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ABSTRACT

Intelligent transportation systems (ITSs) promise to significantly reduce traffic congestion while
simultaneously improving road user safety. To accomplish this, ITSs make real-time control deci-
sions using data collected from surrounding vehicles, infrastructure, and other networks. However,
this reliance on networked communications results in vulnerabilities to cyber-attacks.

Traditional cyber-security methods such as encryption can often be used to secure messages
sent over networks, but are unable to evaluate the trustworthiness of a message’s source. As a
result, these methods do not protect against attackers that distribute false data. In ITSs such an
attack could be conducted for personal gain such as reducing the attackers travel time or malicious
intent such as causing collisions and congestion. To address this threat, previous attack detection
algorithms check for anomalies in the incoming data using a dynamical model of the system. How-
ever, these algorithms are limited to linear time-invariant models and are insufficient to describe
the nonlinear dynamics that are present in many ITSs. In addition, most existing algorithms are
unable to detect attacks that use knowledge of the system to generate false data.

To address these challenges, this dissertation develops a family of attack detection algorithms
called dynamic watermarking. Dynamic watermarking introduces a watermark in the form of
slightly altered control decisions. The incoming data is then checked for anomalies and for the
presence of the watermark. In doing so, dynamic watermarking provably detects a wide range of
sophisticated attacks. The proposed family of attack detection algorithms can be applied to a wide
variety of applications including ITSs. Furthermore, this work develops tools for applying dynamic
watermarking in real-world settings. These tools allow the user to tune the detection algorithms
sensitivity and to approximate application specific parameters that are used to detect anomalies.

The effectiveness of the proposed dynamic watermarking-based algorithms and tools are then
illustrated for autonomous vehicle localization and cooperative vehicle platooning. In each appli-
cation, the proposed algorithm is shown to enable safe and equitable operation of the ITS even in
the presence of false data. Since the proposed algorithms are derived using arbitrary dynamical
models, their potential applications in ITSs and other cyber-physical systems are vast.

xiv



Chapter 1

Introduction

Traffic congestion is a growing global problem that leads to both economic waste and negative
environmental impacts. In 2019 alone, the average American spent 99 hours stuck in traffic con-
tributing to an estimated $88 billion dollars in lost time nationally [1]. Moreover, Americans
wasted approximately 3.3 billion gallons of fuel as a result of congestion in 2017 [2]. The neg-
ative environmental effects of this added fuel consumption is considerable. One study suggests
that CO2 emissions from road vehicles can be reduced by nearly 20% by taking steps to reduce
congestion [3]. Additionally, despite numerous advances in vehicle safety, yearly fatalities from
traffic collisions in the US continue to exceed 30 thousand [4]. Intelligent transportation systems
(ITSs) aim to mitigate these problems by leveraging data from a multitude of sources to enable
real-time traffic control decisions.

Applications of ITSs come in various forms including collaborative highway maneuvers, shar-
ing of road safety information, optimization of traffic signals, and automated driving. In the past
decade, the US department of transportation has implemented pilot programs to better understand
the challenges and benefits of ITSs. These include the Safety Pilot Model Deployment project
lead by the University of Michigan Transportation Research Institute (UMTRI) which ran from
2011 to 2014 [5], and the Connected Vehicle Pilot Deployment Program which started in 2015
and has implemented various technologies in New York City, Tampa Florida, and along interstate
80 in Wyoming [6]–[8]. While the specifics in each application vary, one common requirement is
networked communications to transfer relevant information. Unfortunately, this requirement leads
to cyber-security concerns, which have yet to be fully considered.

Cyber-attacks on large scale infrastructure are not a new phenomenon. In fact, there have
been several well documented occurrences targeting everything from nuclear facilities to power
grids [9]–[12]. Moreover, these systems are often protected by traditional cyber-security tools
but these methods are insufficient due to the addition of networked physical infrastructure [13],
[14]. Cyber-attacks on ITSs are likely to present an even bigger challenge [15]–[17]. Namely,
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connected vehicles will rely on messages from external sources to execute safety-critical actions
and to improve efficiency. In some cases light-weight encryption methods can be implemented
to authenticate the identity of a message’s source, however there is no guarantee that the source is
truthful. The content of these messages must therefore be verified in a quick and efficient manner to
ensure safe and equitable operation. For current large scale infrastructure, this can be accomplished
using attack detection schemes that look for anomalous information [18]–[21]. However, these
existing methods are unable to handle the inherent complexities of ITSs.

This dissertation addresses the challenges of cyber-security by developing an attack detection
scheme, called dynamic watermarking, that leverages stochastic control theory to robustly detect
false information. The proposed method is shown to be applicable to a variety of ITS applications
both in simulation and through real world experiments. The remainder of this chapter is outlined
as follows. Section 1.1 describes how dynamic watermarking functions and the challenges in
applying it to ITSs. Section 1.2 reviews relevant literature on attack detection and how these
methods relate to the security vulnerabilities in ITSs. Section 1.3 discusses the current and ex-
pected contributions of this dissertation. Section 1.4 lists the planned chapters of this dissertation.

1.1 Overview

The field of attack detection is rooted in the related field of anomaly detection. In fact, several
attack detection schemes are indistinguishable from those used for anomaly detection. Generally
speaking, attack detection schemes consider the residuals of the sensor measurements with respect
to their estimated values. For simplicity, we refer to this quantity as the measurement residual. By
making an assumption on the distribution of the measurement residuals, detection schemes impose
a hypothesis test to determine if an attack is occurring.

Similarly, dynamic watermarking uses a hypothesis test on the measurement residuals. How-
ever, it also adds a watermark to the controller’s inputs as a means to further validate the returned
measurements as illustrated in Figure 1.1. In the proposed methods, the watermark takes the
form of a pseudo-random Gaussian signal that is generated by the detector. Since the watermark
is added to the controller’s inputs, the watermark perturbs the state of the plant which is subse-
quently measured by the sensors and returned. This allows the detector to differentiate between
authentic measurements and fabricated measurements that are seemingly reasonable by checking
the correlation between the measurements and the watermark.

Figure 1.1, illustrates the basic system structure that we initially use to develop dynamic water-
marking [22]. For this system, the plant is assumed to be a multiple input multiple output (MIMO)
and linear time-invariant (LTI). Furthermore the attacker is assumed to have complete access to
the authentic measurements and full control over altering them. While this structure acts as a good
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Figure 1.1: Block diagram of dynamic watermarking detection for a simple system with attacked sensor measurements.

starting point, it does not immediately extend to ITS. In particular, a LTI model is too restrictive for
many ITS applications and the assumption of a controller is insufficient for collaborative actions
such as platooning. These hurdles are discussed in more detail in the remainder of this section.

1.1.1 Plant Model Complexity

Vehicle dynamics can be incredibly complex, and as a result simplified models are often used. One
such example is the Dubin’s car model, illustrated in Figure 1.2, which travels in a 2 dimensional
plane taking the forward velocity v and the angular velocity θ̇ as inputs.

Figure 1.2: Dubin’s car model with ground plane coordinates (x, y), heading θ and inputs of forward velocity v and
angular velocity θ̇.

Though this simplistic model can be used in some applications, attack detection often require a
more exact model of the underlying system dynamics. Nonetheless, linearizing these dynamics
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about a given trajectory does not result in a LTI system unless the velocity is constant.
Ideally, we could apply dynamic watermarking to non-linear systems. However, this would

greatly increase the complexity of the detection algorithm and deprive it of many of the tools
associated with linear systems. In this work, we develop dynamic watermarking for LTV systems
as it providers a convenient middle ground. Namely, it allows us to apply dynamic watermarking
to increasingly complex ITS applications without losing the rich tool set associated with linear
systems.

1.1.2 Networked Agents

While developing dynamic watermarking for increasingly complex plant dynamics allows for ap-
plications with a single vehicle, ITSs are particularly useful due to collaborative actions using V2X
communications. In these applications, the plant may be a set of vehicles, where each acts as a
subcontroller and broadcasts its measurements as illustrated in Figure 1.2. Systems such as these

Figure 1.3: Block diagram of dynamic watermarking for a collaborative network of n CAVs. Each vehicle has its own
observer, controller, detector, and watermark. The attacker is modeled as being in the loop since the attacker may be
an untrustworthy vehicle. Measurements from each vehicle are shared using V2V communications. Watermarks are
not shared with other vehicles allowing them to be used to validate measurements from other vehicles.

have an additional cyber-security threats in the form of non-truthful agents. To counter this threat,
each vehicle generates and adds a watermark to its inputs but does not share the watermark with
other vehicles. Attack detection is then carried out independently by each vehicle.

The result of the watermark on the communicated measurements is more complex than in the
single vehicle case. Namely, depending on the application, a given vehicle’s watermark may have
no effect on another vehicles measurements. For example, in a platooning operation the watermark
of a given vehicle may not affect the state of preceding vehicles. Moreover, each vehicle may only
sense measurements corresponding to itself and adjacent vehicles. As a result, the watermark of a
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given vehicle will never have an affect on the measurements of a vehicle several positions ahead in
the platoon. Therefore, to ensure detection of attacks in these applications additional structure is
needed. In this dissertation, we develop dynamic watermarking for networked systems that ensures
detection of attacks by non-truthful agents.

1.2 Literature Review

This section discusses relevant literature in three categories. First, subsection 1.2.1 discusses po-
tential vulnerabilities in ITS. Second, subsection 1.2.2 compares the various categories of attack
models. Third, subsection 1.2.3 describes the state of the art in attack detection algorithms.

1.2.1 ITS Security Vulnerabilities

The focus of this dissertation is on detecting and mitigating attacks on ITS. To this end, vari-
ous attack models are considered without discussion of how such an attack might be carried out.
Nonetheless, this section provides a brief non-exhaustive review of ITS vulnerabilities to cyber-
attacks.

On-Board Computers

Connected and/or autonomous vehicles (CAVs) use on-board computers to handle sensor measure-
ments and actuator inputs. As a result, a hacker can take full control of the vehicle by compro-
mising the security of these computers. Though modern cars have few avenues for accessing the
on-board computer, they have been shown to be susceptible to hacking through wirelessly con-
necting to the infotainment system [23] or through a wireless receiver connected to the diagnostic
port [24]. While these types of attacks are certainly troubling, they usually require some level of
physical presence or a lack of sufficient isolation of safety-critical control systems from unrelated
sub-systems.

GNSS Positioning

Broadcasting false global navigation satellite system (GNSS) signals is not exceedingly complex
and can be accomplished with consumer off the shelf components [25]. Moreover, many probable
occurrences of large scale GNSS spoofing have been documented in recent news articles [26]–[29].
However, generating signals that can deceive a GNSS receiver while evading detection has many
challenges especially when various methods of spoofing detection are used. One common detec-
tion method is receiver autonomous integrity monitoring (RAIM) which uses redundant satellites to
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check for inconsistencies. More sophisticated detection methods may use additional signal charac-
teristics such as the signal amplitude, sensor arrays to measure the polarization and angle of arrival
of each signal, or various other methods [30], [31]. Despite these advances in detection methods,
researchers have demonstrated the feasibility of attacks that are capable of remaining stealthy in
the presence of some or all of these methods [32]–[34]. Moreover, at the time of writing, manu-
facturers of commercial GNSS receivers have yet to implement more than the most rudimentary of
spoofing detection methods [35].

Vehicle Localization

CAVs can approximate their localization by comparing feature points found by on-board sensors
such as cameras and light detection and ranging (LiDAR) to features defined in high definition
maps. The vulnerabilities of these approximations come in two forms. Namely, attacks that alter
the features found by on-board sensors and those that alter the high definition map.

Altering Camera and LiDAR measurements: While cameras are susceptible to glare [36], fur-
ther vulnerabilities lie in deceiving the object classifier that is run on the resulting images [37].
Furthermore, fabricated light detection and ranging (LiDAR) returns can be injected via lasers in
an efficient enough manner to fool object detection algorithms [38]. In each of these cases, the
features found by the sensors are altered and as a result the localization approximation can be
compromised.

Altering High Definition Maps: High definition maps are comprised of features and their cor-
responding locations. Some of these features remain static such as the corner of a building, while
others may change. As a result, high definition maps must be updated periodically. Moreover,
maps from previously un-visited regions may need to be downloaded while driving. An attacker
can use the process of downloading a new or updated map to distribute an altered map in which the
location of feature points has been changed. In doing so, the localization approximation of CAVs
can be altered. Specifics on the vulnerabilities in networked vehicular communications such as
those used to download high definition maps is further discussed under the topic of V2X commu-
nications.

V2X Communications

Though several methods of facilitating vehicle to everything (V2X) communications have been
proposed, the apparent leaders utilize IEEE 802.11p [39] or cellular vehicle to everything (C-V2X)
which was originally standardized by release 14 of the 3rd generation partnership project (3GPP)
[40]. In particular, the U.S. department of transportation’s dedicated short range communication
(DSRC) project and the European Telecommunications Standards Institute’s intelligent transporta-
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tion systems in the 5GHz frequency spectrum (ITS-G5) standard are based on 802.11p. Moreover,
C-V2X is gaining momentum as a potential alternative or complementary technology to 802.11p
based communications though its adoption by regulatory bodies is currently less widespread. The
overall strengths and weaknesses of each technology, which are greatly debated, fall outside the
scope of this work. However, their security standards and vulnerabilities are of particular interest.

In the United States, the security standards for 802.11p fall under the umbrella of the IEEE
1609.0 wireless access in vehicular environments (WAVE) standard [41]. Specifically, IEEE
1609.2 outlines security standards mostly comprised of network structure and encryption options
[42]. With the exception of unforeseen security gaps, encryption should suffice to validate the
identity of networked agents. However, it does not guarantee that the content of communications
is truthful. In contrast, security practices for C-V2X are still lacking in formal standardization and
acceptance. As a result, C-V2X has additional vulnerabilities that may allow attackers to carry out
identity spoofing and denial of service attacks [43], [44].

1.2.2 Attack Models

Generally, cyber-attacks take one of four forms: denial of service (DOS) attacks where commu-
nications are disrupted, hijacking attacks in which the attacker attempts to take control of part or
all of the system, confidentiality attacks where an attacker attempts to collect private information
from intercepted communications, and deception attacks where communications are altered in an
attempt to deceive [45]. DOS attacks can be detrimental, but if they stop all communication, they
are trivial to detect and when only a portion of communication is stopped, their effects can be min-
imized using graceful degradation [46]. Furthermore, Hijacking and Confidentiality attacks can
be avoided using standard security measures such as encryption. In contrast, deception attacks are
less straightforward to detect and avoid. Moreover, by altering communicated measurements, an
attacker can influence the actions of agents in the system. As a result, this dissertation focuses on
the detection of deception attacks.

Several types of deception attacks have been described in literature. The simplest deception
attacks add noise using arbitrary or random strategies [47]. For bias injection attacks, the attacker
injects a constant bias into the system [48]. Routing attacks send measurement signals through a
linear transform [49]. Other attacks attempt to decoupled the system such that the measurements
are unaltered while certain states of the system are attacked [50]. Zero-dynamics attacks take ad-
vantage of un-observable states or remove the effects of their attacks in the resulting measurement
signal [48]. Replay attacks involve an attacker replaying recorded measurements while possibly
altering control as well [48].

The amount of knowledge of the system dynamics and detection scheme, along with the capa-
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bility of the attacker to alter certain signals necessary to carry out these attacks varies greatly. While
random, bias injection, routing, and replay attacks do not require any knowledge of the underly-
ing system dynamics, decoupling and zero-dynamics attack require almost full knowledge. This
knowledge can be difficult to obtain for non-insider attackers but it is not impossible [51], [52].
Nonetheless, this dissertation focuses on replay attacks due to the simplicity of implementation
and its use in real-world attacks [9]. Furthermore, we consider attacks that only alter measure-
ment signals since many of the systems we care about use local controllers while operating using
externally received measurements.

1.2.3 Attack Detection Algorithms

In recent literature, the topic of anomaly detection has been extensively studied for the purpose of
fault detection and machine health monitoring in manufacturing. While some consider the problem
of anomaly detection from a purely data-driven perspective [53]–[56], others compare sensor mea-
surements to their expected value using dynamic models or other contextual information [57]–[60].
Almost all attack detection algorithms follow the latter approach and use the measurement residual,
defined as the difference between the measurement and the expected measurement. However, an
adversary may generate an attack that does not result in anomalous measurements as discussed in
Subsection 1.2.2. As a result, anomaly detection algorithms re-purposed for detecting attacks are
inadequate for ensuring safe and equitable operation. The remainder of this subsection discusses
the advances in the field of attack detection algorithms to address more sophisticated attacks.

Generally, attack detection algorithms can be separated into two categories: those that only
observe the system, called passive methods, and those that alter the system while observing, called
active methods. While the passive methods do not degrade control performance, active meth-
ods have been shown, in some cases, to be able to detect more complex attacks with minimal
performance degradation [61]–[63]. These categories can be further subdivided into stateful and
stateless detectors. While stateless detectors only consider the current residual, stateful detectors
rely on previous measurement residuals as well.

Passive Methods

The χ2 detector uses the inner product of the normalized measurement residual which follows a
χ2 distribution. Due to its simplicity, the χ2 detector has been studied in several works. Under the
assumption that an attacker cannot increase the probability of an alarm under a χ2 detector, the
ability of an attacker to affect the system can be approximated [64], [65]. Sufficient and necessary
conditions for several types of attacks to avoid detection by a χ2 detector have also been derived
[66]. Furthermore, extensions of the χ2 detector to non-Gaussian noise have been considered [67].
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While the χ2 is widely used, it is a stateless detector and has difficulty detecting small yet persistent
changes without also being overly sensitive to the inherent noise of stochastic systems.

Two stateful passive detectors are the cumulative sum (CUSUM) detector which looks at the
decaying sum of the χ2 test metric and the multivariate exponentially weighted moving average
(MEWMA) detector which uses the exponentially weighted average of the measurement residual.
When comparing these stateful detectors to the χ2 detector, it has been shown that the stateful
detectors can often provide stronger guarantees on detection while the χ2 detector boasts both
simpler implementation and generally takes less time to detect attacks [68], [69].

Active Methods

As an alternative to passive methods, several active methods have also been proposed. Most active
methods fall into one of two categories: moving target defense, which change the parameters of the
system in an effort to keep attackers from having full knowledge of the system, and watermarking-

based methods which encrypt measurement signals with a watermark that is added to the control
input.

Moving Target Defense: The concept of moving target defenses has been a topic of continued
interest for the field of cyber security and, among other things, can take the form of randomizing
the order of code execution and physical memory storage locations [70]. In CPS, moving target
defense takes the form of altering the dynamics of the system over time to increase the attacker’s
uncertainty of the current configuration. For systems that have redundant measurements, moving
target defenses that select subsets of measurements that maintain observability have been well
studied [19], [20], [71]–[73]. Similarly, changing in the control inputs to the system either by
altering the control strategy or by altering the input matrix for linear systems is also well studied
[71], [73]. Furthermore, there has been some consideration of altering the system dynamics [19],
[20], [71]. In the first two cases, and possibly the third, the resulting system has some amount of
performance degradation as a result of the alterations. While many works do not attempt to mitigate
this degradation, others choose to favor an optimal strategy to minimize the drop in performance
[73].

An alternative to changing the dynamics of the physical system is to append their dynamics
with an auxiliary system [74]–[76]. The benefit of these methods is that the operation of the
performance of the original system under normal operation is unchanged. The auxiliary system
can have more complex dynamics such as linear time-varying (LTV) [74], periodically switched
[75], or nonlinear [76]. Furthermore, in [77] the configuration of an LTV auxiliary system is
optimized to improve detection and system estimation performance. Despite the consideration of
more complex dynamics in the auxiliary system, these methods have only been applied to systems
that have LTI dynamics.
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Watermarking-Based Methods: The introduction of a watermark was first proposed as a way of
making the χ2 detector robust to replay attacks [78] and other more advanced attacks [79]. The wa-
termark takes the form of independent identically distributed (IID) Gaussian noise which is added
to the control input while the χ2 detector itself remains unchanged. In Satchidanandan and Kumar
[80], the method developed by Mo and Sinopoli [78] is applied to a single input single output
(SISO) LTI system with an additional test that looks for correlation with the watermarking signal
[80]. By considering the limit of the average value of each test and assuming open loop stability
and an attack of non-zero asymptotic power, they prove, in infinite time, almost sure detection
of the attack. Furthermore, they are able to provide equivalent results for multiple input multiple
output (MIMO) LTI systems given that they are also fully observable by instead considering the
outer product of the residual vector in place of the χ2 detector. In practice, statistical tests are used
in place of these limits by applying temporal windowing with a fixed window size for both SISO
and MIMO cases. This work is further extended by relaxing the constraint of full observability
to partially observable MIMO LTI systems [22], [81]. In [22] the need for the system to be open
loop stable is also removed and detection of an attack that is more general than a replay attack
is proven in the limit-based form of the test. Furthermore, persistent disturbances are also taken
into account to avoid additional false alarms. In several works, an effort to optimize the design
of the watermark being added to the control is studied [18], [82]. Other literature has considered
allowing the watermark signal to be autocorrelated [83] or non-Gaussian distributed [84]. Addi-
tionally, extensions to systems with distributed control are studied in [85]–[87] and extensions to
a subset of nonlinear systems is provided in [81], [88]. Other literature has considered watermarks
in the form of intentional package drops in the control input signal [89], a combination of package
drops and additive Gaussian noise[90], sending measurement signals through parameterized linear
transformations [49], [91], [92], and B-splines added to feed forward inputs for output tracking
[93].

1.3 Specific Contributions

This section describes published work that has been completed as part of this dissertation [22],
[61], [85], [94]–[97]. For each publication we provide an overview of its specific contributions and
the impact on making dynamic watermarking feasible for ITSs.

General LTI Systems

The theory of dynamic watermarking was developed for an LTI system with minimal assumptions
in Hespanhol et al. [22]. While previous works have developed dynamic watermarking for various
subsets of LTI systems, our method only requires the system to be controllable and observable.
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Under these lesser assumptions, we guarantee detection of replay attacks using limit based tests and
provide a statistical test that can be implemented in real-time. Furthermore, we provide a means
to handle persistent disturbances such as wind and illustrate the effectiveness of our proposed
algorithm on a simulated autonomous vehicle.

Networked LTI Systems

We extended dynamic watermarking to networks of distributed controllers in Hespanhol et al. [85].
While others have made similar extensions [80], [88], our method differs in that it allows for partial
state observations. Furthermore, sufficient conditions on the control policies are developed to
ensure that each agent can detect an attack. Using Heymann’s lemma, we derived two methods for
designing control policies to meet these conditions. This work enables dynamic watermarking to be
implemented on ITSs following the structure shown in Figure 1.3 so long as the underlying system
is LTI. The effectiveness of our method is illustrated using a simulated platoon of autonomous
vehicles with a constant reference velocity.

Simulated and Real-World Evaluation

Despite the growing amount of literature in detecting deception attacks, few works have attempted
to provide real-world implementations leaving the true effectiveness of dynamic watermarking
and other attack detection algorithms to speculation. Moreover, to the best of our knowledge no
previous metrics for evaluating detection algorithms can be applied to dynamic watermarking.
As a result, tuning the parameters present in dynamic watermarking was left to trial and error
and comparisons between dynamic watermarking and other algorithms were non-existent. We
addressed this lack of real-world testing and tools in Porter et al. [61].

Specifically, we developed a metric that measures the capability of an attacker to perturb the
state of the system while remaining undetected. We prove that, while the direct computation
may be intractable, an over-approximation of this metric can be computed using sum-of-squares
programming. The proposed metric and corresponding approximation technique can be applied
to a wide range of detection algorithms. Using our proposed metric, we provided a comparison
of dynamic watermarking (as described in Hespanhol et al. [22]), with three classical detection
algorithms: 1) the χ2 detector, 2) the cumulative sum (CUSUM) detector, and 3) the multivariate
exponentially weighted moving average (MEWMA) detector. Due to the approximations we were
unable to make a strong conclusion from our comparison. However, the capability of the attacker
under dynamic watermarking is shown to be similar to that of other detectors and we concluded
that approximation was tight enough to provide a meaningful bound for parameter selection.

In addition to the theoretical comparisons, we implemented each detection algorithm on the
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Figure 1.4: Real-world platform for attack detection algorithm evaluation. A Segway robot attempts to follow a
simple predefined trajectory at a constant speed (desired). An attacker replaces the truthful measurements with the
attacked measurements which are used to generate the observations (observed) resulting in the segway drifting off

course (attacked).

Segway robot illustrated in Figure 1.4. The Segway was programmed to perform a path following
task with location measurements provided by Google Cartographer [98] using a planar LiDAR and
wheel odometry data. Using this platform, each algorithm was evaluated on its ability to detect
two different attack models. For the first attack model the attacker adds random noise to the mea-
surement signal, while in the second attack model the attacker replaces the true measurements with
fabricated data that is meant to deceive the Segway. From the experiments, we concluded that dy-
namic watermarking provides more consistent detections than other popular detection algorithms
and is able to detect more sophisticated attack models. Video of these experiments and findings
can be found at Porter et al. [99].

Dynamic Watermarking for LTV Systems

We opened up dynamic watermarking to more complex ITSs with the introduction of time-varying
dynamic watermarking in Porter et al. [96]. This new algorithm incorporates a carefully designed
normalization factor that accommodates the temporal changes in the system. Since the normal-
ization factor is a function of the system dynamics and random noise whose distribution may not
be known, a method for approximating the normalization factor for real-world systems was de-
rived. Similar to our prior work, guarantees for detection of replay attacks was provided for the
limit-based tests and the effectiveness of the corresponding statistical tests are illustrated using a
simulated autonomous vehicle.
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Detecting Deception Attacks on Autonomous Vehicles

To further demonstrate the effectiveness of time-varying dynamic watermarking, we implemented
our method both on a high fidelity vehicle model in CarSim, and on a 1/10th scale autonomous rover
as illustrated in Figure 1.5. In each case, we showed that time-varying dynamic watermarking is
able reliably detect replay attacks that would otherwise lead to devastating results. This work also
addressed two issues that are not considered in our original time-varying dynamic watermarking:
1) systems that require several time steps for the effect of a given control input to appear in the
measurement and 2) the issue of auto-correlation in the measurement residual.

Figure 1.5: A high-fidelity vehicle model in CarSim(Left) and 1/10th scale autonomous rover (Right) are used to
evaluate time-varying dynamic watermarking.

For many single agent systems the effect of a control input appears in the measurements in a
single time step. However, this may not be true for systems that have inherent delays. To handle
such cases, we apply a corresponding delay to the watermark when checking for correlation be-
tween the watermark and measurement signal. For this generalization, we prove that the guarantees
of detection from Porter et al. [96] still hold.

In attack detection literature, it is assumed that a Kalman filter with perfect knowledge of
the system dynamics, process noise, and measurement noise is used to observe the system state.
As a result, the measurement residual is independent identically distributed (IID) for steady state
operation. Of course, the assumptions of perfect knowledge are rarely accurate for real-world
systems. Moreover, in each of our publications we have assumed that a Luenberger type observer
is used. As a result, the measurement residuals are likely not independent. For an LTI system
this results in a constant effect on the detection algorithm which is often negligible. However, for
a LTV system the effect can vary with time leading to greater issues. In this work we provided
a second normalizing factor to remove the effect of auto-correlation, and derived a method for
approximating it using real-world data.
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Networked LTV Systems

We have designed an extension for time-varying dynamic watermarking and demonstrated its ef-
fectiveness on a simulated platoon of autonomous vehicles in Porter et al. [100]. Furthermore, we
developed a mitigation strategy for the platoon that enables graceful degradation in the event that
an attack is detected.

This work also accommodates drift along the trajectory which has previously not been consid-
ered. Namely, for a predefined trajectory, time is mapped to the nominal state of the vehicle/platoon
for that time. However, if a vehicle/platoon travels slightly faster or slower at a given point in time
it may drift farther ahead or behind in the trajectory. In past works, we have used the controller
to correct this drift but in real-world scenarios the controller can operate based its current location
along the trajectory instead of the nominal location as a function of time. This work derives a
method for approximating the normalizing factors proposed in Porter et al. [96] and Porter et al.

[95] based on location to enable drift along the trajectory.

1.4 Outline of Chapters

The remainder of this dissertation is outlined as follows.

Chapter 2: Preliminaries Mathematical notation used throughout the dissertation and a brief
review of topics in statistical analysis.

Chapter 3: Dynamic Watermarking An in depth discussion of the dynamic watermarking
theory for both LTI and LTV systems; methods handling persistent disturbances and systems where
inputs take more than a single step to be seen in the measurements.

Chapter 4: Tools for Selecting User-Defined Parameter Tools for enabling the tuning of dy-
namic watermarking specific parameters and comparing dynamic watermarking to other detection
algorithms.

Chapter 5: Single Autonomous Vehicle Applications Demonstrations of LTV dynamic water-
marking on a single autonomous vehicle with attacked position measurements both in simulation
using CarSim and on a real-world system.

Chapter 6: Autonomous Platoon Applications Demonstration of LTV distributed dynamic
watermarking on a platoon of autonomous vehicles with attacked V2V communications.
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Chapter 7: Conclusions and Future Directions Concluding remarks regarding the results of
this dissertation and possible future research directions.
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Chapter 2

Preliminaries

This chapter provides the notation used throughout this dissertation in Section 2.1, and some
preliminary results and statistical background in Section 2.2. Note that some readers may prefer
to skip Section 2.2 then return to view the preliminary results when used in proofs throughout
other chapters.

2.1 Notation

This section briefly introduces the notation used in this dissertation.

