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ABSTRACT

Taking underlying physics into consideration is essential in the design of numerical

schemes for fluid dynamics simulations. The Active Flux (AF) method is a novel class of

fully-discrete numerical schemes that aim to truly reflect the multidimensional physics

in gas dynamics. The original scheme has successfully achieved third-order accuracy for

the Euler equations. In this project, we overhaul the original scheme and formulate a

general paradigm for the Active Flux method, which allows a flexible and systematic ex-

tension to a family of schemes as well as a tidy treatment of general boundary conditions.

We propose a novel and versatile notion of discrete conservation laws for the general AF

method. We also apply the schemes to solving the Navier-Stokes equations. Numerical

strategies for approximating derivatives and improving stability are discussed along the

way, which significantly expands the capacity of the AF method.

Throughout the dissertation, we view the AF method as a predictor-corrector method.

In the original AF scheme, assigning degrees of freedom to the cell boundaries and

reconstructing continuous piecewise functions are key to capture the multidimensional

physics in the inviscid flows at the prediction stage. However, having degrees of free-

dom (DOFs) shared by neighboring cells poses difficulty in enforcing conservation laws

in the correction stage. We introduce a novel treatment of discrete conservation laws

for the AF method. Instead of enforcing strict local conservation for each cell, we dis-

tribute to the nodal values a “discrepancy” equal to the difference between conservative

and non-conservative updates, which replaces expensive and inconsistent bubble func-

tions that were used in the original 3rd-order AF scheme. This notion of conservation

x



is compatible with a family of arbitrary-order spatial discretization and independent of

the predictor. Thus we are able to systematically extend the AF method to a family of

schemes of various order of accuracy and apply them to different problems governed by

conservation laws. Analysis in one space dimension and abundant test cases, including

the Euler equations, in both one and two space dimensions, are presented to verify the

accuracy.

When we extend the Euler solver to the Navier-Stokes equations, we face difficulty

from the stiffness caused by viscosity and heat conduction as well as approximating

second-order derivatives. We introduce relaxed variables to reformulate the equations as

a first-order hyperbolic system. The hyperbolic model has the same steady-state solutions

as the original one. Our numerical experiments indicate that, compared with the bench-

mark scheme that directly approximates second-order derivatives, using the hyperbolic

reformulation in solving the steady-state problems significantly reduces the simulation

time while yielding better accuracy.

In practice, most problems in fluid dynamics simulations come with domains that

contain complex geometry. Within the framework that we propose for the AF method,

we discuss a simple but effective implementation of general boundary conditions in pre-

dictors and correctors. Results generated by the second-order scheme from the AF family

are presented for both inviscid and viscous flows on domains with curved boundaries.
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CHAPTER 1

Introduction

As computational power advances rapidly, computational fluid dynamics (CFD) plays an increas-

ingly important role in fundamental research of fluid mechanics and simulation-based engineering

design processes. It provides an affordable and useful replacement of expensive or even impos-

sible experiments in the real world. For example, with the aid of CFD simulation, the aerospace

design process is accelerated while the cost and risk of testing are significantly reduced [42]. Valu-

able physical insight for modeling complicated flow phenomena, e.g., turbulence, can be extracted

from the data generated by direct numerical simulation (DNS) [28]. These tasks require a large

amount of computation to get physical details resolved as much as possible. Thus robust numer-

ical algorithms that have a good balance of accuracy and efficiency as well as compatibility with

exascale-computing, are critical for the practical use of CFD.

In this project, we focus on developing new-generation numerical tools for simulation of flows

by the compressible Navier-Stokes equations, which consist of the conservation laws of mass,

momentum, and energy, plus constitutive equations derived from assumptions in thermodynamics.

(See Appendix A for the derivation of the equations.) When designing numerical schemes for fluids

simulations, fully capturing the underlying physics is vital to success. The conservation laws are

among the most apparent and important ones. The Lax-Wendroff theorem states that the solution

to which numerical solutions converge is a weak solution to the partial differential equation [23].

A discrete version of the conservation laws can be defined directly on cell averages when nu-

merical schemes use discontinuous representation of solutions, e.g., Finite Volume (FV) method

1



and Discontinuous Galerkin (DG) method. Indeed, the current mainstream commercial CFD code

for conservation laws is based on 2nd-order finite volume methods, which are robust and versa-

tile. High-order (≥ 3) FV methods do exist but have to use large stencils and thus they are not

ideal for parallelization. High-order accuracy could be also achieved with discontinuous Galerkin

methods. However, introducing too many degrees of freedom per element not only increases the

amount of computation, but also brings about challenges from memory requirements, especially

for three-dimensional cases. There are also strict restrictions on the time step size for explicit

methods when spatial accuracy is very high. High-order-accurate temporal evolution also incurs

more computational cost.

The physics in multidimensional gas dynamics is much richer than conservation laws. How-

ever, numerical schemes using discontinuous representation of solutions are flawed in evaluating

fluxes that pass from each cell to its neighbors. Due to the discontinuity at the cell boundaries, a

Riemann solver is required. These Riemann problems reflect only the one-dimensional wave struc-

tures. For example, when considering the acoustic system, we will be led to d‘Alembert’s solution

consisting of two waves moving with equal speed in opposite directions, which are no different

from advective waves [36]. However, in the multidimensional setup, the acoustic wave propagates

in all directions, which is essentially distinguished from the advective wave.

So, why not turn to numerical schemes that use continuous representation of solutions? Re-

searchers pursued numerical schemes based on continuous reconstruction, e.g., the Cell Vertex

method [22], the Residual Distribution (RD) method [2], the Multi-moment Finite Volume method

[21], hoping to lower the cost of computation. Among them, the Active Flux (AF) method devel-

oped by Roe and his students Eymann, Maeng, Fan in [36, 13, 26, 16] is a promising candidate

designed to fully reflect multidimensional physics.

2



1.1 A Brief Survey of the Active Flux Method

The original Active Flux (AF) method is a novel 3rd-order fully-discrete explicit scheme intro-

duced to capture multidimensional physics in flows governed by the Euler equations by splitting

the evolution of the solution into advective and acoustic components and treating them separately.

In two-dimensional space, the AF scheme works on triangle meshes where DOFs are assigned

to the vertices, midpoints of edges, and cell average. Each triangular cell has access to 7 DOFs.

Continuous piecewise quadratic functions plus bubbles 1 are reconstructed from the discrete data

to represent the numerical solutions. Since all DOFs that represent nodal values on the cell bound-

aries are shared by adjacent cells, on average, each cell has 3/2 + 3/6 + 1 = 3 DOFs. The potential

extension of such type spatial discretization to three-dimensional space would significantly miti-

gate the curse of dimensionality 2.

In the evolution of numerical solutions from time t to t + ∆t, there are two stages. The first step

is to update the nodal values3 of variables on the cell boundaries by using a proper combination

of the third-order numerical schemes developed for advection [26] and acoustics [16]. With the

nodal values of variables, the temporal integral 4 of fluxes can be computed to update the cell

average. In the early development [26, 13, 16, 27, 14, 40], this is how the conservation laws were

enforced. After constructing piecewise quadratic functions plus bubbles from the updated data,

the scheme is ready for the next iteration. The stencil remains compact in temporal evolution.

Numerical experiments on problems with simple boundary conditions [27, 14, 40, 36] indicate that

the decomposition of physics plus the time marching strategy was successful. The Euler solver

based on the Active Flux method is more accurate than the prevailing second-order finite volume

methods in practical use and more computationally efficient than other comparable third-order

1The bubble function is a polynomial of degree 3 that vanishes on the cell boundary. In the reference cell, the
bubble function is given by xy(1 − x − y).

2Sharing DOFs with neighboring cells does not change the fact that the number of DOFs has asymptotic exponen-
tial growth (∼ O(pd)) with the number of dimensions d when the degrees p of reconstructed polynomials are large.
However, in practical use, p is usually small, e.g., p < 5, where the reduction of the number of DOFs is manifest.

3Since the nodal values on cell boundaries are directly predicted instead of being estimated by Riemann solvers,
this method gets the name “Active Flux”.

4To achieve 3rd-order accuracy, the nodal values at t + ∆t/2 are also required for the integral.
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schemes [39].

This is not the end of the story. No robust boundary treatment has been developed with the

original AF scheme; The discrete conservation law achieved via the bubble functions has its limi-

tation. The extension to viscous compressible flows needs to be figured out. These are the major

problems to be addressed by this dissertation.

In recent years, there are also other branches developed from the idea of the AF method [5,

20, 6, 4, 9]. Their investigation, which is more rigorous theoretically, focuses on one-dimensional

space and the extension to two-dimensional space uses Cartesian meshes. Since their topics are

not closely related to the main concerns of this dissertation, we omit the details here.

1.2 Thesis Overview

In this project, we overhaul the original scheme and formulate a general paradigm for the Active

Flux method, which allows a flexible and systematic extension of the AF scheme and a tidy treat-

ment of general boundary conditions. The major contributions of this dissertation include:

• A novel notion of discrete conservation laws that extends the AF method to a family of arbitrary-

order schemes,

• A general treatment for common boundary conditions in compressible viscous flows and a nu-

merical strategy to stabilize the 2nd-order scheme from the family,

• Extending the AF scheme for the Navier-Stokes equations via hyperbolic reformulation.

In Chapter 2, we formulate the AF scheme as a predictor-corrector method. We explain why it

is necessary to get rid of the bubble functions and introduce a systematic treatment for the discrete

conservation law for a family of arbitrary-order schemes. Analysis and numerical experiments

are presented. Not all the problems have exact solutions to serve as the predictor. In Chapter 3,

we dissect the operator splitting from the original AF scheme to seek a proper approximation of

derivatives for gas dynamics simulations. The full Euler equations are used as a test problem to

verify the high-order accuracy. Then we discuss numerical strategies to enforce boundary condi-
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tions and stabilize the scheme, which are essential to expanding the capacity of the AF schemes in

Chapter 4. The high-order treatment of curved boundary is not available yet, so we present the re-

sults generated by the 2nd-order scheme from the AF family. In Chapter 5, to include viscosity and

heat conduction, we introduce a simple benchmark solver based on piecewise linear reconstruction

that directly approximates 2nd-order derivatives. In Chapter 6, we illustrate the hyperbolic refor-

mulation as a numerical strategy to speed up simulations for steady-state solutions. Numerical

schemes that use piecewise linear reconstruction are used for validation. Most of the ideas from

Chapter 4 to 6 are extendable for higher-order schemes. We discuss the conclusions and future

work in Chapter 7. We also include the documentation of some miscellaneous investigations in the

Appendix. Note that almost all of the numerical schemes presented in the thesis relate to either

one- or two-dimensional cases. The three-dimensional case is expected to be very similar since

our numerical discretization is systematic.
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CHAPTER 2

The Active Flux Method and the Extension to a

Family of Arbitrary-order Schemes

2.1 The General Paradigm of the Active Flux Method

The numerical evolution in AF is generally described as a predictor-corrector method. The predic-

tor estimates the nodal values at tn + ∆t from the data at tn. For example, the exact solutions or

method of characteristics can serve as a predictor. Usually the predictor is non-conservative. Thus

we need the corrector to reconcile with the conservation laws. It could be simply adding bubble

functions or a new notion of discrete conservation laws that we introduce in this chapter.

Algorithm 2.1 The general paradigm of the Active Flux method
1: Initialize discrete data U0.
2: n = 0.
3: while tn < T do
4: tn+1 = tn + ∆t.
5: Reconstruct continuous piecewise polynomials uh,n from the discrete data Un.
6: Evaluate nodal values U at tn+k/p with proper methods (1 ≤ k ≤ p). (Predictor)
7: Numerically integrate the fluxes from tn to tn+1.
8: Reconciliation with the conservation laws. (Corrector)
9: n = n + 1.

10: end while
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2.2 Introduction: Why Should We Eliminate the Bubble Func-

tions?

Our experiments show that a proper form of discrete conservation laws is essential to prevent local

truncation error from accumulating. In the original 3rd-order AF method, an independent DOF for

each cell is required to enforce the strict local conservation laws. For triangular meshes (2D) or

tetrahedral meshes (3D), this entails introducing an extra DOF per cell and enriching the continu-

ous piecewise quadratic reconstruction with bubble functions[26], which considerably multiplies

the cost of computation. Furthermore, the bubble function approach is not robust: mesh alignment

issues and instability near discontinuities have been reported [26, 19, 20]. The construction of

bubble functions is also dimension-dependent and there is no systematic extension to numerical

schemes of different order of accuracy.

We go back to basics and ask, is a strict local conservation law really necessary? The one-

dimensional model we built for third-order schemes in our initial investigation [19] indicates that

we can replace the cell-wise balance of flux by a flexible discrepancy distribution strategy without

loss of accuracy. Several numerical experiments in [19] indicate this is also true for third-order

schemes in two-dimensional space. Thus, constructing bubble functions is no longer necessary. In

this chapter, we extend the idea of discrepancy distribution further and present a family of arbitrary-

order Active Flux schemes. With reconstruction of continuous piecewise polynomials of degree

p, we achieve global p + 1-th-order accuracy. However, because degrees of freedom may relate

to more than one element, the storage requirements are greatly reduced. Besides, the flexibility of

discrepancy distribution enables us to design limiters when the solutions are almost discontinuous.

See Appendix E.1. The new schemes generate satisfying solutions in shock tube tests, where the

original AF-based Euler solver based on bubble functions was unstable.
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(a) p = 1, 2nd-order (b) p = 2, 3rd-order (c) p = 3, 4th-order

Figure 2.1: The discretization in the Active Flux method of different order of accuracy in one-
dimensional space. p represents the degree of the reconstructed polynomial on each cell.

2.3 The Numerical Discretization

2.3.1 One-dimensional Space

For simplicity, we use a domain Ω = [0, 1] with periodic boundary conditions in this section to

illustrate a novel treatment of discrete conservation laws and a family of numerical schemes built

on top of it. We divide the domain Ω = [0, 1] into N cells Ii = [xi−1/2, xi+1/2]. To reconstruct

a continuous piecewise polynomial of degree p for a given function u, we store Ui−1/2, the nodal

value of u at the interface xi−1/2, and Ui,k = u(xi−1/2 +k/p∆x), ∆x = xi+1/2− xi−1/2, for 1 ≤ k ≤ p−1.

See Figure 2.1. Then on each cell, we reconstruct polynomials of degree p via interpolation.

For p = 1, ξ = (x − xi−1/2)/∆x,

uh
i (x) = Ui−1/2(1 − ξ) + Ui+1/2ξ.

For p = 2, ξ = 2(x − xi−1/2)/∆x,

uh
i (x) = Ui−1/2

(ξ − 1)(ξ − 2)
2

+ Uiξ(2 − ξ) + Ui+1/2
(ξ − 1)ξ

2
.

For p = 3, ξ = 3(x − xi−1/2)/∆x,

uh
i (x) = − Ui−1/2

(ξ − 1)(ξ − 2)(ξ − 3)
6

+ Ui,1
ξ(ξ − 2)(ξ − 3)

2
− Ui,2

ξ(ξ − 1)(ξ − 3)
2

+ Ui+1/2
ξ(ξ − 1)(ξ − 2)

6
.
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To illustrate the discrete numerical evolution, we take the hyperbolic equation with a conserva-

tion law as an example.
∂u
∂t

+
∂ f (u)
∂x

= 0.

Note that along the characteristics (x(s), s) where x′(s) = f ′
(
u(x(s), s)

)
, u remains constant. That

is, u(x(s), s) ≡ u(x(0), 0) and x(s) − x(0) = s f ′
(
u(x(s), s)

)
. In the predictor stage, the nodal values

at (x, t + ∆t) are estimated by the method of characteristics:

U∗ = uh(x − a∆t, t), (2.1)

where a = f ′(ũ) is the estimated wave speed of p-th-order accuracy. ũ is some approximation of

u(x, t + ∆t). For linear advection, a is a constant independent of ũ. For nonlinear equations like the

Burgers equation, ũ can be found by a few iterations of similar characteristics tracing. The CFL

condition is given by ν = |a| ∆t
∆x ≤

1
p .

Usually there is discrepancy between the cell average of reconstructed Uh,∗ and one estimated

by the local conservation law. We define the discrepancy as follows. Suppose we have predicted

the U∗ from the data at Un, with ∆t = tn+1 − tn.

dŪi =
1

∆x

∫ xi+1/2

xi−1/2

uh(x, tn) − uh(x, tn+1)dx +
1

∆x

∫ tn+1

tn
f
(
uh(xi−1/2, t)

)
− f

(
uh(xi+1/2, t)

)
dt, (2.2)

where the integrals are evaluated by numerical quadrature of sufficient accuracy. For p+1-th-order

scheme, we use the Newton-Cotes formula of degree p. For the temporal integral of the flux f (u)

at interfaces x = xi±1/2, we need to estimate u(x, tn + k/p∆t), for 1 ≤ k ≤ p − 1 with the same

predictor.

In the corrector stage, we distribute the discrepancy to the nodal values with weights (α1, · · · ,

αp−1, β1, β2).

Un+1
i,k = U∗i + αkdŪi, 1 ≤ k ≤ p − 1,

Un+1
i+1/2 = U∗i+1/2 +

β2dŪi∆xi + β1dŪi+1∆xi+1

∆xi + ∆xi+1
.

