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Abstract 

 

 

Display panels today open the door to the repository of knowledge, and their use is 

expanding from conventional home appliances to transparent, wearable and mobile devices. 

Organic semiconductors are a perfect candidate for this ubiquitous use of display panels since 

organics are flexible, transparent with high brightness and capable of good color rendering. The 

expanding outdoor use of organic devices poses questions whether: i) the devices are bright enough 

to be visible under daylight, and ii) the devices can withstand extreme conditions such as the 

interior of an automobile in the summer. Organic light emitting devices (OLEDs) achieved ~100% 

internal quantum efficiency with phosphorescence in 1998 [1], and since then the bottle neck for 

OLED brightness has been the outcoupling efficiency. The capability of organics to withstand 

severe conditions is closely related to their morphological stability. Thus, improving the 

outcoupling efficiency and controlling the morphology of OLEDs are the two crucial aspects in 

the future display technology. In this sense, this thesis mainly deals with the methods to improve 

the light outcoupling of OLEDs by morphological control. Also, methods for understanding 

organic film morphology are discussed.  

In this thesis, we demonstrate a measurement technology to obtain precise nanoscale 

information about the morphologies of several organic thin film structures using Fourier plane 

imaging microscopy (FIM). We use FIM to detect the orientation of molecular transition dipole 

moments from an extremely low density (i.e. small fractions of a monolayer) of luminescent dye 



 xvii 

molecules, which we call “morphology sensors.” The orientation of the sensor molecules is driven 

by the local film structure, and thus can be used to determine details of the host morphology 

without influencing it. We use symmetric planar phosphorescent dye molecules as the sensors that 

are deposited into the bulk of organic film hosts during the growth. Furthermore, we monitor 

morphological changes arising from thermal annealing of metastable organic films that are 

commonly employed in photonic devices. 

Methods to control the organic film morphology to improve the light outcoupling are also 

demonstrated. Here we control the orientation of Pt complex molecules during the growth of 

emissive layers by two different methods: modifying the molecular structure, and using structural 

templating. Pt complex dopant molecules whose structures are modified by adjusting the ligands 

show an approximately 20% increased fraction of horizontally aligned transition dipole moments 

compared to the original molecule while being diluted in the host matrix. Alternatively, we pre-

deposit a highly ordered structural template layer, which results in a 60% increase in horizontally 

aligned transition dipole moments compared to the film deposited in the absence of the template. 

Finally, we employ a 2-dimensional transition metal dichalcogenides as the active 

luminescent layer due to its optimum emission profile for efficient outcoupling. Therefore, a 

hybrid light emitting device (LED) is fabricated employing a chemical-vapor-deposition grown, 

centimeter-scale monolayer of WS2 (mWS2), embedded within conductive organic layers. As a 

result, LEDs with an average external quantum efficiency of 0.3 ± 0.3% and with the highest 

efficiency of 1% were achieved. Also, we show that negatively charged excitons, also known as 

trions, are generated in the mWS2 with the injected current, causing an efficiency roll-off at high 

current densities.   



 1 

Chapter 1 Introduction to Organic Semiconductors 

 

 

Organic semiconductors have features that have been difficult to realize with inorganic 

semiconductors, such as flexible films or film deposition on any substrate, while demonstrating 

efficient emission or absorption of light. These distinct properties stem from the material 

characteristics of organic semiconductors. In this chapter we discuss the fundamental properties 

of organic semiconductors with their physical origins. Then, the deposition techniques of organic 

films used for the device fabrication are introduced. 

 

1.1 Organic semiconductors 

1.1.1 Defining organic semiconductors 

Organic materials are chemical compounds containing one or more carbon-hydrogen 

bonds. The particular focus of this thesis on organic materials is put in the category of organic 

semiconductors, which conduct current with moderate energy gaps of ~0.5-3 eV. These materials 

differ from the conventional semiconductors, which are often called inorganic semiconductors, in 

terms of electrical, optical and morphological characters.  

 Inorganic semiconductors are comprised of highly ordered crystallites built up with single 

or multiple types of atoms. The latter is also known as a compound semiconductor, with an 

example of GaN, which is an essential material used in numerous areas such as high-power, high-

speed-switching and light-emitting device industries today. An example of a single-atom inorganic 
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semiconductor is Si, which is the most common material for all semiconductor business today due 

to its abundance and high-quality processing technology. Inorganic semiconductors have strong 

covalent bonds between the atoms, which is the reason for their physical characteristics which 

include brittleness, stiffness and a high melting temperature (> 1000°C), only a few exceptions 

such as HgCdTe [2].  

 Organic semiconductors exhibit different features compared to inorganic semiconductors. 

The key difference between organic and inorganic semiconductors stems from the building blocks 

and the bonds between them. The building block of organic films is an organic molecular 

compound or polymer, which is an electrically neutral group comprising several C and H atoms 

held together by covalent bonds. Due to carbon’s ability to catenate, meaning that it forms chains 

with other carbons, millions of organic compounds have been identified and synthesized so far 

with still an infinite amount of room left to be explored. The cohesive force that combines the 

building blocks of organic film is mainly van der Waals bonds, a relatively weak bond compared 

to a covalent or ionic bond. The different building blocks and bonds which cause vastly different 

material properties between organic and inorganic semiconductors will be discussed with a 

summary in Table 1.1.  
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Table 1.1 Comparison of properties between inorganic and organic semiconductors.  

(Adapted from Forrest, Organic Electronics, 2020) 

 

 

Hardness and flexibility 

Bond strength is an important element determining the rigidity of the material. Inorganic 

solids are combined with strong chemical bonds with a dissociation energy of ~1-5 eV, which is 

at least an order of magnitude higher than organic compounds combined with van der Waals bonds. 

Therefore, unlike the hard, brittle inorganic materials, organic films tend to be soft and elastic, 

enabling their use for flexible and rollable devices. Also, the smaller intermolecular binding energy 

of organic compounds leads to a relatively low evaporation temperature (~100-500℃). However, 

the decomposition of the organic compounds usually happens at a much higher temperature due 

to the strong covalent bonds.  

The flexible character of organic thin films is also related to their morphology. Unlike 

highly crystalline inorganic semiconductors, the majority of organic films are amorphous. 

Therefore, organic films are less brittle but more flexible compared to the film comprising 

inorganic semiconductors. Due to the amorphous film structure of organic films, their 
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morphological stability is often exhibited by the glass transition temperature (Tg), which is the 

temperature when a gradual and reversible transition from a hard and relatively brittle state into a 

viscous or rubbery state occurs at an elevated temperature. More details about organic film 

morphology are discussed in Chapter 3. 

 

Frontier Energy levels 

 Electrons in an atom occupy discrete energy levels as shown in Fig. 1.1a. When two atoms 

are in close proximity, the energy level of each orbital splits into two different levels, according to 

the Pauli Exclusion Principle. As the number of atoms approaches infinity, forming a single 

crystal, the interval between the discrete energy levels becomes negligible, forming a continuous 

‘energy band’ as shown in Fig. 1.1b. Thus, the energy band is a continuum of a large number of 

energy states. Electrons within the crystal fill the band from the lowest energy state, with the top, 

nearly filled band called the valence band and the lowest nearly empty band called the conduction 

band. The energy difference between the conduction and valence band edge is called the band gap.  

 

Figure 1.1 Energy diagram of inorganic semiconductors.  

(a) Energy diagram of atomic frontier energies as a function of number of orbitals. The energy levels eventually form energy bands 

for a large number of atoms. (b) Energy band diagram for inorganic semiconductors.  

 On the other hand, organic molecules are comprised of a limited number of atoms. Thus 

rather than forming a band, the highest and lowest frontier molecular electronic orbitals are 

typically idendified as shown in Fig. 1.2. The highest occupied molecular orbital (HOMO) is filled 
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with the most energetic electrons within the molecular π-conjugate system, which is similar to the 

valence band edge in inorganic single crystals. Electrons in the lowest unoccupied molecular 

orbitals (LUMO) comprise the least energetic conduction states, which is similar to the conduction 

band edge in inorganic crystals. The energy level of a molecule is found via density functional 

theory (DFT), which calculates electron distributions in relatively small molecular ensembles. The 

energy levels are measured with cyclic voltammetry as well as ultraviolet photoelectron 

spectroscopy (for HOMO) and inverse photoelectron spectroscopy (for LUMO).  

 

Figure 1.2 Comparison of energy diagrams.  

Energy diagram of inorganic (a) and organic (b) semiconductors (Adapted from Forrest, Organic Electronics, 2020). 

   

Charge transport 

Crystalline and molecular solids exhibit vastly different charge transport phenomena. 

Within atomic single crystalline solids, electronic wavefunctions are delocalized over the entire 

volume, thus showing ballistic transport, also known as band transport. As a result, the mean free 

path is larger than the inter-atomic distance (< 1 nm) and shows relatively high mobility, typically 

larger than 1 cm2/V·sec. The charge transport decreases with temperature since nuclear scattering 

prevents ballistic transport and reduces the electron speed. 
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In molecular solids, on the other hand, the charge transport is intermolecular, which is also 

known as hopping transport. This mostly appears in disordered solids such as amorphous or 

polycrystalline (at grain boundaries) semiconductors. Since the wavefunction overlap is small, the 

charge transport in organic film is not ballistic, thus electrons tunnel through the potential barriers, 

causing much lower charge mobility (typically less than 0.01 cm2/V·sec) compared to crystalline 

inorganic semiconductors. The mechanism of charge transport in organic molecules is discussed 

in more detail in Chapter 2.4.  

 

1.1.2 Types of organic semiconductors 

Small molecule vs. polymer organic 

 Organic materials are usually classified into small molecules and polymers. Small 

molecules are organic compounds with a well-defined molecular weight as shown in Fig. 1.3a. 

These are also referred to as monomers. On the other hand, polymers are long-chain compounds 

with an indeterminate number of molecular units being repeated as shown in Fig. 1.3b. Due to the 

structural differences, small molecules and polymers exhibit different physical characters. One of 

the important differences is the higher boiling point of polymers due to their entangled long chains 

which prevents them from being evaporated in vacuum chambers as can occur with small molecule 

organic materials. This difference causes the two materials to be deposited in different ways, which 

will be discussed in Chapter 1.2.  
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Figure 1.3 Two types of organic molecules.  

(a) Small molecules represented by a monomer of octaethylporphyrin-Pt (III) (PtOEP) with a “ball and stick” style. The metal (Pt) 

atom is shown in light grey sphere at the center, N atoms are shown in light purple, N atoms are shown in grey, and H atoms are 

shown in white spheres. (b) Polymeric materials, represented by polylactic acid (PLA), which is used in various places from food 

packing to medical implants. Polylactic acid is formed from building blocks comprising C, O and H atoms (top left and right). That 

building block, called a monomer, repeats over and over to form a long chain (bottom). 

 

Aromatic vs. aliphatic compounds 

 Covalent bonds are formed when two or more nuclei share the valence electrons to form 

lower energy states. Covalent bonds include different bonds such as sigma (σ) and pi (π) bonding. 

Sigma (σ) bonds are the strong type of covalent bonds, with shared electrons localized between 

the two atoms. Pi (π) bonds are weaker compared to the sigma bonds due to a reduced overlap of 

orbitals. More details about the bonds will be discussed in Chapter 3.1.  

 

 

Figure 1.4 Molecular structure of Anthracene, a typical aromatic molecule.  

(a) Chemical formula of Anthracene. (b) Anthracene viewed from the molecular plane with the electron cloud showing the 

conjugated π-electron system (Adapted from Forrest, Organic Electronics, 2020). 

When consecutive π bonds are continuously linked within a molecule, a delocalized chain 

of shared electrons is formed, known as a conjugated π-system. Especially, molecules with cyclic 
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(ring-shaped), planar structures with π bonds in resonance are referred as aromatic molecules. They 

are called aromatic molecules due to the strong odors associated with them. Aromatic rings are 

stable and do not break apart easily. The most common aromatic compounds are derivatives of 

benzenes. Due to the delocalized conjugated pi-system, aromatic compounds are frequently used 

as organic semiconductors.  

Non-aromatic compounds are called aliphatic compounds. Aliphatic compounds also can 

be cyclical, however, the cyclic aliphatic compounds do not obey Hückel’s rule and, thus, do not 

exhibit aromatic properties. Hückel’s rule estimates whether a planar ring molecule would have 

aromatic properties, requiring the number of π-electrons to be 4n+2, where n is a non-negative 

integer. Saturated aliphatic hydrocarbons, which consist entirely of single bonds, are called 

alkanes, which are described by the formula CnH2n+2. Unsaturated aliphatic compounds are referred 

to as alkene (CnH2n) or alkyne (CnH2n-2), depending on their formulas.  

 

Fluorescent vs. phosphorescent compounds 

 Fluorescence is an emission of light by a substance that has absorbed light or is electrically 

excited. The light emission has a lower energy (longer wavelength) than the absorbed radiation 

due to the thermal relaxation during the emission. Fluorescence only occurs from spin-conserving 

transitions, therefore limits the overall emission efficacy when electrically excited. In contrast, 

phosphorescence is emission associated with the spin-forbidden transition which overcomes the 

emission efficacy limit of fluorescence. The differences between fluorescent and phosphorescent 

molecules will be discussed more in detail in Chapter 2.5.  
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1.2 Fabrication process 

1.2.1 Vacuum thermal evaporation 

Vacuum thermal evaporation (VTE) is the most commonly used processing technique for 

organic film growths so far. The apparatus is comprised of a vacuum chamber, substrate holder, 

crucible, and pump as shown in Fig. 1.5. The materials to be evaporated are placed in the crucible, 

and then the chamber is pumped down to vacuum. The pressure of the chamber is maintained 

below 10-6 torr to enable a ballistic transfer of the sublimed molecule and preventing it from being 

scattered by the background gas molecules. The use of vacuum provides flexibility in choosing 

materials, unlike solution processing where the solvent of the material being deposited has a 

chance to chemically attack the predeposited films. The VTE process is capable of handling a 

sequential growth of films and co-evaporation is possible by evaporating multiple materials at the 

same time. The rate and thickness of the film growth are monitored by a quartz crystal monitor, 

which measures the varied vibration frequency of the quartz due to the material deposited on the 

crystal. The substrate holder rotates during the deposition to enable a uniform film thickness, and 

sometimes the substrate temperature is controlled via the stage heater/cooler with a feedback 

thermal controller. This heating/cooling of the substrate helps controlling the morphology of the 

film since it promotes/prevents molecular kinetic movement during the condensation of the 

organic vapor on the substrate.  
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Figure 1.5 A schematic of a vacuum thermal evaporation chamber. 

(Adapted from R. J. Martín-Palma, et al., chap. 15, Engineered Biomimicry, 2013). 

Albeit VTE offers a number of advantages, there are also several shortcomings of the 

process. The most critical drawback is the low material usage efficiency. This is because much of 

the evaporated material is wasted by being deposited outside the substrate. Also, VTE is not 

capable of depositing polymers. This is because the carbon chains of polymers are so severely 

entangled, which causes a break of the backbone before the evaporation is enabled. Thus, most 

polymers are diluted in solvents and spin-coated on the substrate. In addition, achieving a uniform 

deposition rate is limited due to the thermally insulating organic materials in the crucible where, 

during heating, only the organic materials in contact with the most intensely heated region is 

evaporated, which causes a fluctuation of rates when the organics in the region are exhausted.  

 

1.2.2 Organic vapor phase deposition 

 To overcome the shortcomings of the VTE, organic vapor phase deposition (OVPD), a 

method using an inert carrier gas such as N2 or Ag was introduced [3,4]. This technique uses a 

chamber with heated walls, and flows a hot carrier gas to evaporate the organic material. In an 

OVPD chamber, no materials are deposited on the walls due to its high temperature and the 
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substrate zone is kept cool to induce deposition as shown in Fig. 1.6. Due to the cold substrate 

temperature, organic vapor condenses on the substrate and coats the surface uniformly.  

 

Figure 1.6 Schematic of an organic vapor phase deposition chamber.  

(Adapted from Shtein, et al., 2001) 

 

 The pressure within the chamber usually ranges from 10s of mtorr to several torr. The base 

pressure of the pump (typically a roughing pump) is around 10-3 torr, meaning that the chamber is 

filled with the carrier gas. This is the starkest difference of OVPD from other vacuum based 

deposition techniques, which enables a uniform evaporation of organic material in the crucible 

since the organic material surface is uniformly heated in an equilibrium environment with the hot 

carrier gas (at low gas flow rate).  In addition, with OVPD, deposition occurs with a uniform 

coating of the substrate surface when it is at the equilibrium state regardless of the substrate 

position and shape, unlike VTE where the thickness profile is dependent on the relative position 

of the evaporation source and the substrate.  

 Also, OVPD has a number of levers affecting the organic film morphology, such as the 

pressure of the chamber, flow rate of the source carrier gas, temperature of the carrier gas. An 

optimized morphology utilizing these elements of OVPD has been thoroughly demonstrated for 

various organic electronic devices, since the morphology acts a critical role in its performance. 

Also, due to its high material usage with numerous control methods, OVPD can achieve an 
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extraordinarily fast growth of organic devices, capable to be utilized for roll-to-roll deposition 

schemes, enabling a lower cost of production for a commercialized use [5].  

 

1.2.3 Organic vapor jet printing 

 The pixel size of OLEDs in cutting-edge smart phones measure at several tens of 

micrometers, and are patterned with a metal shadow mask. While shadow masking is a simple and 

effective method to pattern the current displays, it has a serious limit in reducing the pixel size due 

to a shadowing effect. Also, as the pattern size decreases, the region deposited via material 

spreading beneath the mask becomes a larger fraction of the total device area. To resolve this 

problem, an ultra-thin fine metal mask (FMM) with a thickness of 30-200 μm is utilized. However, 

the use of an ultra-thin mask causes other difficulties in substrate handling, such as mask sagging 

during a large-scale deposition.  
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Figure 1.7 A schematic of an organic vapor jet printing chamber.  

(Adapted from Universal Display Corporation, UNIVERSAL OVJP®) 

 

 Organic vapor jet printing (OVJP) is a method proposed to solve the patterning issue. It is 

a solvent-less deposition, which does not require shadow masks for depositing organic materials.  

OVJP uses a microscopic nozzle to focus the hot carrier gas, which carries the source organic 

material as in the OVPD, onto the substrate. The deposition profile is controlled by different 

conditions, such as the gas jet profile and substrate temperature [6,7]. Therefore, OVJP is a 

technology that can liberate the organic deposition from any patterning issue, enabling various 

form factors of organics devices in lighting [8], displays [8] and thin film transistors [9].  
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Chapter 2 Organic Small Molecules 

 

 

A molecule is the most fundamental building block of an organic thin film. Thus, it is 

essential to understand the characteristics of a molecule to understand organic electronic devices. 

In this chapter, we discuss the quasiparticles carried by small molecules and how they transfer 

between the molecules. Also, ligands comprising heavy metal complex molecules, an important 

component for modern phosphorescent OLEDs, are discussed.  

 

2.1 Polarons and excitons 

 An injected electron in an organic film ionizes a molecule, causing a local displacement of 

molecules from their equilibrium positions for relaxation. This adjustment of position leads to a 

polarization locally centered at the charge carrier. A quasiparticle including the charge and its 

surrounding local polarization is defined as a ‘polaron.’ Polarons exist in all condensed matter 

solids, although the degree of local polarization depends on material characteristics. The more 

localized the polaron is, the more difficult it becomes to be transferred between the molecules, 

causing reduced charge mobility throughout the film. 

 An exciton is a quasiparticle describing a bound excited state of an electron and a hole 

which are attracted to each other by the Coulombic force. An exciton is formed by optically 

exciting an electron in the ground state to an excited state of a molecule, or by electrically exciting 

via injection of charge carriers at conductive contacts. The Coulombic force binding an electron 
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and a hole leads to a net neutral particle, therefore, excitons are transferred by diffusion without 

being affected by external electric fields.  

The binding energy and its change with distance are given by the Bohr model, which 

describes the orbit of an electron around the positively charged particle. The Bohr model energy 

is E = e2/(8πεr), where e is the electron charge, ε is the dielectric constant, and r is the distance 

between the charges. From this model, we deduce that the binding energy decreases with the 

dielectric constant of a medium, which is due to the electric field screening that reduces the 

Coulomb interaction. Inorganic semiconductors typically demonstrate high dielectric constant (εr 

>10) and, therefore, have a small binding energy (5-10 meV) with an exciton radius typically larger 

than the lattice spacing as shown in Fig. 2.1. These are called ‘Wannier-Mott’ excitons, usually 

with binding energies smaller than the thermal energy at room temperature and, thus are easily 

dissociated into free carriers. Therefore, in the absence of a quantum confinement, the absorption 

of a photon in inorganic semiconductors results in a band-to-band generation of free charge 

without generating an exciton. As a result, the absorption spectrum appears to be broad and the 

oscillator strength is relatively lower than the organic materials due to the smaller spatial overlap 

of the orbitals.  

 

Figure 2.1 Illustration of the different types of excitons. 

(Image by Edoardo Baldini) 
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Organic semiconductors typically show smaller dielectric constants than inorganic 

semiconductors due to the limited polarizability, resulting in larger binding energies (0.5-1eV) 

with smaller exciton radii. These tightly bound, localized excitons in a single molecule are called 

Frenkel excitons. Due to their strong binding energy, Frenkel excitons diffuse long distances 

without being dissociated and relax to the ground state. Also, the tightly bound local Frenkel 

excitons demonstrate large oscillator strengths, enabling a highly absorptive feature with narrow 

spectral widths (~100 nm full width at half maximum [10]) and effective optical emission 

stemming from an efficient radiative recombination. These features of organic materials help 

produce efficient, light weight photonic devices. 

An excited electron within the Frenkel exciton can momentarily transfer to a neighboring 

molecule, creating an anion-cation pair of neighbors. This type of delocalized pair of excitons is 

called a charge transfer (CT) exciton. Due to the enlarged exciton radius (r), the binding energy of 

a CT exciton decreases substantially (~0.1-0.5 eV) compared to a Frenkel exciton. As this 

separation extends over multiple sites, the exciton becomes a Wannier-Mott-like exciton and 

eventually becomes separated as an electron and a hole.  

A CT exciton formed between two molecules is referred to as a dimer, excimer or exciplex 

depending on the environment. Dimer indicates an exciton formed between two molecules that are 

bound even in the ground state, whereas an excimer or an exciplex refers to an exciton between 

two molecules only bound when excited. An exciplex differs from an excimer in that the former 

refers to an exciton between heterogeneous molecules. The difference between an excimer and a 

dimer is observed from their luminescent spectrum as shown in Fig. 2.2. For dimers, the vibronic 

progression is observable in the spectrum since the ground state is a bound state with different 

vibronic states, whereas for excimers, charges in different molecules are separated in the ground 
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state without any vibronic states resulting in a broad and featureless spectrum. Also, the 

displacement of molecules is relatively larger in excimers due to the lack of attraction in the ground 

state. It is worthwhile to mention that the difference between an excimer and dimer is solely from 

the resonance interaction and the concomitant geometric relaxation of the two molecules. 

Therefore, it is possible that the two cases occur in parallel depending on the different extent of 

the mutual geometrical variation during excitation. For example, with planar molecules, a 

herringbone arrangement typically prevents closer approach of molecules during the excitation 

compared to a parallel stack geometry, leading to a higher chance to show dimeric emission than 

excimers [11].  

 

Figure 2.2 Energy diagram of dimer vs. excimer.  

(Adapted from Forrest, Organic Electronics, 2020) 

 

2.2 Singlet and triplet excitons 

 The spin of a state is given by the total spin of all electrons in all orbitals. Since no two 

Fermions (in this case, electrons) occupy the same state (n, l, ml, ms) in a single molecule according 

to the Pauli Exclusion Principle, electrons in each filled orbital are paired with anti-parallel spins 
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and therefore do not contribute to the total spin. However, the electrons in the frontier orbitals are 

free to be excited or to hop onto an adjacent molecule, thus they should be considered to count the 

total spins of the system. In the ground state, all electrons are paired with anti-parallel spins 

resulting in a total spin of 0 (S=0), however, in the excited state two different cases can occur. First 

are excitons comprising two electrons with anti-parallel spins, deemed a singlet state exciton, i.e. 

 ,

1

2
spin S     . Singlets only have one possible value of the z-component, that is mS 

= 0, which is where the name comes from. In this case, the total spin adds up to zero (S = 0). In 

contrast, excitons with spins of even symmetry between the excited and ground state electrons, i.e.  
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are called as triplet states, where the total spin adding up to one (S = 1). Different illustrations of  

singlet and triplet excitons are given in Fig. 2.3. 
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Figure 2.3 Illustration for the concept of singlet and triplet states.  

(a) Singlet and triplet states in an orbital configuration scheme. (b) Singlet and triplet excitons in a state diagram. (c) Singlet and 

triplet states in a vector diagram describing the relative orientations of the two electron spins for each state. The singlet state 

shows a 180° out-of-phase configuration with antiparallel vectors, while the triplet states show in-phase configurations. α and β 

denote the up and down spin wavefunctions, where S and mS shows the total spin and its value in the z-component, respectively. 

(Adapted from Köhler and Bässler, Electronic Process in Organic Semiconductors, 2015) 

 

The lowest triplet state (T1) has a lower energy than the lowest singlet state (S1) and the 

energy difference between the two states are referred to as ‘exchange energy’, twice the value of 

the exchange integral. This occurs because the anti-symmetric spin of singlet excitons requires 

spatially symmetric states, which require closer proximity of electrons than triplet states that leads 

to a larger Coulomb repulsive energy. The exchange interaction exponentially increases with 

overlap of the HOMO and LUMO, in the first order approximation. Thus, for a molecule with 

significant HOMO/LUMO overlap, the exchange energy is large, on the order of 0.7-1.0 eV [11], 

whereas for a molecule with small overlap, the exchange energy can even become comparable to 

the room temperature thermal energy, demonstrated by thermally activated delayed fluorescent 

compound molecules [12].  
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2.3 Energy transfer 

 As previously discussed, an exciton is a quasiparticle that transfers energy throughout the 

organic film. Therefore, understanding how excitons are distributed enables comprehending how 

energies are propagated within an organic film. The Jablonski diagram shown in Fig. 2.4 illustrates 

the relationship between energies, spins, vibronic levels and transition processes of excitons, thus 

is an important figure for understanding the energy transfer in an organic film. In the diagram, 

there are basically two important manifolds, singlet and triplet states. The transition within the 

manifold (internal conversion) is allowed, however the transition between different manifolds 

(intersystem crossing) is prohibited by the Laporte spin selection rule. However, when the system 

is strongly perturbed by an intense spin orbit coupling, the intersystem crossing becomes possible, 

enabling an efficient transfer of lowest singlet excitons into the triplet manifold, known as 

phosphorescence. This will be discussed more in detail in Chapter 2.5. 

 

Figure 2.4 Jablonski diagram. 

Jablonski diagram for a molecular system with singlet (S) and triplet (T) manifolds with vibronic levels in each manifold. The 

approximate time constants for each emissive decay are designated. Solid lines designate radiative processes whereas the wiggly 

lines show non-radiative processes (Adapted from micro.magnet.fsu.edu). 
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 Energy transfer occurs primarily in three different categories depending on the interaction 

distances: i) long range radiative transfer (trivial energy transfer); ii) Förster (or fluorescent) 

resonant energy transfer (FRET); and iii) Dexter transfer (or exchange transfer). An illustration 

describing these three types of energy transfers is shown in Fig. 2.5.  

 

Figure 2.5 Types of energy transfers according to the interaction distances 

(Adapted from Forrest, Organic Electronics, 2020) 

 Long range radiative transfer (trivial transfer) occurs when an exciton is transferred from 

one molecule to another by emission and reabsorption of the light. Trivial transfer requires an 

efficient emission and absorption of photons by the molecules and does not involve any interaction 

between the molecules. Therefore, a good overlap between the emission and absorption spectra of 

the donor and the acceptor molecules is required for an efficient long range radiative transfer.  

Förster resonant energy transfer is a near-field non-radiative energy transfer between 

molecules via dipole-dipole interactions. It is a process where the excited state donor molecule is 

relaxed while the ground state acceptor molecule is excited via coupling interactions. The Laporte 

selection rule requires that the donor and acceptor transition should not change the total spin states. 

Therefore, singlet excitons can freely Förster transfer, however, the first level triplet excitons (T1) 
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cannot since the ground state relaxation is prohibited. However, such a transfer between the triplet 

excitons in the triplet manifold (Tn) is allowed. 