2.1.1 Vectors and Matrices

The 2-norm of a vector x is denoted ‖x‖. Similarly, the 2-norm of a matrix X is denoted ‖X‖. The
trace of a matrix X is denoted tr(X). Zero matrices of dimension i × j are denoted 0i× j, and in the
case that i = j, the notation is simplified to 0i. Identity matrices of dimension i are denoted Ii.
Block diagonal matrices using blocks X1, X2, . . . are denoted blkdiag(X1, X2, . . .). The Kronecker
product operator is denoted ⊗ [101, Definition A.4.1]. The minimum singular value of a matrix
X ∈ Rn×m is denoted s1(X).

2.1.2 Probability

The Wishart distribution with scale matrix Σ and i degrees of freedom is denoted W(Σ, i) [101,
Section 7.2]. The multivariate gamma function corresponding to dimension i is denoted Γ(i) [101,
Defintion 7.2.1]. The multivariate Gaussian distribution with mean µ and covariance Σ is denoted
N(µ,Σ). The chi-squared distribution with i degrees of freedom is denoted χ2(i). The matrix Gaus-
sian distribution with meanM, and parameters Σ and Ω is denoted N(M,Σ,Ω). The expectation
of a random variable a is denoted E[a]. The probability of an event E is denoted P(E). Given a
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sequence of random variables {ai}
∞
i=1, convergence in probability is denoted p-limi→∞ai and almost

sure convergence is denoted as-limi→∞ai [102, Definition 7.2.1].

2.1.3 Set Operations

The cardinality of a set H is denoted card(H). The closed ball of radius ε is denoted Bε . The
Minkowsi sum is denoted ⊕.

2.2 Statistical Background

First, we provide inequalities for functions of random variables using the following three theorems.

Theorem 1. [96, Theorem A.1] Let (ai)s
i=1 be a finite set of random variables then

P

 s∑
i=1

ai > ε

 ≤ s∑
i=1

P

(
ai >

ε

s

)
. (2.1)

Proof. (Theorem 1) Assume ai <
ε
s ∀i. This would imply that

s∑
i=1

ai <

s∑
i=1

ε

s
= ε, (2.2) s∑

i=1

ai > ε

 ⊆ s⋃
i=1

{
ai >

ε

s

}
. (2.3)

Furthermore,

P

 s∑
i=1

ai > ε

 ≤ P  s⋃
i=1

{
ai >

ε

s

} ≤ s∑
i=1

P

(
ai >

ε

s

)
. (2.4)

where the first inequality comes from the inclusion of the events and the final inequality comes
from Boole’s Inequality. �

Theorem 2. [96, Theorem A.2] Let (ai)s
i=1 be a finite set of random variables then

P

 s∏
i=1

|ai| > ε

 ≤ s∑
i=1

P
(
|ai| > ε

1
s
)
. (2.5)
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Proof. (Theorem 2) Assume |ai| < ε
1
s ∀i. This would imply that

s∏
i=1

|ai| <

s∏
i=1

ε
1
s = ε. (2.6)

The remainder of the proof follows closely to Theorem 1. �

Theorem 3. [96, Theorem A.3] Let a and b be random variables then for ε, γ > 0 we have

P (|ab| < ε) ≥ P (|a| < γ) + P
(
|b| < ε

γ

)
− 1. (2.7)

Proof. (Theorem 3) Note that

P(|ab| < ε) ≥ P
(
{|a| < γ} ∩

{
|b| < ε

γ

})
(2.8)

since |a| < γ and |b| < ε/γ implies |ab| < ε. By expanding the RHS of (2.8) using inclusion
exclusion and bounding the union term by 1, we get

P(|ab| < ε) ≥ P(|a| < γ) + P
(
|b| < ε

γ

)
− 1. (2.9)

�

It is often helpful to split a probabilistic limit into components of the underlying random vari-
able. While this is not possible for all cases, we provide sufficient conditions here.

Theorem 4. [96, Theorem A.4] Given sequences of random variables ai and bi, and constants a

and b, suppose that p-lim
i→∞

ai + bi = a + b and p-lim
i→∞

ai = a then p-lim
i→∞

bi = b.

Proof. (Theorem 4) Assume p-lim
i→∞

ai + bi = a + b and p-lim
i→∞

ai = a hold. Given an ε > 0, we have

that

P (‖bi − b‖ > ε) ≤ P
(
‖ai − a + bi − b‖ > ε

2

)
+ P

(
‖ai − a‖ > ε

2

)
where the inequality comes from triangle inequality and Theorem 1. Since both terms in this upper
bound converge to zero, their sum must as well. �

Similarly we can combine probabilistic limits as follows.

Corollary 5. [96, Corollary A.5] Consider sequences of random variables ai and bi and constants

a and b. If p-lim
i→∞

bi = b and p-lim
i→∞

ai = a then p-lim
i→∞

ai + bi = a + b.
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Proof. (Corollary 5) Let a′i = −ai, a′ = −a, b′i = ai + bi and b′ = a + b. Using Theorem 4 on the
new random variables gives us

p-lim
i→∞

(ai + bi) = p-lim
i→∞

b′i = b′ = a + b. (2.10)

�

Since many of the limits in this paper deal with the average outer product of random vectors,
it is important to know how and when these limits converge. The following theorem provides
sufficient conditions for convergence.

Theorem 6. [96, Theorem A.6] Consider the sequences of vectors ( fi)∞i=1 and (gi)∞i=1 where fi ∼

N(0s×1,Σ f ,i) and gi ∼ N(0t×1,Σg,i). Let η and ε be scalar values such that 0 < η < ∞ and ε > 1. If∥∥∥∥E [
f j f ᵀi

]∥∥∥∥ , ∥∥∥∥E [
g jg
ᵀ
i

]∥∥∥∥ , ∥∥∥∥E [
f jg
ᵀ
i

]∥∥∥∥ < η

ε |i− j| , (2.11)

∀ i, j ∈ N, then

p-lim
i→∞

1
i

i∑
j=1

f jg
ᵀ
j − E

[
f jg
ᵀ
j

]
= 0s×t. (2.12)

Proof. (Theorem 6) For (2.12) to hold, each of the element must also converge to 0 with proba-
bility 1. Therefore we will consider an arbitrary element and show it converges using an inequality
derived from Chebyshev’s inequality. Selecting the element in an arbitrary row m and column n

such that 0 ≤ m ≤ s and 0 ≤ n ≤ t, let

hᵀm =
[
01×(m−1) 1 01×(s−m)

]
, (2.13)

hᵀn =
[
01×(n−1) 1 01×(t−n)

]
, (2.14)

then the sum for this single element can be written as

ρi =
1
i

i∑
j=1

hᵀm fig
ᵀ
i hn − hᵀmE

[
f jg
ᵀ
j

]
hn. (2.15)

In order to use Chebyshev’s inequality we must first bound the second moment of ρi. We start by
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expanding ρ2
i using (2.15) and canceling like terms to get

∣∣∣∣E [
ρ2

i

]∣∣∣∣ =

∣∣∣∣∣∣∣ 1
i2

i∑
j=1

i∑
k=1

E
[
hᵀm f jg

ᵀ
j hnhᵀm fkg

ᵀ
k hn

]
− hᵀmE

[
f jg
ᵀ
j ]hnhᵀmE[ fkg

ᵀ
k

]
hn

∣∣∣∣∣∣∣ . (2.16)

Expanding the expectation in the first term using [103, Equation 2.3.8] and once again canceling
like terms results in

∣∣∣∣E [
ρ2

i

]∣∣∣∣ =

∣∣∣∣∣∣∣ 1
i2

i∑
j=1

i∑
k=1

hᵀmE
[
f jg
ᵀ
k

]
hnhᵀmE

[
fkg
ᵀ
j

]
hn + hᵀmE

[
f j f ᵀk

]
hmhᵀnE

[
g jg
ᵀ
k

]
hn

∣∣∣∣∣∣∣ . (2.17)

Distributing the norm across the addition and multiplication using triangle inequality and the sub-
multiplicative property of the 2 norm we then get the upper bound

∣∣∣∣E [
ρ2

i

]∣∣∣∣ ≤ 1
i2

i∑
j=1

i∑
k=1

‖hm‖
2‖hn‖

2
∥∥∥∥E [

f jg
ᵀ
k

]∥∥∥∥ ∥∥∥∥E [
fkg
ᵀ
j

]∥∥∥∥ + ‖hm‖
2‖hn‖

2
∥∥∥∥E [

f j f ᵀk
]∥∥∥∥ ∥∥∥∥E [

g jg
ᵀ
k

]∥∥∥∥ .
(2.18)

Applying the bounds in (2.11) and the fact that ‖hm‖ = ‖hn‖ = 1 we can further upper bound
resulting in

∣∣∣∣E [
ρ2

i

]∣∣∣∣ ≤ 1
i2

i∑
j=1

i∑
k=1

2η2

ε2| j−k| (2.19)

Furthermore,

∣∣∣∣E [
ρ2

i

]∣∣∣∣ ≤ 1
i2

i∑
j=1

∞∑
k=1

4η2

ε2k =
4η2

i
(
1 − 1

ε2

) . (2.20)

where the inequality comes from the summation in (2.20) containing all of the summands in (2.19)
and the fact that all summands are non-negative. Finally, using this bound and applying Cheby-
shev’s Inequality [104, Equation 5.32] we have that, for an arbitrary choice of β > 0,

P (|ρi| > β) ≤
E

[
ρ2

i

]
β2 =

4η2

iβ2
(
1 − 1

ε2

) . (2.21)

Therefore, ρi converges to 0 with probability 1. Since the matrix element was chosen arbitrarily,
(2.12) must hold. �
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Using Theorem 6, we can make similar claims for bounded linear transforms of Gaussian
sequences.

Corollary 7. [96, Corollary A.7] Consider a pair of sequences of vectors ( fi)∞i=1 and (gi)∞i=1 where

fi ∼ N(0s×1,Σ f ,i) and gi ∼ N(0t×1,Σg,i). Furthermore, consider the sequences of time varying

matrices (Ti)∞i=1 and (Ui)∞i=1, where Ti ∈ R
s′×s and Ui ∈ R

t′×t. Assume that

‖Ti‖ ≤ ηT and ‖Ui‖ ≤ ηU . (2.22)

Let η, ε ∈ R such that 0 < η < ∞ and ε > 1. If∥∥∥∥E [
f j f ᵀi

]∥∥∥∥ , ∥∥∥∥E [
g jg
ᵀ
i

]∥∥∥∥ , ∥∥∥∥E [
f jg
ᵀ
i

]∥∥∥∥ < η

ε |i− j| , (2.23)

∀ i, j ∈ N, then

p-lim
i→∞

1
i

i∑
j=1

T j f jg
ᵀ
j Uᵀj − T jE

[
f jg
ᵀ
j

]
Uᵀj = 0s′×t′ . (2.24)

Proof. (Corollary 7) We prove this result by showing that the bounded linear transform generates
new sequences that satisfy the conditions described in Theorem 6. Let

f ′i = Ti fi ∀i and g′i = Uigi ∀i (2.25)

then f ′i ∼ N(0s′×1,TiΣ f ,iT
ᵀ
i ) and g′i ∼ N(0t′×1,UiΣg,iU

ᵀ
i ). Furthermore, we have that

∥∥∥∥E [
f ′j f ′ᵀi

]∥∥∥∥ ≤ ‖T j‖ ‖Ti‖

∥∥∥∥E [
f j f ᵀi

]∥∥∥∥ < η2
Tη

ε |i− j| (2.26)

where the first inequality comes from the submultiplicative property of the spectral norm and the
second from applying (2.23) and (2.22). Similarly,

∥∥∥∥E [
g′jg

′ᵀ
i

]∥∥∥∥ < η2
Uη

ε |i− j| and
∥∥∥∥E [

f ′j g
′ᵀ
i

]∥∥∥∥ < ηUηTη

ε |i− j| . (2.27)

Let η′ = max{η2
Uη, η

2
Tη, ηUηTη} and ε′ = ε then

∥∥∥∥E [
f ′j f ′ᵀi

]∥∥∥∥ , ∥∥∥∥E [
g′jg

′ᵀ
i

]∥∥∥∥ , ∥∥∥∥E [
f ′j g
′ᵀ
i

]∥∥∥∥ < η′

ε′|i− j| (2.28)
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which satisfies the conditions for using Theorem 6 which implies that

p-lim
i→∞

1
i

i∑
j=1

f ′j g
′ᵀ
j − E

[
f ′j g
′ᵀ
j

]
= 0s′×t′ , (2.29)

which completes the proof since

f ′j g
′ᵀ
j − E

[
f ′j g
′ᵀ
j

]
= T j f jg

ᵀ
j Uᵀj − T jE

[
f jg
ᵀ
j

]
Uᵀj . (2.30)

�

To use Theorem 6 and Corollary 7, we provide sufficient conditions for a Gaussian sequence
to satisfy conditions (2.11) and (2.23).

Theorem 8. [96, Theorem A.8] Consider the Gaussian process

ai+1 = Miai + bi (2.31)

where a0 = 0s×1 and bi are independent gaussian distributed random vaiables such that bi ∼

N(0s×1,Σb,i). If ∃ε1, ε2 such that ‖Mi‖ < ε1 < 1 and ‖Σb,i‖ < ε2 < ∞ ∀ i then∥∥∥∥E [
a ja
ᵀ
i

]∥∥∥∥ < η

ε |i− j] , (2.32)

where η = ε2
1−ε2

1
and ε = 1

ε1
.

Proof. (Theorem 8) Consider the LHS of (2.32) when i = j. We can expand a jaT
j using (2.31)

iterativley to get

∥∥∥∥E [
a ja
ᵀ
j

]∥∥∥∥ =

∥∥∥∥∥∥∥
j∑

i=1

M j−1 . . . M j−i+1Σb, j−iM
ᵀ
j−i+1 . . . Mᵀj−1

∥∥∥∥∥∥∥ . (2.33)

We upper bound this norm as follows

∥∥∥∥E [
a ja
ᵀ
j

]∥∥∥∥ ≤ j∑
i=1

‖M j−1‖ . . . ‖M j−i+1‖ ‖Σb, j−i‖ ‖M
ᵀ
j−i+1‖ . . . ‖M

ᵀ
j−1‖ <

<

i∑
i=1

ε2ε
2( j−1)
1 ≤

ε2

1 − ε2
1

, (2.34)

where the first inequality comes from applying triangle inequality and the sub-multiplicative prop-
erty of the spectral norm and the second inequality comes from applying the bounds on ‖Mi‖ and
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‖Σb,i‖ and then bounding the resulting geometric series.
We now focus on (2.32) for when i , j. Consider the following which has been expanded using

(2.31)

∥∥∥∥E [
a j+ia

ᵀ
j

]∥∥∥∥ =
∥∥∥∥E [

a ja
ᵀ
j+i

]∥∥∥∥ =

∥∥∥∥∥∥∥E
a j(M j+i−1 . . . M ja j +

i∑
k=1

M j+i−1 . . . M j+i−k+1b j+i−k)ᵀ

∥∥∥∥∥∥∥ . (2.35)

Since E[a jb j+i−k] = 0 ∀ k ≤ i, this simplifies to∥∥∥∥E [
a j+ia

ᵀ
j

]∥∥∥∥ =
∥∥∥∥E [

a ja
ᵀ
j+i

]∥∥∥∥ =
∥∥∥∥E [

a ja
ᵀ
j

]
Mᵀj . . . Mᵀj+i−1

∥∥∥∥ < η

ε i , (2.36)

where the inequality comes from (2.34) and ‖Mi‖ < ε1. �

Next, we relate limits of the outer product to those of the inner product in the following Lemma.

Lemma 9. [96, Lemma A.11] Consider a sequence of random vectors (bn)∞n=0 such that bn ∈ R
s.

p-lim
i→∞

1
i

i−1∑
n=0

bnbᵀn = 0s (2.37)

if and only if

p-lim
i→∞

1
i

i−1∑
n=0

bᵀn bn = 0. (2.38)

Proof. (Lemma 9) Assume that (2.38) holds. Note that∥∥∥∥∥∥∥1
i

i−1∑
n=0

bnbᵀn

∥∥∥∥∥∥∥ ≤ 1
i

i−1∑
n=0

‖bnbᵀn ‖ =
1
i

i−1∑
n=0

bᵀn bn. (2.39)

where the inequality comes from the triangle inequality and the equality comes from the matrix
bnbᵀn being singular. This implies that

P


∣∣∣∣∣∣∣1i

i−1∑
n=0

bᵀn bn

∣∣∣∣∣∣∣ > ε
 ≥ P 

∥∥∥∥∥∥∥1
i

i−1∑
n=0

bnbᵀn

∥∥∥∥∥∥∥ > ε
 . (2.40)

Since the LHS of (2.40) converges to zero as i → ∞ as a result of our assumption, the RHS must
do so as well which directly implies (2.37) holds.

23



Now assume that (2.37) holds. Then since

1
i

i−1∑
n=0

bᵀn bn = tr

1
i

i−1∑
n=0

bnbᵀn

 , (2.41)

and for the matrix to converge it must also converge element-wise, we have that (2.38) also holds. �

Next, we show that if conditions such as (2.37) do not hold, linear transforms of the limit also
do not converge to zero given the conditions in the following lemma hold.

Lemma 10. [96, Lemma A.11] Consider a family of matrices Rn ∈ R
t×s with full column rank.

Assume there exists η ∈ R such that 0 < η ≤ λn, where λn is the smallest eigenvalue of RT
n Rn.

Furthermore, consider a sequence of random vectors fn ∼ N(0s×1,Σ f ) such that Σ f ,n is positive

semi-definite. If

∞∑
i=1

∥∥∥∥E [
fn f ᵀn+i

]∥∥∥∥ < ∞ ∀n (2.42)

p-lim
i→∞

1
i

i−1∑
n=0

fn f ᵀn , 0s, (2.43)

then

p-lim
i→∞

1
i

i−1∑
n=0

Rn fn f ᵀn Rᵀn , 0t. (2.44)

Proof. (Lemma 10) Assume that (2.42)-(2.43) holds, but

p-lim
i→∞

1
i

i−1∑
n=0

Rn fn f ᵀn Rᵀn = 0t. (2.45)

Applying Lemma 9 we have that

p-lim
i→∞

1
i

i−1∑
n=0

f ᵀn Rᵀn Rn fn = 0. (2.46)

This implies that

p-lim
i→∞

η

i

i−1∑
n=0

f ᵀn fn = 0 (2.47)

since η f ᵀn fn ≤ λn f ᵀn fn ≤ f ᵀn Rᵀn Rn fn. Since the limit is not affected by the constant η, and using
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Lemma 9, this contradicts (2.43). Therefore, (2.44) must hold. �
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Chapter 3

Dynamic Watermarking

This chapter derives dynamic watermarking for both LTI and LTV system models in Section 3.1
and Section 3.2 respectively. Both methods are then extended to distributed control systems in
Section 3.3. In Section 3.4, we derive methods for obtaining the system dependent parameter used
by dynamic watermarking. Then we conclude the chapter with a discussion in Section 3.5.

Though specifics vary, the derivations in this chapter also share several common variables.
For convenience these variables are listed in their simplest form in Table 3.1. For more complex
scenarios additional subscripts are used to further specify the particular variable being referenced.
The dimensions of the common variables are as follows.

Variable Description
A State transition matrix
B Input matrix
C Measurement matrix
K Control gain matrix
L Observer gain Matrix
xn System state vector at step n
x̂n Observed state vector at step n
δn Observer error at step n
yn Measurement vector at step n
wn Process noise vector at step n
zn Measurement noise vector at step n
en Watermark vector at step n
vn Attack vector at step n

Table 3.1: Commonly used variables
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xn, x̂n,wn, δn ∈ R
p

en ∈ R
q

yn, zn, vn ∈ R
o

(3.1)

For simplicity we assume that x0, x̂0 = 0p×1. Furthermore, the process noise, watermark, and
measurement noise are assumed to be mutually independent Gaussian random variables such that

wn ∼ N(0p×1,Σw),

en ∼ N(0q×1,Σe),

zn ∼ N(0o×1,Σz).

(3.2)

3.1 LTI Dynamic Watermarking

This section describes LTI dynamic watermarking as described in Hespanhol et al. [22] with some
modifications resulting from Porter et al. [95]. We start by defining the LTI model and necessary
assumptions in Subsection 3.1.1. Then, in Subsection 3.1.2 we define the limit-based tests for
detecting attacks and their corresponding guarantee of detection. A formal proof for the guaran-
tee of detection and relevant intermediate results are presented in Subsection 3.1.3. Finally, in
Subsection 3.1.4, we discuss using the limit-based tests to formulate an implementable real-time
statistical test.

3.1.1 LTI Model

Consider an LTI system with state xn, measurement yn, process noise wn, measurement noise zn,
watermark en, additive attack vn, and stabilizing feedback that uses the observed state x̂

xn+1 = Axn + BKx̂n + Ben + wn,

x̂n+1 = (A + BK + LC)x̂n + Ben − Lyn,

yn = Cxn + zn + vn.

(D1)

While the process and measurement noise are unknown to the controller, the watermark signal is
generated by the controller and is known. The following assumption is made on the controller,
observer, and watermark design.

Assumption 11. Assume the matrices A + BK and A + LC are Shur stable and that Σe is full rank.

Note that to satisfy the assumption on A + BK, one could for instance assume that the control-
labilty matrix constructed from A and B was full rank. Under that assumption one could design K
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using eigenvalue assignment and selecting eigenvalues of magnitude less than one [105, Section
4.4.1]. Moreover, the assumption on A + LC could be satisfied similarly if the observability ma-
trix constructed from A and C was full rank. Since the watermark is user-defined, the remaining
assumption can be satisfied by proper selection of Σe.

The measurement residual for this system takes the form

rn = Cx̂n − yn. (3.3)

When an attack is not present, the distribution of the measurement residuals converge to a zero
mean Gaussian distribution with covariance Σr where

Σr = lim
n→∞

E[(Cx̂n − yn)(Cx̂n − yn)ᵀ]. (3.4)

Under Assumption 11, this limit is guaranteed to exist and can be found analytically by first con-
sidering the observer error δn = x̂n − xn which satisfies the dynamics

δn+1 = (A + LC)δn − wn − Lzn − Lvn. (3.5)

When no attack is present the observer error follows a zero mean Gaussian distribution with co-
variance Σδ which is the solution to the discrete lyapunov equation

Σδ = (A + LC)Σδ(A + LC)ᵀ + Σw + LΣzLᵀ. (3.6)

Then the covariance of the measurement residual can be written as Σr = CΣδCᵀ + Σz. To simplify
later notation we also define the matrix normalizing factor V as

V = Σ−1/2
r . (3.7)

Remark 12. Both the covariance of the measurement residual and the matrix normalizing factor

can be calculated analytically when all noise parameters are known. However, this is often not the

case for real world systems. Instead, the covariance of the measurement residual and the matrix

normalizing factor can be estimated as described in Section 3.4.

Next, consider a generalization of a replay attack satisfying

vn = α(Cxn + zn) + Cξn + ζn (3.8)

ξn+1 = (A + BK)ξn + ωn (3.9)

where α ∈ R is called the attack scaling factor, the false state ξn ∈ R
p has process noise ωn ∈
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Rp and measurement noise ζn ∈ R
o that take the form ωn ∼ N(0p×1,Σω) and ζn ∼ N(0o×1,Σζ),

and are mutually independent with each other and with wn and zn. Though this attack structure
does not include all forms of deception attacks, it does allow an attacker to carry out a variety of
documented attacks. For example, selecting Σω = 0p and an attack scaling factor α of 0 results
in independent identically distributed noise being added to the measurement. Moreover, when
Σω and Σζ are selected such that the covariance of the measurement residual is unaltered and the
attack scaling parameter is −1, this model can approximate a replay attack. While attackers may
have the ability to start and stop attacks at will, attacks that are only present for finite time are
not guaranteed to be detected. Therefore, when considering asymptotic guarantees of detection,
the assumption of persistence is made. To formally describe these persistent attacks, consider the
following definition.

Definition 13. The asymptotic attack power is defined as

as-lim
i→∞

1
i

∑i−1
n=0 vᵀn vn. (3.10)

Under this definition, an attack with non-zero asymptotic power is deemed to be persistent.

3.1.2 Limit-Based Tests

The asymptotic claims of LTI dynamic watermarking consider the following conditions

as-lim
N→∞

1
N

N−1∑
n=0

rnrᵀn = V (LTI.C1)

as-lim
N→∞

1
N

N−1∑
n=0

rnen−ρ−1 = 0 (LTI.C2)

Here, the (LTI.C1) checks for changes in the covariance of the residual while (LTI.C2) ensures that
the attack is uncorrelated with the true measurement and cannot avoid changing this covariance.
The delay of the watermark by ρ in (LTI.C2) is chosen to satisfy

C(A + BK)ρB , 0o×q. (3.11)

which ensures that the effect of the watermark is present in the measurement signal. The existence
of such a ρ is guaranteed for systems that are both controllable and observable by the following
lemma.

Lemma 14. [22, Corollary 1] Consider an LTI system satisfying (D1). If (A, B) is controllable

and (A,C) is observable then there exists a ρ ∈ N where ρ ≤ p − 1 satisfying (3.11).
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Proof. Since (A, B) is controllable, we have that (A + BK, B) is controllable meaning the control-
lability matrix

C =
[
B (A + BK)B · · · (A + BK)p−1B

]
(3.12)

has a rank of p. By Sylvester’s rank inequality we have that

rank(CC) ≥ rank(C) + rank(C) − p = rank(C). (3.13)

Furthermore, (A,C) is observable, and so the observability matrix

O =


C

CA
...

CAp−1


= blkdiag(C, . . . ,C)


I

A
...

Ap−1


(3.14)

has a rank of p. Again applying Sylvester’s rank inequality implies

prank(C) ≥ rank(O) = p, (3.15)

or equivalently that rank(C) ≥ 1. Combining this with (3.13) gives us rank(CC) ≥ 1, and so
CC , 0o×pq. This implies the existence of ρ ≤ p − 1 satisfying (3.11) since CC is a block matrix
consisting of the blocks C(A + BK)mB for m = 0, . . . , p − 1. �

The asymptotic claims of LTI dynamic watermarking then take the form of the following the-
orem.

Theorem 15. [22, Theorem 1] Consider an attacked LTI system satisfying (D1). Let V be as

defined in (3.7) and ρ be the smallest value for which (3.11) holds. If vn = 0o×1, for all n ∈ N,

then (LTI.C1) and (LTI.C2) hold. Furthermore if the attack follows the dynamics in (3.46) and has

non-zero asymptotic attack power as defined in Definition 13, then (LTI.C1) and (LTI.C2) cannot

both hold.

To prove Theorem 15, a few intermediate results must first be provided.

30



3.1.3 Intermediate Results

First consider the combined dynamics that are used to improve notation in the intermediate results.

x̄n+1 = Āx̄n + B̄en + D̄wn + L̄(zn + vn) (3.16)

where x̄ᵀ =
[
xᵀn x̂ᵀn

]
, B̄ᵀ =

[
Bᵀ Bᵀ

]
, C̄ =

[
C 0o×p

]
, Dᵀ =

[
Ip 0p

]
, L̄ᵀ =

[
0p×o −Lᵀ

]
, and

Ā =

 A BK

−LC A + BK + LC

 (3.17)

Next we provide two lemmas that will aid in the proof of Theorem 15.

Lemma 16. [22, Lemma 1] We have that

ĀmB̄ =

(A + BK)mB

(A + BK)mB

 (3.18)

for all o ≥ 0.

Proof. (Lemma 16) The result holds for o = 0 since Ā0 = I2p and (A + BK)0 = Ip. It remains to
show the inductive step. Assume that the result holds for m then

Ām+1B̄ = Ā

(A + BK)mB

(A + BK)mB

 =

(A + BK)m+1B

(A + BK)m+1B

 . (3.19)

Hence the result follows by induction. �

Lemma 17. [22, Proposition 1] Let

A(α) = Ā + αH̄ (3.20)

with

H̄ =

 0p 0p

−LC 0p

 (3.21)

and let ρ be the smallest value for which (3.11) holds. Then Ā(α)mB̄ = ĀmB̄ for 0 ≤ m ≤ ρ

Proof. (Lemma 17) If ρ = 0, then the result holds trivially. So assume ρ ≥ 1. We have rhat
Ā(α)0B̄ = ĀB̄ since Ā(α)0 = Ā0 = I2p. Now suppose that Ā(α)mB̄ = ĀmB̄ for some 0 ≤ m ≤ ρ.
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Using Lemma 16 implies that

Ā(α)m+1B̄ = Ām+1B̄ + αH̄

(A + BK)mB

(A + BK)mB

 = Ām+1B̄ + α

 0p×q

−LC(A + BK)mB

 = Ām+1B̄ (3.22)

where the final equality comes from the fact that LC(A + BK)mB = 0 since m < ρ. Hence the result
follows by induction. �

Now we proceed to the proof of Theorem 15.