(2.3)
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The conservation laws require the total discrepancy over the whole domain to be fully absorbed

so that
∫

Ω
uh,n+1dx =

∫
Ω

uh,n. Let {A j} denote the coefficients in the Newton-Cotes formula. The

corrector changes the integral of the numerical solution at t = tn+1 by

∫
Ω

(
uh,n+1 − uh,∗

)
dx

=
∑

i

∆xi

((
Un+1

i−1/2 − U∗i−1/2

)
A0 +

p−1∑
k=1

(
Un+1

i,k − U∗i,k
)
Ak +

(
Un+1

i+1/2 − U∗i+1/2

)
Ap

)

=
∑

i

∆xidŪi

(
β1A0 +

p−1∑
k=1

αkAk + β2Ap

)
.

(2.4)

Thus, we have the following restriction on the distribution weights.

β1A0 +

p−1∑
k=1

αkAk + β2Ap = 1. (2.5)

For example,

when p = 1, β1 + β2 = 1;

when p = 2, β1 + 4α + β2 = 6;

when p = 3, β1 + 3α1 + 3α2 + β2 = 8.

Later analysis and numerical experiments will show that the condition Eq. (2.5) is essential to

achieve global p + 1-th-order accuracy. It is worth noting that, unless β1 = β2 = 0, the strict

local balance of flux is not satisfied for a specific cell because the local discrepancy is not fully
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absorbed, although the conservation law holds for the whole domain.

∫ xi+1/2

xi−1/2

(
uh,n+1 − uh,∗

)
dx

=∆xi

((β2dŪi−1∆xi−1 + β1dŪi∆xi

∆xi−1 + ∆xi

)
A0 +

p−1∑
k=1

(
αkdŪi

)
Ak +

(β2dŪi∆xi + β1dŪi+1∆xi+1

∆xi + ∆xi+1

)
Ap

)

=∆xidŪi

(
β1A0 +

p−1∑
k=1

αkAk + β2Ap

)
+ ∆xi

(( (β2dŪi−1 − β1dŪi)∆xi−1

∆xi−1 + ∆xi

)
A0 +

( (β1dŪi+1 − β2dŪi)∆xi+1

∆xi + ∆xi+1

)
Ap

)
.

(2.6)

Thus we also call the discrepancy distribution strategy as a loose form of discrete conservation

law.

The original Active Flux method with the bubble function is the case with p = 2, α = 1.5, β1 =

β2 = 0. We note that many numerical schemes for one-dimensional linear advection are actually

equivalent although the interpretation is different. The original third-order Active Flux method in

one-dimensional space is identical to CIP-CSL2 [21], an ADER method [20], as well as Scheme

V by van Leer [45]. But we believe our interpretation is more systematic and flexible for further

extension of the Active Flux method.

2.3.2 Two-dimensional Space

For multidimensional space, we decompose the domain into cells of simplices and reconstruct

piecewise multivariate polynomials from nodal values. We consider a triangular mesh in two-

dimensional space as an example. The reconstruction of a bivariate polynomial of degree p over a

triangular cell requires (p + 1)(p + 2)/2 DOFs. Thus we assign the nodes as Figure 2.2 shows. It is

worth noting that nodes on vertices are shared by 6 cells on average; nodes on edges are shared by

2 cells. The average number of DOFs per cell required by the AF method is considerably lower

than the DG method when we approximate the numerical solutions on each cell by polynomials of

11



(a) p = 1, 2nd-order (b) p = 2, 3rd-order (c) p = 3, 4th-order

Figure 2.2: The discretization in the Active Flux method of different accuracy in the two-
dimensional space. p represents the degree of the reconstructed polynomial on each cell.

the same degree p. See Table 2.11. The discretization of three-dimensional space is a natural and

straightforward extension of the two-dimension example. For fixed p, a higher proportion of DOFs

are shared and thus the gain in the number of DOFs per cell is even greater in three-dimensional

space.

p = 1 p = 2 p = 3
AF (2D) ≈ 3

6 = 0.5 ≈ 3
6 + 3

2 = 2 ≈ 3
6 + 2( 3

2 ) + 1 = 4.5
DG (2D) 3 6 10
AF (3D)2 ≈ ( 8

8 )/5 = 0.2 ≈ (8
8 + 12

4 + 6
2 )/5 = 1.4 ≈ (8

8 + 2( 12
4 + 6

2 ) + 4 + 12
2 )/5 = 4.6

DG (3D) 4 10 20

Table 2.1: Comparison of the number of DOFs per cell required by the AF method and the DG
method. (AF = Active Flux, DG = Discontinuous Galerkin)

Like the one-dimensional case, each step of time evolution is described as predictor and correc-

tor. The predictor step estimates the nodal values U∗ at t = tn+1 with p+1-th-order accuracy for the

continuous piecewise polynomial uh reconstructed from the data at Un. For example, formulas of

exact solutions are used in predictors for acoustics [15] and hyperbolic diffusion [18]; The method

of characteristics is used for advection [26]. Let a denote the maximum wave speed. To make the

scheme compact and ensure the physical domain of dependence covered by the numerical one, we

1 Although DG methods may show superconvergence of rates like 2p + 1 in norms that are defined “on the basis of
the cell-averaged solution” [46], generally, numerical schemes that approximate the solutions with piecewise polyno-
mials of degree p have order of accuracy no higher than p + 1 when the errors are measured by general function norms
like L2-norm

∥∥∥u − uh
∥∥∥

2. In this work, we focus on errors defined by general function norms.

2We consider a cube decomposed into 5 tetrahedrons.
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Figure 2.3: The restriction on the size of time step ∆t. (p = 2)

restrict the time step by ∆t = 1
ap minT,e HT,e, where HT,e represents the height of cell T rising from

edge e. See Figure 2.3.

In the corrector step, we first evaluate the discrepancy of cell average on triangular cell T by

Eq. (2.7)

dŪT =
−1
S T

( ∫
∂T

∫ tn+1

tn
f(uh) · n dt dl +

"
T

uh(x, tn+1) − uh(x, tn)dσ
)
, (2.7)

where uh(x, tn+1) is reconstructed from U∗ and all integrals are evaluated with proper numerical

quadrature. Then dŪT is distributed to the nodes v on the cell T with weights wv,T .

Un+1
v = U∗v +

∑
{T : v∈T } wv,T dŪT S T∑

{T : v∈T } S T
. (2.8)

Let Av,T (v ∈ T ) represent the contribution of nodal value at node v to cell average of T .

1
S T

"
T

uh(x, t)dσ =
∑
v∈T

Av,T Uv.

In fact, Av,T only depends on v. We simply denote it by Av. Without loss of generality, we map the

cell T to the reference element whose three vertices are (0, 0), (0, 1), and (1, 0). See Figure 2.4.

When p = 1, A0 = A1 = A2 = 1/3;

when p = 2, A0 = A2 = A5 = 0, A1 = A3 = A4 = 1/3;

when p = 3, A0 = A3 = A9 = 1/30, A1 = A2 = A4 = A6 = A7 = A8 = 3/40, A5 = 1/2.

The conservation law requires dŪT to be fully absorbed into nodal values. Thus for any fixed
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(a) p = 1 (b) p = 2 (c) p = 3

Figure 2.4: The reference element in the two-dimensional space. p represents the degree of the
reconstructed polynomial on each cell.

cell T , {wv,T } is supposed to satisfy ∑
v∈T

wv,T Av = 1.

The simplest choice is wv,T = w = 1.

2.4 Some Analysis on the Idea of Discrepancy Distribution

As pointed out in [37], the accuracy reflects the low-frequency properties of a scheme. In this

section, we focus on the accuracy of the numerical schemes built on discrepancy distribution.

2.4.1 Fourier Analysis

To reveal the role played by the conservation law Eq. (2.5), we conduct Fourier Analysis for the

numerical schemes for linear advection,

∂u
∂t

+ a
∂u
∂x

= 0.

Here we assume that each cell is of the same length ∆x. For p = 1, we assume numerical solution

at time tn takes the form Un
k+1/2 = eiωk∆xrn. The numerical evolution is given by

Un+1
k+1/2 = λUn

k+1/2 = λn+1eiωk∆xr0. (2.9)
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We write λ in the polar form λ = |λ|e−iωã∆t, where ã is a function of ω∆x. If ã = a, Un+1
k+1/2 remains

exact for all n. We expand |λ| and ã/a for small ω∆x, which is corresponding to a fine mesh or

smooth initial values.

|λ| = 1 −
ν(ν − 1)(β1 + β2 − 2)

2
(ω∆x)2 + O(|ω∆x|4),

ã(ω∆x)
a

=
arg λ
−νω∆x

= 1 +
(ν − 1)(3(β1 + β2)ν − 4ν − 3β2 + 2)

12
(ω∆x)2 + O(|ω∆x|4).

(2.10)

The condition required by the conservation law, β1 + β2 = 2, corrects the amplitude of the wave

propagation. Both the amplitude |λ| and argument −iω∆tã of λ have errors of O(|ω∆x|3). Thus

the numerical scheme is of global second-order accuracy when ν = a∆t/∆x satisfies the CFL

condition, i.e., 0 < ν < 1.

For p = 2, we quote the results we presented in [19]. We assume that (Un
k ,U

n
k+1/2) = eiωk∆x(rn

1, r
n
2).

Then the numerical solution at t = tn+1 can be written as

 Un+1
k

Un+1
k+1/2

 = G

 Un
k

Un
k+1/2

 = eiωk∆xGn+1

r
0
1

r0
2

 . (2.11)

Note that there are two eigenvalues of G (See Figure 2.6). The primary eigenvalue is defined as

the one closer to 1 as ω∆x approaches 0. Similarly, we expand the amplitude and the argument of

the primary eigenvalue for small ω∆x.

|λ| = 1 + c1(ω∆x)4 + O(|ω∆x|6),

ã(ω∆x)
a

=
arg λ
−νω∆x

= 1 −
1

24
(2ν − 1)(2ν − 2)(β1 + β2 + 4α − 6)

(6ν − 2)(−β1 − β2 + 2α) − 12
(ω∆x)2 + c2(ω∆x)4 + O(|ω∆x|6),

(2.12)

where c1 and c2 are complicated functions about α, β1, β2, ν. We notice that the condition Eq. (2.5)

4α + β1 + β2 = 6 is essential to correct the dispersion relation in the numerical scheme. The errors

in the amplitude and argument are of fourth order and give us global third-order accuracy when the

scheme is stable.

Generally, even-order schemes, e.g., the second-order scheme with p = 1, the corrector (the
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Figure 2.5: Plots of |λ|1/ν: the change of amplitude after the wave travels over a unit distance ∆x
(p = 1)
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(c) α = 2.9, β1 = β2 = −2.8

Figure 2.6: Plots of |λi|
1/ν: the change of amplitude after the wave travels over a unit distance ∆x

(p = 2)

discrepancy distribution step) improves the accuracy by correcting the amplitude; odd-order schemes,

like the case p = 2, the increased accuracy is due to the correction on dispersion relation.

Note that the discrete conservation law Eq. (2.5) does not guarantee stability. There are further

restrictions on the distribution weights. Intuitively, we do not want the correction to significantly

increase errors on nodal values. We present the change of amplitude after the wave travels over a

distance of mesh size ∆x for p = 1 and p = 2 , i.e., |λ|1/ν. Figure 2.5 suggests that when p = 1 the

numerical schemes are stable for all 0 < ν < 1 with 0 ≤ β1 ≤ 2. Figure 2.6 originally appeared

in [19] where we concluded from an idea inspired by the Residual Distribution method [3] that

we require 1 ≤ α ≤ 3 to make the numerical scheme stable for all allowed CFL number ν, i.e.,

0 < ν < 1/2. We also attach the same plots for different distribution weights which make the

schemes unstable. See Figure 2.7 and Figure 2.83.

3We originally published Figure 2.8 in [19].

16



/4 /2 3 /4

x

0

0.2

0.4

0.6

0.8

1

|
|1

/

=0.200

=0.500

=0.950

(a) β1 = −0.2, β2 = 2.2
(Unstable for ν near 0.95)

/4 /2 3 /4

x

0

0.2

0.4

0.6

0.8

1

|
|1

/

=0.200

=0.500

=0.950

(b) β1 = 2.3, β2 = −0.3
(Unstable for ν near 0.2)

Figure 2.7: Plots of |λ|1/ν: examples of the distributions weights that lead to instability (p = 1)
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(a) α = 0.9, β1 = β2 = 1.2
(Unstable for ν near 0.5)
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(b) α = 3.1, β1 = β2 = −3.2
(Unstable for ν near 0.5)

Figure 2.8: Plots of |λi|
1/ν: examples of the distributions weights that lead to instability (p = 2)

2.4.2 Analysis Based on the Taylor Expansion: What Information Does the

Discrepancy Carry?

For more general cases, we conduct analysis based on the Taylor expansion. We decompose the

discrepancy defined by Eq. (2.2) into two parts: the error caused by the discrete form of the dis-

crepancy being apply on the exact solutions, which is similar to the local truncation error, and the

contribution from the error contained in uh that was reconstructed from the predicted values.

First, we notice that evaluating the discrete discrepancy Eq. (2.2) on the exact solution u(x, t)

gives higher-order and thus negligible error. The Newton-Cotes formula of degree p has error of

O(hk(p)), where k(p) = p + 2 for odd p, k(p) = p + 3 for even p. Suppose ∆t ∼ ∆x. When we plug
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the exact solution u(x, t) into the formula Eq. (2.2), for some η between tn and tn+1, ξ between xi− 1
2

and xi+ 1
2
,

dŪi =
C∆xk(p)

∆x

(
∂k(p)−1u
∂xk(p)−1

∣∣∣∣(
ξ(tn),tn

) − ∂k(p)−1u
∂xk(p)−1

∣∣∣∣(
ξ(tn+1),tn+1

))
+

C∆tk(p)

∆x

(
∂k(p)−1u
∂tk(p)−1

∣∣∣∣(
xi− 1

2
,η(xi− 1

2
)
) − ∂k(p)−1u

∂tk(p)−1

∣∣∣∣(
xi+ 1

2
,η(xi+ 1

2
)
))

=O(∆xk(p)).

Then we consider the numerical solution uh reconstructed from the prediction that uses the

method of characteristics. If the prediction U∗ has error e, then the error of flux is of the same

order if we assume f ′ is bounded.

f (U∗) − f (u) = f (u + e) − f (u) = f ′(u)e + O(e2).

Suppose the discrete data Un are accurate at t = tn. Then in the numerical evolution to tn+1, all the

prediction based on the method of characteristics has error of O(∆xp+1) when piecewise polynomial

of degree p reconstruction of Un is used. Let eh be the reconstruction from errors of the predicted

nodal values. eh vanishes at tn. It is not hard to show that in smooth cases, eh(x, t) satisfies a

Lipschitz condition. Thus we have

dŪi =
1

∆x

∫ tn+1

tn
f ′
(
u(xi−1/2, t)

)
eh(xi−1/2, t) − f ′

(
u(xi−1/2, t)

)
eh(xi+1/2, t)dt,

+
1

∆x

∫ xi+1/2

xi−1/2

−eh(x, tn+1)dx + O(∆xk(p))

=
−1
∆x

∫ xi+1/2

xi−1/2

eh(x, tn+1)dx + O(∆xp+1).

(2.13)

This means the discrepancy is actually the cell average of the error that was brought in by the

predictor. We interpret the result as that the corrector step catches the high-order error in the

prediction stage and projects it into a piecewise constant function with the least-square loss of

information. The discrepancy distribution is equivalent to assimilating the projected error into the

discrete data. Our numerical experiments indicate that this is the key step to preventing the local
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truncation error accumulation. Thus we achieve global p + 1-th-order accuracy. It is worth noting

that dŪi also satisfies a Lipschitz condition when the exact solution is smooth. When we correct

nodal values Ui−1/2 at interfaces, it does not matter whether we take more information from the

left cell or the right cell. In other words, the difference between β1 and β2 does not have much

influence on the accuracy in the smooth cases. However, when the solution contains a large slope,

by allowing the distribution weights to vary for different cells, there is extra space to refine the

discrepancy distribution process, which enables the design of limiters (see the next Appendix E).

2.5 Numerical Experiments

2.5.1 One-dimensional Space

We conduct numerical experiments to verify the global p + 1-th-order accuracy of the family of

numerical schemes. In the following examples the domain is Ω = [0, 1] with periodic bound-

ary conditions. For linear advection and the Burgers equation, where the analytical solutions are

known, the error is measured in the L1-norm:

E =
1

pN

N∑
i=1

(
|Ui−1/2 − u(xi−1/2)| +

p−1∑
k=1

|Ui,k − u(xi,k)|
)
. (2.14)

For the Euler equations with smooth solutions, we compare the numerical solutions with the ref-

erence solutions generated by a second-order Finite Volume method on a mesh of 1200 cells. The

errors are measured by the L1-norm of cell average.

E =
1
N

N∑
i=1

(
|Ūi − Ū ref

i |
)
. (2.15)
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Figure 2.9: The convergence plots of the Active Flux schemes for linear advection equation with
different order of accuracy.

2.5.1.1 Linear Advection

Consider a linear advection equation,


∂u
∂t

+ a
∂u
∂x

= 0,

u(x, 0) = sin(2πx).
(2.16)

We set a = 1, and simulate the equation with step size ∆t = 0.8∆x/a/p until T = 1. We generate

the error convergence with different p and different discrepancy distribution weights. Setting all

weights zero is equivalent to skipping the corrector step. Figure 2.9 shows that enforcing the loose

form of discrete conservation Eq. (2.5) in the corrector step gives a global p + 1-th-order accuracy.

2.5.1.2 The Burgers Equation

We consider the Burgers equation as an example of nonlinear equations.