The transfer rate and the radius of FRET is derived from the Fermi’s golden rule [11] 

as [10]: 
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where kET is the Förster transfer rate, R0 is the Förster radius, RDA is the distance between the donor 

and acceptor molecule, τD is the lifetime of the donor without the accptor, c is the speed of light, 

NA is Avogadro’s number, nr is the refractive index of the medium, ΦD is the quantum yield of the 

donor, MωA is the molar molecular mass, ρMA is the mass density of the acceptor mixture, v is the 

frequency, fD / αA are the emission/absorption spectrum of the donor/acceptor, and κ2 is the dipole 

orientation factor. The dipole orientation factor varies with the arrangement of donor and acceptor 

transition dipole moments (TDMs) ranging between 0 and 4, with κ2=2/3 for an isotropic 

arrangement. Equation (2.2) shows that the Förster transfer rate increases with a shorter donor-

acceptor distance and a larger spectral overlap. A rule of thumb of the Förster radius is ~5 nm, not 

more than 10 nm for typical organic films.  

 Dexter transfer, also known as the exchange transfer, is an electron hopping transport 

between the contacting molecules, therefore is the shortest range energy transfer, usually less than 

~1 nm.  During Dexter transfer, the electron of an excited molecule transfers to a neighboring 

ground state molecule, whereas an electron in the ground state molecule is transferred back to the 

originally excited molecule as shown in Fig. 2.6. Dexter transfer occurs while the spin states of 
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the excited and ground state excitons are preserved. Therefore, triplet states are free to transfer via 

Dexter exchange process.  

 

Figure 2.6 Exchange energy transfer between neighboring molecules  

Exchange energy transfer between the neighboring molecules of singlet (a) and triplet (b) excitons. (Adapted from Forrest, Organic 

Electronics, 2020) 

Dexter transfer also depends on overlap of the emission and absorption spectra and the distance 

between the donor and acceptor molecules as:  
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where Jω is the spectral overlap integral and L is the effective average radius of the excited and 

ground states involved. Unlike Förster transfer, the Dexter transfer rate in Eq. 2.4 does not show 

an orientation dependence and occurs preferentially to the closest molecule with the largest contact 

area. Also, it is important to note that the transfer rate of a Dexter transfer exponentially depends 

on RDA, and thus decreases much faster with the donor-acceptor distance compared to the Förster 

transfer.  

 Both Förster and Dexter transfers show that the energy transfer highly depends on the 

molecular distance and spectral overlap. This implies that the molecular structure and its packing, 

which affect the mean distance between molecules, are important elements of the energy transfer 

within a film. For example, tightly π-stacked planar molecular crystals with minimal disorder 

would show a more efficient energy transfer compared to an amorphous film comprising bulky 
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molecules with large steric hindrance, when the spectral overlap is identical. Furthermore, a 

decrease in crystallinity, which leads to an increased disorder, decreases the exciton diffusion 

length [13]. Meanwhile, it should be noted that the alignment between the acceptor and donor 

molecules only affects the rate of the Förster transfer, implying that the disorder of the molecule 

is more critical for Förster transfer.  

 

2.4 Charge transport 

 In an ideal crystal with no lattice scattering, the energy level at each lattice site is depicted 

as a straight line with the charge carrier wavefunction delocalized, and the charge moves as a plane 

wave (Block wave) as shown in Fig. 2.7a. In a real crystal, however, lattice vibrations, or phonons, 

disrupt the crystal symmetry, which scatter electrons and thereby reduce charge mobility. 

Lowering the temperature will therefore increase the mobility in this case. This type of charge 

transport is called band transport, which is typically observed in highly crystalline inorganic 

semiconductors. Charge diffusion usually dominates in inorganic semiconductors, since the 

potential differences are typically small due to the efficient dielectric screening (εr > 10) and good 

band alignment.  

 

Figure 2.7 Energy level diagram of the band and hopping transport 

The energy level of band transport is mostly constant when no lattice vibrations occur (a), whereas for the hopping transport the 

localized charge needs to overcome the energy barrier every time it tries to transfer (b).  
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For most organic semiconductors, however, weak intermolecular forces are predominant 

among molecules or polymers. In this case, a discrete energy band structure is dominant in the 

bulk. The free propagation of charge, as usually seen in inorganic semiconductors, no longer exists. 

As a result, carrier transport in organic semiconductors becomes a hopping process that involves 

thermionic emission and tunneling of carriers between localized sites, as shown in Fig. 2.7b. This 

means that the charges are more difficult to transport in organic films (especially for an amorphous 

phase) thus one can imagine the charges in organic semiconductors as ‘sticky’ particles, which 

takes an energy to activate hopping over the barrier at the edge of the potential energy wall. 

Therefore, the current is mainly controlled by the charge drift until the current reaches the space 

charge limited (SCL) regime, where the charge diffusion also plays a significant role.  

 There are two models describing the hopping process in the presence of static disorder 

within an organic film, Miller-Abrahams and Marcus electron transfer theory. The Miller-

Abrahams theory describes the conduction of charges that occur via hopping from the donor to the 

acceptor molecule, with the rate of hopping from site i to j is shown as: 
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where Ei and Ej are the energy levels of initial and final states with the separation of Rij, and γij is 

the overlap of orbital between the initial/final orbital wavefunctions, and v0 is the frequency of 

charge attempting to overcome the barriers to hop onto the nearest neighbors. From Eq. (2.5), we 

are able to conclude that the charge transport is more efficient with larger orbital wavefunction 

overlap, less separation (higher mass density), and larger initial and final energy difference. The 

exponential dependence of the transfer rate to the distance is a similar result from Dexter transfer, 

since both transfers result from charge tunneling between the adjacent molecules.  
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 Another theory explaining charge transfer is the Marcus electron transfer, which is a more 

physically consistent model. Marcus transfer theory explains the charge transfer as depicted in the 

reaction coordinate vs. Gibbs free energy diagram as shown in Fig. 2.8.  

 

Figure 2.8 Marcus charge transfer 

An illustration of the charge transfer process according to the Marcus theory. The lower parabola shows the initial precursor 

whereas the top two parabolas show the donor (left) and the acceptor (right) states with the energy barrier of ΔG* to be overcome 

by the charge. (Adapted from Forrest, Organic Electronics, 2020) 

 

The transfer rate of the Maracus theory is as follows: 
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where λreorg is the reorganization energy that describes the height of the potential difference in the 

perspective of the destination potential, and ΔG0 is the difference between the lowest energy levels 

of each parabola. Unlike Miller-Abraham theory of electron transfer where the transfer rate 

saturates in an exergonic reaction, in Marcus theory the electron transfer rate does not simply 

increase as ΔG0 decreases. As shown in Fig. 2.9, when ΔG0<0 and |ΔG0| > λreorg, the activation 

energy (ΔG*) should increase with decreasing ΔG0 which causes the rate to decrease, also known 

as the Marcus inverted region. This was shown for organic materials by Rand, et al. and Liu, et 

al. [14,15] 
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Figure 2.9 Illustration of Marcus charge transfer with different free energies (ΔG0).  

(Adapted from Forrest, Organic Electronics, 2020) 

As with Dexter energy transfer, the charge transport rate is highly dependent on the distance 

between the donor and acceptor molecules since charge transfer is also caused by intermolecular 

tunneling. Thus, highly crystalline tightly π-stacked molecular crystals show much higher charge 

transport rate, and thus have higher charge mobility, compared to the amorphous films with less 

ordered film morphology. Therefore, controlling the film morphology in a desired way increases 

the film mobility by orders of magnitude. 

 

2.5 Fluorescence and phosphorescence 

Fluorescence and phosphorescence are different types of molecular luminescence 

processes, which result from the relaxation of excitons to the ground state. Fluorescence occurs 

without a change of spin state, thus is an allowed transition. Since fluorescence is an allowed 

transition, the exciton decay time is relatively short (10-9 – 10-7 sec). This “allowed transition” is 

produced in reference to the selection rules in quantum mechanics.  

In contrast, phosphorescence is a decay of excitons by “forbidden energy state” transitions, 

accompanying a spin state variation. Since it is a forbidden transition, the emission is inefficient 
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and exhibits a long decay time. However, Baldo, et al. [16] showed that the use of molecules 

comprising a heavy metal atom center coordinated with organic ligands enable a dramatically 

improved quantum yield by incorporating a strong perturbation due to the spin-orbit coupling 

(SOC) to the center metal, mixing the singlet and triplet states. The strong SOC perturbs the spin 

of the electron by interacting with its orbital angular momentum, where the strength of it is 

expressed as [10]: 
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where V(r) is the potential of an electron in the hydrogenic atom with atomic number Z, V(r) 

= -Zq/4πε0r, l and s are the angular momentum and spin angular momenta, respectively. The 

expectation value of 1/r3 in the spherical coordinate is: 
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Thus, the SOC energy is obtained: 
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showing that the SOC interaction has a Z4 dependence on the atom number. Therefore, the SOC 

increases drastically by employing heavy metal centers such as Ir, Pt or Au, which are typically 

used to promote phosphorescence in a moleculcule. Also, ESO decreases with increasing the 

principal quantum number (n), meaning that the effect of SOC drops dramatically for higher 

excited state manifolds.  
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2.6 Types of ligands in heavy-metal phosphorescent complexes 

 Ligand is a functional group that binds to a central metal atom to form a coordination 

complex. Since heavy metal complex phosphorescent emitters are comprised of transition metal 

centers, understanding ligands is important to understand the construction of phosphorescent 

molecules.  

 Transition metals, which are typically used for phosphorescent emitters, form complex ions 

which are metal ions surrounded by ligands. They are attached to the ligands via coordinate 

covalent bonds, a type of covalent bond that is formed without sharing electrons and instead 

formed by one nucleus providing the entire electron-pair for the bond. The number of bonds 

formed between the center metal and ligands is called the coordination number which varies 

between 2 and 8 depending on the charge and electron configuration. The most common 

coordination number is 6, and then 4. Complex ions with a coordination number of 6 usually have 

an octahedral arrangement, whereas those with a coordination number of 4 have either a square-

flat or tetrahedron structure.  

 Some ligands have two or more electron lone pairs, and thus form multiple coordinate 

bonds with the center metal. These ligands are called chelating ligands and, depending on the 

numbers of coordinate bonds, are deemed –dentate ligands. For example, when it binds with two 

lone pairs, it is called as bidentate ligand, for three lone pairs, it is called as tridentate ligand and 

so on. The most commonly used heavy-metal complexes are Ir(III) and Pt(II) complexes. Ir(III) 

complexes are octahedral molecules with the coordination number of 6 and Pt(II) complexes are 

square-flat bidentate molecules with the coordination number of 4. 
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A heavy metal complex comprised of same/different types of ligands is called a 

homoleptic/heteroleptic compound. Since a heteroleptic compound has different ligands attached 

to the center metal atom, an emission from a molecule only happens from the ligand with the 

lowest excitation energy. This ligand is called a chromophoric ligand since it emits photons, 

whereas the other ligands are known as ancillary ligands which do not emit photons.  
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Chapter 3 Bulk Organic Film and Morphology 

 

Morphology of a thin film usually refers to film structures shown by crystallinity, 

orientation, stiffness, homogeneity, and thermal stability, and is one of the key factors governing 

the properties of a solid. It determines essentially every element of a film such as the thermal, 

optical and electrical characteristics, which are critical features for a device [17–19]. Precise 

understanding and control of the film morphology is, therefore, crucial for developing high 

performance devices. Understanding the morphology of a film starts from how each molecule is 

bonded with another. Therefore, in this chapter, we start from discussing the different bonds 

comprising an organic film, investigate how the morphology is affected by the bonds, and 

eventually describe how different morphology affects the characteristics of the film.  

 

3.1 Bonds of organic film 

A bond is a cohesive force holding the building blocks (atoms or molecules) of a material 

together. When an energy similar or higher than the bond energy is applied, the building blocks 

fall apart, causing the phase to change or molecules to fracture. In addition, the type of bond 

determines how electrons are distributed within a system (films or devices), affecting the electrical 

and optical characteristics of the system. As such, the bond is closely related to numerous aspects 

of a material, therefore understanding bonds is an essential base to comprehending the material 

characteristics. In this chapter we discuss the bond characteristics in detail. 
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3.1.1 Covalent bonds 

Covalent bonds are formed when two or more nuclei share valence electrons to form a 

lower energy state. This occurs since an electron in an atom is stabilized by being attracted to the 

proton in another atom, causing the entire system to be stabilized. The spins of the two electrons 

comprising the bond are antiparallel to each other. Covalent bonds are strong bonds with a 

dissociation energy of ~1-5 eV, depending on its type and polarity. 

The energy of molecular hydrogen (H2) as a function of intermolecular distance is plotted 

in Fig. 3.1. The plot shows that the system becomes stable as the two atoms approach each other 

until a certain point (r0 =74 pm for H2 molecules). In the long-distance regime, the attraction 

between electron-proton dominates, thus the energy of the system decreases as the atoms approach 

each other until this attraction is maximized. When the interatomic distance is closer than r0, the 

system becomes unstable. This is due to the proton-proton and electron-electron Coulombic 

repulsive interactions, which causes the energy to increase rapidly. This behavior is similar with 

the case of ionic bonding since they both result from attractive and repulsive forces between the 

charged entities.  

 

Figure 3.1 Diagram showing the potential energy of two separate hydrogen atoms. 

(Adapted from chem.libretexts.org) 



 33 

 

Covalent bonds include various ranges of bonds such as sigma (σ), pi (π) and coordinate 

bonding as discussed in Chapter 1.1.2. They are formed by sharing the valence electrons, however 

the distribution of the shared electrons is different between each other. Sigma (σ) bonds are formed 

by head-on overlapping of atomic orbitals as shown in Fig. 3.2. This bond is the strongest type of 

covalent bond due to the large overlapping of the participating orbitals. The electrons forming the 

sigma bond is often referred to as σ-electrons which are localized between the two atoms joined 

by the bond. All single bonds are sigma bonds, which enable rotational freedom within the 

molecule when they are not interlocked. 

 

Figure 3.2 Examples of sigma bonds with various types of overlap between different orbitals.  

(Adapted from brilliant.org) 

Pi (π) bonds are formed due to the overlapping of adjacent atomic orbitals as shown in Fig. 

3.3. They are formed above and below the plane of the molecule occupied by a sigma bonds, with 

the axes of the atomic orbitals parallel to each other. Therefore, the overlap between the orbitals is 

less than the directly overlapped sigma bonds, leading to weaker bond energies. Double bonds 

consist of one sigma and one pi bond, whereas a triple bond is comprised of one sigma and two pi 

bonds.  
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Figure 3.3 Schematic of two p-orbitals forming a π-bond.  

(Adapted from wikipedia.org) 

An important aspect of π bonds in organic materials is the formation of π-conjugation. A 

conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule 

which typically lowers the overall energy of the molecule and increases its stability. They allow a 

delocalization of π-electrons across all adjacent aligned p-orbitals. Thus, in the π-conjugated 

system, the π-electrons do not belong to a single bond or atom, but rather to a region of atoms. 

Therefore, by elongating this region of π-electron conjugation, producing a conductive chain 

within a molecule is possible. Furthermore, conjugated systems are not only conductive, but they 

easily accept or donate electrons, which makes it an indispensable element for all organic 

electronic devices. As a result, all organic electronic devices today comprise of organic materials 

with π-conjugated systems.  

Coordinate bonds, also known as dative bonds, are another type of covalent bond. Unlike 

other covalent bonds which share the electron from two different nuclei, the coordinate bond 

happens when one nuclei provides the entire electron-pair for the bond formation as shown in Fig. 

3.4. It is formed between a central electrophile (low electron density such as metal cations) and 

one or more nucleophiles (high electron density such as anion ligands) around the center. The high 

electron density ligands supply two electrons per coordinate bond to the central electrophile to 

satisfy the octet rule. Unlike ionic compounds, coordinate bonding between oppositely charged 

ionic species still holds the covalent character where the bonding electrons are shared between the 
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atoms. Coordinate bonds are typically observed in transition metal complexes, which are a 

important type phosphorescent molecule often used for OLEDs.  

 

Figure 3.4 Schematic explaining the coordinate bond. 

(Adapted from chemistrylearner.com) 

Polarity of the  covalent bond is another important element which determines its strength. 

When the atoms forming a covalent bond are identical, such as a C-C bond, the electrons in the 

bond are shared equally with no polarity. These are often referred to as pure covalent bonds. In 

contrast, when the atoms linked by a covalent bond are different, the bonding electrons are 

unequally shared, meaning that they are more attracted to one atom than the other, giving rise to 

the electron density toward that atom. Therefore, when two different atoms form a covalent bond, 

a local polarity is created, with one part more positive and the other part more negative compared 

to the neutral potential. An example is shown in Fig. 3.5, showing a higher electron density around 

the Cl atom. The Greek letter delta (δ) is used to indicate whether the atom has a partial positive 

or negative charge compared to the neutral potential. 

 

Figure 3.5 Electron distribution within a polar molecule. 

(a) The distribution of electron density within the HCl molecule showing higher density around Cl nucleus. The black dots indicate 

the location of the H and Cl nuclei. (b) δ+ and δ- shows the partial positive and negative charges within the molecule. (Adapted 

from chem.libretexts.org) 
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The distribution of electrons within the bond is determined by the electronegativity of the 

participating atoms. Electronegativity is a measure of the tendency of an atom to attract electrons 

(i.e., electron density) towards itself. Therefore, electronegativity determines how the shared 

electrons are placed between the atoms within a bond. An atom with larger electronegativity has 

stronger attraction towards the electrons within the bond, therefore, the atom with larger 

electronegativity shows partial negative charge. As the difference in electronegativity increases, 

the electron distribution becomes more polarized and partial charges of the atoms rise. Thus, an 

organic molecule with a substantial difference of electronegativity between the atoms shows a 

non-uniform distribution of positive and negative charges that leads to a static dipole moment of 

the molecule. Organic molecules typically show negative potentials near the halide atoms 

compared to the region with C atoms. In addition to the atoms, some groups also show strong 

electron withdrawing or donating character, such as halide, cyano groups (withdrawing) 

/ -OH, -NH2 groups (donating), which are often used to decrease/increase the orbital energy of the 

molecules by inducing less/more electron-electron repulsion to the molecular system. However, a 

drastic change of electron density using strong electron withdrawing groups have been known to 

risk the stability of the molecule, as demonstrated by adding fluorine groups for blue dopants in 

OLEDs [10].  

 

Figure 3.6 The periodic table with electronegativity values.  

Electronegativity increases toward the upper right of the table. (Adapted from chem.libretexts.org) 
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3.1.2 Van der Waals bonds 

 A van der Waals (vdW) bond is an intermolecular interaction. It is the most typical cohesive 

force which combines the organic molecular and polymer films. Unlike the case of ionic or 

covalent bonds which are bound by strong chemical bonds, vdW bonds are induced by a temporary 

Coulombic force due to the fluctuation of polarization. A vdW bond is comparatively weaker than 

ionic or covalent bonds and therefore is more susceptible to disturbance, and quickly vanishes at 

longer distances. The weak bond strength of vdW bonds causes the organic film to be soft and 

flexible, enabling various form factors of organic electronic devices. As the distance-dependent 

potential of the multipoles decays fast with its number of charge moments as 1/rn+1 [10], we mainly 

discuss the dipolar interactions in this thesis.  

 As vdW force occurs by a superposition of electrostatic interactions within each molecule, 

it is be decomposed into four different elements: 

1) repulsion between molecules preventing the overlap of orbital states to follow the Pauli 

Exclusion Principle. 

2) attraction/repulsion by the electrostatic interaction between the static dipoles;  

3) induction, also known as polarization, which refers to the electrostatic attraction between 

a static dipole and induced charges caused by that static dipole, which is also known as 

polarization. This force is also known as Debye force. And, finally, 

4) dispersion, which refers to the attraction between the molecules due to the instant 

fluctuation of charges. Dispersion occurs regardless of the polarity of the molecule, 

including non-polar atoms. 
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Therefore, we subdivide the vdW bonds, i) dipole-dipole interaction, ii) dipole-induced dipole 

interaction, and iii) interaction between induced dipole interactions as illustrated in Fig. 3.7. The 

third case is often called the London dispersion force.  

 

Figure 3.7 Different types of van der Waals bonding between two Arene moieties.  

(Janiak, 2000) 

 

Dipole-dipole forces (Keesom force) 

 This force occurs between molecules that have static dipoles. This is also known as Keesom 

force, and the angle averaged result is given by: 
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where m is the static dipole moment. As shown, the force decays swiftly following 1/r6, 

demonstrating that the bonds quickly vanish at longer distances. A static dipole of a molecule with 

local polarity occurs due to the difference of electronegativity of each atom, especially when an 

atom has lone electron pairs that cause an unequal electron distribution, as discussed in Chapter 

3.1.1. As static dipoles have a spatial field distribution across the molecular surface, the dipole-

dipole forces depend on the mutual orientation of the molecules, i.e., the molecules tend to align 

toward a relaxed state by reducing the dipole-dipole repulsion and inducing more attraction. This 

is a strong driving force that aligns small molecules during the growth of a film in vacuum since 
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the vacuum/organic boundary allows the molecules to be oriented before being buried by the next 

layer of film; this vdW force-driven molecular alignment does not appear in the spin-coated 

organic films since the entire ensemble is placed together with no surface boundary [20]. 

Dipole-induced dipole forces (Debye force) 

 The angle averaged result of a dipole-induced dipole force also shows a 1/r6 dependence 

as: 
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where α is the polarizability of the molecule being induced. This dipole-induced dipole force 

occurs when one molecule with a static dipole repels/attracts another molecule’s electrons. The 

molecule with larger π-conjugation, therefore, has a larger dipole-induced dipole force since more 

electrons are delocalized, which enhances the polarizability (α) of a molecule. The dipole-induced 

dipole force is far weaker than dipole-dipole interaction, however, stronger than the London 

dispersion force.  

London dispersion force 

 London dispersion force is an interactive force between instantaneous multipoles in 

molecules caused by the charge fluctuation. Since charge fluctuation is the main cause, the 

polarizability of the molecule is the key factor of the London dispersion force. The expression is 

also known as the Buckingham potential, which follows: 
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where β is a constant, and Adisp is a constant related to the coupling of the dipoles of each molecule. 

An alternative form showing the attraction and repulsion between two non-polar molecules is the 

Lennard-Jones 6-12 potential, which follows: 
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where εij is the depth of the potential well, which shows the strength of the attraction between two 

particles, and σ is the distance at which the potential energy between the molecules become zero, 

which shows how close the two nonbonding particles can approach. The first term of the equation 

describes the Pauli repulsion at short ranges between the molecules, whereas the second term 

describes the attractive binding force at long ranges due to the dispersion interaction. The range 

difference between the the Pauli repulsion and the attraction by the dispersion interaction results 

in a distance with the lowest potential, known as the van der Waals radius, which is the closest 

location a molecule can reach to its neighboring molecule.  

 Van der Waals force is important in analyzing organic morphology since it describes the 

interaction between molecules which plays the main role in forming bulk films. The π-π interaction 

between π-conjugated molecules is one of the important aspects that determines the morphology 

of a molecular film. This will be discussed more in detail in Chapter 3.2.  

 

3.2 Morphology of small molecule organics 

Morphology is, by definition, a study of the forms of things. In semiconductor physics, 

morphology describes the distribution of phases and structure of the film. Morphology of a film is 

shown by multiple aspects such as crystallinity, orientation, stiffness, homogeneity, and thermal 

stability of a film. Since morphology deals with how the building block is arranged, it significantly 

affects the overall properties of a film. For example, with the same C atoms, graphite and diamond 

show totally different mechanical, optical and electrical characteristics due to their different 
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arrangements. In this chapter, we discuss how molecular arrangement occurs during the deposition 

of an organic film.  

 

3.2.1 Static and transition dipole moments 

 Molecular dipoles occur due to the disproportionate sharing of electrons in a molecule as 

discussed in Chapter 3.1.1. Depending on the time scale of this unequal distribution of electrons, 

the dipole moment is subdivided into two categories. Electrons pulled by more electronegative 

atoms within a molecule build up a discrete region of high electron density, producing a static 

dipole moment. The static dipole moment measures the separation of positive and negative 

electrical charges within a molecule, showing the polarity as   3

0 0 0( ) ( )
V

p r r r r d r  , where ρ 

is the charge density and r0 denotes the position of the dipole. The static dipole of a molecule 

causes an enhanced intermolecular Coulombic interaction leading to a stronger van der Waals or 

even hydrogen bond.  

On the other hand, the excitation of a molecule induces a temporary high electron density 

within a molecule which induces the TDM. The TDM is associated with the transition between the 

initial (ψi) and the final (ψf) states, with its transition rate (kif) depending on the Hamiltonian H’ 

which describes the perturbation caused by the absorption of a photon (H = H0 + H’). The transition 

rate is determined by Fermi’s golden rule as [10,11,21]: 
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   ,                                              (3.5) 

where ρ is the density of the final states. Equation (3.5) shows that to increase the transition rate, 

one should either increase the coupling between the initial and final states, or increase the density 

of the final states. The direction of the TDM shows how a molecule interacts with an 
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electromagnetic wave of a given polarization, while the magnitude of the TDM gives the strength 

of the interaction between the molecule and the wave, known as the oscillator strength. Since the 

dipole oscillates with the charge transfer during relaxation, the TDM of an emitting molecule is 

regarded as a small dipole antenna. Therefore, when a light emitting molecule is located inside an 

optical waveguide, the orientation of the TDM severely affects the amount of the light trapped in, 

or extracted from, the waveguide. Likewise, for light absorbing molecules in photovoltaics, the 

orientation significantly affects the amount of light absorbed. Therefore, controlling the orientation 

of the TDM is crucial for an advanced performance of optoelectronic devices, which will be 

discussed in detail in Chapter 7. 

 

3.2.2 π-π interactions 

Organic electronic devices used today are comprised of aromatic rings due to their high 

conductivity and ease of electron donating/accepting properties as discussed in Chapter 3.1.1. With 

the aromatic compounds, the polarizability increases due to the delocalized electrons, thus 

enhancing the vdW bonding. Especially, for aromatic molecules with a large π-system, π-π 

interaction between the π-conjugates plays a significant role in molecular arrangement. Thus, it is 

important to understand the nature of π-π interaction, which has been investigated in the previous 

works of Hunter, et al., Janiak, and Sinnokrot, et al. [22–24].  

An aromatic molecule is comprised of a delocalized π-electron and a σ-framework that 

form the backbone of a molecule. Since a molecule holds electrostatic neutrality, the π-electron 

solely comprising electronegative electrons shows negative potential, while the σ-framework 

shows relatively positive electrostatic potential. Therefore, there is a competition between the 

repulsion of π-electrons and the attraction between π-electrons and the σ-framework (π-σ 
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attraction), which varies depending on the molecular size and the arrangement of different atoms 

within the molecule. The balance of interactions between the π-electrons and σ-framework is the 

key factor determining how the molecules align with each other as shown in Fig. 3.8.  

 

Figure 3.8 Electrostatic interaction of two ideal aromatic molecules with π-electrons with different orientation.  

(Janiak, 2000) 

 To understand and analyze the interactions between aromatic molecules, Hunter and 

Sanders suggested a set of rules based on a simple model of charge distribution. The rules for 

arenes such as benzene are as follows: i) π-π repulsion dominates in a π-stacked geometry; ii) π-σ 

attraction is stronger than the π-π repulsion in the offset π-stacked geometry; and iii) π-σ attraction 

dominates in the edge-on or T-shaped geometry.  

 A substituent or heteroatom within an arene perturbs the π-system and the uniform charge 

distribution no longer holds. The distortion of the static dipole results in an electrostatic dipole-

dipole and dipole-induced dipole interactions as in Fig. 3.7. The experimental results [22,25] show 

that the electron withdrawing substituent shows stronger intermolecular attraction than the uniform 

charge distribution due to the reduced repulsion between the π-electrons. Thus, an electron 

donating substituent shows the weakest intermolecular attraction. An example of electron 

withdrawing/donating groups are F, NO2 and CN / R, OR, NH2 and NR2 (R=alkyl).  
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3.2.3 Molecular alignment 

Orientation of a molecule is one of the key aspects of organic film morphology. It is 

determined by different factors such as molecular shape, film growth kinetics, and anisotropy 

between the ligands in the case of phosphorescent emitters. Here, we discuss how to measure the 

orientation of molecules within an amorphous film, and cover the different elements that affect 

molecular alignment.  

