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ABSTRACT

In this dissertation, we focus on revenue management practices in the settings where the
traditional assumptions are challenged because of the rise of social technologies in the
new age. We develop theoretically sound and practical policies (pricing, inventory, and
information signals) when the firm faces uncertainty, dependency and non-stationarity in
market demand. We also provide effective insights into the firm’s decision making.

The first part of the dissertation is motivated by the challenges of decision making
for a new product. We study the interplay between pricing and learning for a monopolist
whose objective is to maximize the expected revenue of a new product over a finite time
horizon. We consider a setting where a firm can learn by observing sales data at (different)
prices over time. Its customers are not forward-looking. To capture the adoption process
with demand learning, we develop a continuous-time Markovian Bass model where the
adoption rate depends on the selling price and on the past sales. We first show that the
revenue loss from a wrong initial demand estimation can grow proportionally in time and
can be significant. We then show that a firm can apply real-time demand data to update
the demand parameters and optimize the price accordingly. We formulate the problem
as a stochastic optimal control problem where the demand parameters are updated by
maximum likelihood estimators, then derive the optimal pricing policy and its properties.
Since the exact optimal policy is difficult to implement for problems in practical scale,
we propose two simple and computationally tractable pricing policies that are provably
near-optimal. Our framework is sufficiently flexible to be applied to real-time control
optimization and parameter learning with general network effect in demand process.

In the second part of the dissertation, we consider a setting when underlying demand
is uncertain and follows a complex stochastic process, which makes pricing problems dif-
ficult to solve. In such cases, certainty equivalent (CE) policies, based on solving the
deterministic relaxation of a stochastic pricing problem, can be used as practical alterna-
tives. CE policies have lighter computational and informational requirements compared
to solving the problem to optimality. This is particularly true when the firm does not
have complete information about the underlying demand distribution.
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While the effectiveness of CE pricing policies has been theoretically studied in some
settings (e.g, independent demand), the performance of CE policies are not known in
general settings. This paper analyzes the performance of CE policies in a pricing problem
(for a given inventory level) where future demand depends on sales and inventory and the
firm has limited opportunities to change price. We show that CE policies are asymptoti-
cally optimal: as the problem scale (denoted by m) becomes large, the percentage regret
decreases at the rate of Θ(1/

√
m). We also extend the result to the joint pricing and

(initial) inventory problem. Our numerical results are even more promising. Even in non-
asymptotic settings (small scaling factor and a few price changes), CE policies perform
well and often result in revenues that are only a few percentage points lower than optimal.

The third part of the dissertation is an on-going project which studies the cooperated
relationship between a seller and an social influencer where the influencer has a revenue-
sharing contract with the seller (so that their incentives are aligned). We study the
following questions: (i) for the seller, how to compensate the influencer? (ii) Who is the
ideal influencer to post about a given product? (iii) What attributes of an influencer
make her more or less valuable to a company? The customers are assumed to be Bayesian
learners so they can infer the state of the product from available information.

ix



CHAPTER I

Introduction

Traditional models in revenue management commonly have three simplifying assump-
tions: (i) the firm has a large certainty about the product demand model; (ii) customers
are isolated entities that independently make their decisions; and (iii) the firm has the
ability to continuously change the price so that each customers can receive different prices.
In this dissertation, we focus on revenue management practices in the settings where the
previous three assumptions are challenged because of the rise of social technologies in
the new age. We develop theoretically sound policies (pricing, inventory, and informa-
tion signals) when the firm faces uncertainty, dependency and non-stationarity in market
demand. We also provides effective insights into the firm’s decision making.

The second chapter is devoted to the demand learning and pricing problem for a new
product. Decisions regarding new products are often difficult to make, and mistakes
can have grave consequences to a firm’s bottom line. However, firms often have little
foresight on important information about new product demand such as the potential
market size, the rate of customers’ adoption, and their willingness to pay. One of the
most popular frameworks that have been used for modeling new product adoption is the
Bass model (Bass , 1969). While the original Bass model and its many variants are useful
to understand the factors and decisions affecting new product adoptions over time, the
vast majority of these models require a priori knowledge of key parameters, which can
only be estimated with historical data or guessed based on institutional knowledge.

As is found by Bass (1969), there exist significant dependency and non-stationary
(e.g., word-of-mouth effects) in new product adoption processes. Therefore, the current
price not only affects the current revenue, but also the number of adopters who can
influence sales for the product in future periods. In addition to the dynamics of current
price and future demand, pricing decisions (initial price and subsequential price changes)
for a new product are challenging due to the limited sales data available. Due to the lack
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of historic data, it is difficult to estimate how the future demand will respond to a price
change. Therefore, any tool that enables a firm to enhance its capability in forecasting
and pricing of new products will be highly valuable.

In this chapter, we study the interplay between pricing and learning for a monopo-
list whose objective is to maximize the expected revenue of a new product over a finite
time horizon. We consider a setting where a firm can learn by observing sales data at
(different) prices over time. To capture the adoption process with demand learning, we
develop a continuous-time Markovian Bass model where adoption rate depends on a sell-
ing price and on the past sales. We first show that the loss from a wrong initial demand
estimation can grow proportionally in time and can be significant. We then show that a
firm can apply real-time demand data to update the parameter and optimize the price
accordingly. We formulate the problem as a stochastic optimal control problem where
the demand parameters are updated by maximum likelihood estimators, then derive the
optimal pricing policy and its properties. Since the exact optimal policy is difficult to
implement for problems in practical scale, we propose two simple and computationally
tractable pricing policies (continuous price change and limited number of price changes)
that are provably near-optimal. Our framework is also sufficiently flexible to be applied
to real-time control optimization and parameter learning with general network effect in
demand process.

The third chapter is motivated by the difficulty of designing (dynamic) pricing policies
when demand is uncertain and depends on factors that can change over time. For example,
when future demand is driven by a network effect, then demand depends on cumulative
sales. When inventory availability has a negative or positive effect on future demand
(known as scarcity or display effects), then demand is affected by the state (e.g., inventory
level) of the dynamical system. In order to determine the optimal prices in such settings,
the seller must know the distribution of future demand. However, when demand is a
complex and state-varying stochastic process, the seller may not have complete demand
information. In many settings, the seller’s best available information is the estimate of
the average demand in future periods. Indeed, estimating conditional means from data
uses standard statistical methodologies (relying on strong results like the law of large
numbers), whereas estimating an entire distribution requires a much larger data set and
more sophisticated approaches.

In this chapter, we study a periodic-review1 pricing problem over a finite horizon and
1Periodic review means that prices can only be changed at the start of each period. While a continuous

review of pricing is ubiquitous in analytical models of dynamic pricing, periodic pricing changes are often
more appropriate in reality (Yang and Zhang , 2014; Bitran and Mondschein, 1997). Indeed, periodic
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with finite inventory when the demand distribution is state-varying. The key features
that distinguish our demand model from others in the dynamic pricing literature are that
we assume that the future demand and its distribution are state-dependent (where the
state variables in our setting are the total past sales and the current inventory level)
and that the seller only has limited information about the demand distribution. When
demand is state-dependent, a pricing mistake not only reduces the current period revenue,
but also changes future demand since the mistake affects cumulative sales and available
inventory. Thus, price in one period has a lingering effect on future demand. Furthermore,
when there is a limited number of opportunities to change price, the price chosen at each
period has persistent implications beyond the current period. Lack of knowledge about
the demand distribution makes the pricing decision more difficult and nonoptimal pricing
more consequential.

We study a class of pricing policies called certainty equivalent (CE) pricing policies.
Certainty equivalent pricing policies are commonly used when the seller has access to the
expected demand rather than the entire distribution. Specifically, these policies rely on
solving the deterministic counterparts of the stochastic problem by replacing all random
variables with their expected values. An “open-loop” CE policy (CE-OL) implements the
optimal price sequence of the deterministic model. Although actual prices of this policy
can change during a sales season, they are static in the sense that the deterministic
problem is solved once to obtain the price schedule for the entire season. In contrast, a
“closed-loop” CE policy (CE-CL) re-optimizes the deterministic model on a rolling horizon
using current inventory information at the beginning of each period. Hence, prices are
adjusted over time based on the realizations of demands in past periods.

We show that as the scaling factor m increases, both CE pricing policies are asymp-
totically optimal with a regret rate of Θ(

√
m), when compared with the optimal policy.

However, in a non-asymptotic setting, CE-CL performs consistently better than CE-OL,
especially when the number of price change periods increases and when the conditional
expectation of demand is highly nonlinear in past cumulative sales and available inventory.
This result highlights the importance of re-optimization in the face of sales and inventory
dependent demand. We then extend our results to the case where the seller chooses ini-
tial inventory along with price in each period. We also show that when demand depends
on time, cumulative sales, and/or inventory availability, the asymptotic performance of
CE policies does not change.

In the last chapter, we depart from developing operations decisions (pricing or inven-

pricing schemes are widely observed in practice. For example, many brick-and-mortar stores update their
prices weekly as changing prices often requires changing price stickers and are costly to implement.
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tory control) that utilize demand hype, by considering the best informational signaling
strategies that creates demand hype. We propose a model where the company (a seller)
hires a social influencer at a cost. Influencer marketing — promoting products or services
through social-media influencers — has been a popular practice in recent years. Influ-
encers are individuals who share their impressions of a particular product category (such
as fashion, technology, gaming, travel) in order to shape the opinions of their followers.
They create content on social media platforms (e.g., YouTube, Instagram, and Facebook)
with active followers who consume this content. Influencers earn money through their
reputation, which includes being consistent and true to their values. Companies lever-
age these well-earned reputations in exchange for money, to target customers who follow
influencers. Companies recognize the value of influencers in spreading valuable informa-
tion about their products, particularly information that they may not be able to credibly
communicate themselves. This marketing practice allows companies to attract interest in
a product from pre-selected active customers. According to a report from Wondershare
(Brown, 2020), a platform providing video-making software, the top ten richest content
creators on YouTube earned between $10 million to $15.5 million in 2019. InfluencerDB,
a platform that collects data on influencer marketing, reports that spending on Instagram
influencers alone exceeded $5 billion in 2018 (Vardhman, 2019).