∂u
∂t

+ u
∂u
∂x

= 0,

u(x, 0) = sin(2πx) + 1.
(2.17)

In the predictor stage, we initialize a = ũ by setting ũ = U(1 − ∂uh

∂x ∆t), where ∂uh

∂x take values

from the left for nodes at interfaces. Then the prediction is made by tracing the characteristics:

U∗ = uh(x − a∆t). For p = 3, we iterate one more time with a = U∗. We set ∆t = 0.7∆x/2/p. The
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Figure 2.10: The convergence plots of the Active Flux schemes for the Burgers equation with
different order accuracy.

error is measured at T = 0.1, where no shock wave forms. Figure 2.10 confirms the p + 1-th-order

accuracy.

2.5.1.3 The Euler Equations

We further test the numerical schemes with the Euler equations, a nonlinear system of the conser-

vation laws. 

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v
∂x

= 0

ρ
∂v
∂t

+ ρv
∂v
∂x

+
∂p
∂x

= 0

∂p
∂t

+ v
∂p
∂x

+ γp
∂v
∂x

= 0

IC: ρ(x, 0) = 0, v(x, 0) = sin(2πx) + 2, p(x, 0) = 0.1.

(2.18)

In the predictor stage, an operator splitting strategy similar to [39] is used. (See Section 3.1). The

corrector is the same as the scalar cases. We set all weights of discrepancy distribution equal 1 for

all p4.

We simulate the system until T = 0.08 with step size ∆t = 0.8∆x/p/3. Figure 2.11 shows that

the errors measured by cell-average L1-norm converge with rate p+1 as we refine the mesh. When

the total numbers of DOFs are same, third-order scheme has much lower errors, e.g., ∆x = h =

1/80 for p = 1 versus ∆x = h = 1/40 for p = 2 .
4Here p represents the degree of polynomials that are used in reconstruction. In the differential equations Eq. (2.18),

p means pressure.
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Figure 2.11: The convergence plots of the Active Flux schemes for the Euler equations with dif-
ferent order of accuracy.

(a) (b)

Figure 2.12: The vertices in the regular mesh (a) are perturbed by 0.2h(sin(10x + 1)10y+1, cos(10y +

1)10x+1) in (b).

2.5.2 Two-dimensional Space

To verify the accuracy of the family of numerical schemes for the two-dimensional space, we test

them on unperturbed and perturbed meshes (see Figure 2.12). The unperturbed mesh is generated

by dividing the domain [0, 1]× [0, 1] into N ×N squares and each square is split into two triangles.

h = 1/N reflects the mesh size. We measure the error by L1-norm

E =
1

NDOFs

∑
v

|Uv − u(x(v))|. (2.19)
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2.5.2.1 Linear Advection

Consider the linear advection equation with periodic boundary conditions on [0, 1] × [0, 1]:


∂u
∂t

+ a · ∇u = 0,

u(x, y, 0) = sin(2πx) sin(4πy),
(2.20)

with a = (cos θ, sin θ), where θ = 0, π/6, π/4, 3π/4.

We set the time step as the 90% of the maximum of allowed step size, i.e., ∆t = 0.9 1
p minT,e HT,e.

In all of the schemes we test, by setting all weights to be 1, the discrepancy dŪT is evenly dis-

tributed to nodal values. The numerical solutions are compared with the exact ones at T = 1.

Figure 2.13 and Figure 2.14 show that with reconstruction of continuous piecewise polynomial

of degree p, the numerical schemes generally achieve the expected p + 1-th-order global accuracy.

But we notice that, when θ = 0 or 3π/4, which means the direction of advection aligns with

the unperturbed mesh, the error convergence rate of the scheme with p = 3 drops by 1. This

is the so-called mesh alignment issue caused by the low dissipation across the cell boundaries .

It also appeared in the original third-order AF method with quadratic reconstruction plus bubble

functions [26]. In our new scheme with p = 3, the nodal value inside the cell has a weight of 0.5

when we compute the cell average, which is much higher than the contribution from the nodes on

vertices or edges. Thus the correction on the cell boundaries has limited effect. Luckily we can

alleviate the issues by adjusting the weight of discrepancy distribution, while there is no simple

remedy for the original AF scheme.

2.5.2.2 Linear Acoustics

Consider the equations of linear acoustics with periodic boundary conditions on [0, 1] × [0, 1]:


∂u
∂t

+
1
ρ0
∇p = 0,

∂p
∂t

+ γp0∇ · u = 0.
(2.21)
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Figure 2.13: Convergence rates of p + 1-th-order schemes for the linear advection equation with
different direction a = (cos θ, sin θ) on the unperturbed mesh.

The system has analytical solutions [15, 16, 18]. Without loss of generality, we assume γp0 = ρ0 =

1. Define

Fψ(x, t) =

∫ t

0

ρ√
t2 − ρ2

Qψ(x, ρ)dρ, (2.22)

where,

Qψ(x, ρ) =
1

2π

∫ 2π

0
ψ(x1 + ρ cos θ, x2 + ρ sin θ)dθ.

The solutions are given by

p(x, t0 + ∆t) =
∂

∂t
Fp(·,t0)(x,∆t) − F∇·u(·,t0)(x,∆t),

u(x, t0 + ∆t) =Qu(·,t0)(x, 0) − F∇p(·,t0)(x,∆t)

+

∫ ∆t

0

( ∆t√
(∆t)2 − ρ2

) 1
2π

∫ 2π

0
n(∇ · u)

∣∣∣∣
x+ρn

dθdρ,

(2.23)
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Figure 2.14: Convergence rates of p + 1-th-order schemes for the linear advection equation with
different direction a = (cos θ, sin θ) on the perturbed mesh.

where n = (cos θ, sin θ). For general parameters (ρ0, p0), the exact solutions can be derived with

proper transformation of variables. In the following numerical experiments, the predictor in the

numerical scheme uses the formula of the exact solutions. All the spatial derivatives involved are

no more than first order. Thus we evaluate them directly.

The acoustic process in the fluid does not change the vorticity. We construct solutions that take

the following forms


u1(x, y, t)

u2(x, y, t)

p(x, y, t)

 =


ũ1(t) cos(2πk1x) sin(2πk2y)

ũ2(t) sin(2πk1x) cos(2πk2y)

p̃(t) sin(2πk1x) sin(2πk2y)

 +


k2 sin(2πk1x) sin(2πk2y)

k1 cos(2πk1x) cos(2πk2y)

0

 . (2.24)

Note that the velocity in first term in Eq. (2.24) corresponds to the curl-free part of the velocity field

while the second represents the divergence-free (or rotational) part which is supposed to remain

constant in the acoustic process. It is easy to see that ũ1, ũ2, p̃ is actually governed by a system of
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ODEs

∂

∂t


ũ1

ũ2

p̃

 =


0 0 −2πk1

1
ρ0

0 0 −2πk2
1
ρ0

−2πk1γp0 −2πk2γp0 0




ũ1

ũ2

p̃

 (2.25)

which can be solved numerically with high accuracy for reference.

The parameters are set as (ρ0, p0) = (10, 5), γ = 1.4, k1 = 3, k2 = 2. We choose initial

conditions ũ1 = k1, ũ2 = k2, p̃ = 1 and simulate the acoustic equations until T = 0.15 with schemes

of different order of accuracy. ∆t = 0.9 1
ap minT,e HT,e where a is the speed of sound a =

√
γp0
ρ0

.

Figure 2.15 presents the plots of the errors measured by L1-norm. The numerical solutions of

pressure do converge with rate p + 1 when we use polynomial of degree p for reconstruction.

However, the converge rates of errors in u1 and u2 is just p. The errors on the perturbed mesh are

generally greater than ones on the unperturbed mesh. Further investigation on linear acoustics can

be found in Section 3.2.

2.5.2.3 Pressureless Euler Equations

In the two-dimensional space we use the pressureless Euler equations Eq. (2.26) as a test problem

for nonlinear systems. 
∂ρ

∂t
+ ∇ · (ρv) = 0,

∂v
∂t

+ v · ∇v = 0.
(2.26)

In the early development stage of the Active Flux method, this system had been thoroughly stud-

ied by Maeng [26] as the model problem of the nonlinear advection in the Euler equations. But

Maeng’s numerical scheme was restricted to 3rd-order accuracy, which was achieved by using the

piecewise quadratic reconstruction enriched by the bubble functions.

The second equation is actually the Burgers equation in the two-dimensional space. The ve-

locity v remains constant along the characteristics. The exact solutions are implicitly given by the

following equations. 5

5I also provide an alternate concise derivation in the Appendices B.1.
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Figure 2.15: Convergence rates of p + 1-th-order schemes for the equations of linear acoustics on
the unperturbed mesh and the perturbed mesh.
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x∗ = x − ∆tv(x, t0 + ∆t),

v(x, t0 + ∆t) = v(x∗, t0),

ρ(x, t0 + ∆t) =
ρ(x∗, t0)

det(1 + ∆t∇v)
∣∣∣∣
x=x∗, t=t0

.

(2.27)

In the evolution from t = tn to t = tn+1, the numerical predictor initially estimates x∗ by

x∗ = x − ∆t
(
v − ∆tvh · ∇vh

)
.

Then v and ρ are updated by the formulas Eq. (2.27), using the reconstructed solutions from t = tn.

If p > 2, to achieve local truncation error of p + 1-th order, the tracing-back step needs to be

repeated for another p − 2 times, with x∗ estimated by using the latest predicted v at (x, tn+1):

x∗ = x − ∆tv.

Note that the conserved variables are ρ and ρv in the pressureless Euler equations.

∫
T

∂ρ

∂t
dσ +

∮
∂T
ρ(v · n)dl = 0,∫

T

∂ρv
∂t

dσ +

∮
∂T
ρv(v · n)dl = 0.

(2.28)

We evaluate the nodal values of the conserved variables directly from the primitive variables ρ

and v once we complete the predictor step. Piecewise polynomial reconstruction of the conserved

variables is assumed (although we do not actually compute it) when we compute integrals in the

discrepancy defined by Eq. (2.7). Then the discrepancy is distributed to the nodal values of the

conserved variables as described in Eq. (2.8). Transforming the corrected conserved variables ρ

and ρv back to the primitive variables ρ and v completes the corrector stage.

In the numerical experiments, we use periodic boundary conditions on the domain [0, 1] ×

[0, 1]. Initial values are set as ρ(x, 0) = 1, v1 = sin(2πx) + 2, v2 = cos(2πy) + 1. ∆t =

0.95 1
vmax p minT,e HT,e, where vmax = 4. We measure the errors of numerical solutions at T = 0.1.

The convergence plots in Figure 2.16 verify the p + 1-th-order accuracy.
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Figure 2.16: Convergence rates of p + 1-th-order schemes for the pressureless Euler equations on
the unperturbed mesh and the perturbed mesh.
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CHAPTER 3

Operator Splitting and Treatment of Spatial

Derivatives

The test problems used in Chapter 2 all have exact solutions. Thus, the predictor based on the

formulas does not bring in errors except for the one caused by spatial discretization. Besides,

each test case examines only one type of physical process and the optimal numerical domain of

dependence is used in the predictor. For example, the problems of advective nature mainly use the

information from the cell where the characteristics originate, while the acoustic problem uses a

symmetric domain of dependence by taking the integral over a disk centered at the current node.

However, in real applications, the complicated governing equations of flows do not have ana-

lytical formulas, and physical processes of different natures are mixed up. For instance, the Euler

equations contain both advection and acoustics. To fully use the nature of the physics, an operator

splitting method is adopted for the predictor. Several different operator splitting strategies for the

Euler equations had been studied by Maeng [26] and Fan [16]. In the following sections, we are

going to revisit the Euler equations and formulate the idea in a more mathematical way.

3.1 The First Nontrivial Example: the Euler Equations

The accuracy of the AF scheme mainly depends on the accuracy of the predictor. (The corrector is

more about preventing the local truncation errors from accumulating.) We consider a third-order
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Lax-Wendroff-type predictor as an example.

u(x0, t0 + ∆t) = u + ∆t
∂u
∂t

+
∆t2

2
∂2u
∂2t

+ O(∆t3) (3.1)

By repeatedly using the first-order system of PDEs, all the temporal derivatives can be written as

spatial derivatives at (x0, t0).

The terms on the right-hand side of the Euler equations are categorized either as advective

terms (marked by underbrace ︸︷︷︸) or acoustic terms (marked by underline ).

ρt = −u · ∇ρ︸︷︷︸−ρ∇ · u.
ut = −u · ∇u︸︷︷︸−1

ρ
∇p.

pt = −u · ∇p︸︷︷︸−γp∇ · u.

(3.2)

When we pursue any solvers that have order of accuracy higher than second order, the nonlinear

interaction between the advective terms and acoustic terms as well as other nonlinear effect are no

longer negligible. The second-order derivatives of the primitive variables ρ, u, p are complicated.

ρtt = − ut ·∇ρ︸︷︷︸−ρt∇ · u − u · ∇︸︷︷︸ ρt − ρ∇·ut

=
(

u · ∇ρ︸︷︷︸ +ρ∇ · u
)
·∇ρ︸︷︷︸ +

(
u · ∇ρ︸︷︷︸ +ρ∇ · u

)
∇ · u

+ u · ∇︸︷︷︸ (
u · ∇ρ︸︷︷︸ +ρ∇ · u

)
+ ρ∇·

(
u · ∇u︸︷︷︸ +

1
ρ
∇p

) (3.3)

utt = − ut ·∇u︸︷︷︸−−ρt

ρ2 ∇p − u · ∇︸︷︷︸ ut −
1
ρ
∇pt

=
(

u · ∇u︸︷︷︸ +
1
ρ
∇p

)
·∇u︸︷︷︸ +

−1
ρ2

(
u · ∇ρ︸︷︷︸ +ρ∇ · u

)
∇p

+ u · ∇︸︷︷︸ (
u · ∇u︸︷︷︸ +

1
ρ
∇p

)
+

1
ρ
∇
(

u · ∇p︸︷︷︸ +γp∇ · u
) (3.4)
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ptt = − ut ·∇p︸︷︷︸−γpt∇ · u − u · ∇︸︷︷︸ pt − γp∇·ut

=
(

u · ∇u︸︷︷︸ +
1
ρ
∇p

)
·∇p︸︷︷︸ +γ

(
u · ∇p︸︷︷︸ +γp∇ · u

)
∇ · u

+ u · ∇︸︷︷︸ (
u · ∇p︸︷︷︸ +γp∇ · u

)
+ γp∇·

(
u · ∇u︸︷︷︸ +

1
ρ
∇p

) (3.5)

After we expand the expressions with the distributive law, the all-underbraced terms correspond

to advection. We define the update of a variable � from advection as follows.

�ad = � − ∆tu · ∇� +
∆t2

2

((
u · ∇u

)
·∇� + u · ∇

(
u · ∇�

))
+ O(∆t3). (3.6)

We do not actually evaluate those terms in the numerical solver. Instead, we use the method of

characteristics where all advective terms upto second order are included. Set

x∗ = x − ∆t(u − ∆tu · ∇u).

�ad = �h
(
x∗

)
, (3.7)

where �h represents the reconstructed solution.

The products of underbraced terms and underlined terms represent the nonlinear interaction

of the advection and the acoustics. The all-underlined terms are for the pure acoustic process.

Fortunately, most interaction terms and nonlinear acoustic terms in the expressions of the Lax-

Wendroff predictor of ρ can be neatly absorbed [40],

ρ∗ =
ρad

det(1 + ∆t∇u)
∣∣∣∣
x=x∗

+
∆t2

2
∆p. (3.8)

p∗ has a similar simplification,

p∗ =
pad(

det(1 + ∆t∇u)
)γ +

∆t2

2

(
γp
ρ

∆p +
1
ρ
∇p · ∇p −

γp
ρ2 ∇ρ · ∇p

)
. (3.9)
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But there is no convincing way to absorb nonlinear acoustics and the interaction terms for the

velocity.

u∗ = uad −
∆t
ρ
∇p +

∆t2

2

(
1
ρ
∇p·∇u +

−1
ρ2

(
u · ∇ρ + ρ∇ · u

)
∇p + u · ∇

(1
ρ
∇p

)
+

1
ρ
∇
(
u · ∇p + γp∇ · u

))
.

(3.10)

For terms like u · ∇
(

1
ρ
∇p

)
, we further expand them by using the product rule.

Mathematically, all the predictors of the same order of accuracy are equal. In practice, some

predictors are more equal than others. This is because different leading terms of errors have differ-

ent influence on stability. The belief is that proper use of the domain of dependence will make the

numerical schemes more efficient.

Recall that the acoustic process has a symmetric domain of dependence. Thus all the derivatives

in the acoustic terms and the interaction terms should be evaluated in a way that reflects this fact

(see the next section). This completes the operator splitting. With all the first- and second- order

spatial derivatives of the primitive variables evaluated, the predictor simply needs to add up the

terms prescribed by the Lax-Wendroff method Eq. (3.1). 1

3.2 Treatment of Spatial Derivatives: Ideas Inspired by the So-

lution to the Wave Equation

In the AF-based numerical schemes introduced in Chapter 2, piecewise polynomials of C0 conti-

nuity are reconstructed from nodal values at t = tn for the temporal evolution to t = tn+1. Within a

cell, the reconstructed function uh is differentiable. The accuracy of the first-order derivatives eval-

uated by direct differentiation is one order lower than that of uh. Note that ∇uh is discontinuous

at the cell boundaries. For the first-order derivatives, simply taking some average value is a sat-

isfying practical treatment. However, the discontinuity of ∇uh leaves the second-order derivatives

1The predictor described here is different from Maeng’s [26] or Fan’s work [16]. For example, before incorporating
the acoustic terms, their methods require another reconstruction step after getting the update from the advection. But
we do no need it in our predictor.
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undefined.