 

3.2.3.1 Measurements of molecular alignment 

 As mentioned in Chapter 3.2.1, the TDM of a molecule is a small dipole antenna, thus the 

orientation of the TDM is correlated to the angular intensity profile of the light emission. 

Therefore, we obtain the TDM orientation by measuring the angle dependent photoluminescence 

spectra. While measuring the angle dependent spectra, the organic film-deposited glass substrate 

is attached onto a half-cylinder prism to extract the light trapped in the glass substrate as shown in 

Fig. 3.9 [26]. This is because a significant portion of the light emitted from the TDM within an 

organic film is trapped in the glass substrate, which is necessary to achieve an accurate measure 

of the angular emission intensity profile of the TDM. 

 

Figure 3.9 Cross-sectional illustration of the set up for angle dependent photoluminescence spectroscopy. 
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The light trapped in the glass substrate is due to the total internal reflection at the air-glass interface 

caused by the higher refractive index of the glass (nglass = 1.45) versus that of the air (nair = 1.0), 

also known as ‘glass mode’, as shown in Fig. 3.10.  

 

Figure 3.10 Angle dependent photoluminescence spectra with and without the half-glass cylinder. 

 

As shown in the theoretical calculation in Fig. 3.10, the angular intensity profile of the air mode 

shows a Lambertian profile with no distinct features, therefore the glass mode information is 

necessary for higher accuracy to fit the measured result to the optical model. In the model, the 

emission from horizontally aligned TDMs is decomposed into transverse electric (shor) and 

magnetic (phor) modes, whereas the vertically aligned TDM emits into the pver mode. Then the ratio 

of horizontal-to-vertical TDMs (θhor) becomes: 
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 ,                                               (3.6) 

leading to θhor = 0.67 for random alignment (shor = phor = pver), and θhor = 1.0 for TDMs oriented 

parallel to the substrate. The angular photoluminescence is measured in the detection of the plane 

with a linear polarizer parallel to the plane, thus leading to the total intensity profile as: 
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The light trapped in the glass substrate increases as the fraction of horizontally aligned TDM 

decreases since the majority of the light emission power is focused in the direction perpendicular 

to the TDM. Therefore, as shown in Fig. 3.11, the glass mode peak value decreases with the θhor.  

 

Figure 3.11 Angle dependent photoluminescence spectra of varied θhor. 

 

The most commonly used methods for measuring molecular orientation are variable angle 

spectral ellipsometry (VASE), grazing incidence wide angle x-ray diffraction (GIWAXD), and 

angle dependent photoluminescence spectral measurements (Angle PL)  [26–28]. Despite their 

simplicity and precision, VASE and GIWAXD do not have the sensitivity to resolve the alignment 

of the dopant emitters in dilute thin films. On the other hand, Angle PL overcomes this problem 

by directly measuring the emitting dopant orientation. However, Angle PL suffers from the need 

for precise alignment of the optical components and a slow rate of data acquisition along only a 

single axis. Since angle dependent photoluminescence spectroscopy requires rotational movement, 

with distance from the detector to the sample on the scale of the lens focal length, a small tilt or 

shift of the sample holder causes significant measurement inaccuracies. On the other hand, using 

a Fourier plane imaging microscope simultaneously measures the radiation at all angles, providing 
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a sensitive, simple and precise measurement of the TDM orientation  in real time [13,14,25]. The 

use of a Fourier plane imaging microscope for determining the TDM orientation will be discussed 

in Chapter 5 in detail.  

 

3.2.3.2 Control of molecular alignment 

Molecular films deposited in high vacuum have been shown to have superior physical 

properties compared to the solution-processed samples due to the higher packing density [32], 

lower enthalpies [33] and reduced reorganization via post thermal annealing [34,35]. One 

additional advantage of vacuum deposition is the controllability of the molecular orientation 

during the growth. This is achieved either via shape of the molecule or growth kinetics. In this 

chapter, we discuss the methods to control the molecular alignment in vacuum deposited films in 

detail. 

 

Via Molecular shape 

The shape of a molecule, including its length, bulkiness, and planarity is one of the factors 

affecting its orientation. The dependence of molecular orientation on its shape was shown by 

Yokoyama, et al., demonstrating that the optical anisotropy of an organic film increases with the 

aspect ratio or flatness of the molecule. The optical anisotropy of a film is correlated with the 

orientation of the molecule since the refractive index of a film is proportional to the polarizability 

as: 
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where εr is the relative dielectric constant, and χ is the susceptibility of the ensemble of molecules. 

Since the molecular polarizability is enhanced along the direction of π-conjugation, as mentioned 
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in Chapter 3.1.2, the direction of higher refractive index corresponds to the direction of molecular 

axis for molecules with long chain π-conjugation. By comparing the ordinary/extraordinary 

refractive indices of the film, Yokoyama, et al., concluded that as the molecule is longer or have a 

planar shape, the molecule shows more horizontal orientation with respect to the substrate plane 

as shown in Fig. 3.12.  

 

Figure 3.12 General relationship between the molecular shape and orientation.  

(D. Yokoyama, 2011) 

 

 Referring to this trend, Byeon and Kim, et al., [36] used three thermally activated delayed 

fluorescent (TADF) molecules, CzTrz, BCzTrz, and TCzTrz, which are molecules of different 

lengths comprising carbazole, biscarbazole and triscarbazole donor units, respectively (molecular 

structures in Fig. 3.13a). The molecules show different fractions of horizontally aligned TDM 

depending on the length of the molecules as shown in Fig. 3.13b. 
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Figure 3.13 Molecular structures and their TDM orientation used in the experiment.  

(Byeon and Kim, et al., 2018) 

 As a result of the increased fraction of horizontally aligned molecules, the outcoupling 

efficiency was significantly improved, therefore leading to an increased external quantum 

efficiency as shown in Fig. 3.14.  

 

Figure 3.14 Calculated outcoupling efficiency and measured EQE for the three TADF molecules of varied molecular lengths. 

(a) Calculated based on the horizontally aligned TDM.  (b) Identical device structures with varied dopant emitter molecules. (Byeon 

and Kim, et al., 2018) 
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Via Growth Kinetics and Ligands 

Organic materials are charge neutral particles, thus the elements comprising a film are 

physically bonded by either Coulombic interaction or van der Waals bonds. Therefore, the 

understanding of which of these forces dominates the growth kinetics is the key to efficiently 

controlling the molecular orientation during film growth in a vacuum. Three different mechanisms 

have been proposed: i) large dipole-dipole interaction of a dopant molecule showing strong 

Keesom force causes molecular aggregation that leads to randomization of the TDM 

orientation [37–40]; ii) the Coulombic attraction of the electro-negative and positive regions of 

molecules cause the molecular alignment [41–45]; and iii) the anisotropic interaction of aliphatic 

and aromatic regions of the molecule drives the alignment [20,46]. 

Theory (i) was proposed by Graf, et al. [37] with various Ir-complexes of different static 

dipole moments and molecular diameters as shown in Table 3.1. Here the dipole-dipole attraction 

induced molecular aggregation was suggested as the main cause of the random orientation of 

Ir(ppy)3. The other Ir-complex dopants showed anisotropic horizontal alignment of dopant TDMs 

due to the weaker dipole potential compared to Irppy3.  

Table 3.1 Ir complexes used for alignment studies.  

Calculated result of static dipole moment (μ), molecular diameter (r), dipole–dipole potential U relative to the dipole–dipole 

potential of Irppy3 and the anisotropy factor (a = 1-θhor). (Graf, et al., 2014) 

 

Theory (ii) is shown by a set of host and dopant molecules with various surface potentials, 

demonstrating the effect of different electrostatic interaction energies. Here, the surface potentials 
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of different molecules were calculated via DFT calculations shown in Fig. 3.15. Moon, et 

al., [42,44] and Huh, et al., [45], showed that the fraction of horizontally aligned TDMs of a dopant 

molecule varies when doped into different host matrices. From the calculation and the measured 

orientation, it was shown that the extent of intermolecular binding energy between the molecules 

is positively correlated with the fraction of horizontally aligned TDMs. The binding energy was 

shown to depend on the electrostatic interaction and the geometry. This demonstrates that the 

electrostatic interaction between the host and dopant drives the orientation of the molecule.  

 

Figure 3.15 DFT calculation for the molecules used in the alignment studies.  

Ir-complexes dopants (a) and host molecules (b) used for the experiment. The calculated electrostatic potential contour is shown 

on the bottom with the colored scale bar indicating the potential quantity. (Moon, et al., 2017) 
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In theory (iii), tridentate heteroleptic Ir-complexes comprising 1 aliphatic and 2 aromatic ligands 

[(bppo)2Ir(acac)], and two different types of aromatic ligands [(ppy)2Ir(bppo)]/[(ppy)2Ir(bpp)] 

were synthesized as shown in Fig. 3.16. The carbonyl (C=O) group in bppo was employed due to 

the large static dipole moment. This is important since, in theory (i) and (ii), the static dipole 

moment is the key element driving the molecular orientation.  

 

 

Figure 3.16 Ir-complexes used for the organic surface-ligand interaction experiment.  

(Jurow, et al., 2015) 

 

The measured orientation in Fig. 3.17 shows that only (bppo)2Ir(acac) shows horizontal 

alignment whereas (bppo)2Ir(ppy) and (ppy)2Ir(bppo) show random orientation even though they 

have strong static dipole moments. This phenomenon is explained by the surface boundary created 

between the pre-deposited organic host matrix surface and the vacuum environment during film 

growth, forcing asymmetric interactions of the dopant molecule which drives it to orient before 

being buried by the next amorphous layer of the host material. However, which ligand among the 

aliphatic or aromatic ligands interacts with the host matrix is unclear from this work, which is 

investigated in Chapter 7.  
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Figure 3.17 Measured orientation of the Ir-complexes 

 (ppy)2Ir(bppo) shows horizontal orientation (a), and (bppo)2Ir(ppy) and (bppo)2Ir(ppy) shows random orientation (b and c).  

(Jurow, et al., 2015) 

 

3.2.4 Crystallinity 

 Unlike the devices based on inorganic materials, crystalline films are not necessary for 

OLEDs since the hopping-type conductivity in amorphous thin film is adequate. However, charge 

conduction and extraction are critical in organic photovoltaics (OPVs) and organic field effect 

transistors. There are numerous advantages to using crystalline organic films such as: i) tunable 

optical/electrical properties depending on the packing direction and morphology [47,48]; ii) long 

exciton diffusion length  [13,49]; and iii) flexibility and elasticity [50].  

Structural templating is a method to control the morphology of a crystalline organic film 

via π-π interaction. The varied morphology of crystalline films via molecular template growth 

leads to the modified physical properties of the film [51,52]. For template growth, a thin molecular 

template layer is pre-deposited on the surface, where the next organic semiconductor film is grown 

on top of it. The template layer induces the growth of organic semiconductor molecules by 

intermolecular interactions such as lattice matching and π-π interactions, thus controlling the 

orientation, crystal size, film morphology, and electronic structure [46,52,53]. The control of 

molecular orientation of light emitting molecules using the molecular template growth is explored 

in Chapter 7. 
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The exciton diffusion length and charge mobility are also closely linked with the 

crystallinity of an organic film since the exciton diffusion is primarily attributed to Förster-assisted 

migration, closely correlated with the molecular orbital wave function overlap. Lunt, et al., [52] 

showed the correlation between the exciton diffusion length and the crystallite size of the PTCDA 

film by controlling the growth conditions with organic vapor phase deposition. As shown in Fig. 

3.18, the exciton diffusion length increases with the fluorescence quantum yield and the mean 

crystal size since the non-radiative losses at grain boundaries is found to be ~104 times larger than 

in bulk crystals. This shows that the film becomes less defective as the film crystallinity (∝ mean 

grain size) increases, leading to an increased exciton diffusion length.  

 

Figure 3.18 Measured exciton diffusion length. 

Exciton diffusion length (LD) vs. fluorescence quantum yield (a) and mean crystal diameter (b). (Lunt, et al., 2010) 

 

3.3 Impact of organic thin film morphology  

3.3.1 Electrical aspect 

 As mentioned in Chapter 3.1.2, a current path in an organic film forms through π-

conjugation and the overlap between the π-conjugates. Therefore, aligning the π-conjugation and 

π-π overlap with the current path direction becomes crucial for improving the device current 

characteristics. Sullivan, et al., [47] used PTCDA as the template layer to self-assemble the CuPC, 
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a planar molecule with a large π-system that enables efficient π-π stacking, in a CuPC-C60 OPV 

system as shown in Fig. 3.19a to improve the short circuit current density and achieve a ~60% 

enhancement by modifying the crystal orientation of CuPC molecules. For vertical devices such 

as OLEDs or OPVs, the current path is perpendicular to the substrate, meaning that the planar 

molecules which π-π overlap should be horizontally aligned. In contrast, the current path of organic 

thin film transistors is parallel to the substrate plane where π-stacking should occur between the 

vertically aligned planar molecules for an optimal current flow.  

 

Figure 3.19 Influence of morphology on the electrical performance 

(a) Schematic illustration showing the structure of CuPc film with (left) and without (right) the PTCDA templating layer. (b) J-V 

curves for a series of OPV devices with the varied thickness of the PTCDA template layer (0Ǻ crosses, 10Ǻ circles, 20Ǻ squares, 

and 50Ǻ triangles). (Sullivan, et al., 2007) 

 

3.3.2 Optical aspect 

Solvation effect 

The solvation effect occurs when an excited molecule interacts with its environment, also 

known as solvatochromism. When an excited molecule is surrounded by a dielectric environment, 

the molecule polarizes the surrounding medium, causing a relaxed excited state energy. Since the 

effect is caused by polarization of the surrounding environment, solvation effects are correlated to 

the static dipole of the excited molecule and its surrounding molecules. Nonpolar molecules tend 

to show a weaker solvation effect than polar molecules, since nonpolar molecules exhibit weak 
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London dispersion forces at a very short range (~1/r6) compared to polar molecules showing 

dipole-induced forces (~1/r3). The degree of freedom of the surrounding molecules is another 

important element for the solvation effect, since the higher the degree of freedom of the 

surrounding molecules, the better they realign to reduce the excited state energy.  

 

In- and out-coupling of light absorption/emission for OPV/OLEDs 

 As discussed in Chapters 3.2.1 and 3.2.3, an emitting or an absorbing molecule in an OLED 

or OPV can be regarded as a small dipole antenna. Since a dipole antenna emits or absorbs a 

majority of light in the direction perpendicular to its TDM, as shown in Fig. 3.20a, the orientation 

of the emitting and absorbing molecule is a crucial element that determines the coupling of emitted 

or absorbed light into different optical modes. The different optical modes within an OLED optical 

microcavity and the relation with the TDM orientation will be discussed in detail in Chapter 4.3.3. 

 

Figure 3.20 Emission profile from varied orientations of TDMs 

(a) Schematic illustration of a dipole antenna radiation. The white arrow shows the TDM vector and the contour shows the E-field. 

(b) Varied orientation of the molecules (white oval) with the TDM along its long axis, changing the angular emission profile (blue 

lines). ϴ shows the fraction of the vertically aligned TDM. (Adapted from Forrest, Organic Electronics, 2020) 
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Since the coupling of optical modes varies depending on molecular orientation, the external 

quantum efficiency of OLEDs and OPVs are correlated with the molecular orientation. Therefore, 

research on molecular alignment has been done as discussed in Chapter 3.2.3.2.



 58 

Chapter 4 Organic Light Emitting Devices 

 

The most successful organic electronic devices today are OLEDs, creating a multi-billion 

dollar display industry due to the massive success of mobile displays. Furthermore, OLEDs are 

extending their markets to various light emission industries such as televisions, transparent 

displays and lighting due to the high color purity, power conversion efficiency, flexibility, 

transparency, and facile fabrication process (especially in large-scale). In this chapter, we discuss 

the basic principles of OLEDs with their benchmarks and characterization methods. We also 

investigate optical modes in the weak optical microcavity of OLEDs and discuss different optical 

loss channels.  

 

4.1 Device structure and operating principle of OLEDs 

 In its simplest form, an OLED consists of semiconductor layers sandwiched between two 

contacts. Depending on the opacity of the top and bottom contact, an OLED is referred to as a top 

or bottom emitting or transparent OLED. Top or bottom emitting OLEDs have a transparent 

electrode on one side, usually comprised of ITO or IZO, paired with a reflective metal mirror 

electrodes at the other side, usually comprised of Al or Ag. In a conventional, bottom-emitting 

OLED, the anode comprises transparent ITO, and Al is used as the reflecting cathode as shown in 

Fig. 4.1. To prevent the oxidation of organic molecules during operation, devices are encapsulated 

in an oxygen- and water-free environment after the fabrication.  
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Figure 4.1 Schematic illustration of the OLED structure and its energy levels.  

(W. Brütting, et al., 2013) 

 An OLED comprises of multiple layers with different purposes, such as charge 

injection/transport/blocking or exciton generation/recombination/blocking layers. Organic 

materials of different energy levels and work functions are chosen for these specific traits.  

Hole and electron injection layers (HIL, EIL) are deposited right after the anode and before 

the cathode, respectively, which facilitate charge injection into the device. The primary function 

of injection layers is to reduce the injection barriers, which is done by either depositing a small 

amount of dipolar materials to tilt the energy level [54], to shift the work function of the 

cathode [55], or to dope the interface organic materials [56–58]. Al / LiQ works well for the 

electron injection since Li ions are liberated from LiQ during the Al deposition and dope the 

interface to reduce injection barrier of the electrons [59]. For hole injection, MoO3 or HATCN is 

often deposited on the ITO anode due to the efficient formation of an Ohmic contact at the 

ITO/HIL/hole-transport layer heterojunction interface as a result of its high work function that 

causes electrons to transfer from the HIL to the ITO [60]. 

 The purpose of a charge transport layer is two-fold: i) to transport charge carriers to the 

emissive layer; and ii) block the leaking charge carriers and excitons from the emissive layer. 

Therefore, it is common to use a high-mobility material as the charge transport layer (hole- and 

electron-transport layer, HTL and ETL) while using a ~5 nm thick charge or exciton blocking layer 
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(XBL) for optimized device performance. For efficient charge blocking, the EBL should have 

energetically shallower LUMO and the HBL should have deeper HOMO energies with respect to 

the vacuum level compared to the emissive layer (EML) molecules. Since the generated excitons 

should not leak from the EML, the blocking layers should show equal (or larger) exciton energy 

states than those of the EML.  

 The EML of an OLED is where the holes and electrons recombine, generating excitons. 

The EML comprises a mixture of different types of molecules depending on its purpose. 

Phosphorescent OLEDs (PHOLEDs) generally employ a host-guest system with dopant emitter 

molecules mixed into the host matrix at a concentration ranging from1 to 20% depending on the 

device characteristics. The host matrix usually has a larger energy gap than the dopant to enable 

exothermic energy transfer of excitons from the host to the dopant, which enables an efficient light 

emission from the dopant. Since most organic molecules are unipolar, i.e. the charge mobility for 

holes and electrons are significantly different, two host molecules of different polarities are often 

mixed together in the EML for efficient hole and electron conduction, also known as the “co-host 

EML” [61,62]. Also, an EML covering a broad visible wavelength spectrum for white OLEDs is 

also often used, with multiple dopants mixed together or deposited in separate regions as shown 

in Fig. 4.2 [63–65]. 
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Figure 4.2 Approaches to obtain white light from OLED EMLs.  

(a) Blended dyes in a single layer (b) Single stack comprising layers emitting different colors (c) Separated OLED stacks connected 

via charge generation layers (d) OLEDs emitting different colors deposited side by side. (Gather, et al., 2011) 
 

4.2 OLED benchmarks  

4.2.1 Colorimetry 

Displays and lighting are related to how humans perceive an image. An experience through 

the display becomes livelier as an image approaches the real color of the object. Also, as the 

spectrum of a lighting fixture is closer to the black body radiation, the experience becomes more 

natural since the sun is a near perfect black body radiator (surface temperature of 5780 K). How 

the perceived color from an object or an image differ from its real color is closely related to the 

function of human eyes. Thus it is important to understand how human eyes perceive color.  

Humans only perceive a specific range of wavelengths between λ=380 to 780 nm (visible 

spectrum). Eyes are comprised of different types of acceptor cells, three cone cells and one rod 

cell, as shown in Fig. 4.3a, which differentiate the chromaticity and luminance, respectively. Three 

types of cones cells cover the spectral ranges as shown in the responsivity spectrum in Fig. 4.3b. 
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 Figure 4.3 An eye retina covered with light-sensitive rod and cone cells.  

(Adapted from Designua/Shutterstock.com) 

There are different modes of the eye vision depending on the illumination condition. In low 

luminance (10-6 to 10-3 cd/m2) conditions, cone cells are nonfunctional and only rod cells are 

operational, known as scotopic vision. In normal light conditions (10 to 108 cd/m2) photopic vision 

occurs, which is a mode when the vision of cone cells dominate enabling color perception having 

a significantly improved visual acuity and temporal resolution compared to scotopic vision. 

Mesopic vision occurs in intermediate lighting conditions (10-3 to 100.5 cd/m2) and a combination 

of scotopic and photopic vision gives an inaccurate visual acuity and color discrimination. Due to 

the different acceptors activated in different modes, the spectral sensitivity varies in each mode as 

shown in Fig. 4.4.  
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Figure 4.4 Luminous efficacy curves for human vision.  

Lumens is defined to be 683 lumens/watt at the peak efficacy of the photopic vision curve. The efficacy of photopic and scotopic 

curves meeta at 555 nm. (Adapted from Williamson & Cummins) 
  

Chromaticity of a light source is quantified by the Commission Internationale de 

l’Eclairage (CIE) 1931 (x, y) chromaticity diagram. The diagram is based on the color matching 

functions (CMF) shown in Fig. 4.5a which gives a numerical description of the chromatic response 

of a standard colorimetric observer. The x and y chromaticity coordinates for the CIE chart are 

then determined as: 

,  
X Y

x y
X Y Z X Y Z

 
   

                                           (4.1) 

where X, Y and Z are the tristimulus values determined for a source with a spectral radiance, L(λ), 

as: 
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The resulting CIE coordinate diagram is shown in Fig. 4.5b, which shows the visible chromaticity 

of an average person. The curved boundary shows monochromatic light while the straight 

boundary is known as the line of purples. If one chooses any two points of the diagram, then all 

colors within the line is produced by mixing the two colors of the points. When three points are 

selected, all colors inside the triangles are be formed by mixing the three point colors. Therefore, 

it is better to have the three points in the CIE diagram further apart, forming a larger triangle, to 

achieve a better color rendering capacity with an RGB display. 

 

Figure 4.5 CIE color matching function and CIE 1931 color space chromaticity diagram.  

(Adapted from wikipedia.org) 
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4.2.2 Performance parameters 

External quantum efficiency (EQE) is a ratio between the number of emitted photons 

towards the viewing direction vs. number of injected electrons. EQE is expressed as: 

 EQE IQE out ST PL out                                             (4.3) 

where ηIQE is the internal quantum efficiency which shows the ratio between the number of 

generated photons inside the OLED structure vs. number of injected electrons, ηout is the 

outcoupling efficiency which shows the ratio between the number of generated photons vs. number 

of emitted photons towards the viewing direction from the OLED structure, γ is the charge carrier 

balance factor, χST is the spin factor describing the number of emitted photons compared to the 

number of generated excitons, and ΦPL is the photoluminescence quantum yield (PLQY).  

 The charge carrier balance factor (γ) is the ratio between the recombined electrons and the 

injected electrons. In modern OLEDs, γ is near unity due to the efficient confinement of the 

injected charges and generated excitons. The spin factor (χST) varies depending on the type of 

emitter molecules. Fluorescent molecules show negligible spin orbit coupling, only being able to 

emit singlet excitons. Therefore, fluorescent molecules show χST  = 25% due to the singlet-to-

triplet exciton formation rate of 1:3 from the injected charge carriers. Recently, however, 

fluorescent molecules showing much higher χST by triplet-triplet fusion (~83%) [66] or delayed 

fluorescence (100%) [67] are being actively explored.  

 Photoluminescence quantum yield (ΦPL) measures the ratio between the absorbed and 

emitted number of photons. It is also described as the ratio between the radiative decay to the total 

decay rate of the excited state as: 

 
r
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                                                      (4.4) 
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where kr and knr denote the radiative and non-radiative decay rates, respectively. The decay rate of 

a material is closely related to the natural decay lifetime (τ) as 

1

r nrk k
 


.                                                     (4.5) 

Since the decay lifetime, rate and quantum yield of a material are closely related, understanding 

the decay characteristics of a material enables determining whether a system is suitable for LEDs 

or solar cells.  

The radiative decay rate can be modified by varying the optical microcavity conditions, 

which is also known as the Purcell effect. The Purcell effect describes the change of spontaneous 

emission rate according to its environment, showing that the radiative decay rate of an excited state 

is proportional to the cavity quality factor (Q) and inversely proportional to the mode volume (V) 

of a cavity [68–70]. The non-radiative decay of the system includes several elements, such as 

exciton annihilation due to an Auger-recombination type of energy transfer, thermal relaxation, 

trap-assisted quenching, etc. [71]  

The optimal dopant concentration in the OLED EML comprising host-dopant mixtures 

depends on the PLQY. The PLQY decreases with the dopant concentration due to concentration 

quenching as in Fig. 4.6 [72]; thus, a low doping concentration tend to increase the EQE of an 

OLED. However, low doping concentration does not always maximize the EQE of an OLED since 

the charge carrier balance and exciton density profile are also affected by the doping concentration 

when the dopant molecule carries the charge carriers within the EML. Thus, an optimal design of 

the device structure by tuning the different conditions is necessary. 
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Figure 4.6 PLQY vs. dopant concentration  

Measured in Irppy3:CBP (a) Ir(btp2)(acac):CBP (b) and FIrpic:CBP (c) and FIrpic:mCBP EMLs. (Kawamura, et al., 2005) 

 

4.3 Optics of OLEDs  

4.3.1 Optical loss channels 

 A significant proportion of photons emitted within an OLED is trapped in an optical 

microcavity structure due to the optically dense organic material and glass substrate compared to 

the air. Also, light is trapped in the metal cathode-organic interface due to the strong interaction 

between photons and electrons at the metal surface, which are also known as ‘polaritons.’ The 

generated photons couple into different optical modes depending on their propagation direction as 

shown in Fig. 4.7a.  

 

Figure 4.7 Optical loss channels in OLEDs and their power distribution. 

(a) Schematic illustration of different optical loss channels in OLEDs. (b) Modal power distribution of optical loss channels in 

OLEDs as a function of ETL thickness.  
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Air modes are the photons emitted to the viewing direction, which consist of only ~20% of 

the generated light power for conventional glass substrates. Fig. 4.7b illustrates the significance of 

outcoupling schemes to improve the performance of OLEDs. Substrate modes are trapped in the 

substrate due to the total internal reflection (TIR) at the glass-air interface. Substrate modes are 

efficiently outcoupled by structuring the glass-air interface using microlens arrays [73–75] and 

other methods [75,76]. Photons emitted at larger angles than substrate modes couple into 

waveguide modes, confined within the high refractive index active organic and transparent contact 

layers. Photons can also couple into lossy surface plasmon polariton (SPP) modes at the metal 

contact [77], where they are trapped at the organic/metal interface. 

 

4.3.2 In-plane wavevector 

 An OLED is a multilayer stacked dielectric waveguide as shown in Fig. 4.8a [78], thus the 

propagation direction of a wave varies depending on the refractive index of the layer. Therefore, a 

quantity which remains constant regardless of the layer properties is required, which is the in-plane 

component of a wavevector. A wavevector is a quantity associated with the momentum of the light, 

carrying information about the medium in which the wave propagates as well as the propagation 

direction as, 

2p n
k




                                                         (4.6) 

where p is the momentum of a traveling wave, n is the refractive index of the layer, and λ is the 

wavelength. Then the in-plane wavevector is: 

0
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where θ is the angle of light propagation with respect to the interface normal. The magnitude of 

the in-plane wavevector contains information about the propagation angle and remains constant 

regardless of the propagation medium according to the boundary conditions dictated by Maxwell’s 

equations. Therefore, a dispersion diagram with respect to the in-plane wavevector can be plotted 

as shown in Fig. 4.8b.  

 

Figure 4.8 In-plane wavevectors in OLEDs. 

