 mV. The digitizer is clocked to a Stanford
Research Systems FS725 Rb frequency standard. In order to fit the signal into the range of our
digitizer, we filter the signal through a 10 kHz high-pass filter and a 1.9 MHz anti-aliasing filter
before sending it to the digitizer.
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Figure 5.2: Flux spectrum averaged over the the data used in this analysis. (a) The spectrum
over the frequency range 11kHz < f < 3 MHz, corrected for the pre-digitizer filters (blue). For
comparison, we also show the digitizer noise floor, corrected for pre-digitizer filters (gray) and
the characteristic SQUID flux floor (green dashed). The axion search range is between the dotted
black lines. (b) A zoomed view of the 10 MS/s spectrum (blue) with Af = 100mHz and and
an example axion signal at the 95% upper limit (red dashed). (c) A zoomed view of the 1 MS/s
spectrum with A f = 10 mHz. Note that the digitizer data was collected at a different time from
the SQUID data, and shows a few transient peaks that are not present in the SQUID data.

To calibrate the detector, we run a superconducting wire through the volume of the toroid at
a radius of 4.5 cm into which we can inject an AC current to generate a field in the pickup loop,
similar to what we expect from an axion signal. The coupling between the calibration and pickup
loop can be calculated from geometry to be ~50 nH. We perform a calibration scan to calculate
the end-to-end gain of our readout system. Our calibration measurements indicate that our pickup-
loop flux-to-current gain is lower than expected by a factor of ~ 6. We determined this to be likely

due to parasitic impedances in the circuit, and we will address this issue in future designs.

5.2 Data Collection

We collected data from July 16, 2018 to August 14, 2018, for a total integration time of T}, =
2.45 x 10%s. The data stream was continuously sampled at a sampling frequency of 10 MS/s for
the duration of the data-taking period. After completing the magnet-on data run, we collected two
weeks of data with the magnet off, but otherwise in the same configuration.

During data taking, the data follow two paths. First, we take the discrete Fourier transform
(DFT) of individual sequential 10 s buffers of 10® samples each to produce a series of PSDs. These
are accumulated together to produce an average PSD, called gy, with a Nyquist frequency of
5 MHz and a frequency resolution of A f = (10s)~! = 100 mHz. In the second path, the streamed
data are decimated by a factor of 10, to a sampling frequency of 1 MS/s, collected into a 100 s buffer
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of 10® samples, then transformed and compiled into a similar running average PSD, Fiy;, with
Nyquist frequency of 500kHz and Af = (100s)~! = 10 mHz. The 1 MS/s data stream is further
decimated in real time to a 100 kS/s stream and written directly to disk. This can be transformed
offline to produce Figox, with a Nyquist frequency of S0kHz and A f = 1/T;,; ~ 408 nHz. We do
not use Fgox for the present search. All DFT transforms are taken with the FFTW3 library [272].

The Fiom spectra are written to disk and reset after every 80 averages; each stored spectrum
thus covers a period of 800s. This allows us to separate time-dependent noise signals from a
constant axion signal. Similarly, the Fyy; spectra are written to disk and reset every 16 averages,
and cover a period of 1600s. Figure 5.2 shows the full Fjq\ spectrum as well as close-ups of the
Fium spectra, converted to pickup loop flux spectral density using the calibration measurements.

Each of the Figy, Fiv and Figox spectra have a usable range limited by the Nyquist frequency
on the high end, and the frequency resolution required to resolve a potential axion signal on the
low end. With our sampling frequency and integration times, we could perform a search over the
range from 440 mHz — 5 MHz with enough resolution that a potential signal would span 5 — 50
frequency bins (assuming a typical ADM velocity of ~ 220 km/s), though in practice our search
range is limited by the signal filters.

We observed large 1/ f-type behavior below ~20kHz, with broad noise peaks extending up to
~100 kHz. This noise is strongly correlated with vibration on the top plate of the cryostat up to the
highest frequency measured by our accelerometer, ~ 10 kHz [82]. We believe that the tail of this
noise continues up to higher frequencies before becoming sub-dominant to the flux noise of the
SQUID above 100kHz. This noise degrades our sensitivity at lower frequencies and we restrict
our search range to 7HkHz < f < 2 MHz.

For ~1 week after starting the data collection, we observed very narrow and variable noise
peaks in the PSD above ~ 1.2 MHz. We are investigating the source of these peaks. After about
a week, these peaks died away slowly and did not return until we re-entered the lab to refill an
LN, dewar, then died away again after a few days. The affected time periods were removed and
account for a ~30% decrease in our exposure. We hope that in the future, a more detailed analysis

will allow us to recover a significant fraction of this lost exposure.

5.3 Data Analysis Approach

Our data analysis procedure closely follows the method introduced in [80]. Our expected signal is
a narrow peak in the pickup loop PSD, with a width Af/f ~ 107 arising from the DM velocity

dispersion. When averaged over NV,,, independent PSDs, the signal in each frequency bin £ (f)
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will follow an Erlang distribution with shape parameter /V,,, and mean

A T® fr > ma /27,

s = R N (5.4)

O fkgma/zﬂ'?

where A is defined in Eq. (5.3). We assume f(v) is given by the Standard Halo Model, with
velocity dispersion vy = 220km/s/c, and v,ps = 232 km/s/c the DM velocity in the Earth frame
[273], with ¢ the speed of light. With the DM density and velocity distribution specified, the only
free parameter in the predicted signal rate is go.--

We expect our background noise sources to be normally distributed in the time domain, such
that when combined with an axion spectrum, the resulting PSD data is still Erlang-distributed.
Accordingly, our combined signal-plus-background model prediction in each frequency bin is an
Erlang distribution P(Fy; Nayg, /i) With shape parameter N, and mean py, = s + b (see [80] for
details). Although the background PSD varies slowly with frequency, the axion signal for a given
mass is narrow enough that we restrict to a small frequency range and parameterize the background
as a constant b across the window. We verified that the results of our analysis were not sensitive to
the size of the window chosen.

We performed our analysis on the Fjgy and Fjy; spectra over frequency ranges 500 kHz to
2 MHz and 75 kHz to 500 kHz, respectively. We chose the frequency at which we transition from
one set of spectra to the other so that the axion signal window is sufficiently resolved everywhere,
though we have seen that the exact choice has little effect on the final result. We rebin the Fiom
(Fim) spectra in time into 53 (24) spectra that cover 32,000 s (64,000s) each. This was done to
speed up processing time, though it is not necessary for our analysis approach.

We test for an axion signal at mass m, and coupling strength A by constructing a joint likelihood
of Erlang distributions over the 53 (24) Fion (Fin) given the observed PSD data [80,82]. For each
axion mass, we assign a unique background nuisance parameter to each of the rebinned From (Fin)
spectra and profile over the joint likelihood to construct the profile likelihood for A at that mass.
This accounts for the possibility that the background level might change on timescales of hours to
days.

To detect an axion signal, we place a 5o threshold on a discovery test statistic (TS). To eval-
uate this we first calculate the profile likelihood ratio A\(m,, A), at fixed m,, as the ratio of the
background-profiled likelihood function as a function of A to the likelihood function evaluated at
the best-fit value A. From here, we define TS(m,) = —2log A(my, 0) for A > 0 and zero oth-

erwise. This quantifies the level at which we can reject the null hypothesis of A = 0. The 5o
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Figure 5.3: The limit on the axion-photon coupling ¢,,, constructed from ABRACADABRA-
10cm data described in this work. We compare the observed limit, which has been down-sampled
in the number of mass points by a factor of 10* for clarity of presentation, to the expectation
for the power-constrained limit under the null hypothesis. This down-sampling excludes the 87
isolated mass points vetoed in the discovery analysis; further details will be presented in [82].
Additionally, we show the astrophysical constraint on ¢, in this mass range from the CAST
helioscope experiment [263]; the region above the grey line is excluded.

condition for discovery at a given m, is TS(m,) > TSipresh, Where [80]

_7 2
2.87 x 10 )} 5.5)

TSthresh - |:(I)_1 (1 - Nma

accounts for the local significance as well as the look-elsewhere effect (LEE) for the /V,,, indepen-
dent masses in the analysis (here ® is the cumulative distribution function for the normal distribu-
tion with zero mean and unit variance). For this analysis, V,,, ~ 8.1 X 10° between 75 kHz and
2MHz, and T'S¢presh = 956.1.

Where we have no detection, we set a 95% C.L. limit, Agsy, again with the profile likelihood
ratio. To do so, we use the statistic (mg, A) = —2log A(mq, A), with A > A, by t(mg, Agsy) =
2.71. We implement one-sided power-constrained limits [195], which in practice means that we
do not allow ourselves to set a limit stronger than the 1o lower level of the expected sensitivity
band. We compute the expected sensitivity bands using the null-hypothesis model and following
the procedure outlined in [80].

We had to exclude a few specific mass points from our discovery analysis due to narrow back-
ground lines that were also observed when the magnet was off. To veto these mass points as
potential discoveries, we analyze data collected while the magnet was off (where no axion signal
is expected) using the same analysis framework. If in this analysis we find a mass point with
LEE-corrected significance greater than 5o, we exclude that mass point from our axion discov-

ery analysis. In total, this procedure ensures a signal efficiency of = 99.8%. Our axion search
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yielded 83(0) excesses with significance > 50 in the frequency range 500 kHz to 2 MHz (75 kHz
to 500 kHz), however all of these points are vetoed by the magnet-off data. We do not exclude
these points from our upper-limit analysis, though the observed limits at these isolated points are
weaker (they do not appear in Fig. 5.3 because of down-sampling for clarity).

We verified our analysis framework by injecting a simulated software axion signal into our real
data and confirmed that the data-quality cuts and analysis framework described above are able
to correctly detect or exclude the presence of an axion signal. In the future we hope to build
this into a hardware-based option, using the calibration loop to inject “blinded” signals similar to
the approach used by ADMX [67]. Further details of the analysis and statistical tests we have
performed, as well as an extended discussion of the noise in the excluded exposure, will be further

described in a future publication [82].

5.4 Results and Discussion

We observe no evidence of an axion signal in the mass range 3.1 x 1071%eV - 8.3 x 107%eV and
place upper limits on the axion-photon coupling g, of at least 3.3 x 1072 GeV~" over the full
mass range and down to 1.4 x 1071 GeV~! at the strongest point. Our full exclusion limits are
shown in Fig. 5.3. This result represents the first search for ADM with m, < 1 eV, and with one
month of data is already competitive with the strongest present astrophysical limits from the much
larger CAST helioscope [263] in the range of overlap.

We note that for a significant range in frequency, we achieved the SQUID noise-limit. However,
constraints on the detector configuration introduced parasitic impedances into the readout circuit,
which lead to a loss in the ultimate axion coupling sensitivity [82]. This will be addressed in future
efforts and could yield up to a factor of ~6 improvement in sensitivity with a similar exposure.

As ABRACADABRA-10cm is a prototype detector, there are many potential directions for
future improvement. Our focus in this work has been on demonstrating the feasibility and power
of this new approach. Future upgrade paths for the ABRACADABRA program will include im-
provements to shielding and mechanical vibration isolation, reduction of parasitic inductances, im-
provements to the readout configuration, expanded frequency range, and construction of a larger

toroid.
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CHAPTER 6

Second Results from ABRACADABRA-10 cm

The axion is a well-motivated candidate to explain the particle nature of DM [45, 46, 86]. This
pseudoscalar particle is naturally realized as a pseudo-Goldstone boson of the PQ symmetry, which
is broken at a high scale f,; the axion would be exactly massless but for its low-energy interactions
with quantum chromodynamics (QCD) [38, 39,43, 44]. The axion mass is tied to the scale f, by
mg ~ 5.7(10' GeV/f,) neV [123]. The range of scales f, ~ 10 — 10'°GeV is particularly
compelling because of connections to String Theory [51] and Grand Unification [251,268], and in
the corresponding mass range of m, ~ 1 — 10 neV the axion may naturally explain the observed
DM abundance [252,268]. In this Article we provide the most sensitive probe of ADM in this mass
range to date.
ADM that couples to photons modifies Ampere’s law such that in current-free regions

o OE - Oa
VXB—E—gaW(EXVa—EB), (6.1)

with E and B the electric and magnetic fields, respectively, a(x,t) the ADM field, and g, the
axion-electromagnetic coupling constant. In the presence of a static external magnetic field ADM
behaves like an effective current density Jeg = gq4+~(0ia)B. If the axion makes up all of the
observed DM then, to leading order in the DM velocity, ;a = /2ppn cos(mgt), with ppy =~
0.4GeV/ cm® the local DM density [28]. It was pointed out in [71, 147] that the effective current
induces an oscillating secondary magnetic field which may be detectable in the laboratory without
the aid of a resonant cavity for sufficiently small m,. The oscillation frequency is given by f =
my/(2), with bandwidth § f / f ~ 10~° arising from the finite axion velocity dispersion [190]. In
this work we leverage this theoretical principle to search for axions in the laboratory.

The most common detection strategy for ADM is through the electromagnetic coupling go.-,
which for the QCD axion is directly proportional to the mass m,. Until recently, experiments have
focused on searching for axions in the mass range 1 < m, < 40 eV, which is well-suited to

microwave cavity searches [67, 68, 110,258,260]. In the low-mass regime targeted in this work,
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the Compton wavelength of the axion A\¢ ~ km is much larger than the experimental apparatus,
and so the sensitivity of the experiment improves with volume as V/°/, roughly independent of m,,
until the size of the experiment approaches A\ [71]. This scaling is important because the expected
coupling g, is smaller at lower masses, requiring ever-more-sensitive experiments to achieve a
detection. ABRACADABRA is an experimental program designed to detect axions at the Grand
Unification scale using a strong toroidal magnetic field [71]. ABRACADABRA is part of a suite
of ADM experiments which together aim to probe the full QCD axion parameter space [67, 68,
70,76,110, 138,218,274-276]. The experiment we report on here, ABRACADABRA-10cm, is
a prototype for a larger ADM detector that would be sensitive to the QCD axion. This Article
presents data collected in 2020 that is up to an order of magnitude more sensitive than our previous

results [72] and places strong limits on ADM in the 0.41 — 8.27 neV range of axion masses.

6.1 ABRACADABRA-10cm detector

The ABRACADABRA-10cm detector is built around a 12 cm diameter, 12 cm tall, 1T toroidal
magnet fabricated by Superconducting Systems Inc [270]. The axion interactions with the toroidal
magnetic field By drive the effective current, J.g, which oscillates parallel to By and sources a
real oscillating magnetic field through the toroid’s center. The oscillating magnetic flux is read
out with a two-stage DC-SQUID via a superconducting pickup in the central bore. Unlike other
axion detector designs, this novel geometry situates the readout pickup in a nominally field-free
region unless axions are present [71]. The detector can be calibrated by injecting fake axion signals
(i.e., AC currents) through a wire calibration loop that runs through the body of the magnet. The
detector, illustrated schematically in Fig. 6.1, is located on MIT’s campus in Cambridge, MA.

In 2019, we performed several detector upgrades from the Run 1 configuration in order to im-
prove our sensitivity [72,82]. In this Article we report the results of the subsequent data campaign
(Run 3), collected after the detector upgrade. Run 3 data consists of ~430 hours of data collected
from June 5 to June 29, 2020.

Before the upgrades were complete, we took additional, uncalibrated data (Run 2), which is not
presented here. A subset of that data was instead used to develop our data analysis procedure in
order to run a blind analysis on the Run 3 data, as described in detail below.