Although companies spend large sums on influencer marketing, 61% of them find it
difficult to identify effective influencers for their product campaign MediaKix (2019). An
effective influencer increases brand awareness and converts awareness into sales. Influ-
encers are typically paid by companies by a flat rate per “post”, where a post is a video,
picture, or message on a social media platform. Revenue-sharing arrangements exist but
are much rarer in practice.2 However, the value of a post is hard to assess. The following
questions are still largely unanswered:

(i) how lucrative is it for a company to work with a given influencer?
(ii) who is the ideal influencer to post about a given product?
(iii) what attributes of an influencer make her more or less valuable to a company?

This chapter develops an analytical model designed to answer these and related questions.

2Verified through personal communication with social media influencers.
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CHAPTER II

Data-driven Pricing for a New Product

II.1 Introduction

Decisions regarding new products are difficult and risky because mistakes can have
grave consequences for a firm’s bottom line. Before a product launch (or even after a
launch), firms often have little information regarding demand (such as the market size
or the speed of adoption by customers). The lack of information makes pricing a new
product very challenging.

To cope with this information deficiency, firms use several strategies to forecast the
demand for a new product. For instance, historical data of similar products could be
used to infer the new product’s demand characteristics. Alternative techniques include
forecasting based on judgment (e.g., using an expert opinion) or market research (Kahn,
2006). Yet, due to insufficient or inaccurate data, the expense of market research or
subjective biases injected by management, forecasting new product demand is prone to
errors. Such errors lead to weak market penetration (due to a market price that is too
high) or to lost potential revenue (due to a market price that is too low).

For instance, Apple released its new generation of smartphones, iPhone XS (priced
at $999), iPhone XS Max ($1,100) and iPhone XR ($749, which is the “budget” choice
to replace the previous $349 SE model) in 2018. Even though the new iPhones received
many technological improvements, many consumers found it difficult to accept a $1,100
price tag (USA TODAY , 2019). In Q1 of 2019, iPhone’s revenue declined 15 percent from
the previous year’s even though, in that same quarter, revenue for Apple’s other products
and services grew significantly (Business Wire, 2019). In an earnings call, Apple’s CEO
Tim Cook admitted that, though the weakened U.S. dollar in Q1 2019 accounted for some
of this decline, “price was a factor” for the iPhone’s weak performance since the cheapest
model (iPhone XR) was also the most popular among the new models (ZDNet , 2019).
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Another example can be found in high-end streetwear brands such as Yeezy and
Supreme. These brands release new styles or colors of sneakers sporadically. The sneakers
are usually sold for a limited time and in limited quantities. As soon as the new products
are released, celebrities, influencers and collectors start to create a buzz for some styles on
social media platforms. The resale price of these new styles can have a markup as high as
1000% compared with the original release price (BBC , 2018). Judging by the aftermarket
sales, streetwear brands can severely underestimate consumers’ valuation, inadvertently
leaving a significant portion of the revenue on the table.

These examples illustrate how hard it is to price a new product. First of all, pricing
decisions (about the initial price and subsequent price changes) for a new product are
challenging due to the limited sales data available. As a result, it is difficult to estimate
how the market will respond to a price change. Furthermore, the demand for a new
product is often influenced by how many people have bought the product so far, which
creates the word-of-mouth effect. Thus, the current selling price not only affects the
current revenue and demand, but it also influences how quickly product adoption will
occur in the future.

In this chapter, we study the interplay between demand learning and dynamic pricing
for a new product. We propose an analytical framework that captures parameter learning
while pricing during the new product adoption for a monopolistic firm. In order to model
the dynamics of demand and learning in a tractable way that is consistent with existing
literature on new product adoption, we modify the generalized Bass model (Bass et al.,
1994) to capture stochastic adoption in a Markovian Bass model. The main contribution
of this paper is outlined below.

• Markovian Bass model. Traditional stochastic adoption models that add noise to the
cumulative demand are not well-behaved when modeling new product adoption. For
instance, Brownian diffusion models violate the fact that cumulative sales must be
nondecreasing in time. To overcome this technical challenge, we propose a different way
to introduce stochasticity in an adoption process while capturing the features of the
Bass model. We model the cumulative adoption process as a continuous-time Markov
chain where the time between adoptions depends on price and cumulative sales. We
refer to this as the Markovian Bass model. We show that the Markovian Bass model
converges to the original Bass model as the market size grows. Further, we derive
the optimal pricing policy (MBP) under a Markovian Bass model when the seller has
complete information—this setting is used as a benchmark when evaluating data-driven
pricing policies.
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• Demand learning. We establish several theoretical properties of the maximum likelihood
(ML) estimators of the Markovian Bass model parameters. First, we derive sufficient
conditions for the parameters to be identifiable. Second, using Itô calculus, we derive
the stochastic differential equations that govern the dynamics of the ML estimators of
this demand model. Third, we establish the convergence properties of the estimation
error of the ML estimators. The challenge in proving the third result is that the data
on inter-adoption times is non-i.i.d., so we cannot use the standard proof techniques to
show convergence when data is i.i.d.. We circumvent this impediment and show that,
in this non-i.i.d. setting, the mean squared errors of the ML estimators are inversely
proportional to the number of adopters.

• Optimal learning and pricing policy. We formulate the seller’s pricing-and-learning
problem when the seller forms an inference about demand using MLE. Interestingly,
we show is that the MLE dynamics in this control problem has a Markov property.
This enables a state reduction for the control problem. We derive the Hamilton-Jacobi-
Bellman (HJB) equation of the control problem and characterize the optimal pricing-
and-learning policy.

• Performance guarantee for tractable pricing policies. Due to the computational chal-
lenges of computing the optimal pricing-and-learning policy, we propose two computa-
tionally efficient data-driven pricing policies. The first policy (MBP-MLE) is a tractable
approximation of the optimal MBP policy and can be used in a setting where a firm
can change the price frequently. The second policy (MBP-MLE-Limited) reflects a busi-
ness constraint that the firm can change prices a limited number of times. We provide
analytic performance bounds for both policies and show each has a worst-case regret
that is in the order of the log of the market size. We prove a fundamental lower bound
to the regret of any pricing-and-learning policy, and show that the regret of our policies
matches this limit.

II.1.1 Review of related literature

This chapter is related to the literature on new product adoption models as well
as dynamic pricing and learning. Both areas draw on a considerable body of litera-
ture from economics, marketing, and operations research. We also review the literature
on continuous-time Markov chains (CTMCs) with unknown transition rates since our
Markovian Bass model is essentially a CTMC.
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II.1.1.1 New product adoption models.

Since the seminal work by Bass (1969), numerous papers have used a Bass-like model
to explain new product adoption. In the original Bass model, sales are temporally influ-
enced by innovators (who try a product on their own) and imitators (who follow earlier
adopters). Variants of the Bass model have been used to explain the impact of compe-
tition (Krishnan et al., 2000; Savin and Terwiesch, 2005; Guseo and Mortarino, 2013)
and of overlapping generations (Norton and Bass , 1987; Bayus , 1992). Comprehensive
surveys of adoption models are provided by Mahajan et al. (1995) and Baptista (1999).
Most relevant to our work are the variants that explain the role of price in adoption, such
as the generalized Bass model introduced in Bass et al. (1994). There has been a long
tradition in marketing literature to derive the optimal pricing policies for new products
under variants of the Bass model (Robinson and Lakhani , 1975; Dolan and Jeuland , 1981;
Bass and Bultez , 1982; Kalish, 1983; Horsky , 1990; Krishnan et al., 1999). Dynamic pric-
ing under a Bass-type model has also recently gained attention in operations (Li and Huh,
2012; Shen et al., 2013; Li , 2020). However, most of these works assume deterministic
adoptions.

Raman and Chatterjee (1995) and Kamrad et al. (2005) study pricing under a stochas-
tic adoption process by adding a normally distributed noise to the Bass adoption rate.
While adding Brownian noise can leverage stochastic calculus, Brownian noise violates the
fact that cumulative sales must be non-decreasing in time. Alternatively, Böker (1987)
and Niu (2002) propose modeling adoption as a counting process, though these works
do not consider the fact that a firm can influence adoption through pricing decisions.
Our model uses a counting process as a model construct in a setting where a firm can
dynamically control price. Furthermore, none of the aforementioned works (deterministic
or stochastic) study the interplay between pricing and learning.

In both stochastic and deterministic models, a common assumption is that the firm
knows the key parameters of the demand model. These parameters include the market
size (denoted by m0), the innovation rate (p0), and the imitation rate (q0). In the case of
unknown parameters, Bass (1969) and Srinivasan and Mason (1986) propose least squares
methods to estimate these parameters, whereas Schmittlein and Mahajan (1982) suggests
using maximum likelihood estimation. However, these approaches assume that the firm
has sufficient data to build accurate estimates. Our model uses the stochastic Bass model
for pricing decisions during the product launch, hence we study how a revenue-maximizing
firm, which starts with very little demand information, can use pricing and real-time data
to better calibrate the demand parameters.
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II.1.1.2 Dynamic pricing and learning.