The analytical solutions Eq. (2.23) to the linear acoustic system Eq. (2.21) give us some hints

to treat the spatial derivatives if we interpret the formulas as a Lax-Wendroff method.

Recall the linear acoustic system,


∂u
∂t

+
1
ρ0
∇p = 0,

∂p
∂t

+ γp0∇ · u = 0.

For simplicity we assume γp0 = ρ0 = 1. Note the following mathematical facts.

Fact 1:
∂2 p
∂t2 = ∆p,

∂2u
∂t2 = ∇(∇ · u). (3.11)

Fact 2:

Define n = (cos θ, sin θ).

1
2π

∫ 2π

0
n(∇ · u)

∣∣∣∣
(x1,x2)+ρ(cos θ,sin θ)

dθ =
1

2πρ

"
r2≤ρ2
∇(∇ · u)(x1 + r1, x2 + r2)dr1dr2

=
ρ

2
1
πρ2

"
r2≤ρ2
∇(∇ · u)(x1 + r1, x2 + r2)dr1dr2.

(3.12)

Fact 3:

By the definition of Qψ(x, ρ),

Qψ(x, ρ) =
1

2π

∫ 2π

0
ψ(x1 + ρ cos θ, x2 + ρ sin θ)dθ.

we have

Qψ(x, 0) = ψ(x). (3.13)

∂Qψ(x, ρ)
∂ρ

=
1

2πρ

"
r2≤ρ2

∆ψ(x1 + r1, x2 + r2)dr1dr2. (3.14)

Fact 4:
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Apply integration by part on the definition of Fψ(x, t):

Fψ(x, t) =

∫ t

0

ρ√
t2 − ρ2

Qψ(x, ρ)dρ = tQψ(x, 0) +

∫ t

0

√
t2 − ρ2

∂Qψ(x, ρ)
∂ρ

dρ.

∂

∂t
Fψ(x, t) = Qψ(x, 0) +

∫ t

0

t√
t2 − ρ2

∂Qψ(x, ρ)
∂ρ

dρ. (3.15)

We define the following two types of average for a function over a disk of radius t centered at

x.

Hψ(x, t) =
1
t

Fψ(x, t) =
1
t

∫ t

0

ρ√
t2 − ρ2

Qψ(x, ρ)dρ,

Gψ(x, t) =
1
t

∫ t

0

ρ√
t2 − ρ2

( 1
πρ2

"
r2≤ρ2

ψ(x1 + r1, x2 + r2)dr1dr2

)
dρ.

(3.16)

Then the analytical solutions to the acoustic system

p(x, t0 + ∆t) =
∂

∂t
Fp(·,t0)(x,∆t) − F∇·u(·,t0)(x,∆t),

u(x, t0 + ∆t) =Qu(·,t0)(x, 0) − F∇p(·,t0)(x,∆t) +

∫ ∆t

0

( ∆t√
(∆t)2 − ρ2

) 1
2π

∫ 2π

0
n(∇ · u)dθdρ.

can be written into a unified form:

p(x, t0 + ∆t) = p(x, t0) + ∆tHpt(·,t0)(x,∆t) +
∆t2

2
Gptt(·,t0)(x,∆t),

u(x, t0 + ∆t) = u(x, t0) + ∆tHut(·,t0)(x,∆t) +
∆t2

2
Gutt(·,t0)(x,∆t).

(3.17)

The performance of the AF-based numerical schemes in simulating linear acoustics (see 2.5.2.2)

meets our requirement of accuracy for practical purposes. Thus for the derivatives that have acous-

tic nature or reflect the interaction of advection and acoustics in the operator splitting Eq. (3.8),

Eq. (3.9), Eq. (3.10), we estimate the first-order spatial derivative at each node by H, second-order

derivatives by G. Since the sound wave speed is no longer a constant in the Euler equations, the ra-

dius of the disk from which we take the averages should equal the local sound wave speed
√
γp/ρ

at (x, t0) times ∆t.

Let w be a continuous function of C2 approximated by piecewise continuous function wh. The
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sound wave speed at (x, t) is c. wh
x and wh

y are evaluated directly, thus they are piecewise-defined

but discontinuous at the cell boundaries. Then we have the following approximation of the spatial

derivatives at (x, t).
∂w
∂x

= Hwh
x
(x, c∆t),

∂w
∂y

= Hwh
y
(x, c∆t). (3.18)

As for the second-order derivatives, when evaluating the integrals in the definition of G, we need

the following tricks.

"
r2≤ρ2

∂2w
∂x2 dr1dr2 =

"
r2≤ρ2
∇ ·

(∂w
∂x
, 0

)
dr1dr2 =

∮
r=ρ

n ·
(∂wh

∂x
, 0

)
dl,"

r2≤ρ2

∂2w
∂x∂y

dr1dr2 =

"
r2≤ρ2

1
2
∇ ·

(∂w
∂y
,
∂w
∂x

)
dr1dr2 =

∮
r=ρ

1
2

n ·
(∂wh

∂y
,
∂wh

∂x
,
)
dl,"

r2≤ρ2

∂2w
∂y2 dr1dr2 =

"
r2≤ρ2
∇ ·

(
0,
∂w
∂y

)
dr1dr2 =

∮
r=ρ

n ·
(
0,
∂wh

∂y

)
dl.

(3.19)

∂2w
∂x2 = Gwxx(x, c∆t),

∂2w
∂x∂y

= Gwxy(x, c∆t),
∂2w
∂y2 = Gwyy(x, c∆t). (3.20)

Consider a function u(x, y) = sin(6πx) sin(4πy) on [0, 1] × [0, 1]. In Figure 3.1, we measure

the accuracy of derivative approximation based on such strategies on the meshes described by

Figure 2.12, for various mesh sizes h and the degree p of polynomials that are used in the recon-

struction. The radius of the disk is given by R = 0.95 1
p minT,e HT,e. The treatment for derivatives on

the boundary is described in Section 4.1.1.1. We compare the numerical values of ux, uy, uxx, uxy,

uyy and the exact values. The errors are measured by L1-norm defined by Eq. (2.19). Interestingly,

we notice that the approximation of first-order derivatives is always around 2nd order for all p be-

cause we take the average over a disk and thus lose the high resolution brought by the high-order

polynomial; the second-order derivatives have p − 1-th-order accuracy.

Notes:

1. The average of ψ defined by Hψ(x, t) is the so-called spherical mean that was introduced to solve

the three-dimensional wave equations. (The functions in two-dimensional space can be regarded

as functions independent of z in three-dimensional space.) This derivative approximation strategy

is extendable to three-dimensional space.
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2. Although the predictor based on the Lax-Wendroff method seems of third-order local-truncation

error (Eq. (3.1)), when being applied to the linear acoustic equations with derivatives approximated

by the strategies described above, it is identical to the exact solution. Thus we can expect that the

actual accuracy is better. (See the numerical experiments on the Euler equations 3.2.)

3. A similar treatment was used by Fan [16]. But in that work, the description was vague. It seems

that only the average H (the spherical mean) was used for derivatives in the interaction terms and

nonlinear acoustic terms.

3.3 Numerical Results


ρt + u · ∇ρ + ρ∇ · u = 0,

ut + u · ∇u +
1
ρ
∇p = 0,

pt + u · ∇p + γp∇ · u = 0.

(3.21)

To verify the accuracy, we consider the vortex transport problem governed by the Euler equations.

The analytical solutions are given by the following equations.

ρ(x, y, t) = ρ∞ f 1/(γ−1)
1 ,

u1(x, y, t) = U∞ − f2(y − V∞t),

u2(x, y, t) = V∞ + f2(x − U∞t),

p(x, y, t) = p∞ f γ/(γ−1)
1 .

(3.22)

where,

f0 = 1 −
(x − U∞t)2 + (y − V∞t)2

r2
c

, f1 = 1 − ε2(γ − 1)M2
∞

e f0

8π2 , f2 = ε

√
U2
∞ + V2

∞

2πrc
e f0/2.

We use following values: γ = 1.4, ε = 0.3, rc = 1; (U∞,V∞) = (1, 1)/
√

2, Mach number M∞ = 0.5,

37



ρ∞ = 1, p∞ = 1/(γM2
∞). If we assign periodic boundary conditions to the domain [−5, 5]× [−5, 5],

the vortex will return to the origin at T = 10
√

2.

The predictor is based on the operator splitting discussed in Section 3.1. ρ, ρu, 1
2ρu ·u +

p
γ−1 are

the conserved variables. The step of reconciliation with conservation law is similar to the one for

the pressureless Euler equations. Figure 3.2 confirms that the convergence rates of the L1 errors

defined by Eq. (2.19) on the nodal values are p + 1 when polynomials of degree p are used.
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Figure 3.1: Accuracy of acoustic-formula-based derivative approximation strategies used in p + 1-
th-order schemes on the unperturbed mesh and the perturbed mesh.
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Figure 3.2: Convergence rates of p+1-th-order schemes for the Euler equations on the unperturbed
mesh and the perturbed mesh.
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CHAPTER 4

Boundary Conditions, Domain of Complicated

Geometry and Stability in the General Active Flux

Method

4.1 Boundary Conditions

In the practical use of CFD algorithms, the geometry of the domain of the governing equations is

often complicated and nontrivial boundary conditions, e.g., inflow boundary conditions or inviscid

boundary conditions, need to be properly imposed. In the early development of the Active Flux

method, boundary conditions were enforced via solving a set of equations that involve the gradi-

ents of primitive variables [16]. Although the smart use of the curvature of boundaries exempted

researchers then from implementing curved elements to achieve third-order accuracy, the exten-

sion to general cases e.g., numerical schemes of different accuracy or hyperbolic Navier-Stokes

equations, were not clear. To fulfill the complete potential of the Active Flux method, we suggest a

simpler but systematical and versatile treatment of the boundary conditions and complex geometry,

which does not involve derivatives of variables. From Chapter 4 to Chapter 6, we repeatedly use

this treatment in the simulation of the Euler equations and the Navior-Stokes equations where we

focus on the second-order scheme from the AF family. The idea is extendable for higher-order

schemes.

In this work, we always interpret the Active Flux method as a predictor-corrector method.
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(a) An Interior node (b) A node on the boundary

Figure 4.1: Numerical domain of dependence for evaluating derivatives at Node v

If we compare the Active Flux method with the Finite Volume method or the Discontinuous

Galerkin method, we notice that the Lax-Wendroff-type predictor based on the operator splitting

(Section 3.1) takes the role of a Riemann solver while the corrector based on the discrepancy distri-

bution (Eq. (2.3) and Eq. (2.8)) has a function similar to the update of exact cell-averages in FV or

DG. Note that in the FV or DG methods, the boundary conditions are imposed in the computation

of the fluxes through the boundary. Similarly, we let the predictor take the main responsibility of

imposing proper boundary conditions. This also turns out to be easy to implement.

4.1.1 Predictor

4.1.1.1 Treatment of Complicated Geometry

Recall that we use certain types of average Eq. (3.16) over a disk centered at a node v to approxi-

mate spatial derivatives in Section 3.2.

Hψ(x, t) =
1
t

Fψ(x, t) =
1
t

∫ t

0

ρ√
t2 − ρ2

Qψ(x, ρ)dρ,

Gψ(x, t) =
1
t

∫ t

0

ρ√
t2 − ρ2

( 1
πρ2

"
r2≤ρ2

ψ(x1 + r1, x2 + r2)dr1dr2

)
dρ.
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Figure 4.2

The first-order derivatives are approximated by the H-average, which can be regarded as an integral

over the disk of a weight function times the first-order derivatives that are obtained by directly

differentiating the reconstructed solution uh. The second-order derivatives are approximated by

the G-average, which should be interpreted as the weighted average of some average value of the

second-order derivatives. For example,

ūh
xy =

1
πρ2

"
r2≤ρ2

uh
xydr1dr2,

where we use Stokes’ theorem to circumvent directly taking the second-order derivatives of uh.

That is, we evaluate the integral of the normal vector times some first-order derivatives of uh along

the boundary of the disk. See Eq. (3.19).

When the node v is inside the domain Ω (Figure 4.1 (a)), both H-average and G-average are

well-defined. However, when it is on the boundary, only part of the disk overlaps the domain

(Figure 4.1 (b)), thus some treatment is required. For the first-order derivatives, we simply evaluate

the integrals over the circular sector enclosed by the two cell boundaries and the circular arc inside

the domain Ω. For the second-order derivatives, we need to evaluate the integral of some first-order

derivatives of uh along the boundaries of the circular sector: a circular arc and two radii.

On a boundary where the velocity is almost tangent to the boundary (Figure 4.2), we may fail

to trace back the estimated characteristics to an origin x∗ inside the domain. If x∗ is outside the

domain, we need to manually add up all terms that appear in the second-order Taylor polynomials

in terms of the temporal variable t (Eq. (3.1)).
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4.1.1.2 Imposing the Boundary Conditions

Once we address the treatment of a domain with complicated geometry, imposing the boundary

condition becomes straightforward.

• Inflow Boundary: Assign the inflow boundary conditions to the nodal values directly.

• Outflow Boundary: Set the pressure as p∞. Predict ρ,u as usual.

• Inviscid Wall Boundary: Use the predictor as usual. Then project the velocity u∗ to the tangent

direction. Let n represent the normal vector pointing outwards.

u∗∗ = u∗ − u∗ · n.

We use u∗∗ when computing fluxes.

4.1.2 Corrector

Due to the fact that all the nodal values and fluxes on the boundaries are approximations instead

of absolute truth, we can keep the corrector simple by loosening the conservation law in the cells

on the boundaries. For interior nodes, the procedure remains the same as the case with periodic

boundary conditions. We do not correct the nodal values on the inflow boundary and the pressure

on the subsonic outflow boundary; We correct nodal values on the inviscid wall boundary as usual

but need to project the velocity to the tangent direction after correction.

4.2 Stability

Generally speaking, enforcing a certain form of discrete conservation laws guarantees correct wave

speed thus sometimes may “sharpen” solutions. For p = 1, the corrector based on the discrepancy

distribution improved the accuracy to second order by fixing the dissipation Eq. (2.10). However,

the lack of dissipation frequently leads to instability because there is no mechanism to eliminate

spurious fluctuation or singularity in the numerical solutions.
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Here we consider another corrector that implicitly brings in some diffusion. We use the ex-

ample in the one-dimensional space to intuitively illustrate the idea. Suppose U is the numerical

approximation of a conserved quantity. Let U∗i+1/2 denote the value generated by the predictor

at xi+1/2, Ūi denote the cell average over [xi−1/2, xi+1/2] computed from the data at t = tn and the

balance of flux. Instead of correcting the nodal value by discrepancy distribution Eq. (2.3) we set

Un+1(2)
i+1/2 =

Ūi∆xi + Ūi+1∆xi+1

∆xi + ∆xi+1
. (4.1)

where we could interpret the nodal value Ui+1/2 as the average value of the solution u over the

interval [xi−1/2, xi+3/2]. For simplicity, in the following analysis, we assume ∆xi = ∆xi+1 = ∆x.

When p = 1, Ūi = dŪi +
1
2

(
U∗i−1/2 +U∗i+1/2

)
, we can relate the Un+1(2)

i+1/2 with the corrected solution

Un+1(1)
i+1/2 that is computed with discrepancy distribution (β1 = β2 = 1

2 ).

Un+1(2)
i+1/2 =

Ūi∆xi + Ūi+1∆xi+1

∆xi + ∆xi+1

=
1
2

(
dŪi +

1
2

(
U∗i−1/2 + U∗i+1/2

)
+ dŪi+1 +

1
2

(
U∗i+1/2 + U∗i+3/2

))
=

1
2

(
dŪi + dŪi+1

)
+ U∗i+1/2 +

1
4

(
U∗i−1/2 − 2U∗i+1/2 + U∗i+3/2

)
≈Un+1(1)

i+1/2 +
∆x2

4
∆U

∣∣∣∣
xi+1/2

.

(4.2)

When p = 2, Ūi = dŪi + 1
6

(
U∗i−1/2 + 4U∗i + U∗i+1/2

)
. Similarly, we can establish the following

results.

Un+1(2)
i+1/2 =

1
2

(
dŪi + dŪi+1

)
+ U∗i+1/2 +

1
12

(
U∗i−1/2 − 2U∗i+1/2 + U∗i+3/2

)
+

4
12

(
U∗i − 2U∗i+1/2 + U∗i+1

)
≈Un+1(1)

i+1/2 +
∆x2

6
∆U

∣∣∣∣
xi+1/2

.

Un+1(2)
i =Ūi = dŪi + U∗i +

1
6

(
U∗i−1/2 − 2U∗i + U∗i+1/2

)
≈Un+1(1)

i+1/2 +
∆x2

24
∆U

∣∣∣∣
xi
.

(4.3)

Thus Un+1(2)
i+1/2 can be interpreted as Un+1(1)

i+1/2 plus artificial diffusion. At the same time, the diffusive
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corrector Eq. (4.1) maintains a proper discrete conservation law. For p = 1,

∫
Ω

uhdx =
∑

i

1
2

(
Un+1(2)

i−1/2 + Un+1(2)
i+1/2

)
∆xi =

∑
i

Ūi∆x. (4.4)

Similar results hold for p = 2 or multidimensional cases.