The total expected axion power, A, coupled into our readout pickup is related to the axion-

induced flux &, as
A

(19a”) = g2,,p0MG*V > By (6.2)

where G is a geometric coupling, V' is the magnetic field volume, B, is the maximum value of

|Bo|, and the angle brackets denote the time average [71,80]. Run 1 utilized a 4.02 cm diameter
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Figure 6.1: Top: Schematic of ABRACADABRA-10cm showing the effective axion-induced
current (blue), sourced by the toroidal magnetic field, generating a magnetic flux (magenta)
through the pickup cylinder (green) in the toroid bore. Bottom: Simplified schematic of the
ABRACADABRA-10 cm readout (full circuit diagram in Fig. E.1). The pickup cylinder L, is
inductively coupled to the axion effective current J.¢. The power spectrum of the induced current
is read out through a DC SQUID inductively coupled to the circuit through L;,. An axion signal
would appear as excess power above the noise floor at a frequency corresponding to the axion
mass.
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pickup loop made from a 1 mm diameter wire, giving G ~ 0.027. In 2019, we replaced this
readout with a 10 cm tall, 5.1 cm diameter superconducting cylinder pickup centered in the toroid
bore. This consisted of a 150 um-thick Nb sheet wrapped around a PTFE cylinder. This design
yields a stronger geometric coupling to J.¢ of G =~ 0.031 and decreases the inductance of the
pickup [71]. We compute G using electromagnetic simulations in the COMSOL Multiphysics
package [82,277].

To amplify our signal, @, is coupled into the readout SQUID through the pickup circuit (see
Fig. 6.1) yielding a transformer gain M,/ Ly, where M;, is the input coupling to the SQUID, and
L1 = L, + Liy + Lyies 1s the total inductance of the pickup circuit, with L, the pickup cylinder
inductance, L;, the input inductance of the SQUID package, and L.;,.s the parasitic inductance,
dominated by the twisted pair wiring. The SQUID, manufactured by Magnicon [278], is read out
using Magnicon’s XXF-1 SQUID electronics operating in closed feedback loop mode. The Run 1
sensitivity was limited by parasitic inductance in the NbTi wiring of this circuit that placed a lower
limit on Ly 2 1.6 uH. During the upgrade, we replaced this wiring, moving the SQUIDs closer to
the detector to reduce the wire length. Based on calibration data, we found that the total impedance
in the circuit is ~ 800 nH. Finally, the SQUID was operated at a higher flux-to-voltage gain setting
of 4.3 V/®( in Run 3, compared to the previous Run 1 which we ran at 1.29 V/®, due to higher
levels of environmental noise. This change does not directly improve the signal gain, but does
reduce system noise. We also improved our noise floor by reducing the operating temperature of
the SQUID package from ~870 mK to ~450 mK. All together, the upgrade campaign increased
the expected power coupled into our readout and reduced the total system noise.

The improved sensitivity of the upgraded readout circuit also amplified the low-frequency vi-
brational backgrounds seen in Run 1, which caused the SQUID amplifier to rail when the magnet
was on. In order to correct this, we implemented an active feedback stabilization (AFS) system to
reduce the low-frequency noise, which is discussed further in the appendices.

As in Run 1, the magnet and pickup were placed inside a superconducting tin-copper shield and
hung from a passive vibration isolation system, consisting of a string pendulum and spring, within
an Oxford Instruments Triton 400 dilution refrigerator [82]. The magnet and pickup were operated
at <1K and the SQUIDs were at ~400 mK, which kept the readout circuit superconducting over
the course of the run and kept thermal noise subdominant to SQUID flux noise. Following the
procedure of Run 1, the output of the SQUID was run into an 8-bit AlazarTech AT9870 digitizer
via a 70 kHz-5 MHz bandpass filter. The digitizer was locked to a Stanford Research Systems
FS725 Rubidium frequency standard in order to maintain clock accuracy over the coherence time
of the axion signal, ~ 1s for signals at 1 MHz, throughout the data and calibration runs.

We performed in situ magnet-on and magnet-off calibrations in the data-taking configuration by

attaching a harmonic signal generator to the calibration circuit and scanning across frequencies and
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Figure 6.2: The gain shown here is defined as the change in amplifier output voltage over a cor-
responding change in input flux amplitude on the pickup cylinder (0V,,;/0®P,). Both transfer
functions roll off at high frequencies due to the amplifier bandwidth, which we estimate to have a
cutoff frequency of approximately 1 MHz. We believe the difference in calculated and measured
gain is due to inconsistency in the total inductance of the pickup circuit.

amplitudes. The calibration signal was attenuated and fed into the calibration loop, mimicking the
axion effective current signal J.¢ up to geometric factors. The geometry is modeled in COMSOL
Multiphysics [277], from which we extract the coupling between both the calibration loop and
axion effective current signal to the pickup cylinder. By combining the results of the calibration
scans and geometric modeling, we can determine the effective gain, 0V,;/0®,, of the SQUID
amplifier output voltage as a function of flux on the pickup cylinder (see Fig. 6.2). This procedure
is analogous to that used in Run 1 [82].

The gain measured by the calibrations for Run 3 differs from the calculated gain by a factor
of ~1.8. By individually calibrating various components of the end-to-end circuit, we determined
that this is likely due to a misestimation of the calculated total inductance of the pickup circuit. The

calibrated SQUID noise floors, which set the lower limits of our sensitivity, are shown in Fig. E.2

6.2 Data Collection

The axion search data was collected using an identical procedure as in Run 1 [82]. The SQUID
amplifier output voltage was sampled at a frequency of 10 MS/s, with a 40 mV voltage window.
The data were stored as a series of PSDs, which were computed on-the-fly: Fjoy with a Nyquist

frequency of 5 MHz and frequency resolution of Af = 100 mHz, Fyy; with a Nyquist frequency
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of 500kHz and frequency resolution of Af = 10mHz, and a continuous data stream sampled at
100 kHz that can be analyzed offline. Fign (Fim) is averaged over 800s (1600s) before being
written to disk. In this work, we used the Fjgy to search the frequency range from 500 kHz —
2 MHz, and the Fiy spectra to search from 50 — 500 kHz.

6.3 Data Analysis and Results

An axion signal is expected to manifest as a narrow peak in the PSD data, as illustrated in Fig. 6.1.
The width and overall shape of the signal are set by the local DM velocity distribution, which we
take to be the Standard Halo Model with a velocity dispersion of vy = 220 km/s and a boost from
the halo to the solar rest frame of vy = 232km/s [185]. With the speed distribution and local
DM density fixed, the two free signal parameters are the axion mass, m,, which determines the
minimum frequency of the signal, and the coupling ¢,,,, which determines its amplitude through
Eq. (6.2). Our analysis procedure closely follows the approach used in the Run 1 search [72, 82]
based on [80], which constrains the allowable values of g, at each possible value of m,.

The search is performed with a frequentist log-likelihood ratio TS; exact expressions are pro-
vided in the SI (see also [82]). Our broadband search procedure probes ~ 11.1 million mass points
between 0.41 — 8.27neV (100 kHz — 2 MHz) in Run 3. As we expect only one axion signal in our
search (or at most a small number), the majority of the TS values are probing the distribution of the
null hypothesis. Assuming only Gaussian noise, we expect this null distribution to be a one-sided
x2-distribution [80], which was indeed the case in Run 1 [72,82]. However, the increased sensitiv-
ity from the detector upgrades introduced non-Gaussian noise sources that required us to modify
our Run 1 analysis procedure. We developed and validated our new procedure on a randomly-
selected sample of 10% of Run 2’s ~ 13.7 million mass points, after which we unblinded the
Run 3 data with the procedure fixed.

In Run 1, we searched for an axion signal as a feature appearing above a flat white noise back-
ground. For each m,, the search was performed in a narrow window around that mass with the
background level allowed to vary independently in each window. For the Run 2 and Run 3 anal-
yses we allow the mean background level of the noise to vary linearly with frequency uniquely in
each sliding window. We use sliding windows of relative width §f/f ~ 5.5 x 1075, starting at
f=(1-10"°% x m,/(2n).

As in Run 1, we use the magnet-off data to veto frequency ranges that also display statistically
significant TS values when |Bg| = 0 and thus the axion power should vanish. However, we
observed narrow single-bin ‘spikes’ that appear to drift in frequency on the timescale of our data
collection (see E.6 for an example). If interpreted in isolation, these spikes sometimes correspond

to statistically-significant excesses. Nevertheless, they are inconsistent with axion signals and are
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most likely due to unknown environmental noise sources near the detector, persisting throughout
Runs 2 and 3; indeed, many of the peaks are distributed at multiples of S0 Hz. To remove these
artifacts, we leverage the fact that the PSDs are saved periodically to disk yielding a time evolution
of the environmental backgrounds; we veto single-bin spikes that move in frequency. We place a
1.0Hz veto window around these single-bin spikes. These cuts remove 3.8% of the axion mass
points from our search in the Run 3 data. The magnet-off vetoing procedure removes an additional
0.07% of mass points.

After implementing the vetoes, we found the distribution of TS values in the 10% Run 2 vali-
dation sample deviated from the expected x? distribution; for example, there were 27 mass points
with TS > 25 whereas from the x? distribution we would have expected less than one. To account
for the deviation in the TS distribution from the y? distribution in a data-driven fashion, we follow
the prescription developed and implemented in [279-281] for searches for DM-induced lines in
astrophysical gamma-ray data sets. At each mass point, we introduce and profile over a system-
atic nuisance parameter that would be degenerate with the signal parameter but for a prior that is
determined by forcing the TS distribution to follow the x? distribution. Specifically, we force the
TS distribution to match the null hypothesis distribution at 40 local significance. This is described
further in the SI.

After the nuisance parameter and vetoing procedures, we construct a likelihood as a function
of gq at each mass point. The final distribution of TS values computed from the likelihoods is
shown in Fig. 6.3; no TS values were found in excess of the 50 look-elsewhere effect-corrected
discovery threshold. In the calibration of our analysis procedure, we found one signal candidate in
the Run 2 data at over 50 global statistical significance (see Fig. E.6, where a corresponding feature
can be seen in the magnet-off data), but that mass point is not significant in the Run 3 analysis.

In the absence of an excess consistent with an ADM origin, we can determine 95% one-sided
upper limits on g, as a function of the mass, m,. The average 95% upper limits from the Run 3
analysis along with their 10 and 20 expectations under the null hypothesis are indicated in Fig. 6.4.
In that figure we compare our upper limits to those found from the ADM experiment SHAFT [276]
along with results from the solar axion experiment CAST [263] and astrophysical X -ray searches
(SSC) [84], both of which do not require the axion to comprise the DM. The fraction of vetoed
mass points is illustrated in a sliding window inFig. E.4, which also shows the distribution of
data fractions included in the analyses. In Fig. E.5 we illustrate the magnitude of the systematic
nuisance parameter gggi;-, while in Fig. E.7 we show what the limit would be without the nuisance
parameter tuning. Fig. E.8 shows that the 95% upper limit and discovery TS behave as expected

when synthetic axion signals are injected into the real data.
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Figure 6.3: The survival function of TS values from the likelihood analysis of the Run 3 results.
The y-axis indicates the fraction of mass points tested with a discovery TS at or above the value
on the x-axis. Under the null hypothesis, the distribution should follow the survival function of
the one-sided 2 distribution with one degree of freedom (“Expected,” dotted gray). This is indeed
the case after data cleaning for e.g. single-channel excesses in time slices, magnet-off vetoes, and
the inclusion of a systematic nuisance parameter, which is tuned in a sliding window at 4o local
significance to give the correct number of excesses at or above that significance, masking the signal
of interest. No excesses are found beyond our indicated 50 LEE-corrected discovery threshold.
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Figure 6.4: (Left) The one-sided 95% upper limit (U.L.) on ¢,,-, from this work excludes previously
unexplored regions of ADM parameter space. The 10 and 20 containment regions are constructed
by taking the appropriate percentiles of the distributions of the limits over narrow mass ranges;
note that this means that ~16% of the upper limits lie at the bottom of the green band. Around
11.1 million mass points are analyzed, so the plotted data is smoothed for clarity. Our limits
surpass those from a number of indicated astrophysical and laboratory searches in this mass range,
including CAST (solid grey region), super star cluster constraints (dashed grey line), and SHAFT
(solid grey line). See text for details. (Right) The un-smoothed limit in a narrow mass range
between 2.99790 and 2.99798 neV. This provides a detailed view of variations in the limit at each
axion mass that arise from statistical fluctuations across the collected data that are not visible in
the smoothed data shown in the left plot. This range also depicts the location where our maximum
sensitivity is achieved, with our strongest limit at g,., < 3.2 x 107 GeV ™.

6.4 Conclusion

In this work we present the results from ABRACADABRA-10cm’s second physics campaign,
searching for ADM in the mass range 0.41-8.27 neV. We find no evidence for ADM and con-
strain the axion-photon coupling down to the world-leading level g, < 3.2 x 10711 GeV~" at
95% confidence. Our work motivates key elements of the design of future larger-scale experi-
ments. These include the mitigation of stray fields from the magnet and vibrations induced by a
modern pulse-tube-based cryogenic system, which limits our current low-frequency reach. The
ABRACADABRA-10 cm results presented in this Article demonstrate the power of mature sim-
ulations for optimizing the design of the detector and for modeling the calibration response. An
advanced and novel analysis framework was used to identify noise sources and account for sys-
tematic uncertainties in a data-driven fashion.

Our work identifies three areas that can be addressed in the next physics campaign: (i) mod-
erate improvements (up to a factor ~0.4 in g,.,) could be achieved by further reducing the wire
and SQUID inductances, (ii) better shielding from environmental noise could increase the sensi-
tivity to g, by an order of magnitude at low frequencies, so long as (iii) the fringe fields are
reduced or better vibrationally isolated (see Fig. E.2). To significantly increase the sensitivity of

the experiment, larger magnets with higher fields are needed since the sensitivity to g, scales
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with the detector volume V' and field By as g\ ~ BoV?/% [71]. The addition of a resonant
readout circuit could enhance the reach in g,,, by an additional ~2 orders of magnitude depend-
ing on the scanning strategy, with a high frequency readout permitting sensitivity to masses up
to 800 neV [71,221]. ABRACADABRA is merging with the DMRadio program to realize a se-
ries of experiments that chart a path toward discovering the QCD axion in the parameter space

corresponding to new physics at the Grand Unification scale [282-286].
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CHAPTER 7

Radio Searches for Axion Dark Matter

Recently, it was proposed that radio telescope observations of neutron stars (NSs) can probe ax-
ion dark matter (DM) [101-104,287]. In the magnetosphere surrounding a NS, axion DM may
resonantly convert into radio-frequency photons at locations where the plasma frequency of the
magnetosphere equals the axion mass, with conversion probabilities determined in part by the
strength of the magnetic field surrounding the NS. The central frequency of the hypothetical radio
signal from an individual NS is set by the mass of the axion, red-shifted by the line-of-sight veloc-
ity of the NS. The predicted axion-induced radio signal would appear as a nearly monochromatic
peak in the otherwise smoothly-varying radio spectrum from the NS and its nearby environment.
The frequency of this peak is universal for all sources and is determined by the currently unknown
mass of the axion particle.

In [103, 104, 287, 288] it was shown that high-frequency-resolution observations with radio
telescopes such as the Robert C. Byrd Green Bank Telescope (GBT) and the Effelsberg 100-m
Telescope towards nearby isolated NSs (INSs) and towards regions of high NS and DM density,
such as the Galactic Center (GC) of the Milky Way, would be sensitive to vast regions of previously
unexplored axion parameter space. In this work, we perform such searches with the GBT and the
Effelsberg radio telescope.

The quantum chromodynamics (QCD) axion is a well-motivated DM candidate because in ad-
dition to explaining the observed abundance of DM [45,46, 86] it may also resolve the strong CP
problem of the neutron electron dipole moment [38,39,43,44] (see [56] for a detailed review). The
QCD axion may make up the observed abundance of DM over a wide range of masses [289], but a
natural mass range is 5-25 peV. In this work we target axion masses in the range m, € (4.5, 10.5)
peV, corresponding to radio frequencies f = m,/(27) € (1.1,2.7) GHz.