There is a growing literature on dynamic pricing with limited demand information
(see surveys in Araman and Caldentey 2010 and den Boer 2015a). Some papers use para-
metric approaches in demand learning. These papers assume that an underlying model
belongs to a parametric family and the unknown parameters are estimated using vari-
ous estimators. Lin (2006); Araman and Caldentey (2009); Farias and Van Roy (2010)
and Harrison et al. (2012) study Bayesian learning. Other learning methods include re-
gression (Bertsimas and Perakis , 2006) and maximum likelihood estimation (Besbes and
Zeevi , 2009; Broder and Rusmevichientong , 2012; Keskin and Zeevi , 2014; den Boer and
Zwart , 2015). On the other hand, nonparametric approaches do not impose a particu-
lar form to model underlying demand. Lim and Shanthikumar (2007); Besbes and Zeevi
(2009) and Eren and Maglaras (2010) use the worst-case analysis to develop robust poli-
cies. Kleywegt et al. (2002) use sample average approximation to approximate underlying
demand. Ferreira et al. (2015) consider a price optimization model where the demand
information is estimated with a regression tree.

Under a Markovian Bass model, the market is nonstationary because the adoption
rate depends on how many customers have already adopted. Dynamic pricing with de-
mand learning in a time-varying market is largely unexplored. Besbes and Zeevi (2011)
and Besbes and Sauré (2014) consider settings where the willingness-to-pay distribution
changes at some unknown time. Keskin and Zeevi (2016) study an unknown time-varying
demand with a constraint on the number of price changes. Chen and Farias (2013) and
den Boer (2015b) study pricing policies under a setting where the time-varying market
size is unknown. Our work adds to this literature by studying the pricing strategies under
an adoption model where the unknown time-varying demand rate is influenced by the
price and by the changing cumulative adoptions.

II.1.1.3 Learning in stochastic processes.

Our work is related to estimating the unknown transition rates in continuous-time
Markov chains (CTMCs). Duffie and Glynn (2004) propose a family of generalized-
method-of-moments (GMM) estimators sampled at random time intervals. On the other
hand, Kessler (1995, 1997, 2000) considered GMM estimators using data samples taken at
deterministic time intervals (discrete observations). Although all those estimators are con-
sistent, GMM methods are more computationally challenging than MLE methods, which
are derived from the first-order conditions. There are other approaches, which include
simulation-based methods (e.g., the simulated-method-of-moments estimation studied by
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Duffie and Singleton 1993) and nonparametric estimations (e.g., approximating transi-
tion rates using analytic expansions studied by Aït-Sahalia 2002). However, theoretical
results with these approaches are only limited to cases where the random noise follows a
Brownian motion (or one of its variants).

There exists literature addressing optimal controls under the setting where the transi-
tion matrix of a Markov decision process is unknown. For example, Araman and Caldentey
(2010) propose a Bayesian approach to learn an unknown parameter of a price-modulated
Poisson process. A Bayesian method requires the knowledge of the prior distribution;
further, it is time-consuming to compute when there are multiple unknown parameters to
learn. Several papers (Nilim and El Ghaoui , 2005; Kalyanasundaram et al., 2002; Nilim
and El Ghaoui , 2004) consider robust control problems for Markov decision processes with
unknown and stationary transition matrices. Our estimation, on the other hand, is based
on MLE and uses the first-order conditions. We can analytically characterize the updat-
ing processes of the MLEs used in the Markovian Bass model. Our method is amenable
to the case where there are multiple unknown parameters. In fact, the main results of
our paper hold when the firm does not know the market size, the adoption innovation
rate, the imitation rate, and the price sensitivity function. We contribute to the literature
on learning and controls of CTMCs by proposing a maximum likelihood approach to a
Markov decision process where transition rates evolve as more adoptions occur.

II.1.2 Preliminaries

In the paper, we use the big O notation where, by definition, f(x) = O(g(x)) for
positive real-valued functions f and g if there exists an r ∈ R such that f(x) < rg(x).
Similarly, if f(x) = Ω(g(x)), then f(x) > rg(x). When f(x) = O(g(x)) and f(x) =

Ω(g(x)), it is represented by f(x) = Θ(g(x)).

II.2 The model

We first discuss the stochastic demand model of new production adoption. Then, we
formally state the seller’s pricing-and-learning problem.

II.2.1 The stochastic demand model

Bass (1969) proposed a model for the timing of adoptions of a new product, where
the adoption rate increases with the number of past adoptions. There have since been
numerous extensions of this model. One notable extension relevant to our work is the
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generalized Bass model (Bass et al., 1994; Krishnan et al., 1999) where price influences
adoptions. We first review the generalized Bass model and establish model constructs for
the adoption model we will use in the paper.

The generalized Bass model represents adoption timings of a new product by a market
of customers under a known price path. Let r = {rt, t ≥ 0} denote the price sequence
where rt represents the price at time t, where rt ∈ (−∞,∞).1 Given this price path,
let F r

t be the proportion of the market that has adopted the product by time t, where
F r
t ∈ [0, 1]. In the case where F r

t is continuously differentiable in t, then f rt =
dF rt
dt

is
the marginal rate of adoption and f rt /(1 − F r

t ) is its failure rate. The generalized Bass
model assumes that the time t failure rate (i.e., the marginal rate of adoptions among
the remaining customers at time t) is equal to (p0 + q0F

r
t )x(rt), where x(·) is a marketing

effort function that reflects the effect of price. Here, p0 (where p0 > 0) is called the
coefficient of innovation and it represents the rate at which consumers adopt the product
on their own initiative. On the other hand, q0 (where q0 > 0) represents the imitation
coefficient, representing the rate at which consumers imitate earlier adopters (through
word-of-mouth effect or a network effect). Note that the firm can influence the adoption
process by setting the price sequence r.

The cumulative adoption proportion F r
t satisfies the following differential equation:

dF r
t

dt
= (1− F r

t )(p0 + q0F
r
t )x(rt). (II.2.1)

We can compute its solution as

F r
t :=

1− e−(p0+q0)
∫ t
0 x(rs)ds

1 + q0
p0
e−(p0+q0)

∫ t
0 x(rs)ds

. (II.2.2)

The generalized Bass model (II.2.1) assumes that the adoptions are deterministic with
an adoption function F r

t . While deterministic models are useful in understanding the
trajectory of expected adoption over time under a given price path, they fail to model
random choices of individual customers and their impact on overall adoptions. A few
papers propose stochastic adoption models (Raman and Chatterjee, 1995; Kamrad et al.,
2005), yet these papers use Brownian models that fail to enforce that the cumulative
adoption is a non-decreasing process. We follow a different approach by assuming that
the time between two successive adoptions is random. The result is a counting process

1In the new product pricing literature, price is allowed to be zero or negative. This is because it might
be beneficial for the seller to offer the product for free or even compensate early adopters in order to
increase the future adoption. See Kalish (1983) and Krishnan et al. (1999) for example.
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which we refer to as the Markovian Bass model because, inspired by the Bass model, it
obeys the Markov property.

We define (Ω,F ,P, {F}t≥0) as a filtered probability space endowed with a cumulative
adoption process D = {Dt, t ≥ 0} where Dt is the cumulative adoptions by time t. Let
m0 be a positive integer that denotes the market size of potential customers. Hence,
Dt : Ω 7→ {0, 1, . . . ,m0}. Since adoptions can only occur in unit increments, D is a
counting process. Let {Ft, t ≥ 0} be the history or filtration associated with the process
of prices and adoptions, with Ft = σ((rs, Ds), s ∈ [0, t]). We say that π is a non-
anticipating pricing policy if the price rπt offered by π at time t is Ft-measurable. If
customers are price-sensitive, a price change results in a change in the adoption rate.
To explicitly state the dependence in price, we will henceforth refer to the cumulative
adoption as Dπ instead of D. Without loss of generality, we assume that Dπ

0 = 0 for any
π, thus none of the consumers purchases before time t = 0.

As in the Bass model, the adoption rate in the Markovian Bass model is also depen-
dent on a coefficient of innovation, p0, and a coefficient of imitation, q0. We denote the
parameters of the Markovian Bass model as θ0 := (p0, q0,m0), where p0, q0 > 0. If at
time t, the cumulative number of adoptions is j and the seller sets price rt, then under
the Markovian Bass model the transition rate to the next (j + 1)-st adoption is

λ(j, rt) := ξ(j) · x(rt), for j = 0, 1, . . . ,m0, (II.2.3)

where

ξ(j) := (m0 − j)
(
p0 + q0 ·

j

m0

)
. (II.2.4)

Note that ξ(j) is the portion of the adoption rate unaffected by price. From (II.2.4),
we see that each of the m0 − j potential adopters are homogeneously affected by their
own will to adopt the product (reflected in term p0) and by the influence from previous
adopters (reflected in term q0

j
m0

). We will sometimes write ξ(j; θ0) or λ(j, rt; θ0) to em-
phasize the dependence of these values on θ0. Given the pricing policy π, the adoption
process is a nonhomogeneous, continuous-time Markov chain with the following transition
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probabilities. For a small time interval of size h,

Pθ0
(
Dπ
t+h = j + k | Dπ

t = j
)

=


1− λ(j, rπt )h+ o(h), if k = 0,

λ(j, rπt )h+ o(h), if k = 1,

o(h), if k ≥ 2,

(II.2.5)

where o(h) is a term such that limh→0 o(h)/h = 0. The subscript θ0 on Pθ0 is to denote
the dependence of the probability on the parameter vector θ0. Note that the Markovian
Bass model guarantees that the cumulative adoption is always non-decreasing.