To maintain the p+1-th-order accuracy, we control the artificial dissipation by taking a weighted

average of Un+1(1)
i+1/2 and Un+1(2)

i+1/2 :

Un+1
i+1/2 = (1 − w)Un+1(1)

i+1/2 + wUn+1(2)
i+1/2 . (4.5)

Numerical experiments on the Euler equations indicate that, when p = 1, a w as small as the mesh

size O(∆x)1 is sufficient to guarantee stability. In that case, the total diffusion introduced is of

O(∆x3) which has negligible influence on the global accuracy.

For steady state problems, introducing a proper amount of artificial diffusion also speeds up

convergence to the steady state solution. For example, we allow large diffusion, e.g., w = 0.1, in

the first few thousands of iterations in order to reduce entropy error and form smooth solutions.

Then the weight of diffusive correction should be reduced to the mesh size level to increase the

accuracy.

4.3 Numerical Results for Advanced Test Cases

In the following test cases for steady state problems, we redefine the residual of a conserved vari-

able as

R =
1
3

∑
v

∣∣∣∣∣∣ ∑
T :v∈T

∫
∂T

F · n dl

∣∣∣∣∣∣. (4.6)

Note that our numerical schemes are not designed to minimize the residual defined above. As

the solutions approach steady state, the above quantity might approach a non-zero number. We

consider the solutions converged when the changes of residuals of ρ, ρu, ρE after 1000 steps of

1The constant depends on the reference length L. In this thesis, we simply take L = 1 for all test cases.
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Figure 4.3: The sample mesh for the flow through a channel with smooth bump with 2 × N × 3N
cells (N = 16).

iteration are all lower than a certain threshold ε1. The initial weight of the diffusive corrector

is w = w0. When the solutions start to converge, i.e., the changes of all 4 residuals after 1000

iterations are less than ε1 of the previous residual, we adjust w to k × minT,e HT,e, the minimal

height of the triangular cells. If the changes of all residuals every 1000 iterations are less than ε2

after we lower the weight of the diffusive corrector, we end the iterations. To make the description

of the parameter setting of the Euler solver concise, we write them as a tuple (w0, k, ε1, ε2).

In all the test cases, the ratio of specific heats is γ = 1.4.

4.3.1 Gaussian Bump

We consider the subsonic internal flow through a channel with a curved boundary. The domain

is given by −1.5 ≤ x ≤ 1.5, 0.0625 exp(−25x2) ≤ y ≤ 0.8. Structured meshes are used to

study the performance (See Figure 4.3). We impose inflow boundary conditions on x = −1.5,

subsonic outflow boundary condition on x = 1.5 and inviscid boundary conditions on y = 0.8 and

y = 0.0625 exp(−25x2).

We initialize the flow with the free-stream state, where M∞ = 0.5, p∞ = 1/γ, ρ∞ = 1. The

solver’s parameter setting is (w0, k, ε1, ε2) = (0.1, 1, 1%, 0.5%). The steady state solutions described

in Figure 4.4 are generated on a mesh with 6 × 642 = 24576 cells, 12545 nodes. The solutions

are almost symmetric about x = 0. We plot the distribution of the deviation of entropy ds =

ln(γp/ργ)− ln(s∞) in Figure 4.4 (c). There is an entropy layer downstream the bump. But the error

is bounded by a small number.

In Figure 4.5, we present the profiles of pressure coefficient cp =
p − p∞
γ

2ρ∞M2
∞

on the bottom wall

generated by meshes of various sizes. In a sufficiently fine mesh, e.g., N = 32 or larger, the
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(a) The contour of the steady-state density ρ.

(b) The contour of the steady-state Mach number field.

(c) The steady-state entropy deviation distribution: ds = ln(γp/ργ) − ln(s∞)

Figure 4.4: The steady state solutions for the flow through a channel with smooth bump on a mesh
of 6N2 cells (N = 64).
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Figure 4.5: Flow through a channel with smooth bump: The steady-state pressure coefficient pro-
files on the bottom wall generated by different meshes.

graph appears to converge. To study the numerical accuracy of our numerical scheme, we use the

following measure measurement.2 (nx, ny) represents the normal vector at the bottom wall.

Entropy Error:

Es =

√√√√√√√√√∫
Ω

(
p

p∞

(
ρ∞
ρ

γ
)
− 1

)2

dΩ∫
Ω

1dΩ
=

1√∑
T S T

√√∑
v

((
p

p∞

(ρ∞
ρ

γ)
− 1

)2 ∑
T : v∈T

S T

3

)
;

Error in the coefficient of drag:

Ecd =

∣∣∣∣∣∣
∫

bottom
(p − p∞)nxdl

0.0625γ

2 p∞M2
∞

− cd,ref

∣∣∣∣∣∣;
Error in the coefficient of lift:

Ecl =

∣∣∣∣∣∣
∫

bottom
(p − p∞)nydl

0.0625γ

2 p∞M2
∞

− cl,ref

∣∣∣∣∣∣.
We plot errors versus 1/

√
nDOF in Figure 4.6. (nDOF equals the total number of nodes in our

scheme.) Apparently, our scheme with linear reconstruction (p = 1) achieves 2nd-order accuracy

as expected.

2The exact entropy error should 0; cl,ref = 1.537095, cd,ref = 0.
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Figure 4.6: Flow through a channel with smooth bump: Convergence plot of errors for p = 1.
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Figure 4.7: Mesh 1 for the cylinder case with 441 nodes and 829 cells

4.3.2 Inviscid Flow around the Cylinder

The flow around a cylinder is another classical test for the Euler equations [1]. We construct a

domain Ω = [−2, 2] × [−2, 2] with a cylinder of radius 0.1 centered at (0, 0), with inflow boundary

conditions on x = −2, y = ±2, outflow boundary conditions on x = 2 and inviscid boundary

conditions on x2 + y2 = 0.12. A coarse mesh (Mesh 1) is generated by DistMesh, a mesh generator

in Matlab by Persson and Strang [34]. See Figure 4.7. We refine Mesh 1 by splitting each triangular

cell into 4 sub-cells to generate Mesh 2 (1711 nodes, 3316 cells ) and then Mesh 3 (6738 nodes,

13264 cells). See Section D.1 for the details of mesh refinement.
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The initial values are the same as the free-stream flow, where M∞ = 0.38, u = M∞, v = 0,

p∞ = 1/γ, ρ∞ = 1. (γ = 1.4.) The solver’s parameter setting is (w0, k, ε1, ε2) = (0.1, 2, 1%, 0.5%).

We present the profiles of solutions generated on Mesh 3 in Figure 4.8. There is a thin entropy

layer around the inviscid surface due to the numerical viscosity. The current solutions exhibit a

little bit of asymmetry which might be caused by the mesh quality. Overall, the solution quality

is better than (or at least no worse than) the ones generated by other well-accepted second-order

schemes [1]. We further conduct a convergence study of the entropy error. See Figure 4.9. The

slope is roughly 1.6, which is satisfying given that the meshes are not fine enough compared to the

curvature of the cylinder wall.

4.3.3 Inviscid Flow around the NACA0012 Airfoil

We consider flows around the NACA0012 Airfoil with various attack angle α and freestream Mach

number M∞ . The domain is defined as a large disk of radius 4 centered at (2, 0). The boundary of

the airfoil is described by the following formula.

y = ±0.6(0.2969
√

x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4). (4.7)

We impose inviscid boundary conditions on the surface of the airfoil. For a point (x, y) on the

boundary of the domain, that is, (x − 2)2 + y2 = 16, if x cosα + y sinα < 0, we assign inflow

boundary conditions, otherwise, outflow boundary conditions. DistMesh [34] is used to generate

Mesh 1. See Figure 4.10. We further refine the mesh with the same method as we do in the previous

test case. Mesh 2 has 3070 nodes, 5872 cells, Mesh 3 has 6738 nodes, 23488 cells.

The simulation starts with free-stream flow, where u = M∞ cosα, v = M∞ sinα, p∞ = 1/γ,

ρ∞ = 1. For a mild test case where M∞ = 0.5, α = 1◦, we set (w0, k, ε1, ε2) = (0.1, 2, 1%, 0.1%).

Figure 4.11 presents the steady state solutions generated on Mesh 3. Figure 4.12 is the convergence

plot of the entropy errors on the hierarchical meshes. The slope is around 1.65.

To demonstrate the robustness of our scheme, we further challenge the solver with transonic
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(a) The contour of the steady-state density ρ. (b) The contour of the steady-state Mach number
field. Mmax = 0.9173, Mmin = 0.0054.
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(c) Pressure coefficient distribution on the inviscid surface. (Red: cp on the upper surface; Blue:
cp on the lower surface.)

(d) The steady-state entropy deviation distribu-
tion: ds = ln(γp/ργ) − ln(s∞).

(e) The steady-state entropy deviation distribu-
tion (zoomed in around the inviscid surface).

Figure 4.8: The steady state solutions for the flow around a cylinder on Mesh 3.

52



10
-2

10
-1

10
-4

10
-3

2

E
s

Figure 4.9: Flow around a cylinder: Convergence plot of entropy errors for p = 1.
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Figure 4.10: A sample mesh for the NACA0012 Airfoil case with 801 nodes and 1468 cells

test cases. Shock may form on both upper and lower surfaces of the airfoil. Note that no limiter

is used here. We increase k to 5 to ensure stability. The numerical results generated by Mesh 3

are presented in Figure 4.13 (M∞ = 0.8, α = 1.25◦) and Figure 4.14 (M∞ = 0.85, α = 1◦). The

solutions are qualitatively correct. Due to the fact that our domain boundary is not sufficiently far

away from the airfoil surface and that we have no special treatment of discontinuous solutions,

they are not as accurate as the exact ones.
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(a) Mach number contours
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(b) Pressure coefficient distribution on the invis-
cid surface

Figure 4.11: Subsonic flow around the NACA0012 Airfoil with M∞ = 0.5, α = 1◦.
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Figure 4.12: Subsonic flow around the NACA0012 (M∞ = 0.5, α = 1◦): Convergence plot of
entropy errors for p = 1.
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(b) Pressure coefficient distribution on the invis-
cid surface

Figure 4.13: Transonic flow around the NACA0012 Airfoil with M∞ = 0.8, α = 1.25◦.
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(a) Mach number contours
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(b) Pressure coefficient distribution on the invis-
cid surface

Figure 4.14: Transonic flow around the NACA0012 Airfoil with M∞ = 0.85, α = 1◦.
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CHAPTER 5

Including Viscosity I: A Traditional Strategy

5.1 A Benchmark Scheme for Viscosity and Diffusion

In this chapter, we discuss a simple benchmark scheme for the Navier-Stokes equations in the

family of Active Flux schemes that we introduced in Chapter 2. This benchmark scheme uses

piecewise linear functions for reconstruction (p = 1).



∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0

ρ
∂v
∂t

+ ρv · ∇v + ∇p = ∇ · T

∂p
∂t

+ v · ∇p + γp∇ · v =
γµ

Pr
∇ · (∇

p
q

) + (γ − 1)T : ∇v,

(5.1)

where

T = λ∇ · v + µ(∇v + (∇v)T ).

The presence of heat conduction and viscosity, which are essentially diffusive, drastically

changes the nature of the system and poses new challenges in numerical simulation. Unlike a

hyperbolic system where information travels at finite speed, a system containing diffusion allows

small perturbation to impact the whole domain immediately. In other words, the diffusive terms

make the system stiff. Thus to ensure stability, we have to take a small time step size, ∆t ∼ h2, if we

use explicit methods for evolution1. (h represents the size of the smallest cell in the mesh.) Besides,
1 Although time step size of the same order of the mesh size h is allowed in implicit methods, solving globally

coupled equations in every time step is also computationally costly. In this work, we focus on explicit methods.
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the terms that model heat conduction and viscosity in the Navier-Stokes equations are second-order

derivatives of the primitive variables. Given that the reconstructed numerical solutions in the Ac-

tive Flux method are of class C0, finding an efficient and accurate way to approximate second-order

derivatives on unstructured meshes is another challenge.

5.1.1 Approximation of Derivatives

We notice in Figure 3.1 that the approximation of derivatives based on the exact solutions to linear

acoustics is not ideal when p = 1. The approximation of second-order derivatives shows no

convergence when we refine the mesh.

Consider a continuous function u(x, y). Let n = (n1, n2) be outward-pointing normal vector on

the boundary of cell T . The cell average of the gradient (ux, uy) of u on cell T is given by

ūxT =
1

S T

∮
∂T

un1dl, ūyT =
1

S T

∮
∂T

un2dl. (5.2)

We store the nodal values of u at the vertices on the triangular mesh in U. Let uh denote the

reconstructed continuous piecewise linear function from U. We approximate the gradient of uh at

node v by taking the weighted average of ūx
h
T and ūy

h
T from the adjacent cells. This can be regarded

as the counterpart of the one-dimensional central difference approximation of derivatives on the

two-dimensional unstructured triangular mesh. Let Uz,v represent the approximated derivative of

uh with respect to variable z on node v.

Ux,v =

∑
{T : v∈T } ūh

xT S T∑
{T : v∈T } S T

, Uy,v =

∑
{T : v∈T } ūh

yT
S T∑

{T : v∈T } S T
. (5.3)

In essence, the gradient of u at node v is approximated by the average gradient over the union of

cells adjacent to v in Eq. (5.3). The accuracy should be between first order and second order. We

expect that the more “symmetric” the neighboring cells around v the more accurate the approxi-

mation. This strategy is more efficient than the one based on the formulas for the linear acoustic

system. Only nodal values, instead of the coefficients of reconstructed polynomials, are used to
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Figure 5.1: Accuracy of the alternative derivative approximation strategy for p = 1 on the unper-
turbed mesh and the perturbed mesh.

evaluate Eq. (5.2).

We repeat this process on Ux and Uy to approximate second-order derivatives. The approx-

imated cross partial derivative takes the average of Uxy,v and Uyx,v. Note that this step actually

implicitly uses reconstructed continuous piecewise linear functions from Ux,v and Uy,v. Thus the

accuracy of second-order derivatives is better than the approximation based on the formula of linear

acoustics.

We conduct numerical experiments to examine the quality of approximation. Set u(x, y) =

sin(6πx) sin(4πy). Figure 5.1 indicates that this strategy gives roughly second-order-accurate ap-

proximation of 1st- and 2nd-order derivatives on unperturbed mesh, and 1st-order-accurate ap-

proximation on perturbed meshes. The meshes are described in Figure 2.12.

Note that in terms of approximating derivatives, this strategy Eq. (5.3) is neither a perfect idea

nor the only choice. For example, one may consider fitting the values on adjacent nodes into the

Taylor expansion at node v

u(x, y) = Uv + Ux,v∆x + Uy,v∆y +
1
2

Uxx,v∆x2 + Uxy,v∆x∆y +
1
2

Uyy,v∆y2

with the method of least squares to determine the coefficients and thus get approximation of deriva-

tives, or consider the strategy used in the finite element method. But the cost of our current strategy

is relatively low while the accuracy is good enough for constructing a second-order predictor. Thus
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we stick to it for benchmark results.

5.1.2 The Benchmark Numerical Scheme for the Heat Equation

We consider the heat equation as a model problem.


ut = ν∇ · q,

q = ∇u.
(5.4)

For simplicity, we set ν = 1. To evolve the numerical solution from t = tn to tn+1, we approximate

qn and ∇qn as discussed above. The predictor simply uses the Euler method: u∗ = un + ∆t∇ · qn.

Then we estimate q∗ from u∗ , which will be used in evaluating the temporal integral of heat flux

through the cell boundaries. In the heat equation, u is the conserved quantity. We compute the

discrepancy following the definition given by Eq. (2.7).

dŪT =
−1
S T

( ∫
∂T

∫ tn+1

tn
−qh · n dt dl +

"
T

uh(x, tn+1) − uh(x, tn)dσ
)
. (5.5)

The corrector (discrepancy distribution) remains the same as described in Eq. (2.8). We test this

numerical scheme for both transient and steady-steady solutions to the heat equation. See Sec-

tion 5.2.

5.1.3 The Benchmark Numerical Scheme for the Navier-Stokes Equations

We construct a simple low-order scheme for the Navier-Stokes equations on top of the Euler solver

(See Chapter 3). The viscous stress tensor T, the heat flux Q, and their gradients are estimated

by the strategy discussed in Section 5.1.1. We simply add ∆t times terms that model diffusion

and viscosity to the Euler predictor to build the predictor for the Navier-Stokes Equations. For

example,

v∗ = v∗Euler +
∇ · T
ρ

∆t, (5.6)
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where v∗Euler is computed by the predictor from the Euler solver. The accuracy of this simple

predictor is not better than second order. Like the benchmark scheme for the heat equation, we

also evaluate T∗ and Q∗ again after the prediction to compute the discrepancy in the cell averages

of the conserved variables. No change is made to discrepancy distribution process. For the test

cases that involve complicated geometry, the numerical strategy described in Section 4.2 is adopted

to enhance stability. We use this scheme to compute the steady viscous flow around a cylinder. See

Section 5.2.

5.2 Numerical Experiments

5.2.1 Transient Problems of the Heat Equation

We consider a domain Ω = [0, 1]× [0, 1] with periodic boundary conditions. It is not hard to verify

that

u(x, y, t) = e−4π2(k2
1+k2

2)t sin(2k1πx) sin(2k2πy), ∀k1, k2 ∈ Z

solves equation (5.4).