The conversion of axion DM to radio photons arises from the Lagrangian £ = g, ,aE-B,
where E (B) are electric (magnetic) fields, a is the axion field, and g, is a coupling constant with
units of inverse energy. For the QCD axion, g,, 1s proportional to m,, but models of more general

axion-like particles can have g,,, and m, as independent parameters. The mass range that we
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target here with radio telescope searches is also the subject of significant longstanding laboratory
search efforts for the coupling g.,. The Rochester-Brookhaven-Fermilab (RBF) [261,290] and
University of Florida (UF) [260] axion haloscope experiments set competitive constraints on axion
DM in the mass range covered by this analysis, though our results exclude new parameter space
beyond what was probed by those experiments. More recently, the ADMX experiment has reached
sensitivity to the QCD axion at ~2-3.5 peV [67,131,291], and the HAYSTAC experiment has set

strong constraints on axion DM in the mass range m, ~ 23 — 24 peV [110].

7.1 Parametrics of Indirect Detection of Axion Conversion

As this Chapter represents a departure from our previous focus on axion direct detection, we begin
with a brief discussion of why astrophysical observations of NSs represent promising opportunities
for axion discovery. As discussed at various points in this thesis, axion direct detection attempts to
provide a background electromagnetic field with which axions may interact and produce observ-
able signals. In the laboratory, one typically seeks to provide as strong as possible a magnetic field.
NSs realize magnetic fields much larger than can be generated in the laboratory, and, as a result,
can generate bright signals in the presence of axions, even accounting for their large distance from
Earth.

NSs generate axion-induced signals by the conversion of ambient DM axions to photons in
their magnetospheres, enabling a direct comparison with the CAST experiment, which seeks to
convert relativistic axions produced by the sun to detectable photons [263]. The probability of

axion-to-photon conversion in a background magnetic field is given by
pa"/ ~ ngyfyBQL2 (7'1)

where g, is the axion photon coupling, B is the strength of the background magnetic field, and
L is the length over which the conversion process occurs. For CAST, B = 9Tand L = 9m
whereas for NS conversion, we can have B as large as 10! T and L ~ 100 m. As is then clear, the
conversion probability for axions at NSs is considerably larger.

However, conversion of axions at NSs is somewhat more limited in terms of mass-range than
CAST. Conversion of axions at NSs only occurs efficiently if the mass of the photon matches
the mass of the axion. While this is never true in vacuum, the nonzero charge density in NS
magnetospheres provides the photon a plasma mass, which varies between 100 neV and 50 peV at
distances where the NS magnetic field is large. In fact, the L ~ 100 m length for conversion at NSs
is determined by the typical length over which the mass-matching is sufficiently good. Given this

mass range of 100 neV to 50 p.eV, conservation of energy tells us that converted axions will become
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radio photons, motivating searches for axion conversion with radio telescopes as is considered in
this Chapter.

Axion conversion will produce a monochromatic excess of flux density as observed by a radio
telescope at a frequency determined by the axion mass. For an axion that produces a signal at
a frequency of 1 GHz with a coupling of g,,, = 107'! GeV~! by converting at NS a distance
of 100 pc from Earth with typical period and magnetic field strength, we would expect to see a
total flux density excess of 6.7 x 1072 Jy with a width of 5 kHz. With three hours of observing
time, single-dish radio telescopes can achieve statistical sensitivity to such a signal, enabling us
to constrain goyy S 10~ GeV. Limits along these lines, which exceed CAST in sensitivity, are
realized in this work through observations of two isolated NSs. Even greater sensitivity is achieved
through observations of NS populations containing stars with larger magnetic fields in the presence

of enhanced DM densities.

7.2 Data Acquisition

We collected data in the L-band (1.15 — 1.73 GHz) with the GBT and in the L-Band (1.27 — 1.45
GHz) and S-band (2.4 — 2.7 GHz) using the Effelsberg radio telescope to search for axion DM
signatures from a variety of different sources. We describe the data taking procedures from the two

telescopes in turn.

7.2.1 GBT Observations

The GBT observations were performed with the VErsatile GBT Astronomical Spectrometer (VE-
GAS) backend [292] on March 10 and 29, 2019 with a notch filter applied from 1.2 to 1.34 GHz, so
these frequencies are not included in our analysis (project AGBT19A_362, PI: Safdi). The nearby
INS targets observed by the GBT are summarized in Tab. 7.1. Note that we also observed the GC,
M31, and M54 with the GBT, but the resulting axion limits are less robust than those from the
INSs and from the Effelsberg GC observations and so are presented in the appendices. (The GBT
GC observations lead to weaker limits than the Effelsberg GC observations because the GBT ob-
servations were taken with lower frequency resolution.) All observations used the “Spectral Line”
observing type and with one beam covering an area on the sky ~ 7(FWHM/2)?, where FWHM
is the full width at half maximum of the telescope response, which is 8.4 at 1.5 GHz for the GBT.

The INS observations used five VEGAS spectrometers in mode 9 across the L-band, leading
to the frequency resolution 0 f,,s reported in Tab. 7.1. For our fiducial analyses the data is fur-
ther down-binned to resolutions d fzq given in Tab. 7.1. Data were collected in both polarizations,

though in this analysis we only analyze the polarization-averaged flux. (See [103] for possible
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polarization signatures.) The observations performed position switching so that for a given obser-
vational target, half the data collection time was on-source (“ON”) and half was spent observing
blank-sky locations at similar elevations (“OFF”) in order to establish a reference baseline for the
analysis. The ON exposure times .y, are listed in Tab. 7.1. The OFF locations were chosen to
be 1.25° away from the target of interest. The position-switching was carried out at five-minute
intervals for each of the targets, leading to four separate observations of ON and OFF positions.
Over the observing period, data were saved in independent short exposures for ON and OFF
observations of RX J0720.4—3125 and RX J0806.4—4123. In each successive exposure, a cali-
bration noise diode was alternated between on and off with a switching period of 0.2097 seconds.
The timing resolution allows for the identification of transient effects and data filtering, which
is discussed further below and in the appendices. The calibration source 3C48 was observed for
approximately two minutes to flux-calibrate the INS observations. Additionally, we observed the
star-forming region W3(OH) for approximately five minutes to verify that our analysis framework

is able to successfully identify the OH maser lines.

7.2.2 Effelsberg Observations

We also carried out L-Band and S-Band observations with the Effelsberg 100-m radio telescope to-
wards the GC (project 77-17, 64-18, PI: Desvignes). The observations were taken with the PSRIX
backend [293] — performing baseband sampling — in mid-June 2018 and early-February 2019 us-
ing the prime (secondary) focus receiver P217mm (S110mm) for the L- and S-band, respectively.
In both cases we recorded orthogonal polarizations, which were later averaged offline for further
analysis. Note that the FWHM of the Effelsberg beam is 9.78" (4.58") at 1.408 GHz (2.64 GHz).
Observations were carried out towards the magnetar SGR J1745—2900, which is ~2.4” away from
the GC, and the planetary nebula NGC 7027 for subsequent use in the flux calibration procedure.
For the measurements towards the GC we used a position switching mode, with ON-source in-
tegration times of 61.9 min and 40.0 min for S-band and L-band, respectively, and respective
OFF-source integration times of 22.8 min and 37.0 min (see Tab. 7.1). The ON observation was

performed first, followed by a single OFF observation taken 16.4° away from the GC.

7.3 Analysis

We reduced and calibrated the GBT data following a modified implementation of the GBTIDL data
reduction pipeline [294], extended to include a time-series data filtering performed independently
at each channel and a channel-dependent system temperature calibration. The full procedure results

in measurements of flux densities {d;} at frequencies { f;}, with i labeling the frequency channel.
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Target lexp [min] | 6 fons [kHz] | 6 fra [kHz] | type
RX J0806.4—4123 20.0 0.8 8.4 INS
RX J0720.4—3125 20.0 0.8 8.4 INS
GC (Eft., S-Band) 61.9 3.81 11.44 pop.
GC (Eft., L-Band) 40.0 2.44 7.32 pop.

Table 7.1: The targets observed by the GBT and Effelsberg for evidence of axion DM. “Pop.”
refers to populations of NSs, while “INS” refers to a single isolated NS. The bin widths 0 o
correspond to those of the original observation, but we down-bin the data before performing the
axion line search to the resolution given by ¢ frq to account for the finite width of the signal. The
INS (GC) observations were performed with the GBT (Effelsberg radio telescope). The GBT INS
observations cover the frequency range 1.15 to 1.73 GHz, with a gap from 1.2 to 1.35 GHz, and
the L-band (S-band) Effelsberg observation covers 1.27 to 1.45 GHz (2.4 to 2.7 GHz). Note that
the texp, are the ON exposure times.

Because the stacked, calibrated data has been constructed by averaging many (> 10?) independent
antenna measurements together, the {d;} are approximately normally distributed.

For Effelsberg, high-resolution frequency spectra (131072 spectral channels) were generated
from the raw ‘baseband’ data using the DSPSR! software tools [295]. We used the full-integrated
spectra in our analysis, with a calibration procedure described in the appendices. Before analyzing
the data we first down-bin in frequency space to bins of width ~8 kHz (see Tab. 7.1) to account for
the finite width of the signal, such that the majority of the signal should appear in a single frequency
bin. As discussed further in the appendices and first suggested in [287], reflection and refraction of
the outgoing electromagnetic waves in the rotating plasma induces a frequency broadening at the
level 6f/f ~5x107¢

are searching for emission from a population of NSs, the data are at sufficiently high frequency

or less from the INSs. We note that even though the Effelsberg observations

resolution that we may search simply for the brightest converting NS from that population.

To inspect the data for excess flux at frequency channel i, we construct the likelihood

(dy. — p(frla) — Adi)?

d|A a) H \/ﬁexp {— 207 ,

(7.2)

where A is the excess flux density in the central frequency channel. Note that the index & labels
the analysis-level frequency channel, and the product runs over the frequency bins included in
the analysis window. We model the background in the narrow sliding frequency window with a
frequency-dependent mean flux density x(f|a) and a single variance parameter o2, such that the

variance in each frequency channel is given by 0 = 0% /«; for an acceptance fraction a; of data at

"http://dspsr.sourceforge.net
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frequency channel ¢ after the data filtering. Note that o; = 1 for all Effelsberg frequency channels
as we do not apply the time-filtering procedure to that data. The nuisance parameter vector a char-
acterizes the frequency dependence of the mean; in practice we take u to be a quadratic function
of f so that a has three independent parameters, though our final results are not sensitive to this
choice (see the appendices).

In our fiducial analysis we include within the sliding analysis window the 10 frequency bins
to the left and to the right of the central frequency channel, excluding the two bins on either side
of the signal bin in case of signal leakage into those bins, if e.g. the axion mass does not line
up with the bin center. Note that to account for this possibility we also perform the analyses
with all frequency bins shifted by approximately half a bin spacing. The variance parameter o2 is
fixed by fitting the background-only model to the frequency sidebands with the central frequency
channel masked out. We construct the profile likelihood £;(d]A) by maximizing £;(d|A, a) over
the nuisance parameters a at each fixed value of A, and we use the profile likelihood to construct the
one-sided 95% upper limit on the flux density as shown in Fig. 7.1 (see, e.g., [172]). In particular,
we consider positive and negative values of A and we take the 95% upper limit to be the value
of A > A such that 2[In £;(d|A) — In £;(d]A)] ~ —2.71, where A is the signal parameter that
maximizes the profile likelihood. We then further power-constrain our limits to avoid setting limits
that are stronger than expected due to downward statistical fluctuations [195]. We accomplish this
by recording the actual limit as the maximum of the 16" percentile of the distribution of expected
limits under the null hypothesis, as computed using the Asimov procedure [172], and the limit
observed on the actual data. Our test-statistic (T'S) for comparing signal and null hypotheses for
evidence of an axion is the log-likelihood ratio TS; = 2 x [In £;(d|A) — In £;(d|0)], for A > 0,
and TS; = 0if A < 0.

We additionally analyze the stacked but uncalibrated OFF spectra. This is valuable because
the OFF data are subtracted and divided from the ON data to remove the instrumental baselines,
but this may cause features in the OFF spectra to be imprinted on the calibrated flux densities.
Therefore, statistically significant excesses that appear in both the calibrated source flux density
spectra and the OFF system temperatures can be vetoed as they are inconsistent with, or at least do
not require, an axion interpretation. In our analysis, we veto any excess in the calibrated ON data
which appears with a 97.5'" percentile discovery TS in the OFF data. Note that we determine the
TS percentiles by using the full distribution of observed TSs.

The 95% upper limits on the flux densities, defined relative to the single-channel frequency bin
widths 0 fgq given in Tab. 7.1, are shown in Fig. 7.1. We compare the upper limits to the expected
limits from the ideal radiometer equation, which assumes that all of the noise is thermal at the
system temperature. The true limits are slightly weaker likely because of sources of systematic

uncertainty, such as uncertainties in the background model and instrumental uncertainties not fully
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Figure 7.1: The 95% upper limits on the signal flux for the indicated sources from the GBT
and Effelsberg observations. These upper limits apply to monochromatic signals at the widths
0 fra given in Tab. 7.1. These curves have been down-sampled for visualization purposes. We
compare these limits with the 95% upper limits expected from the ideal radiometer equation under
the assumption that the only source of statistical uncertainty is thermal noise at the total system
temperature.

captured by the calibration procedure.

We search for evidence of an axion signal by using the discovery TSs. We apply a discovery
threshold of T'S > 100, which was defined before performing the analysis and not modified after-
wards. From Monte Carlo (MC) simulations of the null hypothesis we find that this TS threshold
corresponds to approximately 5o local significance (see the appendices for details). After apply-
ing the analysis procedure described above we find no axion signal candidates at or beyond the
detection significance in any of the observations, and the distributions of observed TSs are consis-
tent with the null hypothesis. Note that HI emission frequencies are excluded automatically in our

analysis by the OFF veto criterion.

7.4 Results

To translate the flux-density limits from Fig. 7.1 into limits on the axion-photon coupling, we
closely follow the theoretical modeling presented in [103, 104] for computing the axion-induced
radio fluxes from these specific sources.

The radiated power for a single INS depends on g,,., the polar magnetic field strength B,

(assuming a dipole field configuration), the NS mass (which we fix at 1 M, since this value does
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not significantly affect the flux), the NS spin period P, the axion mass m,, the DM density p, in
the neighborhood of the NS but asymptotically far away from its gravitational potential, and the
velocity dispersion v, of the ambient DM. For the local INSs we take vy = 200 km/s and p., = 0.4
GeV /cm? [28,65,296]. For the GC analysis we assume the DM follows an Navarro-Frenk-White
(NFW) [297,298] density profile near the GC, normalized to give the local DM density above and
with a scale radius of 20 kpc (see, e.g., [104]). For RX J0806.4—4123 we take log,,(By/G) =
13.40 and P = 11.4 s, while for RX J0720.4—3125 we use log,,(By/G) = 13.53 and P = 8.4s.
We note that these parameters were inferred from spin-down measurements performed in the X-
ray band [299-301]. We take RX J0806.4—4123 and RX J0720.4—3125 to be at distances of 250
pc and 360 pc from Earth, respectively [300].