Conditional on Ft, the expected demand rate is

Eθ0 [dDπ
t | Ft] = λ(Dπ

t , r
π
t )dt = (m0 −Dπ

t )

(
p0 + q0 ·

Dπ
t

m0

)
x(rπt )dt. (II.2.6)

Hence, the Markovian Bass model captures the demand dynamics in the generalized Bass
model (II.2.1). First, the expected demand rate is increasing in the remaining market
size, m0− j, and decreasing in price, rt. Second, adoptions occur naturally or imitatively.
As in the generalized Bass model, the rate of adoption also depends on the proportion of
customers who have adopted, Dπ

t /m0. By including a price effect, the Markovian Bass
model generalizes the stochastic Bass model proposed by Niu (2002, 2006). Since the
price process rπ is endogenous, this seemingly innocuous extension has implications in
the convergence results and their proofs.

We state a property of the evolution of Markovian Bass model that is consistent with
the generalized Bass model studied in Bass et al. (1994) and Krishnan et al. (1999).

Lemma II.1. The increase in the adoption speed decreases as more people have adopted
the product. In other words, for a given price r, λ(d, r) = (m0 − d)(p0 + q0

d
m0

)x(r) is
concave in d.

Next, we show that the Markovian Bass model is consistent with its deterministic
counterpart under a deterministic price process r. Let {Dr,m0, m0 ≥ 1} be the family
of Markovian Bass models indexed by market size m0. As m0 increases, we show that
the proportion of customers who have purchased by time t (the cumulative proportion)
converges to the deterministic Bass curve.

Proposition II.1. For a given price sample path r = {rt, t ≥ 0}, if {Dr,m0
t , t ≥ 0}

is the cumulative adoption process with market potential m0, then the following holds
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Figure II.1: Convergence of expectation and variance of Dπ,m0
t /m0 as m0 increases.

uniformly in t:

Dr,m0
t

m0

→ F r
t almost surely as m0 →∞, (II.2.7)

where F r
t is given by (II.2.2), and Varθ0

(
D
r,m0
t

m0

)
decreases in the order of O(m0

−1).

Proposition II.1 states that the variance of D
r,m0
t

m0
diminishes to zero at the rate that is

inversely proportional to m0. Additionally, we have Lemma II.2 below, which shows that
the expectation converges to F r

t at a rate inversely proportional to
√
m0. These results

are helpful in understanding the behavior of a Markovian Bass model at an asymptotic
regime.

Lemma II.2. For a given price sample path r = {rt, t ≥ 0}, if {Dr,m0
t , t ≥ 0} is the

cumulative adoption process with market size m0, then

Eθ0

∣∣∣∣Dr,m0
t

m0

− F r
t

∣∣∣∣ = O
(

1
√
m0

)
for all t > 0. (II.2.8)

Figure II.1 illustrates Lemma II.2 and Proposition II.1 by showing how the proportion
of adopters by time t, D

r,m0
t

m0
behaves. Panel (a) shows how the difference of the expected

proportion from F r
t changes with increasing m0. Panel (b) shows how the variance of the

adoption fraction changes with increasing m0. We compute the expectation and variance
by simulating 103 sample paths of the adoption process with p0 = 0.1, q0 = 0.3, rt =

0.1+ t
100

, and x(r) = e−r. We observe that the expected difference between the Markovian
Bass adoption, D

r,m0
t

m0
, and the deterministic Bass adoption, F r

t , decreases in the order of
1√
m0

and the variance decreases in the order of 1
m0

.
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II.2.2 Seller’s pricing-and-learning problem

We consider the dynamic pricing and learning problem of a monopolist launching
a new product over a finite selling horizon [0, T ] where T > 0. In this setting, the
demand for the new product is described by the Markovian Bass model with parameters
θ0 = (p0, q0,m0), but the seller does not know the parameters of the underlying demand
model. However, the seller can accumulate market information, represented in Ft, by
continuously monitoring its prices and sales throughout the selling horizon. The seller
uses statistical inference on the observed demand data in order to infer the unknown
demand parameters.

Our goal is to understand how a firm can use the price and sales data after a product
launch to learn the true characteristics of the underlying demand model. In particular,
the seller’s problem is to dynamically adjust the prices to maximize the expected cumu-
lative revenue by utilizing what the seller learns about the demand parameters from data
collected over time.

We denote the set of non-anticipating pricing policies as Π, which is the set of Ft-
adapted pricing policies. When θ0 is unknown, the optimal pricing-and-learning policy is
the solution to:

sup
π∈Π

R(π) := sup
π∈Π

ED|F0

 T∫
0

rπt dDπ
t | F0

 = sup
π∈Π

ED|F0

 T∫
0

ED|Ft [rπt dDπ
t | Ft] | F0

 .
(II.2.9)

The goal is to find a policy π that maximizes the expected total revenue R(π). Since
(II.2.9) is solved by the seller, the expectation cannot rely on the true demand parame-
ters θ0 that are unknown to the seller. Hence, ED|Ft in (II.2.9) is the conditional expec-
tation given the information set Ft known to the seller at time t. The demand follows a
Markovian Bass model with unknown parameters, so the expectation is with respect to
the seller’s inference on those parameters given Ft.

There are two schools of statistical inference: Bayesian and frequentist. If the seller
forms an inference using Bayesian learning, then conditional on Ft, Dπ

t follows a Marko-
vian Bass model with a random parameter vector θ. The posterior distribution of θ is
computed using Bayes’ rule by updating the prior distribution given the observed data.
On the other hand, if the seller forms an inference using a frequentist approach, then
conditional on Ft, Dπ

t follows a Markovian Bass model with parameter vector θ̂t, where
θ̂t is a point estimate (e.g. maximum likelihood estimator) computed from the data. The
frequentist school is rooted in the philosophy that there is only one true value for the
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parameters, so it does not make sense to assign probabilities (prior or posterior) for the
different parameter values. Section A.3 in the Online Appendix discusses how to for-
mulate the value functions of (II.2.9) under Bayesian inference and frequentist inference,
respectively.

Price rπt plays two roles in this setting. The first role is to affect the revenue and
demand at time t. Note that in the Markovian Bass model, the demand at time t has
a compounding effect since it influences the probability of future purchases through the
imitation effect. The second role is to affect the price and sales information that will be
used for demand inference in future periods. Due to these two roles of price, we refer to
(II.2.9) as the seller’s pricing-and-learning problem.

The Bass diffusion model has a long tradition in marketing literature of being used
in deriving optimal dynamic pricing policies, starting from Robinson and Lakhani (1975).
Some early examples of dynamic pricing under the Bass model include Dolan and Jeuland
(1981); Bass and Bultez (1982); Kalish (1983); Horsky (1990); Raman and Chatterjee
(1995); Krishnan et al. (1999). More recent examples in the operations literature are
Kamrad et al. (2005); Li and Huh (2012); Shen et al. (2013); Li (2020). In this paper,
we continue this tradition by studying how learning affects the pricing decisions under a
stochastic version of the generalized Bass model.

To guarantee the existence of a unique optimal price for the control problem (II.2.9),
we assume that the marketing effort function x(·) satisfies certain regularity properties.

Assumption II.1. The marketing effort function x : R→ R+ has the following proper-
ties:

i. (Smoothness and bounded derivative.) x is twice differentiable, and there exists
M > 0 such that |x′(r)| ≤M, for all −∞ < r <∞;

ii. (Non-negativity.) There exist non-negative constants x̄u, x̄l, such that x̄lt ≤
∫ t

0
x(rs)ds ≤

x̄ut, for all r = (rs, s ≥ 0) where −∞ < rs <∞ for all s ≥ 0;
iii. (Decreasing in price.) x′(r) < 0 for all −∞ < r <∞;
iv. (Monotone hazard rate.) r + x(r)

x′(r)
+ C is strictly monotone increasing in r with a

finite root for any finite C, and for all −∞ < r <∞, there exists a constant Cd > 0,
such that 2x′(r)2 − x(r)x′′(r) ≥ Cd > 0;

v. (Boundedness of revenue.) There exist constants Cx, Cxx such that, for f(r) :=

rx(r), |f(r)| ≤ Cx, and |f ′′(r)| ≤ Cxx for all −∞ < r <∞.

Assumption II.1(i)–(iii) are innocuous as they guarantee that the market effort func-
tion is decreasing in price and is sufficiently smooth. Assumption II.1(iv) is a standard
assumption to ensure that the revenue function is well-behaved and has a unique opti-
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mal price for a given state. Assumption II.1(v) implies the revenue function is bounded.
The bounded second-order derivative is an assumption used in many papers (Broder and
Rusmevichientong , 2012; Wang et al., 2014). These properties are satisfied by many func-
tional forms including multiplicative (e.g., x(r) = ea−br), and additive (e.g., x(r) = a−br)
relationships.

In the following sections, we study (II.2.9). First, we study the problem assuming
that the seller knows the parameter vector θ0 that governs the adoption process. Then,
we study the pricing-and-learning problem where the seller forms her inference about the
unknown parameters from past data through maximum likelihood estimation.

II.3 Optimal pricing policy with complete information

If the firm knows the demand model parameter vector θ0, the optimal control problem
is

R∗ := sup
π∈Π

Eθ0

 T∫
0

rπt dDπ
t

 = sup
π∈Π

Eθ0

 T∫
0

Eθ0 [rπt dDπ
t | Ft]

∣∣∣ F0

 , (II.3.1)

where the equality follows from the tower property of conditional expectation. Note the
distinction of (II.3.1) from the pricing-and-learning problem (II.2.9). In (II.3.1), the seller
knows θ0, so the expectation Eθ0 is taken with respect to the Markovian Bass model with
parameter vector θ0.

We denote the optimal expected cumulative revenue under complete information as
R∗. Note that R∗ is the expected revenue of an oracle that knows the true value of θ0, so
it is an upper bound to the optimal expected revenue in the pricing-and-learning problem
(II.2.9).

To solve the optimal control problem (II.3.1), we define V (d, t) to be the optimal
value-to-go function where t is the time remaining until the end of the horizon T , and d
is the cumulative number of adoptions after T − t time has elapsed. Hence,

V (d, t) := maximize
π∈Π

Eθ0

 T∫
T−t

rπs dDπ
s


subject to Dπ

T−t = d.