Proof. (Theorem 15) Note that using the attack dynamics (3.8)-(3.9) and (3.20)-(3.21) we can
rewrite the combined dynamics in (3.16) as

x̄n+1 = Ā(α)x̄b + B̄en + D̄wn + L̄((1 + α)zn + Cξn + ζn). (3.23)

Next note that a basic calculation gives

x̄n = Ā(α)m x̄n−m +

m−1∑
m′=0

Ā(α)m−m′−1
(
B̄en+m′−m + D̄wn+m′−m+

+ L̄ ((1 + α)zn−m′−m + Cξn+m′−m + ζn+m′−m)
)
. (3.24)

If we define ¯̄C =
[
−C C

]
, then rn = ¯̄Cx̄n − αC̄ x̄n − (1 − α)zn −Cξn − ζn, and so

1
N

N−1∑
n=0

E
[
(rneᵀn−ρ−1

]
= ( ¯̄C − αC̄)Ā(α)ρ−1B̄Σe. (3.25)

By Lemma 14 we know that ρ ≤ p − 1 so Lemma 17 can be applied to (3.25) to get

1
N

N−1∑
n=0

E
[
(rneᵀn−ρ−1]

]
= ( ¯̄C − αC̄)ĀρB̄Σe = −αC̄ĀρB̄Σe (3.26)

where the second equality holds by Lemma 16 and by the definition of ¯̄C. Because (LTI.C1) holds,
the quantity in (3.26) should equal 0. But since Σe is full rank by Assumption 11, Sylvester’s rank
inequality implies C̄ĀρB̄Σe , 0o×q since

C̄ĀρB̄ = C̄

(A + BK)ρB

(A + BKρB

 = C(A + BK)ρB , 0, (3.27)

where the first equality holds by Lemma 16 and the second by the definition of C̄. Thus we must
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have α = 0.
Next consider the expression

1
N

N−1∑
n=0

rnrᵀn =
1
N

N−1∑
n=0

(Cx̂n − (1 + α)(Cxn + zn) −Cξn − ζn) (Cx̂n − (1 + α)(Cxn + zn) −Cξn − ζn)ᵀ .

(3.28)

We showed that α = 0, and so the expectation of the above expression is

CΣδCᵀ + Σz + Σζ +
1
N

N−1∑
n=0

E[Cξnξ
ᵀ
n Cᵀ] +

1
N

N−1∑
n=0

(
C(A + BK)N−1x0

) (
C(A + BK)N−1ξ0

)ᵀ
+

+
1
N

N−1∑
n=0

(
C(A + BK)N−1ξ0

) (
C(A + BK)N−1x0

)ᵀ
. (3.29)

Since (A + BK) is Schur stable, the associated property of exponential stability implies

as-lim
N→∞

1
N

N−1∑
n=0

C(A + BK)N−1x0(C(A + BK)N−1ξ0)ᵀ = 0r (3.30)

by combining Cauchy-Schwartz inequality with the exponential stability. However, from the
(LTI.C2), the expectation must equal CΣδCᵀ + Σz in the limit. Since all terms in the above ex-
pectation (3.29) are positive semidefinite or have zero limit this implies that

Σζ + as-lim
N→∞

1
N

N−1∑
n=0

E
[
Cξnξ

ᵀ
n Cᵀ

]
= 0r. (3.31)

Finally, consider the expression

1
N

N−1∑
n=0

vnvᵀn =
1
N

N−1∑
n=0

((α(Cxn + zn) + Cξn + ζn) ((α(Cxn + zn) + Cξn + ζn)ᵀ . (3.32)

Since α = 0, the expectation of the above expression is

Σζ +
1
N

N−1∑
n=0

E
[
Cξnξ

ᵀ
n Cᵀ

]
+

1
N

N−1∑
n=0

(
C(A + BK)N−1x0

) (
C(A + BK)N−1ξ0

)ᵀ
+

+
1
N

N−1∑
n=0

(
C(A + BK)N−1ξ0

) (
C(A + BK)N−1x0

)ᵀ
. (3.33)
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Combining (3.30)-(3.33) implies

as-lim
N→∞

1
N

N−1∑
n=0

vnvᵀn = 0r. (3.34)

However, vᵀn vn equals the trace of vnvᵀn . Thus we have

as-lim
N→∞

1
N

N−1∑
n=0

vᵀn vn = 0. (3.35)

�

3.1.4 Statistical Tests

While Theorem 15 provides guarantees for limit-based tests in infinite time, (LTI.C1)-(LTI.C2)
cannot be used for real-time testing. However, to make these tests implementable in real-time, a
statistical test is derived using a sliding window of fixed size `

Pn =
[
Ψn−`+1 · · · Ψn

]
where Ψn =

V(Cx̂n − yn)
Σ
−1/2
e en−ρ−1

 . (3.36)

At each step, the combined partial sums in (LTI.C1)-(LTI.C2) then take the form

S n = PnPᵀn =

n∑
i=n−`+1

V(Cx̂i − yi)
Σ
−1/2
e ei−ρ−1

 [(Cx̂i − yi)ᵀVᵀ eᵀi−ρ−1Σ
−1/2
e

]
. (3.37)

Under the assumption of no attack, S n converges asymptotically to the Wishart distribution with
scale matrix Iq+o and ` degrees of freedom as ` → ∞. Furthermore, for a generalized replay attack
of non-zero asymptotic power, Theorem 15 gives us that the scale matrix for S n is no longer Io+q,
since either (LTI.C1) or (LTI.C2) is not satisfied. Given the sampled matrix S n, the statistical test
then uses the negative log likelihood of the scale matrix

L(S n) = (q + o + 1 − `) log(|S n|) + tr (S n) + log
(
2(q+o)`/2Γ(q+o)

(
`

2

))
. (3.38)

where Γ(q+o) is the multivariate gamma function as described in Subsection 2.1.2. Note that the
final term in (3.38) is a constant that is only dependent on the dimension of the system and is
often omitted to simplify notation in other literature. Negative log likelihood values that exceed a
user-defined threshold signal an attack.
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Remark 18. The above derivation of the statistical test is equivalent to that of Hespanhol et al.
[22]. Note that the distribution of S n as defined in (3.36)-(3.37) converges to a Wishart distribution

though it is not necessarily Wishart distributed for a finite value of `. This is due to the measurement

residuals being auto-correlated. For an LTI system this results in some consistent approximation

error which in many cases may be negligible. However, in Porter et al. [95] the definition of S n in

(3.37) is modified such that

S n = PnG−1Pᵀn where G =
E[Pᵀn Pn]

q + o
. (3.39)

As a result, S n is in fact Wishart distributed when no attack is present. Estimation of the matrix G

is discussed in Section 3.4.

3.2 LTV Dynamic Watermarking

This section describes LTV dynamic watermarking as described in Porter et al. [96] with some
modifications resulting from Porter et al. [95]. We start by defining the LTV model and necessary
assumptions in Subsection 3.2.1. Then, in Subsection 3.2.2 we define the limit-based tests for
detecting attacks and their corresponding guarantee of detection. A formal proof for the guarantee
of detection and relevant intermediate results are presented in Subsection 3.2.3. Note that in this
case proofs of the intermediate results have been moved Subsection 3.2.5 to improve readability.
Finally, in Subsection 3.2.4, we discuss using the limit-based tests to formulate an implementable
real-time statistical test.

3.2.1 LTV Model

Consider an LTV system with state xn, measurement yn, process noise wn, measurement noise zn,
watermark en, additive attack vn, and stabilizing feedback that uses the observed state x̂

xn+1 = Anxn + BnKn x̂n + Bnen + wn,

x̂n+1 = (An + BnKn + LnCn)x̂n + Bnen − Lnyn,

yn = Cnxn + zn + vn.

(D2)

While the process and measurement noise are unknown to the controller, the watermark signal is
generated by the controller and is known. For simplicity, define

Ān = (An + BnKn) and An = (An + LnCn). (3.40)
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Furthermore, let

Ā(n,m) =

Ān × · · · × Ām n ≥ m,

Ip m > n,
and A(n,m) =

An × · · · × Am n ≥ m,

Ip m > n.
(3.41)

We make the following assumption.

Assumption 19. The covariances Σe, Σw,n, and Σz,n, of the random variables used in (D2), are

full rank. Furthermore, there exists positive constants ηw, ηz, ηĀ, ηB, ηC ∈ R such that ‖Σw,n‖ < ηw,

‖Σz,n‖ < ηz, ‖Ān‖ < ηĀ < 1, ‖Bn‖ < ηB, and ‖Cn‖ < ηC, for all n ∈ N.

The assumption of bounded full rank covariances for the process and measurement noise are sat-
isfied for most systems by modeling error and sensor noise. Furthermore, the input and output
matrices are often constrained to be finite by sensor and actuator limits. Note to satisfy the as-
sumption on Ān, one could for instance assume that the controllabilty matrix constructed from An

and Bn for all n ≥ 0 was full rank. Under that assumption one could design Kn using eigenvalue
assignment and selecting real distinct eigenvalues that are less than 1 [105, Section 4.4.1]. Since
the watermark is user-defined, the remaining assumption can be satisfied by proper selection of Σe.

Next, we make the following assumption about the observer.

Assumption 20. There exists positive constants ηA, ηL, ηδ, ηV ∈ R such that ‖An‖ < ηA < 1,

‖Ln‖ < ηL, ‖Σδ,n‖ < ηδ, and ‖Vn‖ < ηV , for all n ∈ N.

Note to satisfy the assumption on An, one could for instance assume that the observability matrix
constructed from An and Cn for all n ≥ 0 was full rank. Under that assumption one could design
Ln using eigenvalue assignment and selecting real distinct eigenvalues that are less than 1 [105,
Section 4.8.1]. Previous assumptions imply the assumptions on Ln, Σδ,n, and Vn are satisfied, but
the bounds here simplify notation.

The measurement residual for this system takes the form

rn = Cn x̂ − yn (3.42)

When no attack is present, the distribution of the measurement residual at a given step n is zero
mean Gaussian distributed with time-varying covariance Σr,n. This covariance can be found ana-
lytically by first considering the observer error

δn+1 = (An + LnCn)δn − wn − Ln(zn + vn), (3.43)

When no attack is present the observer error has time-varying covariance Σδ,n which can be found
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as

Σδ,n =

n∑
i=0

A(n−1,n−i+1)(Σw,n−i + Ln−iΣz,n−iL
ᵀ
n−i)A

ᵀ
(n−1,n−i+1). (3.44)

Then the covariance of the measurement residual can be written as Σr = CnΣδ,nC
ᵀ
n + Σz,n. The

matrix normalization factor is then defined as

Vn = (CnΣδ,nC
ᵀ
n + Σz,n)−1/2, (3.45)

which exists since Σz,n is full rank. For the LTV system, the matrix normalization factor can be
thought of as a time-varying normalization for the covariance of the measurement residual.

Remark 21. Similar to the LTI case, both the measurement residual and the matrix normalizing

factor often must be estimated for real world applications. As such we discuss how to estimate

these parameters in Section 3.4.

Next, we alter the attack defined in (3.8)-(3.9) to create a time-varying equivalent. Consider an
attack vn that satisfies

vn = α(Cnxn + zn) + Cnξn + ζn (3.46)

ξn+1 = Ānξn + ωn, (3.47)

where α ∈ R is called the attack scaling factor, the false state ξn ∈ R
p has process noise ωn ∈ R

p

and measurement noise ζn ∈ R
o that take the form ωn ∼ N(0p×1,Σω,n) and ζn ∼ N(0o×1,Σζ,n) and

are mutually independent with each other and with wn and zn. Similar to the LTI case, when Σω,n

and Σζ,n are selected properly and the attack scaling parameter is −1, this model can approximate
a replay attack. While an attacker could choose to allow the noise to have unbounded covariance,
the resulting attack would be trivial to detect. Therefore, we make the following assumption about
the attack model.

Assumption 22. When there is an attack, vn follows the dynamics (3.46)-(3.47) with the attack

scaling factor remaining constant. Furthermore, there exists positive constants ηω, ηη ∈ R such

that ‖Σω,n‖ < ηω, ‖Σζ,n‖ < ηζ , for all n ∈ N.

To make asymptotic guarantees of detection, we also assume the persistence of attacks using
the following definition.

Definition 23. The asymptotic attack power is defined as

p-lim
i→∞

1
i

∑i−1
n=0 vᵀn vn. (3.48)
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3.2.2 Limit-Based Tests

The asymptotic claims of LTV dynamic watermarking consider the following conditions.

p-lim
N→∞

1
N

N−1∑
n=0

Vnrnrᵀn Vᵀn = I (LTV.C1)

p-lim
N→∞

1
N

N−1∑
n=0

Vnrnen−ρ−1 = 0 (LTV.C2)

Similar to their LTI counterparts (LTV.C1) checks for changes in the covariance of the residual
while (LTV.C2) ensures that the attack is uncorrelated with the true measurement and cannot avoid
changing this covariance. The delay of the watermark by ρ in (LTV.C2) was initially set to zero in
Porter et al. [96] with the following assumption

Assumption 24. [96, Assumption III.2]

lim
i→∞

1
i

∑i−1
n=0 CnBn−1 , 0o×q. (3.49)

Here, (3.49) guarantees an asymptotic correlation between the measurement signal yn and the wa-
termark signal en−1, which has been delayed by a single time step. This ensures that the watermark
has a persistent measurable effect on the measurement signal, which can then be used for validation
purposes. This is similar to assuming ρ is equal to 0 for the LTI case.

Remark 25. Assumption 24 was later relaxed to the following assumption in Porter et al. [95].

Assumption 26. [95, Assumption IV.2] There exists ρ ∈ N such that

lim
i→∞

1
i

i−1∑
n=0

CnĀ(n−1,n−ρ+1)Bn−ρ , 0o×q. (3.50)

This assumption guarantees an asymptotic correlation between the measurement signal yn and
the delayed watermark en−ρ−1 for an arbitrary non-negative delay rho.

The asymptotic claims of LTV dynamic watermarking then take the form of the following
theorem.

Theorem 27. [96, Theorem III.6] Consider an attacked LTV system satisfying the dynamics in

(D2) and Assumption 24. Let Vn be defined as in (3.45) and ρ = 0. If vn = 0o×1, for all n ∈ N,

then (LTV.C1) and (LTV.C2) hold. Furthermore, if the attack follows the dynamics in (3.46)-(3.47)
and has non-zero asymptotic attack power as defined in definition 23, then (LTV.C1) and (LTV.C2)
cannot both be satisfied.
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Remark 28. Theorem 27 was later relaxed in Porter et al. [95] by replacing Assumption 24 with

Assumption 26 resulting in the following theorem.

Theorem 29. [95, Theorem IV.3] Consider an attacked LTV system satisfying the dynamics in

(D2). Let Vn be defined as in (3.45) and ρ be the smallest value for which (3.50) holds. If vn = 0o×1,

for all n ∈ N, then (LTV.C1) and (LTV.C2) hold. Furthermore, if the attack follows the dynamics in

(3.46)-(3.47) and has non-zero asymptotic attack power as defined in definition 23, then (LTV.C1)
and (LTV.C2) cannot both be satisfied.

To prove Theorem 27 and Theorem 29, several intermediate results must first be provided.

3.2.3 Intermediate Results

The proofs of these results have been omitted to improve readability. However, they are available
in Subsection 3.2.5. We aim to show that α is equal to 0. Doing so allows us to use the following
lemma to simplify the application of the results in Section 2.2.

Lemma 30. [96, Theorem A.9] Consider an attacked LTV system satisfying the dynamics in (6.15)-
(3.53) and the attack model in (3.46)-(3.47). Assume the attack scaling factor α is equal to 0. Then

∃ η > 0 and ε > 1 such that ∥∥∥∥∥∥∥∥∥∥∥∥∥∥
E




xn

δ̄n

δ̂n

ξn




xn+i

δ̄n+i

δ̂n+i

ξn+i



ᵀ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
< η

εi . (3.51)

First, we consider the asymptotic limit (LTV.C2) and show that it implies that the attack scaling
factor α is equal to 0. This allows us to assume that α is equal to 0 for the remainder of the
intermediate results.

Lemma 31. [96, Lemma III.7] Consider an attacked LTV system satisfying (D2) and Assumption

24 and the attack model satisfying (3.46)-(3.47). Let Vn be as defined in (3.45) and ρ = 0. (LTV.C2)
holds if and only if the attack scaling factor α is equal to 0.

Next we provide an equivalent result after replacing Assumption 24 with the less restrictive
Assumption 26.

Theorem 32. [95, Theorem IV.4] Consider an attacked LTV system satisfying the dynamics in

(D2) and an attack model satisfying (3.46)-(3.47). Let Vn be as defined in (3.45), and ρ being the

smallest value for which (3.50) holds. (LTV.C2) holds if and only if the attack scaling factor α is

equal to 0.
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In a sense, (LTV.C2) checks that the attack vn is uncorrelated with the true measurement, which is
true only when the attack scaling factor α is zero.

Assuming α is equal to 0, we show that (LTV.C1) is equivalent to another condition that is only
dependent on the attack vn and its contribution to the observer error δ̂n. Let

δ̄n+1 = Anδ̄n − wn − Lnzn (3.52)

δ̂n+1 = Anδ̂n − Lnvn (3.53)

where δ̄0 = δ̂0 = 0p×1. Note that δn = δ̄n + δ̂n and that when vn = 0o×1, ∀n we have that δ̂n =

0p×1, ∀n. Here δ̄n can be thought of as the portion of the observer error that results from the
original noise of the system, while δ̂n is the contribution of the attack to the observer error. defined
as Note that δ̂n is not computable given the available knowledge of the system, but the provided
condition is an amenable surrogate to (LTV.C1).

Next, we show that, when α being equal to 0, the full system state satisfies the conditions of
Theorem 8.

Lemma 33. [96, Lemma III.8] Consider an attacked LTV system satisfying (D2) and an attack

model satisfying (3.46)-(3.47). Let Vn be as defined in (3.45). Assume the attack scaling factor α

is equal to 0. (LTV.C1) holds if and only if

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̂n − vn)(Cnδ̂n − vn)ᵀVᵀn = 0r. (3.54)

Here (3.54) can be thought of as that contribution of the attack to the value of the LHS of (LTV.C1).
For an attack scaling factor α of 0, the attack vn is only dependent on the random vectors ξn

and ζn. Similar to Lemma 33, these vectors are not computable by the controller, but can be used
to connect (LTV.C1) to the asymptotic attack power.

Lemma 34. [96, Lemma III.9] Consider an attacked LTV system satisfying (D2) and an attack

model satisfying (3.46)-(3.47). Assume that the attack scaling factor α is equal to 0. The asymptotic

attack power as defined in (3.48) is 0 if and only if

p-lim
i→∞

1
i

∑i−1
n=0 ζnζ

ᵀ
n = 0r, (3.55)

and

p-lim
i→∞

1
i

∑i−1
n=0 Cnξnξ

ᵀ
n Cᵀn = 0r. (3.56)

Each of the prior equations can be thought of as the contribution of each random vector to the
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asymptotic attack power.
Next, we start to complete the connection between (LTV.C1) and zero asymptotic attack power

by proving (3.54) implies (3.55). Furthermore, we prove a related result that makes it simpler to
prove that (3.54) implies (3.56).

Lemma 35. [96, Lemma III.10] Consider an attacked LTV system satisfying (D2) and an attack

model satisfying (3.46)-(3.47). Let Vn be as defined in (3.45). Assume the attack scaling factor α

is equal to 0. If (3.54) holds, then (3.55) holds as well and

p-lim
i→∞

1
i

∑i−1
n=0(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀ = 0r. (3.57)

Since ζn adds additional noise to the measurement signal, the link between (3.54) and (3.55) is
clear. In particular, (3.57) is constructed by removing ζn’s effect from (3.54).

Next we claim that (3.54) implies (3.56) to complete the relation between (LTV.C1) and the
asymptotic attack power.

Lemma 36. [96, Lemma III.11] Consider an attacked LTV system satisfying (D2) and an attack

model satisfying (3.46)-(3.47). Let Vn be as defined in (3.45). Assume the attack scaling factor α

is equal to 0. If (3.54) holds then (3.56) holds as well.

The proof of Lemma 36 makes use of Lemma 35 and instead shows that (3.57) implies (3.56).
Despite the removal of ζn in (3.57), the correlation between δ̂n and ξn introduces a potential com-
plication. To address this challenge, we prove the contrapositive statement. Assuming that (3.56)
does not hold, we make the following assertion.

Lemma 37. [96, Lemma III.12] Consider an attacked LTV system satisfying (D2) and an attack

model satisfying (3.46)-(3.47). Let Vn be as defined in (3.45). Assume the attack scaling factor α

is equal to 0. If (3.56) does not hold then there exists m ∈ N for which

p-lim
i→∞

1
i

i−1∑
n=0

Cn

mn∑
j=1

Ā(n−1,n− j+1)ωn− j


Cn

mn∑
j=1

Ā(n−1,n− j+1)ωn− j


ᵀ

, 0r. (3.58)

where mn = min{n,m}. Furthermore, there exists an m′ ∈ N such that m′ ≤ m and

p-lim
i→∞

1
i

i−1∑
n=0

CnĀ(n−1,n− j+1)ωn− jω
ᵀ
n− jĀ

ᵀ
(n−1,n− j+1)C

ᵀ
n , 0r (3.59)

for j = m′ but not for j < m′.

Here (3.56) is expanded into a summation over a triangular array. Splitting ξn in (3.57), allows us
to modify the cross terms and complete the proof.
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Having proven several intermediate results, we are now able to formally prove Theorem 27 and
Theorem 29.

Proof. (Theorem 27) When no attack is present, (LTV.C2) holds using Lemma 31 since the attack
scaling factor α is equal to 0. Furthermore, (LTV.C1) holds since the observer error δ = δ.

Now assume that an attack of non-zero asymptotic power is present and consider the following
cases.
Case 1 (α , 0): Using Lemma 31, (LTV.C2) does not hold.
Case 2 (α = 0): Note, (LTV.C1) implies zero asymptotic attack power as follows.

(LTV.C1) ⇐⇒
Lemma 33

(3.54)
=⇒

Lemma 35
(3.55)

=⇒
Lemma 36

(3.56)
⇐⇒

Lemma 34

zero asymptotic
attack power


Under our assumption of non-zero asymptotic power, the contrapositive implies that (LTV.C1)
does not hold. �

Proof. (Theorem 29) When no attack is present, (LTV.C2) holds using Theorem 32 since the
attack scaling factor α is equal to 0. Furthermore, (LTV.C1) holds since the observer error δ = δ.

Now assume that an attack of non-zero asymptotic power is present and consider the following
cases.
Case 1 (α , 0): Using Theorem 32, (LTV.C2) does not hold.
Case 2 (α = 0): Note, (LTV.C1) implies zero asymptotic attack power using the same argument
as the proof for Theorem 27 above. Under our assumption of non-zero asymptotic power, the
contrapositive implies that (LTV.C1) does not hold. �

3.2.4 Statistical Tests

While Theorem 27 and Theorem 29 provides guarantees for limit-based tests in infinite time,
(LTV.C1)-(LTV.C2) cannot be used for real-time testing. However, to make these tests imple-
mentable in real-time, a statistical test is derived using a sliding window of fixed size `

Pn =
[
Ψn−`+1 · · · Ψn

]
where Ψn =

Vn(Cn x̂n − yn)
Σ
−1/2
e en−ρ−1

 . (3.60)

42



At each step, the combined partial sums in (LTV.C1)-(LTV.C2) then take the form

S n = PnPᵀn =

n∑
i=n−`+1

Vn(Cn x̂i − yi)
Σ
−1/2
e ei−ρ−1

 [(Cn x̂i − yi)ᵀV
ᵀ
n eᵀi−ρ−1Σ

−1/2
e

]
. (3.61)

Under the assumption of no attack, S n converges asymptotically to the Wishart distribution with
scale matrix Iq+o and ` degrees of freedom as ` → ∞. Furthermore, for a generalized replay attack
of non-zero asymptotic power, Theorem 27 and Theorem 29 give us that the scale matrix for S n is
no longer Io+q, since either (LTV.C1) or (LTV.C2) is not satisfied. Given the sampled matrix S n,
the statistical test then uses the negative log likelihood of the scale matrix

L(S n) = (q + o + 1 − `) log(|S n|) + tr (S n) + log
(
2(q+o)`/2Γ(q+o)

(
`

2

))
. (3.62)

Negative log likelihood values that exceed a user-defined threshold signal an attack.

Remark 38. The above derivation of the statistical test is equivalent to that of Porter et al. [96].

Note that the distribution of S n as defined in (3.36)-(3.37) converges to a Wishart distribution

though it is not necessarily Wishart distributed for a finite value of `. This is due to the measurement

residuals being auto-correlated. For an LTV system this results in some consistent approximation

error which in many cases may be negligible. However, in Porter et al. [95] the definition of S n in

(3.61) is modified such that

S n = PnG−1
n Pᵀn where Gn =

E[Pᵀn Pn]
q + o

. (3.63)

As a result, S n is in fact Wishart distributed when no attack is present. Estimation of the matrix G

is discussed in Section 3.4.

3.2.5 Proofs

Proof. (Lemma 30) We prove this result using Theorem 8. First note that using (6.15)-(3.53),
(3.46)-(3.47), and assuming α = 0 we can write

an+1 = Mnan + bn (3.64)
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where an =
[
xᵀn δ̄

ᵀ
n δ̂

ᵀ
n ξ

ᵀ
n

]ᵀ
,

Mn =


Ān BnKn BnKn 0p

0p An 0p 0p

0p 0p An −LnCn

0p 0p 0p Ān

 , (3.65)

and bn = Tn

[
eᵀn wᵀn zᵀn ζ

ᵀ
n ω

ᵀ
n

]ᵀ
with

Tn =


Bn Ip 0p×r 0p×r 0p

0p×q −Ip −Ln 0p×r 0p

0p×q 0p 0p×r −Ln 0p

0p×q 0p 0p×r 0p×r Ip

 . (3.66)

Let ε1 = max{ηA1, ηA2} then ‖Mn‖ < ε1 < 1 since the eigenvalues of upper block diagonal matrices
are the set of eigenvalues of the block elements on the diagonal and ‖Ān‖ < ηA1 < 1 and ‖An‖ <

ηA2 < 1. Furthermore, bn ∼ N(0,Σb,n) where

Σb,n = Tn blkdiag(Σe,Σw,n,Σz,n,Σζ,n,Σω,n)Tᵀn . (3.67)

Since Bn, Ln,Σe,Σw,n,Σz,n,Σζ,n, and Σω,n are all bounded we have that ‖Σb,n‖ < ε2 for some
0 ≤ ε2 < ∞. Using Theorem 8 completes the proof. �

Proof. (Theorem 32) Assume that α is equal to 0. Then (LTV.C2) holds by the same reasoning as
for the proof of the original theorem [96, Theorem III.7].

Now assume that (LTV.C2) holds. Rearranging (LTV.C2) using (D2), (3.43), and (3.46) results
in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−ρ =

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − (1 + α)zn − αCnxn −Cnξn − ζn)eᵀn−ρ. (3.68)

Note that

p-lim
i→∞

1
i

i−1∑
n=0

Vn(−(1 + α)zn −Cnξn − ζn)eᵀn−ρ = 0o×q (3.69)
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by Corollary 7 since zn, ζn, ξn and en−ρ are mutually independent and satisfy the necessary auto-
correlation bound. Then by Theorem 4 we can cancel these terms resulting in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−ρ = p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − αCnxn)eT
n−ρ. (3.70)

Expanding xn, δn in (3.70) by κ+ 1 steps using (D2) and (3.43) then collecting all terms that do not
depend on en−ρ−1 and denoting them an results in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−ρ =

= p-lim
i→∞

1
i

i−1∑
n=0

Vn

(
an − α

κ−1∑
j=0

M j,nCn− jĀ(n− j−1,n−ρ+1)Bn−ρen−ρ

)
eᵀn−ρ. (3.71)

where M j,n ∈ R
o×o is a bounded linear transform due to the dynamics being bounded and κ being

finite. Moreover, M0,n = Ir and due to our choice of κ terms for j > 0 can be cancelled by Theorem
4 since they converge to 0q,o by Corollary 7 resulting in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−ρ =

= p-lim
i→∞

1
i

i−1∑
n=0

Vn

(
an − αCnĀ(n−1,n−ρ+1)Bn−ρen−ρ

)
eᵀn−ρ. (3.72)

Then by Corollary 7 we have that

p-lim
i→∞

1
i

i−1∑
n=0

−αVnCnĀ(n−1,n−ρ+1)Bn−ρ(en−ρe
ᵀ
n−ρ − Σe) = 0q×o. (3.73)

Therefore by Theorem 4 we have

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−ρ =

= p-lim
i→∞

1
i

i−1∑
n=0

Vnaneᵀn−ρ − αVnCnĀ(n−1,n−ρ+1)Bn−ρΣe. (3.74)

Note, that all elements of

Vnaneᵀn−ρ (3.75)
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are distributed symmetrically about 0 for all n ∈ N since an is a zero mean Gaussian random vector.
Consider an element of (3.74) for which the corresponding element in

1
i

i−1∑
n=0

VnCnĀ(n−1,n−ρ+1)Bn−ρΣe (3.76)

does not converge. For each i, the probability that the matrix element in (3.74) is farther away from
0 than the corresponding element in (3.76) is at least 0.5. Therefore the element cannot converge
in probability to 0 completing the proof. �

Proof. (Lemma 31) Assume that α is equal to 0. Rearranging the LHS of (LTV.C2) using (D2),
(3.43), and (3.46) results in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−1 = p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − zn −Cnξn − ζn)eᵀn−1. (3.77)

Corollary 5 says that to show that the RHS of (3.77) converges in probability to 0o×q, it is sufficient
to show that each term in the sum converges in probability to 0o×q. Note that

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn −Cnξn)eᵀn−1 = 0o×q (3.78)

by Corollary 7 since en−1 is independent identically distributed with bounded covariance, and
Vn(Cnδn − Cnξn) is a bounded linear transform of a random vector that satisfies the necessary auto
correlation bound as a result of Theorem 30. Similarly,

p-lim
i→∞

1
i

i−1∑
n=0

Vn(−zn − ζn)eᵀn−1 = 0o×q (3.79)

by Corollary 7 since zn, ζn, and en−1 are mutually independent identically distributed with bounded
covariances. Therefore α = 0 implies (LTV.C2) holds.