We set k1 = 1, k2 = 2, initial value u0(x, y) = sin(2k1πx) sin(2k2πy) in our tests. Since our

scheme is explicit, we set ∆t = 1
2

(
minT,e HT,e

)2
, where He is the height of cell T rising from

edge e. Errors are measured at T = 0.01 in L1-norm (Equation (2.19)). We run the tests on

both unperturbed mesh and perturbed mesh (See Figure 2.12). Figure 5.2 indicates the benchmark

scheme achieves at least first-order accuracy. Interestingly, we notice that in the simulation of the

heat equation, the corrector does not bring second-order accuracy as it does in Chapter 2. However,

if we remove the corrector, the numerical scheme becomes unstable.
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Figure 5.2: Convergence rates of the benchmark scheme for the transient solutions to the heat
equation on the unperturbed mesh and the perturbed mesh.

5.2.2 Steady-State Problems of the Heat Equation

We consider the heat equation on a domain Ω = [0, 1] × [0, 1] with Dirichlet boundary conditions

u(x, 0) = u(0, y) = 0, u(x, 1) = sin(πx), u(1, y) = sin(πy). The exact solution is given by

u(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
.

We set the initial value

u0(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
+ sin(πx) sin(πy),

and time step size ∆t = 1
2

(
minT,e HT,e

)2
. To enforce the boundary conditions, we do not modify the

nodal values of u on the boundary in both prediction stage and correction stage. The simulation is

run on both unperturbed and perturbed meshes. (Recall the construction of the meshes in Section

2.5.2.) On a mesh with 2N2 cells, we stop the iteration when the change of U measured in L1-norm

is less than 10−8 after every N2 steps of iteration. Figure 5.3 shows that both the primary variable u

and its gradient q have second-order accuracy on unperturbed mesh; on the perturbed mesh, error

in the primary variable u converges with rate 2 while the errors in the gradient q which is estimated

from the nodal values of u only converge with a rate slightly above 1.
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Figure 5.3: Convergence rates of the benchmark scheme for the steady-state solutions to the heat
equation on the unperturbed mesh and the perturbed mesh.

5.2.3 The Steady Viscous Flow around A Cylinder

We adopt the same geometric setting and meshes that are used for the Euler equations (Sec-

tion 4.3.2). No-slip and adiabatic boundary conditions are imposed on the boundary of the cylinder.

The velocity at the no-slip boundary is always 0 and we do not modify them in predictor or correc-

tor. When computing the cell averages via the balance of fluxes, we set the heat flux Q through the

edge on the adiabatic wall to be zero. Note that Q, or the gradient of temperature, is not necessarily

to be 0 on the adiabatic boundary.

The simulation is started with free-stream flow, where M∞ = 0.3, u = M∞, v = 0, p∞ = 1/γ,

ρ∞ = 1, γ = 1.4. The diameter of the cylinder is D = 0.2. We set µ = 10−3, λ = −2µ/3, which gives

a Reynolds number Re =
ρ∞M∞D

µ
= 60. Pr = 0.72. We take a small time step ∆t =

(
minT,e HT,e

)2
. In

the following numerical experiments, we fix the total time T = ∆t×M, where M is the total number

of iterations. The initial weight of the diffusive corrector is w = w0 = 0.01. When the change of

all residuals after M/10 iterations is less than 10%, we reduce the weight w to 0.2 ×minT,e HT,e.

We present the steady-state Mach number distribution and the pressure field generated on Mesh

3 (6738 nodes, 13264 cells) after M = 512000 iterations in Figure 5.4.
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(a) Mach Number Field (b) Pressure Field

Figure 5.4: The steady state solutions for the viscous flow around a cylinder on Mesh 3.
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CHAPTER 6

Including Viscosity II: The Hyperbolic

Reformulations

As expected, the benchmark scheme for the Navier-Stokes equations introduced in the previous

chapter is inefficient due to the stiffness caused by viscosity. In the steady-state problem, it takes a

long time for the numerical solution to converge. When we halve the mesh size in two -dimensional

space, i.e., equally splitting every triangular cell into 4 sub-triangles, the total simulation time will

be 16-fold if we do not boost the scheme with techniques like the multigrid method. See Table 6.1.

In this chapter, we consider the hyperbolic reformulation inspired by Cattaneos hyperbolic

heat-conduction equation [8] as a numerical strategy to improve accuracy and efficiency. Some ap-

plication of such Cattaneo-type hyperbolic models in advection-diffusion equations and the Navier-

Stokes equations 1 has been explored in [31, 32, 44, 25], where various combinations of equations

and numerical schemes are adopted. Note that researchers also have pursued other hyperbolic

models for the Navier-Stokes equations out of motivations in physics. For example, Peshkov and

Romenski et al. suggested an alternative hyperbolic model, where viscosity is modeled by the

distortion field of particles, in pursuit of a unified framework for viscous fluids and elastoplastic

solids [35, 12].
1The Cattaneo model is also used in hyperbolic reformulations of dispersive systems [7].
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6.1 Hyperbolic Reformulations of Equations

6.1.1 The Hyperbolic Heat Equations

We consider Cattaneo’s hyperbolic heat-conduction equations [8] as a model problem.


∂u
∂t

= ν∇ · q

∂q
∂t

=
1
τ

(
∇u − q

)
,

(6.1)

where τ is the relaxation time. Note that the key step of constructing a hyperbolic model is to

introduce independent relaxed variables for derivatives of the primary variables, which eliminates

the high-order derivatives in the original equations. In the case of the heat equation, q is introduced

as the relaxed gradient of u,
∂q
∂t

=
1
τ

(
∇u − q

)
.

When the system reaches the steady state, q = ∇u, ∇ · q = 0, which is identical to the steady

solution to the heat equation Eq. (5.4). Thus the hyperbolic reformulation Eq.(6.1) can be used to

compute the steady state of the original equation Eq. (5.4). The same idea is applied to solve the

steady-state Navier-Stokes equations.

The advantage of this strategy lies in the hyperbolicity of the new system Eq. (6.1). Both

analysis of characteristics and the exact solutions Eq. (B.15) indicate that the solutions at (x0, t0 +

∆t) only depend on the data at t = t0 within a disk/ball centered at x = x0 with radius ∆t
√
ν/τ. The

finite speed of information propagation allows a large time step size of the same order of the mesh

h. Although it is true that the hyperbolic system may require longer physical time in the equations

to be steady and more computation is required in one step of time marching, a carefully chosen

relaxation time τwill significantly reduce the number of iterations. When we reach steady state, we

not only have the primary variable u but also get its gradient q of the same accuracy. We would refer

readers to the documentation of our elementary but detailed and (hopefully insightful) analysis on
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the one-dimensional hyperbolic heat equations and hyperbolic advection-diffusion equations in

Appendix C, where we discuss how to pick the optimal relaxation time and why the stiffness is

reduced. Note that the hyperbolic heat equations have been studied by many researchers from

various aspects via different paths. For example, the dispersion relation of waves in the hyperbolic

system, which depends on τ, has been investigated in [38, 44]. Luckily, all the analyses, including

ours, are consistent.

We demonstrate the effectiveness of the hyperbolic reformulation in reducing the computational

cost by comparing it with the benchmark scheme in Section 5.1.2. To make the comparison fair,

we introduce an equally simple second-order scheme based on the Active Flux method 2. The

predictor is simply the Euler method:

u∗ = un + ∆t∇ · q,

q∗ = qn +
∆t
τ

(
∇u − q

)
.

(6.2)

The first-order derivatives are computed by the acoustic-formula-based derivative approximation.

Note that the second equation in Eq. (6.1) can be rewritten in the conservation form

∂

∂t

(
et/τq

)
=

1
τ
∇
(
et/τu

)
. (6.3)

We have the following definition of the discrepancy in cell averages of u and q.

dŪT =
−1
S T

( ∮
∂T

∫ tn+1

tn
−qh · n dt dl +

"
T

uh(x, tn+1) − uh(x, tn)dσ
)
,

dQ̄T =
−e−tn+1/τ

S T

( ∮
∂T

1
τ

n
∫ tn+1

tn
−et/τuh dt dl +

"
T

etn+1/τqh(x, tn+1) − etn/τqh(x, tn)dσ
)
.

(6.4)

Then we use Eq. (2.8) to distribute the discrepancy. The numerical results can be found in Sec-

tion 6.2.1.

Notes:
2Higher-order schemes that use the exact solutions Eq. (B.15) in the predictor have been developed. See our AIAA

conference paper [18].

66



1. We know that as τ approaches 0, the solution to Eq. (6.1) is getting closer to the actual diffusion.

Interestingly, when τ is close to zero, Eq. (6.4) indicates that the discrepancy in the cell average of

q is almost determined by u∗ and q∗. At the same time, the small τ also forces us to take a small

time step. This makes the scheme resemble the benchmark scheme in Section 5.1.2.

2. As we mention in Appendix C, the stiffness caused by diffusion in the original heat equation is

transformed into the source term in the hyperbolic heat equations. If we use the exact solutions as

predictor, the only restriction on time step size is from the wave speed
√
ν/τ. However, when we

use the predictor based on the Euler method, there may be further restrictions related to τ.

6.1.2 The Hyperbolic Viscosity and the Decomposition of Waves

In this subsection, we present a novel hyperbolic reformulation of the viscosity. Consider the

sub-system of viscosity in the Navier-Stokes equations Eq.(5.1),


ρ
∂v
∂t

= ∇ · T,

T = λ(∇ · v)I + µ(∇ · v + ∇ · vT ).
(6.5)

A natural choice of hyperbolic reformulation, which is also adopted by [31, 30], is given by

∂T
∂t

=
λ∇ · v + µ(∇v + (∇v)T ) − T

τ
. (6.6)

The analysis based on the eigenvalues of the hyperbolic system in [31, 30] indicates that the hy-

perbolic reformulation introduces two different waves. Here we take a different path to explicitly

analyze the wave structures of the hyperbolic viscosity.

With some proper transformation (which can be found in any textbooks about solid mechanics

or fluid mechanics, e.g., [17]), we have

∇ ·
(
λ(∇ · v)I + µ(∇ · v + ∇ · vT )

)
= −µ∇ ×

(
∇ × v

)
+ (2µ + λ)∇

(
∇ · v

)
. (6.7)
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If we decompose the velocity field v into divergence-free part and curl-free part by Helmholtzs

theorem, i.e., v1 + v2 = v, ∇ · v1 = 0, ∇× v2 = 0, it is not hard to derive the governing equations of

v1 and v2. 
ρ
∂v1

∂t
= −µ∇ × ω,

∂ω

∂t
=

1
τ

(
∇ × v1 − ω

)
.

(6.8)


ρ
∂v2

∂t
= (2µ + λ)∇ψ,

∂ψ

∂t
=

1
τ

(
∇ · v2 − ψ

)
.

(6.9)

These two waves can be regarded as analogs of the transverse/shear-type wave and compressional/sound-

type wave in elastic materials. The corresponding wave speeds are
√
µ/τ and

√
(2µ + λ)/τ. The

behavior of each wave is similar to the wave in the hyperbolic heat equations.

The decomposition also inspires us to write the hyperbolic reformulation of the viscosity in a

more compact way: we only introduce relaxed variables for ∇ × v and ∇ · v.



ρ
∂v
∂t

= −µ∇ × ω + (2µ + λ)∇ψ;

∂ω

∂t
=

1
τ

(
∇ × v − ω

)
;

∂ψ

∂t
=

1
τ

(
∇ · v − ψ

)
;

(6.10)

Applying the similar techniques that we use for deriving the exact solutions to the hyperbolic heat

equations in Appendix B.2, we can also derive the exact solutions to Eq. (6.10). See Appendix B.3.

68



6.1.3 The Hyperbolic Navier-Stokes Equations

We further extend the hyperbolic models for heat conduction Eq. (6.1) and viscosity Eq. (6.10) to

the hyperbolic reformulation of the full Navier-Stokes equations in two-dimensional space.



∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0,

ρ
∂v
∂t

+ ρv · ∇v + ∇p = ∇ · T,

∂p
∂t

+ v · ∇p + γp∇ · v =
γµ

Pr
∇ · q + (γ − 1)T : ∇v,

(6.11)

where we introduce relaxed variables

∂q
∂t

=
1
τ

(
∇
( p
ρ

)
− ∇q

)
, (6.12)

∂ψ

∂t
=

1
τ

(
∇ · v − ψ

)
,

∂ω

∂t
=

1
τ

(
∇ × v − ω

)
,

∂r1

∂t
=

1
τ

(∂v1

∂x
−
∂v2

∂y
− r1

)
,

∂r2

∂t
=

1
τ

(∂v1

∂y
+
∂v2

∂x
− r2

)
.

(6.13)

Then we set

∇ · T = −µ∇ × ω + (2µ + λ)∇ψ, (6.14)

T =

 λψ + µ(ψ + r1) µr2

µr2 λψ + µ(ψ − r1)

 . (6.15)

Note: In two-dimensional space, ω = (0, 0, ωk)T , we simply write

ω = ωk = −
∂v1

∂y
+
∂v2

∂x
.
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Then

∇ × ω = (
∂

∂y
ω, −

∂

∂x
ω)T .

To compare the benchmark scheme based on the traditional Navier-Stokes equations and the

ones that combine our hyperbolic model and the Active Flux method, we consider a simple 2nd-

order scheme. We use the Euler method, u∗ = un + ∆tut, as the predictor. In the corrector, we

define the discrepancy of conserved variables ρ, ρv, 1
2ρv · v +

p
γ−1 in the regular way, and handle

the discrepancy of relaxed variables in the same way as Eq.(6.4). We distribute the discrepancy as

usual (Eq. (2.8)). To ensure stability, the numerical strategy described in Section 4.2 is used for

test cases with complex geometry.

6.2 Numerical Results

6.2.1 Steady State of the Heat Equation

The test case is generally the same as the one in Section 5.2.2. The relaxation time τ = 0.025. In

the simulation of the hyperbolic heat equation, we set initial values

u0(x, y) =
sinh(πx) sin(πy) + sinh(πy) sin(πx)

sinh(π)
+ sin(πx) sin(πy), q0 = (0, 0).

u(x, y, t) is supposed to satisfy the Dirichlet boundary conditions and the numerical treatment re-

mains the same. No restriction is imposed on the boundary values of q. We take the time step

∆t = min
(
0.9 1

√
ν/τ

minT,e HT,e, τ
)
. The tests are run on both unperturbed and perturbed mesh as

usual. On a mesh with 2N2 cells, we stop the iteration when the change of U measured in L1-

norm is less than 10−10 after every N steps of iteration. Figure 6.1 indicates that the scheme that

combines the hyperbolic reformulation and Active Flux method achieves 2nd-order accuracy for

both primary variable u and the gradient of u. It is worth noting that, the magnitude of errors in

Figure 6.1 is 10 times smaller than the errors in Figure 5.3. We record the total running time taken

by each test case to reach the steady-state solutions in Table 6.1. All the tests were run on the
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Figure 6.1: Convergence rates of the steady-state solutions to the hyperbolic heat equaiton on the
unperturbed mesh and the perturbed mesh.

N = 8 N = 16 N = 32 N = 64 N = 128
Unperturbed
Mesh

Benchmark 0.173 s 2.593 s 39.58 s 636.1 s 10381.9 s
Hyperbolic 0.512 s 2.999 s 18.23 s 124.7 s 902.5 s

Perturbed
Mesh

Benchmark 0.169 s 2.665 s 65.54 s 1348 s 33774.4 s
Hyperbolic 0.95 s 5.217 s 40.41 s 310.9 s 2534.4 s

Table 6.1: Comparison of the running time of the benchmark scheme and the one based on hyper-
bolic reformulation in solving the steady-state problem of the heat equation.

same machine with 1 CPU processor. We notice that the scheme based on hyperbolic equations

gets much more accurate solutions within a much shorter time on fine meshes than the benchmark

scheme that we suggest in Chapter 5.

6.2.2 Steady Viscous Flow around a Cylinder

We repeat the numerical experiments on the steady viscous flow around a cylinder which we sim-

ulate with the benchmark scheme in Section 5.2.3. We set τ = 0.1. The initial values of relaxed

variables are 0. Time step ∆t = min
(
0.95 1

10MAX V minT,e HT,e, τ
)
. The sound speed is 1. Thus we

estimate the upper bound of information propagation speed by MAX V = M∞ + 1 +

√
2µ+λ

τ
+

√
µ

τ
.

M represents the total number of iterations. The initial weight of the diffusive corrector is w =

w0 = 0.1. When the change of all residuals after M/10 iterations is less than 5%, we reduce the

weight w to 2 ×minT,e HT,e.

Figure 6.2 is generated on Mesh 3 (6738 nodes, 13264 cells) after M = 32000 iterations, which
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(a) Mach Number Field (b) Pressure Field

Figure 6.2: The steady-state solutions for the viscous flow around a cylinder on Mesh 3 generated
by the Hyperbolic Navier-Stokes equations.

is qualitatively identical to Figure 5.4. The code was run on the same machine with 1 processor.

The simulation of the hyperbolic model of the Navier-Stokes equations method only takes 4820.9

seconds while the traditional one simulated by the benchmark scheme in Chapter 5 takes 80623.2

seconds.