(a) Schematic illustration of multilayer stacked OLED with propagating waves. (b) Dispersion diagram for a bottom emitting 

OLED. (Salehi, et al., 2019) 

 

In the dispersion diagram, the four different modes -- air, substrate, waveguide and surface 

plasmon polariton -- are shown. The air, substrate, and waveguide modes are waves propagating 

with in-plane wavevectors between 0 and k0, k0 and nglassk0, nglassk0 and norgk0, respectively, 

whereas the SPP modes are waves with in-plane wavevectors larger than norgk0. As such, the 

refractive index of each layer plays a role determining how the light emission power is 

distributed [78].  

 

4.3.3 Mode analysis for waveguide and SPP modes 

 The spontaneous emission rate of an emitter follows Fermi’s golden rule as [21] 

 
22

ij ij ijM


                                                          (4.8) 
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where Γ is the transition rate between the excited state (i) and the lower energy state (j) of the 

emitter, M is the coupling rate between the initial and final states depending on the perturbing 

Hamiltonian that causes the transition, and ρ is the density of photonic states at the transition 

frequency, ν. The coupling rate, M, is mostly dictated by the material character of an emitter or the 

film morphology such as the oscillator strength and TDM orientation whereas the photonic density 

of states is usually managed by the properties of the optical microcavity (Purcell effect). Therefore, 

optimizing the optical microcavity plays a significant role in device performance by determining 

the decay lifetime of excitons and affecting the waveguide mode environment. 

Waveguide modes appear due to the interference of the propagating waves, therefore only 

a certain number of modes, satisfying the standing wave conditions in the z-direction, are 

supported by the optical microcavity as shown in Fig. 4.9. The lowest frequency of a wave that 

exist in a slab waveguide is known as the cutoff frequency. This discrete nature of waveguide 

modes differs from the continuous substrate modes. The difference occurs from the thin slab of 

the waveguide mode, enabling the light reflected from the top and bottom interfaces to interfere 

with each other as a Fabry-Perot Etalon. Also, due to the different interference environment, the 

two different polarizations, transverse electric (TE) and transverse magnetic (TM) modes show 

different eigenmodes within the waveguide. Therefore, the TE and TM modes should be treated 

separately. 
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Figure 4.9 Waveguide modes 

(a) Schematic illustration of wave propagation in a slab waveguide. (b) Field distribution in the slab waveguide. (Adapted from G. 

Lifante, Integrated Photonics Fundamentals) 

 Surface plasmons are quanta describing the longitudinal oscillation of free electrons at the 

metal surface. These are transverse magnetic in character, and the generation of surface charges 

by the oscillation requires an electric field perpendicular to the surface as shown in Fig. 4.10a. 

Thus, only light with TM (p) polarization is coupled into SPP modes. The dispersion of SPP modes 

is strongly dependent on the permittivity of the metal and the dielectric material as, 

0
d m
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d m

k k
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 



                                                       (4.9) 

where εm and εd are the frequency-dependent permittivities of the metal and dielectric materials, 

respectively. The in-plane wavevectors of SPs are usually larger than the dielectric, leading the 

SPP modes to be non-radiative. Thus, as shown in Fig. 4.10b, the field in the z-direction is 

evanescent, preventing the power from propagating away and strictly confined within the surface, 

causing it to be the most challenging loss channel in OLEDs to overcome. A method to eliminate 

the SPP losses in OLEDs is discussed in Appendix B.  
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Figure 4.10 Surface plasmon polariton modes 

(a) Schematic illustration of SPP mode propagation viewed at the plane of incidence. (b) Field distribution of SPP modes. δ is the 

decay length of the field, where δd is the order of half the wavelength of light involved, whereas δm is determined by the skin depth 

of the metal. (Barnes, 2003) 

 

 In the far-field regime, light with an in-plane wavevector greater than the magnitude of the 

wavevector in free space (κ > k0) is evanescent in nature. This is shown in the dispersion diagram 

as the in-plane wavevector of SPPs being larger than the same frequency light in the dielectric as 

shown in Fig. 4.8b. Therefore, momentum matching techniques such as prism or grating coupling 

are required to couple the far-field light into SPP modes. As a result, the light emitted from an 

OLED in the far-field regime does not couple into SPP modes, and does not contribute to the 

efficiency loss. However, when an excited molecule is in close proximity (scale of emission 

wavelength, λ), the evanescent field of the SPP reaches the molecular dipole oscillator as shown 

in Fig. 4.11a, thus the dipole impart the emissive power into the SPP mode. For a dipole located 

near a planar surface, a wide range of in-plane wavevector exists as shown in Fig. 4.11b. Thus, the 

light with in-plane wavevector of κ > k0 exists when the dipole is located very near to the metal 

surface, satisfying the momentum conservation, enabling the dipole to couple into inaccessible 

modes in the far-field, e.g. SPP modes [79]. Therefore, the excited state molecule dissipates its 

energy via the optical near-field coupling into the SPP modes.  
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Figure 4.11 Dipole field coupling with the SPP mode in the near-field regime 

(a) Surface plasmon mode magnetic field intensity across the organic multilayer stack with different refractive indices, n. The SPP 

mode propagation length, δ, is shown as well. (Qu, et al., 2017). (b) Electric field lines of an electric dipole in the near-field regime. 

The broken line indicates the surface plane interface. The wavevector near the interface in this case is not a one component. 

(Barnes, 1998) 
 

The extent of this near-field coupling into the SPP mode exponentially decreases with the 

distance of the dipole emitter to the metal surface, therefore a thicker ETL suppresses the 

outcoupling efficiency losses caused by the SPP mode coupling as shown in Fig. 4.7b. However, 

the number of supported modes within a slab waveguide increases with the film thickness, causing 

an increased outcoupling efficiency loss into the waveguide mode. 

 

4.3.3 TDM orientation and optical power loss 

The TDM orientation of an emitting molecule is a different way to avoid the SPP mode 

coupling losses. By orienting the TDM horizontally, i.e. parallel to the substrate plane, the coupling 

losses into the SPP modes are significantly suppressed since only TM polarized light is allowed to 

couple into the SPP mode. This is shown by the simulated power dissipation spectra for three 

orthogonal TDMs in a prototypical OLED with the device structure in Fig. 4.12. As shown, the 

vertical (pz) TDM dissipates most of its power into the SPP mode, whereas the horizontal TDMs 

(px, py) distribute their power into various optical modes.  
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Figure 4.12 Modal power distribution of different TDMs 

Simulated power dissipation of prototypical OLED in each mode for horizontal TDMs (a, b) and vertical TDM (c). The x, y axis is 

parallel to the substrate plane whereas the z-axis is orthogonal to the plane. Zone 1,2,3 and 4 refer to air, substrate, waveguide 

and SPP mode, respectively. (d) Device structure of the OLED used for the simulation. (Brütting, et al., 2013) 
 

The simulated power dissipation of the TDMs with perfect horizontal and vertical 

orientations with respect to the substrate plane are shown in Fig. 4.13. As expected from Fig. 4.12, 

the light power coupled into SPP mode is significantly increased for a vertically aligned TDM than 

the horizontal case. The amount of light power coupled into the waveguide mode is also highly 

dependent on the polarization, increasing with the fraction of vertically aligned TDMs since the 

light power emitted by the TDM is focused in the direction perpendicular to the charge transfer 

vector, as shown in Fig. 4.14. Therefore, the light coupled into the waveguide mode for a vertically 

oriented TDM is approximately twice of a horizontally aligned TDM for an OLED with thick 

ETLs (> 200nm), as shown in Fig. 4.13. As a result, the outcoupling efficiency of a TDM with a 

perfect horizontal orientation is enhanced by roughly a factor of 1.5 compared to the randomly 

aligned TDM [70]. This result emphasizes the importance of suppressing the fraction of a 

vertically aligned TDM for improving the OLED performance. Specific methods to increase the 

fraction of horizontally aligned TDMs will be discussed in Chapter 7. 



 75 

 

Figure 4.13 Modal power distribution of different TDMs 

Simulated modal power dissipation for (a) perfect horizontal and (b) vertical TDM orientation with respect to the ETL thickness. 

The quantum yield for both cases was set to be 100%. (Brütting, et al., 2013) 

 

 

Figure 4.14 Varied light trapping with TDM orientation 

Schematic illustration showing varied light trapping in the optical waveguide depending on the TDM orientation. (Yokoyama, 

2011) 
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Chapter 5 Using Fourier Plane Imaging Microscopy for Determining 

Transition Dipole Moment Orientations in Organic Light Emitting Devices 

 

The orientation of molecules affects various aspects of an organic film as discussed in 

Chapter 3.3 [36,47,80–82]. Therefore, a number of methods have been proposed to reveal the 

orientation of molecules within the organic thin films, although many entail complex experimental 

setups and may lack the sensitivity required for a given application as mentioned in Chapter 

3.2.3.1 [83–85,26–28]. Recently, Fourier plane imaging microscopy (FIM), which is a class of 

fluorescence microscopy measuring the angular emission intensity distribution from the film, has 

been used to identify the orientation of the emissive TDM in various materials [29–31,86–92]. In 

FIM, a large proportion of the light emitted into the substrate is simultaneously collected by the 

objective lens, and imaged by a 2D charge coupled device (CCD), resulting in a dramatically 

reduced measurement time and improved precision compared to conventional 1D scanning 

methods [26].  

 

5.1 Introduction 

In this chapter, we use FIM to determine the TDM orientation for different luminescent 

dopants used in the OLED EML. We present an optical model to interpret the FIM polar images 

following the dyadic Green’s function method in cylindrical coordinates that is based on the dipole 

model of Chance, Prock and Silbey (CPS)  [93]. The method determines the Poynting vector within 

a birefringent medium, from which we obtain the angular intensity distribution that reveals the 
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TDM orientation. The dipole model is an extension of previous work [94] that includes 

consideration of birefringent media commonly used in organic electronic structures. The 

cylindrically symmetric solution is compact, and enables straightforward application to stratified 

birefringent multilayers. We validate our model by measuring the orientation of three emissive 

dopants: Ir(ppy)3, Ir(ppy)2(acac) and (MAC)CuCz doped in CBP, and compare the FIM data with 

the outcoupling efficiency from the OLEDs incorporating these same emissive layers.  

 

5.2 Theory of the optical model for analysis 

 

Figure 5.1 Illustrations for understanding Fourier plane imaging microscopy. 

(a) Calculated electric field of an oscillating dipole whose TDM is at angle, θ, relative to the substrate normal. The wave vector, 

k0, and its in-plane component, κ, are shown. (b) Geometries for the Fourier transform operation of a Fourier lens. (c) A stratified 

multilayer structure used for the optical calculation defining the various wavevectors (κ, k, u, v), coefficients of the travelling wave 

eigenfunctions (c, f) and dielectric components (ε) in each layer. The subscripts s and l denote the source and arbitrary layer within 

the multilayer, respectively. (d) A schematic showing how FIM pole plot is obtained from a point dipole. The two orthogonal planes, 

sPP and pPP, are defined by the linear polarizer. 
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Light emitted from a dopant molecule has a dipole radiation pattern shown in Fig. 5.1a, 

allowing for identifying its orientation from its angular emission profile. The analysis is done by 

decomposing the light intensity from different directions, characterized by the in-plane wave 

vector, κ = k0·n·sinθ, where k0 is the wave vector in free space, n is the refractive index of the 

medium, and θ is the angle between the substrate normal and the propagation direction.  

Fraunhofer and Fresnel approximations are used for analyzing diffraction patterns at 

different distances from the source to the image plane. The Fraunhofer approximation simplifies 

the calculations due to the suppressed phase factor, however, it can only be applied at large 

distances from the source [95]. The Fraunhofer approximation can be used at small distances, 

however, by placing a Fourier lens between the source and the image plane that transforms a 

parabolic wave in the near-field into a plane wave. Fourier plane imaging, also known as back-

focal plane imaging, decomposes an image into the weighted sum of its plane wave components. 

Placing the source in the front focal plane of a Fourier lens as in Fig. 5.1b results in a Fraunhofer 

diffraction pattern of the input field in the back focal plane described by:  [95] 
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where ρ, ϕ and r, φ are the polar coordinates of the front and back focal planes, respectively. U0 

(ρ, ϕ) and Uf (r, φ) are the input and output intensity distributions, respectively, f is the lens focal 

length, d is the propagation distance, λ is the wavelength, F0 (kρ, φ) is the Fourier transform of the 

input function, U0 (ρ, ϕ), and kρ (=κ/k||) is the normalized in-plane wave vector in the front focal 

plane with kρ = 
1

2𝜋
 k0 sin θx ≈ r/λf  for paraxial plane waves when ϕ = φ. Note that Uf (r, φ) is a 

Fourier transform of the input function in k-space, with a quadratic phase factor, m(r). Here, m(r) 
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is a complex number for d ≥ f. Thus, the phase curvature disappears for the sample plane at d = f, 

resulting in an output function in the back focal plane of the Fourier transform of U0 (ρ, ϕ). 

In Eq. (5.1), F0 (kρ, φ) corresponds to the far-field angular profile of a point dipole. Here, 

we follow the formulation of the CPS model [93] and previous work [94] to derive F0 in a 

birefringent medium using dyadic Green’s functions for the multilayer reference structure in Fig. 

5.1c. The use of a dyadic Green’s function assumes cylindrical symmetry of emission from a dipole 

source. This enables a compact solution compared to previous scattering matrix methods [96,97]. 

The dipole source at the origin, ξ’ = (0, 0, 0), is embedded in the sth layer, with either a vertical or 

horizontal orientation. We assume all layers are uniaxial with a complex dielectric tensor, εl : 

e
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where εlh, εlv are dielectric eigenvalues of the lth layer in the ordinary, extraordinary directions, 

respectively. The system is isotropic when εlh = εlv. Here we assume a lossless source layer, i.e. εs 

= Re[εs]. The subscripts l and s represent variables or constants in the lth and the source layer. The 

electromagnetic wave can be decomposed into TE and TM modes (s- and p-polarizations). The 

dispersion relations for both polarizations are: 
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where ul and vl are the substrate-normal wavevectors of the TE and TM modes. The dipole source 

is characterized by an oscillating current with unit strength following: 
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where ω is the oscillation frequency, p0 is the dipole vector, G(ξ, ξ’) is the dyadic Green’s function 

and J(ξ) is the current density. To evaluate the time-harmonic electromagnetic wave in a stratified 

anisotropic structure, we consider the dyadic Green’s function of a dipole source embedded in an 

infinite anisotropic medium as described in  [98]: 
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where ε-1 is the inverse of dielectric tensor, 2 2
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the Sommerfeld identity [99], we expand the non-zero electric field components into cylindrical 

waves: 
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where 0

2 2 2 2

0 00,lh lh lv lvk ω μ ε ε  k ω μ ε ε  , 𝑝0
∥  and 𝑝0

⊥  are the horizontal and vertical dipole moment 

components, and the source terms are indicated by δls. The result becomes identical to the optically 

isotropic system when εlh = εlv [94].  

The coefficients of the top (-z) and bottom (+z) traveling eigenfunctions (M and N in CPS 

model [93]), cl, fl and cl’, fl’, are determined by the boundary conditions of Maxwell’s equations 

as: 
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where 𝑧0𝑙 is the z-coordinate of the interface between the lth and (l+1)th layer. The source terms are 

omitted for simplicity. With the relations in Eq. (5.7), the coefficients are obtained via numerical 

calculations as described by Celebi, et al. [24]. With the coefficients determined, energy transfer 

into different layers is obtained by calculating the time-averaged divergence of the Poynting vector 

normalized to the dipole decay rate [93]: 
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or: 

  
  0

'
1 1

'

ξ

ξ

 
    

  

p E

p E

Imb
q q

b Im
 ,                                            (5.9) 

where b (b0) is the exciton decay rate in an optical cavity (free space), 𝐄∞(𝛏′) is the electric field 

with a dipole embedded in an infinite anisotropic source layer in free space, 𝐄(𝛏′) is the electric 

field with a dipole embedded in a source layer that is in a stratified cavity structure, and q is the 

radiative quantum yield. Birefringence is calculated by expressing b separately for substrate-

parallel and normal orientations. The total decay rate is obtained by the weighted average of the 

two decay rates:  



 82 

 1tot hor horb b b       ,                                              (5.10) 

Next, we calculate the divergence of the normalized Poynting vector. Assuming the structure is 

infinite in the x-y plane, we get [94]:  
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where the superscripts + and - denote the forward- (+z) and backward- (-z) propagating energy 

flux through the bottom and top interfaces of the lth layer, respectively. Defining / shk k   as the 

normalized surface-parallel wave vector, we calculate the normalized perpendicular components 

of the Poynting vector by inserting the electric field into Eq. (5.11). Integrating over x-y and 

applying the Bessel function closure relation, we get: 
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which becomes identical to the result in isotropic medium when εlh = εlv [94].  

Then, 
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where F0,⊥ and F0, || correspond to the field intensity for substrate-normal (⊥) and -parallel (∥) 

dipoles, which corresponds to the Fourier transform of the input photoluminescence as previously 
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shown in Eq. (5.1). Unlike the angular spectrum of a point source which has a tangential 

relationship (u/kρ or v/kρ) between the Poynting vector and the field intensity, 1/kρ appears in Eq. 

(5.13). This difference stems from the detection of FIM using a planar CCD, where Lambert’s 

cosine law does not apply. The fraction of energy transferred from the source to each layer is 

obtained by integrating Re[Sl,z(kρ)] for all kρ and then dividing by the corresponding decay rate 

b/b0.  

The lens projects a polar plot in the back focal plane with an angle of in-plane rotation, φ, 

as shown in Fig. 5.1d. Molecules deposited during layer growth often lack an in-plane rotational 

(φ) preference. Thus, the output intensity distribution in the focal plane shows an in-plane 

symmetry. Placing a linear polarizer in front of the back focal plane breaks the symmetry, leading 

to an improved fitting accuracy of the polar intensity information to Eq. (5.13). Then we define 

two orthogonal planes, one parallel (blue plane, Fig. 5.1d) and the other perpendicular (red plane) 

to the polarizer, defined as p-polarized (pPP) and s-polarized (sPP) dipole planes, respectively. As 

shown in Fig. 5.1d, pPP includes vertically and horizontally aligned TDMs relative to the substrate, 

whereas sPP includes only one horizontally aligned TDM. The projected k-space image in the back 

focal plane then follows the cosine square law of a linear polarizer:  
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5.3 Experimental methods 

Films for Fourier plane imaging microscope measurement were grown on pre-cleaned 0.2 

mm thick fused silica substrates by VTE in a chamber with a base pressure of 1 × 10-7 torr. The 

deposition rates of the molecules were adjusted to achieve the desired dopant concentrations in the 

host, and the film thicknesses were controlled using quartz crystal thickness monitors. We 



 84 

deposited a 50 nm thick Al marker on the samples to precisely focus the microscope on the film 

on the front focal plane. Following the deposition, devices were encapsulated using an epoxy seal 

around the edge of a cover glass in a N2 environment.  

The Fourier microscope consists of two parts, (i) an inverted fluorescence microscope 

comprising a 325 nm He-Cd continuous-wave laser with an inverted microscope (Olympus IX73), 

and (ii) a system of optical components comprising a Fourier lens (Thorlabs), optical filters, a 

linear polarizer, and a 1024×1024 CCD array (Princeton Instruments). The photoluminescence of 

the sample was coupled through an oil immersion objective (×100, NA=1.40, Olympus). The 

Fourier lens (f = 300 mm) reconstructed the Fourier image plane on the CCD. A long-pass filter 

was used to prevent the reflected laser beam to be incident on the CCD, while a filter with the pass 

band near the peak wavelength of the dopant photoluminescence was also placed in the optical 

path. A linear polarizer separates the emission into two the orthogonal planes corresponding to the 

pPP and sPP modes. To suppress imaging artefacts in the high-k region, the k-space fitting in pPP 

was performed over a limited range of -1.1 < kx/k0 < 1.1 [29,86,87,100].  

OLEDs were grown on 1 mm thick cleaned glass substrates with a pre-deposited, patterned 

150 nm-thick ITO layer (Thin Film Devices, Inc.). Prior to film deposition by VTE, the ITO-coated 

substrates were treated in a UV-ozone chamber for 15 min. CBP, Ir(ppy)2(acac), Ir(ppy)3, TAPC 

and BP4mPy, were purchased from Luminescence Technology, Corp. The device area of 2 mm2 

was defined by the intersection of a pre-patterned 1 mm wide ITO strip and an orthogonal 2 mm 

wide Al cathode strip patterned by deposition through a metal shadow mask. The current density–

voltage (J–V) characteristics were measured using a parameter analyzer (HP4145, Hewlett–

Packard) and a calibrated photodiode (FDS1010-CAL, Thorlabs) following standard 
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procedures [101]. The emission spectra at J = 100mA/cm2 were recorded using a calibrated 

spectrometer (USB4000, Ocean Optics) coupled to the device with an optical fiber. 

 

5.4 Impact of TDM alignment on OLED performance 

 

Figure 5.2 FIM results from the three dopants.  

Measured pole plots (a-c) and intensity profiles in the pPP and sPP (d-f, data points), along with the simulated fits (solid lines) for 

Irppy2(acac) (a, d), Irppy3 (b, e), and (MAC)CuCz (c, f) doped at 10 vol.% into a CBP host. Insets: Molecular structural formulae 

of each dopant. 

 

Figure 5.2a-c show measured intensity patterns for thin films comprising Ir(ppy)2(acac), 

Irppy3 and (MAC)CuCz doped at 10 vol.% into a CBP host matrix. The measured pPP and sPP 

intensity profiles compared with the simulation fits in Fig. 5.2d-f show a horizontal and isotropic 

orientation of the TDM respect to the substrate from Ir(ppy)2(acac), and Ir(ppy)3 doped in CBP 
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(θhor = 73 ± 1% and 66 ± 1%), respectively, which are consistent with previous 

measurements [37,40,102], whereas (MAC)CuCz in CBP shows a relatively vertically aligned 

TDM (θhor = 55 ± 1%) as shown in Fig. 5.2f.  

 

Figure 5.3 Transition dipole orientation measurement in a birefringent host matrix.  

Refractive index of (a) CBP, and (b) TCTA. Here no and ne are the indexes of refraction along the ordinary and extraordinary 

optical axes, respectively. Measured intensity profiles of Ir(ppy)2(acac) doped in (c) CBP  and (d) TCTA at 10 vol.%. Note that 

there is an error in the orientation measurement of 2% for CBP and 4% in TCTA with its larger birefringence. 

 

Ir(ppy)2(acac) is doped in a birefringent host in Fig. 5.3, tris(4-carbazoyl-9-ylphenyl)amine 

(TCTA), to show the effect of an anisotropic medium on the emission. The measured refractive 

index of CBP and TCTA are shown in Fig. 5.3a and 5.3b, demonstrating a larger birefringence of 

TCTA. The FIM intensity patterns in pPP for CBP and TCTA hosts are shown in Fig. 5.3c and 

5.3d. Two different fit results based on isotropic and anisotropic media are used to compare each 

measurement, showing an increased discrepancy when assuming an anisotropic dielectric constant 

for TCTA compared to the CBP host matrix.  
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Figure 5.4 Performance of OLEDs with the three dopant emitting molecules in Fig. 5.2.  

(a) Frontier orbital energies of the materials in eV. The electroluminescence spectra (b), current density-voltage (J-V) 

characteristics, (c) and the current density vs. external quantum efficiency (J-ηEQE) characteristics (d) of the OLEDs. 

 

OLEDs comprising these dopants were fabricated with the following structures: Al 100 nm 

/ LiQ 1.5 nm / BP4mPy 50 nm / CBP: Dopant (10 vol.%) 15 nm / TAPC 40 nm / MoO3 2 nm / 

ITO 150 nm. Figure 4a shows the frontier orbital energies for the OLEDs, and Fig. 5.4b shows the 

corresponding OLED electroluminescent spectra. The J-V characteristics of the devices in Fig. 

5.4c show negligible differences due to the identical device structures. The peak EQE in Fig. 5.3d 

is approximately 1.3 times higher for Ir(ppy)2(acac) than (MAC)CuCz. 
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Figure 5.5 Measurement evaluation. 

Calculated distribution of the emitted power into different modes depending on the average orientation of the TDM within the 

emissive layer. The data points show the measured and simulated ηEQE of the OLEDs comprising different dopant emitters. The 

simulated points are based on FIM measurements of the dopant molecule orientations relative to the substrate. The color bands 

indicate the proportion of light power coupled into each mode. 

 

In Fig. 5.5, the simulated coupling efficiency of each mode as a function of θhor at 530 nm 

is compared with the measured peak EQE of the OLEDs (data points). Here, the simulated fraction 

of the emitted light power coupled into each mode is shown along the vertical axis. The fraction 

of air and substrate mode coupling increases with θhor, whereas coupling to SPP mode decreases.  

The external quantum efficiency of an OLED is given by: 

EQE int out ST PL out                                                   (5.15) 

where ηint is the internal quantum efficiency, which is the ratio of the number of photons generated 

to the number of injected charges. The internal efficiency is the product of the charge balance 

factor (γ), spin formation ratio (χST), and photoluminescence quantum yield (ηPL). The χST is 100% 

for electrophosphorescent (PHOLED) and TADF devices. Also, ηout is the outcoupling efficiency, 

which is the fraction of photons coupled into air modes vs. the total number of photons generated. 

 The Ir-based PHOLEDs and the (MAC)CuCz TADF OLEDs in Fig. 5.4 have identical 

device structures. The J-V characteristics in Fig. 5.4c show no noticeable differences since the 

energy levels of all dopants are nested in the host matrix energy gap, thus experiencing similar 
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charge transfer efficiencies from host to dopant. Therefore, we conclude that the three devices 

have similar γ. Also, ηPL > 90% for all three molecules [40,72,103], leading to nearly identical ηint. 

However, the EQE in Fig. 5.4d shows noticeable differences from device to device, reaching 

approximately 1.3 times higher for the Ir(ppy)2(acac) device compared to the (MAC)CuCz OLED.  

From the above, the relative differences of EQE between the dopant molecules can, 

therefore, be attributed to differences in outcoupling efficiency resulting from variations in TDM 

orientation. The coupling into different modes as a function of TDM orientation is simulated in 

Fig. 5.5. The vertical TDM emits TM polarized light primarily in the substrate-parallel direction. 

Therefore, the majority of power from the vertical TDM is coupled to either SP modes, or 

waveguide and substrate modes, depending on the ETL thickness that determine the distance 

between the metal cathode and the emitting dipoles. A thin ETL results in a larger fraction of 

power to be coupled to SP modes due to near-field coupling. Consequently, the fraction of light 

coupled into air modes decreases with an increasing fraction of vertically oriented TDMs as shown 

in Fig. 5.5. The simulation shows peak outcoupling efficiencies of 24.8%, 22.4% and 18.7% for 

OLEDs with θhor = 73%, 66% and 55%, respectively. Assuming γ  = χST = 100% and ηPL = 90% 

for the three dopant molecules  [40,72,103], the simulated ηEQE =  22.3% , 20.2% and 16.9%, which 

corresponds to the experimental result, ηEQE = 22.8 ± 0.7%, 19.2 ± 0.6% and 15.1 ± 0.9%.  

 

5.5 Conclusion 

 We combine the CPS dipole model with Fourier optics to describe the far-field radiation 

distribution pattern in the back focal plane of a converging lens originating from a light emitting 

point dipole within a stratified birefringent thin film. By comparing the measured emission pattern 

using Fourier imaging microscopy with simulations, we determine the average orientation of the 
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TDM vectors within an organic film. We apply this technique to measure the TDM orientations of 

three different molecules, namely Ir(ppy)2(acac), Ir(ppy)3 and (MAC)CuCz doped into a CBP host 

matrix. The OLED outcoupling efficiencies agree to within experimental error with that obtained 

using FIM. This technique can be used to understand and optimize light outcoupling in a variety 

of materials systems and device structures. 
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Chapter 6 Nanoscale Morphological Mapping of Organic Thin Films 

 

 

As discussed in Chapter 3, understanding morphology is fundamental to revealing the 

structure-property relationships of solids [104,105]. Disordered materials are of particular interest 

since their morphology is rarely in the lowest energy, equilibrium state, and hence can be complex 

and metastable, or even unstable over time [17,106]. Organic molecular solids, which are the 

foundation of a large range of devices such as OLEDs and OPVs, are particularly important 

members of the class of disordered materials since they are bonded by relatively weak vdW 

forces [19]. For this reason, considerable work has been done to develop methods for revealing 

their morphologies, including reciprocal and real space measurements from X-ray [107], electron 

and light sources [26,108,109], and scanning probe microscopies [110,111]. Unfortunately, the 

access to detailed bulk or interface structures using these techniques has been limited by the 

spatially averaged information of the bulk, the potential damage that they inflict on the sample due 

to physical contact or by high energy probe beams [112], their difficulty of use and complexities 

in data analysis, or their shallow probing depth.  