Given these parameters, we estimate the radiated power following [103, 288]. However, we
note that a fully self consistent calculation of the axion-induced radiation has yet to be per-
formed. Ref. [288] corrected the assumption in [103] that the axions travel along radial trajectories,
but [288] did not account for the fact that the outgoing radiation is strongly refracted in the inho-
mogeneous magnetosphere, as we point out in the appendices. As a dedicated simulation of the
axion-induced radiation is beyond the scope of this work, we estimate the power with the following
approximation. We assume that (i) all axions travel along radial trajectories, as in [103], (ii) that
all NSs are aligned rotators (magnetically-misaligned rotators give nearly identical results [103]),
and (iii) that the magnetosphere is well-described by the Goldreich-Julian (GJ) model [302]. Then,
following [103] we compute the angular power distribution d P/df of radio emission as a function
of the angle from the polar axis §. However, we assign to each NS a single power value equal
to [ % df, and we assume that the flux is radiated from each NS isotropically. With the latter
assumption we find results are consistent with those in [288], which correctly accounted for the
isotropic axion phase space. For example, taking NS parameters describing the nearby isolated
NSs studied in this work (and assuming aligned rotators) the formalism in [288] predicts fluxes
~50% larger than inferred by our simpler calculation. We chose this simpler formalism, however,
because it is likely that the more complicated computation in [288] must be modified due to the
refraction of outgoing radio photons, which could result in an anisotropic signal(though from the
studies in [288] we do not expect such calculations to change the flux predictions by more than
an O(1) amount). Given an improved theoretical predictions in the future, our results may be
reinterpreted using the Supplementary Data [303].

In [104] it is shown that more complicated magnetosphere models, such as the electrosphere
model, give similar results. In particular, the total radiated power averaged over NS populations
differed by ~20% between the electrosphere and GJ models in [104]. Active pulsars and magne-
tars could have magnetospheres which deviate more substantially from the GJ model by having

large charge-pair multiplicities, though this is expected to only affect a small fraction of the NSs

138


https://github.com/joshwfoster/RadioAxionSearch

within the populations and to not affect the nearby isolated NSs studied in this work (see [104] and
references therein).

The width of the signal in frequency space is determined in part by the asymptotic energy
dispersion of the DM, which is set by vy. This induces a §f/f < 107% contribution to the width
from the INSs. However, as discussed more in the appendices and in [287], the signals are Doppler-
broadened when refracting or reflecting from the rotating plasma, inducing a frequency broadening
closerto 6 f/f ~ 5 x 1079 and justifying the bin widths taken in Tab. 7.1.

Since we do not actually know which specific NSs are being targeted in the Effeslberg GC
analysis (and similarly in the GBT population analyses discussed in the appendices), we model
the population of NSs (number density, spatial distribution, magnetic field, and spin period) within
the GC region as a whole, closely following [104]. In particular, two models for the NS magnetic
field and period distributions were developed in that work, based on fits to existing pulsar data. We
conservatively choose the model which yields weaker constraints as our fiducial model. In practice,
our fiducial NS population model (Model II in [104]) assumes that magnetic fields quickly decay
after the NSs cross the pulsar death-line, while the optimistic model (Model I in [104]) assumes
that the magnetic fields decay more slowly. We also follow [104] when modeling the spatial
distribution of NSs within the Galactic bulge and disk. For the Effelsberg analysis, we perform
O(10%) MC simulations of the NS population model and profile over the simulation results when
calculating the expected flux and associated 95% limit.

Given the fiducial models we have described, we obtain the limits on g,,, shown in Fig. 7.2.
The orange band represents the predicted g, for the QCD axion, and the grey shaded regions
represent existing constraints from other experiments. We obtain limits that are stronger than those
from CAST [263] and comparable to constraints from the UF [260] and RBF [261,290] haloscopes,
while the S-band Effelsberg constraints exclude previously unexplored parameter space. The green
shaded band in Fig. 7.2 represents two dominant sources of uncertainty for the GC analysis. The
top of the band is derived by assuming that the DM profile follows a cored density profile with
a core radius of 0.6 kpc; this radius is chosen based on recent hydrodynamic simulations which
suggest that the DM density may be modified in the inner ~0.6 kpc where the baryons dominate
the gravitational potential, though these same simulations suggest an enhancement of the central
DM density may also be possible [304]. The lower boundary of the band assumes the fiducial
NFW DM profile but takes the alternate NS population model (Model I) from [104].

7.5 Conclusion

In this work we performed the first dedicated radio telescope search for signatures of axion DM

from axion-photon conversion in NS magnetospheres. We found no evidence for axion DM and set
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Figure 7.2: The one-sided 95% upper limits on g, as a function of the axion mass m, from
this work are shown as colored lines (GBT INS observations) and black lines (Effelsberg GC
observations). Previous limits from the CAST helioscope and the UF and RBF haloscopes are
shown in shaded grey. The range of couplings expected for the QCD axion is shaded in orange.
Note that the fiducial GC limits assume an NFW DM profile and the conservative NS population
model (Model II) from [104]. The green band depicts theoretical uncertainties on the g, limit
associated with the GC analysis for the Effelsberg data. The top of the band assumes an NFW DM
density profile with a 0.6 kpc core, while the bottom of the band uses the alternate NS population
model in [104] (Model I).

some of the strongest constraints to date on the axion DM scenario. These results show that radio
searches for axion DM are a promising path forward, analogous to indirect detection for WIMP
DM searches, which should proceed in parallel with laboratory experiments for discovering or
excluding axion DM. Additional flux sensitivity is needed in order to reach the QCD axion band at
the frequencies targeted in this work. This sensitivity may be available with the upcoming Square
Kilometer Array-mid [305] or may already be achievable with the FAST radio telescope [306],
since at constant system temperature the sensitivity to g,,~ scales inversely with the square root of
the effective area [104].

Our work strongly motivates searching with the GBT or Effelsberg radio telescope for evidence
of axion DM at higher frequencies, closer to 6 GHz, to probe the axion mass window around m,, ~
25 peV. There is mounting evidence that points towards 25 peV as a likely mass for the axion [79,
112], and the axion-photon coupling may also be enhanced [169] and thus within reach of GBT

and Effelsberg searches. This work also motivates additional effort in modeling the population
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evolution of NS magnetic fields and spin periods, as these are the largest sources of uncertainty in
our population analyses, as well as further efforts to understand the distribution of DM in the inner
Galaxy. More work on the axion-induced signal itself from individual INSs would be also useful,
as a full calculation of the axion-induced radio signal does not yet exist; such results could lead to

reinterpretations of the limits presented in this Letter using the Supplementary Data [303].
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CHAPTER 8

X-Ray Searches for Axions from Super Star Clusters

Ultralight axion-like particles that couple weakly to ordinary matter are natural extensions to
the Standard Model. For example, string compactifications often predict large numbers of such
pseudo-scalar particles that interact with the Standard Model predominantly through dimension-
five operators [51,52]. If an axion couples to quantum chromodynamics (QCD) then it may also
solve the strong CP problem [38, 39,43, 44]; in this work we refer to both the QCD axion and
axion-like particles as axions.

Axions may interact electromagnetically through the operator £ = — gawaFw,F‘“’ /4, where
a 1s the axion field, F' is the electromagnetic field-strength tensor, with F its Hodge dual, and
Jay~ 18 the dimensionful coupling constant of axions to photons. This operator allows both the
production of axions in stellar plasmas through the Primakoff Process [307,308] and the conversion
of axions to photons in the presence of static external magnetic fields. Strong constraints on g, for
low-mass axions come from the CERN Axion Solar Telescope (CAST) experiment [263], which
searches for axions produced in the Solar plasma that free stream to Earth and then convert to
X-rays in the magnetic field of the CAST detector. CAST has excluded axion couplings g,,, 2
6.6 x 10~ GeV~! for axion masses m, < 0.02 eV at 95% confidence [263]. Primakoff axion
production also opens a new pathway by which stars may cool, and strong limits (g, S 6.6 X
10~ GeV~! at 95% confidence for m, < keV) are derived from observations of the horizontal
branch (HB) star lifetime, which would be modified in the presence of axion cooling [309].

In this work, we produce some of the strongest constraints to-date on g, for m, < 1079
eV through X-ray observations with the Nuclear Spectroscopic Telescope Array (NuSTAR) tele-
scope [310] of super star clusters (SSCs), which are relatively young, luminous, and compact
clusters of stars produced in regions of particularly high stellar formation rates. Thought to be the
progenitors of globular clusters, SSCs contain a large number of hot, young, and massive stars,
such as Wolf-Rayet (WR) stars. Many of the known SSCs have been detected in extragalactic
targets by the Hubble Space Telescope, but several within the Milky Way have been detected. As
we will show, the stars within SSCs are highly efficient at producing axions with energies ~10—

100 keV through the Primakoff process. Axions produced in Milky Way SSCs may then convert
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Figure 8.1: The stacked and pixelated background-subtracted count data (10 - 80 keV) from the
NuSTAR observations of the Quintuplet SSC. The locations of the stars are indicated in black,
while the 90% energy containment region for emission associated with the SSC is indicated by the
black circle, accounting for the NuSTAR point spread function (PSF). RA, and DEC,, denote the
locations of the cluster center. We find no evidence for axion-induced emission from this SSC,
which would follow the spatial counts template illustrated in the inset panel.

into photons in the Galactic magnetic fields, leading to signatures observable with space-based
X-ray telescopes such as NuSTAR. We analyze archival NuSTAR data from the Quintuplet SSC
near the Galactic Center (GC) along with the nearby Westerlund 1 (Wdl1) cluster and constrain
Gary S 3.6 X 10712 GeV ™! at 95% confidence for m, < 5 x 107! eV. In Fig. 8.1 we show the
locations of the stars within the Quintuplet cluster that are considered in this work on top of the
background-subtracted NuSTAR counts, from 10 - 80 keV, with the point-spread function (PSF)
of NuSTAR also indicated. In the appendices we show that observations of the Arches SSC yield
similar but slightly weaker limits.

Our work builds upon significant previous efforts to use stars as laboratories to search for ax-
ions. Some of the strongest constraints on the axion-matter couplings, for example, come from
examining how HB, white dwarf (WD), red giant, and neutron star (NS) cooling would be affected
by an axion [309,311-319]. When the stars have large magnetic fields, as is the case for WDs and
NSs, the axions can be converted to X -rays in the stellar magnetospheres [301,320-322]. Intrigu-
ingly, in [301,322] observations of the Magnificent Seven nearby isolated NSs found evidence for
a hard X -ray excess consistent with the expected axion spectrum from nucleon bremsstrahlung.
This work extends these efforts by allowing the axions to convert to X -rays not just in the stellar
magnetic fields but also in the Galactic magnetic fields [323-325].
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8.1 Organization of this Chapter

A brief description of the set of procedures implemented in this Chapter to constrain axions is as

follows.

» Use the Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution code to
model the interiors of the hot, young stars within Milky Way SSCs.

* Predict the axion production from SSC stars using the MESA-generated stellar interior mod-

els combined with the axion emissivities through the Primakoff process.

» Convolve the radiated spectrum axions with the energy-dependent conversion probability of

axions propagating through the Galactic Magnetic Field from their stellar origin to Earth.

* Generate an energy-dependent template of axion-induced X-ray flux from stars in SSCs that

is then convolved with the NuSTAR instrumental response.

* Reduce archival data collected with the NuSTAR telescope at three known Milky Way SSCs:
Arches, Quintuplet, and Westerlund 1 to produce X-ray flux maps.

* Analyze the X-ray images in search of emission consistent with the previously generated

axion-induced X-ray flux templates, setting limits in the absence of a detection.

These procedures are explained in greater detail in the subsequent sections and the corresponding

Appendices.

8.2 Axion production in SSCs

During helium burning, particularly massive stars may undergo considerable mass loss, especially
through either rotation or binary interaction, which can begin to peel away the hydrogen envelope,
revealing the hot layers underneath and reversing the cooling trend. Stars undergoing this process
are known as WR stars, and these stars are the most important in our analyses. If the star has a
small (<40% abundance) remaining hydrogen envelope, it is classified as a WNh star; at <5%
hydrogen abundance it is classified as a WN star; otherwise, it is classified as WC or WO, which
indicates the presence of >2% carbon, and oxygen, respectively, in the atmosphere.

Axions are produced through the photon coupling g~ in the high-mass stars in SSCs through
the Primakoff process v + (¢, Z) — a + (e~, Z). This process converts a stellar photon to an
axion in the screened electromagnetic field of the nucleons and electrons. The massive stars are

high-temperature and low-density and therefore form nonrelativistic nondegenerate plasmas. The
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Primakoff emission rate was calculated in [308, 326] as a function of temperature, density, and
composition, and is described in detail in the appendices.

To compute the axion luminosity in a given star, we use the stellar evolution code Modules
for Experiments in Stellar Astrophysics (MESA) [327,328] to find, at any particular time in the
stellar evolution, radial profiles of temperature, density, and composition. The simulation states
are specified by an initial metallicity Z, an initial stellar mass, an initial rotation velocity, and an
age. The initial metallicity is taken to be constant for all stars. In the appendices we show that the
Quintuplet and Arches clusters, which are both near the GC, are likely to have initial metallicities
in the range Z € (0.018,0.035), consistent with the conclusions of previous works which place
the initial metallicities of these clusters near solar (solar metallicity is Z ~ 0.02) [329,330]. Note
that higher metallicities generally lead to the stars entering the WR classifications sooner, when
their cores are cooler. Rotation may also cause certain massive stars to be classified as WR stars
at younger ages. We model the initial rotation distribution as a Gaussian distribution with mean
lrot and standard deviation o, for non-negative rotation speeds [331,332]. Refs. [331,332] found
Mot = 100 km/s and o0,o; ~ 140 km/s, but to assess systematic uncertainties we vary ji,.; between
50 and 150 km/s [331].

We draw initial stellar velocities from the velocity distribution described above (from 0 to 500
km/s) and initial stellar masses from the Kroupa initial mass function [333] (from 15 to 200
M). We use MESA to evolve the stars from pre-main-sequence (pre-MS)-before core hydro-
gen ignition—to near-supernova. At each time step we assign each stellar model a spectroscopic
classification using the definitions in [334,335]. We then construct an ensemble of models for each
spectroscopic classification by joining together the results of the different simulations that result
in the same classification for stellar ages within the age range for star formation in the cluster; for
Quintuplet, this age range is between 3.0 and 3.6 Myr [336]. Note that each simulation generally
provides multiple representative models, taken at different time steps. In total we compute 10°
models per stellar classification.

Quintuplet hosts 71 stars of masses 2 50, with a substantial WR cohort [336]. In particular
it has 14 WC + WN stars, and we find that these stars dominate the predicted axion flux. For
example, at g,,, = 107'? GeV~! we compute that the total axion luminosity from the SSC (with
7 = 0.035 and piro; = 150 km/s) is 2.1757 x 103 erg/s, with WC + WN stars contributing ~70% of
that flux. Note that the uncertainties arise from performing multiple (500) draws of the stars from
our ensembles of representative models. In the 10 - 80 keV energy range relevant for NuSTAR the
total luminosity is 1.7753 x 10% erg/s. We take Z = 0.035 and fi,o; = 150 km/s because these
choices lead to the most conservative limits. For example, taking the metallicity at the lower-end
of our range (Z = 0.018) along with p,.; = 100 km/s the predicted 10 - 80 keV flux increases by
~60%. At fixed Z = 0.035 changing ji,.¢ from 150 km/s to 100 km/s increases the total luminosity
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(over all energies) by ~10%, though the luminosity in the 10 - 80 keV range is virtually unaffected.

The Wd1 computations proceed similarly. Wd1 is measured from parallax to be a distance d €
(2.2,4.8) kpc from the Sun [337], accounting for both statistical and systematic uncertainties [338].
Wdl1 is estimated to have an age between 4.5 and 7.1 Myr from isochrone fitting, which we have
broadened appropriately from [339] accounting for expanded distance uncertainties. In our fiducial
analysis we simulate the stars in Wd1 for initial metallicity Z = 0.035 and p,o; = 150 km/s as
this leads to the most conservative flux predictions, even though it is likely that the metallicity is
closer to solar for Wd1l [340], in which cases the fluxes are larger by almost a factor of two (see
the appendices). We model 153 stars in Wd1 [339], but the axion flux is predominantly produced
by the 8 WC and 14 WN stars. In total we find that the 10 - 80 keV luminosity, for g4, = 1072
GeV, is 9.021}7 x 10% erg/s, which is ~5 times larger than that from Quintuplet.