6.2.3 Steady Viscous Flow around the NACA0012 Airfoil

We further challenge the scheme based on the hyperbolic reformulation of the Navier-Stokes equa-

tions by the viscous flow around the NACA0012 Airfoil. The geometric setting remains the same

as Section 4.3.3. We set τ = 0.1. The simulation is started with uniform flow, where M∞ = 0.5,

v1 = M∞, v2 = 0, p∞ = 1/γ, ρ∞ = 1, γ = 1.4. The viscosity coefficients µ = 2.5 × 10−4,

λ = −2µ/3. Pr = 0.72. We use the chord length L = 1 as the characteristic length. The corre-

sponding Reynolds number is Re =
ρ∞M∞L

µ
= 2000. The initial weight of the diffusive corrector

is w = w0 = 0.1. When the change of all residuals after M/10 iterations is less than 5%, we

reduce the weight w to 4×minT,e HT,e. The numerical results on Mesh 3 (6738 nodes, 23488 cells)

after M = 12800 iterations are presented in Figure 6.3. The Mach number field shows reasonable

boundary layers. We cannot conduct a comparison with the benchmark scheme because it fails to

generate any meaningful solutions in a reasonable time.
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(a) Mach Number Field

Figure 6.3: The steady-state solutions for the viscous flow around the NACA0012 Airfoil on Mesh
3 generated by the Hyperbolic Navier-Stokes equations.
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CHAPTER 7

Conclusions and Future Work

In this work, we extend the original 3rd-order AF scheme into a family of systematic and flexible

schemes by introducing the idea of discrepancy distribution in the corrector. The numerical ex-

periments indicate the schemes achieve p + 1-th-order accuracy when polynomials of degree p are

used in reconstruction. We also have successful experiments with schemes based on linear recon-

struction for the inviscid and viscous flows on domains with complex geometry. For simulations

of viscous flows, we suggest hyperbolic reformulation to accelerate convergence to steady-state

solutions.

Various directions can be pursued from this work:

1. Currently we do not have high-order results for inviscid flows on domains with complex geom-

etry due to the restriction from the accuracy of the boundary treatment. High-order treatment for

curved boundaries could be pursued.

2. The solvers for the hyperbolic Navier-Stokes equations should be extended for higher-order

accuracy. The current restrictions are mainly from the accuracy of boundary treatment and the

predictor we used in the NS solver.

3. Our predictor for the hyperbolic Navier-Stokes equations is not as elaborated as the one for the

Euler equations. Better use of the wave structure in the hyperbolic model could be utilized.

4. The code is yet to be developed for three-dimensional space.
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APPENDIX A

The Governing Equations of Fluid Dynamics

We consider the equation for fluid dynamics in the most general form [24][41]. Let f be the body

force, T be the stress tensor, and q be the heat flux density vector. And e represents the local

internal energy per unit mass. The general model of fluid is given by the following equations:

• Conservation of Mass:
Dρ
Dt

+ ρ∇ · v = 0;

• Conservation of Linear Momentum:

ρ
Dv
Dt

= ρf + ∇ · T;

• Conservation of Energy:

ρ
D
Dt

(e +
1
2

v · v) = ρ(f · v) − ∇ · (q − T · v).

Note: D
Dt is the material derivative, which is defined as D

Dt = ∂
∂t + (v · ∇).

To make the equations above complete, we need constitutive equations as well. For viscosity,

with the assumption of newtonian fluid,

T = [−p + λ(∇ · v)]I + 2µD,
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where the deformation tensor/rate-of-strain tensor D is defined as

Di j =
1
2

(
∂vi

∂x j
+
∂v j

∂xi
).

The equations for conservation of momentum can be simplified as:

ρ
Dv
Dt

= ρf + ∇[−p + (λ + µ)∇ · v] + µ∇2v.

Note:

• Specially, for inviscid flow, µ = λ = 0.

• Stokes’ hypothesis: λ + 2
3µ = 0. (In three dimensional space.)

For ideal gas (or perfect gas), we have p = ρRθ, e = cvθ + constant, where θ is the local

temperature, R is a constant for any particular gas, cv is the local specific heat. It’s not hard to

derive that p = Aργ, e =
p

(γ−1)ρ [10]. Here A depends on the entropy S , and γ = (cv + R)/cv. By

Newton-Fourier law of cooling q = −κ∇θ.

In active flux method, in order to decompose Euler equation into advective part and acoustic

part, we need the equations in primitive form with primitive variables: ρ, v, p, as well as the

conservative form. It’s not hard to derive from the equation for energy balance that

ρ
De
Dt

= −∇ · q + T : D

where

T : D =
∑

i

∑
j

Ti jDi j.

Replacing q by −κ∇θ

ρ
De
Dt

=
κ

cv
∇ · (∇e) + T : D.
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Since γ = cp/cv, Prandtl number Pr =
µcp

κ
, we write κ

cv
as µγ

Pr . Thus,

Dp
Dt

= −γp∇ · v +
µγ

Pr
∇ · (∇

p
ρ

) + (γ − 1)Φ.

The dissipation function Φ is defined as Φ = (T + pI) : D = λ(∇ · v)2 + 2µD : D.

In summary, the Navier-Stokes equations for ideal gas are given by



Dρ
Dt

+ ρ∇ · v = 0

ρ
Dv
Dt

+ ∇p = ∇[(λ + µ)∇ · v] + µ∇2v

Dp
Dt

+ γp∇ · v =
µγ

Pr
∇ · (∇

p
ρ

) + (γ − 1)Φ.

(A.1)

77



APPENDIX B

Exact Solutions

B.1 The Pressureless Euler Equations

A concise derivation of the exact solutions to the Pressureless Euler equations by the author is as

follows.


∂ρ

∂t
+ ∇ · (ρv) = 0,

∂v
∂t

+ v · ∇v = 0.

Note that the equations about velocity v is actually independent of the equation for ρ. Along the

characteristic curve x(s) governed by dx
ds = v

(
x(s), s

)
,


dv
ds

=
dx
ds
· ∇v +

∂v
∂t

= 0,

dρ
ds

=
dx
ds
· ∇ρ +

∂ρ

∂t
= −ρ∇ · v.

(B.1)

Like the Burgers’ equation in the one-dimensional space, the velocity remains constant along the

characteristics. The density ρ is solved by

ρ(s) =
ρ(s0)

exp
( ∫ s

s0
∇ · vds

) .
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The denominator can be simplified further.

exp
( ∫ s

s0

∇ · vds
)

= exp
( ∫ s

s0

tr(∇v)ds
)

= det

∣∣∣∣∣∣ exp
( ∫ s

s0

∇vdx
)∣∣∣∣∣∣.1

It is easy to verify that
d∇v
ds

= −(∇v)(∇v).

Thus

exp
( ∫ s

s0

∇vdx
)

= I + (s − s0)∇v
∣∣∣∣
s0
.

B.2 The Hyperbolic Heat Equations

Recall the hyperbolic heat equations.


∂u
∂t

= ν∇ · q,

∂q
∂t

=
1
τ

(
∇u − q

)
.

(B.2)

Let v = e
t

2τ u, p =
√
τνe

t
2τ q: 

∂v
∂t

=

√
ν

τ
∇ · p +

1
2τ

v

∂p
∂t

=

√
ν

τ
∇v −

1
2τ

p.
(B.3)

So without loss of generality, we consider the following hyperbolic equations.


∂v
∂t

= ∇ · p + cv

∂p
∂t

= ∇v − cp.
(B.4)

Eliminating p gives
∂2v
∂t2 = c2v + ∆v. (B.5)

1When A is a square matrix, exp(A) is defined as
∑∞

k=0
Ak

k! .
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Eliminating v gives
∂2p
∂t2 = c2p + ∇(∇ · p). (B.6)

Applying techniques introduced in 12.6 and 12.7 of [11], we know that for initial conditions

v(x, 0) = 0, vt(x, 0) = ψ(x), in two-dimensional space v can be solved by

v(x, t) = Fψ(x, t; c) =

∫ t

0

ρ√
t2 − ρ2

cosh c
√

t2 − ρ2Qψ(x, ρ)dρ, (B.7)

where,

Q(x, ρ) =
1

2π

∫ 2π

0
ψ(x1 + ρ cos θ, x2 + ρ sin θ)dθ.

It’s straightforward to verify that v∗ = vt solves the Eq. (B.5) with initial conditions v∗(x, 0) = ψ(x),

v∗t (x, 0) = 0.

Thus for a general initial value problem v(x, 0) = φ(x), vt(x, 0) = ψ(x), the solution can be

written as

v(x, t) = Fψ(x, t; c) +
∂

∂t
Fφ(x, t; c). (B.8)

We notice that cosh c
√

t2−ρ2
√

t2−ρ2
approaches infinity as ρ approaches t. Integration by part twice gives

Fψ(x, t; c) = −
1
c

sinh c
√

t2 − ρ2Qψ(x, ρ)
∣∣∣∣t
0
+

∫ t

0

1
c

sinh c
√

t2 − ρ2
∂Qψ(x, ρ)

∂ρ
dρ. (B.9)

Then we can derive the expression of the temporal derivative of F,

∂

∂t
Fψ(x, t; c) = cosh ct Qψ(x, 0) +

∫ t

0
cosh c

√
t2 − ρ2 t√

t2 − ρ2

∂Qψ(x, ρ)
∂ρ

dρ. (B.10)

We interpret Qψ(x, 0) as the limit of Qψ(x, ρ) as ρ approaches 0, that is,

Qψ(x, 0) = lim
ρ→0

Qψ(x, ρ) = ψ(x).

However, it’s difficult to figure out the analytical solution of p directly from Eq. (B.6). We take
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an alternative strategy here.

By Helmholtz’s theorem, we can easily decompose p into divergence-free part p(1) and curl-free

part p(2), that is,

p = p(1) + p(2),

where

∇ · p(1) = 0, ∇ × p(2) = 0.

It’s not hard to see that v, p(1), p(2) satisfy the following equations



∂v
∂t

= ∇ · p(2) + cv

∂p(2)

∂t
= ∇v − cp(2)

∂p(1)

∂t
= −cp(1).

(B.11)

It’s worth noting that only the curl-free part p(2) interact with v. The divergence-free part p(1) just

decays exponentially on its own. Inspired by an identity in three-dimensional space ∇(∇ · q) =

∆q + ∇ × (∇ × q), we notice that

∇(∇ · p(2)) = ∆p(2).

Thus,
∂2p(2)

∂t2 = c2p(2) + ∆p(2). (B.12)

Then we have a solution:

p(x, t) = F ∂
∂t p(2)(·,0)(x, t; c) +

∂

∂t
Fp(2)(·,0)(x, t; c) + e−ctp(1)(x, 0).
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With the fact ∂
∂t p

(1)(x, 0) = −cp(1)(x, 0), we have

F ∂
∂t p(1)(·,0) +

∂

∂t
Fp(1)(·,0) =e−ctp(1)(x, 0)

+

∫ t

0
(

t√
t2 − ρ2

cosh c
√

t2 − ρ2 − sinh c
√

t2 − ρ2)
Qp(1)(·,0)(x, ρ)

∂ρ
dρ.

Since

∂Qp(1)(·,0)(x, ρ)
∂ρ

=
1

2πρ

"
r2≤ρ2

∆p(1)(x + (r1, r2), 0)dr1dr2

= −
1

2πρ

"
r2≤ρ2
∇(∇ · p(1)(x + (r1, r2), 0)) − ∆p(1)(x + (r1, r2), 0)dr1dr2

= −
1

2πρ

"
r2≤ρ2
∇(∇ · p(x + (r1, r2), 0)) − ∆p(x + (r1, r2), 0)dr1dr2

= −
1

2πρ

"
r2≤ρ2
∇(∇ · p(x + (r1, r2), 0))dr1dr2 +

∂Qp(·,0)(x, ρ)
∂ρ

,

we conclude that

p(x, t) =F ∂
∂t p(·,0) +

∂

∂t
Fp(·,0)

+

∫ t

0

(
(

t√
t2 − ρ2

cosh c
√

t2 − ρ2 − sinh c
√

t2 − ρ2)

(
1

2πρ

"
r2≤ρ2
∇(∇ · p(x + (r1, r2), 0))dr1dr2 −

∂Qp(·,0)(x, ρ)
∂ρ

)
)
dρ.

(B.13)

To avoid taking high order derivatives in numerical schemes, we find that

1
2πρ

"
r2≤ρ2
∇(∇ · p(x + (r1, r2), 0))dr1dr2 =

1
2π

∫ 2π

0
n(∇ · p)

∣∣∣∣
x+ρ(cos θ,sin θ)

dθ,

where n = (cos θ, sin θ).

In summary, combining Eq. (B.8) and Eq. (B.13), we get the following results after proper

simplification. Given data of v and p at time t = t0, we have the exact expressions of v and p at

time t = t0 + ∆t:
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v(x, t0 + ∆t) =
∂

∂t
Fv(·,t0)(x,∆t; c) + Fcv(·,t0)(x,∆t; c) + F∇·p(·,t0)(x,∆t; c),

p(x, t0 + ∆t) =e−c∆tQp(·,t0)(x, 0) + F∇v(·,t0)(x,∆t; c)

+

∫ ∆t

0

( ∆t√
(∆t)2 − ρ2

cosh c
√

(∆t)2 − ρ2 − sinh c
√

(∆t)2 − ρ2
) 1
2π

∫ 2π

0
n(∇ · p)dθdρ.

(B.14)

Thus with initial conditions of u and q at time t = t0, the exact solutions to the hyperbolic heat

equations Eq. (C.1) at time t = t0 + ∆t are given by the following formulas. Let c = 1
2τ , a =

√
ν
τ
.

u(x, t0 + ∆t) =e−c∆t

(
1
a
∂

∂t
Fu(·,t0)(x, a∆t;

c
a

) + F c
a u(·,t0)(x, a∆t;

c
a

) + F√ντ∇·q(·,t0)(x, a∆t;
c
a

)
)
,

q(x, t0 + ∆t) =
e−c∆t

√
ντ

[
e−c∆tQ√ντq(·,t0)(x, 0) + F∇u(·,t0)(x, a∆t;

c
a

)

+

∫ a∆t

0

(( a∆t√
(a∆t)2 − ρ2

cosh
c
a

√
(a∆t)2 − ρ2 − sinh

c
a

√
(a∆t)2 − ρ2

)
1

2π

∫ 2π

0
n(
√
ντ∇ · q)dθ

)
dρ

]
.

(B.15)

This also indicates that the physical domain of dependence of u and q at (x, t0 + ∆t) is a disk

centered at x with radius a∆t at t = t0.

Note: The derivation of the exact solutions to the hyperbolic heat equations was originally pub-

lished by the author in [18].
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B.3 The Hyperbolic Formulation of Viscosity

Recall the equations for hyperbolic viscosity Eq. (6.10) and the systems that govern v1 and v2,

where v1 + v2 = v, ∇ · v1 = 0, ∇ × v2 = 0,



ρ
∂v
∂t

= −µ∇ × ω + (2µ + λ)∇ψ,

∂ω

∂t
=

1
τ1

(
∇ × v − ω

)
,

∂ψ

∂t
=

1
τ2

(
∇ · v − ψ

)
.

(B.16)


ρ
∂v1

∂t
= −µ∇ × ω,

∂ω

∂t
=

1
τ1

(
∇ × v1 − ω

)
.

(B.17)


ρ
∂v2

∂t
= (2µ + λ)∇ψ,

∂ψ

∂t
=

1
τ2

(
∇ · v2 − ψ

)
.

(B.18)

It’s not hard to derive the following independent second-order governing equations for v1, ω, v2,

ψ.

ρ
∂2v1

∂t2 +
ρ

τ1

∂v1

∂t
=
µ

τ1
∆v1; (B.19)

ρ
∂2ω

∂t2 +
ρ

τ1

∂ω

∂t
=
µ

τ1
∆ω; (B.20)

ρ
∂2v2

∂t2 +
ρ

τ2

∂v2

∂t
=

2µ + λ

τ2
∆v2; (B.21)

ρ
∂2ψ

∂t2 +
ρ

τ2

∂ψ

∂t
=

2µ + λ

τ2
∆ψ. (B.22)
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Recall the solution to vtt = a2∆v + c2u is given by

v(x, t) =
1
a

Fvt(·,0)(x, at;
c
a

) +
1
a
∂

∂t
Fv(·,0)(x, at;

c
a

). (B.23)

(Note: The chain rule should be used in the second term. The definition of F is the same as the

one in Section B.2. )

Let c = 1
2τ1

, a =
√

µ

ρτ1
. With proper transformation, it’s not hard to see that

v1(x, t) = e−ct

(
−µ

aρ
F∇×ω(·,0)(x, at;

c
a

) +
1

2aτ1
Fv1(·,0)(x, at;

c
a

) +
1
a
∂

∂t
Fv1(·,0)(x, at;

c
a

)
)
. (B.24)

ω(x, t) = e−ct

(
1

aτ1
F∇×v1(·,0)(x, at;

c
a

) −
1

2aτ1
Fω(·,0)(x, at;

c
a

) +
1
a
∂

∂t
Fω(·,0)(x, at;

c
a

)
)
. (B.25)

Similarly we can derive the formulas for v2 and ψ.