 

6.1 Introduction 

In this chapter, we reveal the detailed nanoscale morphology within archetype organic 

electronic thin films using FIM, which is a class of fluorescence microscopy that has been used 

for detecting emissive transition dipole orientations in various materials [29–31,86–88,90–
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92,113]. Advantages of fluorescence microscopy arise from a wide selection of dye molecules 

available for tagging the structural elements, highly sensitive and position-dependent 

measurement, and the opportunity to monitor dynamic processes in real time. With an appropriate 

selection of dye molecules and analysis techniques, determining the local film morphology is 

possible. By depositing phosphorescent dye molecules at strategic positions within a host organic 

thin film, their luminescence provides high resolution, depth and area-dependent structural maps 

of the host. The FIM-plus-dye molecule combination is used to create 3D morphological maps of 

changes arising from thermal annealing in a stacked bilayer film, and at the interfaces. The volume 

resolution of the measurements is limited by the flatness of the predeposited film and the ability 

to accurately determine layer thickness during deposition in the direction normal to the film plane, 

and has a resolution of approximately half the visible wavelength (~200 nm) within the plane. 

Therefore, an Ångstrom-level resolution in the depth axis can be achieved for an ideal case, with 

precise deposition and measurement techniques, and a flat surface. 

 

6.2 Experimental Methods 

6.2.1 Sample preparation 

Films are grown on pre-cleaned, 0.2 mm thick fused silica substrates (Technical Glass 

Products) by vacuum sublimation in a chamber with a base pressure of 1 × 10-7 torr. The 30 nm 

thick films were deposited at 0.5 Å/s, and ~1 Å thick MSLs were deposited at 0.1 Å/s. The 

deposition rate and film thicknesses were controlled using a quartz crystal thickness monitor. A 

50 nm thick Al fiducial mark was deposited on the sample surface to aid in precise focusing. 

Following deposition, devices were encapsulated using an epoxy seal around the edge of a cover 

glass in a N2 environment.  
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6.2.2 Optical measurement 

The Fourier microscope consists of a 532 nm wavelength, continuous-wave laser, an 

inverted microscope (Olympus IX73), optical filters, a linear polarizer, a Fourier lens (Thorlabs) 

and a 1024×1024 CCD array (Princeton Instruments). The sample was placed at the front focal 

plane of the Fourier microscope. Both the excitation laser beam and photoluminescence from the 

sample were coupled through an oil immersion objective (×100, NA=1.40, Olympus) to extract all 

glass modes. The lens with a focal length of 300 mm was used to reconstruct the Fourier image 

plane onto the imaging CCD. A 550 nm long-pass filter was used to reject the reflected laser beam, 

and a filter with a pass band near the peak wavelength of the sensor molecule photoluminescence 

(650 nm for PtOEP) was placed in the optical path. A linear polarizer was used to select the 

emission along the orthogonal pPP and sPP planes. The k-space fitting of pPP modes was 

performed over the domain, -1.1 < kρ < 1.1, to minimize imaging artefacts in the high-k region [29]. 

The linear polarizer was removed for the measurement when capturing the in-plane (azimuthal) 

pattern was required.  

 

6.2.3 Optical simulation 

The pole plot simulations in Fig. 6.1 are calculated based on the dyadic Green’s function 

in a birefringent medium with the model presented elsewhere [113]. The film structure used for 

the simulation is 30 nm CBP (Fig. 6.2), and 30 nm CBP / 30 nm TPBi (Fig. 6.3) on glass with 

refractive indices at λ = 650 nm corresponding to the peak emission wavelength of PtOEP. The 

dipole depth position is assumed to be in the center of the CBP layer in Fig. 6.2, and as defined in 

Fig. 6.3a.  
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6.2.4 X-ray diffraction measurements 

X-ray measurements for thin film samples were made in the Bragg-Brentano geometry 

using the Cu-Kα radiation source operated at 40kV and 44mA in a Rigaku Ultima IV X-Ray 

Diffractometer. 

 

6.3 Concept of using morphological sensing layer with Fourier imaging microscope 

 

Figure 6.1 The morphological sensing layer concept.  

(a) The red dashed line box shows a schematic of the fluorescence microscope, and the black box shows the imaging system. Polar 

images (center) at different polarizations (shown by arrows) corresponding to the emission due to orientation of the dye molecules 

in the MSL (red ovals, illustration to right) in the morphology of the host matrix (green ovals). (b) Molecular structural formulae 

of PtOEP and CBP. Due to its square planar D4h symmetry, PtOEP has two orthogonal TDMs. 
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Morphology measurements comprise two parts, dye sensor layer placement followed by 

polarization and spatially sensitive optical observation of the dye emission pattern. We start by 

depositing a sub-monolayer (<1Å) of dye molecules, called morphological sensing layers (MSLs), 

at a desired position in the film under test, as illustrated in Fig. 6.1a. With an appropriate selection 

of dye molecule, the orientation of the TDMs of the population is correlated with its environment, 

thus revealing the morphology at the deposited position [45]. In this work, red emitting PtOEP is 

used for the sensor molecule. This is a square, dihedral Pt-complex with a 4-fold symmetry (D4h 

symmetry). We use the technologically significant CBP as the material under study due to its well-

known structure, film forming properties, and low Tg that enables a facile change of morphology 

via thermal annealing [102,105]. 

The MSL orientation is determined using FIM images that are highly sensitive to the 

orientation of the radiative TDM relative to the substrate plane [29,86]. The FIM comprises two 

parts, a fluorescence microscope and a system of lenses that capture the angular dependence of the 

emission in a spatial image acquired in a single shot by a CCD image sensor. The optical pump of 

the fluorescence microscope locally excites the MSL, as shown in Fig. 6.1a, and the 

photoluminescence of the dye molecules is incident on the CCD array through the objective lens. 

The incident photoluminescence is transformed by placing the CCD at the Fourier plane of the 

lens, resulting in a k-space pole plot at the image plane. The orientation of the dye molecules is 

determined by comparing the obtained pole plot with a simulation based on a dipole model using 

dyadic Green’s function analysis [113].  

We show simulated pole plots in Fig. 6.1a corresponding to θhor from 33% to 100% 

(simulation details in Methods). The pole plot is a graph showing the photoluminescence intensity 

at different angles.  
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The direction of each emitted wave is described by the in-plane wavevector, κ = k0·n·sinθ, 

where k0 is the free space wave vector, n is the refractive index of the medium, and θ is the angle 

between the substrate normal and the propagation direction. The CCD is a 2-dimensional array 

that can be used to decompose κ into two orthogonal wavevectors in each coordinate, κx and κy. 

The region bounded by 0 ≤ kρ ≤ nair (nair = 1.0), where kρ is the normalized in-plane wave vector 

(kρ = κ/k0), corresponds to the air modes. The substrate modes occur for higher in-plane wave 

vectors, nair ≤ kρ ≤ nglass (nglass ≈ 1.5). A linear polarizer (whose directions are indicated by arrows 

in the bottom-left corners of the simulations) is used to separate the emission in the two orthogonal 

planes, corresponding to p-polarized (pPP) and s-polarized (sPP) planes. These are indicated with 

horizontal and vertical dashed cross-hairs, respectively. The orientation of the sensor molecule 

(defined by θhor) is determined by comparing the measured emission intensity profile (I) in pPP to 

the weighted sum of the simulated p-polarized dipoles aligned horizontally (phor) and vertically 

(pver) to the substrate plane, as follows [40], 

0 0 0( / ) ( / ) (1 ) ( / )         x hor p hor x hor p ver xI k I k I k .                        (6.1) 

Here, Ip-hor and Ip-ver are the intensities of the orthogonal p-polarized dipoles for each 

normalized wavevector (κx/k0). Since the dipole emits the majority of its power perpendicular to 

the TDM, Ip-hor (kρ) is dominant in the air modes, whereas Ip-ver (kρ) is prevalent in the substrate 

modes. Therefore, the substrate mode peak intensity in pPP decreases with increasing θhor. In 

contrast, the substrate mode peak intensity in sPP increases with the θhor, as emission from only 

one horizontal dipole is uniformly distributed over all angles in sPP plane. 

PtOEP is a disk-shaped molecule comprising two orthogonal TDMs in the molecular plane, 

as shown in Fig. 6.1b [45]. Therefore, 50% of the emission from a perfectly vertically oriented 

PtOEP molecule is from the horizontally aligned TDM, leading to θhor between 50% and 100%, 
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otherwise θhor = 67% for isotropic (i.e. random) molecular orientation. This misrepresents the 

alignment of PtOEP when compared with a less symmetric molecule that has a single, average 

TDM with θhor ranging from 0% to 100%. For this reason, we remove the contribution from one 

of the two orthogonal TDMs in the PtOEP molecular plane by converting the θhor of PtOEP 

molecules using the transform shown in chapter 6.7. The transformed value is denoted θh-conv. 

 

6.4 Use of morphological sensing layers for single layer systems 

 

Figure 6.2 Morphology investigation of a 30 nm thick CBP film.  

(a) Measured θhor (θh-conv) from the CBP film comprising a sub-monolayer PtOEP MSL in its center, and 10 vol.% PtOEP uniformly 

doped throughout the bulk film. The θhor (θh-conv) from the annealed MSL sample in regions A, B and C are shown in the histogram, 

where the horizontal dashed line indicates isotropic, random alignment (θhor = θh-conv = 0.67). The polar plots from each sample 

are shown at top, with arrows indicating the polarizer direction. (b) Optical micrograph of the 30 nm thick CBP film comprising 

a PtOEP MSL in its center (15 nm from the substrate) annealed at 95°C for 30 min (left) and 3 h (right). Colors of the micrographs 

are added after the measurement for clarity. (c) pPP intensity profile of the as-grown sample, and after annealing in regions A-C. 

Data are shown by points, and fits are indicated by lines (see Methods). (d) XRD pattern of a 30 nm thick CBP film on a sapphire 

substrate before and after annealing. Inset: CBP crystal structure with its (031) plane (blue) oriented parallel to the substrate. (e) 

Optical micrograph of the CBP film with PQIr as the MSL, annealed at 95 °C for 3 h. (f) Measured θhor (θh-conv) of as-grown, 30 

nm thick CBP films comprising a PQIr MSL placed in the film center (MSL), PQIr uniformly doped throughout the bulk at 10 vol.% 

(Bulk 10 %), and of the annealed MSL sample in regions D and E. Inset: Measured p-polarized (pPP) and s-polarized (sPP) planes 

intensity profiles (data points) along with simulated fits (solid lines) from the as-grown MSL sample. The vertical axis shows the 

intensity, and the horizontal axis shows the normalized in-plane wave vector (kρ). Molecular formula of PQIr is shown on the right. 
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Figure 9.2a shows the measured orientation from two samples; one with the MSL deposited 

in the center of a 30 nm thick CBP film, and the other with CBP uniformly doped with 10 vol.% 

PtOEP. Both samples indicate a random orientation as found previously [45,102,105]. The 

negligible difference between the two samples shows that the MSL precisely and locally represents 

the amorphous morphology of the bulk film. We then annealed the CBP film at 95°C, above its Tg 

(62°C) [102] for 30 min, resulting in no visible change in some regions (A) in the optical 

micrograph in Fig. 6.2b, whereas there is evidence of crystallization in regions B. After 3 h, the 

film becomes uniformly crystallized (image C). Figure 9.2c shows the measured intensity profiles 

(data points) along with the simulation fits (solid lines) in pPP, normalized to values at kρ = 0 in 

regions A, B and C. The fits indicate that θh-conv decreases with annealing from 66 ± 1% to 0 ± 

12%, corresponding to a shift from random to principally vertical orientation. XRD patterns in the 

Bragg-Brentano geometry of a 30 nm thick neat CBP film are provided in Fig. 6.2d. These data 

reveal the cause of the decrease in θh-conv in the annealed CBP film. The amorphous, as-deposited 

film lacks X-ray peaks, whereas after annealing, the film shows a distinct (031) peak 

corresponding to vertical alignment of the CBP molecules [114]. This is illustrated in the inset 

showing the orientation of the (031) plane in blue relative to the molecules. In this case, the 

substrate plane is parallel to (031). We conclude that the reduced θh-conv of the PtOEP MSL is a 

result of changes in morphology of the CBP film.  

 Our results demonstrate that the combination of Fourier plane imaging microscopy and 

morphological sensing layers can be used to create high resolution 3D maps of the morphologies 

of vdW-bonded solids. Crystallization features witnessed by PtOEP occur after only a 30 min 

anneal at 95°C (Fig. 6.2b). The energy provided by annealing at T > Tg = 62°C of CBP [102] 

liberates the molecules to form crystallites. In region A, a slight decrease (~10%) of θh-conv is 
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observed due to morphological changes so small that they do not appear in the micrograph, 

showing the sensitivity of the method. The crystallization of CBP molecules is visible in region B, 

corresponding to an additional decrease in θh-conv. After 150 min, uniform crystallization spreads 

across the entire film (region C). The difference in the film appearance between regions B and C 

is not conspicuous, however, θh-conv decreases after 3 h of annealing, demonstrating continued 

morphological changes with time. The (031) plane observed via XRD in Fig. 6.2d shows that the 

CBP molecules in the crystallites formed by annealing are vertically oriented with their c2 axis 

tilted approximately 9‒17° from the substrate normal. This corresponds to θh-conv = 9‒28%, similar 

to the decrease in Fig. 6.2c. Thus, the decrease in θh-conv measured for PtOEP accurately represents 

the change in CBP film morphology. Similarly, in Fig. 6.4c and 4d, the in-plane orientation of 

PtOEP corresponds to the direction of spherulite growth, as illustrated in Fig. 6.4e.  

 

6.5 Criteria of optimum molecules for morphological sensing layers 

The same annealing procedure is followed by using the red emitting sensor molecule, PQIr. 

This pseudo-octahedral molecule features a bulky, tridentate structure. As before, the sample 

comprises a ~1Å thick, sensor layer deposited in the middle of a 30 nm thick CBP film. The as-

grown sample shows a primarily horizontal sensor orientation (θhor = 75 ± 1%). Unlike PtOEP, the 

complete crystallization of CBP does not occur in the presence of PQIr, even after several hours 

of annealing, as shown in Fig. 6.2e. Amorphous regions (D) do not show any change of TDM 

orientation. Indeed, PQIr molecular orientations are randomized even in the crystallized region 

(E), with significantly lower signal intensity than the as-grown sample. The measured θhor from all 

samples are summarized in Fig. 6.2f, showing that PQIr does not clearly describe the structure of 

CBP, in contrast to PtOEP.  
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The measurement precision is, in part, determined by the choice of sensor molecule. This 

is illustrated by comparing the results in Fig. 6.2 for PtOEP and PQIr, respectively. Compared to 

planar PtOEP, pseudo-octahedral Ir-complexes show less orientation dependence on the host 

matrix due to the small π-interactions arising from steric hindrance of their bulky molecular 

structures with the surrounding environment [102,115]. Furthermore, the orientation of 

heteroleptic Ir-complexes with an aliphatic ligand as in PQIr introduce anisotropic interactions, 

and hence anisotropic orientations with the organic surface during deposition, regardless of the 

host matrix composition. [20] This can cause a misrepresentation of the host morphology. 

Furthermore, steric hindrance can impede the ability of the molecules to follow the host 

morphology, and can even interfere with the progress of crystallization of the host. This is shown 

by the micrograph in Fig. 6.2e, where only local CBP crystallization occurs, even after hours of 

annealing above Tg. Amorphous regions (D) show no change in θhor after annealing, demonstrating 

morphological pinning by the PQIr sensors. Indeed, crystallization only takes place when phase 

separation of CBP and PQIr molecules occurs, as in region E. This, in turn, significantly decreases 

the PQIr emission intensity due to concentration quenching in sensor aggregates, and randomizes 

their orientation due to the elevated entropy of PQIr molecules [116]. In conclusion, bulky sensors 

not only misrepresent the morphology of the surrounding environment, but can also impede the 

host matrix from achieving its equilibrium structure. Hence, planar molecules are better suited for 

use in 3D FIM + MSL imaging, whereas doping sterically bulky molecules may improve 

morphological stability of the host even when used in sub-monolayer quantities. Indeed, FIM in 

this case has proven to be a useful tool in selecting molecules, while determining their efficacy in 

stabilizing thin film morphologies. 
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This leads us to identify the following properties of an appropriate morphological sensor 

molecule. It should (i) be intensely emissive at wavelengths distinct from that of the host, (ii) have 

a uniquely defined TDM axis relative to the molecular plane, (iii) be planar to avoid interfering 

with the morphological development of the host solid, and (iv) be symmetric to prevent the sensor 

orientation being driven by the molecular anisotropy [20,46,102].  Following these criteria, planar 

phosphorescent molecules with Dnh symmetry having cyclic conjugated π-systems, i.e. disk-

shaped phosphors or fluorophores, are preferred. Polycyclic conjugated π-systems are sensitive to 

small changes of environment via large π-π interactions [45]. Additionally, it is a simple matter 

for disk-shaped molecules to convert θhor to the average tilt angle of the molecular plane [45]. On 

the other hand, asymmetric planar molecules with one molecular axis larger than the other, i.e. 

with an aspect ratio >1, have distinct edges for a molecule to contact the substrate, causing 

difficulties distinguishing the high θhor either from a flat-lying or an edge-on configuration with 

the TDM axis parallel to the substrate plane. An example is dibenzo-(f,h)quinoxaline (Pt 

dipivaloylmethane)2 in Chapter 7, that shows a horizontally aligned TDM with an edge-on 

configuration to the substrate. The complication becomes even more pronounced when the dye 

molecule has rotary -bonded aromatic chains that randomize the TDM orientation. Therefore, 

metal porphyrins or phthalocyanines are optimal sensing molecules for unambiguous orientation 

assignment.  
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6.6 Use of morphological sensing layers for multilayer systems 

 

Figure 6.3 Imaging the morphology of a bilayer thin film.  

(a) Illustration showing the placement of the PtOEP MSLs within a CBP/TPBi bilayer, with the measured polar plots before and 

after annealing at the right. Molecular formula of TPBi is shown. (b) Measured θhor (θh-conv) of the as-grown samples, and after 

annealing for 3 h. The dashed line indicates isotropic alignment. (c) Optical micrograph of the annealed sample. The red circle 

indicates the area excited by the laser. 

 

We extended the measurement into the vertical (z) axis to obtain depth-related 

morphological data. Five samples are prepared comprising a planar heterojunction bilayer of 30 

nm TPBi and 30 nm CBP, with PtOEP sensing layers placed in different positions in each of the 

various samples, labelled P1-P5 in Fig. 6.3a. All films are annealed at 95°C for 3 h. The pole plots 

in Fig. 6.3a show a small change in P1-P2 before and after annealing. This contrasts with 

significant differences observed in positions P4-P5. Measurements of θh-conv for each film are 

provided in Fig. 6.3b. Figure 9.3c shows an optical micrograph of the film after annealing, with 

the red circle showing the optically pumped region in the experiment. The patterns in the 

micrograph indicate local crystallization of CBP. The θh-conv is reduced by annealing to less than 

half of its original value in positions P4-P5, while it remains almost constant in P1-P2 in 
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TPBi [102] due to its Tg = 122°C, which is higher than the annealing temperature. However, the 

decrease in P4-P5 is still less than in Fig. 6.2b, region C, in the neat CBP film. This suggests that 

the morphologically stable TPBi film partially “pins” the CBP structure due to contact at the 

heterointerface, similar to that found for metastable organic mixtures stabilized by including small 

concentrations of dopant molecules (e.g. PQIr) [117], or by the attachment of a metal cap [118].  

 

 

Figure 6.4 Mapping of the structure of a crystalline grain. 

(a) Optical micrograph at the periphery of a spherulite in sample P5 after annealing. The arrow shows the line-scan path with 

measurements made at 10 µm intervals. (b) Measured θhor (θh-conv) following the scanning path in (a). The solid line shows a linear 

regression fit to the data vs. distance from the spherulite, until the structure stabilizes close to a random orientation at distances > 

40 µm (dashed line). (c) Optical micrograph of a polycrystalline fiber of a spherulite in sample P4 after annealing. The red circle 

indicates the laser excitation area. (d) polar plot from the red-circled region in (c) using FIM with the linear polarizer removed. 

e. Schematic illustration of the configuration of the PtOEP sensor molecules within the CBP polycrystalline fibers.  

 

Annealed CBP on a glass substrate in Fig. 6.2 forms a randomly oriented powder in the 

substrate plane. In contrast, the annealed CBP on TPBi forms spherulites of radially propagating 

polycrystals. Spherulites appear during diffusion-limited growth [119], which is caused by the 

underlying TPBi layer impeding the movement of CBP molecules. In Fig. 6.4a, we used FIM to 

map morphological variations of sample P5, by moving the beam radially away from the 

spherulitic region, with a 10 µm interval between each measurement. The orientation of the MSL 

gradually changes from vertical to random orientation, and stabilizes at 40 µm distance from the 
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spherulite periphery, as shown in Fig. 6.4b. The solid line shows the linear regression of the 

variation near the spherulitic region, whereas the dashed line shows the average θh-conv in the region 

of constant morphology.  

Also, FIM was used to investigate one of the polycrystalline fibers within a spherulite in 

sample P4 (see image, Fig. 6.4c). The linear polarizer was removed for this measurement to capture 

the in-plane (azimuthal) pattern. The pole plot in Fig. 6.4d shows the substrate mode intensity has 

peaks in the direction parallel to the crystal branch direction. This phenomenon is similarly 

observed in other regions along different crystal dendritic growth directions, as shown in Fig. 6.5.  

 

Figure 6.5 Dendritic growth of CBP on TPBi with annealing.  

Optical micrograph (left) and the FIM pole plot (right) measured from the polycrystalline fiber of CBP spherulite in sample P4 

after annealing 

The orientational conformation for this phenomenon is illustrated in Fig. 6.4e. Due to its 

disk-like structure, PtOEP emits the majority of its power perpendicular to the molecular plane, 

causing the vertically aligned PtOEP molecules to show peaks at high-k (corresponding to 

substrate modes). Also, the peak positions that are parallel to the fibers indicate that the molecular 

plane aligns perpendicular to the microfiber axis. These data reconfirm that PtOEP follows the 

CBP host matrix, giving information about the π-π stacking direction of CBP after annealing.  
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6.7 Merits of the technique 

In FIM, the majority of emission towards the substrate is collected by the objective lens. 

Also, the intensity profile of the entire k-space is simultaneously acquired in a single snapshot, 

enabling a dramatically reduced time for measurement compared to conventional, 1D angle 

scanning methods [26]. Consequently, it is possible to observe the emission from minute dye 

molecule concentrations. Indeed, sub-monolayer coverage by sensor molecules enables their 

precise placement at well-defined depths within the host as in Fig. 6.3, enabling a depth resolution 

that is limited by the flatness of the predeposited film and the ability to accurately determine layer 

thickness during deposition. This means that for an ideal case, where the most precise deposition 

and measurement techniques are used with a flat surface, an Ångstrom-level resolution in the depth 

axis can be achieved. This is compared with commonly used morphological measurements such 

as atomic force microscopy (AFM), ellipsometry, and X-ray or electron beam diffractometry that 

are only capable of revealing either surface structure or averaged information of the bulk. Electron 

tomography is another means for investigating the bulk morphology of the film. However, it 

requires crystalline film structures and atoms with high contrast (e.g. metals) to resolve the 

orientation or the arrangement of the molecules. Moreover, the high energy electron beam inflicts 

damages to the sample, especially for soft materials as organics. The position-selective character 

of the MSL enables investigating the interface morphology at planar heterojunctions or within 

donor-acceptor domains in mixed heterojunctions, which can be helpful in optimizing organic 

electronic device performance [120]. An example of an interface morphology measurement is 

sample P3 in Fig. 6.3, determined by locating a sub-monolayer sensor layer between the CBP and 

TPBi layers. The horizontal alignment of the as-grown P3 sample shows that the initially deposited 

CBP molecules at the interface follow the morphology of the underlying layer (TPBi). However, 
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the orientation in P4 is identical to the bulk CBP, demonstrating that effects of the underlying layer 

are not preserved as the deposition continues. At the air-CBP interface (P5), the orientation 

becomes increasingly vertical compared to P4, showing that surface crystallization of CBP is 

encouraged as its degrees of freedom increase with distance from the pinning interface. The change 

of θh-conv in P3 after annealing is smaller than P4 - P5, which is still less than in Fig. 6.2, region C. 

This suggests that depositing CBP on a stable layer suppresses morphological changes throughout 

the bulk of the film. This is similar to the structural forcing induced by molecular alignment to an 

underlying template layer [46,121].  

Recent studies on small molecule orientation has, to this point, primarily focused on dopant 

emitters [82]. Nevertheless, the morphology of buffer layers such as host or transport layers is also 

important, since π-π stacking affects charge birefringence, conductivity and the exciton transfer 

efficiency. Ellipsometry has been commonly used for investigating the structure of buffer layers 

via analysis of the difference between ordinary and extraordinary refractive indices [122] as shown 

in Fig. 6.6. The refractive index of a 30 nm thick Tint film in Fig. 6.6 demonstrates vertically 

aligned molecules, consistent with the result from XRD and FIM+MSL. However, the 

birefringence of the film does not always reveal the actual molecular configuration since it solely 

probes the polarizability and the TDM of the film. For example, TPBi shows nearly isotropic 

orientation by ellipometry [123], whereas the result for P2 in Fig. 6.3, and the previous report from 

Mayr, et al. [102] indicate the molecules have a preferred horizontal alignment. This difference 

arises from the molecular structure of TPBi (Fig. 6.3a, inset) comprising three rotary σ-bonded 

aromatic chains that are randomized in the solid, resulting in suppressed birefringence for 

molecules that are horizontally aligned.  
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Figure 6.6 Morphological investigation of Tint film via PtOEP MSL.  

Morphological investigation of a 30 nm thick Tint film by the PtOEP MSL. (a) Measured refractive index by ellipsometry, (b) X-

ray diffraction pattern showing the (220) peak, Inset: Tint crystal structure and (220) plane (green) parallel to the substrate 

(CCDC-1919336). (c) Measured angular intensity profile in pPP and sPP (data points) via FIM and the simulation fits (solid 

lines), Inset: Molecular formula of Tint. The refractive index in (a), ne > no, shows stronger polarizability in the substrate normal 

than the in-plane direction due to the vertically oriented Tint molecules, which is consistent with the XRD and FIM measurements.  

 

6.8 θhor conversion of PtOEP 

 

Figure 6.7 TDM within the PtOEP molecule.  

 

PtOEP is a disk-shaped molecule comprising two orthogonal TDMs in the molecular plane, 

as shown in Fig. 6.1b. It has 4-fold symmetry, hence its TDM exhibits this same symmetry in the 

molecular plane. This causes the measured θhor to include a residual horizontal TDM regardless of 

the orientation of the molecule, denoted as r in Fig. 6.7. Thus the measured θhor = ½ + ½·sin2θ, 

reducing the range of θhor from 50% to 100%. Here, we obtain the θh-conv excluding the contribution 

from the residual dipoles for a better understanding of the PtOEP orientation. 
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Figure 6.8 θhor conversion of PtOEP.  

Unit orthogonal planes for PtOEP. Arrows indicate the TDMs. 

 

We decompose the emission from PtOEP into three orthogonal planes denoted as Fhor, Fver1 

and Fver2 in Fig. 6.8. The ratios are Rh and Rv for each horizontally and vertically aligned plane, 

respectively. Then the sum becomes, 2Rv + Rh =1. Each plane is decomposed into two orthogonal 

dipoles (see Fig. 6.8), giving: 
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The residual horizontal TDMs in Fig. 6.7 are the two TDMs described in the Rv and one TDM in 

Rh.  After excluding the residual TDMs, each PtOEP molecule includes one TDM. Then the θh-conv 

is the fraction of two orthogonal horizontal TDMs (s||, p||) to the total as, 
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Figure 6.9 Correlation between θhor of PtOEP vs. various values. 

Measured θhor vs. molecular tilt angle θ (left), θh-conv vs. molecular tilt angle θ (middle), and measured θhor vs. θh-conv (right).  

 

6.9 Error analysis 

6.9.1 Surface Roughness Errors 

 

Figure 6.10 Rough surface errors.  