Note that V (0, T ) is the optimal expected revenue of the pricing problem (II.3.1).
We will sometimes write V (d, T ; θ0) to emphasize that the value function depends
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on the demand parameters θ0. This will prove useful in later sections when θ0 could be
replaced by a data-driven estimator. From (II.2.4), we know θ0 = (p0, q0,m0) affects the
optimal expected revenue through its effect on the adoption rate. Therefore, increasing p0,
q0 or m0 results in a higher adoption rate, and consequently, a higher expected revenue.
This is formally stated in Lemma A.1(iii).

We can write V (d, t) by enumerating the outcomes after δt time units, resulting in

V (d, t) = max
rt

{
(rt + V (d+ 1, t− δt)) · λ(d, rt)δt+ V (d, t− δt) · (1− λ(d, rt)δt) + o(δt)

}
,

where λ is the adoption rate defined in (II.2.3), so λ(d, rt)δt is the probability of an
adoption if d is the cumulative adoption and rt is the price. We use this to derive the
Hamilton-Jacobi-Bellman (HJB) equation and characterize the first-order condition for
the optimal value function. We refer to the optimal pricing policy π∗ under a Markovian
Bass model as the Markovian Bass pricing (MBP) policy. The following theorem states a
relationship between π∗ and the value function.

Theorem II.1 (Markovian Bass pricing policy, MBP). Let r∗(d, t) be the price offered
under the optimal policy π∗ to the Markovian Bass pricing problem (II.3.1) when the
d ∈ {0, 1, . . . ,m0 − 1} is the total past sales and t ∈ [0, T ] is the time remaining in the
sales horizon. Then r∗(d, t) is the unique solution to the equation

r = − x(r)

x′(r)
− V (d+ 1, t) + V (d, t) , (II.3.2)

where V (·, ·) is a function that solves the HJB differential equation

∂V

∂t
+ (m0 − d)

(
p0 +

d

m0

q0

)
x(r∗(d, t))2

x′(r∗(d, t))
= 0, (II.3.3)

with boundary conditions V (m0, t) = 0, for all t ∈ [0, T ], and V (d, 0) = 0, for all d ∈
{0, 1, 2, ...,m0}.

The term ∆dV (d, t) := V (d + 1, t) − V (d, t) that appears in (II.3.2) is the marginal
gain in the expected revenue due to an adoption at time t. A myopic seller will choose
to maximize the current period expected revenue rate by solving maxr Eθ0 [rdDt | Ft] in
each period. The myopic price satisfies the first order condition r = − x(r)

x′(r)
. Comparing

this condition with (II.3.2), we observe that the sign of ∆dV (d, t) informs whether it is
optimal to price above or below the myopic seller facing the same conditions. This is the
same observation made in the classic paper by Kalish (1983) that studies dynamic pricing
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under the deterministic Bass model (II.2.1). In our notation, Kalish (1983) shows (in eq.
(9c) of their paper) that the optimal pricing sequence r∗ = (r∗t , t ≥ 0) satisfies

r∗t = − x(r∗t )

x′(r∗t )
− dV B

dF r
t

. (II.3.4)

Here, dF r
t is the marginal adoption at time t and V B is the optimal expected revenue

under the deterministic Bass model. The term dV B

dFt
is referred to as the shadow price λ(t)

in Kalish (1983).
Note the similarity of condition (II.3.4) for the deterministic Bass model to the condi-

tion (II.3.2) for the Markovian Bass model. Therefore, the insights from Kalish (1983) are
also applicable to the dynamic pricing policy under the Markovian Bass model. Specif-
ically, if λ(t) > 0 or if ∆dV (d, t) > 0, then there are future benefits of an additional
adoption, so the price will be lower than myopic to encourage adoption. Further, if
λ(t) < 0 or if ∆dV (d, t) < 0, then an additional adoption results in a future loss, so the
price will be higher than the myopic price.

In both (II.3.2) and (II.3.4), the optimal price can even be negative if λ(t) and
∆dV (d, t) are very large. This can occur under a strong imitation effect (i.e., q0 � p0)
when the market penetration is still very low (e.g. right after product launch). In this
case, temporarily setting a negative price (to encourage fast adoption) is offset by the
high value of early adoption. In practice, a negative price can be implemented by seeding
early adopters through compensation or perks.2

We can also interpret (II.3.2) using the price elasticity as follows. Define the price
elasticity of market effort as ex := dx

x

/
dr
r
, where the elasticity evaluated at the optimal

price r = r∗(d, t) is e∗x. From the definition of e∗x, we have that x(r∗)
x′(r∗)

= r∗

e∗x
. After

substituting this into equation (II.3.2) and rearranging terms, we have

r∗(d, t) +
e∗x

1 + e∗x
∆dV (d, t) = 0, (II.3.5)

where e∗x
1+e∗x

can be interpreted as the probability of purchasing at price r∗(d, t). Thus, the
optimal price r∗(d, t) is the price where the marginal increase in the revenue can offset
the expected marginal loss of an adoption.

For the special case of x(r) = e−r, we can show that the price elasticity changes
2For example, this is a strategy used by the CPG company Johnson & Johnson when it introduces

new products (www.jjfriendsandneighbors.com). There also exist many influencer programs used by
companies such as Fiat, Ford, L’Oreal, or Coca Cola—such as Toluna (www.toluna.com), Pinecone Re-
search (www.pineconeresearch.com)—which compensate early adopters of products through redeemable
points or cash.
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proportionally to r, hence the market will not be immediately saturated even if prices
are low. For this special case, we are able to derive an analytic expression for the value
function V . This special case is interesting since it is a stochastic version of the model
considered by Robinson and Lakhani (1975). In contrast to Robinson and Lakhani (1975),
MBP depends on two state variables (instead of one)—the cumulative adoptions and the
remaining time until T .

Corollary II.1. If x(r) = e−r, then

V (d, t) = ln

(
m0−d∑
j=1

∏d+j−1
i=d ξ(i)

j!

(
t

e

)j
+ 1

)
.

In general cases, however, the HJB equation cannot be solved analytically. Instead, we
can solve (II.3.3) numerically using finite differences, a conventional technique for solving
partial differential equations numerically. We describe this method in the e-companion
(Appendix A.1).

II.4 Data-driven dynamic pricing with unknown parameters

In this section, we consider the setting where the seller does not know true parameters
of the Markovian Bass model, θ0 = (p0, q0,m0).

When the true parameter vector θ0 of the demand model is unknown, one could
consider estimating it using historical sales data of like products. This approach is difficult
to implement if a like product does not exist, or if the market environment has changed
significantly. Other approaches based on subjective expert opinion and on market research
are prone to error. One interesting question is: how much revenue does a firm loses when
it uses the MBP pricing policy based on wrong parameters? Theorem II.3 later establishes
that when wrong model parameters are initially inferred and the data is not used to correct
the wrong inference, the revenue loss (relative to R∗) can grow at least linearly in the
true market size m0. This motivates the need to learn the unknown parameters from the
price and sales data.

II.4.1 Parameter estimation

Maximum likelihood estimation (MLE) is a method of estimating the unknown θ0 by
choosing the parameters which result in the highest likelihood of observing the data.
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The likelihood function is convenient to calculate under the Markovian Bass model.
We denote the continuously observed sequence of prices and cumulative sales at time t as

Ût :=
{(
r̂s, D̂s

)
, 0 ≤ s ≤ t

}
. (II.4.1)

Since the adoption process follows a continuous-time Markov chain, the inter-adoption
times are conditionally independent given the previous state information. Let ti be the
time of the ith product adoption, where i = 0, 1, 2, . . . That is, at time tk, the cumulative
adoption is D̂tk = k. The likelihood of Ût under a Markovian Bass model with parameters
θ = (p, q,m) is

`t

(
Ût | θ

)
=

(
D̂t−1∏
i=0

λ(i, r̂ti+1
; θ)e−

∫ ti+1
ti

λ(i,r̂s;θ)ds︸ ︷︷ ︸
fi(θ)

)
e
−
∫ t
t
D̂t

λ(D̂t,r̂s;θ)ds︸ ︷︷ ︸
f
D̂t

(θ)

,

where λ(i, r; θ) is the instantaneous adoption rate at state i when price is r, which was
defined in (II.2.3). Here, fi(θ) is the density function of the (i + 1)-th inter-adoption
time, which is mathematically equivalent to the density of inter-arrival times in a non-
homogeneous Poisson process with intensity function {λ(i, r̂t; θ), t ≥ 0}.

Using expression (II.2.3) for λ(i, r; θ), we can rewrite fi(θ) as

fi(θ) :=


(m− i)

(
p+ i

mq
)
x(r̂ti+1) exp

(
−(m− i)

(
p+ i

mq
) ∫ ti+1

ti
x(r̂s)ds

)
, if i = 0, 1, . . . , D̂t − 1,

exp

(
−(m− D̂t)

(
p+ D̂t

m q
) ∫ t

t
D̂t

x(r̂s)ds

)
, if i = D̂t.

(II.4.2)
This results in the following log-likelihood function

Lt(Ût | θ) =

D̂t−1∑
i=0

lnx(r̂ti+1) +

D̂t−1∑
i=0

ln

[
(m− i)

(
p+

i

m
q

)]
−
D̂t−1∑
i=0

ti+1∫
ti

(m− i)
(
p+

i

m
q

)
x(r̂s)ds

−
t∫

t
D̂t

(m− D̂t)

(
p+

D̂t

m
q

)
x(r̂s)ds.