Let c = 1
2τ2

, a =

√
λ+2µ
ρτ2

. With proper transformation, it’s not hard to see that

v2(x, t) = e−ct

(
2µ + λ

aρ
F∇ψ(·,0)(x, at;

c
a

) +
1

2aτ2
Fv2(·,0)(x, at;

c
a

) +
1
a
∂

∂t
Fv2(·,0)(x, at;

c
a

)
)
. (B.26)

ψ(x, t) = e−ct

(
1

aτ2
F∇·v2(·,0)(x, at;

c
a

) −
1

2aτ2
Fψ(·,0)(x, at;

c
a

) +
1
a
∂

∂t
Fψ(·,0)(x, at;

c
a

)
)
. (B.27)

By properly combining Eq. (B.26) and Eq. (B.24), we have

v(x, t) =e−c1t

(
−µ

a1ρ
F∇×ω(·,0)(x, a1t;

c1

a1
) +

1
2a1τ1

Fv(·,0)(x, a1t;
c1

a1
) +

1
a1

∂

∂t
Fv(·,0)(x, a1t;

c1

a1
)
)

−e−c1t

(
1

2a1τ1
Fv2(·,0)(x, a1t;

c1

a1
) +

1
a1

∂

∂t
Fv2(·,0)(x, a1t;

c1

a1
)
)

+ v2(x, 0)

+e−c2t

(
2µ + λ

a2ρ
F∇ψ(·,0)(x, a2t;

c2

a2
) +

1
2a2τ2

Fv(·,0)(x, a2t;
c2

a2
) +

1
a2

∂

∂t
Fv(·,0)(x, a2t;

c2

a2
)
)

−e−c2t

(
1

2a2τ2
Fv1(·,0)(x, a2t;

c2

a2
) +

1
a2

∂

∂t
Fv1(·,0)(x, a2t;

c2

a2
)
)

+ v1(x, 0)

−v1(x, 0) − v2(x, 0)

Luckily, like the case in the hyperbolic heat equations we can simplify some terms further.
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Since ∇ × v2 = 0, we have ∆v2 = ∇(∇ · v2) = ∇(∇ · v). Then,

− e−c1t

(
1

2a1τ1
Fv2(·,0)(x, a1t;

c1

a1
) +

1
a1

∂

∂t
Fv2(·,0)(x, a1t;

c1

a1
)
)

+ v2(x, 0)

− e−c1t
∫ a1t

0

( a1t√
(a1t)2 − ρ2

cosh
c1

a1

√
(a1t)2 − ρ2 + sinh

c1

a1

√
(a1t)2 − ρ2

)∂Qv2

∂ρ
dρ

= − e−c1t
∫ a1t

0

( a1t√
(a1t)2 − ρ2

cosh
c1

a1

√
(a1t)2 − ρ2 + sinh

c1

a1

√
(a1t)2 − ρ2

) 1
2π

∫ 2π

0
n(
√
ντ∇ · v)dθdρ

Similarly, with ∇ · v1 = 0, we have ∆v1 = ∆v1 − ∇(∇ · v1) = ∆v − ∇(∇ · v). Then,

− e−c2t

(
1

2a2τ2
Fv1(·,0)(x, a2t;

c2

a2
) +

1
a2

∂

∂t
Fv1(·,0)(x, a2t;

c2

a2
)
)

+ v1(x, 0)

− e−c2t
∫ a2t

0

( a2t√
(a2t)2 − ρ2

cosh
c2

a2

√
(a2t)2 − ρ2 + sinh

c2

a2

√
(a2t)2 − ρ2

)∂Qv1

∂ρ
dρ

= − e−c2t
∫ a2t

0

(( a2t√
(a2t)2 − ρ2

cosh
c2

a2

√
(a2t)2 − ρ2 + sinh

c2

a2

√
(a2t)2 − ρ2

)
(∂Qv

∂ρ
−

1
2π

∫ 2π

0
n(
√
ντ∇ · v)dθ

))
dρ

In summary, we have

v(x, t) =e−c1t
(
−µ

a1ρ
F∇×ω(·,0)(x, a1t;

c1

a1
) +

1
2a1τ1

Fv(·,0)(x, a1t;
c1

a1
) +

1
a1

∂

∂t
Fv(·,0)(x, a1t;

c1

a1
)
)

−e−c1t
∫ a1t

0

( a1t√
(a1t)2 − ρ2

cosh
c1

a1

√
(a1t)2 − ρ2 + sinh

c1

a1

√
(a1t)2 − ρ2

) 1
2π

∫ 2π

0
n(
√
ντ∇ · v)dθdρ

+e−c2t
(
2µ + λ

a2ρ
F∇ψ(·,0)(x, a2t;

c2

a2
)

+

∫ a2t

0

( a2t√
(a2t)2 − ρ2

cosh
c2

a2

√
(a2t)2 − ρ2 + sinh

c2

a2

√
(a2t)2 − ρ2

) 1
2π

∫ 2π

0
n(
√
ντ∇ · v)dθdρ

)
(B.28)

ω(x, t) = e−c1t
(

1
a1τ1

F∇×v(·,0)(x, a1t;
c1

a1
) −

1
2a1τ1

Fω(·,0)(x, a1t;
c1

a1
) +

1
a1

∂

∂t
Fω(·,0)(x, a1t;

c1

a1
)
)
. (B.29)

ψ(x, t) = e−c2t
(

1
a2τ2

F∇·v(·,0)(x, a2t;
c2

a2
) −

1
2a2τ2

Fψ(·,0)(x, a2t;
c2

a2
) +

1
a2

∂

∂t
Fψ(·,0)(x, a2t;

c2

a2
)
)
. (B.30)
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APPENDIX C

Elementary Analysis of the Hyperbolic Heat

Equations in the One-dimensional Space

To get some hints about designing the best hyperbolic formulation of the Navier-Stokes equation,

we take the simplest hyperbolic reformulation of the heat equation in one-dimensional space as a

model problem.

The hyperbolic heat-conduction equation, which was first proposed by C. Cattaneo[8].


∂u
∂t

= ν
∂q
∂x

∂q
∂t

=
1
τ

(
∂u
∂x
− q),

(C.1)

where ν is a positive diffusion coefficient, and τ is the relaxation time, which is introduced to elim-

inate the paradox that information travels at infinite speed. Some analysis about the characteristics

and dispersive waves of Eq. (C.1) has been done in [38]. There are also numerical schemes for it

based on residual-distribution [29] and Active Flux [33] for Eq. (C.1).

It’s not hard to see that the steady state of Eq. (C.1) is equivalent to that of the traditional heat

equation:
∂u
∂t

= ν
∂2u
∂x2 . (C.2)

The hyperbolic nature of Eq. (C.1) allows time step of O(h) in numerical simulation, while ex-

plicit schemes for the heat equation Eq. (C.2) require time step no greater than O(h2) for stability

concerns. If the steady solution is sought through solving the unsteady problem until it converges,
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this property may enable a fast algorithm. Besides, introducing more variables in the hyperbolic

formulation of the heat equation enables the gradient ux to have the same order of accuracy as the

main variable u in steady states.

Here we take the one-dimensional equation as an example to illustrate how the hyperbolic

reformulation reduces stiffness of the heat equation.

Eliminating q in Eq. (C.1) gives

τ
∂2u
∂t2 +

∂u
∂t
− ν

∂2u
∂x2 = 0, (C.3)

which resembles the telegrapher’s equation. When τ is small, we interpret Eq. (C.3) as a perturbed

heat equation.

Consider an initial value problem of the heat equation on [0, 1].



∂u
∂t

= ν
∂2u
∂x2 , x ∈ [0, 1];

u(0, t) = 0; u(1, t) = 0;

u(x, 0) = f (x).

(C.4)

The solution is written in the form:

u(x, t) =
∑

cke−νk
2π2t sin(kπx).

And we see that the components with higher frequency decay faster.

Then the corresponding hyperbolic reformulation of this problem is given by


τ
∂2u
∂t2 +

∂u
∂t
− ν

∂2u
∂x2 = 0, x ∈ [0, 1];

u(0, t) = 0, u(1, t) = 0;

u(x, 0) = f (x), ut(x, 0) = 0.

(C.5)
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The solution is in the form:

u(x, t) =
∑

(c(1)
k ea(1)

k t + c(2)
k ea(2)

k t) sin(kπx). (C.6)

a(1)
k , a(2)

k satisfy the following equation:

τa2
k + ak + νk2π2 = 0.

So, for k that satisfies 4τνk2π2 ≤ 1,

a(1)
k =

−1 +
√

1 − 4τνk2π2

2τ
, a(2)

k =
−1 −

√
1 − 4τνk2π2

2τ
;

for k that satisfies 4τνk2π2 > 1,

a(1)
k =

−1 + i
√

4τνk2π2 − 1
2τ

, a(2)
k =

−1 − i
√

4τνk2π2 − 1
2τ

.

We notice that, for fixed k, as τ approaches 0,

a(1)
k ≈ −νk

2π2, a(2)
k ≈ −

1
τ

;

and c(1)
k → ck, c(2)

k → 0, which means that for given t, the solution approaches the solution of

Eq. (C.5). Besides, the eigenvalues of Eq. (C.5) vary from −νπ2 to − 1
2τ and thus the system is very

stiff.

When τ is large, or more specifically, τ ≥ 1
4νπ2 , the amplitudes of all wave components in the

initial condition oscillate with different temporal frequencies but damp at the same rate − 1
2τ . Thus

it is much less stiff.

In other words, the hyperbolic model of heat conduction transforms the damping of the solution

caused by diffusion into decay caused by source terms. Although source terms might be stiff in

general, it can be fixed by point-implicit schemes with a large time step size of O(h). For example,
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a scheme based on characteristics and Active Flux method was introduced by Nishikawa in [33].

We study the wave structure of the system by omitting the source terms.


∂u
∂t

= ν
∂q
∂x

∂q
∂t

=
1
τ

(
∂u
∂x

)
(C.7)

The characteristic speeds are ±
√

ν
τ
. We can set time step ∆t = 1

2h
√

τ
ν
. To reach a solution where

‖u‖∞ < ε, it takes around 2τ ln(ε)/∆t = 4 ln(ε)
√
ντ/h steps. To minimize the total number of

iterations, we can pick the smallest τ that make Eq. (C.1) not stiff, e.g., τ = 1
4νπ2 for Eq. (C.5).

The simple analysis above matches the conclusions drawn from experiments in [29], [38] well.
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APPENDIX D

Notes about My Code

D.1 Mesh Refinement

To construct hierarchical meshes for the mesh convergence study of our schemes, we refine the

mesh by splitting cells into 4 sub-cells of similar size. For interior cells, this is straightforward:

we introduce the midpoints of edges as additional nodes and connect them to form 4 congruent

sub-triangles in each cell (Figure D.1). If the cell is on the boundary, instead of directly using the

midpoint of the edge that approximates the boundary, we push that node to the boundary with an

iterative method (Algorithm D.1) and construct 4 new cells (Figure D.2).

Algorithm D.1 The algorithm for pushing a node to the boubdary.
x0 = Coordinates of the midpoint of an edge e that approximates the boundary;
n = 0;
ε = 10−14;
dx = 10−8;
Step = 1

50 length of edge e;
while f (xn) > ε do . f (x) is a differentiable function that reflects the distance from x to the
boundary. f and ∂ f

∂n vanish on the boundary.
fx =

(
f (xn + (dx, 0)) − f (xn)

)
/dx ;

fy =
(

f (xn + (0, dx)) − f (xn)
)
/dx ;

xn+1 = xn + Step × ( fx, fy);
n = n + 1;

end while
return xn;
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(a) The original cell (b) The refined cell

Figure D.1: Refinement of an interior cell.

(a) The original cell (b) The refined cell

Figure D.2: Refinement of a cell on the boundary.
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APPENDIX E

Archive of Miscellaneous Investigation

E.1 A Primitive Limiter for One-dimensional Space

Generally, almost all high-order numerical schemes rely on the smoothness of the exact solution.

Our analysis above, which assumes the accuracy of predictor, is not an exception, either. Unfor-

tunately, almost all polynomial approximation for a function with derivatives of a large magnitude

not only is inaccurate but also contain spurious oscillation, which may result in instability of nu-

merical schemes. Thus limiters are designed to restrain the spurious oscillation [23].

We notice that the original third-order AF schemes experienced instability when shock wave

forms, no matter in the simulation of the Burgers equation or Euler equations. Similar failure of the

original AF Euler solver are also reported by other researcher [20]. For cells near the discontinuity,

even the reconstruction from the exact nodal values contains large absolute error, which make the

predictor lose accuracy. Consequently, the discrepancy evaluated in the corrector step is no longer

one-order smaller, because the error in fluxes is not canceled near the discontinuity. The bubble

function method deteriorates the issues further. It does not allow correction on the predicted nodal

values at the interfaces. Absorbing all information from the conservation law by a bubble function

frequently overshoots and creates more spurious oscillation for the next step.

On the other hand, the large discrepancy also gives the corrector more leverage on the numerical

solutions if we distribute it properly. Here we propose a simple but effective limiter to increase the

robustness of the AF schemes. The basic idea is not to significantly increase the total variation
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after discrepancy distribution. Note that absorbing the discrepancy into the nodal values at the

interfaces will change the slope at the center of the cell by

Un+1
k+1/2 − Un+1

k−1/2

∆x
−

U∗k+1/2 − U∗k−1/2

∆x
=
β2dŪk + β1dŪk+1 − β2dŪk−1 − β1dŪk

2∆x
.

For p = 1, where continuous piecewise linear functions are reconstructed, a simple strategy is to

distribute more to the left when the discrepancy and the slope at the center are of the same signs,

to the right when different. In other words, if dŪk(Uk+1/2 − Uk−1/2) > 0, we set β̃1 = β1 − qβ1,

β̃2 = β2 + qβ1. Otherwise, β̃1 = β1 + qβ1, β̃2 = β2 − qβ1.

For p = 2, we treat it as linear problems on sub-intervals [xk−1/2, xk], [xk, xk+1/2]. First we decide the

weights on left and right sub-cells w1 and w2 in the similar way, i.e., when dŪk(Uk+1/2−Uk−1/2) > 0,

w̃1 = w1 − q0w1, w̃2 = w2 + q0w1. Then on each sub-cell, distribute the discrepancy to the nodes at

the endpoints by the same rule with parameter q1.

The above process actually introduces some artificial dissipation proportional to the discrep-

ancy. It can be further combined with conditions on the flow directions. The parameter q can also

be chosen flexibly. It is worth noting that when the solution is smooth, the simple limiter does not

reduce the order of accuracy. Thus the typical issue that limiters go overboard does not exist here.

The setting of the simple limiter is extendable to higher-order accuracy or multidimensional space.

We will further refine the idea in future work. To illustrate the merits of the simpler limiter, we

challenge the AF schemes with Riemann problems on the Buckley-Leverett equation and the Euler

equations.

E.1.1 The Buckley-Leverett Equation

The Buckley-Leverett equation is used to model two-phase flow in a porous medium.

∂u
∂t

+
∂ f (u)
∂x

= 0, where f (u) =
u2

u2 + 0.5(1 − u)2 . (E.1)
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(a) p = 1, β1 = β2 = 1, ∆x = 1/400.
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(b) p = 2, α = β1 = β2 = 1, ∆x = 1/400.

Figure E.1: Numerical solutions to the Buckley-Leverett equations generated by the Active Flux
schemes with simple limiters.

Note that the flux function f (u) is neither convex or concave over [0, 1]. Thus for an initial condi-

tion with discontinuity, 
u(x, 0) = 1, 0 ≤ x < 0.3

u(x, 0) = 0, 0.3 ≤ x ≤ 1,

the solution contains both rarefied wave and shock wave. We need to introduce sufficient numerical

dissipation to catch the entropy solution but not to smear the solution too much. We set all the initial

discrepancy distribution weights equal 1. For p = 1, we adjust the weights with parameter q = 1;

For p = 2, we set the parameter q0 = 0.5, q1 = 0.25. To avoid excessive dissipation, we only

adjust the weights when the flow direction is consistent with the adjustment. In the following test

cases, we divide the domain into 400 cells and set ∆t = ∆x/p/2.5. In Figure E.1, the numerical

solutions are compared with the exact solution found by the equal area rule [23] at T = 0.2.

E.1.2 The Euler Equations

We test the AF schemes by two Riemann problems of the Euler equations. The modified Sod’s test

aims to assess the entropy property of the schemes; Toro’s Test 3 serves as an advanced challenge

of robustness and accuracy. Details about the test cases can be found in Toro’s book [43]. We set
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Test [ρL, vL, pL] [ρR, vR, pR] x0 T
Modified Sod’s Test (Toro’s Test 1) [1.0, 0.75,1.0 ] [0.125, 0.0, 0.1] 0.3 0.2

Toro’s Test 3 [1, 0, 1000] [1, 0, 0.01] 0.5 0.012

Table E.1: The initial values of test cases for the Euler equations

the initial conditions as follows.
[ρ(x, 0), v(x, 0), p(x, 0)] = [ρL, vL, pL] 0 ≤ x < x0

[ρ(x, 0), v(x, 0), p(x, 0)] = [ρR, vR, pR] x0 ≤ x ≤ 1,

Transmissive boundary conditions are imposed on the domain Ω = [0, 1]. If the velocity v at the

boundary points inwards, we will not distribute the discrepancy to the nodal values there. The

domain is divided into 100 cells. We roughly estimate the maximum wave speed: vmax = 3 for the

Modified Sod’s test, vmax = 50 for Toro’s test 3. For p = 1, ∆t = 0.6∆x/p/vmax. The parameter

for the adjustment of distribution weights is set to be q = 0.4. For p = 2, ∆t = 0.3∆x/p/vmax,

q0 = 0.5, q2 = 0.25.

We plot the numerical solutions at t = T along with the exact solutions generated by the code

E1RPEX.F in the library NUMERICA developed by Toro [43]. See Figure E.2 and Figure E.3.

We notice that the new treatment of conservation law increased the stability and the limiter further

improve the solution quality.
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Figure E.2: Numerical solutions to the modified Sod’s test generated by the Active Flux schemes
with simple limiters.
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Figure E.3: Numerical solutions to Toro’s test 3 generated by the Active Flux schemes with simple
limiters.
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