Schematic illustration of the sample for FIM. In theory, all layers are perfectly flat (a), however, in some cases the 

surface roughness is comparable to the scale of the wavelength (b). Then a broader specular lobe occurs at the rough 

surface, causing errors in the data. 

 

Dyadic Green’s function analysis is based on a planar multilayer stack. When the standard 

deviation of the height across the surface-air interface of a film is comparable to the wavelength, 

the reflected light from the interface creates a broader reflectance lobe as shown in Fig. S6-1(b). 

The reflectance lobe redirects a fraction of the substrate modes into the air mode. This causes the 
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air mode intensity to increase, especially near the air / substrate mode interface, leading to error. 

The error increases as the fraction of vertically aligned TDM increases since the majority of the 

light emitted from the vertically aligned TDM is coupled into substrate modes.  

The effect of the surface roughness error is investigated by comparing the θhor of sample 

P5 at x = 10 µm in Fig. 4b (θhor = 50 ± 2%) with the results from the rough spherulitic region, θhor 

= 47 ± 2%. As in Fig. S1, PtOEP cannot show θhor < 50% (θh-conv < 0%), however, the rough 

spherulite surface causes a broad reflectance lobe leading to an under estimation of θhor by 3-5%. 

However, the smooth regions within the spherulites show negligible roughness compared to the 

as-grown sample shown in the cross-sectional profile in Fig. S6-2(c). Therefore, the laser beam is 

positioned within the smooth circular regions to measure θhor from the spherulite region as shown 

in Fig. 3c to minimize error.  

 

 

Figure 6.11 Surface scanning for rough surface errors.  

Atomic force micrograph of the surface of (a) as-grown and (b) annealed (95℃, 3 h) organic bilayer films comprising CBP 30nm 

/ TPBi 30 nm on the substrate. (c) Cross-sectional profile of each sample. 
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6.9.2 Fitting errors 

 

Figure 6.12 Fitting errors.  

Measured pPP intensity profile (dashed line) via FIM along with the simulation fit (solid lines, red) from a PtOEP MSL in the 

middle of a 30 nm Tint film. The grey solid line shows the upper and lower bound of the 95% confidence interval of the linear 

regression. 

 

We used least squares method for the mathematical regression analysis (function ‘lsqcurvefit’ in 

MATLAB), with the variable θhor as follows: 
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where F(θhor, ki) is the simulated radiative intensity at kρ = ki with θhor as an input variable, and 

dataki is the experimental result at kρ = ki. The k-space fitting is performed over the domain, -1.1 < 

kρ < 1.1, to minimize imaging artefacts in the high-k region. The fitting error denotes the standard 

deviation of the θhor with 95% confidence level.  

 

6.9.3 Density analysis 

In the previous work of H-F. Xiang et al. [124], density of the films comprising different 

small organic molecules were measured. Here, CuPC, which shares a similar molecular structure 

as PtOEP, shows a density of 1.54±0.02 g/cm3. This is the density of the bulk film (3D) whereas 

the morphological sensing molecules are spread in 2-dimensional slab. The molecular weight of 
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PtOEP is 727.84 g/mol, leading to 1.27×1021 molecules/cm3. Then, we could obtain the density in 

2D by taking a 2/3 power of the molecules/cm3, which becomes 1.18 molecules/nm2.  

 

6.9.4 Depth of field 

 Depth of field is determined from the nearest object plane in focus to that of the farthest 

plane also simultaneously in focus. In microscopy, the depth of field is usually in the scale of 

microns. Depth of field varies with numerical aperture and magnification of the objective lens, and 

usually high numerical aperture systems, which typically have high magnification, have shorter 

depth of field as: 

2 2NA M NA
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DOF e

 
  


                                              (6.6) 

where λ is the wavelength of the light source, n is the refractive index of the medium (air or oil), 

NA is the numerical aperture of the objective lens, and e is the smallest distance that can be 

resolved by a detector placed in the image plane of the microscope objective with a lateral 

magnification of M. For example, the objective lens used in this experiment (×100, NA=1.40) 

shows a depth of field of 531.5 nm for a light source of λ = 650 nm with an assumption of e = 4μm. 

This means that the image plane position should be adjusted when the measurement range in the 

depth axis exceeds 531.5 nm. 

 

6.10 Conclusion 

We introduce a method to spatially resolve the 3D morphology within thin films by 

measuring the orientation of an ultrathin, luminescent morphological sensing layer using Fourier 

plane imaging microscopy. The MSL is deposited at the position of interest in a sub-monolayer 

quantity that has a minimal influence on the morphology of the film under study. The sensing 
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molecules with discotic molecular structures are optimal for precisely representing the local 

structure. With this method, we measured the morphology at multiple depth positions within a 

planar heterojunction bilayer comprising films with different Tg, showing different morphological 

evolutions across the bilayer bulk with annealing. In addition, we investigated the morphology of 

the annealed film in various in-plane positions with micrometer scale features using a high 

magnification objective lens in the FIM. The resolution of our technique is at the Ångstrom scale 

in the direction normal to the film plane, and is optically diffraction limited within the plane. This 

capability is used to generate precise, 3D maps of film morphology. Importantly, given that each 

polar image revealing the molecular orientation within the field of focus is taken in a single shot, 

changes in morphology can be observed in real time by recording a sequence of images as the film 

is heated or exposed to solvent vapors in ambient or other selected environments (vacuum, inert 

gas, etc.).
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Chapter 7 Systematic Control of the Orientation of Organic Phosphorescent 

Pt Complexes in Thin Films for Increased Optical Outcoupling 

 

To date, studies on phosphorescent emitter orientation have largely focused on Ir 

complexes [20,37,40,41,44,102,125–127]. While the common Ir (III) complexes used in OLEDs 

have octahedral geometries, related Pt (II) complexes have planar geometries. In this context, there 

has been a rapid progress in developing high external quantum efficiency Pt complex 

emitters [128,129] for PHOLEDs with favorable color characteristics [130,131], and long 

operational lifetimes [132]. Highly efficient PHOLEDs using these complexes have been enabled 

by increasing the fraction of light outcoupled from the PHOLED by aligning the TDM of the light 

emitting molecules parallel to the substrate [27,69,133]. Controlling the molecular alignment, 

therefore, can play a role in improving the efficiency of Pt complex-based PHOLEDs. The planar 

structure of Pt complexes has a better chance of forming -stacking networks than bulky, 3 

dimensional molecules, potentially enabling control of the molecular orientation in films via 

external forces such as structural templating [52]. 
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7.1 Introduction 

 

Figure 7.1 Controlling molecular orientation in light emitting layers.  

(a) Amorphous growth leads to random alignment of molecules relative to the substrate (left). Molecular anisotropy can lead to 

preferable alignment of light emitting species (middle). Growth of an ultrathin templating layer forces the subsequently deposited 

molecules to lie flat on the substrate (right). (b) Molecular structural formulae of the Pt complexes and small molecules used for 

the experiments are shown. 

 

In this chapter, we control the Pt complex orientation relative to the substrate plane during 

the film growth using two different approaches. The first is to modify the molecular structure of 

heteroleptic bidentate Pt complexes to induce preferred horizontal alignment of the molecule via 

molecular anisotropy as illustrated in Fig. 7.1a. Angle dependent p-polarized photoluminescence 

of a film comprising (dbx)Pt(dpm) (see Fig. 7.1b), doped in the organic host, CBP, revealed that 
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the dopant TDMs are preferentially oriented perpendicular to the substrate. Studies of modified 

complexes of (dbx)Pt(dpm) showed that the aromatic ligands control molecular orientation. The 

second approach achieves the preferred orientation of the emitter by pre-depositing a thin (< 2 nm) 

layer of a molecular template on the substrate that promotes the horizontal alignment of 

subsequently deposited emissive Pt complexes (Fig. 7.1a) [52,134].  

The relationship between TDM orientation and film morphology are investigated via a 

combination of angle-dependent PL and x-ray diffraction. Correlations between film crystallinity 

and orientation controlled via structural templating are investigated by varying the concentration 

of a polycrystalline host in the emissive layer, revealing that a host concentration of > 70 vol.% is 

required to achieve significant control over otherwise randomly distributed phosphor orientations. 

An increase of nearly 60% in horizontally aligned molecules is obtained using a molecular 

template compared with films deposited directly onto bare sapphire and fused silica substrates. We 

find that by varying the details of molecular and substrate structures provide a systematic route for 

controlling molecular alignment during layer growth, and ultimately to enhance the optical 

outcoupling of the emitting species, making these effective strategies for increasing OLED 

efficiency. 

 

7.2 Experimental methods 

7.2.1 Sample preparation 

Thin films were deposited at 1.0 Å/s on 0.2 mm thick fused silica glass by vacuum thermal 

evaporation in a chamber with a base pressure of 1 × 10-7 torr. The deposition rate and film 

thicknesses were controlled using a quartz crystal thickness monitor. Following deposition, 

devices were encapsulated using an epoxy seal around the edge of a cover glass in a N2 
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environment. The samples for angle-dependent optical characterization consist of 1.5 nm PTCDA 

/ 1.5 nm NTCDA/ 30 nm emissive layer. PTCDA, NTCDA, PtOEP, and CBP were purchased 

from Luminscence Technology, Corp. 

 

7.2.2 Optical measurements 

Samples were excited with a He-Cd laser at a wavelength of 325nm. Alignment of the 

TDM was inferred from the angle-resolved photoluminescence of the phosphor-doped 

films [26,28]. The emission from horizontally aligned TDMs is decomposed into TEhor and TMhor 

modes, whereas the vertically aligned TDM emits into the TMver mode. The θhor was obtained from 

the intensity ratio of TMhor to TMver modes by removing TEhor using a polarization filter. This is 

compared to the simulated values calculated based on the dyadic Green’s function in a birefringent 

medium [94]. A least-squares algorithm was used to fit the measured photoluminescence data to 

the simulation. The 0.2 mm thick fused silica substrate was placed perpendicular to the plane of 

detection and the emission was outcoupled from the substrate using a 2 cm radius, half-cylindrical 

lens. A motorized stage was used to position the detector. The refractive indices and extinction 

coefficients of materials were measured using variable-angle spectroscopic ellipsometry.  

 

7.2.3 X-ray diffraction measurements 

X-ray measurements for thin film samples were performed in the Bragg-Brentano 

geometry using the Cu-Kα radiation source operated at 40kV and 44mA in a Rigaku Ultima IV X-

Ray Diffractometer.  
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7.2.4 Single crystal structure determination 

The plates of PtD, Tint and (dbx)Pt(dpm) were grown by 3-zone thermal gradient vacuum 

sublimation. The zone temperatures for PtD and Tint were 240 / 210 / 180 ˚C and 200 / 165 / 135 

˚C, respectively. For PtD and Tint crystals of dimensions of 0.04 × 0.01 × 0.01 mm and 0.01 × 

0.01 × 0.01 mm were mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray 

diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-

focus rotating anode (λ = 1.54187 Å) operated at 1.2 kW (40 kV, 30 mA). The X-ray intensities 

were measured at 85 K with the detector placed at a distance 42.00 mm from the crystal.  Rigaku 

d*trek images were exported to CrysAlisPro for processing and corrected for absorption. A 

transparent, prism-like 0.11 mm x 0.18 mm x 0.35 mm crystal of (dbx)Pt(dpm) was used for the 

X-ray crystallographic analysis. The X-ray intensity data are obtained using a Bruker APEX DUO 

system equipped with a fine-focus tube (MoKα , λ = 0.71073 Å) and a TRIUMPH curved-crystal 

monochromator. The frames were integrated with the SAINT V8.37A (Bruker AXS, 2013) 

algorithm. Data were corrected for absorption using the multi-scan method (SADABS). The 

structures for the three compounds were solved and refined with the Bruker SHELXTL (version 

2016/6) software package.  

 

7.2.5 DFT calculations of TDM and molecular orbitals 

The ground (S0) and triplet state (T1) geometries of PtD and PtOEP were optimized at the 

B3LYP/LACV3P** level using the Jaguar (v. 9.4 release 15) program within the Material Science 

suite developed by Schrödinger, LLC [135]. Time-dependent density functional theory (TD-DFT) 

with the zero order regular approximation (ZORA) approach [136] as implemented in Jaguar to 

compute the TDMs for phosphorescent (T1 → S0) emission,. The ZORA Hamiltonian incorporates 
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spin-orbit coupling (SOC) effects that are associated with triplet (T1 → S0) emission. The SOC-

TD-DFT calculations were performed on the T1 optimized structures using the B3LYP functional 

and a mixed basis set in which the DYALL-2ZCVP-ZORA-J-Pt-Gen set was used for the Pt, while 

the 6-31G** set was used for the remainder of the atoms. 

To simulate the T1 state relaxation of the PtD excimers/dimers (3.41-dimer and 3.35-dimer) 

within the crystalline matrix, geometry optimization was performed on each dimer constrained by 

a molecular shell consisting of all its immediate neighbors (based on the crystal structure packing 

data) modeled as a rigid classical force field. This was done using a 2-layer hybrid QM/MM with 

an n-layered integrated molecular orbital and molecular mechanics (NIOM) scheme in which the 

central dimer was treated at the B3LYP/LanL2Dz level while the UFF molecular mechanics force 

field was used to model the surrounding molecular shell which was kept frozen during the 

optimization. All NIOM calculations were performed using the Gaussian 09 program [137]. 

Subsequently, SOC-TDDFT calculations were performed on the T1 

(NIOM:B3LYP/LanL2Dz:UFF) optimized structure of both dimers to obtain the TDVs associated 

with dimeric/excimeric emission. The surrounding molecular shell was ignored for the SOC-

TDDFT calculations.  

 

7.3 Morphological control via modifying the molecular structure 

 

Figure 7.2 Orientation analysis of (dbx)Pt(dpm).  



 120 

Angle dependent p-polarized photoluminescence measurements for (a) (dbx)Pt(dpm) doped at 10 vol.% and (dbx)Pt(acac) doped 

at (b) 1vol.%, and (c) 10 vol.% into a CBP host. Insets show the TDM orientations in the molecules. 

 

We study a series of bidentate Pt (II) complexes with chromophoric (C^N) and ancillary 

(L^X) ligands, shown in Fig. 7.1 DFT is used to determine the TDM orientation relative to the 

molecular frame in these complexes. The TDM of the complex lies in the (C^N)Pt plane with an 

angle δ between the TDM and the Pt-N bond, which ranges between 20˚ and 45˚ for the 

(C^N)Pt(L^X) complexes [138]. We chose (dbx)Pt(dpm) as the reference dopant molecule, 

comprising a chromophoric dibenzo-(f,h)-quinoxoline (dbx) aromatic ligand, and an ancillary 

dipivolylmethane (dpm) aliphatic ligand. The complexes are doped into CBP at 10 vol.%, and 

angle-dependent PL measurements of the films are analyzed to obtain the TDM orientation relative 

to the substrate of θhor = 0.54 ± 0.01, Fig. 7.2a. Here, θhor corresponds to fractional contribution of 

the net TDM direction lying in the horizontal plane parallel to the substrate, thus the faction in the 

vertical direction is 0.46.  An isotropic thin film gives θhor = 0.67. The DFT calculation in the inset 

shows that  = 36. Shifting to a smaller ancillary ligand in (dbx)Pt(acac) shows similar alignment 

(θhor = 0.53 ± 0.01) to (dbx)Pt(dpm) when doped at 1 vol.% and 10 vol.% in CBP, see Fig. 7.2b 

and 2c.   

 

Figure 7.3 Orientation analysis of Pt complex dopants.  

Angle dependent p-polarized photoluminescence measurement for (a) (ppy)Pt(dpm), (b)  (dbx)Pt(dmes), and (c)  (dbx)(Pt(dpm))2 

doped into CBP at 10 vol.%. Insets show the TDM orientations in the molecules. 
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Figure 7.3 shows the angle-dependent PL of several different (C^N)Pt(L^X) complexes 

doped at 10% in CBP.  The film comprising (ppy)Pt(dpm) in Fig. 7.3a demonstrates an increased 

net horizontal alignment of the TDM compared to (dbx)Pt(dpm) (θhor = 0.62 ± 0.01 vs. 0.54 ± 

0.01).  Introduction of an aromatic ancillary ligand comprising two mesityl groups attached to the 

acac ligand producing (dmes)Pt(dbx), increases the horizontal component even further to θhor = 

0.73 ± 0.01. Attaching an additional Pt-dpm on the opposite side of the dbx ligand in 

(dbx)(Pt(dpm))2 shown in Fig. 7.3c, results in a horizontal component of θhor = 0.76 ± 0.01.  

 

Figure 7.4 Photoluminescence spectra of films of Pt complexes doped into CBP.  

Measured photoluminescence of films of (dbx)Pt(dpm), (dbx)Pt(acac), (ppy)Pt(dpm), (dbx)Pt(dmes) and (dbx)(Pt(dpm))2 doped 

into CBP at 10 vol.%. The (dbx)Pt(acac) was also doped into CBP at 1 vol.%. 

 

7.4 Morphological control via structural templating 

The emission spectra of Pt-complex doped CBP films are shown in Fig. 7.4. Contrary to 

changes in the ancillary (L^X) ligand, changes in the chromophoric (C^N) ligand leads to marked 

shifts in the emission spectra. In contrary, promoting molecular alignment via substrate structural 

templating provides a potential route to control the orientation of the square planar Pt-complexes 

within a blended film without changing the molecular structure and hence its emission spectrum.  

Two phosphorescent Pt complexes molecules were used explore the templating approach; one 
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comprising a neat PtD film, and the other consisting of PtOEP doped at 10 vol.% into Tint (see 

Fig. 7.1b).  

 

Figure 7.5 Photophysical and structural characteristics of neat films of PtD and PtOEP doped Tint.  

(a) Photoluminescence spectra of films of neat PtD, and 1 vol.% PtD doped in PMMA. The arrow in the inset illustrates the dimer 

TDM  vector formed between two PtD molecules as determined via time dependent density functional theory (TD-DFT). The z-axis 

is between the Pt center of the dopant molecules, whereas the PtD molecular plane lies in the x-y plane. (b) Photoluminescence 

spectra of PtOEP doped Tint at 10 vol.%. The arrow in the inset illustrates the TDM vector within the PtOEP molecule. (c) XRD 

diffraction patterns of neat PtOEP, PtD and Tint films. The data are offset for clarity. 

 

Figure 7.5 shows the photophysical and structural characteristics of the neat PtD, Tint, 

PtOEP, and PtOEP-doped Tint films on sapphire substrates. The broad PL peak at a wavelength 

of λdi = 572 nm of neat PtD in Fig. 7.5a is due to dimer emission. This feature is less pronounced 

in PtD diluted to 1 vol.% in a PMMA host due to monomer triplet emission at λm = 450-480 nm. 

The PtOEP-doped Tint shows dominant monomer emission at λm = 653 nm in Fig. 7.5b, with the 

triplet, T1, TDM lying within the PtOEP molecular plane (see inset), and weak dimer emission at 

λdi = 783 nm. Monomer emission is dominant since PtOEP molecules are diluted in the host matrix. 

Furthermore, steric hindrance between the PtOEP ethyl groups reduces coupling between the 

dopants. X-ray diffraction patterns of films deposited onto a sapphire substrate in Fig. 7.5c exhibit 

intense (200), (001) and (220) diffraction peaks of PtD, PtOEP and Tint, respectively (Fig. 7.7 for 

crystal structures and diffraction patterns of PtD and Tint).  
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Figure 7.6 Control of the PtD TDM via templating.  

(a) Angle-dependent p-polarized photoluminescence of a neat PtD film grown on sapphire substrate and on a pre-deposited 

template layer. (b) X-ray pole figure of the (200) plane (2θ = 8.4˚) for a neat PtD film on sapphire. (c) X-ray pole figure of the 

(020) plane (2θ = 26.6˚) for a neat PtD film on a PTCDA template layer. (d) PtD crystal structure showing the (200) (green) and 

(020) (red) planes. 

 

Film morphology was also controlled via structural templating using a self-organized, 

1.5nm (~5 monolayer) thick PTCDA layer [52,139]. The PTCDA grows in the flat-lying α-phase 

(102) (i.e. molecular planes of PTCDA lie parallel to the substrate), thus increasing the possibility 

of π-stacking with the subsequently deposited molecules [53]. For the angle-dependent PL 

measurement in Fig. 7.6a, a neat layer of NTCDA of the same thickness (1.5 nm) was deposited 

on the PTCDA prior to deposition of the emissive layer. The NTCDA/PTCDA bilayer transfers its 

structure to the subsequently deposited molecules (Fig. 7.8) while also blocking excitons formed 

in the emissive layer from quenching at PTCDA with its relatively low singlet exciton energy 

(1.95eV) [140]. 
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Material Space Group a(Å) b(Å) c(Å) α(°) β(°) γ(°) Cell Volume (Å 3) 

PtD P b c a 20.9 6.7 45.0 90 90 90 6294.1 

 

                   
 

Material Space Group a(Å) b(Å) c(Å) α(°) β(°) γ(°) Cell Volume (Å 3) 

Tint P-1 8.1 9.1 11.6 109.3 101.9 100.8 750.91 

 

Figure 7.7 Measured single crystal structure and cell parameters of PtD and Tint based on single crystal XRD. 

 

 

Figure 7.8 Measuring the birefringence of a neat NTCDA film via refractive index. 

The ordinary refractive index is larger than the extraordinary refractive index from the NTCDA film, showing the horizontal 

alignment of NTCDA molecules deposited on the PTCDA template [105]. This enables the monolayer thick NTCDA layer (1.5nm) 

to transfer the templated structure to the subsequently deposited molecules. 
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The PtD film deposited on the NTCDA/PTCDA template shows a decreased horizontal 

orientation (θhor = 0.33  0.01) of the PtD dimer TDM compared to deposition on a bare fused 

silica substrate with θhor = 0.91  0.01 (see Fig. 7.6a). To determine the relationship between TDM 

orientation and film morphology, x-ray pole figures of the (200) and (020) planes are provided in 

Fig. 7.6b and 6c. The configuration of each plane within the PtD crystal is shown in Fig. 7.6d. The 

film deposited directly on the sapphire substrate in Fig. 7.6b shows the (200) diffraction peak 

(2θ=8.2-8.5˚) at a radial angle of ψ = 0˚, suggesting that (200) plane lies parallel to the substrate. 

The (200) plane lies perpendicular to the PtD molecular plane, hence the (200) diffraction peak at 

ψ = 0˚ indicates the molecular plane is vertically aligned to the substrate. The (020) plane (2θ = 

26.6˚) parallel to the molecular plane shows a diffraction peak at ψ = 0˚ for the film on the template 

layer, indicating that the PtD molecules lie with their molecular planes parallel to the templating 

molecules. The x-ray diffraction patterns of the 30 nm thick film of PtD deposited on sapphire, 

ITO and PTCDA are shown in Fig. 7.9. 

 
Figure 7.9 Bragg-Brentano x-ray diffraction pattern of the PtD film on different substrates.  

The 30nm thick film of PtD deposited on sapphire substrate exhibits intense (200) diffraction, which is also observed in a film 

deposited on a 15 nm thick ITO surface. However, the film deposited on a 1.5 nm thick PTCDA template layer shows significantly 

reduced (200) peak, whereas (020) peak appears at 2θ=26.6° due to the varied morphology of PtD molecules. The x-ray pole figure 

data are provided in Fig. 6. 
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Figure 7.10 Relation between crystallinity and structural templating. 

(a) XRD patterns of PtD doped CzSi films as a function of PtD concentration. Background counts of the 50 vol.% PtD:CzSi film 

removed for clarity. (b) Measured θhor for the dimer emission TDM of PtD versus concentration in CzSi. The blue and red curves 

show θhor of films deposited on a bare substrate and on a pre-deposited PTCDA template, respectively. 

 

The volume fraction of crystal domains within a CzSi film blended with PtD was measured 

as a function of doping concentration, with results shown in Fig. 7.10a. Vacuum deposited films 

of neat CzSi result in isotropic orientation (Fig. 7.11). A decreasing intensity and increasing full-

width at half-maximum of the X-ray diffraction (XRD) peak [141] with decreasing PtD 

concentration indicates decreased film crystallinity and PtD domain size, as shown in Table 7.1. 

The TDM alignment measured by angle-dependent PL for each PtD:CzSi blend is shown in Fig. 

7.10b. The alignment is random (θhor ~ 66%) at concentrations < 10 vol.%, while for the neat PtD 

film, an ordered morphology with θhor > 90% is achieved. The TDM orientation was also measured 

for PtD:CzSi blends with a range of concentrations deposited on the NTCDA/PTCDA template, 

showing the controlled morphology of the film at PtD concentration of > 70 vol.%. 
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Figure 7.11 Refractive index measurement for neat CzSi film.  

The CzSi ordinary and extraordinary refractive indices are nearly identical at all wavelengths, indicating the isotropic alignment 

of the TDM [83]. The random orientation of this molecule stems from its bulky molecular structure [142].   

 

Table 7.1 Thin film morphology of CzSi films doped with PtD. 

Doping 

Concentration 

[vol.%] 

Peak 2θ [°](a) 

 

FWHM 

[°](b) 

d-spacing(c) 

[Å] 

Crystallite Size(d) 

[nm] 

θhor 

Non-

Templated 

Templated 

100 8.35 0.40 ± 0.01 10.6 20.8 ± 0.5 0.91 ± 0.01 0.33 ± 0.01 

90 8.30 0.55 ± 0.01 10.6 15.1 ± 0.3 0.88 ± 0.03 0.66 ± 0.01 

70 8.23 1.04 ± 0.02 10.7 8.0 ± 0.2 0.86 ± 0.02 0.82 ± 0.02 

50 8.12 1.28 ± 0.01 10.9 6.5 ± 0.1 0.79 ± 0.01 0.82 ± 0.02 

(a) Random error = ± 0.03o 

(b) Calculation
 
based on Gaussian Fitting model  

(c) Random error = ± 0.1 Å 

(d) Calculated utilizing Debye-Scherrer equation, t=Kλ/βcosθ, where K is a crystallite shape dependent constant (0.94), λ = 1.54Å 
is the wavelength of Cu-kα x-ray source, β is the full width at half maximum of the peak, and θ is the Bragg angle. 

 

Figure 7.12 Control of the PtOEP:Tint TDM via templating.  

(a) XRD patterns of the films with neat and blended Tint with PtOEP deposited on the template layer and on a bare sapphire 

substrate. Data are offset for clarity. (b) Tint crystal structure and diffraction planes from single crystal x-ray diffraction 

measurements. The diffraction peaks at 2θ = 27.0° and 27.3° correspond to the (2̅20) plane (green), (120) plane (red), respectively. 

(c) PtOEP crystal structure and diffraction planes from Cambridge Crystallographic Data library (CCDC-1167542). The 
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diffraction peaks at 2θ = 25.9° and 20.5° correspond to (212) (green), (11̅1̅) (red) planes, respectively. (d) Angle dependent p-

polarized photoluminescence of PtOEP:Tint films. 

 

The orientations of the blended film comprising PtOEP doped in Tint at 10 vol.% deposited 

on the template and on a bare sapphire substrate are compared by x-ray diffraction in Fig. 7.12a. 

A monolayer of PTCDA is used as a template layer for x-ray diffraction. The neat Tint film 

deposited on the template compared to the bare substrate shows a peak shift from 2θ=27.0˚ to 

2θ=27.5˚, corresponding to a morphological change from (2̅20) to (120) diffraction plane. This 

peak shift of Tint molecules is also observed in the PtOEP:Tint blends. In the blended films, PtOEP 

peaks also shift when deposited on the template, from 2θ=25.7˚ to 2θ=20.5˚, corresponding to a 

change from (212) to (11̅1̅) plane. The crystal structures and diffraction planes of PtOEP and Tint 

are shown in Fig. 7.12b and c. We also measured the TDM orientation of the blended film 

deposited on the NTCDA/PTCDA template showing an increased θhor compared to a bare 

substrate, from 0.22 ± 0.02 to 0.80 ± 0.01 as shown in Fig. 7.12d.  

 

7.5 How interaction of ligands determines the orientation of Pt complex 

The orientation of heteroleptic bidentate Pt complexes demonstrate the relative interactions 

of the two ligands with the organic surface. Specifically, if the interaction of both ligands with the 

surface is relatively weak, the molecular orientation is random. If the interaction of both ligands is 

similarly strong, a horizontal orientation relative to the substrate is promoted. However, if one 

ligand has a stronger interaction with the organic surface than the other, the molecule aligns 

vertically. Another possible way for the dopant molecule to self-organize is by aggregation with 

adjacent molecules forming polycrystalline islands within the film [143]. 