(II.4.3)

The ML estimator θ̂t = (p̂t, q̂t, m̂t) maximizes the likelihood of observing the data
sequence Ût. That is, θ̂t solves the constrained problem maxθ≥0 Lt(Ût | θ). It is difficult
to show the joint concavity of the log-likelihood function in θ. Hence, we perform the
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following variable transformation:

β1 := mp, β2 := q − p, β3 := − q

m
, (II.4.4)

introduced in Bass (1969).3 We define β0 := (β01, β02, β03) to be the transformation
variables corresponding to the true Markovian Bass model parameters θ0 = (p0, q0,m0).

The log-likelihood function under the transformed variables β = (β1, β2, β3) simplifies
to:

Lt(Ût | β) =

D̂t−1∑
i=0

lnx(r̂ti+1) +

t∫
0

ln
(
β1 + β2D̂s− + β3D̂

2
s−

)
dD̂s −

t∫
0

(
β1 + β2D̂s + β3D̂

2
s

)
x(r̂s)ds.

(II.4.5)

The constraint θ ≥ 0 implies that β1 ≥ 0 and β3 ≤ 0. Hence, the ML estimator
β̂t = (β̂t1, β̂t2, β̂t2) is the solution to the constrained problem maxβ:β1≥0,β3≤0 Lt(Ût | β).
We prove the following proposition that guarantees the tractability this problem.

Proposition II.2. Lt(Ût | β) is strictly and jointly concave in β when D̂t ≥ 3.

Proposition II.2 ensures that a standard convex optimization technique such as New-
ton’s method can find the optimizer of Lt(Ût | β) efficiently. It also implies identifiability
of the ML estimation model of β0 because the Fisher information matrix is strictly positive
definite. This result is useful in establishing the convergence rate of the estimation error
(Lemma II.3). Since the log-likelihood function Lt(Ût | β) is strictly concave in the trans-
formation variables, it has a unique maximizer, which we denote by β̂t = (β̂t1, β̂t2, β̂t3).

If β̂t1 > 0 and β̂t3 < 0, we can readily recover the variables θ̂t = (p̂t, q̂t, m̂t) which
satisfy the transformation (II.4.4). (Transforming (II.4.2) using (II.4.4), β̂t1 = 0 and
β̂t3 = 0 will not happen since the likelihood of this model is zero.) To see how θ̂t can be
recovered, note that m̂t solves the equation β̂t3m̂2

t + β̂t2m̂t + β̂t1 = 0. Since β̂t3 < 0 and
β̂t1 > 0, the equation has only one positive root, which we set as m̂t. In this case, θ̂t is
uniquely determined by the first-order conditions of Lt(Ût | β).

An attractive property of ML estimators is that the mean squared error converges to
zero with increasing the sample size when the data is independent and identically dis-
tributed (i.i.d.). Note that, however, inter-adoption times are not identically distributed
under the Markovian Bass adoption process. hence the standard argument of ML estima-
tors cannot apply here. Bradley and Gart (1962); Hoadley (1971) establish the asymp-
totic properties of ML estimators for independent but not identically distributed samples.

3We note that the transformation in Bass (1969) was done to perform least squares estimation, and
not maximum likelihood.
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However, their conditions are difficult to use in our setting. Roussas (1969) characterizes
regularity conditions to ensure consistency for stationary Markov chains, but the Marko-
vian Bass model is non-stationary. Instead, we follow an approach similar to Bickel et al.
(2013) and Broder and Rusmevichientong (2012) using the concept of Kullback-Leibler
divergence from information theory to establish the following Lemma. The lemma char-
acterizes the convergence rate of the mean squared errors of the ML estimators of θ0.

Lemma II.3. For any fixed time t > 0 and k ≥ 3,

Eθ0
(

(p̂t − p0)2 + (q̂t − q0)2 +
1

m2
0

(m̂t −m0)2 | Dπ
t = k

)
≤ αθ
k + 1

,

where αθ is a constant that is independent of m0 and t.

This bound on the estimation error will be crucial in proving a performance bound of
the pricing-and-learning algorithms we propose later in this section.

II.4.2 Data-driven pricing policies

Problem (II.2.9) finds a pricing-and-learning policy that maximizes the total expected
revenue in the setting where the seller forms an inference about the parameters from the
dynamically evolving data. If inference is formed through MLE, then conditional on the
information set Ft, the seller infers the demand Dπ

t to follow a Markovian Bass model
with parameter θ̂t. In this case, we show in Section A.3 of the appendix that, at any
time t, the state variables of the control problem are (Dt, t, θ̂t) where Dt is the cumulative
sales and θ̂t is the current ML estimator. Critical to this state reduction is our result
(Proposition A.1) that, conditional on Ft, the future estimate θ̂t+h is Markovian since the
transition probabilities depend only on (Dt, t, θ̂t).

Hence, the variables (Dt, t, θ̂t) encapsulate the information sufficient to choose a price
that maximizes the inferred expected future revenue. This, together with our derived
transition probabilities of θ̂t+h, allow us to derive the HJB equation satisfied by the value
function. We use this HJB equation to derive the optimal pricing-and-learning policy
under ML inference (Theorem A.2).

However, solving for the optimal pricing-and-learning policy suffers from the curse of
dimensionality. Specifically, it is more computationally challenging than finding the opti-
mal pricing policy under full information due to additional state variables θ̂t = (p̂t, q̂t, m̂t).
This motivates us to develop sensible data-driven dynamic pricing policies that (1) uti-
lize data in a computationally efficient way, and (2) have performance guarantees on the
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Algorithm II.1: MBP-MLE algorithm

Require: Initial parameters θ̂0 = (p̂0, q̂0, m̂0), max horizon length T , subperiod length δ
1: s← 0, D̂0 ← 0, Û−1 ← ∅ . Initialization
2: while s ≤ T

δ
and D̂s < m0 do

3: rs ← inf
{
r : r ≥ − x(r)

x′(r)
− V (D̂s + 1, T − δs; θ̂s) + V (D̂s, T − δs; θ̂s)

}
. Set price

4: Ûs ← Ûs−1 ∪ {(rs, D̂s + as)}, where as is the new sales in [δs, δ(s+ 1))

5: if D̂s + as ≥ 3 then
6: θ̂s+1 ← arg max

θ
Lt
(
Ûs | θ

)
. Update parameter estimate

7: else
8: θ̂s+1 ← θ̂0

9: end if
10: s← s+ 1 . Proceed to next period
11: end while

expected revenue. We introduce these policies next, while establishing their performance
guarantees in the next section.

The policies utilize the Markovian Bass price function introduced in Section II.3 where
they replace the true (unknown) parameters θ0 = (p0,m0, q0) with parameter estimates.
Therefore, with slight abuse of notation, we define r∗t (θ, d) as the Markovian Bass price
function (Theorem II.1) if t is the elapsed time since introducing the product, d is the
number of past adoptions, and θ is the demand parameter vector.

II.4.2.1 Pricing policy with continuous price changes.

We first propose a policy referred to as MBP-MLE (outlined in Algorithm II.1). At time
t, this policy offers the Markovian Bass price of Section II.3 except that when computing
the price and the value function, it replaces the true (unknown) parameter vector θ0 with
the ML estimator θ̂t. Note that the Markovian Bass price is optimal if there is no error
in parameter estimation. Hence, the price offered by the MBP-MLE policy exploits the
current estimate and ignores the role of price in improving future inference. Yet, our
analysis in the next section shows that the revenue loss of MBP-MLE grows sublinearly
in the market size at the rate of O(lnm0) (Theorem II.4).

The MBP-MLE policy starts with an initial guess of the parameters, θ̂0 = (p̂0, q̂0, m̂0),
which it uses to set the prices rt = r∗t (θ̂0, D̂t), for any t where D̂t < 3. The quality of the
initial guess does not affect the policy’s performance bound. As time progresses, more
observations are added to the data Ût := {(r̂s, D̂s) | s ≤ t}. When D̂t ≥ 3, the seller can
use the accrued data to solve for the ML solution θ̂t and set the price at rt = r∗t (θ̂t, D̂t).
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Figure II.2: Certainty equivalent MBP-MLE prices and adoption rates in one price cycle.
The green arrow indicates when the cycle starts. The gray arrows are the deterministic
adoption times.

II.4.2.2 Pricing policy with limited price changes.

In many situations, frequent price changes can be difficult or impractical to implement
due to cost, time and loss of goodwill associated with price changes. This explains why
many firms only change price a few times during the season.

We next propose the MBP-MLE-Limited policy in which the firm changes its price at
most K times. One way to model this is to include the number of price changes as a
state variable. However, doing so will further increase the complexity of the dynamic
programming model. Instead, we propose a simpler approach by assuming that price
changes occur when the cumulative adoption reaches certain thresholds (e.g, the 100th
customer, the 1000th customer, etc). This approach of using cumulative purchases as
triggers for price changes has been used in selling new products by the crowdfunding
platforms KickStarter and IndieGoGo (Stonemaier Games , 2013).

Consider a sequence of natural numbers C := {Ci, i = 0, 1, 2, . . . ,K}, where Ci ≥ 1

for any i. Define C[−1] := 0 and C[i] :=
∑i

k=0Ck for all i = 0, . . . ,K. For the ith price
cycle, our proposed MBP-MLE-Limited policy sets the same price r(i) starting from when
the C[i−1]-th adoption has occurred until when the C[i]-th adoption happens. Hence, unless
the end of the horizon is reached, the per-unit revenue r(i) will be earned by the seller
from exactly Ci adopters. For now, we will assume that K and C are both given. Later
in Section II.5.3, we describe how K and C can be chosen, even without knowing m0, so
that the revenue loss of MBP-MLE-Limited is O(lnm0) (Theorem II.5).