8.3 Axion conversion in Galactic fields

The axions produced within the SSCs may convert to X-rays in the Galactic magnetic fields.
The axion Lagrangian term £ = g,,,aE - B, written in terms of electric and magnetic fields E
and B, causes an incoming axion state to rotate into a polarized electromagnetic wave in the
presence of an external magnetic field (see, e.g., [341]). The conversion probability p,_,, depends
on the transverse magnetic field, the axion mass m,, and the plasma frequency w, =~ 3.7 x
107'2(n, /1072 cm~3)~1/2 eV, with n, the free-electron density (see the appendices for an explicit
formula). Note that hydrogen absorption towards all of our targets is negligible, being at most
~5% 1in the 15-20 keV bin of the Quintuplet analysis [342].

To compute the energy-dependent conversion probabilities p,_,, for our targets we need to
know the magnetic field profiles and electron density distributions along the lines of sight. For our
fiducial analysis we use the regular components of the JF12 Galactic magnetic field model [343,
344] and the YMW16 electron density model [345] (though in the appendices we show that the
ne2001 [346] model gives similar results), though the JF12 model does not cover the inner kpc of
the Galaxy. Outside of the inner kpc the conversion probability for Quintuplet is dominated by the
out-of-plane (X-field) component in the JF12 model. We conservatively assume that the magnitude
of the vertical magnetic field within the inner kpc is the same as the value at 1 kpc (|B,| ~ 3
1G), as illustrated in Fig. G.6. In our fiducial magnetic field model the conversion probability is
Pasy & 2.4 x 107* (7 x 107°) for g,,, = 1072 GeV~! for axions produced in the Quintuplet
SSC with m, < 107 eV and E = 80 keV (FE = 10 keV). Completely masking the inner kpc
reduces these conversion probabilities to p, ., ~ 1.0 X 107* (po_, & 3.2 x 107°), for E = 80
keV (£ = 10 keV). On the other hand, changing global magnetic field model to that presented
in [347] (PTKNI11), which has a larger in-plane component than the JF12 model but no out-of-
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plane component, leads to conversion probabilities at £ = 80 and 10 keV of p,,, ~ 4.9 x 107
and p,,, &~ 4.2 x 1077, respectively, with the inner kpc masked.

The magnetic field is likely larger than the assumed 3 ©G within the inner kpc. Note that the
local interstellar magnetic field, as measured directly by the Voyager missions [348], indirectly
by the Interstellar Boundary Explorer [349], inferred from polarization measurements of nearby
stars [350], and inferred from pulsar dispersion measure and the rotation measure data [351], has
magnitude B ~ 3 uG, and all evidence points to the field rising significantly in the inner kpc [352].
For example, Ref. [353] bounded the magnetic field within the inner 400 pc to be at least 50 G,
and more likely 100 G (but less than ~400 G [354]), by studying non-thermal radio emission
in the inner Galaxy. Localized features in the magnetic field in the inner kpc may also further
enhance the conversion probability beyond what is accounted for here. For example, the line-of-
sight to the Quintuplet cluster overlap with the GC radio arc non-thermal filament, which has a ~3
mG vertical field over a narrow filament of cross-section ~(10 pc)? (see, e.g., [355]). Accounting
for the magnetic fields structures described above in the inner few hundred pc may enhance the
conversion probabilities by over an order of magnitude relative to our fiducial scenario (see the
appendices).

When computing the conversion probabilities for Wdl we need to account for the uncertain
distance d to the SSC (with currently-allowable range given above). In the JF12 model we find the
minimum p,_,,/d* (for m, < 107! eV) is obtained for d ~ 2.6 kpc, which is thus the value we
take for our fiducial distance in order to be conservative. At this distance the conversion probability
iS pasy & 2.4 x 1070 (pyyy = 1.5 x 107°) for E = 10 keV (E = 80 keV), assuming g,,, = 10712
GeV~! and m, < 107! eV. We note that the conversion probabilities are over 10 times larger in
the PTKN11 model (see the appendices), since there is destructive interference (for d ~ 2.6 kpc)
in the JF12 model towards Wdl. We do not account for turbulent fields in this analysis; inclusion
of these fields may further increase the conversion probabilities for Wdl, although we leave this

modeling for future work.

8.4 Data analysis

We reduce and analyze 39 ks of archival NuSTAR data from Quintuplet with observation ID
40010005001. This observation was performed as part of the NuSTAR Hard X-ray Survey
of the GC Region [356,357]. The NuSTAR data reduction was performed with the HEASoft soft-
ware version 6.24 [358]. This process leads to a set of counts, exposure, and background maps
for every energy bin and for each exposure (we use data from both Focal Plane Modules A and
B). The astrometry of each exposure is calibrated independently using the precise location of the
source 1E 1743.1-2843 [359], which is within the field of view. The background maps account
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for the cosmic X-ray background, reflected solar X-rays, and instrumental backgrounds such as
Compton-scattered gamma rays and detector and fluorescence emission lines [360]. We then stack
and re-bin the data sets to construct pixelated images in each of the energy bins. We use 14 5-keV-
wide energy bins between 10 and 80 keV. We label those images d; = {c}}, where ¢! stands for
the observed counts in energy bin ¢ and pixel p. The pixelation used in our analysis is illustrated in
Fig. 8.1.

For the Wd1 analysis we reduced Focal Plane Module A and B data totaling 138 ks from
observation IDs 80201050008, 80201050006, and 80201050002. This set of observations
was performed to observe outburst activity of the Wd1 magnetar CXOU J164710.2-45521 [361],
which we mask at 0.5" in our analysis. (The magnetar is around 1.5 away from the cluster center.)
Note that in [361] hard X-ray emission was only detected with the NuSTAR data from 3 - 8
keV from CXOU J164710.2-45521 — consistent with this, removing the magnetar mask does not
affect our extracted spectrum for the SSC above 10 keV. We use the magnetar in order to perform
astrometric calibration of each exposure independently. The Wd1 exposures suffer from ghost-ray
contamination [362] from a nearby point source that is outside of the NuSTAR field of view at
low energies (below ~15 keV) [361]. (Ghost-ray contamination refer to those photons that reflect
only a single time in the mirrors.) The ghost-ray contamination affects our ability to model the
background below 15 keV and so we remove the 10 - 15 keV energy bin from our analysis.

In each energy bin we perform a Poissonian template fit over the pixelated data to constrain the
number of counts that may arise from the template associated with axion emission from the SSC.
To construct the signal template we use a spherically-symmetric approximation to the NuSTAR
PSF [363] and we account for each of the stars in the SSC individually in terms of spatial location
and expected flux, which generates a non-spherical and extended template. We label the set of sig-
nal templates by S?. We search for emission associated with the signal templates by profiling over
background emission. We use the set of background templates described above and constructed
when reducing the data, which we label BY.

Given the set of signal and background templates we construct a Poissonian likelihood in each

energy bin:

2

P\ b
pi(dil{S;, Ag}) = Z % ; (8.1)
)

with pf = S;S? + ApB?. We then construct the profile likelihood p;(d;|{S;}) by maximizing the
log likelihood at each fixed .S; over the nuisance parameter Ag. Note that when constructing the
profile likelihood we use the region of interest (ROI) where we mask pixels further than 2.0’ from

the SSC center. The 90% containment radius of NuSTAR is ~1.74’, independent of energy, as
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Figure 8.2: The spectra associated with the axion-induced templates from the Quintuplet and Wdl
SSCs constructed from the NuSTAR data analyses, with best-fit points and 1o uncertainties indi-
cated. In red we show the predicted spectra from an axion with m, < 107! eV and indicated
Jar~- Note that for Wdl we do not analyze the 10 - 15 keV energy bin because of ghost-ray
contamination.

indicated in Fig. 8.1. We use a localized region around our source to minimize possible systematic
biases from background mismodeling. However, as we show in the appendices our final results
are not strongly dependent on the choice of ROI. We also show in the appendices that if we inject
a synthetic axion signal into the real data and analyze the hybrid data, we correctly recover the
simulated axion parameters.

The best-fit flux values and 1o uncertainties extracted from the profile likelihood procedure are
illustrated in Fig. 8.2 for the Quintuplet and Wdl data sets. We compare the spectral points to
the axion model prediction to constrain the axion model. More precisely, we combine the profile
likelihoods together from the individual energy bins to construct a joint likelihood that may be used
to search for the presence of an axion signal: p(d|{ma, gays}) = [1, pi[di| Ri(Ma, gays)]. Where
Ri(My4, garry) denotes the predicted number of counts in the i*" energy bin given an axion-induced
X-ray spectrum with axion model parameters {1, go~~ }. The values R;(mq, go,-) are computed
using the forward-modeling matrices constructed during the data reduction process.

In Fig. 8.3 we illustrate the 95% power-constrained [195] upper limits on g,,, as a func-

tion of the axion mass m, found from our analyses. The joint limit (red in Fig. 8.3), com-
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Figure 8.3: The 95% upper limits (black) on g, as a function of the axion mass from the Quin-
tuplet and Wd1 data analyses. We compare the limits to the 1o (green band) and 20 (yellow band)
expectations under the null hypothesis, along with the median expectations (dotted). The joint 95%
upper limit, combining Quintuplet and Wdl, is also indicated (expected joint limit not shown). At
low masses our limits may be surpassed by those from searches for X-ray spectral modulations
from NGC 1275 [364], though we caution that those limits have been called into question recently,
as discussed further in the text [365].

bining the Quintuplet and Wd1 profile likelihoods, becomes gu., < 3.6 x 10712 GeV™! at
low axion masses. At fixed m, the upper limits are constructed by analyzing the test statistic
q(GaryIma) = 2Inp(d|{ma, gary }) — 2Inp(d|{Mma, Gay~ }), Where g, is the signal strength that
maximizes the likelihood, allowing for the possibility of negative signal strengths as well. The
95% upper limit is given by the value gy > Jayy such that ¢(ge,,|ma) = 2.71 (see, e.g., [172]).
The 10 and 20 expectations for the 95% upper limits under the null hypothesis, constructed from
the Asimov procedure [172], are also shown in Fig. 8.3. The evidence in favor of the axion model
is ~0.30 (0o) local significance at low masses for Quintuplet (Wd1).

We compare our upper limits with those found from the CAST experiment [263], the non-
observation of gamma-rays from SN1987a [366] (see also [367-369] along with [370], who re-
cently questioned the validity of these limits), and the NGC 1275 X-ray spectral modulation
search [364]. It was recently pointed out, however, that the limits in [364] are highly dependent on
the intracluster magnetic field models and could be orders of magnitude weaker, when accounting
for both regular and turbulent fields [365]. The CAST limits are stronger than ours for m, > 107°
eV and rely on less modeling assumptions, since CAST searches for axions produced in the Sun,
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though we have made conservative choices in our stellar modeling.

8.5 Conclusion

We present limits on the axion-photon coupling g, from a search with NuSTAR hard X -ray data
for axions emitted from the hot, young stars within SSCs and converting to X -rays in the Galactic
magnetic fields. We find the strongest limits from analyses of data towards the Quintuplet and
Wdl clusters. Our limits represent some of the strongest and most robust limits to-date on g~ for
low-mass axions. We find no evidence for axions. Promising targets for future analyses could be

nearby supergiant stars, such as Betelgeuse [323,371], or young NSs such as Cas A.
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CHAPTER 9

X-Ray Searches for Decaying Dark Matter in the
Milky Way

Sterile neutrino dark matter (DM) is a well-motivated DM candidate that may give rise to observ-
able nearly monochromatic X-ray signatures [372-374]. In this scenario the DM has a mass in
the keV range and may decay into an active neutrino and an X-ray, with energy set by half the
rest mass of the sterile neutrino [375]. Sterile neutrino DM is motivated in part by the seesaw
mechanism for explaining the active neutrino masses [376,377]. In this work we present one of
the most sensitive searches for sterile neutrino DM, along with other DM candidates that may de-
cay to monochromatic X-rays, over the mass range m, € [5, 16] keV. We do so by searching for
DM decay from the ambient halo of the Milky Way using all archival data from the XMM-Newton
telescope collected from its launch until September 5, 2018.

This work builds heavily off the method developed in [378], which used XMM-Newton blank-
sky observations (BSOs) to strongly disfavor the decaying DM explanation of the previously-
observed 3.5 keV unidentified X-ray line (UXL). This UXL was found in nearby galaxies and
clusters [379-383]. However the analysis performed in [378] was able to robustly rule out the
DM decay rate required to explain the previous 3.5 keV UXL signals [384]. (For additional non-
observations, see Refs. [385-391].) We extend the search in [378] to the broader mass range
m, € [5,16], and in doing so implement the following notable differences: (i) we use a data-
driven approach to construct stacked, background-subtracted data sets in rings around the Galactic
Center (GC), while Ref. [378] performed a joint-likelihood analysis at the level of individual ex-
posures, and (ii) we use Gaussian Process (GP) modeling to describe continuum residuals, instead
of parametric modeling as used in [378].

As demonstrated in [378], BSO searches for DM decaying in the Milky Way halo can be both
more sensitive and more robust than extra-galactic searches, because (i) the expected DM flux, even
at angles ~45° away from the GC, rivals the expected flux from the most promising extra-galactic
objects, such as M31 and the Perseus cluster; (ii) promising extra-galactic targets have continuum

and line-like X-ray features that are confounding backgrounds for DM searches (dwarf galaxies
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being an exception [389, 392]), while BSOs instead focus on the lowest-background regions of
the sky; (iii) extra-galactic targets require pointed observations, while in principle any observation
collected by XMM-Newton is sensitive to DM decay in the Milky Way, opening up considerably
more exposure time.

The limits presented in this work represent the strongest found using the XMM-Newton instru-
ment over the energy range ~2.5-8 keV. At higher energies our limits are superseded with those
found using the NuSTAR satellite [393—397]. Ref. [395] performed a search similar in spirit to that
in this work (though with NuSTAR) in that they looked for DM decay from the Milky Way halo
near the GC (~ 10° away in their case), while Ref. [397] searched for DM decay from M31 with
NuSTAR. Our results put in tension efforts to explain the abundance of DM with sterile neutri-
nos. DM models such as axion-like-particle DM [398] and moduli DM [399] predict similar UXL

signatures from DM decay and are also constrained by this work.

9.1 Data Reduction and Processing

We process and analyze all publicly-available data collected before 5 September 2018 by the metal
oxide semiconductor (MOS) and positive-negative (PN) cameras on board XMM-Newton. We sub-
ject each exposure to a set of quality cuts, which are described shortly. Those exposures satisfying
the quality cuts are included in our angularly-binned data products. In particular, we divide the sky
into 30 concentric annuli centered around the GC, each with a width of 6° in angular radius from
the GC, rqc, where cos(rgc) = cos(l) cos(b) in terms of the Galactic longitude, [, and latitude,
b. We label these from 1 to 30, starting from the innermost ring. We further mask the Galactic
Plane such that we only include the region |b| > 2°. In each ring we then produce stacked spectra
where, in each energy bin, we sum over the counts from each exposure whose central position lies
within that annulus. We produce separate data sets for the MOS and PN cameras, which have 2400
and 4096 energy channels, respectively. In addition to stacking the counts in each ring and energy
channel, we also construct the appropriately weighted detector response matrices in every ring for
forward modeling an incident astrophysical flux. The full-sky maps and associated modeling data
are provided as Supplementary Data [400] in both the annuli and in finer-resolution HEALPix
binning [401]. We analyze the MOS data from 2.5 to 8 keV and the PN data from 2.5 to 7 keV, in

order to exclude intervals containing large instrumental features.