Now assume that (LTV.C2) holds. Rearranging (LTV.C2) using (D2), (3.43), and (3.46) results
in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − (1 + α)zn − αCnxn −Cnξn − ζn)eᵀn−1. (3.80)
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Now since (3.79) holds by the same argument as before, we can use Theorem 4 to cancel these
terms resulting in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−1 = p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − αCnxn)eT
n−1. (3.81)

Expanding xn in (3.81) by one step using (D2) then results in

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − αCn(An−1xn−1 + Bn−1Kn−1 x̂n−1 + Bn−1en−1 + wn−1))eᵀn−1. (3.82)

Using Corollary 7 we have that

p-lim
i→∞

1
i

i−1∑
n=0

−αVnCnBn−1(en−1eᵀn−1 − Σe) = 0q×o. (3.83)

Therefore by Theorem 4 we have

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδn − αCn(An−1xn−1 + Bn−1Kn−1 x̂n−1 + wn−1))eᵀn−1 + αVnCnBn−1Σe. (3.84)

Note that all elements of

Vn(Cnδn − αCn(An−1xn−1 + Bn−1Kn−1 x̂n−1 + wn−1))eᵀn−1 (3.85)

are distributed symmetrically about 0 for all n ∈ N. Consider an element of (3.84) for which the
corresponding element in

1
i

i−1∑
n=0

VnCnBn−1Σe (3.86)

does not converge. For each i, the probability that the matrix element in (3.84) is farther away from
0 than the corresponding element in (3.86) is at least 0.5. Therefore the element cannot converge
in probability to 0 completing the proof. �
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Proof. (Lemma 33) Expanding (LTV.C1) using (D2) and (3.43)-(3.53) gives us

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cn x̂n−yn)(Cn x̂n − yn)ᵀVᵀn =

= p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̄n − zn)(Cnδ̄n − zn)ᵀVᵀn + Vn(Cnδ̄n − zn)(Cnδ̂n − vn)ᵀVᵀn +

+Vn(Cnδ̂n − vn)(Cnδ̄n − zn)ᵀVᵀn + Vn(Cnδ̂n − vn)(Cnδ̂n − vn)ᵀVᵀn . (3.87)

By Corollary 7 and Theorem 30,

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̄n − zn)(Cnδ̄n − zn)ᵀVᵀn = Ir, (3.88)

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̄n − zn)(Cnδ̂ − vn)ᵀVᵀn = 0o (3.89)

since, by the definition of Vn in (3.45), the expectation for each summand in (3.88) is Ir, and
Vn(Cnδ̄n − zn) is uncorrelated with Vn(Cnδ̂− vn). First, assume that (LTV.C1) holds. By Theorem 4,
it follows from (3.87)-(3.89) that (3.54) must hold. Next, assume that (3.54) holds. By Corollary
5, it follows from (3.87)-(3.89) that (LTV.C1) holds. �

Proof. (Lemma 34) Assume that α = 0. Using Lemma 9, the asymptotic attack power is 0 if and
only if

p-lim
i→∞

1
i

i−1∑
n=0

vnvᵀn = 0o. (3.90)

Expanding the LHS of (3.90) using (3.46)-(3.47) we get an equivalent condition.

p-lim
i→∞

1
i

i−1∑
n=0

Cnξnξ
ᵀ
n Cᵀn + Cnξnζ

ᵀ
n + (Cnξnζ

ᵀ
n )ᵀ + ζnζ

ᵀ
n = 0r (3.91)

Since ξn and ζn are uncorrelated, from Theorem 30 and Corollary 7 we have

p-lim
i→∞

1
i

i−1∑
n=0

Cnξnζ
ᵀ
n = 0r. (3.92)

First, assume that (3.55) and (3.56) hold. By Corollary 5 we have that (3.91) must hold since, when
separated, the limit for each term converges to 0r. Next, assume that (3.91) holds. By Theorem 4
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we can rewrite (3.91) as

p-lim
i→∞

1
i

i−1∑
n=0

ζnζ
ᵀ
n + Cnξnξ

ᵀ
n Cᵀn = 0r, (3.93)

since (3.92) holds. Note, both terms are positive-semidefinite matrices. Therefore, for an arbitrary
ε > 0 we have that

P


∥∥∥∥∥∥∥1

i

i−1∑
n=0

ζnζ
ᵀ
n

∥∥∥∥∥∥∥ > ε
 ≤ P 

∥∥∥∥∥∥∥1
i

i−1∑
n=0

ζnζ
ᵀ
n + Cnξnξ

ᵀ
n Cᵀn

∥∥∥∥∥∥∥ > ε
 (3.94)

Furthermore, (3.93) implies

lim
i→∞

P


∥∥∥∥∥∥∥1

i

i−1∑
n=0

ζnζ
ᵀ
n + Cnξnξ

ᵀ
n Cᵀn

∥∥∥∥∥∥∥ > ε
 = 0r, ∀ε > 0 (3.95)

Then, by (3.94) and (3.95)

lim
i→∞

P


∥∥∥∥∥∥∥1

i

i−1∑
n=0

ζnζ
ᵀ
n

∥∥∥∥∥∥∥ > ε
 = 0r, ∀ε > 0. (3.96)

Therefore, (3.55) must hold. Applying Theorem 4 to (3.93) using (3.55) implies (3.56) must also
hold. �

Proof. (Lemma 35) Assume that (3.54) holds. Expanding the LHS of (3.54) using (3.46) we get

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀVᵀn + Vn(Cnδ̂n −Cnξn)ζᵀn Vᵀn +

+ (Vn(Cnδ̂n −Cnξn)ζᵀn Vᵀn )ᵀ + Vnζnζ
ᵀ
n Vᵀn = 0r. (3.97)

Using Corollary 7 and Theorem 30 we have

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̂n −Cnξn)ζᵀn Vᵀn = 0r. (3.98)

Therefore, by applying Theorem 4 to (3.97) we have

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀVᵀn + Vnζnζ
ᵀ
n Vᵀn = 0r. (3.99)

49



Note, both terms are positive-semidefinite matrices. Using the same method used on (3.93), we
then have

p-lim
i→∞

1
i

i−1∑
n=0

Vnζnζ
ᵀ
n Vᵀn = 0r, (3.100)

p-lim
i→∞

1
i

i−1∑
n=0

Vn(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀVᵀn = 0r. (3.101)

We complete the proof using Lemma 10 but we must first lower bound the eigenvalues of Vᵀn Vn.
Let λn denote the smallest eignenvalue of Vᵀn Vn, then λn is lower bounded since

λn =
1

‖(Vᵀn Vn)−1‖
=

1
‖CnΣδ,nC

ᵀ
n + Σz,n‖

≥
1

η2
Cηδ + ηz

> 0. (3.102)

If we assume that (3.55) does not hold then applying Lemma 10 contradicts (3.100). Therefore
(3.55) must hold. Similarly, assuming that (3.57) does not hold would result in a contradiction
with (3.101). Therefore (3.57) must also hold. �

Proof. (Lemma 37) First, we prove the existence of m. Assume that (3.56) does not hold. Ex-
panding the LHS of (3.56) using (3.47) results in

p-lim
i→∞

1
i

i−1∑
n=0

 n∑
j=1

CnĀ(n−1,n− j+1)ωn− j


 n∑

j=1

CnĀ(n−1,n− j+1)ωn− j


ᵀ

, 0r. (3.103)

Then, using Lemma 9 we have that

p-lim
i→∞

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

, 0. (3.104)

Since (3.56) does not hold there exists ε, τ > 0 such that

P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

> ε

 > τ (3.105)

for infinitely many i. We prove that there exists an m such that for each i that (3.105) holds we
have

P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

6

 > τ

4
(3.106)

50



which is equivalent to (3.58) as a result of Lemma 9. To make statements on the truncated sum, we
start by finding the relationship between the probability in the LHS of (3.105) and the probability
in the LHS of (3.106). For each i such that (3.105) holds, we apply triangle inequality to get

τ < P

1
i

i−1∑
n=0


∥∥∥∥∥∥∥

mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥ +

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥


2

> ε

 . (3.107)

Further expanding and applying Theorem 1 result in

τ < P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 + P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3


+ P

2
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

n∑
j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥ > ε

3

 . (3.108)

Focusing on the center term in the RHS of (3.108), we can write

P

(
2
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

n∑
j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥ > ε

3

)
≤

≤ P


√√√√

2
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2
√√√√

2
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 ≤
≤ P

2
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 + P

2
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 , (3.109)

where the first inequality comes from applying the Cauchy Schwarz Inequality and the second
inequality comes from applying Theorem 2. Then since

P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 ≤ P
2

i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 , (3.110)

P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 ≤ P
2

i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

3

 , (3.111)

we can combine (3.108) with (3.109)-(3.111) to obtain

τ < 2P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
mn∑
j=1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

6

 + 2P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

6

 .
(3.112)
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If we can upper bound the second term in the RHS or (3.112) by τ
2 the first term must be lower

bounded by τ
2 completing the proof. To provide this bound we make use of Markov’s Inequality.

To this end, we first bound the expectation

E

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2 =

= E

(
1
i

i−1∑
n=0

n∑
j=mn+1

(
CnĀ(n−1,n− j+1)ωn− j

)ᵀ (
CnĀ(n−1,n− j+1)ωn− j

) )
≤

≤ E
(1

i

i−1∑
n=0

∞∑
j=m+1

(
Cn+ jĀ(n+ j−1,n+1)ωn

)ᵀ (
Cn+ jĀ(n+ j−1,n+1)ωn

) )
≤

≤
1
i

i−1∑
n=0

∞∑
j=m+1

pη2
Cη

2( j−1)
A1 η2

ω =
pη2

Cη
2m
A1η

2
ω

1 − η2
A1

, (3.113)

where the the first equality comes from expanding the norm and ignoring uncorrelated terms, the
first inequality comes from rearranging the summation and allowing the second summation to go
to infinity, the second inequality comes from distributing the expectation and upper bounding each
element, and the final equality comes from evaluating the summations. Since ηA1 < 1, we can
choose m sufficiently large such that

pη2
Cη

2m
A1η

2
ω

1 − η2
A1

<
τε

24
. (3.114)

Using Markov’s inequality [104, Equation 5.31] we have that

P

1
i

i−1∑
n=0

∥∥∥∥∥∥∥
n∑

j=mn+1

CnĀ(n−1,n− j+1)ωn− j

∥∥∥∥∥∥∥
2

>
ε

6

 ≤ 6pη2
Cη

2m
A1η

2
ω

(1 − η2
A1)ε

<
τ

4
(3.115)

which completes the proof for the existence of m.
Next, to prove the existence of m′ we expand (3.58)

p-lim
i→∞

1
i

i−1∑
n=0

Cn

mn∑
j=1

mn∑
k=1

Ā(n−1,n− j+1)ωn− jω
ᵀ
n−kĀᵀ(n−1,n−k+1)C

ᵀ
n , 0. (3.116)

Considering the summands where j , k we have that

p-lim
i→∞

1
i

i−1∑
n=0

CnĀ(n−1,n− j+1)ωn− jω
ᵀ
n−kĀᵀ(n−1,n−k+1)C

ᵀ
n = 0 (3.117)
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by Theorem 6 since ωn is independent and the dynamics are bounded and stable. If we further
assume that there does not exist an m′ for which (3.59) holds then by Theorem 1 we have that
(3.58) does not hold which is a contradiction. Therefore, the set of integers less than or equal to m

for which (3.59) holds, is a non-empty finite set. The smallest element of this set then satisfies the
conditions for m′. �

Proof. (Lemma 36) WLOG, in this proof, we allow summations to reference variables with nega-
tive index by assuming these values to be 0r to ease notation. Assume that (3.54) holds but (3.56)
does not. Since (3.56) does not hold, m′ be chosen such that it satisfies the description in Lemma
37. From Lemma 35 we have that (3.54) implies (3.57). Expanding the LHS of (3.57) using (3.47)
gives us

p-lim
i→∞

1
i

i−1∑
n=0

(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀ =

= p-lim
i→∞

1
i

i−1∑
n=0

(
Cn

δ̂n −

n∑
j=1

Ā(n−1,n− j+1)ωn− j


δ̂n −

n∑
k=1

Ā(n−1,n−k+1)ωn−k

ᵀCᵀn
)

= 0r. (3.118)

By separating the index m′ we can write

p-lim
i→∞

1
i

i−1∑
n=0

(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀ =

= p-lim
i→∞

1
i

i−1∑
n=0

Cn

δ̂n −
∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− j


δ̂n −

∑
0≤k≤n
k,m′

Ā(n−1,n−k+1)ωn−k


ᵀ

Cᵀn +

−Cn

δ̂n −
∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− j

ωᵀn−m′ Ā
ᵀ
(n−1,n−m′+1)C

ᵀ
n +

−CnĀ(n−1,n−m′+1)ωn−m′

δ̂n −
∑

0≤k≤n
k,m′

Ā(n−1,n−k+1)ωn−k


ᵀ

Cᵀn +

+ CnĀ(n−1,n−m′+1)ωn−m′ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (3.119)
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For now suppose that

p-lim
i→∞

1
i

i−1∑
n=0

−Cn

δ̂n −
∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− j

ωᵀn−m′ Ā
ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (3.120)

Then by Theorem 4 we have that

p-lim
i→∞

1
i

i−1∑
n=0

(Cnδ̂n −Cnξn)(Cnδ̂n −Cnξn)ᵀ =

= p-lim
i→∞

1
i

i−1∑
n=0

Cn

δ̂n −
∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− j


δ̂n −

∑
0≤k≤n
k,m′

Ā(n−1,n−k+1)ωn−k


ᵀ

Cᵀn +

+ CnĀ(n−1,n−m′+1)ωn−m′ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (3.121)

Furthermore, by our choice of m′ we have that

p-lim
i→∞

1
i

i−1∑
n=0

CnĀ(n−1,n−m′+1)ωn−m′ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n , 0r, (3.122)

and since the terms are all positive-semidefinite matrices

P


∥∥∥∥∥∥∥1

i

i−1∑
n=0

CnĀ(n−1,n−m′+1)ωn−m′ω
ᵀ
n−kĀᵀ(n−1,n−k+1)C

ᵀ
n

∥∥∥∥∥∥∥ > ε
 ≤

≤ P


∥∥∥∥∥∥∥∥∥∥∥

1
i

i−1∑
n=0

Cn

δ̂n −
∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− j


δ̂n −

∑
0≤k≤n
k,m′

Ā(n−1,n−k+1)ωn−k


ᵀ

Cᵀn +

+ CnĀ(n−1,n−m′+1)ωn−m′ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n

∥∥∥∥∥∥∥∥∥∥∥ > ε
 . (3.123)

This implies that (3.119) cannot hold which contradicts (3.54). Therefore (3.56) must hold since
otherwise there exists an m′ satisfying Lemma 10.

To complete the proof, we now show that (3.120) indeed holds. By Corollary 5 this is equivalent
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to proving

p-lim
i→∞

1
i

i−1∑
n=0

Cn

∑
1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− jω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r, (3.124)

p-lim
i→∞

1
i

i−1∑
n=0

−Cnδ̂nω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (3.125)

Note, (3.124) holds by Corollary 7 since all ωn are mutually independent, ‖CnĀ(n−1,n−m′+1)‖ ≤

‖Cn‖ < ηC, and ∥∥∥∥∥∥∥∥∥∥∥E


∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)ωn− j




∑
1≤k≤n+i

k,m′

Ā(n+i−1,n+i−k+1)ωn+i−k


ᵀ

∥∥∥∥∥∥∥∥∥∥∥ =

=

∥∥∥∥∥∥∥∥∥∥∥
∑

1≤ j≤n
j,m′

Ā(n−1,n− j+1)Σω,n− jĀ
ᵀ
(n+i−1,n− j+1)

∥∥∥∥∥∥∥∥∥∥∥ ≤
∞∑
j=1

η
2 j−4+i
A1 ηω =

ηi−2
A2 ηω

1 − η2
A1

. (3.126)

Here, the equality comes from evaluating the expectation, and the inequality comes from distribut-
ing the norm using the triangle inequality and the subadditivity of the spectral norm, bounding the
individual terms, and allowing the summation to extend to infinity. Expanding the LHS of (3.125)
using (3.53) gives us

p-lim
i→∞

1
i

i−1∑
n=0

−Cnδ̂nω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n =

= p-lim
i→∞

1
i

i−1∑
n=0

Cn
( n−1∑

j=0

A(n−1, j+1)L jζ j +

n∑
k=1

A(n−1,n−k+1)Ln−kCn−k×

×

n∑
`=k+1

Ā(n−k−1,n−`+1)ωn−`
)
ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (3.127)

To prove that (3.125) holds, we use Corollary 5 on (3.127) and show that each term converges to
0r. Note, by Theorem 6,

p-lim
i→∞

1
i

i−1∑
n=0

Cn
( n−1∑

j=0

A(n−1, j+1)L jζ j
)
ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r, (3.128)
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since ‖CnĀ(n−1,n−m′+1)‖ ≤ ηC, ζn and ωn are mutually independent, and∥∥∥∥∥∥∥E
 n−1∑

j=0

n+i−1∑
k=0

A(n−1, j+1)L jζ jζ
ᵀ
k Lᵀk Aᵀ(n+i−1,k+1)


∥∥∥∥∥∥∥ =

=

∥∥∥∥∥∥∥
n−1∑
j=0

A(n−1, j+1)L jΣζ j L
ᵀ
j Aᵀ(n+i−1, j+1)

∥∥∥∥∥∥∥ ≤ ∑n−1
j=0 η

2(n−1− j)
A2 ηi

A2η
2
Lηζ ≤

ηi
A2η

2
Lηζ

1−η2
A2
. (3.129)

Furthermore, considering the portion of δ̂n not dependent on ωn−m′ , by Theorem 6,

p-lim
i→∞

1
i

i−1∑
n=0

Cn

n∑
j=1

A(n−1,n− j+1)Ln− jCn− j

n∑
k= j+1
k,m′

Ā(n− j−1,n−k+1)ωn−kω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r, (3.130)

since ωn are independent, ‖CnĀ(n−1,n−m′+1)‖ ≤ ηC, and∥∥∥∥∥∥E
[(

Cn

n∑
j=1

A(n−1,n− j+1)Ln− jCn− j

n∑
k= j+1
k,m′

Ā(n− j−1,n−k+1)ωn−k

)
×

×

(
Cn+i

n+i∑
j=1

A(n+i−1,n+i− j+1)Ln+i− jCn+i− j

n+i∑
k= j+1
k,m′

Ā(n+i− j−1,n+i−k+1)ωn+i−k

)ᵀ]∥∥∥∥∥∥ =

=

∥∥∥∥∥∥ n∑
j=1

n+i∑
`=1

CnA(n−1,n− j+1)Ln− jCn− j

n∑
k=max{ j+1,`+1}

k,m′

Ā(n− j−1,n−k+1)Σω,n−k×

× Āᵀ(n+i−`−1,n−k+1)C
ᵀ
n+i−`L

ᵀ
n+i−`A

ᵀ
(n+i−1,n+i−`+1)C

ᵀ
n+i

∥∥∥∥∥∥ ≤
≤

n∑
j=1

n∑
`=1

η4
Cη

2
Lη

`+ j−2
A

n∑
k=max{ j+1,`+1}

k,m′

η
2k− j−`−2+i
A ηω ≤

≤ ηi−4
A η4

Cη
2
Lηω2

∞∑
j=1

∞∑
`= j

∞∑
k=`+1

η2k =
2ηi

Aη
4
Cη

2
Lηω

(1 − η2
A)3

, (3.131)

where the first equality comes from evaluating the expectation, the first inequality comes from
distributing the norm using the triangle inequality and the submultiplicative property of the spectral
norm and then using the individual upper bounds, the second inequality comes from rearranging
the sum and allowing the index to go to infinity, and the final equality comes from evaluating the
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geometric series. Now if

p-lim
i→∞

1
i

i−1∑
n=0

Cn

m′−1∑
j=1

A(n−1,n− j+1)Ln− jCn− jĀ(n− j−1,n−m′+1)ωn−m′ω
ᵀ
n−m′ Ā

ᵀ
n−1,n−k+1C

ᵀ
n = 0r, (3.132)

we have completed the proof. To show this, we show that the trace of the matrix converges to 0 for
each value of j.

p-lim
i→∞

1
i

i−1∑
n=0

(
ω
ᵀ
n−m′ Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n CnA(n−1,n− j+1)Ln− jCn− jĀ(n− j−1,n−m′+1)ωn−m′

)
≤

≤ p-lim
i→∞

1
i

i−1∑
n=0

∥∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥∥2

1/2 1
i

i−1∑
n=0

∥∥∥CnA(n−1,n− j+1)Ln− jCn− jĀ(n− j−1,n−m′+1)ωn−m′
∥∥∥2

1/2

(3.133)

where the inequality follow from the Cauchy Schwarz Inequality. Let ε, τ > 0 be chosen arbitrarily.
By Markov’s Inequality,

P

1
i

i−1∑
n=0

∥∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥∥2
≥

2η2
Cη

2(m′−1)
A1 ηω

1 − τ

 ≤
≤

(1 − τ)E
[

1
i

∑i−1
n=0

∥∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥∥2

]
2η2

Cη
2(m′−1)
A1 ηω

≤
(1 − τ)η2

Cη
2(m′−1)
A1 ηω

2η2
Cη

2(m′−1)
A1 ηω

=
1 − τ

2
. (3.134)

Furthermore by our choice of m′, we have that there exists an N such that i > N implies

P

1
i

i−1∑
n=0

∥∥∥Cn− jĀ(n− j−1,n−m′+1)ωn−m′
∥∥∥2
≤

ε2

2η4
Cη

2(m′−1)
A1 η

2( j−1)
A2 η2

Lηω

 ≥ τ + 1
2

. (3.135)
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Finally, applying Theorem 3

P


1

i

i−1∑
n=0

∥∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥∥2

1/2

×

×

1
i

i−1∑
n=0

∥∥∥∥CnA(n−1,n− j+1)Ln− jCn− jĀ(n− j−1,n−m′+1)ωn−m′

∥∥∥∥2
1/2

≤ ε

 ≥
≥ P

1
i

i−1∑
n=0

∥∥∥Cn− jĀ(n− j−1,n−m′+1)ωn−m′
∥∥∥2
≤

ε2

2η4
Cη

2(m′−1)
A1 η

2( j−1)
A2 η2

Lηω

 +

+

1 − P 1
i

i−1∑
n=0

∥∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥∥2
≥ 2η2

Cη
2
A1ηω

 − 1 ≥ (3.136)

≥
τ + 1

2
+ 1 −

1 − τ
2
− 1 = τ. (3.137)

Therefore (3.132) must hold. �

3.3 Dynamic Watermarking for Distributed Control

This section describes the extension of both LTI and LTV dynamic watermarking to distributed
control systems of κ agents as described in Hespanhol et al. [85] and Porter et al. [100]. We
focus on the LTV extension which generalizes its LTI counterpart. However, we comment on the
differences throughout. We start by defining the distributed LTV model and necessary assumptions
in Subsection 3.3.1. Then, in Subsection 3.3.2, we discuss the extension of the real-time statistical
test.

3.3.1 Distributed Control Model

Consider an LTV system of κ distributed agents with combined state xn, process noise wn

xn+1 = Anxn +

κ∑
i=1

Bi,n
(
Ki,n x̂i,n + ei,n

)
+ wn,

x̂i,n+1 = Mi,n x̂i,n + NiBi,nei,n −
∑
j∈Hi

L(i, j),ns(i, j),n,

yi,n = Cixn + zi,n,

(D3)

where agent i ∈ {1, . . . , κ} has state observation x̂i,n, measurement yi,n, measurement noise zi,n,
watermark ei,n and communicated measurement from agent j ∈ {1, . . . , κ} denoted s(i, j),n. Commu-
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nicated measurements take the form

s(i, j),n = y j,n + v(i, j),n (3.138)

where v(i, j),n is an additive attack on the communication channel. This style of attack can take
the form of a man in the middle, where the attacker intercepts and alters measurements being
communicated between agents, or a malicious agent that sends out false measurements.

The distributed model in (D3) has several key characteristics. First, we do not require that all
communications are used as facilitated by the set

H ⊆ ({1, . . . , κ} × {1, . . . , κ}) . (3.139)

where the communication from agent j to agent i is active if (i, j) ∈ H. Moreover, we define the
set

Hi = { j|(i, j) ∈ H}, (3.140)

which contains the indices of agents that send measurements to agent i.
Second, the dimension and covariance of agent specific parameters is not necessarily constant

across all agents. As such, we introduce an additional subscript on affected dimensions

ei,n ∈ R
qi and yi,n, zi,n ∈ R

oi , (3.141)

and covariances

ei,n ∼ N(0qi×1,Σei) and zi,n ∼ N(0oi×1,Σzi,n). (3.142)

Third, we assume that each agent observes a linear combination of the combined state vector using
a linear functional observer. This observer follows a discrete time version of the observer first
introduced in Luenberger [106]. However, since the watermark of other agents is unknown to
agent i their input is not included in the update equation (D3).

Remark 39. In addition to assuming time-invariance, Hespanhol et al. [85] also assumed that

each agent observes the entire state and that all communications are active.

We then make the following assumption.

Assumption 40. The process and measurement noise are mutually independent and Gaussian
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distributed such that

wn ∼ N(0p×1,Σw,n), (3.143)

zi,n ∼ N(0oi×1,Σzi,n). (3.144)

While the linearization of non-linear systems, generally does not result in Gaussian distributed
noise, this assumption allows us to derive our proposed method using a statistical basis. Fur-
thermore, this assumption has not hindered the efficacy of LTV dynamic watermarking in non-
networked settings [95].

Next we derive the closed loop dynamics. For ease of notation, we combine each agent’s
measurement noise and watermark such that

zᵀn =
[
zᵀ1,n · · · zᵀκ,n

]
, (3.145)

Σz,n = diag(Σz1,n, . . . ,Σzκ,n), (3.146)

eᵀn =
[
eᵀ1,n · · · eᵀκ,n

]
, (3.147)

Σe = diag(Σe1 , . . . ,Σeκ). (3.148)

The additive attacks are also combined such that

vᵀi,n =
[
vᵀ(i,1),n · · · vᵀ(i,κ),n

]
, (3.149)

vᵀn =
[
vᵀ1,n · · · vᵀκ,n

]
. (3.150)

Then we can write the closed loop system as

x̄n+1 = Ān x̄n + B̄nen +


wn

0
...

0


− L̄n


0

zn + v1,n
...

zn + vκ,n


, (3.151)
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where x̄ᵀn =
[
xᵀn x̂ᵀ1,n · · · x̂ᵀκ,n

]
, and

Ān =


An B1,nK1,n · · · Bκ,nKκ,n

−
∑

j∈H1
L1, jC j
...

−
∑

j∈Hκ
Lκ, jC j

diag(M1,n, . . . ,Mκ,n)


, (3.152)

B̄n =

 B1,n · · · Bκ,n

diag(N1B1,n, . . . ,NκBκ,n)

 , (3.153)

L̄n =

 0p×
(
κ
∑κ

j=1 r j
)

diag(L1,n, . . . , Lκ,n)

 , (3.154)

Li,n =
[
L(i,1),n · · · L(i,κ),n

]
. (3.155)

On the closed loop system we make the following assumption.

Assumption 41. Consider a closed loop system satisfying (3.151). If a(i, j),n = 0oi×1 for all (i, j) ∈ H

and n ∈ N, there exists positive constants η1, η2 ∈ R such that

‖E[x̄n x̄ᵀn ]‖ < η1, (3.156)

‖
(
E[x̄n x̄ᵀn ]−1

)
‖ < η2. (3.157)

This assumption ensures that, despite being time varying, the covariance of the closed loop system
and its inverse are well defined for all time. For the system in this paper, (3.156) holds since the
controllers and observers we later derive render the system stable. Furthermore, we note that our
system also satisfies (3.157) as a result of the system noise propagating through the state vector.

3.3.2 Statistical Tests

This section derives the statistical tests for networked LTV dynamic watermarking. These tests
utilize the difference between the observed state and the measured state called the measurement

residual. The measurement residual for each (i, j) ∈ H is formally defined as

r(i, j),n = U(i, j) x̂i,n −W(i, j)s(i, j),n, (3.158)

where r(i, j),n ∈ R
p(i, j) . Furthermore, the matrices U(i, j) and W(i, j),n are defined such that

U(i, j)Ni = W(i, j)C j ∀(i, j) ∈ H. (3.159)
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Here, the matrices U and W are used to select the common state information between the observed
state for agent i and measurement from agent j.

The proposed detection scheme focuses on the covariance of the measurement residual r(i, j),n

and its correlation with the watermark ei,n−ρ(i, j)−1 where ρ(i, j) is a user defined delay. In the case
that the delayed watermark is correlated with the common state information of the un-attacked
measurement, an attacker cannot scale the true measurement signal without altering this correla-
tion. As a result, monitoring the watermarks correlation with the measurement residual (which is a
function of the measurement) allows our proposed algorithm to detect attacks that scale or remove
the true measurement. To ensure a correlation between the delayed watermark and the common
state information of the measurement, ρ(i, j) is selected to account for the time needed for the water-
mark to propagate through the system and into the measurement s(i, j),n. Though in general there is
no guarantee that a given agent’s watermark will eventually propagate through the entire system,,
given a particular ρ(i, j) we provide a sufficient condition for a non-zero correlation in the following
proposition.