In Fig. 7.2a, the TDM of (dbx)Pt(dpm) shows a disproportionate vertical orientation. Since 

 = 36.1 is close to the c2 axis, the vertically aligned TDM shows that one ligand of the 
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(dbx)Pt(dpm) has a markedly stronger interaction via edge-to-surface π-π interactions with the 

organic surface. To confirm that the vertical alignment is not due to aggregation, (dbx)Pt(acac) 

was doped at 10 and 1 vol.% into the host matrix in Fig. 7.2b and 2c. The ancillary dpm ligand 

was replaced by an acac ligand to promote aggregation, which is evident from the red-shifted 

spectrum of the 10 vol.% film in Fig. 7.4. As a result, (dbx)Pt(acac) doped at 1 vol.% showed 

similar alignment (θhor = 0.53 ± 0.01) to the 10 vol.% doped (dbx)Pt(acac) and (dbx)Pt(dpm) with 

no spectral red-shift. The similar orientation of (dbx)Pt(acac) with (dbx)Pt(dpm), regardless of the 

doping concentration, shows that the vertical orientation of the Pt complexes is not due to the 

dopant aggregation.  

It is known that the intermolecular interaction strength is directly proportional to the size 

of the aromatic system [144]. Therefore, the smaller aromatic surface of ppy compared to dbx 

leads to a weaker interaction of (ppy)Pt(dpm) with the organic surface than the dbx based 

materials, and hence a reduced vertical molecular orientation relative to (dbx)Pt(dpm). To 

investigate whether the fraction of aromatic surface area in the ligand is tied to the molecular 

alignment, (dbx)Pt(dmes) with C^N and L^X ligands having substantial aromatic character.  The 

horizontal component increased to θhor = 0.73 ± 0.01, leading to a net preferred horizontal 

alignment. The emission spectrum was unchanged since the chromophoric ligand also remained 

unchanged (Fig. 7.4). Adding a second Pt(dpm) to the dbx ligand producing (dbx)(Pt(dpm))2  

results in a further increase in θhor to 0.76 ± 0.01, Fig. 7.3c, relative to (dbx)Pt(dpm).  This is 

contrary to the hypothesis that the lower aromatic fraction of (dbx)(Pt(dpm))2 promotes 

perpendicular alignment. Unlike the (C^N)Pt(L^X) complexes, the TDM of (dbx)(Pt(dpm))2 lies 

at δ = - 11° relative to the Pt-N and Pt-C bonds (see inset, Fig. 7.3c).  If (dbx)(Pt(dpm))2 is aligned 
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perpendicular to the substrate, θhor is close to unity. The spectrum of (dbx)(Pt(dpm))2 red shifts 

due to the extended π-conjugation of the larger ligand [145,146]. 

 

7.6 Theory for vertical orientation of Pt complexes 

The work of Hunter and Sanders [22,147] suggests that the (dbx)Pt(dpm) molecule 

achieves vertical orientation via a balance between π-σ attraction (the attraction of the negatively 

charged π-electrons and a positively charged σ-framework), and π-electron repulsion. The edge-

on geometry requires a strong π-σ attraction, whereas π-π repulsion and quadrupole attraction 

dominates in a cofacial, π-stacked geometry [23,24]. The dbx ligand shows a high net positive σ-

framework due to the electron deficient π-system caused by two electron-withdrawing N 

atoms [24], leading to its edge-on geometry. We calculated the electrostatic potential surface of 

(dbx)Pt(dpm) in Fig. 7.13 to compare the relative π-σ attraction of the two ligands. The average 

potential of the dbx ligand σ-framework shows 12.3 kcal/mol, with a peak potential of 17.9 

kcal/mol near the N atoms. On the other hand, the dpm ligand shows an average 3.5 kcal/mol.   

 
Figure 7.13 Calculated electrostatic potential surface of a (dpm)Pt(dbx) molecule via DFT geometry optimization.  

The dpm shows almost neutral potential (3 kcal/mol) whereas the dbx ligand shows highly positive charge of 12.3 kcal/mol with 

the peak value of 17.9 kcal/mol near the nitrogen atoms. 

 

Pt complex molecules have planar structures, leading to strong π-π interactions with the 

surrounding environment, such as the host molecules. Thus, the orientation of the Pt complex 
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dopants is influenced by the host matrix. According to Huh, et al. [45], there is a lower fraction of 

horizontally aligned TDMs for Pt dopants in CBP compared to the other hosts. Therefore, changing 

the host molecule from CBP may increase the fraction horizontal alignment of Pt dopant 

molecules.  

 

7.7 Structural analysis of PtD film 

Density functional theory was used to investigate the relationship between the TDM of the 

PtD dimer and the molecular orientation in a neat crystalline PtD film (see Fig. 7.6). Calculations 

indicate that the TDM of the dimer lies perpendicular to the PtD monomer planes. The crystal 

structure of PtD features two unique emissive dimer configurations: one with a Pt-Pt separation of 

3.35 Å and the other with 3.41 Å, henceforth referred to as 3.35-dimer and 3.41-dimer, 

respectively. The energy of the 3.35-dimer triplet (T1) is 2.25 eV, compared with 2.27 eV for the 

3.41-dimer (details found in Fig. 7.14). Also, the oscillator strength computed for T1 of the former 

is almost twice that of the latter, indicating that emission in neat crystalline PtD films is likely to 

originate predominantly from the 3.35-dimer. The red arrow in Fig. 7.5a, inset, indicates that the 

3.35-dimer TDM subtends a polar angle of 10° with the z-axis which lies along the Pt-Pt axis, and 

at an azimuthal angle of 99° with the x-axis that passes through the Pt-N(pyrazole-ring) bond of 

one of the monomers. The results from the DFT calculation and XRD data show that the TDM 

orientation is indeed controlled via templating. 
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a 

 
b 

 
c 

 
Figure 7.14 DFT calculation for PtD.  

 (a) Frontier molecular orbital plots for the Pt complexes computed for the S0 optimized geometries. The solid surface denotes the 

HOMO while the LUMO is indicated by the meshed surface in each case. (b) Spin density plots computed using the T1 optimized 

geometries. (c) The two different dimer configurations of PtD complexes derived from the single crystal packing data (left) and an 

illustration of the molecular clusters used for the ONIOM calculations (right) with the central dimer (QM region) shown as a 

space-filling structure while the surrounding molecular shell (MM region) is indicated by a wire-frame structure. (d) Table showing 

the calculated energies in eV (nm) and oscillator strengths (f) of the 3 T1 sublevels for the complexes. The results are summarized 

in Table 7.2. 

 

Table 7.2 Summarized results in Fig. 7.14. 

 

3.35-dimer (PtD) 3.41-dimer (PtD) PtOEP 

Energy f Energy f Energy f 

T1 (I) 

2.2515 

(550.67) 

0.25 x 10-5 

2.2682 

(546.61) 

0.17 x 10-5 

1.9197 

(645.86) 

0.85 x 10-7 

T1 (II) 

2.2519 

(550.57) 

0.16 x 10-4 

2.2689 

(546.45) 

0.85 x 10-4 

1.9197 

(645.85) 

0.72 x 10-7 

T1 (III) 

2.2533 

(550.22) 

0.15 x 10-3 

2.2698 

(546.24) 

0.75 x 10-4 

1.9204 

(645.62) 

0.11 x 10-4 
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7.8 Structural templating of PtD film with varied crystallinity  
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Figure 7.15 Spectrum vs. doping concentration of PtD in CzSi.  

Bathochromic shifts follow the concentration of PtD due to the lattice strain relaxation. This results in a varied d-spacing between 

molecules as shown in Table 7.1. The DFT calculations of CzSi and PtD show similar permanent dipole moments (µ = 2.6 vs. 2.2 

Debye). Thus, the Bathochromic shift as a function of PtD doping concentration is mainly due to the strain relaxation of the PtD 

crystal domains. The monomer peak (green circle) appears at 450 nm wavelength by diluting PtD.  

 

In Fig. 7.9a, the PtD (200) diffraction peak shifts toward an increased lattice constant with 

the reduced PtD domain size.  The increased density of grain boundaries for smaller grains results 

in an increased lattice constant compared to bulk single crystals as a result of lattice strain 

relaxation [148]. The relaxed lattice also results in the hypsochromic shift of the dimer emission 

(Fig. 7.15), with results summarized in Table 7.2. 

Table 7.3 Structural and emission data of reference Pt complexes 

 Structure Monomer Peak [nm] Dimer Peak [nm] 

(dbx)Pt(dpm) 

 

 

 

563.82 - 
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(dbx)Pt(acac) 
 

 

551.12 715.85 

(ppy)Pt(dpm) 
 

 

494.37 (First Peak) - 

(dbx)Pt(dmes) 

 

 

559.67 - 

(dbx)(Pt(dpm))2 
 

 

638.82 - 

PtD 

 

 

446.43 (First Peak) 572 

PtOEP 

 

 

653 783 

 

Time-resolved photoluminescence of the films of PtD doped into CzSi at various doping 

concentrations was measured with results in Fig. 7.16. The data show a broad photoluminescence 

peak at λ = 572 nm that originates from the dimeric species. At 1 vol.% PtD, a monomer peak 

appears at λ = 450 nm (Fig. 7.15), showing biexponential decay with distinct exciton decay 
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lifetimes (dimer = 0.88 ± 0.12 vs. monomer = 0.10 ± 0.01), as shown in Fig. 7.16. This feature shows 

that monomer and dimer excitons coexist in 1 vol.% film, which corresponds to the spectrum in 

Fig. 7.15. However, single exponential decay is observed at higher doping concentrations with 

exciton lifetimes similar to the dimer exciton at 1 vol.%. Since only a broad photoluminescence 

peak at λ = 550 nm is observed at these higher concentrations, we conclude that the broad 

photoluminescence originates from dimer emission. 

 

Figure 7.16 Time resolved photoluminescence of CzSi:PtD by varied doping concentration.  

The non-radiative rate of the excitons within the film was assumed to be negligible. Results are summarized in Table 7.4. 

 

 

Table 7.4 Measured results in Fig. 7.16. 

Lifetime 

(µsec) 

100 vol.% 50 vol.% 25 vol.% 10 vol.% 5 vol.% 2 vol.% 1 vol.% 

Dimer 0.64 ± 0.01 0.72 ± 0.01 0.82 ± 0.01 0.84 ± 0.01 0.90 ± 0.01 0.89 ± 0.03 0.88 ± 0.12 

Monomer - - - - - - 0.10 ± 0.01 

 

The TDM orientation was measured for PtD:CzSi blends with a range of concentrations 

deposited on the NTCDA/PTCDA template in Fig. 7.10b. The XRD results in Fig. 7.10a show that 

PtD molecules form highly crystalline films due to their discotic molecular structure that enables 
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efficient π-stacking. In the PtD:CzSi blend, however, the CzSi molecules interrupt the π-stacking 

of the PtD molecules at CzSi concentrations >30 vol.%, and hence the orientation of the template 

is not transferred to the PtD molecules. In contrast, for CzSi concentrations < 30 vol.%, the 

disruption of the stacks is limited, enabling the efficient transfer of the template orientation to PtD. 

Therefore, a concentration of polycrystalline discotic host molecule of > 70 vol.% is required to 

control the morphology of the blended film. 

 

7.9 Controlling the TDM orientation of a mixed emissive layer film 

Figure 7.12a shows the controlled morphology of PtOEP doped in Tint deposited with the 

PTCDA template by x-ray diffraction. The x-ray diffraction peaks of Tint (2̅20) and PtOEP (212) 

planes in the film are shifted compared to the bulk (Tint (2̅20), 2θ = 27.2˚; PtOEP (212), 2θ = 

26.0˚) due to the lattice relaxation at grain boundaries. The blended film deposited on the bare 

substrate shows the edge-on diffraction for both Tint and PtOEP molecules (Fig. 7.12b and 12c, 

green) [149]. This geometry is caused by aggregation with adjacent molecules forming 

polycrystalline islands in the film, as Loi, et al. showed with the α-sexithiophene [143]. A neat 

Tint film on a PTCDA template shows its largest diffraction feature for the (120) plane, which is 

due to Tint crystallites (Fig. 7.12b, red) lying parallel to the substrate. The reorientation is due to 

matching to the α-phase PTCDA template (2θ = 27.5˚) with a strain of 

( ) / 0.7%film temp tempa a a  , where afilm and atemp are lattice constants of the Tint and 

PTCDA layers, respectively. Note that a peak appears at 2θ = 27.5˚ which corresponds to the α-

phase PTCDA. Similarly, the PtOEP diffraction peak shifts to 2θ = 20.5˚, consistent with the (11̅1̅) 

plane being parallel to the substrate (Fig. 7.12c, red). This morphological control of the PTCDA 

template was also demonstrated via doped film deposited on the NTCDA/PTCDA template and 
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bare substrate, showing an increased θhor from 0.22 ± 0.02 to 0.80 ± 0.01 (Fig. 7.12d), consistent 

with the x-ray diffraction data.  

Although PTCDA plays a central role in initiating structural templating, it has a low exciton 

energy, and therefore tends to quench excitons formed within the emissive layer. Identifying a 

molecule that has optimal energetics for an OLED while showing similar morphological 

characteristics as PTCDA remains a challenge. 

 

7.10 Conclusion 

We demonstrated that the interaction between the aromatic regions of the ligands and the 

organic surface drives the orientation of dihedral phosphor Pt complexes during the vacuum 

deposition. Accordingly, the molecular structure of the vertically aligning reference Pt complex, 

(dbx)Pt(dpm), was modified to increase the fraction of horizontally aligned TDM in the blended 

film. In one example, we introduced two mesityl groups to the ancillary ligand to increase the 

attraction of the molecule to the organic surface. In a second approach, the TDM of a binuclear Pt 

complex, (dbx)(Pt(dpm))2, was shown to align parallel to the substrate due to the attraction of its 

aromatic region. Both methods showed an approximately 20% increased fraction of horizontally 

aligned TDMs compared to the reference Pt complex.  

We also found that seeding the growth habit of the molecules in the blended emissive layer 

via an ordered NTCDA/PTCDA template results in a preferred horizontal alignment of the Pt 

phosphor emitter molecules. Polycrystalline emissive layers comprising single molecule or mixed 

host-dopant molecules were both shown to conform to the template orientation. The net horizontal 

fraction of the dopant TDM in the mixed host-dopant layer deposited on the template increased by 

approximately 60% compared to the film deposited directly onto bare sapphire and fused silica 
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substrates. Our findings demonstrate an efficient molecular design strategy and a method to control 

the optical outcoupling efficiencies of the OLEDs comprising Pt complex phosphors.  
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Chapter 8 Large Area Organic-Transition Metal Dichalcogenide Hybrid 

Light Emitting Device 

 

 Two-dimensional (2D) layered materials show unusual physical properties that range from 

those of a wide-bandgap insulator to a semiconductor, a semimetal or metal [150]. Monolayer 

transition metal dichalcogenides (TMDCs), a subclass of 2D layered materials, have promising 

optical characteristics such as efficient photoluminescence (PL) [151,152], fast exciton 

decay [153], and high chemical and air stability [154]. As a result, TMDCs have been used in 

various optoelectronic devices, showing distinct characteristics from conventional bulk 

semiconductors [155–163]. For example, light emitting devices (LEDs) based on hexagonal boron 

nitrides (h-BN) insulators combined with TMDCs as the active luminescent materials have been 

demonstrated [159–162,164]. However, the LEDs require a sequence of complex layer transfers 

during the fabrication, and are constrained by the limited size of the 2D semiconductor flakes 

(several m) [160,162]. Recently, a large area TMDC-based LED has beem demonstrated, 

although its external quantum efficiency was low (~10-4 %) compared to LEDs based on exfoliated 

TMDCs [165,166]. 

 

8.1 Introduction 

 In this chapter, we demonstrate centimeter-scale LEDs using a monolayer of red emitting 

WS2 (mWS2) embedded within organic transport and host layers with an efficiency comparable to 
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much smaller, exfoliated-TMDC-based LEDs. The organic layers enable simplified deposition and 

precise placement of the TMDC within the structure to optimize the device characteristics. We 

transfer a 1 cm2, chemical-vapor-deposition (CVD) grown mWS2 onto a pre-deposited organic 

stack of the CBP host/TAPC hole transport layer/MoOx hole injection layer/ITO anode. This is 

followed by deposition of the remainder of the host layer, thereby burying the mWS2. The device 

is completed with a B3PYMPM electron transport layer and an Al cathode. Embedding a 

monolayer TMDC within the host enables efficient radiative emission via Förster transfer of 

excitons from the organic layers, while separating the TMDC from the heterointerface to avoid 

quenching at the heterointerface, especially at high current densities [167,168]. The LEDs show 

an average external quantum efficiency of 0.3 ± 0.3%, with the highest value of 1%.  

 

8.2 Experimental methods 

8.2.1 Device fabrication 

OLEDs were grown on glass substrates with a pre-deposited and patterned 150 nm thick 

ITO anode (Thin Film Devices, Inc.). The ITO-coated substrates were treated in a UV-ozone 

chamber for 15 min prior to organic film deposition. The organic film layers comprising CBP 12 

nm / TAPC 50 nm / MoO3 2nm were grown by VTE in a chamber with a base pressure of 1×10-7 

torr. The mWS2 was dry-transferred onto the CBP surface following the procedure described in 

Fig. 8.1. After transfer, the sample was left in the VTE chamber for 2 h. The device was completed 

by depositing 100 nm Al / 1.5 nm LiQ / 55 nm B3PYMPM / 3 nm CBP on top of the mWS2. 
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8.2.2 Dry transfer process 

 

Figure 8.1 Schematic illustration of the monolayer WS2 dry transfer procedure. 

 

The CVD grown monolayer WS2 on a SiO2 substrate was purchased from 6Carbon 

Technology. We immerse the mWS2 into the 100 mL of a solution comprising TFSI : DCE (0.2 

mg/mL) and heat it for 50 mins at 100°C [169] as shown in Fig. 8.1 (A). After the TFSI treatment, 

we blow dry the sample surface with a N2 gun. Then, we attach the PDMS on top of the mWS2 as 

shown in Fig. 8.1, B and C. Then, we immerse the PDMS attached Si substrate into the KOH 

solution (14g KOH in 200 mL DI water) and apply 60°C heat to etch the SiO2. Once the SiO2/Si 

substrate drops off, we take out the mWS2 attached PDMS (Fig. 8.1, E) and thoroughly blow dry 

the sample surface with a N2 gun. Then we gently press the mWS2 on PDMS onto the organic 

surface using an automated transfer stage and peel off the PDMS, leaving the mWS2 on the organic 

surface. 
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8.2.3 Device characterization 

The voltage-current density-EQE characteristics of the LEDs were measured using a 

parameter analyzer (HP4145, Hewlett-Packard) and a calibrated photodiode (S3584-08, 

Hamamatsu Photonics) following standard procedures [101]. The emission spectra were measured 

using a calibrated spectrometer (USB4000, Ocean Optics, Inc) connected to the device via an 

optical fiber (P400-5-UV-VIS, Ocean Optics, Inc.).  

 

8.2.4 Electron- and hole-only device photoluminescence spectral fitting 

The photoluminescence spectrum of mWS2 in the EOD was fit using two Lorentzian curves 

following: 
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at center wavelengths of λ0 = 617 nm and 628 nm, 𝛾 is the half-width at half-maximum, and A is 

the constant for the peak height. A least-squares algorithm was used to fit the measured 

photoluminescence data with the two Lorentizian curves.  

 

8.2.5 Exciton formation analysis 

The exciton density at the position x, N (x), was mapped across the emissive layer using 

the sensing layer method [71,170]. Ultrathin (~1Ǻ) red phosphorescent (PtOEP) layers were 

deposited at locations shown in Fig. 5a in a series of otherwise identical OLEDs. The emission 

spectra from the PtOEP sensing layer from each position (x) and the CBP organic host is: 

( , ) ( ) ( ) ( ) ( )total PtOEP PtOEP CBP CBPI x a x I a x I      ,                              (8.4) 
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where Itotal(λ, x) is the total emission spectrum comprising the spectra of PtOEP (IPtOEP(λ)) and 

CBP host matrix (ICBP(λ)), with the relative weights of aPtOEP(x) and aCBP(x), respectively. Then, 

the outcoupled exciton density at position x, N(x)·ηout(x), becomes as: 
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where J0 is the current density, ηout(x) and ηEQE(x) are the outcoupling and external quantum 

efficiencies of the sensing layer at position x. The ηout(x) is calculated based on Green’s function 

analysis [94] in Fig. 8.2. The range of ~3nm [71] Förster energy transfer limits the spatial 

resolution of the measurement. 

 

Figure 8.2 Calculated outcoupling efficiency of the sensing layers at various positions in the emissive layer. 
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8.3 LED fabrication and testing 

 

Figure 8.3 Device structure of the hybrid 2D-organic LED.  

(a) Schematic illustration of the hybrid LED comprising a monolayer WS2 active layer sandwiched between organic conducting 

and excition generating layers. (b) Frontier orbital energies of the materials in eV. 

 

Figure 8.3a shows the structure of the hybrid LED with the frontier energy levels in Fig. 

8.3b. Organic HIL and HTL comprising 2 nm thick MoO3 and 50 nm thick TAPC are deposited 

on top of the transparent anode (150 nm thick ITO), and then an organic host layer comprising 12 

nm thick neat CBP is deposited. A mWS2 is transferred onto the organic host by the method 

described in Fig. 8.1. After transfer, we deposit a 3 nm thick capping host (CBP) layer, 55 nm 

B3PYMPM ETL, and the top Al contact.  

 

Figure 8.4 The TDM orientation of monolayer WS2 in a CBP host matrix.  

(a) Measured Fourier plane imaging microscopy polar plots for the monolayer WS2 in the CBP host matrix. (b) Intensity profiles 

of the polar plot in the pPP and sPP (data points) along with the simulated fits (solid lines). 
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 The percentage of TDM, θhor, of the mWS2 in the CBP host aligned parallel to the substrate 

plane is measured via FIM [29,31,86,92,113]. When θhor = 100%, all TDMs are oriented parallel 

to the substrate, θhor = 67% for random, and θhor = 0% for a perfect vertical alignment. Figure 8.4a 

shows the polar emission pattern obtained from the mWS2 embedded within the CBP host matrix 

measured by FIM. The intensity profiles (data points) in the pPP and sPP are fit to theory (solid 

line) in Fig. 8.4b, as described in ref. 15. The data show θhor = 96 ± 2%, corresponding to near 

perfect horizontal orientation of the mWS2 TDM. This leads to an exceptionally high light 

outcoupling efficiency of the LED, as shown in Fig. 8.5 [46,125]. 

 

Figure 8.5 Calculated distribution of the modal power distribution vs. average TDM orientation.  

 

 The optimal position of the mWS2 within the emission layer is determined by measuring 

the exciton density profile. To do this, we deposit an ultrathin (0.5 Å) layer of the phosphor, PtOEP 

at 2.5 nm intervals in a series of devices, starting from the hole HTL/EML interface, to the 

EML/ETL interface (see Fig. 8.6a). The frontier energy levels of PtOEP align with those of mWS2. 

Hence, the emission intensity from the PtOEP at a fixed current density (J) is proportional to the 
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exciton density at its location. The measured exciton density profiles for various J are shown in 

Fig. 8.6b, with the peak near the EML/ETL interface. The peak position changes from x=15 nm to 

12.5 nm at J=100mA/cm2 due to increased exciton quenching near the heterointerface at high J. 

Figure 8.6c shows the EQE of each sensing layer sample, showing a decreasing efficiency as the 

sensing layer moves farther from the interface due to the reduced exciton density. The measured 

spectra of the samples are shown in Fig. 8.6d. We conclude from these data that the mWS2 should 

be positioned ~3 nm away from the EML/ETL interface to enable harvesting of the highest density 

of excitons while preventing exciton quenching at J.  

 

Figure 8.6 Exciton density profiles in the EML.  

(a) Illustration showing the placement of the PtOEP MSLs within the emissive layer. (b) Measured exciton density profile at 

different current densities. (c) J-EQE characteristics of the samples with the sensing layer at each different positions. d. 

Electroluminescence spectrum of samples with the sensing layer at different positions at J = 1mA/cm2. 

 

With the structural design in Fig. 8.6, a hybrid LED was fabricated following the procedure 

in Fig. 8.1, with the performance given in Fig. 8.7. Figure 8.7a shows EQE v. J, with an average 

peak EQE = 0.3 ± 0.3%, and the highest efficiency device with EQE = 1%. The inset shows the 
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image of an array of 0.2 mm2 devices. Figure 8.7b shows the J-V characteristics with a microscopic 

image of the device electroluminescence in the inset. The electroluminescence spectra at various 

J are shown in Fig. 8.7c, exhibiting a pronounced hypsochromic shift with current in the device. 

Note that the EQE in Fig. 8.7a increases with current at J < 0.01mA/cm2. As shown in Fig. 8.7b, 

the device shows a noticeable leakage current at V < 2.5V, causing a significant quantity of charges 

to be lost rather than generate excitons. Thus, as the injected current surpasses the leakage current, 

EQE also increases.  

 

Figure 8.7 Performance characteristics of the hybrid LED. 

(a) J-EQE characteristics of the hybrid LEDs. The average and the highest EQE data are shown in black and red data points, 

respectively. (Inset: photograph of the LEDs grown on a 2.5 × 2.5 cm2 glass substrate. (b) J-V characteristics of the hybrid LED. 

Inset: A photograph of the device electroluminescence. The diameter of the device is 250 µm. (c) Current dependent 

electroluminescence spectrum of the hybrid LED.  

 

Figures 8.8a and b shows the photoluminescence of the mWS2 embedded within electron- 

and hole-only-devices (EOD and HOD, respectively) at several current densities. The device 

structures are 150 nm ITO (UV-ozone untreated) / 50 nm B3PYMPM / 12 nm CBP / monolayer 

WS2 / 3 nm CBP / 55 nm B3PYMPM / 1.5 nm LiQ / 100 nm Al for EOD and 150 nm ITO (UV-

ozone treated) / 2 nm MoO3 / 50 nm TAPC / 12 nm CBP / monolayer WS2 / 3 nm CBP / 45 nm 

TAPC / 5 nm MoO3 / 100 nm Al for HOD with the J-V characteristics shown in Fig. 8.9. There is 

a pronounced hypsochromic mWS2 photoluminescence peak shift with current in the EOD, which 

is absent in the HOD. We conclude that injected electrons in EOD combine with the generated 
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excitons to form negatively charged excitons, or trions [171,172]. The binding energy of trions has 

previously been shown to be 20-30 meV relative to the neutral exciton; [171,173] a value that 

corresponds to the energy shift in Fig. 8.8a. The absence of a peak shift of the mWS2 

photoluminescence in the HOD is due to the asymmetric charge trapping in the CBP-mWS2-CBP 

quantum well structure. The energy barrier for electrons at the CBP LUMO-mWS2 conduction 

band discontinuity (see Fig. 8.3b) is larger than the barrier at the CBP HOMO-mWS2 valence band 

discontinuity for holes [174]. As a result, hole trions do not form as efficiently as electron trions, 

thus showing no apparent peak shift in Fig. 8.8b. 

 

Figure 8.8 Photoluminescence of monolayer WS2 embedded in single-charge device.  

(a, b) Photoluminescence of a monolayer WS2 within the (a) electron- and (b) hole-only-device with the varied injection current. 

(c) Photoluminescence of mWS2 in the electron-only-device as a function of current density with the deconvolution of the spectrum 

using two Lorentzians with exciton and trion emission peaks. The blue, red and orange lines show the exciton, trion and the summed 

total spectrum, respectively, from the fits. (d) Increased spectral weight of trions compared the total emission from excitons and 

trions, as a function of the injected electron density (nel). 
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Figure 8.9 J-V characteristics of mWS2 in the electron- and hole- only-device.  

 

8.4 Device structure design concept 

The introduction of an inorganic active layer into an OLED structure using dry transfer 

enables a variety of material selections to be combined with organic thin films in a hybrid LED. 

Using an organic host matrix separates charge conduction from the guest emission processes, 

allowing for optimization of each material to serve its intended purpose. Excitons are efficiently 

formed in the conductive host layer, and then transferred to the luminescent active material 

(mWS2) which is positioned near the maximum exciton density within the Förster radius, as 

determined from the sensing layer experiments in Sec. II.  