9.2 Data Analysis

Having constructed our data in all 30 rings, we divide the full sky into two regions of interest
(ROT): a signal ROI, consisting of annuli 1 through 8 (0° < rgc < 48° with |[b| > 2°), inclusive,
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Figure 9.1: Our fiducial D-factor, which is proportional to the expected DM signal flux. Values are
given in all 30 annuli, which are 6° wide in angular distance from the GC (with |b| > 2°), and we
define a signal and background ROI as shown. In each ring, we compute the D-factor of all MOS
or PN exposures, weighted according to the observation time and field of view. The horizontal line
indicates Dy, the mean D-factor in the background ROI.

and the background ROI, consisting of annuli 20 through 30 (114° < rgc < 180° with [b| > 2°).
The regions are illustrated in Fig. 9.1. The MOS (PN) exposure time in the signal ROI is 25.27
Ms (5.56 M), whereas in the background ROl it is 62.51 Ms (17.54 Ms). The signal flux of decay

producing a single photon, given by
D
F= 9.1

4dmmTt

is proportional to the D-factor which is defined by the line-of-sight integral of the Galactic DM
density ppy by

D(Q) = /ds pom(s, ). 9.2)

Here we have defined m the mass of the decaying particle and 7 as its lifetime. Hence we see that
a model-independent constraint on the DM lifetime can immediately be inferred given an known
D-factor while translating these to bounds on a given model merely requires translation of 7 to
the relevant particle physics parameters. Decay to two photons can be trivially accommodated by
multiply the flux in Eq. 9.1 by a factor of two.

In Fig. 9.1 we show the appropriately weighted D-factor in each annuli. The motivation for the

two ROIs is that the signal should dominate in the inner regions of the Galaxy and become pro-
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gressively weaker further away from the GC. The background ROI is chosen to be large enough to
have significantly more exposure time than the signal ROI, so that using the background-subtracted
data does not significantly broaden the statistical uncertainties. We stack the data over the full
background ROI, which has D-factor Dy, and use this as an estimate of the instrumental and
astrophysical baseline fluxes by subtracting this data from the data in each ring of the signal ROI.
This subtraction mostly removes large instrumental lines, as illustrated in Fig. H.1.

We analyze the background-subtracted data in each annulus for evidence of a UXL. The data
is modeled as a combination of narrow spectral features at the locations of known astrophysical
and instrumental lines, and a continuum flux which we account for using GP modeling. Note
that the instrumental lines need not be completely removed by the data-subtraction procedure,
leaving a residual flux or flux deficit that must be modeled. Astrophysical emission lines from
the Milky Way plasma should be brighter in the signal ROI, and so are also expected to appear
in the background-subtracted data. For both astrophysical and instrumental lines, the lines are
modeled using the forward modeling matrices for MOS and PN. We allow the instrumental lines
to have either positive or negative normalizations, while the astrophysical lines are restricted to
have positive normalizations. To decide which lines to include in our residual background model
we start with an initial list of known instrumental and astrophysical lines. The instrumental lines
are determined from an analysis of the background ROI data, while the astrophysical lines are those
expected to be produced by the Milky Way. In each ring, and for MOS and PN independently, we
then determine the significance of each emission line, keeping those above ~20. As a result,
every ring has a different set of lines included in the analysis. We note that it is conceivable that a
UXL might be inadvertently removed by an overly-subtracted instrumental line at the same energy;
however, it would be highly unlikely for such a conspiracy to occur in every ring, given the varying
D-factor. The effects of sub-threshold instrumental lines are mitigated through a spurious-signal
nuisance parameter [402], as discussed in the SM.

The unprecedented data volume incorporated into this analysis necessitates a flexible approach
to modeling the residual continuum emission, which is accomplished with GP modeling, in order
to minimize background mismodeling. As opposed to parametric modeling, where the model
is specified by a specific functional form and associated list of model parameters, GP mod-
eling is non-parametric: the model expectations for the data at two different energies, £ and
E', are assumed to be normally distributed with non-trivial covariance. Taking the model ex-
pectation to have zero mean, the GP model is then fully specified by the covariance kernel,
K(E,E’"). We model the mean-subtracted data using the non-stationary kernel K(E, E') =
Agpexp [—(E — E')?/(2EFE'0%)], implemented in george [403], where o is the correlation-
length hyperparameter and Agp is the amplitude hyperparameter. We fix o such that it is larger
than the energy resolution of the detector, which is 0 E/E ~ 0.03 across most energies for MOS
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and PN, while ensuring o is kept small enough to have the flexibility to model real variations in
the data. The goal is to balance two competing effects. If ox approaches the lower limit imposed
by the energy resolution of the detector, then the GP model would have the flexibility to account
for line-like features, which would reduce our sensitivity when searching for such features over the
continuum background. On the other hand, if o is too large then the GP continuum model may not
accurately model real small-scale variations in the data. In our fiducial analysis we fix oy = 0.3,
though in the appendices we show that our results are robust to variations not only in this choice,
but also to modifications to the form of the kernel itself. In contrast, the hyperparameter Agp is
treated as a nuisance parameter that is profiled over when searching for UXLs.

We then follow the statistical approach developed in [404], which used GP modeling to perform
an improved search for narrow resonances over a continuum background in the context of the
Large Hadron Collider. In particular, we construct a likelihood ratio A between the model with
and without the signal component, where the signal is the UXL line at fixed energy Fjg,. The null
model is as above, the combination of a GP model with a single nuisance parameter Agp, and a set
of background lines, whose amplitudes are treated as nuisance parameters. We use the marginal
likelihood from the GP fit in the construction of the likelihood ratio [404]. Note that as the number
of counts in all energy bins is large (> 100), we are justified in assuming normally-distributed
errors in the context of the GP modeling. We then profile over all nuisance parameters. Finally,
the discovery significance is quantified by the test statistic (TS) ¢ = —21n A. We verify explicitly
in the appendices that under the null hypothesis ¢ follows a x?-distribution. The 95% one-sided
upper limits are constructed from the profile likelihood, as a function of the signal amplitude.

We implement this procedure and scan for a UXL from 2.5 to 8 keV in 5 eV intervals. At
each test point we construct profile likelihoods for signal flux independently for each ring using
the background-subtracted MOS and PN data. We then combine the likelihoods between rings
— and eventually cameras — in a joint likelihood in the context of the DM model, as discussed
shortly. As an example, Fig. 9.2 illustrates the signal and null model fits to the innermost MOS
background-subtracted signal-annulus data for a putative UXL at 3.5 keV (indicated by the vertical
dashed line). Note that while the fit is performed over the full energy range (2.5—8 keV) for clarity
we show the data zoomed in to the range 3 to 4 keV. In this case the data have a deficit, which

manifests itself as a signal with a negative amplitude.

9.3 Interpretation

We combine together the profile likelihoods from the individual annuli to test the decaying DM
model. In the context of sterile neutrino DM with mass m, and mixing angle 6, the DM decay in

the Galactic halo produces an X-ray flux at energy m, /2 that scales as ¢ o miD sin?(26) [405].
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Figure 9.2: The background-subtracted MOS data for the innermost annulus, downbinned by a
factor of four for presentation purposes. The indiciated best fit null and signal models, for a 3.5
keV UXL, are constructed using the GP modeling described in the text.

Specifically, the translation from the model-independent 7 to sin?(26) is given by

1 sin? 26 ms \5
L1361 x 10°2g! ( : ) . 9.3
T e ( 107 ) TkeV ©3)

It is in terms of this sin?(26) that we present the majority of our results, though we do provide
general limits on 7 and on g, for the axion scenario. Note that the D-factors, appropriately
averaged over observations in the individual annuli, are illustrated in Fig. 9.1. Thus, at fixed DM
mass m, we may construct profile likelihoods as functions of sin®(26) to appropriately combine
the profile likelihoods as functions of flux in the individual annuli. We subtract off Dy, from the
D-factors in each signal ring since any UXL would also appear in the background ROI and thus be
included in the background subtraction.

The D-factors may be computed from the DM density profile of the Milky Way. Modern hydro-
dynamic cosmological simulations indicate that the DM density profile in Milky Way mass halos
generally have a high degree of spherical symmetry (for a review, see Ref. [406]). Further, the pres-
ence of baryons contracts the inner ~10 kpc of the profile away from the canonical Navarro, Frenk,
and White (NFW) DM distribution [297,298], so that there is an enhancement of the DM density
at smaller radii versus the NFW expectation [304,407—411], though cores could develop on top of
this contraction at radii < 2 kpc [412-415]. For example, in Milky Way analogue halos within the
Fire-2 simulations the DM-only and hydrodynamic simulations produce DM density profiles
that agree within ~25% at 10 kpc, but with baryons the density profiles are typically around twice
as large as the NFW DM-only expectation at distances ~1 kpc away from the GC [304]. To be
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Figure 9.3: (Upper) The power-constrained 95% upper limit on the DM lifetime from this work,
presented in the context of the sterile-neutrino mixing angle sin?(26), as a function of the DM
mass m,. The dark grey regions correspond to theoretical bounds for DM underproduction in
the ¥YMSM or bounds from previous X-ray searches (1)—(5); see text for details. (Lower) The
associated sign-weighted significance for the UXL. Vertical grey regions denote background lines
and are at least partially masked. Green and gold regions indicate 1/20 expectations under the null
hypothesis. These results are shown in the context of more general DM models as constraints on
the DM lifetime in Fig. H.7.

conservative we assume the canonical NFW density profile for all radii, though in the appendices
we discuss how our results change for alternate density profiles.

The NFW profile is specified by a characteristic density p, and a scale radius r4: ppu(r) =
po/(r/rs)/(1 + 1/rs)*. We use the recent results from [416], who combined Gaia DR2 Galactic
rotation curve data [417] with total mass estimates for the Galaxy from satellite observations [418,
419]. These data imply, in the context of the NFW model, a virial halo mass M2M = 0.8270 9% x
10'2 My, and a concentration ¢ = rq00/7, = 13.3175:8 with a non-trivial covariance between
MPM and ¢ [416] such that lower concentrations prefer higher halo masses. Within the 2D 68%
containment region for MM and ¢ quoted in Ref. [416], the lowest DM density at r = 0.5 kpc, and
thus the most conservative profile for the present analysis, is obtained for py = 6.6 x 10 M, /kpc?
and r; = 19.1 kpc. We adopt these values for our fiducial analysis. With our choice of NFW DM
parameters the local DM density, at the solar radius, is ~0.29 GeV/ cm?® (¢f 0.4 GeV / cm?® used
in [378]), which is consistent with local measurements of the DM density using the vertical motion

of tracer stars perpendicular to the Galactic plane, see, e.g., Refs. [28,420].
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We search for evidence of decaying DM in 10 eV intervals in mass between 5—16 keV, masking
0.1 keV windows around the locations of known lines, as indicated in Fig. 9.3. We construct the
joint likelihoods for the MOS and PN data sets. We test and account for additional background
mismodeling in the MOS and PN analyses by looking at the distribution of best-fit mixing angles
in the energy side-bands, using a technique similar to the “spurious signal” used by ATLAS in
the search for the Higgs boson [402]. This procedure is described in the appendices and only
has a small effect at low masses. We then combine, at a given mass, the resulting MOS and PN
profile likelihoods to obtain the final profile likelihood used to construct the limit and discovery
significance shown in Fig. 9.3. In that figure we show the one-sided 95% upper limit on sin?(26) in
the upper panel, along with the 1 and 20 expectations for the power-constrained upper limit [195]
under the null hypothesis (shaded green and gold, respectively).

We find no evidence for decaying DM signals above our pre-determined significance threshold
of 5o global significance (corresponding to ~6¢ local significance), as shown in the bottom panel.
In that figure we compare our upper limit to previous limits in the literature, adjusted to our fiducial
DM model for the Milky Way where appropriate. In the context of the YMSM it is impossible to
explain all of the observed DM in the region marked “DM under production” because of the big
bang nucleosynthesis bound on the lepton chemical potential [421-423]. Note that the YMSM also
predicts that the DM becomes increasingly warm for decreasing m,,, which leads to tension with
Milky Way satellite galaxy counts for low m,: data from the Dark Energy Survey and other Galac-
tic satellite surveys [424] constrains m, greater than ~15-20 keV in the YMSM [425] (which can
be strengthened further when combined with strong lensing measurements [22]), though we note
that our results apply to more general DM production mechanisms that do not predict modifica-
tions to small-scale structure. In Fig. 9.3 we also show previous X-ray limits from (1) [378], (2)
a Chandra search for DM decay in the Milky Way [426], (3) a Chandra search for DM decay in
M31 [385], and (4) combined NuSTAR searches for DM decay: in the Milky Way [393-395], the
Bullet Cluster [396], and M31 [397]. Note that the results from Milky Way searches have been

adjusted to use the same DM density profile as in our fiducial analysis.

9.3.1 Axion Interpretation

Although this chapter is presented within the context of the sterile neutrino, these X-ray searches
can also be interpreted in the context of a search for the decay of keV-scale axions to two photons.

The axion lifetime is given in terms of its coupling as

1 g2 md
Lo o
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Figure 9.4: Our decay search interpreted in the context of limits on the axion decay to two photons.
Our limits, along with those from additional blank sky searches are indicated as in Fig. 9.3

allowing for simple translation of our results to constraints on g,,.. These constraints are presented
in Fig. 9.4.

9.4 Conclusion

We find no significant evidence for decaying DM, which leads us to set some of the strongest
constraints to-date on the DM lifetime. We confirm the results of Dessert et al. [378] for the non-
observation of a DM decay line near 3.5 keV using a more robust and flexible analysis strategy,
leaving little room for a decaying DM explanation of the previously-observed 3.5 keV anoma-
lies [379-383]. (See the appendices for further discussion.)

Given the data volume incorporated into this analysis it is unlikely that further analyses of
XMM-Newton data, or Chandra data, could produce qualitatively stronger results on the DM life-
time in the mass range considered here. However, the approach taken in this work may lead to
a powerful advancement in discovery power with future data sets from surveys such as those by
the upcoming Athena [427] and XRISM [428] telescopes. A combination of the data collected by
those missions and the analysis framework introduced in this work may lead to the discovery of

decaying DM in the few-keV mass range at lifetimes beyond those probed in this work.
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CHAPTER 10

Conclusion

In this thesis, I have shown that promisingly open parameter space for axions can be effectively
probed with new phenomenological insights combined with novel detection methods possible
through astrophysical observation and precision laboratory measurement. As these searches are
currently probing only the most accessible possibilities for axion DM, there remains considerable
work to be done. However, there are many reasons to be optimistic. New ideas and steadily
improving computational power will enable us to refine our understanding of axion phenomenol-
ogy. Simultaneously, upcoming telescopes and experiments with improved sensitivities will lead
to new and improved searches that will push the frontiers of axion detection further than previously
thought possible. Moreover, there exists a wealth of unexamined archival data from astrophysics,
some of which might already contain hints of new physics. There is every reason to believe that
axions exist in nature, and with now unprecedented effort devoted to their discovery, prospects for

shedding light on the nature of dark matter may be better than ever.
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APPENDIX A

Simulations of Axion Production in the

Post-Inflationary Misalignment Scenario

A.1 Simulation Equations of Motion

Our phenomenological Lagrangian describing the PQ field is adopted from the construction of
[121] and is of the form

AT

|17 = ma(T)f3[1 = cos Arg(®)], (A1)

1 A 2
Lpg = 5|00 = = (|2 = f7)
2 4
where & is the complex PQ scalar, 7" is the temperature, ) is the PQ quartic coupling strength, f,, is
the PQ-scale identified as the axion decay constant, and m, (7T') is the temperature-dependent axion
mass [121]. The parametrization of the temperature-dependent mass is adopted from the leading

order term in the fit in [116]. Explicitly, the axion mass is parametrized by
a A
me(T)? = min [a—, ma} , (A.2)
=i
fora = 1.68 x 1077, A = 400MeV and n = 6.68. The growth of the mass is truncated at

T ~ 100 MeV. The zero-temperature mass is given by

2 12
o Mifs  mymg

mg = )
¢ f2 (my +ma)?