Proposition 42. [100, Proposition A.1] Consider a closed loop LTV system satisfying (3.151). If

for some ρ(i, j) ∈ N[
W(i, j)C j 0oi×t

]
Ān−1 · · · Ān−ρ(i, j) B̄n−ρ(i, j)−1

[
0qi×

(
p+

∑i−1
j=1 p j

) Iqi 0qi×
(∑κ

j=i+1 p j
)]ᵀ , 0p(i, j)×qi (3.160)

then

E
[
W(i, j)s(i, j),neᵀi,n−ρ(i, j)−1

]
, 0p(i, j)×qi (3.161)

Proof. (Proposition 42) Due to the assumption that the watermark is mutually independent and
zero mean, only terms that are a function of the watermark at that particular step have non-zero
expectation. For ease of notation, these terms are removed without loss of generality in this proof.
Expanding the communicated measurement on the left side of (3.161) first using (3.138) then
(3.151) results in

E
[
W(i, j)s(i, j),neᵀi,n−ρ(i, j)−1

]
= E

[
W(i, j)C jxneᵀi,n−ρ(i, j)−1

]
=

= E
[ [

W(i, j)C j 0oi×t

]
Ān−1 · · · Ān−ρ(i, j) B̄n−ρ(i, j)−1en−ρ(i, j)−1eᵀi,n−ρ(i, j)−1

]
=

=
[
W(i, j)C j 0oi×t

]
Ān−1 · · · Ān−ρ(i, j) B̄n−ρ(i, j)−1

[
0qi×

(
p+

∑i−1
j=1 p j

) Iqi 0qi×
(∑κ

j=i+1 p j
)]ᵀ Σei . (3.162)

Since Σei is full rank and (3.160) holds, (3.161) holds as well. �

Remark 43. In our initial extension of LTI dynamic watermarking to distributed control systems, a

62



method for designing the controller to ensure the existence of ρ(i, j) satisfying (3.161) was provided

[85, Algorithm 1, Algorithm 2].

To monitor both the covariance of the measurement residual and its correlation with the wa-
termark, we aim to observe the normalized outer product of the vector [eᵀi,n−ρ(i, j)−1 rᵀ(i, j),n]ᵀ, which
follows a Gaussian distribution when the platoon is un-attacked such that r(i, j),n

ei,n−ρ(i, j)−1

 ∼ N (
0(p(i, j)+qi)×1,Σ(i, j),n

)
. (3.163)

To this end, we start by defining a matrix normalizing factor similar to that of Porter et al. [96]

V(i, j),n = Σ
− 1

2
(i, j),n, (3.164)

to create a new vector with constant covariance

Ψ(i, j),n = V(i, j),n

 r(i, j),n

ei,n−ρ(i, j)−1

 ∼ N(0(p(i, j)+qi)×1, I). (3.165)

Next, we form the matrix

P(i, j),n =
[
Ψ(i, j),n−`(i, j)+1 · · · Ψ(i, j),n

]
, (3.166)

which, under the assumption of no attack, is distributed as

P(i, j),n ∼ N
(
0(p(i, j)+qi)×`(i, j) , Ip(i, j)+qi ,G(i, j),n

)
, (3.167)

where

G(i, j),n =
E[Pᵀ(i, j),nP(i, j),n]

p(i, j) + qi
. (3.168)

Note that the values of V(i, j),n and G(i, j),n can be derived as functions of the dynamics and the
covariances of the watermarks, process noise, and measurement noise. However, in real word
applications these covariances must be approximated. To avoid compounding error, we derive
methods for approximating both V(i, j),n and G(i, j),n in Section 3.4. Finally, we form the matrix

S (i, j),n = P(i, j),nG−1
(i, j),nPᵀ(i, j),n, (3.169)
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which is distributed according to a Wishart distribution with scale matrix Ip(i, j)+qi i.e.

S (i, j),n ∼ W(`(i, j), Ip(i, j)+qi). (3.170)

Using this distribution, a statistical test can be implemented using the negative log likelihood of
the scale matrix given the observation S (i, j),n

L(i, j) = (qi + p(i, j) + 1 − `(i, j)) log(|S (i, j),n|) + trace(S (i, j),n) + log
(
2(qi+p(i, j))`/2Γ(qi+p(i, j))

(
`(i, j)

2

))
.

(3.171)

If L(i, j) exceeds a user defined threshold, agent i signals that an attack has likely occurred. The
threshold can be set to satisfy a desired performance metric such as the false alarm rate.

Remark 44. In our initial extension of LTI dynamic watermarking to distributed control systems

in Hespanhol et al. [85], we used the sumLi =
∑κ

j=1L(i, j) as opposed to the individual values. This

summation can greatly reduce the total number of tests. However, keeping them separate allows

for each communication channel to be monitored separately.

3.4 System Dependent Parameter Estimation

This section describes methods for estimating the matrix normalizing factor V and the autocorrela-
tion normalizing factor G. First, a general approach is given. Then we derive a practical solutions
to the issue of drift along the trajectory which arises for LTV systems. More specifically, we devise
a method for allowing the linearization to drift along the trajectory by constructing the discretized
trajectory in a receding horizon fashion. Furthermore, we derive an approximation scheme for the
normalization matrices used in the statistical tests that accommodates this drift as well.

3.4.1 General Approach

Consider sequences of measurement residuals from several unattacked realizations of a system
satisfying (D1), (D2), or (D3) denoted r( j)

n where n is the step number and j is an index for the
realization. Without loss of generality, we omit the additional subscripts for distributed systems
since the process is the same for each communication channel. For an LTI system the matrix
normalizing factor and auto-correlation normalizing factor can then be approximated as

V ≈

 1
NJ

N∑
n

J∑
j=1

rnrᵀn


−1/2

(3.172)
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and

G ≈
1

(N − ` − ρ − 1)J

N∑
n=`+ρ+1

J∑
j=1

(
P( j)

n

)ᵀ
P( j)

n

q + r
(3.173)

where N is the number of steps in the realization and J is the total number of realizations used.
Similarly for an LTV system the matrix normalizing factor can be approximated as

Vn ≈

1
J

J∑
j=1

rnrᵀn


−1/2

(3.174)

and

Gn ≈
1
J

J∑
j=1

(
P( j)

n

)ᵀ
P( j)

n

q + r
(3.175)

Finally, for a distributed system the matrix normalizing factor can be approximated as

Vn ≈

1
J

J∑
j=1

 r( j)
n

e( j)
i,n−ρ−1

  r( j)
n

e( j)
i,n−ρ−1

ᵀ

−1/2

(3.176)

and

Gn ≈
1
J

J∑
j=1

(
P( j)

n

)ᵀ
P( j)

n

q + r
(3.177)

3.4.2 Accommodating Drift

We start by creating a high-resolution trajectory which uses a step size considerably smaller than
that of the step size used when discretizing the dynamics, controllers, and observers. In practice
we have chosen to use a step size 10 times smaller. At the nth control step of the system, vehicle
i finds its closest point on the high-resolution trajectory denoted h(n), then uses the corresponding
linearization.

Similarly to the discretized trajectory, the matrix normalizing factor Vn and the auto-correlation
normalizing factor Gn are selected in a receding horizon fashion. We accomplish this by approx-
imating both normalizing factors for each step in the high resolution trajectory then selecting the
appropriate normalizing factors at each control step of the system using the index of the high reso-
lution trajectory h(n). To this end, we denote the sample covariance at index k of the high-resolution

65



trajectory using the ensemble average

Σ̄k =
1
fk

J∑
j=1

∑
h( j)(n)=k

e( j)
i,n−ρ−1

r( j)
n

 e( j)
i,n−ρ−1

r( j)
n

ᵀ (3.178)

where the superscript ( j) denotes the realization number, J is the total number of realizations, and
fk = card({( j, n) | j ∈ {1, . . . , J}, h( j)(n) = k}). In the event that no samples are available for a
given k, we set Σ̄k = 0p+q. Since we are limited to having a finite number of realizations, there
is no guarantee that the sample covariance matrices all have a sufficient number of samples to be
invertable. To overcome this obstacle, we take a weighted average such that

V̄k =

 1
bk

k+10∑
ε=k−10

σ|k−ε |Σ̄k

−
1
2

, (3.179)

where 0 < σ < 1 is used to reduce the weight of samples that are farther away (we use σ = 0.8)
and bk is the sum of the weights for which samples exist

bi,k =
∑

ε=k−10,...k+10
fε>0

σ|k−ε|. (3.180)

Here, the range of indices in the summation was chosen such that the number of realizations needed
to ensure invertability of V̄n should be no more than the dimension of the sample covariance matrix.
However, the number of samples should exceed this value to ensure a good approximation. Finally,
the matrix normalizing factor is approximated at each step as

Vn ≈ V̄h(n). (3.181)

The auto-correlation normalizing matrices Gn can then be approximated using (3.165)-(3.166)
and the approximate matrix normalization factor using the ensemble average

Ḡk =
1

(p + q)gk

J∑
j=1

∑
h( j)(n)≤k

h( j)(n+1)>k

(
1

|h( j)(n + 1) − h( j)(n)|
×

×
(
|k − h( j)(n + 1)|

(
P( j)

n

)ᵀ
P( j)

n + |k − h( j)(n)|
(
P( j)

n+1

)ᵀ
P( j)

n+1

) )
, (3.182)

where the superscript ( j) denotes the realization number, J is the total number of realizations, and
gk = card({( j, n)| j ∈ {1, . . . , J}, h( j)(n) ≤ k, h( j)(n + 1) > k}). The auto-correlation normalizing
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Figure 3.1: Desired and attacked trajectory of an LTV car model showing attack start and detection (Left); Corre-
sponding LTV Dynamic Watermarking test metric showing attack start and detection (Right)

matrix is then approximated at each step as

Gn ≈ Ḡh(n). (3.183)

3.5 Discussion

The use of LTV instead of LTI dynamic watermarking can greatly increase the number of trials
necessary to obtain the parameters V and G and increases the complexity of the algorithm. Since
the linear model is often approximated, it may be tempting to oversimplify the model to reduce
the complexity. However, this can result in adverse effects. In this section, we provide examples
to illustrate the potential effects of using LTI instead of LTV dynamic watermarking and of adding
the auto-correlation normalizing factor.

Measurement Expected Std Dev Over-approx. Std Dev

(x, y) ≤ 3 cm [107] 2
√

10 ≈ 6.3 cm
ψ < 3 × 10−3 rad [108] 6 × 10−3 rad
s 0.2 cm/s to 5 cm/s [109]

√
10sn ≈ 3.2sn cm/s

ψ̇ 2 × 10−4 rad/s [110] 4 × 10−4 rad/s

Table 3.2: The standard deviation of measurement noise from a real-world RTK GNSS and an IMU system and
the standard deviation of measurement noise used in the experiment. Note that the measurement noise used in the
experiment over-approximates the noise one would expect to see in the real-world.
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3.5.1 Comparing LTI to LTV Dynamic Watermarking

To provide proof of concept, we use a simplified car model

ẋ

ẏ

ψ̇

ṡ

ψ̇



ᵀ

=



s cos(ψ)
s sin(ψ)
ψ̇

a

ψ̈



ᵀ

, (3.184)

where the car has ground plane coordinates (x, y), heading ψ, forward velocity s, and angular
velocity ψ̇. Using the desired trajectory shown in Figure 3.1, (3.184) is linearized and discretized
using a step size of 0.05 and zero order hold on the current state and input. Note, for the discretized
system, Assumption 24 holds. The controller and observer for the resulting LTV system are found
using a linear quadratic regulator (LQR) to stabilize the system, by enforcing a bound on Ā and A

as stated in Assumptions 19 and 20. While linearizing non-linear stochastic systems often results
in noise that is not independent zero mean Gaussian distributed, for this example we approximate it
as such where wn ∼ N(05×1, 10−5I5), zn ∼ N(05×1, diag(4I2×10−3, 3.6×10−5, s2

n×10−3, 1.6×10−7)).
Note that the vehicle maintain a speed of 1.5 m/s to 3 m/s. As a result, this measurement noise
over-approximates that of a vehicle relying upon RTK GNSS (within 20 km of a base station and
using multiple antenna spaced 1 m apart) for measuring the ground plane positioning, heading,
and velocity and an IMU for measuring angular velocity. Table 3.2 shows both the expected and
over-approximated standard deviations of the measurement noise.

To compare LTI and LTV Dynamic Watermarking, a time invariant matrix normalization factor
is calculated using the average of the residual covariance, while the time-varying matrix normaliza-
tion factor is calculated using (3.174) with 100 realizations. For both cases, we run 100 simulations
with a window size of 20 and calculate the test metric and the average test metric as shown in Figure
3.2. Note, while the LTV Dynamic Watermarking metric remains consistent over the simulation,
the LTI counterpart has a repeatable time-varying pattern.

Using the un-attacked data, a threshold for the LTV case is found such that the rate at which
false alarms occur does not exceed once per every 50 seconds of run time. Next consider an
attack model satisfying (6.15)-(3.53), with α equal to −1 and the measurement and process noise
matching that of the true system. The results of this attack on the system, and the ability of LTV
Dynamic Watermarking to quickly detect it, are shown in Figure 3.1.
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Figure 3.2: Simulated LTI and LTV dynamic watermarking test metrics for LTV car model under no attack

Figure 3.3: An example LTV system is simulated 200 times and the negative log likelihood is generated with the
auto-correlation normalizing factor, Gn, (Left) and without the auto-correlation normalizing factor (Right).

3.5.2 Effect of Auto-Correlation

To illustrate the effect of the auto-correlation normalizing factor we present the following example
[95, Example V.1]. Consider an LTV system satisfying the dynamics in (D2) where vn = 0 for all
n, wn ∼ N(03×1, 1 × 10−3I3), zn ∼ N(02×1, 1 × 10−3I2), en ∼ N(0, 1 × 10−3),

An =


1 1 + 1

2 sin( n
100 ) 0

0 1 0.1
0 0 1

 , Bn =
[
0 0 1

]ᵀ
, Cn =

1 0 0
0 1 0

 , (3.185)

and the controller and observer gains satisfy

Kn =


−4 × 10−4

−3.65 × 10−2

−1.05 × 10−1


ᵀ

, Ln =


−7 × 10−2 −1
−2.2 × 10−3 −1.4 × 10−1

−1.6 × 10−3 −4.5 × 10−2

 . (3.186)
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Note, for this system ρ is 2. The test metric was generated for 200 simulated realizations both with
and without the auto-correlation normalizing factor Gn for a window size ` of 20.

As illustrated in Figure 3.3, the addition of the auto-correlation normalizing factor has little
effect on the average of the negative log likelihood. However, this normalizing factor does improve
the consistency by removing anomalies in many of the realizations caused by auto-correlation.
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Chapter 4

Tools for Selecting User-Defined Parameter

Attack detection algorithms in literature differ in many ways. However, from an outside perspective
they operate in much the same way. To detect an attack, the detector evaluates a test statistic that
is a function of the measurement residual. If this statistic’s value rises above some user-specified
threshold, then the detector triggers an alarm.

The choice of threshold, in addition to any algorithm specific parameters have a direct affect
on the performance of the detector. To evaluate and design the threshold for a detector, researchers
have proposed the following three metrics: first, the attack capability or the amount of perturbation
to the state of the system that an attack can induce without either inducing an alarm [68] or without
increasing the rate of alarms [111], [112]; second, the rate of false alarms (RFA) given by the
detector when no attack is occurring; and third, the ability of the detector to reliably detect specific
attack models. For an open-loop stable system, the attack capability can be evaluated by computing
the reachable set of the error in the observed state. Since computing this reachable set can be
challenging, researchers have instead attempted to evaluate surrogates for the attack capability such
as the expected value of the state vector [68] or the norm of the largest time invariant normalized
residual [69]. However, these surrogates are unable to accurately characterize the attack capability
of attacks that have large residuals for short amounts of time. Note that, by reducing the threshold
in any detector, one can reduce the attack capability; however, this can increase the rate of false
alarms. To compute this false alarm rate for classic anomaly detectors, it is typically assumed that
the residuals are independent [68], [69]. However, in real-world systems, this assumption does
not hold. As such we compute the false alarm rate empirically. Though dynamic watermarking
is proven to be capable of detecting a larger class of attacks when compared to prior detection
algorithms, to the best of our knowledge, no one has conducted a real-world evaluation of any
of these attack detection algorithms. Moreover, no one has evaluated the attack capability of a
system employing a dynamic watermarking scheme as a function of false alarm rate or developed
a technique to design a detector using dynamic watermarking that achieves a user-specified false
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alarm rate.
In this chapter we start by introducing each of the additional detection algorithms discussed

in this chapter in Section 4.1. Then we derive a method for measuring the attack capability in
Section 4.2. Our proposed method can be applied to both dynamic watermarking and all previ-
ous algorithms as well. Using the attack capability we provide a comparison of each detection
algorithm. Then in Section 4.3, we further compare each detection algorithm by subjecting a
real-world system to a variety of attack models and applying each of detection algorithm. Video
of these experiments is available at Porter et al. [99].

4.1 Other Detection Schemes

This section describes the technical details of each of the additional detection algorithms explored
in this chapter. Namely we describe three detectors which were originally proposed for anomaly
detection in quality control applications [113]: the χ2, cumulative sum (CUSUM), and multivariate
exponentially weighted moving average (MEWMA) detectors [68], [69], [114]. At each time
step, each detector computes a test statistic, a∗(Rn), based on current and previous residuals. The
subscript ∗ is a placeholder for the detector designation, and n is the discrete time step. If, for a
given detector, the test statistic exceeds a predefined threshold, then the detector raises an alarm.
These thresholds are denoted by τ∗.

4.1.1 χ2 Detector

The χ2 detector uses the normalized residual r̄n to develop a statistical test. Since, under the
assumption of no attack, r̄n ∼ N(0, I), the χ2 detector is defined as:

aχ2(Rn) = r̄T
n r̄n < τχ2 , (4.1)

where the test statistic aχ2(Rn) ∼ χ2(q) when the system is not under attack. A change to the
distribution of the residual, as a result of an attack, may change the resulting distribution of the
χ2 test value, but this is not true for all attacks. For instance an attack could replace the residual
vectors with:

r′n = Σ1/2
r r̄′n = Σ1/2

r

[√
cn 0 . . . 0

]T
(4.2)

where cn ∼ χ2(q). Then r̄′Tn r̄′n = cn ∼ χ2(q). Similarly some attacks, such as the one described
in Section 4.3, can generate a false set of residuals that have the same distribution as the residual
when no attack is taking place. Such attacks would be indistinguishable by the χ2 detector while
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increasing the error in the observed state. Furthermore, the χ2 detector is memoryless, which can
make detecting small increases in the norm of the residuals difficult.

4.1.2 CUSUM Detector

The CUSUM detector addresses the difficulty in detecting small but persistent increases in the
norm of the normalized residual by introducing dynamics to its test statistic:

aC(Rn) = max(aC(Rn−1) + r̄T
n r̄n − γ, 0) < τC, (4.3)

where aC(R−1) = 0, and γ is a parameter called the forgetting factor. To ensure that the test statistic
is stable, γ > q where q is the dimension of the residual [68, Theorem 1]. Similar to the χ2

detector, the CUSUM detector bounds the norm of the normalized residual under the assumption
of no alarms:

r̄T
n r̄n − γ ≤ aC(Rn−1) + r̄T

n r̄n − γ < τC. (4.4)

For the CUSUM detector, a persistent increase in the norm of the normalized residual, increases
the likelihood that r̄T

n r̄n > γ. When this is true for several steps, the CUSUM test value increases
cumulatively, triggering an alarm.

4.1.3 MEWMA Detector

The MEWMA detector test statistic also incorporates dynamics. The MEWMA detector uses the
exponentially weighted moving average of the normalized residual:

Gn =βr̄n + (1 − β)Gn−1 (4.5)

where G−1 = 0 and the parameter β ∈ (0, 1] is also called the forgetting factor. The MEWMA
detector is then defined as:

aM(Rn) =
2 − β
β

GT
n Gn < τM. (4.6)

When β = 1 the test statistic is equal to the χ2 detector’s test statistic. For smaller β, one gets a
similar effect to that of the CUSUM detector, because, for a forgetting factor β ∈ (0, 1), a persistent
increase in the norm of the residual results in a larger value of G which results in a higher test
statistic value. However, the MEWMA test statistic does not increase for all persistent changes.
For instance, if the covariance of the residuals under attack are αΣr for some α ∈ (0, 1), we expect
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a lower test value.

4.2 Attack Capability

Assuming the A matrix is Schur Stable, the capability of an attack can be measured by its ability to
affect the observer error δn. A reachable set of the observer error can evaluate the attack capability,
but, since the noise is supported over an infinitely large set, this reachable set would have infinite
volume. As a result, this work focuses on computing the volume of the reachable set of the portion
of the observer error corresponding to the residual under the condition of no alarms being raised.
To provide a rigorous definition of this set, we introduce some additional notation and definitions.

Using superposition, one can split the observer error described in (3.5) into two pieces:

δ(a)
n+1 = (A + LC)δ(a)

n − Lzn − Lvn (4.7)

δ(b)
n+1 = (A + LC)δ(b)

n − wn. (4.8)

The observer error is then δn = δ(a)
n + δ(b)

n . Here δ(a)
n is the portion related to the residual, which can

be seen by applying (3.3) to (4.7):

δ(a)
n+1 = Aδ(a)

n + LΣ1/2
r r̄n. (4.9)

where r̄n is the normalized measurement residual

r̄n = Vrn = Σ−1/2
r rn. (4.10)

Furthermore, we define the vector of current and previous normalized residuals:

Rn = [r̄T
n . . . r̄

T
0 ]T . (4.11)

Since an attack is only able to affect the δ(a)
n portion of the observer error, the other portion is

ignored while evaluating attack capability. For each n ∈ N, denote the reachable set of δ(a)
n at a

given time step n under the condition of no alarms for a threshold τ∗ as Rτ∗n and define it as:

Rτ∗n = {δ(a)
n | δ

(a)
n = Ān−1Rn−1, Rn−1 ∈ Ωτ∗

n } (4.12)

where:

Ω
τ∗
n−1 = {Rn−1 | a∗(Rn−1) < τ∗ ∀i < n}, (4.13)
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and:

Ān =
[
LΣ

1/2
r ALΣ

1/2
r . . . AnLΣ

1/2
r

]
. (4.14)

Furthermore, we denote the steady state reachable set under the condition of no alarms for a

threshold τ∗ as Rτ∗ and define it as:

Rτ∗ = {δ(a) | ∀n ∈ N, ∃m ∈ N s.t. m > n, δ(a) ∈ Rτ∗m }. (4.15)

Finally, we evaluate the attack capability by measuring the volume of the steady state reachable set
under the condition of no alarms under a threshold τ∗, which is defined as:

VRS (τ∗) = µ(Rτ∗), (4.16)

where µ denotes the Lebesgue measure.
Calculating the set Rτ∗ can be difficult, so we first derive a method for calculating Rτ∗n :

Theorem 45. [61, Theorem 2] Suppose τ∗ ∈ R and Ān−1, Rn−1, Rτ∗n , and Ω
τ∗
n−1 are as in (4.14),

(4.11), (4.12), and (4.13), respectively. Suppose v : Rq → R is the solution to:

inf
v∈C

∫
v(δ) dδ (4.17)

s.t. v(δ) ≥ 0 δ ∈ Rq (4.18)

v(Ān−1Rn−1) − 1 ≥ 0 Rn−1 ∈ Ω
τ∗
n−1 (4.19)

where C is the space of continuous functions. Then the 1 super-level set of v is an outer approxi-

mation to Rτ∗n

Proof. (Theorem 45) Let δ ∈ Rτ∗n . Then, from (4.12), there exists an Rn−1 ∈ Ω
τ∗
n−1 such that

δ = Ān−1Rn−1. The constraint in (4.19) then gives v(Ān−1Rn−1) = v(δ) ≥ 1. �

To make this problem computationally tractable, we optimize over polynomial functions of
fixed degree instead of continuous functions, and describe the positivity constraint, (4.19), with a
Sums-of-Squares constraint. We then apply Sums-of-Squares Programming to generate an outer
approximation to the reachable set. To replace (4.19) with a Sums of Squares constraint, Ω

τ∗
n must

first be replaced with a semi-algebraic set [115, Theorem 2.14]. To simplify our exposition, we
denote by Θ

τ∗
n a collection of semi-algebraic constraints such that Ω

τ∗
n ⊆ Θ

τ∗
n . In fact, as we show

next, for many detectors, Ω
τ∗
n = Θ

τ∗
n .
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For the χ2 detector, the constraint of no alarms is a quadratic constraint on the residual, so:

Θ
τχ2

n =
{
Rn | RT

n Q
τχ2

(i,n)Rn < 1 i = 0, ..., n
}

(4.20)

where:

Q
τχ2

(i,n) =
1
τχ2


0o(n−i) 0 0

0 Io 0
0 0 0o(i)

 . (4.21)

Note that Θ
τχ2

n = Ω
τχ2

n since
aχ2 (Ri)

τχ2
= RT

n Q
τχ2

(i,n)Rn for all i ≤ n.
For the CUSUM detector:

ΘτC
n =

{
Rn | RT

n QτC
(i, j,n)Rn < 1 i = 0, ..., n j ≤ i

}
(4.22)

where:

QτC
(i, j,n) =

1
τC + γ( j + 1)


0o(n−i) 0 0

0 Io( j+1) 0
0 0 0o(i− j)

 . (4.23)

Note that Θ
τC
n = Ω

τC
n , since:

aC(Ri) = max




i∑
h=i− j

(r̄T
h r̄h − γ) | j ≤ i

 , 0
 (4.24)

and:

RT
n Q(i, j,n)Rn =

1
τC + γ( j + 1)

i∑
h=i− j

r̄h
T r̄h < 1 (4.25)

can be rearranged to form:

i∑
h=i− j

(r̄T
h r̄h − γ) < τC. (4.26)

For the MEWMA detector note that:

ΘτM
n =

{
Rn | RT

n QτM
(i,n)Rn < 1 i = 0, ...n

}
(4.27)

76



where:

QτM
(i,n) =

2 − β
βτM



0o(n−i)×o

βIo

(1 − β)βIo
...

(1 − β)iβIo





0o(n−i)×o

βIo

(1 − β)βIo
...

(1 − β)iβIo



T

. (4.28)

Note that Θ
τM
n = Ω

τM
n since aM(Ri)

τM
= RT

n QτM
(i,n)Rn for all i ≤ n.

While Ω
τ∗
n is already a semi-algebraic set for the χ2, CUSUM and the MEWMA detectors, this

is not true for the Dynamic Watermarking detector due to the log function in (3.38). Therefore, we
consider an outer approximation to Ω

τD
n described via a quadratic constraint:

Theorem 46. [61, Theorem 3] Suppose Ω
τD
n is as in (4.13), ` is the window size of the Dynamic

Watermarking detector, τD is the threshold of the detector, ρ satisfies (3.11), o is the dimension of

the residual, q is the dimension of the input signal, and:

ΘτD
n =

{
Rn | RT

n QτD
(i,n)Rn < 1 i = ` + k′, ..., n

}
, (4.29)

where:

QτD
(i,n) =

1
(q + o)ε


0o(n−i) 0 0

0 Io` 0
0 0 0o(i−`)

 (4.30)

and where ε > ` − 1 − o − q is a solution to:

τD =
(o + q)ε

2
+

(o + q + 1 − `)
2

log(εo+q) + log
(
2(o+q)`/2Γ(o+q)

(
`

2

))
. (4.31)

Then Ω
τD
n ⊂ Θ

τD
n .

To prove this theorem, consider the following lemma:

Lemma 47. [61, Lemma 1] Suppose (gi)i∈N is a sequence of vectors where gi ∈ R
q, τ ∈ R such

that τ > 0, and ` ∈ N such that ` > o + 1. Furthermore suppose that:

L`o

∑̀
i=1

gigT
i

 < τ (4.32)
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where the function L`o is a generalization of (3.38) such that

L
j
i (X) =

(i + 1 − j)
2

· log(|X|) +
1
2

trace (X) + log
(
2i j/2Γ(i)

( j
2

))
. (4.33)

Then:

∑̀
i=1

gT
i gi < εo, (4.34)

where ε > ` − 1 − o is a solution to:

τ =
(o)ε

2
+

(o + 1 − `)
2

log(εo) + log
(
2(o)`/2Γ(o)(

`

2
)
)
. (4.35)

Proof. (Lemma 47) Denote the eigenvalues of
∑`

i−1 gigT
i as λ1, ...λo. The eigenvalues are all non-

negative due to the construction of the matrix. Note that we can rewrite (4.33) as a new function
L

j
i in terms of these eigenvalues:

L`o

∑̀
i−1

gigT
i

 = L`o(λ1, ..., λo) (4.36)

=

o∑
i=1

(o + 1 − `)
2

· log(λi) +
λi

2
+ log

(
2(o)`/2Γ(o)

(
`

2

))
. (4.37)

Furthermore we have that L`o is convex since:

∇2
L
`
o(λ1, ..., λo) =


(`−1−o)

2λ2
1

0 0

0 . . . 0
0 0 `−1−o

2λ2
o

 (4.38)

is positive definite for λi > 0. Also note that the function achieves a global minimum at λi =

` − 1 − o, i = 1, ..., o since:

∇L`o(λ1, ..., λo) =


o+1−`

2λ1
+ 1

2
...

o+1−`
2λo

+ 1
2

 (4.39)

is zero at this point. If we consider the particular case where λ1 = ... = λo = ε. Then (ε, ..., ε) is a
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boundary point to the τ level set of L`o. Furthermore we have that the derivative at that point is:

∇L`o(ε, ..., ε) =


o+1−`

2ε + 1
2

...
o+1−`

2ε + 1
2

 (4.40)

which is some positive scalar times the vector
[
1 . . . 1

]T
. Since the tangent plane at this point is

a supporting hyperplane to the τ sublevel set of L`o we then have that:

∑̀
i=1

gT
i gi =

o∑
i=1

λi < εo (4.41)

for all gi such that L`o(
∑`

i=1 gigT
i ) < τ. �

Now we return to the prove the theorem

Proof. (Theorem 46) For a given R ∈ Ω
τD
n :

aD(Ri) = L`(m+o)

 i∑
j=i−`+1

ψ jψ
T
j

 < τD (4.42)

for i = ` + ρ, ..., n. Lemma 47 then gives us that:

i∑
j=i−`+1

ψT
j ψ j =

i∑
j=i−`+1

r̄T
j r̄ j +

i∑
j=i−`+1

e jT e j < (m + o)ε (4.43)

for i = ` + ρ, ..., n. Furthermore we have that:

RT
n QτD

i,n Rn =

i∑
j=i−`+1

r̄T
j r̄ j < (q + o)ε (4.44)

for i = ` + ρ, ..., n. Therefore R ∈ Θ
τD
n . �

Now, we construct an outer approximation to Rτ∗n using the constraint sets Θ
τ∗
n :

Theorem 48. [61, Theorem 4] Suppose Ān−1 and Rn−1 are defined as in (4.14) and (4.11) respec-

tively, Rτ∗n is the set in (4.12), Φ is a compact semi-algebraic set such that Rτ∗n ⊂ Φ, Θ
τ∗
n−1 is defined

based on the choice of detector and:

Hτ∗
n =

1
1 − c

H (4.45)
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where H and c are the solution to:

inf
H∈S c∈R

∫
Φ

(
δT Hδ + c

)
dδ (4.46)

s.t. δT Hδ + c ≥ 0 δ ∈ Φ (4.47)

RT
n−1ĀT

n−1HĀn−1Rn−1 + c − 1 ≥ 0 Rn−1 ∈ Θτ∗
n (4.48)

where S ⊂ Rp×p is the set of symmetric matrices. Then Rτ∗n ⊆ {δ | δT Hτ∗
n δ ≤ 1}.