We next describe how the policy determines the prices for each cycle. Suppose that
the ith price cycle has just been triggered at time t by the adoption of the C[i−1]-th
customer. After updating the ML estimator θ̂, MBP-MLE-Limited chooses a price r(i) for
the next Ci adoptions. The idea is that the total revenue under r(i) is set to match the
expected revenue if MBP-MLE could be used in the upcoming cycle (i.e., where each of
the Ci customers is charged a different price). Note that there are no actual price changes
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during the cycle after the initial price change. The MBP-MLE prices are only used to
construct the lookahead value to compute r(i).

The lookahead value is constructed using the certainty equivalent of the MBP-MLE
prices and the corresponding adoption rates for the ith cycle (see Figure II.2). In the
figure, vertical arrows correspond to times of adoptions. The green solid arrow is the
actual C[i−1]-th adoption that triggers a price cycle. The gray, empty arrows are the
predicted future adoption times using a deterministic model. We denote d = C[i−1] for
notational convenience. As illustrated in the figure, once the MBP-MLE price rj is set
(i.e., immediately after the (d + j − 1)th customer purchases where j = 1, . . . , Ci), the
adoption rate changes to λ(d+ j − 1, rj; θ̂) where λ is defined in (II.2.3). Hence, the
expected inter-adoption time between the (d+ j − 1)th and (d+ j)th adoption is

∆tj :=
1

λ(d+ j − 1, rj; θ̂)
=

1

ξ(d+ j − 1; θ̂)x(rj)
. (II.4.6)

This then determines the time of the next adoption d + j under a deterministic model,
assuming that the previous inter-adoption times ∆t1,∆t2, . . . ,∆tj−1 have already been
computed. Since the MBP-MLE prices depend only on the elapsed time τ = t+

∑j
k=1 ∆tk

and the cumulative adoptions d + j, this allows us to compute the next price rj+1 :=

r∗τ (θ̂, d+ j), which determines the next inter-adoption time ∆tj+1. This proceeds until we
have the complete deterministic sequence of MBP-MLE prices for the ith cycle.

Given the MBP-MLE price sequence {r1, . . . , rCi} for the ith cycle, the MBP-MLE-
Limited policy then chooses the price r(i) to satisfy the following relation:

Ci∑
j=1

r(i)λ
(
d+ j − 1, r(i); θ̂

)
∆tj =

Ci∑
j=1

rjλ
(
d+ j − 1, rj; θ̂

)
∆tj.

The right-hand side is the certainty equivalent revenue of MBP-MLE in the ith cycle.
Hence, the MBP-MLE-Limited price is chosen such that its expected revenue matches the
certainty equivalent revenue of MBP-MLE, assuming that the adoption times of the Ci
customers are fixed. From identity (II.4.6), r(i) is the solution to

r(i)x
(
r(i)
)

=

∑Ci
j=1 rj∑Ci

j=1 1/x(rj)
. (II.4.7)

For the first price cycle (i = 0), we assume that the policy starts with an initial guess
of parameters θ̂0. We also assume that C0 ≥ 3 so that there exists an ML estimator
when the first price change is calculated. Algorithm II.2 provides the outline for the
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MBP-MLE-Limited algorithm.

Algorithm II.2: MBP-MLE-Limited algorithm

Require: Initial parameters θ̂0 = (p̂0, q̂0, m̂0), max horizon length T , subperiod length δ,
and price change triggers {Ci, i = 0, 1, 2, ...,K} where C0 ≥ 3

1: function Limited-Price(θ, C, d, t)
2: for j ← 1, 2, . . . , C do
3: dV ← V (d+ j, t; θ)− V (d+ j − 1, t; θ)

4: rj ← inf
{
r : r ≥ − x(r)

x′(r)
− dV

}
. Calculate MBP-MLE for adoption d+ j − 1

5: ∆tj ← 1
ξd+j−1(θ)x(rj)

. Approximate the inter-adoption time for d+ j

6: t← t−∆tj
7: end for
8: r̄ ← inf

{
r : r · x(r) ≥

∑C
j=1 rj∑C

j=1 1/x(rj)

}
. Calculate the price for the C adoptions

9: return r̄
10: end function
11:
12: r0 ← Limited-Price(θ̂0, C0, 0, T ), s← 1, i← 1, D̂0 ← 0, Û0 ← ∅ . Initialization
13: while s ≤ T

δ
and D̂s < m0 do

14: Ûs ← Ûs−1 ∪ {(rs, D̂s + as)}, where as is the new sales in [δ(s− 1), δs) . Update
dataset

15: if as = 1 and D̂s + as =
∑i−1

k=0Ck then . Price change is triggered
16: θ̂s ← arg max

θ
Lt
(
Ûs | θ

)
. Update parameter estimate

17: rs ← Limited-Price(θ̂s, Ci, D̂s, T − δs) . Change price
18: i← i+ 1 . Increase number of price changes
19: else
20: rs ← rs−1 . Do not change price
21: end if
22: s← s+ 1 . Proceed to next period
23: end while

II.5 Analysis of pricing policies

We next characterize the performance of our proposed pricing-and-learning policies,
MBP-MLE and MBP-MLE-Limited. We do this by deriving analytic bounds on the gap of
their expected revenues against the oracle revenue R∗ defined in (II.3.1). Since R∗ is the
expected revenue of the oracle policy π∗ that knows θ0, then the expected revenue of any
pricing-and-learning policy cannot exceed R∗. Hence, for any pricing-and-learning policy
π with expected revenue R(π), the difference R∗−R(π) can be viewed as the revenue loss
of π.
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In this section, we derive asymptotic bounds on the revenue loss of our proposed
policies as the market size m0 grows. We will establish that the revenue losses of our
proposed policies grow at most sublinearly with m0 at the rate O(lnm0).

The challenge in bounding the revenue loss when demand follows a Markovian Bass
model is that pricing mistakes affect, not only the current revenue, but also the revenues
in any future time period. This is because adoption rates (hence, revenues) depend on
the cumulative adoptions, which in turn can be influenced by prices from any past period.
Hence, the effects of pricing mistakes can compound over time. To bound the revenue
loss, we then need to establish a non-stationary relationship among revenue loss, pricing
errors and estimation errors.

Let D∗ = (D∗t , t ≥ 0) and r∗ = (r∗t , t ≥ 0) denote the cumulative adoption process
and the price process, respectively, under the oracle policy π∗. The following proposition
states a general result for any pricing policy in the set of Ft-adapted policies Π. The
definitions of O,Ω, and Θ can be found in Section II.1.2. Particularly, we are interested
in the limiting behavior as m0 goes to infinity.

Proposition II.3. If π ∈ Π and there exists an α > 0 independent of t and m0 such that
Eθ0 [|rπt − r∗t |] ≥ αte−tm0

−1 for t ∈ [0, T ], then

R∗ −R(π) = O

Eθ0

 T∫
0

Dπ
t + 1

t+ t0
(rπt − r∗t )2dt

 , (II.5.1)

where t0 = Θ(m0
−1).

This important proposition establishes that the revenue loss of a policy π is bounded
by a weighted average of its squared pricing errors relative to the oracle policy π∗. Since
any past pricing error can linger and affect future adoptions, the weights represent the
cumulative effect of the pricing error on the revenue loss.

The idea behind the proof of Proposition II.3 is that we can decompose the revenue
loss into two parts:

R∗ −R(π) ≤ Eθ0

 T∫
0

|x(r∗t )r
∗
t − x(rπt )rπt | · ξ(D∗t )dt

+ Eθ0

 T∫
0

x(rπt )rπt · |ξ(Dπ
t )− ξ(D∗t )|dt


Note that at time t, the firm accrues revenue at the rate rπt ξ(Dπ

t )x(rπt ), where the
adoption rate exhibits a price effect x(rπt ) and a word-of-mouth effect ξ(Dπ

t ). The first
term in the decomposition measures the revenue loss in the current period only since it
assumes that the word-of-mouth effect is the same as the oracle policy. The second term
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captures the revenue loss due to the compounded word-of-mouth effects. We prove that,
under Assumption II.1, the first part grows in the order of the squared price difference.
As the mean difference in the proportions of adopters under π and π∗ vanishes at a fast
rate (Lemma A.2), the second part is dominated by the first part. The full proof can be
found in the appendix.

The implication of Proposition II.3 is that, to bound the revenue loss of a policy
π, it suffices to bound the squared price error between π and π∗. Our next result is
important since it establishes such a price error bound for policies that use the Markovian
Bass pricing function with a parameter sequence {θt, t ≥ 0} (i.e., at time t, offer the
price r∗t (θt, Dt) where Dt is the cumulative adoption). Note that both MBP-MLE and
MBP-MLE-Limited are policies of this type.

Lemma II.4. Consider a parameter sequence {θt = (pt, qt,mt), t ≥ 0} where θt is an
Ft-measurable random vector, and pt, qt,mt are finite, pt+qt > 0 and mt > 0 for all t ≥ 0

almost surely. If π is the policy that offers the Markovian Bass price with parameter θt,
i.e., rπt = r∗t (θt, D

π
t ), then for any t ∈ (0, T ],

Eθ0
[
(r∗t − rπt )2 | Ft

]
= Θ

(
Eθ0

[
(p̂t − p0)2 + (q̂t − q0)2 +

1

m2
0

(m̂t −m0)2 | Ft
])

+O
(

1

m0

)
.

(II.5.2)

The proof is in the appendix. The proof decomposes the squared pricing error as
follows:

Eθ0
[
(r∗t − rπt )2

]
= Θ

(
Eθ0

[
(r∗t (θ0, D

∗
t )− r∗t (θt, D∗t ))

2
])

+ Θ
(
Eθ0

[
(r∗t (θt, D

∗
t )− r∗t (θt, Dπ

t ))2
])

where both terms on the right-hand side are potentially affected by the market size
m0. The first term in the decomposition represents the pricing error originating from the
parameter estimation error, and the second term represents the pricing error originating
from the difference in cumulative adoptions (D∗t and Dπ

t ) as a result of price differences
up to time t. This second term reflects the fact that the deviation of rπt from r∗t is not
only from estimation errors but also from differences in the cumulative adoptions.