(A.3)

where m is the pion mass, f is the pion decay constant, m,, 4 is the up/down quark mass. Details
of the temperature-dependent axion mass, or equivalently, the topological susceptibility, remain
uncertain, especially at low temperatures. Note that we do not explore here how our results are
affected by uncertainties in the temperature-dependent axion mass, though doing so is a worthwhile

direction for future work.
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Decomposing the complex scalar as ® = ¢; + 7¢9, and assuming a radiation-dominated cos-

mological background, leads to equations of motion in metric coordinates of the form

.. . 2 2
Bu+ 3HY: — V701 + 6 { (67 + 05— i) + TQ] - —<$aﬂz>¢§n =0
2 1 2 | 2 2 2 mal(T)2;1¢2 (A

Over temperatures 7" 2 100 MeV, the number of relativistic degrees of freedom g, in the Standard
Model is expected to vary only mildly. For simplicity, we therefore assume g, = 81, which is a
typical value adopted at high temperatures (though later in the Appendices we explore the system-

atic uncertainty introduced by this assumption). It is useful to define a dimensionless conformal

R R £\
. _R_ (L A5
"“RT=7)" R (tl) ’ (A.5)

time 7) such that

where R is the scale factor and the time ¢; (with T'(¢,) = T7) is a reference time that will be defined
differently in the PQ and QCD epoch simulations.

The axion-mass term is not included in our PQ-epoch simulations. In our QCD-epoch simula-
tions, on the other hand, the mass term is included and drives the dynamics. In this case, the mass
grows until the cutoff temperature 7. at which point the axion mass reaches its zero-temperature
value; the corresponding conformal time is given by 7. = R(T = T.)/R;. Rewriting (A.4) with
the dimensionless coordinates, we then find

4 20— o [wl(ﬁfswfws—l)#crf)

’ 2 (A.0)
2 A2 L a ap V5 o
ma(Tl)n mln(nanc) (¢% T ¢%)3/2‘ =0
14 20— 0+ o [ (207 + 08— ) + 57
! (A.7)

Fd(T)PminGi, )" (s )| =0

where ¢ = f,1), primes denote derivatives with respect to 7, and the spatial gradient is taken with

respect to r = ay Hyx.
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A.1.1 The PQ Epoch

Simulations in the PQ epoch occur at 7" > Aqcp and so the temperature-dependent axion mass

may be neglected. We therefore take our equations of motion to be

2, I
"4 ﬁqﬁi — V21 + Ay [772 (¥f+v3—1) + 3}2} =0
2 (A8)
2, - I
{4 = VR [7? (W} +93—1) + 3}2] =0,

and we fix 7 = 1 to be the time at which H; = f,. Note that for our PQ-epoch simulations we
refer to 7, defined in (A.5), as 7 in order to avoid confusion with the dimensionless conformal time

7 used in the QCD-epoch simulations. The ratio (7} / f,)? is determined by

T \> 5(1012Gev>
) ~84x10° | ——) . A9
(fa> : T. (A

In principle, it would seem that axions of different decay constants would require different simu-
lations in the PQ epoch. However, this ratio is degenerate with our choice of physical box size and
dynamical range in 7 in a particular simulation, allowing us to perform only one PQ simulation and
interpret its output as the initial state of the axion field for several different values of f,. The key
assumption behind this, however, is that at late times after the PQ phase transition the field enters
the scaling regime so that we may reinterpret the output of the PQ simulation in the appropriately
rescaled box as the initial state of the QCD simulation at much lower temperatures. Note that the

value of ) is a free parameter, which we naturally choose to be A = 1 though it has little effect.

A.1.1.1 Initial Conditions for a PQ Scalar

We generate initial conditions for our PQ scalar by taking it to be described by a thermal distri-
bution characterized by the temperature 7" at the initial early time. As can be read off from the

Lagrangian, each of the two fields has an effective mass of the form

2
mis =\ <% — ff) : (A.10)
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Correlation functions of the initially-free massive scalar fields are given by

(9i(7)i(y)) = dij %Z—Ze’“‘”‘y) (A.11)
(di(2)d;(y)) = 3y %nkwkeik.(m_y) (A.12)
(di(x)e(y)) =0, (A.13)

where overdots denote differentiation with respect to time, and we have defined

1
— — 2 2
=g =Rl (A.14)

In momentum space, these correlation functions take the form

ny

(x5 (K)) = T8k + )3 (A15)
(9i(k)d; (k') = 2mnywid(k + k)03 (A.16)
(di(k)p;(K')) =0. (A17)

Our simulations occur on a discrete lattice of finite size, so the correlation functions above lead to

initial conditions set by a realization of a Gaussian random field specified in Fourier space by

(6:(k)) =0, <|¢i<k>|2>=1”‘7zL, (A.18)
(Gu(k)) =0,  (|¢u(k)|*) = npwi L. (A.19)

Note that we include the 50 lowest k-modes in each of the three directions when constructing the

initial conditions, and we have verified that including more modes does not affect our results.

A.1.2 Early Times in the QCD Epoch

During the QCD epoch, T' ~ Aqcp, and so the axion mass is non-negligible. Here, we define
7 = 1 to be the time at which H; = m,(7}), with the axion field beginning to oscillate shortly

thereafter when m, = 3/ . The equations of motion are then given by
”‘l’g%D/ _?2¢1+Xﬁ2w1<¢2+¢2_1)_m1n(ﬁ ﬁ)nﬁQ ( w% > =0
tat L RN

" 2 1 v N A ANTLA
{4 20— P NP0+ = 1) i () <o

(A.20)
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where we have neglected the 7' contribution to the PQ scalar mass as it is small compared to f,.

~ f 2
A=A (m (“Tl)) (A.21)

and can be interpreted as the squared mass of the radial mode |®/f,|. For physical parameters

The parameter ) is defined by

we expect A1, though in practice we find that the final results are relatively independent of
\ for moderately sized values of the parameter, as described in the main text and later in the
Appendices. Indeed, our choices for A allow us to resolve the radial mode mass by more than a
few grid-spacings, satisfying the requirement of [124] to accurately study the axion spectrum from
string radiation. There exist additional criteria on the largeness of ) such that the metastability of
topological defects is preserved despite the unphysical smallness of simulated A in comparison with
the rapidly increasing axion mass. At all times prior to expected defect collapse, our choices of \
satisfy the simplest construction of these conditions [96], with our choice of A = 5504 satisfying
the most stringent criteria established in [125]. We note that we are largely unable to differentiate
between simulations at any two particular values of ), and that our choice of values appear to have

minimal impact, as illustrated further below.

A.1.3 Late Times in the QCD Epoch

The presence of topological defects in the axion field at early times during the QCD epoch requires
that we fully simulate both degrees of freedom of the PQ field. Once the topological defects have
collapsed, however, we are free to use the axion-only equations of motion. Our axion is defined by

a = f,arctan2(¢q, ¢2) and has the Lagrangian

L= %(8@)2 — m2(T) f2 {1 — cos (%)} : (A22)

along with corresponding equations of motion
1" 2 / =2 s A AN AD .
0" + —0" — V=0 + min(n,n.)"n"sinf = 0. (A.23)
Ul

Above, we define § = a/ f,. Evolving these equations of motion is formally equivalent to freezing
out excitations of the radial mode by taking A — oo, which more accurately recovers the true
physics of the evolution of the axion field for realistic values of f,. Note that the coordinate z and
7) here are identical to those used in evolving the two degrees of freedom of the complex scalar

performed prior to defect collapse.
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A.1.4 Analytically Evolving in the Fixed-Mass Small-Field Limit

At late times when the axion mass has reached its zero-temperature value and the axion field has
redshifted considerably so that || < 1, the equations of motion are linear and well-approximated
by

0" + %9’ — V20 + 7"i%0 = 0. (A.24)

We may solve this equation analytically by going to Fourier space and adopting an ansatz for the

solution as

6(7) = £(i) explik-x) (A25)
This ansatz leads to the equation
o, 2110 A\ (A2 am
() + % +.f(0) (72 +k?) =0, (A.26)
which has the general solution
i A2 Am/2
o exp(=50*0e"”) —
f(n) = 2 {ClHlA"/2(A"/2+‘k2> ( V _17777c/4) +
7’] 57c Me ?
. . (A.27)
Cy1Fy (Zﬁ;"” (272 + k) 5 5 iffﬁ?”) } ,

for coefficients C'; and C5 determined by boundary conditions, and where H,, and F) are the
analytic continuations of the Hermite polynomials and the confluent hypergeometric function of the
first kind, respectively. From this analytic solution, we can transfer late-time field configurations
from our simulation to arbitrary large 7). Differentiation with respect to 7) may be straightforwardly
performed to find f'(7) at large 7} as well. The computation of the analytically continued Hermite
polynomials and hypergeometric functions was performed with the python package mpmath.

We directly compare the differential mass spectrum at 77 = 7 with the same field analytically
evolved to 7 = nur in Fig. A.1. While the basic differential shape is the same, the 7} = 7 results
have a much wider distribution in d. In particular, all overdensities above § > 10 have vanished by
the time matter-radiation equality is reached. However, the peak of the distribution is still around
0 = 1. Evolving the fields down to matter-radiation equality is important because many of the
modes are generated with high momentum at the QCD epoch, causing the large overdensities to

disperse by the time of matter-radiation equality.
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Figure A.1: Double differential mass fractions for axion minihalos as a function of the concen-
tration parameter 0 and mass M. In the top left we compute that mass function using the field
immediately after the QCD phase transition, at 7 = 7, while in the bottom left we use the more
correct procedure of first evolving to 7) = 7y before performing the clustering procedure. Evolv-
ing to matter-radiation equality gives the most over-dense regions time to expand and results in less
dense overdensities, as compared to the incorrect procedure shown in the top left. This is perhaps
even more apparent in the single differential mass fractions as a function of the mass M (top right)
and concentration parameter ¢ (bottom right). These results are based on our most realistic simu-
lation with 7). = 3.6 and A = 5504. Error bars are statistical, and we do not extend the df /dlog M
curves to lower masses as we are unable to resolve those properly.

A.2 Studying the (Over)Density Field

Our interest in this work is studying the energy density field p and the overdensity field 6 =
(p — p)/p realized in the axion field from our simulations. The axion energy density for the axion

field a = f,0 is computed by the Hamiltonian density

1. 1
2 2 2 2
H = fa |:§0 + Q—RZ(VQ) + ma(l — COS 9):| s (A28)
which can be rewritten in simulation units as
0" + (V)?
H= mifg {W + (1 — COS 9):| s (A29)
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assuming 1) > 7).. At late times, the Hamiltonian is approximately

2 12 9/2
M~ m%f “ (ﬁ"ﬁQ + 92) , (A.30)

C

when all modes in the simulation are non-relativistic and the field values are small.

A.2.1 Oscillons

Large overdensities right after the QCD phase transition are caused by oscillons. Oscillons are,
in contrast to strings and domain walls, not topological defects but arise due to non-linearities in
the equation of motions, forming at locations where the the axion self-interaction dominates the
Hubble friction. As a result, the first oscillons form at the location of collapsed strings and domain
walls, where the axion remains excited and reaches large field values. However, at later times,
oscillons are observed forming throughout the simulation box. The dynamics of the oscillons are
highly non-trivial, especially as the axion self-interaction increases in strength with the growing
axion mass.

Oscillons decrease in size over time following the oscillation wavelength ~m, (7)~!, as axions
in the core are relativistic. Good spatial resolution is therefore needed to resolve them. In order to
study their behavior we perform a 2D (two spatial dimensions, one time) simulation using the same
simulation setup in the PQ- and QCD-epoch as in 3D. We find that there is no qualitative difference
between 2D and 3D simulations regarding oscillons, but going to 2D allows us to increase the
spatial resolution to 4096 grid sites and to subsequently increase 7).. Note that in the context
of our 2D simulations we have explicitly verified that the final-state fields and, in particular, our
central results, such as those concerning the DM density estimates and the non-Gaussian density
distributions, are stable to increases in the number of grid sites. For example, we increased our
resolution by a factor of two in each direction and found consistent results.

We illustrate the evolution of an oscillon in Fig. A.2. Two scenarios are considered with dif-
ferent truncation points of the mass growth, 7. = 4.0 and 7). = 6.0. Note how the radius of the
oscillon decreases as long as m, (T') is increasing. The circles in A.2 have radius m,(7") !, and the
oscillon cores are seen to track this scale. Subsequently, if the mass growth is truncated at 7). = 4.0,
the radius of the oscillon is constant as well. When the mass growth is cut-off, the density contrast
at the core of the oscillon slowly decreases over time and the oscillons dissipate, as can be seen in

the two lower right panels in Fig. A.2.

169



mq(T') keeps growing

Figure A.2: Illustration of an oscillon (log(p/p)) at different times in a 2D simulation. Two scenar-
ios are considered with different truncation points of the mass growth, 7). = 4.0 and 7). = 6.0. The
three left panels are identical in both scenarios, while the two top right panels are for 7). = 6.0, and
the two bottom panels are for 7). = 4.0. The radius of the oscillon is proportional to the oscillation
frequency ~ mq(T)~! (circles of that radius are shown in dashed blue) and as such is decreasing
over time. The oscillon central density slowly dissipates after the mass growth ends, as seen in the
bottom right panels for 7). = 4.0.

A.2.2 Calculating the Axion Relic Abundance

To calculate the axion DM abundance as a function of m,, we first need to understand the rela-
tionship between the mass cutoff conformal time 7). and the decay constant f,. Here we use the
relation 7} /7. = T,, with T, ~ 100 MeV. This allows us to solve for f, in terms of 7.. The
energy densities are calculated from the axion field and its derivatives according to (A.30) after
numerically evolving until /) = 7, then analytically evolving until /g = 10°, at which point the
contribution of the gradient term to the energy density is negligible. As a side note, our definition
of Nur actually puts us at slightly earlier times than global matter-radiation equality. This us be-
cause matter-radiation equality is, locally, reached earlier for the largest overdensities and because
we want to make sure that gravitational interactions can be neglected. In particular, note that the
temperature corresponding to 7y is given by T\ir = Te1./7vr. For our most realistic simulation
with 7. = 3.6 this corresponds to Ty ~ 0.5 keV. However, if we reinterpret the final state for a
more realistic axion with m, ~ 25 peV, which has a higher 7., then T\;g ~ 4 keV. In practice,
though, the exact value of Tyir is not important because by these temperatures the proper motions

in the axion field are frozen out and the field is thus not evolving non trivially. As a consequence
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our results (both for the DM density and for the spectrum of overdensities) are not sensitive to
small (or even relatively large) changes to the exact value of 7 that we evolve to.

Note that we present our results in terms of the DM density fraction today €2,, which is defined
as the ratio of the average energy density today in DM relative to the observed critical energy
density. We compute statistical error bars at each value of f, from the variance as a function of A
at fixed 7).. We note that no trend is visible in the data for the dependence of 2, on )\, as is shown in

Fig. A.3. The statistical noise is inferred from the spread in {2, values, which are determined from
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Figure A.3: Our results for the DM density today €2, inferred at 7yg, from simulations at different
values of \ for our most realistic Ne: Ne = 3.6. The uncertainties are the inferred statistical uncer-
tainties arising from the spread in the DM density determinations as a function of X. No trend is
discernible for the dependence of €2, on 5\, above the statistical noise.

the output at 7g, between different A. The observed variations are consistent with the expected
noise from Poisson counting statistics due to having a finite number of overdensities within the
simulation box.

In Fig. A.4 we show our results for €2, as a function of f,, compared to earlier predictions
in [118] and [112]. For reference, we also include predictions for the relic abundance based on
the field value and the time derivative at 7 = 7. Here it is less straightforward to determine the
DM axion abundance, relative to taking the results at 7yr, as some of the modes in the simulation
are still relativistic. This introduces an additional systematic uncertainty, since the field is not
completely red-shifting like radiation at this time. For these reasons it is important to evolve the
field until it is completely non-relativistic before measuring the DM density.