Proof. (Theorem 48) Let δ ∈ Rτ∗n . Then, from (4.12), we have that there exists an Rn−1 ∈ Ω
τ∗
n−1 ⊆

Θ
τ∗
n such that δ = Ān−1Rn−1. Constraint (4.48) then gives RT

n−1ĀT
n−1HĀn−1Rn−1 + c ≥ 1. Furthermore

c > 1 since 0 ∈ Ω
τ∗
n−1, so we can rearrange the inequality resulting in δT 1

1−c Hδ = δT Hτ∗
n δ ≤ 1. �

One can solve the program in Theorem 48 using the Spotless optimization toolbox [116] which
formulates the problem as a Semi-Definite Program that can be solved using commercial solvers
such as MOSEK [117]. This program assumes that we can find a compact semi-algebraic set Φ

that outer approximates Rτ∗n , which can be done using the following lemma under the specific case
that N = n:

Lemma 49. [61, Lemma 2] Suppose N, n ∈ N, such that N ≥ n and if applicable, suppose N > `+ρ

if the detector is the dynamic watermarking detector. Furthermore suppose τ∗ ∈ R such that τ∗ > 0,

Ān−1 and RN−1 are as in (4.14),(4.11). Then there exists a η ∈ R such that:

{δ = [0o×o(N−n) Ān−1]RN−1 | RN−1 ∈ Θ
τ∗
N−1} ⊂ Bη. (4.49)

Proof. (Lemma 49) First we show that Θ
τ∗
N−1 is bounded. We denote the upper bounds for the

norm of elements in Θ
τ∗
N−1 as στ∗ , and we use the decomposition of RN−1 = [r̄T

N−1 . . . r̄T
0 ]T ∈ Θ

τ∗
N−1.

For the χ2 detector we have that στχ2 =
√

Nτχ2 since:

‖[r̄T
N−1 . . . r̄T

0 ]T ‖ =

√√
N−1∑
i=0

r̄T
i r̄i ≤

√
Nτχ2 . (4.50)

Similarly for the CUSUM detector we have that στC =
√

N(τC + δ) since:

‖[r̄T
N−1 . . . r̄T

0 ]T ‖ =

√√
N−1∑
i=0

r̄T
i r̄i ≤

√
N(τC + δ). (4.51)
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In the case of the MEWMA detector we have that στM =

√
NτM(2−β)

β
since:

‖Gi‖ = ‖βr̄i + (1 − β)Gi−1‖ ≤

√
τMβ

2 − β
(4.52)

and:

β‖r̄i‖ − (1 − β)

√
τMβ

2 − β
≤ ‖βr̄i + (1 − β)Gi−1‖. (4.53)

Combining (4.52) and (4.53) we get:

‖r̄i‖ ≤

√
τM(2 − β)

β
. (4.54)

Then:

‖[r̄T
N−1 . . . r̄T

0 ]T ‖ =

√√
N−1∑
i=0

r̄T
i r̄i ≤

√
NτM(2 − β)

β
. (4.55)

In the case of the Dynamic Watermarking detector, we have that στD =
√

N(q + o)ε, where
ε > ` − 1 − o − q is the solution to (4.31), since:

‖[r̄T
N−1 . . . r̄T

0 ]T ‖ =

√√
N−1∑
i=0

r̄T
i r̄i ≤

√
N(q + o)ε. (4.56)

Then, since:

‖[0o×o(N−n) Ān−1]RN−1‖ ≤ ‖[0o×o(N−n) Ān−1]‖ ‖RN−1‖, (4.57)

let η = ‖[0o×o(N−n) Ān−1]‖στ∗ . Then:

{δ = [0o×o(N−n) Ān−1]RN−1 | RN−1 ∈ Θ
τ∗
N−1} ⊂ Bη. (4.58)

�
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The program in Theorem 48 gives an upper bound to Rτ∗n , which we denote by:

T τ∗
n = {δ | δT Hτ∗

n δ ≤ 1}. (4.59)

We dilate T τ∗
n to obtain an outer approximation to Rτ∗:

Theorem 50. [61, Theorem 5] Suppose τ∗ ∈ R such that τ∗ > 0, Rτ is as in (4.15), T τ∗
n is as in

(4.59), and:

Eτ∗n = T τ∗
n ⊕ Bε , (4.60)

where:

ε =
‖An‖√

s1(Hτ∗
n )(1 − ‖An‖)

. (4.61)

Then Rτ∗ ⊂ Eτ∗n .

To prove this result we must first consider the lemma:

Lemma 51. [61, Lemma 3] Suppose n,N, h ∈ N such that 0 < n ≤ h ≤ N, R = [rT
N ...r

T
0 ]T ∈ Θ

τ∗
N

where Θ
τ∗
N is defined based on the choice of detector. Then R′ = [rT

h ...r
T
h−n]T ∈ Θ

τ∗
n .

Proof. (Lemma 51) To prove that R′ is in Θ
τ∗
n we show that each of the constraints associated with

Θ
τ∗
n are included as a constraint associated with Θ

τ∗
N or that there exists a more restrictive constraint

in Θ
τ∗
N . For the χ2 test we have the inclusion of all constraints since using (4.20) and (4.21) we

have:

R′T Q
τχ2

(i,n)R
′ = RT Q

τχ2

(i+h−n,N)R < 1 ∀i = 0, ..., n. (4.62)

Similarly for the CUSUM detector we have that using (4.22) and (4.23) we have:

R′T QτC
(i, j,n)R

′ = RT QτC
(i+h−n, j,N)R < 1 ∀ i = 0, ..., n and j = 0, ..., i. (4.63)

For the MEWMA we have that Θ
τ∗
N has more restrictive constraints since using (4.27) and (4.28)

we have:

R′T QτM
(i,n)R

′ ≤ RT QτM
(i+h−n,N)R < 1 ∀i = 0, ..., n. (4.64)

For The Dynamic Watermarking Detector we have the inclusion of all constraints since for (4.29)
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and (4.30) we have:

R′T QτD
(i,n)R

′ = RT QτD
(i+h−n,N)R < 1 ∀i = ` + ρ, ..., n. (4.65)

�

Now we return to proving Theorem 50.

Proof. (Theorem 50) Let δ′ ∈ Rτ∗ , and assume that δ′ < Eτ∗n . Furthermore let:

ε1 = inf{‖δ − δ′‖ | δ ∈ Eτ∗n }. (4.66)

Now consider that, for a given N > n:

R
τ∗
N ⊆ {δ | δ = AN−1X, X ∈ Θ

τ∗
N−1}. (4.67)

Using Minkowski sums we over-approximate this set further as:

R
τ∗
N ⊆ {δ = [Ān−1 0p×p(N−n)]RN−1 | RN−1 ∈ Θ

τ∗
N−1}⊕

⊕

( j⊕
i=1

Ani{δ = [0p×pi Ān−1 0p×p(N−n−i)]RN−1 | RN−1 ∈ Θ
τ∗
N−1}

)
⊕

⊕ An( j+1){δ = [0p×p(N−n j) Āh]RN−1 | RN−1 ∈ Θ
τ∗
N−1}. (4.68)

where N is evenly divisible by n, j + 1 times and h is the remainder. Applying Lemma 49 and 51,
we have:

R
τ∗
N ⊆ {δ = Ān−1Rn−1 | Rn−1 ∈ Θ

τ∗
n−1}⊕

⊕

 j⊕
i=1

Ani{δ = Ān−1Rn−1 | Rn−1 ∈ Θ
τ∗
n−1}

⊕
⊕ Bη‖An( j+1)‖ (4.69)

where η is the maximum radius when applying Lemma 49 for h = 0, ..., n. Let σ = 1√
s1(Hτ∗

n )
then:

{δ = Ān−1Rn−1 | Rn−1 ∈ Θ
τ∗
n−1} ⊂ T

τ∗
i (4.70)

= {δ | δT Hτ∗
n δ ≤ 1} ⊂ Bσ. (4.71)
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Figure 4.1: Approximate reachable set volume for varying false alarm rates for the example system in section 4.2.1

This means that:

R
τ∗
N ⊆ T

τ∗
n ⊕

 j⊕
i=1

Bσ‖Ani‖

 ⊕ Bη‖An( j+1)‖. (4.72)

Since the Minkowski sum of balls is a ball with its radius as the sum of the radii, we can increase
the outer approximation by allowing the summation to extend towards infinity:

R
τ∗
N ⊆ T

τ∗
n ⊕ Bε ⊕ Bη‖An( j+1)‖, (4.73)

where:

ε =
σ‖An‖

(1 − ‖An‖)
≥

∞∑
i=1

σ‖Ani‖. (4.74)

Since j + 1 > N
n , there exists an N2 such that for N > N2 we have that η‖An( j+1)‖ < ε1 which

contradicts δ ∈ Rτ∗ .

�
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4.2.1 Simulation-Based Comparison of Attack Capability

To illustrate the trade-off between the rate of false alarms and attack capability, we provide a
comparison of each of the detection algorithms using a 2 dimensional model from Murguia and
Ruths [111]:

A =

 0.84 0.23
−0.47 0.12

 B =

0.07 −0.32
0.23 0.58


C =

1 0
2 1

 K =

1.404 −1.042
1.842 1.008


L =

 0.0276 0.0448
−0.01998 −0.0290

 Σz =

2 0
0 2


Σw =

 0.035 −0.011
−0.011 0.02

 Σr =

2.086 0.134
0.134 2.230


with the addition of a watermark with covariance Σe = 10−2I. Thresholds for the false alarm
rates between 0.01 and 0.3 were found by running the simulation under no attack for 106 time
steps. Using these values, the reachable sets at time step n = 12 were outer approximated using
the optimization program stated in Theorem 48 and dilated as stated in Theorem 50 to provide
outer approximations of the steady state reachable sets. The resulting approximations for the VRS ,
defined in (4.16), are plotted against the false alarm rate in Figure 4.1 for each of the detectors
using various detector specific parameter selections.

One may note that while these methods provide smooth curves for the χ2, MEWMA, and Dy-
namic Watermarking detectors, the curves for the CUSUM detector appears discontinuous, and do
not span the entire range of RFA values. The apparent discontinuity is attributed to the fact that,
for the χ2, MEWMA, and Dynamic Watermarking detectors, increasing the threshold τ∗ results
in a proportional scaling of the outer approximation of Rτ∗n . However, For the CUSUM detector,
changing the threshold does not have this affect. In fact, changing the threshold for the CUSUM
detector alters the shape of Θ

τC
n , resulting in the outer approximation of RτC

n being less conserva-
tive for certain threshold values. Furthermore, the shortened span of the curves for the CUSUM
detector are a result of certain RFA values being un-achievable for a given forgetting factor.

To determine whether the outer approximation is tight for the χ2, CUSUM, and MEWMA
detectors, simulations were run for 60 RFA values uniformly spaced between 0.01 and 0.3. In these
simulations, the portion of the observer related to the residual was propagated forward for 105 steps
using the dynamics (4.9). The residuals were sampled from a normal distribution with 0 mean and
covariance 5I and scaled if necessary, to avoid alarms. The area of the convex hull of the observer
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Method RFA Threshold

χ2
0.05 12.08
0.03 14.29
0.01 21.38

CUSUM
γ=(15/17/19)

0.05 ( 51.04 / 12.27 / 2.21 )
0.03 ( 655.81 / 384.73 / 158.68 )
0.01 ( 1535.94 / 1445.58 / 1355.22 )

MEWMA
β=(0.6/0.7/0.8)

0.05 ( 13.09 / 15.00 / 16.85 )
0.03 ( 15.05 / 17.59 / 20.17 )
0.01 ( 20.68 / 24.85 / 28.88 )

Dyn. Wat.
`=(20/25/30)

0.05 ( 99.57 / 103.74 / 105.59 )
0.03 ( 103.05 / 106.73 / 108.58 )
0.01 ( 108.58 / 110.79 / 113.94 )

Table 4.1: Experimentally Found Thresholds for Various False Alarm Rates and Detector Specific Parameters for the
Real-World Implementation

error for the entire simulation was calculated. The difference between the over approximated area
and the simulated area ranged from 0.0156 − 0.1408 for the χ2, 0.0032 − 0.1143 for the CUSUM,
and 0.0075 − 0.1301 for the MEWMA. The results indicate that the attack capability under the
Dynamic Watermarking detector is comparable to the classic anomaly detectors as a function of
false alarm rate.

4.3 Detect Specific Attacks

In this section, we evaluate the ability of each of the anomaly detection schemes to detect attacks
using a Segway Robotics Mobility Platform performing a path-following task. In addition, we
illustrate that adding a watermark to the system leads to an imperceptible reduction in performance,
while significantly improving the detectability of an attack that was missed by classic anomaly
detectors. Localization was provided by Google Cartographer [98] using planar LiDAR and wheel
odometry measurements. For the purpose of control, a LTV model was fit to the observed data
yielding: 

e`,n+1

es,n+1

eθ,n+1

ev,n+1

eθ̇,n+1


=



e`,n + (0.0478ṽn)eθ,n − (0.045˙̃θn)es,n

es,n + (0.0478)ev,n + (0.045˙̃θn)e`,n
eθ,n + 0.045eθ̇,n

ev,n − 0.1ev,n−4 + 0.1uv,n

0.6eθ̇,n + 0.15eθ̇,n−4 + 0.24uθ̇,n


(4.75)
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where the state is represented in trajectory error coordinates for a given nominal trajectory where
e`,n, es,n, and eθ,n are the lateral, longitudinal, and heading error, ev,n, eθ̇,n are the error in the veloc-
ity and angular velocity, ṽn,

˙̃θn are the nominal velocity and angular velocity and uv,n, uθ̇,n are the
deviation from the nominal inputs.

For a constant nominal velocity of 0.6 m/s and angular velocity of 0 rad/s, this model can be
represented as an LTI model with state vector:

x =
[
e`,n es,n eθ,n ev,n eθ̇,n ev,n−1 ev,n−2 ev,n−3 eθ̇,n−1 eθ̇,n−2 eθ̇,n−3

]T
. (4.76)

For the sake of brevity, the A and B matrices are not stated explicitly but can be found by expanding
(4.75). The feedback gain matrix K was found to make the closed loop system Schur Stable and is
approximately:

K =

 0 0 −0.313 −0.212 0 0.019 0.020
−1.639 −1.984 0 0 −0.384 0 0

0.021 0.022 0 0 0 0
0 0 −0.039 −0.043 −0.052 −0.065

ᵀ (4.77)

Similarly the observer gain matrix L was found to make the observer Schur Stable and is approxi-
mately:

L =



−0.791 −0.016 0 0 0
−0.002 −0.501 0 0 −0.022

0 0 −0.272 −0.025 0
0 0 −0.011 −0.252 0
0 −0.003 0 0 −0.240
0 0 −0.013 −0.258 0
0 0 −0.015 −0.187 0
0 0 −0.015 −0.133 0
0 0 −0.014 −0.091 0
0 −0.004 0 0 −0.395
0 −0.010 0 0 −0.145
0 −0.008 0 0 −0.054
0 −0.005 0 0 −0.024



(4.78)

The steady state covariance of the residuals, Σr, was approximated using the sample covariance
from data generated by the Segway following a straight line down a 16 m hallway 40 times. To
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avoid the effects of the transient behavior at the start of each run, the beginning of each run was
ignored. This experiment was repeated a second time after the introduction of a watermark into
the control input with covariance:

Σe =

0.02 0
0 0.03

 , (4.79)

in order to approximate Σψ. The average location error was 0.0262 m for the non-watermarked
runs and 0.0506 m for the watermarked runs. While adding the watermark increased the location
error, the average error did not hinder overall performance during the lane-following task.

Threshold values for the false alarm rates of 0.01, 0.03, and 0.05 were approximated for the
χ2, CUSUM, and MEWMA detectors using the residuals from the un-watermarked runs. Thresh-
olds for the Dynamic Watermarking detector and the same false alarm rates were found using the
residuals from the watermarked runs. The resulting threshold values are displayed in Table 4.1.

Two attacks, following differing models, were then applied. Attack model 1 assumes that the
attacker adds random noise to the system such that vn ∼ N(0, 10−5I). Attack model 2 takes the
form:

vn = −(Cxn + zn) + Cξn + ζn. (4.80)

For this model, the attack measurement noise ζn is added to the false state such that ζn ∼ N(0,Σζ)
and the false state ξn ∈ R

p is updated according to the closed loop dynamics of the system:

ξn+1 = (A + BK)ξn + ωn (4.81)

with attack process noise ωn ∼ N(0,Σω). The attack process and measurement noise were chosen
to leave the distribution of the residuals unchanged.

For each attack, 10 experimental runs were completed without a watermark and 10 with a
watermark for a total of 20 experimental runs per attack model or 40 total experimental runs. The
runs with a watermark were used in evaluating the Dynamic Watermarking detector, while all other
detectors used the un-watermarked data. The resulting detection rates, defined as the number of
alarms divided by the total number of time steps in the attacked runs, are displayed in Table 4.2.

For attack model 1, all of the detectors are able to reliably detect the attack, confirming that
the implementation of the detectors is correct. For attack model 2 the detection rate decrease from
the RFA for the χ2, CUSUM, and MEWMA detectors. This may be due to the residuals for the
un-attacked system not being distributed as a Gaussian distribution resulting in higher threshold
values. Since attack model 2 replaces the feedback completely, the resulting residuals, when under
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Method RFA
Attack Model 1 Attack Model 2
Detection Rates Detection Rates

χ2
0.05 0.69 0.03
0.03 0.62 0.01
0.01 0.47 0.00

CUSUM
γ=(15/17/19)

0.05 ( 0.98 / 0.99 / 0.99 ) ( 0.00 / 0.00 / 0.00 )
0.03 ( 0.81 / 0.86 / 0.92 ) ( 0.00 / 0.00 / 0.00 )
0.01 ( 0.58 / 0.54 / 0.51 ) ( 0.00 / 0.00 / 0.00 )

MEWMA
β=(0.6/0.7/0.8)

0.05 ( 0.51 / 0.57 / 0.62 ) ( 0.03 / 0.03 / 0.03 )
0.03 ( 0.45 / 0.50 / 0.54 ) ( 0.01 / 0.01 / 0.01 )
0.01 ( 0.32 / 0.35 / 0.39 ) ( 0.00 / 0.00 / 0.00 )

Dyn. Wat.
`=(20/25/30)

0.05 ( 1.00 / 1.00 / 1.00 ) ( 0.98 / 1.00 / 1.00 )
0.03 ( 1.00 / 1.00 / 1.00 ) ( 0.97 / 0.99 / 1.00 )
0.01 ( 1.00 / 1.00 / 1.00 ) ( 0.95 / 0.98 / 1.00 )

Table 4.2: Experimentally Found Alarm Rates For Various Detector Specific Parameters

attack, do follow a Gaussian distribution which then results in lower detection rates. The Dynamic
Watermarking detector in the presence of the second attack provides a high detection rates for each
set of parameters, and in some cases achieves a perfect detection rate.
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Chapter 5

Single Autonomous Vehicle Applications

CAVs have been touted as a way to increase safety by removing driver error. However, like other
CPSs, CAVs are vulnerable to cyber-attack, that give rise to additional safety concerns [15]–[17].
Some cyber-attacks can even compromise the control systems of the CAV.

In this chapter we illustrate how LTV dynamic watermarking, as described in Section 3.2, can
be applied to a single CAV to detect altered measurement signals. To this end, we consider two
case studies. First, we use CarSim to simulate a high fidelity vehicle model in Section 5.1. For
this system, we fit a lower fidelity model then linearize to generate an LTV model. While dynamic
watermarking is applied using the LTV model, the simulation is still run on using CarSim and
the high fidelity model. Second, we use a 1/10th scale autonomous rover shown in Figure 5.3 to
illustrate the effectiveness of dynamic watermarking on a real-world system.

5.1 CarSim Example

In our simulations of a single autonomous vehicle we use the simulation environment CarSim with
a high fidelity non-linear model [118]. CarSim is a widely used software for accurately modeling
the behavior of vehicles using high dimensional multi-body dynamics. As such, we treat the output
of the simulation as the ground truth. However, to make linearization tractable we fit a simplified
vehicle model.
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Figure 5.1: Bicycle model with tire forces and slip angles used to approximate dynamics of CarSim simulation

5.1.1 Vehicle Model

We start with the dynamic bicycle model illustrated in Figure 5.1. This model satisfies Liniger et

al. [119, Equation (1)]: 

ẋc

ẏc

ψ̇

v̇x

v̇y

ψ̈


=



vx cos(ψ) − vy sin(ψ)
vx sin(ψ) + vy cos(ψ)

ψ̇
1
m Fx −

1
m F f ,y sin(δ) + vyψ̇

1
m F f ,y cos(δ) + 1

m Fr,y − vxψ̇
` f

Iz
F f ,y cos(δ) − `r

Iz
Fr,y


(5.1)

where (xc, yc) are the ground plane coordinates of the center of mass, φ is the heading angle, vx

is the longitudinal velocity, vy is the lateral velocity, ψ̇ is the angular velocity, m is the mass, Iz is
the moment of inertia, ` f and `r are the distances from the center of mass to the front and rear tire
respectively, δ is the steering angle, Fx is the longitudinal force at the back tire, and F f ,y and Fr,y

are the lateral forces at the front and rear tire respectively.
For (5.1), the longitudinal force Fx is modeled empirically using a 4th order polynomial in

terms of the desired throttle ua, and braking ud inputs

Fx =
∑

i, j∈{0,1,2,3,4}
i+ j≤4

vi
x

(
ca,i, ju j

a + cd,i, ju
j
d

)
. (5.2)

Note that we assume that the throttle and braking inputs cannot both be non-zero at any given
time. The Lateral forces are then approximated using a simplified version of the widely used
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Pacejka ”Magic” tire model [120][119, Equations 2(a), 2(b)]

F f ,y = F f ,zD f sin(C f arctan(B fα f )), (5.3)

Fr,y = Fr,zDr sin(Cr arctan(Brαr)), (5.4)

where the front and rear slip angles α f and αr satisfy

α f = δ − arctan
(
` f ψ̇ + vy

vx

)
, (5.5)

αr = arctan
(
vy − `rψ̇

vx

)
, (5.6)

and the front and rear vertical tire force F f ,z and Fr,z satisfy

F f ,z =
mg`r

` f + `r
, (5.7)

Fr,z =
mg` f

` f + `r
. (5.8)

Though (5.1) and the corresponding simulation environment treats the steering angle directly as an
input, a real-world vehicle cannot change the steering angle instantly. Therefore we instead treat δ
as a state of the system and use the rate of change of the steering angle δ̇ as an input.

To linearize the system let x =
[
xc yc ψ vx vy ψ̇

]ᵀ
, u =

[
ua ub δ̇

]ᵀ
, and let f be a

function such that ẋ = f (x, u). This model is then linearized about the desired trajectory x̄ with
corresponding nominal inputs ū such that

ẋ − ˙̄x =
∂ f
∂x

∣∣∣∣∣x=x̄
u=ū

(x − x̄) +
∂ f
∂u

∣∣∣∣∣x=x̄
u=ū

(u − ū). (5.9)

Then we discretize the system for a time step of 0.05 s under the assumption of a zero order hold
on the inputs and states to generate an LTV model of the form (D2) where

An = expm

0.05
∂ f
∂x

∣∣∣∣∣xn=x̄n
un=ūn

 , (5.10)

Bn =

∫ 0.05

t=0
expm

 t
∂ f
∂x

∣∣∣∣∣xn=x̄n
un=ūn

 dt, (5.11)

and the state and inputs of the discretized system are the deviation from the nominal trajectory and
inputs.
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Figure 5.2: The simulated high fidelity car is attacked with a replay attack after 50 s of operation. The desired trajectory
and 10 attacked realizations are plotted for the region that the attack is initiated (Left). Negative log likelihood for all
200 attacked realizations with average value are plotted (Right).

5.1.2 Results

This section illustrates the effectiveness of LTV dynamic watermarking using a high fidelity vehicle
model in CarSim. For the simulation, the vehicle completes a 1,137 m long trajectory traveling at
speeds up to 7 m/s in approximately 200 s. This is accomplished using a linear quadratic regulator
(LQR) and a linearization of the car model (5.1)-(5.8). The simulated measurement signal at step
n includes the ground plane coordinates (xc,n, yc,n) in meters, heading ψn in radians, longitudinal
velocity v1,n in meters per second, lateral velocity v2,n in meters per second, yaw rate ψ̇n in radians
per second, and steering wheel angle δn in radians. Since the feedback from the simulation does
not include noise, Gaussian measurement noise was added to the measurement such that when no
attack is present

yn =
[
xc,n yc,n ψn v1,n v2,n ψ̇n δn

]ᵀ
−

[
x̄c,n ȳc,n ψ̄n v̄1,n v̄2,n

˙̄ψn δ̄n

]ᵀ
+ zn, (5.12)

where zn ∼ N
(
07×1, 1 × 10−8I7

)
. The control signal sent to the simulation includes percent throttle

u, steering wheel rate δ̇ in radians per second. A watermark with covariance

Σe = 0.015I2 (5.13)

was added to the control input at each step. The watermark covariance was chosen to minimize
degradation in system performance while also being sufficiently large to aid in detection. The
matrix normalizing factor and the auto-correlation normalizing factor were generated from 200
realizations using (3.174) and (3.175). The window size ` of 21 steps was used for the statistical
tests. For this window size, a threshold of 181.94 was used based on a false alarm rate of 0.002 for
the un-attacked trials.

To generate a replay attack, the measurement signal from one run is recorded and then played
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Figure 5.3: The 1/10th scale autonomous rover used in real-world testing of LTV dynamic watermarking on a single
autonomous vehicle.

back when the simulation is run for a separate realization. Since an attack need not start at the
beginning, we chose to start the attack 50s after the start of the simulation. Furthermore, since the
initial replayed measurement may be inconsistent with what is expected given the current observed
state of the system, the attacked measurement instead was linearly interpolated between the true
measurement and the replayed measurement over the course of 0.15s.

In practice, an autonomous vehicle would respond to the detection of an attack. We instead al-
lowed the vehicle to continue normal operation up to a certain distance from the desired trajectory.
This allows us to illustrate the results of a replay attack on an autonomous vehicle.

The results of these simulations can be seen in Figure 5.2. The left side of the figure shows
the results of the replay attack on our high fidelity car model. The right side of the figure shows
the ability of LTV Dynamic Watermarking to detect these attacks. Note, despite our attempt to
smooth the transition to the replayed attack the negative log likelihood has a spike immediately
following the start of the attack at 50 s. Moreover, the negative log likelihood continues to exceed
the threshold as the attack continues and the transient effect of the transition diminishes.
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5.2 Rover Example

In our real-world experiments on a single autonomous vehicle, we use the 1/10th scale autonomous
rover illustrated in Figure 5.3. The design of this rover was based on the MIT-racecar project [121]
with some modifications. The rover is outfitted with a motor speed sensor, 3-axis accelerometer, 3-
axis gyroscope, 3-axis magnetometer, planar lidar scanner, and stereo camera. Low level control
is handled by a speed and servo controller while the high level control and communications are
executed by a Nvidia Jetson TX2. Due to our testing location we chose to also make use of a
motion capture system for ground plane coordinates.