The use of host matrix differentiates the device structure from the previously reported 

TMDC LEDs [164,165] where the TMDCs are located directly between the hole- and electron- 

transport layers. However, according to Giebink, et al. [167] and Wang, et al. [168], the 

heterointerface is prone to charge/exciton accumulation and the coexistence of a high density of 

excitons and charges result in degradation of the active material or even morphological 

instabilities [175]. The use of host matrix enables placing the TMDC apart from the heterointerface 

with benefits to device stability. 
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8.5 Cause of limited external quantum efficiency 

CVD-grown mWS2 has a high defect density comprising S vacancies formed during the 

growth process, limiting the device efficiency. Also, cracks and holes are generated during the dry 

transfer since a mWS2 is a polycrystal bound by weak van der Waals forces [176]. The S vacancies 

lead to emission from the defect levels in both the EOD and HOD, even when no charges are 

injected as shown in Fig. 8.8c [177,178]. The physical defects lead to the EQE to vary by orders 

of magnitude even within the same growth run. The defects are non-radiative, appearing as the 

dark spots on the device emitting surface, as shown by the image in Fig. 8.7b, inset.  

 

8.6 Trion emission in device spectrum 

The electroluminescence spectra show emission from mWS2 but not from the organic host 

in Fig. 8.7c, demonstrating efficient Förster transfer of the excitons generated at the EML/ETL 

interface, into mWS2. The spectrum shows a bathochromic shift depending on the drive current. 

In Fig. 8.8c, the photoluminescence of mWS2 in the EOD, excited with a 532 nm laser, is shown 

as a function of current density, with the deconvolution of the spectrum using two Lorentzians 

with exciton and trion emission peaks at wavelengths of λ = 617 nm and 628 nm, 

respectively [177]. The trion peak intensity increases with the current density, as expected. The 

laser selectively excites A excitons of mWS2 (~2.0 eV), but not the higher energy (~2.4 eV) B 

excitons, allowing us to not consider their spectra in the peak fits [179]. The ratio between the 

emission intensity of excitons and the increased emission intensity of trions due to the charge 

injection is found using the law of mass action [172,180,181]: 
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where NX, NX- and nel are the concentrations of excitons, trions and electrons, with respective 

masses of μX, μX-, and me [182], kB is the Boltzmann coefficient, T is the temperature, EB is the 

trion biding energy (20 meV) [171]. The reduced masses of electron trions and exciton are μX-
-

1=2·me
-1+mh

-1 and μX -1= me
-1+mh

-1. Equation (8.1) describes the ratio between the concentrations 

of excitons (NX) and trions (NX-) in the presence of an electron concentration,  It is apparent that 

the change of NX/NX- is dependent on nel within the mWS2 film. The change of NX/NX- is determined 

from the relative emission intensities of trions and excitons vs. J, which correspond to γtrNX- and 

γexNX where γtr and γex are their intensity of each particle could be described as [180]: 
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where γtr and γex were obtained from fitting parameters in rate equations by Peimyoo, et al. [182]. 

Equation (8.2) yields the relation between the injected current density (nel) vs. the amount of 

increased spectral weight of trions vs. electron density as shown in Fig. 8.8d. The theoretical fit 

and the measured data are in close correspondance, showing that the the bathochromic shift of the 

electroluminescence occurs due to electron trion emission. 

In addition to the spectral shift, the radiative decay rate of trions are less than 5 times that 

of the excitons [182], resulting in a reduction in mWS2 photoluminescence intensity as a function 

of injected electron density in Fig. 8.8a. Therefore, the high electron density causes a decreased 

internal quantum effieicncy of mWS2 and a corresponding roll-off in EQE at J > 0.01mA/cm2 (Fig 

7a). As a result, placing mWS2 in the region with reduced electron density while maintaining high 

exciton density enables efficient EQE with reduced roll-off. 
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8.7 Conclusion 

 We demonstrated an LED with an active layer comprising a CVD grown, large-area mWS2 

as the luminescent material, combined with organic buffer layers (charge transport and host matrix 

layers) that enable efficient charge transport and exciton generation. The use of a mWS2 enables 

principally horizontally aligned TDMs and fast exciton decay leading to an enhanced outcoupling 

and device stability. Moreover, the organic host was used to efficiently generate and inject excitons 

into the mWS2 via Förster transfer. Thus, the mWS2 was positioned several nanometers distant 

from the heterointerface which prevents sites for non-radiative recombination and leads to 

morphological instabilities. LEDs with diameters of 250 µm exhibited average EQE = 0.3 ± 0.3% 

with a peak of 1%. In addition, electron- and hole-only-devices indicated that the injected electrons 

in mWS2 combine with excitons generating trions, reducing EQE at high current densities. Our 

results show an efficient way of incorporating promising luminescent materials into the organic 

device structure. 
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Chapter 9 Summary and Outlook 

 

Works on OLED performance are related to four components comprising the external 

quantum efficiency: i) charge carrier balance; ii) spin factor; iii) photoluminescence quantum 

yield; and iv) outcoupling efficiency, as discussed in Chapter 4. Since the first demonstration of 

OLEDs by Tang and VanSlyke in 1987 [183], the material synthesis and device fabrication 

techniques have been matured to achieve nearly 100% for factors i) to iii). However, achieving 

100% outcoupling efficiency is still a critical problem left to be solved. Other than the efficiency, 

process simplicity and large-area scalability are the other crucial aspects of OLED outcoupling 

technology which critically affect the product cost.  

 Therefore, this thesis mainly focused on methods improving the optical outcoupling of an 

OLED by controlling the film morphology, which is relatively simple and available in large-scale. 

The controlled morphology enables aligning the average TDM vectors within a film in a desirable 

way, which is highly correlated to the outcoupling efficiency of an OLED. The first approach, 

modifying the molecular structure, was helpful in discovering the main driving force of molecular 

alignment, however orienting molecules by molecular structural engineering does not seem to be 

a feasible strategy for the industry due to the added complication of molecular synthesis. This is 

because there are numerous elements to be considered to design a molecule, other than the 

outcoupling, such as conductivity, fragmentation, glass transition temperature, evaporation 

temperature, etc. On the other hand, the use of a structural template layer to orient the dopant 

molecule within the mixed emissive layer in a desired way seems to be an effective direction to 
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pursue due to its simplicity and effectiveness. However, the current structural templating molecule, 

PTCDA, has a low energy gap causing the excitons to be quenched, therefore developing a wide-

energy gap templating molecule compatible with the emissive layer excitons is left as future work 

for an electroluminescent device with an embedded structural template layer. 

Understanding how molecules orient within a film has led us to develop a technique to map 

the nanoscale morphology of a film using Fourier plane imaging microscopy. The unique feature 

of this technique is that it provides full 3-dimensional information of morphology, in a localized 

scale with a resolution of half of the visible wavelength and ~Angstroms in the in-plane and depth 

axis, respectively. However, the resolution in the depth axis can vary due to the roughness of the 

film and the deposition technique that has Another advantage of the technique is its potential to be 

applied in various material systems. It can be applied in other vdW bonded solids such as 2-

dimensional semiconductors, quantum dots and perovskites, and with appropriate modifications it 

can also be applied to covalent and ionically bonded materials. Furthermore, depositing the MSL 

between different spin-coated films is also possible for analyzing solution processed materials, 

which needs further demonstration in the future. While the technique suits OLED materials, it 

could not be applied to narrow-energy gap organic photovoltaic materials since the sensor dyes 

should be emissive at wavelengths distinct from that of the host. Thus, a technique to obtain the 

dye orientation via angle-resolved absorption should be developed in the future, which would 

make the technology a universal method for thin films of various energy gaps.  

Another important demonstration in this thesis is the LED with an active layer comprising 

a CVD grown, large-area mWS2 as the luminescent material, combined with organic buffer layers. 

The use of a mWS2 enables principally horizontally aligned TDMs and fast exciton decay leading 

to an enhanced outcoupling and device stability. However, the EQE of the devices is limited at 1% 
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due to its high S-defect density of the CVD grown TDMC film. As the growth technique of large-

area monolayer TDMCs is still nascent, the EQE will increase with the improvement of the film 

deposition technology in the future. In addition, an investigation of the degree of damage during 

dry transfer is needed to fully understand and improve the fabrication process, which will as well 

lead to the advanced device performance. On the other hand, adopting materials other than the 2-

dimensional TMDC materials is another promising option to be investigated. Especially, since the 

display industry is having trouble with finding a long-lived stable blue LEDs that are 

simultaneously fabricated in large-areas, the development of a hybrid LED employing a GaN (or 

InGaN) active emitting layer with organic buffer layers would lead to a huge step forward towards 

the future display technology.  
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Appendix 

A. List of Chemicals 

 

 

acac acetylacetonate 

Alq3 tris-(8-hydroxyquinoline)aluminum 

bppo benzopyranopyridinone 

B3PYMPM 4,6-bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine 

BCzTrz 9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl) phenyl)-9′-phenyl-9H,9′H-3,3′-bicarbazole 

BPhen bathophenanthroline 

BP4mPy 3,3',5,5'-tetra[(M-pyridyl)-phen-3-yl]biphenyl 

C60 fullerene 

CBP 4,4'-bis(9-carbazolyl)-1,1'-biphenyl 

CuPC copper phthalocyanine 

CzSi 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole 

CzTrz 9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-carbazole 

dbx dibenzo-(f,h)quinoxaline 

DCE dichloroethane 

dmes 1,3-dimesitylpropane-1,3-dione 

dpm dipivaloylmethane 

FIrpic bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)Ir(III) 

GaN Gallium Nitrides 

HATCN dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile 

H2 hydrogen 

ITO indium tin oxide 

IZO indium zinc oxides 

Ir(btp)2(acac) bis(2-(2'-benzo[4,5-α]thienyl)pyridinato-N,C3') (acetylacetonate)Ir(III) 
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Ir(ppy)2(acac) bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonate) Ir(III) 

Ir(ppy)3 tris[2-phenylpyridine] Ir(III) 

Ir(MDQ)2(acac) bis(2-methyldibenzoquinoxaline)(acetylacetonate)Ir (III) 

LiQ 8-hydroxyquinolinato lithium 

mCBP 4,40-bis(3-methylcarbazol-9-yl)-2,20-biphenyl 

mWS2 monolayer WS2 

(MAC)CuCz monoamido-aminocarbene Cu Carbazole 

NTCDA 1,4,5,8-naphthalenetetracarboxylic dianhydride  

PQIr bis(2-phenylquinolyl-N,C2′)acetylacetonate Iridium(III) 

PDMS Polydimethylsiloxane 

PTFE polytetrafluoroethylene 

PtOEP Pt(II) octaethylporphine 

PMMA poly-methylmethacrylate 

ppy 2-phenylpyridinate 

PTCDA 3,4,9,10-perylenetetracarboxylic dianhydride 

PtD (3-(trifluoromethyl))(5-(pyridyl)-pyrazolate 5-pyridyl-tetrazolate) Pt(II) 

TAPC 4,4′-cyclohexylidenebis [N,N-bis(4-methylphenyl)benzenamine] 

TFSI bis(trifluoromethane)-sulfonimide 

TPBi 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) 

TCzTrz 9′-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9″-diphenyl-9H,9′H,9″H-3,3′:6′,3″-

tercarbazole 

Tint triindolotriazine 
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B. Efficient outcoupling of organic light emitting devices using a light 

scattering dielectric layer 

 

 

Phosphorescent organic light-emitting devices (PHOLEDs) can achieve 100% internal 

quantum efficiency [1,184], although a considerable amount of light is lost within the device 

structure [69,70] due to the excitation of substrate [76,185], waveguide [186–192], and SPP 

modes [27,193,194], as well as absorption in the metal contacts. Substrate modes can be efficiently 

outcoupled by structuring the air-substrate interface such as by using microlens arrays [74,75]. 

However, reducing loss to waveguide and SPP modes, which is typically > 50% in conventional 

OLEDs, remains a significant hurdle. Several methods such as sub-anode 

structures [186,187,195,196], high refractive index substrates [197], scattering 

layers [76,191,198,199], corrugated structures [188,200,201], Bragg scatterers [190,202,203], and 

microcavities [204] have been demonstrated to overcome these losses, although near-field 

coupling into SPP modes by the metal electrode is more difficult to avoid. 

In particular, top-emitting OLEDs efficiently excite both waveguide and SPP modes due 

to the strong optical cavity formed between the high reflectivity semitransparent top electrode and 

the thick metallic bottom electrode [205]. Several strategies such as thick electron transport 

layers [206], metallic grids [193], and periodically corrugated metal electrodes [190,202,203] 

suppress the losses. However, these methods are often wavelength and viewing-angle dependent, 

they are invasive of the device structure or are challenging to apply over large substrate areas.  
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B.1 Introduction 

Here, we demonstrate the elimination of SPP modes by replacing the bottom metal 

electrode in top-emitting OLEDs with a transparent layer of ITO deposited on a PTFE (TeflonTM) 

diffuse reflector. The rough reflector surface is planarized by a thick, integrated high index of 

refraction polymer slab waveguide. The outcoupling of this structure is wavelength and viewing-

angle independent. There is no intrusion into the device structure itself since the OLED structure, 

including the ITO anode, is fabricated on the surface of the planar waveguide. This architecture 

achieves a 2.5-fold enhancement in outcoupling efficiency compared to an analogous device 

fabricated on an Al mirror. Simulations indicate that the enhancement can be further increased to 

3.4. Importantly, no further light extraction method such as index matching layers or microlens 

arrays are required to enhance outcoupling, making this a simple and potentially low-cost design 

useful for OLED lighting appliances. 

 

B.2 Optical design concept 

 

Figure B.1 Schematic illustration of the PHOLED on a diffuse reflector. 

Light incident to the diffuse reflector is scattered into a Lambertian profile (red circles), and light in the emission cone is scattered 

into the viewing direction (green cone). 

 

A schematic cross-section of a top-emitting OLED with a PTFE reflector is shown in Fig. 

B.1. The surface of the reflector has a root mean square roughness of 6.7 µm (measured by 



 160 

profilometry), which is planarized with a transparent polymer waveguide. Light emitted from the 

OLED is either directly emitted from the top surface into the viewing direction, or enters the 

waveguide layer where it propagates until it is incident on the rough reflector surface. There, the 

light is scattered into a Lambertian profile [207], and light within the emission cone exits into the 

viewing direction. Light incident at angles greater than that for total internal reflection at the 

polymer-air interface is returned to the diffuse reflector where it is scattered once again. This 

repeats until the light is either absorbed or scattered into the viewing direction. As shown in Fig. 

B.2a, the PTFE layer has a low loss even after multiple reflections, enabling multiple iterations of 

light scattering until the light is extracted.  

For an ideal, lossless reflector, the ratio of incident to scattered light power towards the 

viewing direction from a single diffuse reflection (RS) is determined using Snell’s law, viz. RS = (nair/nP)2, 

where nair and nP are the refractive indices of the air and waveguide layer, respectively. Then, the 

ratio of the light intensity extracted into the viewing direction to that within waveguide layer (ηD) 

following the path shown in Fig. B.1, becomes: 
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In practice, absorption and reflection losses must be taken into account. To quantify the importance 

of these effects, we use ray tracing to calculate ηD as a function of waveguide layer thickness and 

absorption coefficient (α), assuming 5% loss at each reflection. As expected, the ηD increases as 

absorption and reflection losses are reduced, see Fig. B.2b and c, respectively. The only loss 

channel in this case is the light propagating to the substrate edge; < 0.1% for the (2.5 cm)2 substrate 

used in the simulation. As shown in Fig. B.2c, the primary limit to ηD is the absorption in the 

waveguide layer. 
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Figure B 2 Reflectance and outcoupling efficiency of the diffuser.  

(a) The reflectance of the PTFE diffuse reflector measured using an integrating sphere. Calculated (b) outcoupling efficiency (ηD) 

and (c) waveguide layer absorption of the light diffusing substrate as functions of waveguide thickness and absorption constant 

(α). The experimental results are indicated as points.  

 

The outcoupling efficiency (ηout) of the OLED is, then: 

out TA D S                                                            (2) 

where ηTA is the fraction of light emitted from the top surface and ηS is the fraction of light coupled 

into the slab waveguide. The simulated32,33 modal power intensity of both top and bottom OLED 

emission as a function of the normalized in-plane wave vector u = k||/(nEML·k0) (here  k|| is the 

wave vector of the dipole radiation field in the plane of the interface, k0 is the wave vector in 

vacuum, and nEML  is the refractive index of the organic layer) of the cavity at different waveguide 

layer refractive indices (nP) at the wavelength of λ=530 nm are shown in Fig. B.3a and 3b, 

respectively. Top emission power propagating with wave vectors 0 < u < nair/nEML, is emitted into 

the viewing direction (air modes). Modal power with wave vectors of nair/nEML < u < nP/nEML is 

totally internally reflected at the air-top electrode interface. It is subsequently incident on the 

waveguide layer (substrate modes). All the bottom emitted power propagating with wave vectors 

0 < u < nP/nEML couples into the waveguide. For nP/nEML < u < 1, both top and bottom emission 

propagates within the OLED active layer. Note that no power exists at u > 1, which corresponds 

to the power coupled into SPP modes. In Figs. 3a and b, vertical dashed lines correspond to 
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nair/nEML = 0.55, and nP/nEML = 0.77, 0.88, 0.99 for the substrate-waveguide mode boundary at each 

nP. For nP = 1.8, most of the non-radiative modal power propagates within the waveguide layer, 

and is subsequently extracted into the viewing direction via scattering from the rough diffuser 

interface at the bottom of the polymer waveguide. Figure B.3c is a plot of ηIQE · ηS vs. nP, with the 

result that ηIQE · ηS = 67% at nP =1.8. 

 

Figure B.3 Modal power distribution vs. in-plane wave vector for various waveguide layer refractive indices.  

Simulation of the dissipated optical power of the PHOLED emitted (a)  from the top, and (b) the substrate surfaces at a wavelength 

of 530 nm, i.e., at the emission peak of Ir(ppy)2(acac) emission. (c) Calculated coupling efficiency into the waveguide layer (ηS) as 

a function of waveguide layer refractive index (nP).  

 

B.3 Device characteristics 

 

Figure B.4 Characteristics of PHOLEDs fabricated on metal mirror and diffuse reflector substrates.  

(a) Current density-voltage-luminance (J-V-L) characteristics of the green emitting PHOLED on the two substrates. (b) Current 

density versus external quantum efficiency (J- ηEQE) of the white and green PHOLEDs deposited on metal and diffuse reflecting 

substrates.  

 

To demonstrate the enhancement in external quantum efficiency (ηEQE), green and white 

PHOLEDs with transparent top and bottom contacts were grown on diffuse and metal reflectors. 
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Figures B.4a and B.4b are plots of the current density-voltage (J-V) and external quantum 

efficiency characteristics of the PHOLEDs, respectively (see Methods for structures). The identical 

J-V characteristics of the PHOLED on the diffuser and the Al mirror shows that the flat top surface 

of the waveguide does not lead to a loss in performance of the subsequently deposited device. The 

green, diffuse reflecting PHOLED shows a peak ηEQE = 37 ± 4%, whereas with a metal mirror, 

ηEQE = 15 ± 2%. A similar enhancement is observed for the white-emitting PHOLED (W-

PHOLED), where ηEQE = 21 ± 3% for the diffuse compared with 9 ± 1% for the metal reflector.   

The ability of the diffuse reflector to outcouple guided modes was quantified by comparing 

its performance with that of a green electrophosphorescent OLED fabricated on a sapphire 

substrate with a similar refractive index of nsaph = 1.77 at λ = 530 nm. The sapphire substrate yields 

ηIQE · ηTA = 7 ± 2%, where ηIQE refers to the internal quantum efficiency. Therefore, from Eq. (2), 

the light coupled into the waveguide layer shows an outcoupling efficiency of ηIQE · ηS · ηD = 30 ± 

5% and 8 ± 3% for the diffuser and metal mirror structures, respectively, resulting in a 3.8 ± 1.5 

fold increase in extraction into the viewing direction via diffuse scattering. In Fig. B.3c, ηIQE · ηS = 

67% for nP = 1.8, yielding ηD = 45% and 12% for diffuse and Al mirror substrates, respectively. 

This corresponds to the ray tracing result in Fig. B.2b of ηD = 49 ± 6 % for α = 0.4 ± 0.1 mm-1 and 

a thickness 240 ± 9 μm measured for the waveguide (data point), compared to ηD =15 ± 1 % for 

the 20 ± 1 μm thick waveguide used for the metal mirror reflector. These results are summarized 

in Table B.1. 
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Table B.1 Modal power distribution of scattering and specular (metal) reflector substrates. 

 Diffuse Reflector Metal Reflector 

ηEQE
 a)

 37 ± 4% 15 ± 2% 

ηIQE ·
 
ηTA

†
 7 ± 2% 7 ± 2% 

ηIQE ·
 
ηS · ηD 

Active Area 14 ± 5% 

30 ± 5% 8 ± 3% 

Periphery 16 ± 2% 

ηS
†

 67% 67% 

ηD 
‡
 45% (49%) 12% (15%) 

a)
Measured   

†
Calculated

 
based on Green’s function analysis 

‡
Combined result from experiment and Green’s function analysis. The result in parenthesis is from ray tracing analysis 

 

The diffuser increases the étendue of the system, thus introducing emission outside of the 

PHOLED active area defined by the device contacts. Figures B.5a and b show the normalized 

radiated power intensities from the PHOLED deposited on a diffuse reflector and Al mirror, 

respectively. The calculations assume α = 0.4 mm-1, a (1 mm)2 device area, and with waveguide 

layer thicknesses of 240 µm and 20 μm for the diffuser and Al mirror, respectively. The black 

dashed lines define the device contact area. Photographic images of emission from PHOLEDs on 

each substrate are shown in Fig. B.5c and d, insets, showing similar behavior as the simulation. 

The redirection of the incident rays from the diffuse reflector isotropically redistributes the power, 

thus showing a circular emission pattern. Thinner waveguide layers suppress this effect due to the 

smaller subtended area. Contrary to the diffuse reflector, the specular reflection of the Al mirror 

does not affect the azimuthal ray direction, maintaining the defined device appearance.  
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Figure B.5 Radiant power intensity profile for PHOLEDs on diffuse reflector and Al mirror substrates.  

(a) Simulated radiant power for a PHOLED on a diffuse reflector substrate. The white dashed line shows the measurement 

trajectory for 5c. The black dashed line indicates the device active area. (b) Simulated radiant power for the PHOLED on a 

specular (metal mirror) substrate. (c) (d) Measured (circles) radial peak intensity profiles along the white dashed line bisecting 

the PHOLED in (a) and (b) along with the ray tracing fit (lines). Insets: Photographs of emission from the green PHOLED 

deposited on each substrate. 

 

To investigate the fraction of the peripheral emission for the PHOLED using the diffuser 

layer, we measured the radial intensity profile of the PHOLED following the trajectory of the 

dashed lines in Fig. B.5a and b, with the results given in Fig. B.5c and d along with a fit using ray 

tracing. The index of refraction at the top surface of the optical cavity changes from the ITO contact 

(nITO = 2.1) to the waveguide layer (nP = 1.8), resulting in the emission peaks at the device edges 

in Fig. B.5d.  Integrating the radiated power outside the device active area indicates that 54% of 

the total emission is emitted beyond the contact periphery for the diffuser, whereas Al mirror 

substrate showed < 10% of emission from the periphery. As expected, the fraction of peripheral 

emission decreases with device area.  
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We simulated ηD of OLEDs whose areas cover a large fraction of the substrate size (25 

mm2), which is the common situation found in actual lighting panels, shown in Fig. B.6. We find 

that ηD is unchanged for device areas < 20 mm2. At > 20 mm2, ηD was reduced due to the 

waveguided emission reaching the substrate edge, although the effects were £  2%. The fraction 

of peripheral emission decreases with increased device area, resulting in the loss of only an 

insignificant fraction of the light in the waveguide layer at the substrate edge for large area devices.  

 

Figure B.6 Simulated fraction of light outcoupled from the light diffusing substrate vs. the size of the OLED.  

All devices are assumed to have square geometry. The square substrate size is 25 mm2. 

 

The spectrum of a conventional PHOLED depends on viewing angle due to weak optical 

microcavity effects3. Bulović,, et al.3 measured the angular distribution of the radiant intensity and 

showed that the spectral shift in a green OLED exhibits a peak shift of approximately 30-40 nm 

depending on the device structure. Cavity effects are more pronounced for top emitting OLEDs 

due to the large difference in the refractive index between the transparent ITO top contact and air. 

This effect is especially critical for white light sources due to their broad spectra. The use of a high 

refractive index waveguide layer suppresses spectral shifts at large viewing angles20, thus reducing 

cavity effects. As a result, the spectrum of the devices on both the mirror and the diffuse reflector 

substrates are independent of viewing angle, as shown in Fig. B.7a. The spectrum of the device on 

the mirror substrate measured perpendicular to the substrate (0o) shows Fabry-Perot resonances 
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due to the interference within the waveguide layer.  Light scattering into all directions by the 

diffuse reflector eliminates the resonances. Furthermore, scattering by the diffuse reflector results 

in a Lambertian emission profile, shown in Fig. B.7b.  

 

Figure B.7 Emission profile of the white PHOLED on the diffuser.  

(a) White PHOLED emission spectrum at viewing angles of 0°, 30°, and 60°. (b) Polar plot of the peak intensity. The solid line 

indicates a Lambertian profile.  

 

The thickness of the waveguide affects the power lost via absorption. The ray tracing 

simulations show that ηD can approach 75% for a 50 μm thick waveguide layer at α=0.4 mm-1, 

leading to ηEQE = 68% with 100% device internal quantum efficiency. From this we infer a 3.4-

fold enhancement compared to the substrate with the metal mirror. The emission profile also 

depends on the waveguide layer thickness. This results since more reflections occur during lateral 

propagation in a thinner waveguide layer. A 50 µm waveguide layer is expected to show a 

peripheral emission of 13%.  
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Figure B.8 Modal power distribution evolution with number of reflections.  

(a) Modal power distribution vs. the number of reflections in the waveguide layer. The dashed line represents the boundary between 

air and substrate modes at u = nair/nP. (b) Distribution of modal power in air and substrate modes following each reflection. 

 

Since power coupled into non-radiative modes is not viewable, outcoupling schemes fall 

into two categories: concentrating power into air modes27, or redirecting the wave vectors of the 

non-radiative modes. A means for redirecting the wave vector is via scattering7,8,24,25 which  

provides a route to reduce the in-plane momentum from nair/nEML < u < 1 to 0 < u < nair/nEML. The 

Lambertian profile of the diffuse reflector shows that it evenly redistributes the incident power for 

each wave vector. Figure B.8a shows the variation in modal power distribution vs. the number of 

reflections in the waveguide layer. At each reflection the power confined in the waveguide layer 

(nair/nP < u < 1) is redistributed into all wave vectors, where wave vectors of 0 < u < nair/nP is 

extracted into the viewing direction. Thus, the power confined within the waveguide layer 

decreases as the wave propagates. The integrated modal power of air and substrate modes is given 

in Fig. B.8b. 

A number of scattering methods redirect only a fraction of the scattered light into the 

viewing direction, and hence in those approaches, an outcoupling efficiency similar to that achieve 

d here requires further enhancements by using microlens arrays or index matching fluid. In 

addition, the coupling into SPP modes and absorption by metal cathodes leads to additional losses, 

preventing wave propagation over long distances. The use of a diffuse reflector with a transparent 
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OLED completely avoids coupling into these loss channels. Therefore, efficient outcoupling is 

possible using only the diffuser and waveguide, making it considerably simpler and less costly to 

implement. 

 

 

B.4 Conclusion 

In conclusion, we demonstrate an efficient, transparent top emitting structure with a diffuse 

reflector planarized by a transparent slab waveguide. The diffuse reflector eliminates losses due to 

coupling to SPP modes, while redirecting the laterally propagating light within the waveguide 

layer into the viewing direction. The planarizing polymer with a high refractive index (nP = 1.8) is 

deposited onto the diffuse reflector surface to maximize the light coupled into the diffuser, as well 

as to create a smooth surface on which to fabricate the PHOLED. The device on the diffuse 

reflector showed 2.5-fold enhancement in external quantum efficiency compared to an analogous 

PHOLED on a metal mirror. The architecture does not require additional outcoupling structures 

such as microlens arrays to enhance the outcoupling efficiency. The diffuse reflector shows no 

wavelength or viewing angle dependence, exhibiting a Lambertian emission profile. Our results 

provide a simple solution at a potentially low cost for OLED lighting applications. 
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