Because the ratio of the axion mass density to entropy density is constant after the axions have
become non-relativistic and the number of axions is conserved, we can redshift our energy density
from our matter-radiation equality 7y to today. Then, we compare this energy density to the
most up-to-date measurement of the average DM density in the Universe today ppy = 33.5 £ 0.6

My, /kpc?® [128]. Note that we have propagated all cosmological uncertainties other than those on
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Figure A.4: A comparison of the predictions for the relic abundance of axions dark matter as a
function of f, obtained in [118] (Kawasaki et al.) and [112] (Klaer and Moore) with the simulation
results realized in this work. Error bars are combined statistical and correlated systematic errors,
with the former dominating at ) = 7 due to large field gradients and the latter at 1) = 7).

Neg, which we have fixed to the Standard Model value. These cosmological uncertainties introduce
an approximately 3% correlated uncertainty across the results of our simulations. We additionally
have an approximately 8% uncertainty due to our assumption of fixed g., which is examined in
greater detail later. These uncertainties are the dominant ones in our results, and we emphasize
that they have not been typically considered in determinations of the DM axion mass. From the €2,
data, for the various f, values simulated, we may extrapolate to predict the f, for an axion which
produces the observed DM relic abundance by fitting a simple power law relation of the form

Qulfa) =1 fo (A31)

a )

as discussed in the main body of this work. Note that we expect « = (6 + n)/(4 + n), where n
is the index of the axion mass growth. We assume this scaling is valid to make our estimate for
the m, that gives the correct DM abundance. The relation between « and n is expected to arise
for the following reason. Let us estimate the axion DM density from an axion with a constant
initial misalignment angle #;. The present-day axion abundance as produced by the misalignment

mechanism can be estimated by

ma(To) g-(To) Ty
mq(Ts) g(T3)T5

pa(TO) = pa(T?)) (A32)

where 7 is the present-day temperature, 75 is the temperature at which the axion began to oscillate

(ma(T3) = 3H(T3)), and g.(T) the number of effective degrees of freedom at temperature 7.
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The initial axion abundance p,(73) is given

ma(T3)2 2

pa(T3) = 5 67, (A.33)

Anharmonicity factors can be included, but have no temperature or f, dependence. The temper-

ature T3 depends on f, through the relation 75 o f, 2/(44n), Substituting these relations in and

keeping only terms which depend on f,, we have

~—

pa(Th) f(§6+ )/ (4+n) )
g*(T3)

(A.34)

We thus expect the relic abundance to scale with f, like p, o f(§6+")/ “+n) " Note that the DM
abundance from string and domain wall production is calculated similarly in [118], and although
our results are not consistent with those presented in that work, the abundance calculation they
present proceeds similarly, yielding string and domain wall production that scale like fémn)/ (4+n)
as well.

On the other hand, we may also calculate the the m, that gives the correct DM abundance by
using our fit value for «, as defined in (A.31), instead of the theoretical value. Doing so leads to a

slightly lower m,, estimate, as described in the main text.

A.2.3 Tests of the Overdensity Field Gaussianity

In typical cosmological contexts, overdensity fields are treated under the assumption that they are
Gaussian random fields. For a real-space Gaussian field, we may Fourier transform the field and
find that the squared magnitude of each mode is independently exponentially distributed with mean
set by the power-spectrum and with the phase of each mode independently uniformly distributed on
[0, 27) [429]. For reference, in Fig. A.5 we show our power spectra A? at fixed ) across our various
choices for 7).. Note that we construct the power spectra from the fields that have been evolved until
7 = Nur. However, as we demonstrate below, the power spectrum fails to accurately describe the
overdensity field we realize in our simulations because the field is highly non-Gaussian at small
scales. As a result, standard tools for predicting structure formation that rely upon an underlying
Gaussian overdensity field, such as the Press-Schechter formalism, cannot be applied to predict
the spectrum of structures that form from the overdensities in the axion field, at least on the very
smallest scales.

First, we note that the largest field values taken within the overdensity fields at the state realized
by the analytic evolution until 7 = g are O(10), whereas the minimum value the overdensity

field can take is —1 by construction. This is trivially incompatible with the interpretation of the
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Figure A.5: A comparison of the power spectra realized in simulations for A = 5504 for different
choices of 7).. New features in the power spectrum emerge as we push to larger values of 7)., and
we cannot exclude the possibility that further features would emerge were we to simulate with a
greater value for the cutoff. On the other hand, the power-spectrum is highly non-Gaussian at small
scales, so the distribution A? alone is not adequate for understanding the small-scale nature of the
overdensity field.

overdensity field as a Gaussian random field, which would have symmetric variance about its
mean of 0. For our overdensity fields to realize O(10) maxima with —1 as a construction-imposed
minimum, there must exist considerable phase-correlations between Fourier modes, contrary to the
uncorrelated phases of a Gaussian random field.

We also may inspect the distribution of power at each mode in the Fourier transformed over-
density field. If the overdensity field were Gaussian, then the power in each mode would be
exponentially distributed with mean set by the value of the mean power spectrum. To test this, we
plot the probability distribution dP/dx of z = |0(k)|?/(|0(k)|?) /x> With d(k) the Fourier trans-
formed overdensity field at momentum k, as measured in the final states of our field at ) = 7yg-
We compare the observed distributions with the expected Gaussian random field assumption of
an exponential distribution with unit mean in Fig. A.6. Dramatic deviations from the expected
behavior are observed for large |k|. We stress, however, that in addition to these distributions
departing from the expected exponential distributions, the real and imaginary components across
modes are also highly phase correlated on small scales. We additionally note that this study of
the Fourier spectrum of the overdensity field is performed after the field has been undergone an
eight-fold down-binning, so that all modes inspected are well above the simulated lattice-spacing
scale. Moreover, the oscillons which are obvious indicators of non-Gaussianity, are resolved by

several lattice spacings at all times in our simulation. In this way, we can be confident that the
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appearance of non-Gaussianity is a physical effect rather than one associated with discretization
error. As mentioned in Sec. A.2.1, we have also explicitly verified in the context of our 2D sim-
ulations that increasing the number of grid sites leads to consistent results, further indicating that

the non-Gaussian density spectra are physical and not related to the finite lattice spacing.
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Figure A.6: A comparison of the distribution of the squared magnitudes of Fourier components
for four different fixed reference momentum k. The expected exponential distribution for a Gaus-
sian field is also indicated. While the distributions are Gaussian at large scales, they become
increasingly non-Gaussian at small scales. The momentum mode |k| = 500 corresponds to ap-
proximately 6.5 grid sites. These distributions were constructed from our most realistic simulation
with A = 5504 and 7. = 3.6.

A.2.4 Minihalo Mass Spectrum

In this subsection we give additional details and results for the minihalo mass and density spec-
trum. In addition to the technical difficulties associated with a non-Gaussian overdensity field,
computational limitations prevent us from performing realistic simulations of f, ~ 10" GeV ax-
ions, which would require us to simulate until 7). ~ 15. We instead interpret our simulation results
at smaller 7, in appropriate units to rescale these results to the target f, ~ 2 x 10'* GeV. We do

so with the following methods. The total axion mass contained within some set of grid-sites in our
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simulation can be computed from the Hamiltonian as

Moy = a(i)? /d?’:v’H,Na( )Z(M)%:( m;?“”) Y H = ("A$> S (1 +6)p,
(A.35)

where p is computed by the average of our Hamiltonian in (A.30) in the simulation box. We

calculate H; from 7} based on our choice of f,, then rescale p to the value of the axion energy
density at the time 7 such that the correct relic abundance is realized today. In this manner, we
aim to rescale all dimension-full quantities related to f, to our target f,. In particular, we rescale
the DM density p to give the correct DM density realized in our Universe, and we also rescale the

minihalo masses by the factor oc (a; H;) ™3 appearing in (A.35) to those for the target f,.
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Figure A.7: Comparison between differential mass fractions as a function of the minihalo mass M
from our simulations at different 7).. In this plot we have rescaled the minihalo masses such that
we achieve the correct DM density p observed in the Universe, but for the solid curves we have
not applied the Hubble volume rescaling factor to reach our target f,. However, the dashed curves
do have the Hubble volume rescaling factor included, but here we take our target f, to be that
corresponding to our most realistic simulation with 7). = 3.6. The difference between the dashed
mass functions and the solid black mass functions gives a sense of the systematic uncertainty
introduced by applying the naive mass rescaling factors instead of simulating with the correct
value of 7. (f,).

We illustrate the rescaling procedure in Fig. A.7. In that figure we show the differential mass
distribution of minihalos df /dlog M as a function of minihalo mass M. These mass distributions
have been rescaled such that p matches the actual DM density. However, the solid curves do not
have the a; H; Hubble volume rescaling included. The dashed curves, on the other hand, apply
the Hubble volume rescaling factor but for a target 7). of 7. = 3.6, which is that corresponding

to the black curve. Clearly there are still differences between the rescaled dashed curves and the
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black curve, which tells us that there are dynamical effects that arise from changing 7). that are not
captured by the simple rescaling. This should not be too surprising considering that e.g. the mass
growth affects the oscillon stability, which determines the high-mass part of the distribution. In
our work we rescale the mass function to the target f, as described above, but it is important to
keep in mind that this almost certainly results in a systematic uncertainty from the fact that we do
not capture the full oscillon dynamical range in doing so. Also note that all of the mass functions
abruptly drop off at low halo masses. This is due to our resolution limit on the finite lattice. We

also cannot rule out the possibility that the low-mass tail continues down to much smaller masses.
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Figure A.8: Comparison between differential mass fractions as a function of the concentration
parameter § and minihalo mass M for different 7). and A at 7 = 7wvr. Error bars are statistical.
Shown as dotted lines is a fit to the df /dd curves as described in the text. We do not extend the
df /dlog M curves to lower masses as we are unable to resolve those properly.

We compare the single-differential mass fractions for different values of 7). and ) as a function
of 6 and M in Fig. A.8. Note that here we have applied the rescaling factors for the masses to
our true target f,, which is that which gives the correct DM density. First of all we note that there
is no dependence on ) visible in our parameter range within than statistical scatter. As for the
differential distribution as a function of 9, there is also no clear dependence on 7). visible. The only
place where a clear dependence on 7). is visible is in the mass fraction as a function of M. Here, the
peak values shift to smaller masses upon increasing 7)., even after including the rescaling factors.

It is useful to have an approximate analytic formula for the differential mass fraction. We find

that the differential mass fraction as function of § can be accurately described by a Crystal Ball
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function based on a generalized Gaussian and a power-law high-end tail together with a suppres-

sion factor at high-9:

~[im (35)v2e]’ %) <oa

daf A ‘ e . (A.36)

af forln(
s 1+<%>5 B[@q_%hﬂ(%)]% for 1n<5i> > ow

og]
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The parameters B and C' are given by

d n d
B = (%) G§>E¥i, C = |of G§)3—1, (A37)

and they are chosen such that df /d§ and its first derivative are continuous. A is not a free parameter
as [, do(df /dd) = 1 must hold. The fit parameters from our most realistic simulation with

fle = 3.6 and \ = 5504 are given by

o =0.448 £ 0.008 n=115+8 0c = 1.06 +0.02 S=47+1.6
d=1.93+0.02 a=—0.21+0.07 op=34+12.
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Figure A.9: Comparison between cumulative mass fractions, defined in the text, for our simulation
at 7) = 7 (solid blue) and 7yr (solid black). We use our fit to the differential mass fraction df /do
to extrapolate to high ¢, for our 7y data (dotted black). Error bars are statistical. We compare
our results to those from Kolb and Tkachev [430] obtained at ) = 4 by using the fit to their data
presented in [99] (red curve).

This fit allows us to make a precise comparison with previous work by Kolb and Tkachev [430].
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We present in Fig. A.9 the cumulative mass fraction that is in overdensities larger than dy,

*d
F<5>5O):/5 d—é

Unsurprisingly, we find considerably less mass in highly concentrated overdensities relative
to [430]. Whereas [430] predicts roughly 10% of the mass is in overdensities with § = 10 or

do. (A.38)

more, we find a similar result only when using the simulation output at 7 = 7. Once evolved to

matter-radiation equality, that percentage falls to ~0.1%.

A.3 Testing the QCD Potential

The QCD potential may be modified in order to obtain more numerically tractable equations of

motion. Our effective Lagrangian

B T2

1 A 2
ﬁPQ:§|3‘I’|Q—Z(|‘I’|2—f3) 6

B> —my(T)? fZ[1 — cos Arg(®)], (A.39)
has an apparent singularity when & — 0, which may happen in the string cores, since Arg(0) is not
well defined. An alternate form of the potential has been proposed in the literature (see, e.g., [121])

to mitigate this apparent singularity and make the equations of motion numerically more tractable:

B AT*?

5 [ — ma(T)*fo[1 — [®| cos Arg(®)].  (A.40)

1 A 2
Lpg = 5|00 = — (|2 - f7)
2 4
This leads to equations of motion for early times in the QCD epoch of the form

2 _ ~ PPN
V4 S — VR + AP (93 + 5 — 1) — min(f, 5.)"7 = 0
7 (A41)
, ) ) .
5+ 5% — V2o + MPhe (Y] + 5 — 1) =0,

in analogy to those found in (A.20). The equation of motion for the single axion field appropriate
for late times in the QCD epoch are unchanged.

Equipped with these new equations of motion, we re-simulate in three spatial dimensions using
our fiducial values of 7. = 3.6 and A = 5504. A comparison of results across metrics, such as
the energy density as measured at matter-radiation equality, leads to a ~1% difference between
results obtained with the two potentials. We neglect this systematic in our error budget as it is

vastly subdominant to other sources of uncertainty.
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A.4 Testing the Impact of the Mass Parametrization

Precise details regarding the temperature dependence of the axion mass remain uncertain. While
we have chosen to use the parametrization of [116] with index n = 6.68 as done in [117, 118],
an more recent result is provided in [123]. In that work, an index of n ~ 8.2 is found at high
temperatures, though we do note that an increasingly shallow dependence on 7' is realized at lower
temperatures. Motivated by power-law fits to this numerical result and informed by considerations
of the changing number of degrees of freedom, recent works have taken an index of n = 7.6
in [112] and n = 7.3 in [96] to study the axion field. In this section, we use the extreme value
n = 8.2 to estimate the maximal effect that uncertainties in the mass growth may have on the
determination of the DM density.

We perform simulations first in two spatial dimensions, then in the full three spatial dimension
using our initial state, now using n = 8.2. We fix A\ = 5504 and f, &~ 4.8 x 10" GeV. This choice
of f, corresponds to 7). = 3.6 in the n = 6.68 parametrization. However, the value of 7). depends on
our choice of n and is 7). ~ 3.1 for the choice of n = 8.2, since the mass grows faster in that case.
We re-simulate with this alternative choice of index until 7 = 7 and then recompute the present-day
axion abundance by analytically transferring the simulation fields to the same late time physical
temperature. In both 2D and 3D simulations, we find that there is a ~10% enhancement in the
expected relic abundance with n = 8.2 versus n = 6.68. This is somewhat surprising, considering
that the analytic estimate predicts that higher n should result in a lower DM abundance at fixed f,.
To understand how this result affects the final determination of the axion mass, we fit the predicted

scaling 0, ~ fé"%)/ (n+4)

for the DM abundance using n = 8.2 and find the m, that gives the
correct DM abundance.

The result is that with n = 8.2 we find that the m,, that gives the correct DM abundance is
enhanced by ~27% compared to the n = 6.68 case. We account for this 27% uncertainty as an
additional systematic uncertainty in our final determination of the axion mass. We also emphasize
the consistency between results obtained for simulation