5.2.1 Vehicle Model

We start with the empirically found non-linear model
ẋc

ẏc

ψ̇

v̇

 =


v cosψ − ψ̇(c8 + c9v2) sinψ
v sinψ + ψ̇(c8 + c9v2) cosψ

tan(c1δ+c2)v
c3+c4v2

c5 + c6(v − vd) + c7(v − vd)2

 , (5.14)

where (xc, yc) are the ground plane coordinates, ψ is the vehicle heading, v is the forward velocity,
δ is the desired steering angle, vd is the desired velocity, and c1, . . . , c9 are fitted constants which
can be found in Table 5.1. This model attempts to capture both the non-linear dynamics of the

Constant Value
c1 1.6615 × 10−5

c2 −1.9555 × 10−7

c3 3.619 × 10−6

c4 4.382 × 10−7

c5 −8.1112 × 10−2

c6 −1.4736 × 100

c7 1.2569 × 10−1

c8 7.6459 × 10−2

c9 −1.3991 × 10−2

Table 5.1: Fitted constants for the nonlinear dynamics in Eq. (5.14)

power-train and various dynamic effects such as tire slip. Namely, the constants c1 and c2 are used
to calibrate the steering angle, c4 and c9 are used to model the effect of tire slip on the angular and
lateral velocities, and c5, c6, and c7 are used to approximate the drive train. Note that when c4 = 0
and c9 = 0 the equations for ẋc, ẏc, and ψ̇ follow from [122, Table 2.1] for a proper selection of c3
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Figure 5.4: The 1/10 scale autonomous rover is attacked with a replay attack after 15 s of operation. The desired tra-
jectory and 10 attacked realizations are plotted for the region that the attack is initiated (Left). Negative log likelihood
for all 20 attacked realizations with average value are plotted (Right).

and c4.
The dynamics in (5.14) are linearized and discretized for a time step of 0.05 s in much the same

way as in (5.9)-(5.11) of the CarSim example.

5.2.2 Results

This section further illustrates the effectiveness of LTV Dynamic Watermarking on a 1/10 scale
autonomous rover. For the experiment, the rover completes a lap around a track consisting of
several turns and changes in velocity. The track has a length of 38.8 m and the rover travels
at speeds up to 1.8 m/s. This is accomplished using a LQR and a linearized rover model. The
measurement signal at step n includes the ground plane coordinates (xc,n, yc,n) in meters, heading
ψn in radians, angular velocity ψ̇n in radians per second, and longitudinal velocity vn in meters per
second. The ground plane coordinates and heading are measured using a motion capture system,
the angular velocity is measured by an IMU, and the longitudinal velocity is measured by the motor
controller. The control signal includes a desired speed in meters per second and a steering angle in
radians. A watermark with covariance

Σe =

0.02 0
0 0.005

 (5.15)

was added to the control input at each step. The matrix normalizing factor and the auto-correlation
normalizing factor were generated from 100 experimental runs using (3.174) and (3.175). The
window size of 15 steps (` = 14) was used for the statistical tests. For this window size, a threshold
of 175.28 was used based on a false alarm rate of 0.002 for the un-attacked trials.

Implementation of the replay attack was done in the same fashion as was done in simulation
except the attack was initiated at 15 s. For safety purposes, the rover is remotely stopped when the
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attack causes it to leave the track area.
The results of these experiments can be seen in Figure 5.4. Similar to the simulated results, the

left side of the figure shows the results of the replay attack on the 1/10 scale autonomous rover.
Furthermore, the right of the figure shows the ability of LTV Dynamic Watermarking to detect
these attacks. Note, the transition to the replayed measurements has a lesser effect on the negative
log likelihood. Nonetheless, the negative log likelihood continues to exceed the threshold as the
attack continues ensuring detection.
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Chapter 6

Autonomous Platoon Applications

Vehicle platooning has been shown to decrease fuel consumption by reducing air drag [123]–[126],
while also improving throughput on roads by reducing the occurrence of bottlenecks [127], [128].
To achieve these performance improvements without creating phantom traffic jams or crashes
[129], [130], the longitudinal controller for these vehicle platoons must be string stable meaning
that perturbations must be dampened by subsequent vehicles in the string [131]–[135].

For platoons that do not rely on V2V communication, string stability can be satisfied by main-
taining a constant headway between vehicles in the platoon [136]–[138]. Unfortunately, since the
headway is found by dividing the bumper-to-bumper following distance by the speed, this leads to
conservatively sized gaps between vehicles that grow as the speed increases. Since the reduction
in air drag becomes less prominent as the following distance increases, the methods that avoid
utilizing V2V communication are unable to achieve all the potential energy efficiency benefits of
vehicle platooning.

In contrast, for connected vehicles, the additional road user information can be used to adopt a
constant spacing policy while still preserving string stability. Even under limited V2V communi-
cation with just one or two neighboring vehicles [139]–[144], energy efficiency and throughput can
increase dramatically due to the reduction in following distance. However, these communication
channels introduce vulnerabilities to cyber attacks.

In this chapter we illustrate the application of LTV distributed dynamic watermarking as de-
scribed in Section 3.3 to a simulated platoon of autonomous vehicles. First, in Section 6.1, we
define the particular model used to describe the dynamics of the platoon and explain how the as-
sumptions in Subsection 3.3.1 are satisfied. Then, in Section 6.2, the details of the simulations
and results are discussed. A video of the simulations is available at Porter et al. [145].
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Figure 6.1: The platooning state at step n is described by the velocity of each vehicle v1,n, . . . , vκ,n and the distances
between vehicles d1,n, . . . , dκ−1,n. The distance from a vehicle in an arbitrary position i to the lead vehicle is di,n.

6.1 Platoon Model

This section illustrates the ability of an LTV system model with distributed control satisfying (D3)
in Section 3.3 to describe a vehicle platoon. A thorough derivation is provided and the result-
ing system is presented. Whereas previous literature in platooning has often assumed a constant
velocity, the use of an LTV system model can describe platooning with fewer assumptions.

The task of vehicle platooning is often broken into two components, lane keeping and vehicle
following [146]. The objective of lane keeping is to minimize the lateral error i.e. the distance
to the nearest point on the trajectory. The task of vehicle following attempts to maintain a con-
stant distance or a constant headway to the preceding vehicle in the platoon. Note that the lead
vehicle attempts to maintain a minimum headway when near other vehicles and a desired velocity
otherwise. In this example, we focus on the task of vehicle following since it requires V2V com-
munication to reduce following distances between vehicles. However, we also describe our lateral
dynamics for the sake of completeness.

We start with the same empirically found non-linear model (5.14) from the single autonomous
vehicle example in Section 5.2.

The state of the longitudinal dynamics for a platoon of κ vehicles, as illustrated in Figure 6.1,
consists of each vehicle’s velocity v1,n, . . . , vκ,n, and the distances between subsequent vehicles
d1,n, . . . , dκ−1,n. For convenience we define

di,n =

i−1∑
j=1

di,n (6.1)

to denote the distance from the lead vehicle to vehicle i in the platoon. In this paper, the distance
between vehicles is measured along the trajectory based on the center of each vehicle. This sim-
plifies notation while still allowing for vehicle length to be accounted for in the platoons desired
trajectory.
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Lateral Dynamics

Consider the lateral error ∆lati and heading error ∆ψi defined as

∆lati = (yi − ȳi) cos(ψ̄i) − (xi − x̄i) sin(ψ̄i) (6.2)

and

∆ψi = ψi − ψ̄i (6.3)

We approximate the continuous dynamics as follows.

∆ψ̇i = ψ̇ − ˙̄ψ =
tan(c1δi + c2)vi

c1 + c4v2
i

−
tan(c1δ̄i + c2)v̄i

c3 + c4v̄2
i

≈
(tan(c1δi + c2) − tan(c1δ̄i + c2))v̄i

c3 + c4v̄2
i

, (6.4)

where the second equality comes from (5.14) and the approximation from vi ≈ v̄i and

˙∆lati(ẏi − ˙̄yi) cos(ψ̄i) − (ẋi − ˙̄xi) sin(ψ̄i) − ˙̄ψi
(
(xi x̄i) cos(ψ̄i) + (y)iȳi) sin(ψ̄i)

)
=

≈ vi sin(∆ψi) + ψ̇i(c8 + c9v2
i ) cos(∆ψi) − ˙̄ψi(c8 + c9v̄2

i ) =

≈ v̄i sin(∆ψi) +
(c8 + c9v̄2

i )v̄i

c3 + c4v̄2
i

(tan(c1δi + c2) cos(∆ψi) − tan(c1δ̄i + c2)), (6.5)

where the first inequality comes from (5.14) and (xi− x̄i) cos(ψ̄i)+(yi−ȳi) sin(ψ̄i) ≈ 0, and the second
from (5.14) and vi ≈ v̄i. These approximations are reasonable since the longitudinal controller aims
to maintain the desired velocity and we reduce longitudinal error defined as (xi − x̄i) cos(ψ̄i) + (yi −

ȳi) sin(ψ̄i) by accommoding drift along the trajectory. Linearizing (6.4)-(6.5) then gives us ˙∆lati

∆̇ψi

 =

0 v̄i

0 0

 ∆lati

∆ψi

 +
c1v̄i

cos2(c1δ̄i + c2)(c3 + c4v̄2
i )

(c8 + c9v̄2
i )

1

 ∆δi, (6.6)

where ∆δi = δi − δ̄i. Discretizing using a step size of 0.05 s and a zero-order hold on v̄i and δi then
results in∆lati,n+1

∆ψi,n+1

 =

1 v̄i,n

20

0 1

 ∆lati,n

∆ψi,n

 +
c1v̄i,n

cos2(c1δ̄i,n + c2)(c3 + c4v̄2
i,n)


(

(c8+c9v̄2
i,n)

20 +
v̄i,n

800

)
1

20

 ∆δi,n. (6.7)
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Longitudinal Dynamics

The state of the longitudinal dynamics for a platoon of κ vehicles, as illustrated in Figure 6.1, is
made up of each vehicle’s velocity v1,n, . . . , vκ,n, and the distances between subsequent vehicles
d1,n, . . . , dκ−1,n. Next, under the assumption that the tracking error for the lane keeping controller is
sufficiently small, we linearize the longitudinal dynamics from (5.14) as

∆̇di = ∆vi − ∆vi+1 (6.8)

∆̇vi = αi∆vi − αi∆vd
i , (6.9)

where ∆di = di − d̄i, ∆vi = vi − v̄i, ∆vd
i = vd

i − v̄d
i , and αi is the continuous equivalent to (6.13)

defined as

αi = c6 + 2c7(v̄i − v̄d
i ). (6.10)

Selecting a time step of 0.05 s and assuming a zero-order hold on the input, these dynamics are
then discretized as

∆di,n+1 = ∆di,n +
βi − 1
αi

∆vi,n −
βi+1 − 1
αi+1

∆vi+1,n − (
βi − 1
αi
− 0.05)∆vd

i + (
βi+1 − 1
αi+1

− 0.05)∆vd
i+1

(6.11)

∆vi,n+1 = βi∆vi,n − (βi − 1)∆vd
i,n, (6.12)

where

αi,n = c6 + 2c7(v̄i,n − v̄d
i,n), (6.13)

βi,n = e0.05αi,n . (6.14)

Vectorizing these discrete dynamics for the state vector xn = [∆d1,n · · · ∆dκ−1,n ∆v1,n · · · ∆vκ,n]ᵀ

and inputs ui,n = ∆vd
i,n results in an LTV system satisfying

xn+1 = Anxn +

κ∑
i=1

Bi,n(Ki,n x̂i,n + ei,n) + wn, (6.15)

where Ki,n, x̂i,n, and ei,n are vehicle i’s state feedback, observed state, and watermark respectively
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and

An =


Iκ−1

β1,n−1
α1,n

−
β2,n−1
α2,n

. . .
. . .

βκ−1,n−1
ακ−1,n

−
βκ,n−1
ακ,n

0κ×κ−1 diag(β1,n, . . . , βκ,n)


, (6.16)

Bi,n =


[

1
20 −

β1,n−1
α1,n

01×κ−2 1 − β1,n 01×κ−1

]ᵀ
i = 1[

01×i−2
βi,n−1
αi,n
− 1

20
1
20 −

βi,n−1
αi,n

01×κ−2 1 − βi,n 01×κ−i

]ᵀ
i , 1.

(6.17)

We assume each vehicle is able to measure its own location, velocity, and the distance to the
previous vehicle in the platoon. Using the location measurements, the lateral error and heading
error are calculated for the lane keeping task. For the vehicle following task the measurements for
vehicle i at step n satisfy

yi,n = Cixn + zi,n, i ∈ {1, . . . , κ}, (6.18)

where zi,n is the measurement noise and Ci,n takes one of two forms depending on the choice of
controller. In the first case, the leader measures its own velocity, while each of the other vehicles
measures both their own velocity and the distance to the preceding vehicle

Ci =



[
01×κ−1 1 01×κ−1

]
i = 1 02×i−2

1

0
02×κ−1

0

1
02×κ−i

 i , 1.
(6.19)

In the second case, we assume that the first vehicle also communicates its location along the tra-
jectory which can be used by other vehicles to calculate the distance to the lead vehicle. However,
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we model this as the first vehicle also measuring the distance to all following vehicles

Ci =





1 0 . . . 0
...

. . .
. . .

...

1 . . . 1 0

1 . . . 1 1

0κ−1×1 0κ−1

01×κ−1 1 01×κ−1


i = 1

 02×i−2
1

0
02×κ−1

0

1
02×κ−i

 i , 1.

(6.20)

Since the vehicle following task only seeks to maintain a desired velocity and spacing policy,
any longitudinal error with respect to a predefined trajectory will not be corrected by the con-
troller. As a result, the position of the platoon can drift along the trajectory. Though this drift
does not affect the derivations in this section, it does pose a practical problem which we resolve in
Section 3.4.

6.1.1 Lateral Controller and Observer

For lane keeping, a lateral controller is introduced which operates independently of the longitudinal
controller (i.e. each vehicle runs the same lateral controller and observer at all times). The feedback
law follows

δi,n =
[
−0.25 −1

] ∆ ˆlati,n

∆ψ̂i,n

 . (6.21)

Furthermore, the observer follows∆ ˆlati,n+1

∆ψ̂i,n+1

 =

( 1 v̄i,n

20

0 1

 +

0.3 v̂i,n

20

0 0.2

 ) ∆ ˆlati,n

∆ψ̂i,n

 +
c1v̄i,n

cos2(c1δ̄i,n + c2)(c3 + c4v̄2
i,n)
×

×


(

(c8+c9v̄2
i,n)

20 +
v̄i,n

800

)
1bi,n

20

 ∆δi,n −

0.3 v̂i,n

20

0 0.2

 ∆y-lati,n, (6.22)

where ∆y-lati,n is the measurement of the lateral and heading error.
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6.1.2 Longitudinal Controller Design

This section details the 3 different longitudinal controllers utilized in the platoon. In each case,
we provide a general control scheme and the parameters chosen in this work based on their per-
formance in the simulated platoon. The level 3 and level 2 controllers both attempt to maintain
constant spacing between vehicles. However, they utilize different communication strategies that
allow us to compare the benefits of full communication between vehicles in the platoon and a more
limited communication strategy. The level 1 controller attempts to maintain constant headway
without the aid of V2V communication. As a result, level 1 control strategy is used after an attack
is detected, allowing the platoon to gracefully degrade. Note that the lateral controller has been
included in Appendix 6.1.1 for completeness.

We assume that all vehicles in the platoon use the same communication level and switch to
the mitigation strategy simultaneously when an attack is detected. For each level, the longitudinal
controller and observer follows the LTV form (D3) however the matrices Ki,n, L(i, j),n, Ni, Mi, U(i, j),

and W(i, j) are level dependent.

Level 3:

To take advantage of full V2V communication between the connected vehicles, a ”fully-connected”
controller and observer are devised. In this case

H = {1, . . . , κ} × {1, . . . , κ} (6.23)

and the measurements follow the model in (6.18),(6.19). The controller gains satisfy

Ki,n =
[

0.5
2(i−1) · · ·

0.5
2(1)

−0.5
2(0) · · ·

−0.5
2(κ−i−1)

0.1
2(i−1) · · ·

0.1
2(1)

−0.1
2(0) · · ·

−0.1
2(κ−i)

]
(6.24)

for i ∈ {1, . . . , κ}. The idea here is to have each vehicle react to the velocity and following distance
error of all other vehicles. In doing so, the watermark of each vehicle affects all others in the
platoon. Furthermore, the magnitude of the control gains decays exponentially for vehicles further
away in the platoon to reduce the combined effect of the watermarks especially in larger platoons.

As the platoon size increases, the number of communication channels and corresponding in-
coming messages for each vehicle increases. This problem along with other physical limiting
factors such as latency between vehicles at the ends of the platoon can prove troublesome in larger,
fully-connected platoons. Along with these limitations, the fact that the visibility of the watermark
from vehicle i in vehicle j reduces as the platoon positions i and j are further apart means there
are diminishing returns, from an attack detection standpoint, to having level 3 communication in
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larger platoons.

Ni = I2κ−1 (6.25)

L(i, j),n =



[
−0.05 01×κ−2 −0.1 01×κ−1

]ᵀ
j = 1 02×κ−2

−0.5

0.05
02×κ−1

0

−0.1


ᵀ

j = κ

 02× j−2
−0.5

0.05

0

−0.05
02×κ−2

0

−0.1
02×κ− j


ᵀ

o/w.

(6.26)

Mi,n = An +

κ∑
j=1

(
B j,nK j,n + L(i, j),nC j

)
(6.27)

W(i, j) = C j, U(i, j) = Im j . (6.28)

Level 2: In light of the limitations associated with level 3, a less connected strategy where

H = {(i, j) ∈ {1, . . . , κ}2 | j = 1 or |i − j| ≤ 1} (6.29)

and measurements that follow the measurement model defined in (6.18), (6.20) are considered for
the level 2 communication. In this case, each vehicle observes a subset of the states. Namely, its
distance to the lead vehicle, preceding vehicle, and following vehicle, and the velocities of each of
these vehicles.

Next we derive the level 2 control strategy using inspiration from Swaroop and Hedrick [142,
Section 3.4], in which the controller uses the state of the lead and preceding vehicles to calculate a
desired acceleration as

v̇i,n =
1

1 + γ1
[v̇i−1,n + γ1v̇1,n − (γ2 + 0.6)(vi,n − vi−1,n)+

− 0.6γ2(di−1,n − d̄i−1,n) − (γ3 + 0.6γ1)(vi,n − v1,n)+

+ 0.6γ3(di,n − d̄i,n)], (6.30)

where γ1 is used to shift the relative gain from the acceleration of the preceding vehicle to that of
the leading vehicle, γ2 adjusts the control gains corresponding to following distance and relative
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velocity to the previous vehicle, and γ3 adjusts the control gains corresponding to the following
distance and relative velocity to the lead vehicle. To enact this control policy we start by setting
γ1 = 0.2, γ2 = 1, and γ3 = 1.2 to achieve a spacing error attenuation rate of less than 0.5 [142,
Equation 3]. Then, since our controller will specify the desired velocity vd instead of the desired
acceleration, we relate the two using the partial derivative

∂v̇i,n

∂vd
i,n

= −1.2(c6 + 2c7(vi,n − vd
i,n)). (6.31)

Further, we assume that the deviation in the acceleration of the lead vehicle and preceding vehicle
are negligible allowing us to ignore the corresponding terms. The resulting controller gain matrices
satisfy

Ki,n =
1

−1.2(c6 + 2c7(v̄i,n − v̄d
i,n))



[
0 −2.92 0

]
i = 1[

1.32 0 2.92 −2.92 0
]

i = 2[
0.72 0.6 1.32 1.6 −2.92

]
i = κ[

0.72 0.6 0 1.32 1.6 −2.92 0
]

o/w,

(6.32)

with the corresponding observed state x̂i,n approximating Nixn defined such that

Nixn =



[
d1,n v1,n v2,n

]ᵀ
i = 1[

d1,n d2,n v1,n v2,n v3,n

]ᵀ
i = 2[

d
κ,n dκ−1,n v1,n vκ−1,n vκ,n

]ᵀ
i = κ[

di,n di−1,n di,n v1,n vi−1,n vi,n vi+1,n

]ᵀ
o/w

(6.33)
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Mi,n = NiBi,nKi,n +



 0.5 σ1,n −σ2,n

02×1 diag(θ1,n, θ2,n)

 i = 1


0.5I2

σ1,n −σ2,n 0

0 σ2,n −σ3,n

03×2 diag(θ1,n, θ2,n, θ3,n)

 i = 2


0.5I2

σ1,n 0 −σκ,n

0 σκ−1,n −σκ,n

03×2 diag(θ1,n, θκ−1,n, θκ,n)

 i = κ


0.5I3

σ1,n 0 −σi,n 0

0 σi−1,n −σi,n 0

0 0 σi,n −σi+1,n

04×3 diag(θ1,n, θi−1,n, θi,n, θi+1,n)


o/w

(6.34)

L(1, j),n =



 03×κ−1

−0.05

−0.1

0

 j = 1

−0.5 0 0

0.05 0 −0.1


ᵀ

j = 2

(6.35)
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for the first vehicle,

L(2, j),n =




−0.25

04×1

01×κ−2

−0.05

0

−0.1

02×1


j = 1

−0.25 0 0 0 0

0.05 −0.05 0 −0.1 0


ᵀ

j = 2

0 −0.5 0 0 0

0 0.05 0 0 −0.1


ᵀ

j = 3

(6.36)

for the second vehicle,

L(κ, j),n =




05×κ−2

−0.5 −0.05

0 0

0 0.1

02×1 02×1


j = 1

[
0 −0.05 0 −0.1 0

]ᵀ
j = κ − 1 0 −0.5 0 0 0

0.05 0.05 0 0 −0.1


ᵀ

j = κ

(6.37)
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for the last vehicle, and

L(i, j),n =




07×i−2

−0.5

06×1

07×κ−i

−0.05

0

0

−0.1

03×1


j = 1

[
0 −0.05 0 0 −0.1 0 0

]ᵀ
j = i − 1 0 −0.5 0 0 0 0 0

0.05 0.05 −0.05 0 0 −0.1 0


ᵀ

j = i

0 0 −0.5 0 0 0 0

0 0 0.05 0 0 0 −0.1


ᵀ

j = i + 1

(6.38)

for the remaining vehicles i.e. i < {1, 2, κ}.

U(i, j)Nixn = W(i, j)C jxn =



[
v1,n

]
j = 1, i = 1[∑i−1

k=1 dk,n v1,n

]ᵀ
j = 1, i , 1[

v j,n

]
j , 1, i = j + 1[

d j−1,n v j

]ᵀ
j , 1, i , j + 1

. (6.39)

Level 1: In the event of an attack detection, communication between agents in the network
should be severed to mitigate potential harm to the system. To maintain operation of the platoon,
the vehicles are able to switch to a non-communicative platoon strategy such that

H = {(i, i) | i ∈ {1, . . . , κ}}. (6.40)

Here each vehicle still measures and observes its own velocity and the distance to the preceding
vehicle.

The non-communicative level 1 controller is inspired by the University of Michigan Transporta-
tion Research Institute’s (UMTRI)’s algorithm for adaptive cruise control (ACC) [147, Equation
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1] which satisfies

vd
i,n = vi−1,n + φ1( fi−1,n − Thvi,n)+

+ φ2(vi−1,n − vi,n), (6.41)

where φ1 is the control gain for the error in the headway, fi−1,n is the bumper-to-bumper distance to
the previous vehicle, and φ2 is the control gain on the derivative of the following distance. In this
work, we set φ1 = 1, φ2 = 0.2, and Th = 1. Since (6.41) is already linear the control gain Ki,n is
written directly as

Ki,n =


[
−1

]
i = 1[

1 1.2 −1.2
]

i , 1,
(6.42)

with the corresponding observed state x̂i,n approximating Nixn such that

Nixi,n =



[
v1,n

]
i = 1

di−1,n

vi−1,n

vi,n

 i , 1
(6.43)

Note that a proportional gain is applied to the error in the lead vehicle’s velocity since there is no
preceding vehicle.

Since the level 1 control strategy is considered to be safe from cyber attacks across communica-
tion channels, we do not employ attack detection or a watermark after the switch is made. Though
the level 1 controller is less susceptible to cyber attacks, it is unable to maintain constant follow-
ing distances without sacrificing safety. In contrast, both the level 3 and level 2 control strategies
enable the use of constant following distances. As a result, these strategies can lead to significant
improvement in fuel economy and throughput on roads.

Mi,n = NiBi,nKi,n +



θ1,n i = 1
0.5 βi−1,n−1

αi−1,n
−σi,n

−1.2 βi−1,n 0

0 0 θi,n

 i , 1
(6.44)
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Figure 6.2: Reference trajectory of the lead vehicle in simulated platoon experiments. Each simulation consists of
three laps.

L(i,i),n =



−0.1 i = 1
−0.5 0.05

−1.2 0

0 −0.1

 i , 1
(6.45)

6.2 Results

This section illustrates the effectiveness of networked LTV dynamic watermarking on detecting
attacks on V2V communication of platooning vehicles. The experiment is implemented on a sim-
ulated platoon of four autonomous vehicles traveling three times around the looped path illustrated
in Figure 6.2. In the simulation, the vehicles have a vehicle length of 0.5m and drive according to
the non-linear dynamics defined in (5.14).

For simulations of the level 3 and 2 controllers, the platoon was tasked with maintaining a 1m
constant following distance which was chosen based on the ability of each controller to maintain
the desired distance as shown in Table 6.1. Simulations of the level 1 controller had the platoon
maintain a constant headway of 1 second.

Process and measurement noise as defined in (3.143) and (3.144) were also added at each step
n, where Σw,n = 1 × 10−6Ip, and Σzi,n = diag(1 × 10−4, 1 × 10−3) for i ∈ {2, . . . , κ}. For the lead
vehicle, the measurement noise covariance is Σz1,n = 1 × 10−3. However, for the special case
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where the distance from each vehicle to the lead vehicle di,n is treated as a measurement the value
Σz1,n = diag(1×10−4Iκ−1, 1×10−3) is used instead. While the noise added to the system is Gaussian,
the state update between time steps is done using the nonlinear dynamics in equation (5.14). This
results in a non-Gaussian distribution of the platoon state, which is meant to better approximate
the noise of a real-world system.

6.2.1 Dynamic Watermarking Setup

At each time step a watermark ei,n satisfying

Σei = 0.25,∀i ∈ {1, . . . , κ} (6.46)

was added to each vehicles input. While the watermark enables the detection of a wider range of
attacks, it also increases the noise in the system resulting in reduced performance of the controller.
This leads to a trade off between performance and making sure the watermark is sufficiently visible
in the face of other noise sources. As discussed at the beginning of the chapter, the benefit of V2V
communications in vehicle platooning stem from the reduction in following distance under a con-
stant spacing policy. Therefore, to observe the reduction in performance due to the watermark, the
mean and standard deviation of the bumper-to-bumper distances between vehicles were computed
over 20 simulations with and without the added watermark. Table 6.1 shows the results for each
level controller. Since the level 1 controller is used only after an attack is detected, we do not add
a watermark to this controller. From this comparison, we note that there is indeed a reduction in
performance resulting from the watermark as illustrated by the increased standard deviation for
both the level 3 and level 2 controller. However, even with this reduced performance, the level 3
and level 2 controller still maintain a smaller following distance than the level 1 controller.

Without watermark With watermark
Level Mean Std Mean Std

3 0.50 0.01 0.50 0.11
2 0.50 0.02 0.49 0.08
1 1.35 0.21 - -

Table 6.1: Aggregate statistics for bumper-to-bumper distance (m) using 20 un-attacked simulations for each con-
troller/watermark combination. Each simulation consists of a platoon of four vehicles following the trajectory in
Figure 6.2.

For each controller, the matrix normalization factor and the auto-correlation normalizing factor
were generated from 50 simulations using (3.178)-(3.181) and (3.182)-(3.183) respectively. To
illustrate the benefit of using the matrix normalizing factor and auto-correlation normalizing factor
of the proposed method, we provide a comparison to the LTI equivalent described in Section 3.1.
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Figure 6.3: Comparing LTV to LTI Dynamic Watermarking

We compute the matrix normalization factor and auto-correlation normalizing factor for the LTI
case as follows

V(i, j) =
1

6001

6000∑
n=0

V(i, j),n, (6.47)

G(i, j) = Ip(i, j)+qi , (6.48)

where 6001 is the number of steps in the simulation.
For measurement s(3,4) we calculate the negative log likelihood using both the LTI and LTV

normalizing factors for 20 un-attacked simulations as illustrated in Figure 6.3. While the average
negative log likelihood signal, taken over 20 simulations, is similar for both the LTI and LTV case,
the actual signal for the LTI case shows far more spiking. As a result, the threshold in the LTI case
would likely need to be set higher to avoid false alarms. However, a higher threshold reduces the
ability of the detector to identify attacks. Hence, the LTV Dynamic Watermarking is superior for
this system.

To select a robust threshold, the attack thresholds are computed to achieve a desired false alarm
rate based on a set of un-attacked trials. The false alarm rate is defined as the number of time steps
above the attack threshold divided by the total number of time steps. In this paper, 20 trials were
used to calculate the thresholds which achieved a false alarm rate of 0.5%.

To decide when to switch to the level 1 controller, we count the number of times each negative
log likelihood has exceeded its threshold in the last 40 steps. If this value exceeds 24 (60%) for
any given communication channel, the platoon switches to the level 1 controller. The values of
60% and 40 steps were chosen based on their ability to reduce the number of unnecessary switches
from false alarms while still avoiding collisions in our simulated platoon.
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Figure 6.4: (Top) Performance of the level 3 controller after a replay attack without switching to the level 1 controller
and crashing soon thereafter. (Middle) Platoon switching to level 1 controller after detecting the attack and safely
completing the entire trajectory. (Bottom) Negative log likelihood of channel which detected the replay attack first.

6.2.2 Attack Schemes

In this paper, we considered two different types of attacks, the stealthy replay attack and an ag-
gressive attack. While these attacks are not necessarily optimal, they are meant to represent two
possible approaches of an attacker: 1) to go unnoticed while the effect of the attack slowly builds
and 2) to make no attempt at remaining stealthy while trying to affect the system before a mitigation
strategy can be implemented.

For a replay attack, the measurement signals (i.e. s(i, j),n) from all or a subset of H commu-
nication channels from an un-attacked realization are recorded and then played back when the
simulation is run for a separate realization. Since an attack need not start at the beginning, we
chose to start the attack 100s after the start of the simulation. The replayed measurements included
the distance between vehicles and the velocity of each vehicle in a platoon.

For the aggressive attack, we aimed to cause a collision as quickly as possible. To generate
the attack, the communication channel from vehicle 1 to vehicle 2 (i.e. s(2,1),n) is hacked and the
velocity measurement is set to zero. The attack leads vehicle 2 to believe the lead vehicle is braking
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Figure 6.5: (Top) Performance of the level 2 controller after an aggressive attack without switching to the level 1
controller and crashing soon thereafter. (Middle) Platoon switching to level 1 controller after detecting the attack and
safely completing the entire trajectory. (Bottom) Negative log likelihood of channel which detected the replay attack
first.

and so brakes as well. This results in vehicle 3, which receives the unaltered measurement from the
lead vehicle, to crash into vehicle 2. While this attack scheme is overt, it only requires intercepting
a single communication channel and, if not mitigated quickly, results in a crash. As with the replay
attack, we start this attack 100s after the start of the simulation.

6.2.3 Simulation Results

To demonstrate the proposed detection algorithm, simulations were run for the level 2 and 3 control
methods following Algorithm 1 with an attack scheme as described in Section 6.2.2. After an
attack was detected as described in Section 6.2.1, the simulation was split into two concurrent
simulations of the platoon, one in which the platoon degrades to the level 1 controller and one
in which the platoon does not. For the simulation, a crash was defined as the bumper-to-bumper
distance between any two vehicles reaching 0 m.

For the simulations presented here, the replay attack involved attacking all communication
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Figure 6.6: (Top) Performance of the level 3 controller after an aggressive attack without switching to the level 1
controller. However, it completes the trajectory without crashing. (Middle) Platoon switching to level 1 controller
after detecting the attack and completing the entire trajectory. (Bottom) Negative log likelihood of channel which
detected the replay attack first.

channels between vehicles. However, even for simulations where a subset of channels were replay
attacked, the attack was detected in the corresponding channels and the controller was successfully
able to degrade. This is important because even attacking a subset of communication channels can
result in a crash and so being able to detect this in a timely manner is crucial. In all cases, the attack
was detected before any crash allowing the platoon to gracefully degrade to the level 1 controller.

For the level 3 controller, we see the effects of the replay attack in Figure 6.4. Even though
the replay attack is subtle in operation, it is still able to cause a crash if the platoon does not
degrade control schemes. However, the level 3 controller appears resilient to the aggressive attack
as illustrated in Figure 6.6. This is likely because the level 3 controller has a higher weighting on
maintaining constant distance than velocity according to the controller gain in (6.24).

In contrast, the level 2 controller appears to be more susceptible to the aggressive attack. In
Figure 6.5, the performance of the level 2 controller worsens drastically under the aggressive attack
as vehicle 2 brakes and almost immediately collides with vehicle 3 as a result. However, the level
2 controller is more resilient to the replay attack, as seen in Figure 6.7. This is likely because the
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Figure 6.7: (Top) Performance of the level 2 controller after a replay attack without switching to the level 1 controller.
However, it completes the trajectory without crashing. (Middle) Platoon switching to level 1 controller after detecting
the attack and completing the entire trajectory. (Bottom) Negative log likelihood of channel which detected the replay
attack first.

level 2 controller relies mainly on states that are measured directly.

6.2.4 Scaling the Platoon Size

To highlight the effect of scaling up the platoon size, we ran the same simulated experiments on
a platoon of ten autonomous vehicles. In each realization, the platoon was subject to one of three
possible attacks for both level 3 and 2 controllers: a replay attack on 30% of communication
channels, a replay attack on 100% of channels, and an aggressive attack (as described in Section
6.2.2). For each realization, the time of attack was randomly sampled from a range of [100, 200]s
and the subset of communication channels attacked are randomly selected to avoid any bias from
the trajectory or specific communication channels.

For each controller, the matrix normalization factor and the auto-correlation normalizing factor
were generated from 100 un-attacked realizations. Attack thresholds are computed on 500 un-
attacked realizations for a rate of false alarm of 0.1%. The platoon switches to the level 1 control
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strategy when the negative log likelihood exceeds the attack threshold for 18 steps in the last 40
steps (45%) for any communication channel.

The results of comparing LTI vs LTV Dynamic Watermarking for the level 3 and level 2 con-
trollers are shown in Tables 6.2 and 6.3 respectively. The results are shown for replay attack 1/

replay attack 2/ aggressive attack.
From Tables 6.2 and 6.3, potential crashes represent the number of realizations which would

crash when not running the dynamic watermarking attack detection. Looking at the potential
crashes, we see that the level 3 controller is more robust to aggressive attacks whereas the level 2
controller is more robust to replay attacks.

Actual crashes represent the number of realizations which crashed while running the LTI or
LTV dynamic watermarking algorithm. These crashes result from the effect of the attack on the
platoon remaining below the user-defined threshold for detection. Selecting different user-defined
parameters can reduce the number of actual crashes with the trade off of potentially higher number
of false alarms.

It is worth noting that for the level 3 controller, one replay attack 1 realization using the LTI
attack detection scheme and one realization using the LTV scheme were not determined successful
detections, false alarms, or crashes. Upon further investigation, we concluded that the platoon
performance was not affected by the attack in those realizations and so the dynamic watermark
algorithm was not able to successfully detect the attack. A similar conclusion was made, looking
at replay attack 1 for the level 2 controller, for 17 and 35 realizations using the LTI and LTV attack
detection schemes respectively, where the replay attack did not deteriorate the performance of the
platoon significantly and so there were no crashes and no successful detection. These statistics
are recorded in Tables 6.2 and 6.3 as no attack detected and no crash caused. Selecting different
user-defined parameters may improve the detection rate for these realizations.

When comparing the LTV dynamic watermarking algorithm to the LTI version, we see that the
LTV attack detection scheme has a greater number of successful attack detections and lesser num-
ber of false alarms while maintaining a similar number of crashes. This difference in performance
is highlighted in Table 6.2, where successful attack detection using LTI dynamic watermarking is
approximately 75% whereas using LTV dynamic watermarking, we achieve approximately 95%.
Increasing the user-defined thresholds for the LTI attack detection scheme led to a marginal de-
crease in number of false alarms at the cost of a substantial increase in number of crashes. Hence,
the LTV dynamic watermarking is superior for this system.
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Algorithm 1: Longitudinal Control for Vehicle i
set cntrl lvl=3 (resp. 2);
set x̂i,0 = 0pi;
set n = 0;
set Hi using (6.23) (resp. (6.29)) and (3.140);
Loop

for j ∈ Hi do
get s(i, j),n;
set detect(i, j),n = 0;
if n > ρ(i, j) and cntrl lvl,1 then

set V(i, j),n = V̄(i, j),hi(n);
set r̄(i, j),n using (3.165);

end
if n > ρ(i, j) + `(i, j) then

set G(i, j),n = Ḡ(i, j),hi(n);
set L(i, j),n using (3.166), (3.169), and (3.171);
if L(i, j),n > Threshold(i, j) then

set detect(i, j),n=1;
end
if (

∑n
k=n−39 detect(i, j),n) > 24 then

set cntrl lvl=1;
reformat x̂i,n

end
end

end
find hi(n) from high res. trajectory;
set {v̄ j,n, v̄d

j,n} = {v j,hi(n), v
d
j,hi(n)};

if cntrl lvl=3 (resp. 2) then
set Mi,n,Ki,n using (6.27),(6.24) (resp. (6.34),(6.32));
for j ∈ Hi do

set L(i, j),n using (6.26) (resp. (6.35)-(6.38));
end
sample ei,n;
set ui,n = Ki,n x̂i,n + ei,n + ūi,n;

else
set Mi,n, L(i,i),n, Ki,n using (6.44),(6.45),(6.42);
set ui,n = Ki,n x̂i,n + ūi,n;

end
set x̂i,n+1 using (D3);
send ui,n;
set n = n + 1;

EndLoop
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LTI LTV
Successful detections 1513/1494/1530 1903/1876/1913

False alarms 482/470/470 88/78/87
Potential crashes 1099/1997/24
Actual crashes 4/36/0 8/46/0

No attack detected
1/0/0 1/0/0

and no crash caused
Mean detection

2.771/2.823/0.905 2.701/2.587/0.957
time (s)

Standard deviation
3.118/3.125/0.041 3.812/3.576/0.363

detection time (s)

Table 6.2: Attack detection statistics for 2000 trials of level 3 controller.

LTI LTV
Successful detections 1880/1902/1968 1944/1987/1982

False alarms 103/98/32 21/13/18
Potential crashes 3/4/2000
Actual crashes 0/0/0 0/0/0

No attack detected
17/0/0 35/0/0

and no crash caused
Mean detection

2.193/0.907/1.099 1.925/0.901/0.899
time (s)

Standard deviation
10.221/0.075/0.031 9.003/0.077/0.022

detection time (s)

Table 6.3: Attack detection statistics for 2000 trials of level 2 controller.
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Chapter 7

Conclusions and Future Directions

In this final chapter we start by revisiting the contributions of this dissertation in Section 7.1.
Then we discuss potential areas of future research in Section 7.2. Finally, we provide our final
concluding remarks in Section 7.3.

7.1 Discussion of Contributions

Dynamic watermarking, as defined in this dissertation, is shown to detect cyber-attacks that alter
measurements in a variety of ITS applications. Moreover, dynamic watermarking is proven to
detect attack models that previous detection algorithms cannot. In doing so, dynamic watermarking
can enable safe and equitable ITSs by alerting the system to the presence of an attack and allowing
mitigation strategies to be implemented in a timely manner. The particular contributions of this
dissertation that facilitate the application of dynamic watermarking are organized by chapter as
follows.

Chapter 3: Dynamic Watermarking This chapter lays the ground work for the remainder of
the dissertation by deriving multiple forms of dynamic watermarking each with their own particu-
lar use cases. Namely, dynamic watermarking is derived for both LTI and LTV systems [22], [95],
[96] and a method for extending dynamic watermarking to distributed control systems is described
[85], [100]. In each case, we outline a generic model with necessary assumptions. Then, we pro-
vide limit-based tests that are guaranteed to detect a wide range of attack models. The limit based
tests are then used to develop implementable statistical tests. Furthermore, we demonstrate the im-
portance of using a sufficiently accurate model and corresponding form of dynamic watermarking
by illustrating the potential adverse effects.
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Chapter 4: Tools for Selecting User-Defined Parameter In this chapter, we discuss the process
of selecting user-defined parameters and provide tools to enable informed decision making. When
selecting parameters such as the threshold τ, window size `, and watermark covariance Σe, one may
wish to minimize the rate at which false alarms occur, constrain the effect an attacker can have
while going unnoticed, and ensure that particular forms of attack will be detected. We address
each of these goals by discussing methods for estimating the rate of false alarms and attackers
capability. Moreover we evaluate the real-world ability of LTI dynamic watermarking and several
other detection algorithms to detect several attack models.

Chapter 5: Single Autonomous Vehicle Applications In Chapter 5, we focus on detecting
cyber-attacks on a single autonomous vehicle [95]. We provide a proof of concept for LTV dynamic
watermarking using both a high-fidelity vehicle model in CarSimand a 1/10 scale autonomous
rover. In each case, a replay attack is implemented in the middle of a trajectory following task, and
LTV Dynamic Watermarking is shown to quickly detect the attack in a repeatable fashion. This
contribution is particularly important since all previous dynamic watermarking approaches were
limited to LTI systems which, as noted in Chapter 3, are insufficient for enabling reliable detection
of attacks.

Chapter 6: Autonomous Platoon Applications In Chapter 5, we focus on detecting cyber-
attacks on a platoon of autonomous vehicles that utilize V2V communications [100]. In particular,
we introduced 3 levels of V2V communication and defined corresponding longitudinal controllers
two of which leveraged the extra information for feedback control while the third does not rely on
any V2V communication and was used as a mitigation strategy in the event of an attack. Compared
to LTI distributed dynamic watermarking, we showed that LTV distributed dynamic watermarking
is superior in that it provides a more consistent test metric. We described two different attack
schemes, one stealthy and one aggressive, and showed that our algorithm could detect both types
of attack while utilizing each controller and successfully degrading to a safe control strategy before
a crash can occur.

7.2 Future Research Directions

Despite the advances described in this dissertation, several gaps remain. We discuss some of the
gaps here.
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7.2.1 Linearization Gap

Although in Section 3.1 and Section 3.2 we provide guarantees of detection for LTI and LTV
systems respectively, the true dynamics of many systems of interest are in fact non-linear. As a
result, these guarantees of detection may not hold for the real-world system. Some extensions to
simple non-linear systems have been proposed [81], [87], [88]. However, it is unclear if the existing
approaches can be extended to more complex models such as CAVs under real-world conditions.
Ideally, we could apply dynamic watermarking to any non-linear model or an arbitrarily close
approximation. Then provide a similar guarantee of detection or, in the case of an approximate
model, a bound on the attackers ability given the approximation gap.

7.2.2 Attack Identification

CAVs and other CPS rely on a variety of measurement sources. As such, an attacker may only
be able to alter a subset of the measurements corresponding to a particular source. The ability
of a detection algorithm to identify which source or sources have been compromised can allow
for the attack to be mitigated. For example, CAVs have many measurements are redundant or
can be approximated using other measurements. This could allow a CAV to operate even when
under attack by disregarding measurements that are deemed untrustworthy. Likely, the solution
to identifying attacked measurement sources will be to isolate each source’s effect and test them
individually similarly to what is done in the distributed control case.

7.2.3 Guarantees for Distributed Control

The extension of dynamic watermarking to distributed control systems described in Section 3.3
provides a means of applying the statistical tests of both LTI and LTV dynamic watermarking in
applications with distributed control. However, the guarantees of detection can not be trivially
extended. To the best of our knowledge, the only guarantees provided for dynamic watermarking
applied to distributed control systems are provided by Ko et al. [87] in which they apply non-linear
dynamic watermarking to a platoon of vehicles. Nevertheless, they make several simplifying as-
sumptions that make it unclear if their method can be extended beyond simplistic vehicle models.
Ideally, similar guarantee’s of detection could be applied to any distributed control system regard-
less of the underlying model.

7.2.4 Confidence in Detection

Instead of simply providing a binary classification of whether or not an attack is occurring, a
measure of confidence in the classification could enable more informed decisions. Namely, one
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might consider a mitigation strategy that enacts increasingly impactful actions corresponding to
the confidence of a given detection. Such a strategy would likely reduce the adverse effect of false
alarms while also reacting quickly to aggressive attacks. Due to the statistical nature of the tests
described in this dissertation, providing a confidence measure may be relatively straightforward.
However, to the best of our knowledge, no existing literature examines the effectiveness of using a
confidence measure with dynamic watermarking.

7.3 Concluding Remarks

In the last several years, cyber attacks have become increasingly prevalent in all facets of tech-
nology. ITS are no exception. Moreover, future ITS aim to increase the reliance on networked
communications in transportation thus exacerbating the potential effects of a cyber attack. The at-
tack detection algorithm, dynamic watermarking, outlined in this dissertation can be used to detect
cyber-attacks that alter the content of measurement channels. Namely, this dissertation develops
dynamic watermarking for LTI and LTV system models both in classical and distributed control
applications. As a result, dynamic watermarking can be applied to a wide range of ITS and, when
paired with an appropriate mitigation strategy, ensures safe and equitable operation.

While this work focuses on detecting attacks on ITS, the applications of dynamic watermarking
are vast. For example, other large CPS, such as power and water infrastructure, share many com-
monalities with ITS and would also benefit from this work. Furthermore, dynamic watermarking
has the potential to collaborate with the related field of anomaly detection. In particular, dynamic
watermarking uses sophisticated statistical tests that can improve existing anomaly detection meth-
ods while also enabling the detection of cyber attacks. In return, literature in anomaly detection
provides a general framework for identifying the source of a given anomaly. This framework can
potentially enable dynamic watermarking to identify the source of an attack or to discern the dif-
ference between a faulty sensor and an attack. With the addition of such functionality, and those
outlined in the future research directions, dynamic watermarking is capable of ensuring safe and
equitable operation of both ITS and other future CPS.

124



Bibliography

[1] T. Reed, “Inrix global traffic scorecard,” 2019.

[2] D. Ellis and B. Glover, “2019 urban mobility report,” 2019.

[3] M. Barth and K. Boriboonsomsin, “Real-World Carbon Dioxide Impacts of Traffic Con-
gestion,” Transportation Research Record, vol. 2058, no. 1, pp. 163–171, 2008.

[4] NHTSA, Traffic safety facts annual report, updated: June 30, 2020, 2020.

[5] X. Huang, D. Zhao, and H. Peng, “Empirical Study of DSRC Performance Based on Safety
Pilot Model Deployment Data,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 10, pp. 2619–2628, 2017.

[6] K. N. Balke, M. Lukuc, B. T. Kuhn, M. W. Burris, J. Zmud, A. Morgan, R. G. Dowling, G.
Morrison, R. Marsters, and T. Szymkowski, “Connected vehicle pilot deployment program
independent evaluation: Comprehensive evaluation plan—new york city,” United States.
Department of Transportation. Intelligent Transportation Systems Joint Program Office,
Tech. Rep., 2019.

[7] ——, “Connected vehicle pilot deployment program independent evaluation: Compre-
hensive evaluation plan—tampa,” United States. Department of Transportation. Intelligent
Transportation Systems Joint Program Office, Tech. Rep., 2019.

[8] ——, “Connected vehicle pilot deployment program independent evaluation: Comprehen-
sive evaluation plan—wyoming,” United States. Department of Transportation. Intelligent
Transportation Systems Joint Program Office, Tech. Rep., 2019.

[9] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security & Privacy,
vol. 9, no. 3, pp. 49–51, 2011.

[10] M. Abrams and J. Weiss, “Malicious control system cyber security attack case study -
Maroochy water services, australia,” MITRE, 2008.

[11] R. M. Lee, M. J. Assante, and T. Conway, “German steel mill cyber attack,” Industrial

Control Systems, vol. 30, p. 62, 2014.

125

https://journals.sagepub.com/doi/10.3141/2058-20
https://journals.sagepub.com/doi/10.3141/2058-20
https://ieeexplore.ieee.org/abstract/document/7837693
https://ieeexplore.ieee.org/abstract/document/7837693
https://ieeexplore.ieee.org/document/5772960
https://www.mitre.org/publications/technical-papers/malicious-control-system-cyber-security-attack-case-study-maroochy-water-services-australia
https://www.mitre.org/publications/technical-papers/malicious-control-system-cyber-security-attack-case-study-maroochy-water-services-australia
https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf


[12] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack on the ukrainian
power grid,” Electricity Information Sharing and Analysis Center (E-ISAC), 2016.

[13] H. Sandberg, S. Amin, and K. H. Johansson, “Cyberphysical security in networked control
systems: An introduction to the issue,” IEEE Control Systems Magazine, vol. 35, no. 1,
pp. 20–23, 2015.

[14] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the security of con-
trol systems,” in Proceedings of the 3rd Conference on Hot Topics in Security, ser. HOT-
SEC’08, USENIX Association, 2008, pp. 1–6.

[15] M. Gerla and P. Reiher, “Securing the Future Autonomous Vehicle: A Cyber-Physical Sys-
tems Approach,” in Securing Cyber-Physical Systems, CRC Press, 2015, ch. 7, pp. 197–
220.

[16] D. Dominic, S. Chhawri, R. M. Eustice, D. Ma, and A. Weimerskirch, “Risk Assessment
for Cooperative Automated Driving,” in Proceedings of the 2nd ACM Workshop on Cyber-

Physical Systems Security and Privacy - CPS-SPC ’16, 2016, pp. 47–58.

[17] M. Amoozadeh, A. Raghuramu, C. N. Chuah, D. Ghosal, H. Michael Zhang, J. Rowe,
and K. Levitt, “Security Vulnerabilities of Connected Vehicle Streams and Their Impact
on Cooperative Driving,” IEEE Communications Magazine, vol. 53, no. 6, pp. 126–132,
2015.

[18] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting Integrity Attacks on SCADA Sys-
tems,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1396–1407,
Jul. 2014.

[19] M. A. Rahman, E. Al-Shaer, and R. B. Bobba, “Moving Target Defense for Hardening the
Security of the Power System State Estimation,” in Proceedings of the First ACM Workshop

on Moving Target Defense, ser. MTD ’14, New York, NY, USA: ACM, 2014, pp. 59–68.

[20] J. Tian, R. Tan, X. Guan, and T. Liu, “Hidden Moving Target Defense in Smart Grids,”
in Proceedings of the 2nd Workshop on Cyber-Physical Security and Resilience in Smart

Grids, ser. CPSR-SG’17, New York, NY, USA: ACM, 2017, pp. 21–26.

[21] J. Zhao, G. Zhang, Z. Y. Dong, and K. P. Wong, “Forecasting-aided imperfect false data
injection attacks against power system nonlinear state estimation,” IEEE Transactions on

Smart Grid, vol. 7, no. 1, pp. 6–8, 2016.

[22] P. Hespanhol, M. Porter, R. Vasudevan, and A. Aswani, “Dynamic watermarking for gen-
eral LTI systems,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
IEEE, 2017, pp. 1834–1839.

126

https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ieeexplore.ieee.org/document/7011179
https://ieeexplore.ieee.org/document/7011179
https://dl.acm.org/doi/abs/10.5555/1496671.1496677
https://dl.acm.org/doi/abs/10.5555/1496671.1496677
https://www.taylorfrancis.com/chapters/edit/10.1201/b19311-12/securing-future-autonomous-vehicle-cyber-physical-systems-approach-mario-gerla-peter-reiher
https://www.taylorfrancis.com/chapters/edit/10.1201/b19311-12/securing-future-autonomous-vehicle-cyber-physical-systems-approach-mario-gerla-peter-reiher
https://dl.acm.org/doi/abs/10.1145/2994487.2994499
https://dl.acm.org/doi/abs/10.1145/2994487.2994499
https://ieeexplore.ieee.org/document/7120028
https://ieeexplore.ieee.org/document/7120028
https://ieeexplore.ieee.org/document/6612700
https://ieeexplore.ieee.org/document/6612700
https://dl.acm.org/doi/abs/10.1145/2663474.2663482
https://dl.acm.org/doi/abs/10.1145/2663474.2663482
https://dl.acm.org/doi/abs/10.1145/3055386.3055388
https://ieeexplore.ieee.org/abstract/document/7307227
https://ieeexplore.ieee.org/abstract/document/7307227
https://ieeexplore.ieee.org/document/8263914
https://ieeexplore.ieee.org/document/8263914


[23] A. Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me in It,” Wired,
2015.

[24] ——, “Hackers Cut a Corvette’s Brakes Via a Common Car Gadget,” Wired, 2015.

[25] T. E. Humphreys, B. M. Ledvina, V. Tech, M. L. Psiaki, B. W. O. Hanlon, and P. M. Kint-
ner, “Assessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer,”
in Proceedings of the 21st International Technical Meeting of the Satellite Division of The

Institute of Navigation, 2008, pp. 2314–2325.

[26] A. Rawnsley, “Iran’s Alleged Drone Hack: Tough, but Possible,” Wired, 2011.

[27] D. Hambling, “Ships fooled in GPS spoofing attack suggest Russian cyberweapon,” Wired,
2017.

[28] D. Goward, “Chinese GPS spoofing circles could hide Iran oil shipments,” GPS World,
2019.

[29] M. Burgess, “To protect Putin, Russia is spoofing GPS signals on a Massive scale,” Wired,
2019.

[30] M. L. Psiaki and T. E. Humphreys, “GNSS Spoofing and Detection,” Proceedings of the

IEEE, vol. 104, no. 6, pp. 1258–1270, 2016.

[31] P. Y. Montgomery, T. E. Humphreys, and B. M. Ledvina, “Receiver-autonomous spoofing
detection: Experimental results of a multi-antenna receiver defense against a portable civil
GPS spoofer,” in Proceedings of the 2009 International Technical Meeting of The Institute

of Navigation, 2009, pp. 124–130.

[32] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned Aircraft Capture
and Control Via GPS Spoofing,” Journal of Field Robotics, vol. 31, no. 4, pp. 617–636,
2014.

[33] J. Bhatti and T. E. Humphreys, “Hostile Control of Ships via False GPS Signals: Demon-
stration and Detection,” Navigation, vol. 64, no. 1, pp. 51–66, 2017.

[34] A. Konovaltsev, M. Cuntz, C. Hättich, and M. Meurer, “Autonomous Spoofing Detection
and Mitigation in a GNSS Receiver with an Adaptive Antenna Array,” The Institute of
Navigation, 2013.

[35] M. Psiaki and T. Humphreys, “Civilian GNSS Spoofing, Detection, and Recovery,” in Po-

sition, Navigation, and Timing Technologies in the 21st Century. John Wiley & Sons, Ltd,
2020, ch. 25, pp. 655–680.

[36] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on Automated Vehicles
Sensors: Experiments on Camera and Lidar,” Black Hat Europe, 2015.

127

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/08/hackers-cut-corvettes-brakes-via-common-car-gadget/
https://www.ion.org/publications/abstract.cfm?articleID=8132
https://www.wired.com/2011/12/iran-drone-hack-gps/
https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-russian-cyberweapon/
https://www.gpsworld.com/chinese-gps-spoofing-circles-could-hide-iran-oil-shipments/
https://www.wired.co.uk/article/russia-gps-spoofing
https://ieeexplore.ieee.org/abstract/document/7445815
https://www.ion.org/publications/abstract.cfm?articleID=8295
https://www.ion.org/publications/abstract.cfm?articleID=8295
https://www.ion.org/publications/abstract.cfm?articleID=8295
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21513
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21513
https://www.ion.org/publications/abstract.cfm?articleID=102703
https://www.ion.org/publications/abstract.cfm?articleID=102703
https://www.semanticscholar.org/paper/Autonomous-Spoofing-Detection-and-Mitigation-in-a-Konovaltsev-Cuntz/322e9704834176138a6d19698b7be221f66cbbd6
https://www.semanticscholar.org/paper/Autonomous-Spoofing-Detection-and-Mitigation-in-a-Konovaltsev-Cuntz/322e9704834176138a6d19698b7be221f66cbbd6
https://ieeexplore.ieee.org/document/9305038
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf


[37] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,
and D. Song, “Robust Physical-World Attacks on Deep Learning Visual Classification,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[38] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M.
Mao, “Adversarial Sensor Attack on LiDAR-based Perception in Autonomous Driving,”
in Proceedings of the 26th ACM Conference on Computer and Communications Security

(CCS’19), London, UK, 2019.

[39] “IEEE Standard for Information technology– Local and metropolitan area networks– Spe-
cific requirements– Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,”
IEEE Std 802.11p-2010, pp. 1–51, 2010.

[40] “Evolved universal terrestrial radio access (e-UTRA) and evolved universal terrestrial radio
access network (e-UTRAN); overall description; stage 2 (release 14),” 3GPP TS 36.300,
2016.

[41] “IEEE Guide for Wireless Access in Vehicular Environments (WAVE) Architecture,” IEEE

Std 1609.0-2019, pp. 1–106, 2019.

[42] “IEEE Standard for Wireless Access in Vehicular Environments–Security Services for Ap-
plications and Management Messages,” IEEE Std 1609.2-2016, pp. 1–240, 2016.

[43] T. Fei and W. Wang, “LTE Is Vulnerable: Implementing Identity Spoofing and Denial-
of-Service Attacks in LTE Networks,” in 2019 IEEE Global Communications Conference

(GLOBECOM), 2019, pp. 1–6.

[44] M. Muhammad and G. A. Safdar, “Survey on existing authentication issues for cellular-
assisted V2X communication,” Vehicular Communications, vol. 12, pp. 50–65, 2018.

[45] A. A. Cárdenas, S. Amin, and S. Sastry, “Secure Control: Towards Survivable Cyber-
Physical Systems,” in The 28th International Conference on Distributed Computing Sys-

tems Workshops, Jun. 2008, pp. 495–500.

[46] S. Amin, A. A. Cárdenas, and S. Sastry, “Safe and Secure Networked Control Systems
under Denial-of-Service Attacks,” in International Workshop on Hybrid Systems: Compu-

tation and Control, Berlin, Heidelberg: Springer, 2009, pp. 31–45.

[47] Y. Liu, P. Ning, and M. K. Reiter, “False Data Injection Attacks Against State Estimation in
Electric Power Grids,” ACM Transactions on Information and System Security (TISSEC),
vol. 14, no. 1, 13:1–13:33, 2011.

128

https://ieeexplore.ieee.org/document/8578273
https://dl.acm.org/doi/abs/10.1145/3319535.3339815
https://ieeexplore.ieee.org/document/5514475
https://ieeexplore.ieee.org/document/5514475
https://ieeexplore.ieee.org/document/5514475
https://ieeexplore.ieee.org/document/8686445
https://ieeexplore.ieee.org/document/7426684
https://ieeexplore.ieee.org/document/7426684
https://ieeexplore.ieee.org/document/9013397
https://ieeexplore.ieee.org/document/9013397
https://www.sciencedirect.com/science/article/pii/S2214209617302267
https://www.sciencedirect.com/science/article/pii/S2214209617302267
https://ieeexplore.ieee.org/document/4577833
https://ieeexplore.ieee.org/document/4577833
https://link.springer.com/chapter/10.1007/978-3-642-00602-9_3
https://link.springer.com/chapter/10.1007/978-3-642-00602-9_3
https://dl.acm.org/doi/abs/10.1145/1952982.1952995
https://dl.acm.org/doi/abs/10.1145/1952982.1952995
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