Lemma II.4 and Proposition II.3 together enable us to bound the revenue loss by the
parameter estimation error. Hence, the revenue loss of a data-driven pricing policy π can
be analyzed by studying the dynamics of parameter estimation errors under π.

Before proceeding with our analysis, we first derive a fundamental limit on the revenue
loss of data-driven pricing policies. This is usually accomplished by constructing a special
case of the problem that satisfies Assumption II.1, and showing that for any data-driven
pricing policy, the worst-case revenue loss associated with that special case cannot be
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lower than the fundamental limit (see Broder and Rusmevichientong 2012; Besbes et al.
2015). The following theorem states that Ω(lnm0) is the fundamental limit under the
special case of x(r) = e−r. (Note that this functional form satisfies Assumption II.1.)
Hence, the fundamental limit Ω(lnm0) serves as a benchmark for the revenue loss of
data-driven pricing policies in our problem setting.

Theorem II.2. Let x(r) = e−r with r ∈ [0, 2). Then for any pricing-and-learning policy
π ∈ Π, there exists a true value q0 ∈ [1/4, 5/4] such that R∗ −R(π) = Ω(lnm0).

The proof of Theorem II.2 requires showing that the pricing error is lower-bounded by
a rate inversely proportional to the sample size. This is formalized in Claim A.3 using the
Bayesian Cramer-Rao inequality (also known as van Trees’ inequality, see Lemma A.4),
which provides a lower bound on the performance of sequential decision policies. We then
use a tight version of Proposition II.3 (Claim A.2) to connect the pricing error to revenue
loss.

In the remainder of this section, we will analyze the expected revenue loss of several
pricing-and-learning policies, including our proposed policies MBP-MLE and MBP-MLE-
Limited. In the analyses, we assume x(·) is any function that satisfies Assumption II.1.
In fact, we will show that the revenue losses of our proposed policies are O (lnm0).

II.5.1 Revenue loss without learning

Consider a pricing policy πs that offers the Markovian Bass prices based on an initial
estimate θ̂0 that is never updated even when data is available. In fact, relying on an
initial estimate is the approach suggested in many papers including Bass (1969); Bass
et al. (1994) and Krishnan et al. (1999). Theorem II.3 below states that the revenue loss
of such a policy can be large and grows at least linearly in m0. Establishing the result
requires the following additional condition on x(·).

Assumption II.2. The marketing effort function x : R → R+ has the property that
there exists a constant C > 0 such that

∣∣∣ ∂2

∂r2 (rx(r))
∣∣∣ ≥ C for all −∞ < r <∞.

Assumption II.2 is not restrictive since it is easily satisfied as long as the instanta-
neous revenue rate, rx(r), is strictly concave in r, a standard assumption in the revenue
management literature.

Theorem II.3. Given a parameter estimate θ̂0, let πs be the pricing policy that offers
the price r∗t (θ̂0, D

s
t ) at time t where Ds

t is the cumulative adoptions by time t. Under
Assumption II.2 and if ‖θ0 − θ̂0‖2 = E2, then R∗ −R(πs) = Ω(E2m0).
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II.5.2 Revenue loss of MBP-MLE

We next establish an upper bound on the revenue loss of MBP-MLE. Unlike the simple
pricing policy πs, the MBP-MLE policy πM continuously updates the parameters of the
Markovian Bass price function using the ML estimators.

The implication from Proposition II.3 and Lemma II.4 is that the revenue loss of any
pricing-and-learning policy that uses the Markovian Bass price function with parameter
estimates depends only on the weighted mean squared error of those parameter estimates.
We can therefore use our bound on the estimation error of MLE in a Markovian Bass model
(Lemma II.3) to obtain a performance guarantee for the MBP-MLE policy. This is formally
stated in the following theorem. The detailed proof is provided in the e-companion.

Theorem II.4. If πM is the MBP-MLE policy, then R∗ −R(πM) = O (lnm0).

Note that Lemma II.3, Lemma II.4, and Proposition II.3 are important results for
establishing the upper bound. Intuitively, we have a O (lnm0) bound since the estimation
error at time t is inversely proportional to Dt + 1 (Lemma II.3), which incidentally is also
the weight applied to the pricing error in (II.5.1). The detailed proof of the theorem is in
the appendix.

Note that MBP-MLE fully exploits the current parameter estimate since the resulting
MBP price is not adjusted to improve the accuracy of parameter estimation. Despite not
actively doing price exploration, the revenue loss of MBP-MLE, O(lnm0), matches the
fundamental lower bound on the revenue loss of any data-driven pricing policy (Theo-
rem II.2). In Section II.5.5, we will discuss why learning appears to occur for free under
MBP-MLE.

II.5.3 Revenue loss of MBP-MLE-Limited

We now derive a performance bound for the MBP-MLE-Limited policy πM-Lim, a policy
with limited price changes. Recall that this policy requires a sequence {C0, C1, . . . , CK}
to determine the number of adoptions between price changes. In our asymptotic analysis
where the potential market size m0 grows, it is reasonable that either the number of price
changes, K, increases or the number of adoptions between price changes increases. In
either case, we assume that

∑K
i=0Ci = Θ(m0).

The following result establishes an asymptotic bound on the revenue loss of MBP-
MLE-Limited.
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Theorem II.5. Let πM-Lim be the MBP-MLE-Limited pricing policy where {C0, C1, . . . , CK}
are the number of adoptions between price changes with C0 ≥ 3. Then,

R∗ −R
(
πM-Lim) = O

(
max

{
C0, 1 + max

i=1,2,...,K

Ci
Ci−1

}
· lnm0

)
.

Compared with MBP-MLE, the cumulative pricing error originating from inaccurate
parameter estimates is larger, since the estimates are only updated at the price change
points. However, if the firm chooses price change points such that the number of adop-
tions between price changes grows exponentially large, the revenue loss grows at most in
logarithmic order. To see this, note that if C0 = 3 and Ci = C0a

i for all i = 1, . . . ,K

for some base a ≥ 2, then R∗ − R
(
πM-Lim

)
= O ((1 + a) lnm0). Hence, the revenue loss

bound still remains in the same order as that of MBP-MLE. However, the number of price
changes is Θ(lnm0), while MBP-MLE implements continuous price changes.

When Ci = C0a
i, most price changes occur during the early stages of adoption so that

the firm can collect enough information. At the later stages of adoption, the firm simply
exploits this and uses a relatively stable pricing strategy. Hence, price experimentation
primarily occurs at the start of the launch. Doing so can prevent significant revenue
loss overall. Note that using an exponentially growing sequence for Ci resembles many
learning-while-doing policies in the literature (e.g., Cheung et al. 2017 and Qi et al. 2017).

On the other hand, the firm can have a revenue loss that grows superlinearly when
it chooses a non-increasing sequence {Ci, i = 0, 1, 2, . . . ,K}, such as a decreasing or
constant sequence. For example, if C0 = C1 = . . . = CK = Θ(m0), then the expected
revenue loss can be as large as Θ (m0 lnm0). If the adoptions between price changes is non-
increasing over time, then to achieve O(lnm0) growth, the number of price changes must
be sufficiently large (at least in the order of m0). The reason is, with a non-increasing
sequence, since

∑K
i=0Ci = Θ(m0), this implies (K + 1)C0 ≥ Θ(m0). To maintain the

revenue loss to be bounded by lnm0, we need C0 = O(1).
Finally, we also comment on our choice of using adoption numbers to trigger price

changes. With this method, the number of adoptions are known when the ML estimates
are updated, so we can utilize our previous result on ML estimation errors (Lemma II.3)
in proving the bound on revenue loss. One could also consider a pricing policy where a
price changes are triggered by time (e.g., every Monday at 8 a.m.). While the two policies
do not differ much in terms of execution, characterizing the estimation accuracy in the
latter is harder to do because the cumulative number of adoptions at each price change
period is a random variable.
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II.5.4 Extension to an unknown marketing effort function

The two algorithms (MBP-MLE and MBP-MLE-Limited) and their asymptotic analysis
can be extended to the case where the marketing effort function x(·) is unknown. This
can be done if x is a Bernstein polynomial with unknown parameters.

Let x(r; γ) =
∑n

i=0 γibi,n(r) where n is the order of the polynomial, bi,n(r) =
(
n
i

)
ri(1−

r)n−i are the Bernstein basis functions, and γ = (γ0, γ1, . . . , γn) ∈ Rn+1 is a parameter
vector. (This requires price to be normalized to [0, 1]. This can be done without loss of
generality for any price r defined on [r, r] since we can transform our model by introducing
a new variable (r−r)/(r−r).) Bernstein polynomials are known to be able to approximate
any continuous function defined on [0, 1] (Lorentz , 2013). It has been proven that the
Bernstein polynomial approximation converges to the true function uniformly at a rate
of n−1/2 (Lorentz , 2013). Thus, assuming the marketing effort function is a Bernstein
polynomial is quite general. For example, the commonly used (see Robinson and Lakhani
1975 and Chow 1960) market effort function x(r) = a−br can be considered as a Bernstein
polynomial and x(r) = ea−br can be well approximated by Bernstein polynomials.

We assume the seller knows that x(·) is a Bernstein polynomial of order n, but she does
not know the true parameter vector, which we denote as γ0 = (1, γ0,1, γ0,2 . . . , γ0,n). The
seller uses maximum likelihood to estimate the n+ 4 Markovian Bass model parameters
(p0, q0,m0, γ0). Note that we normalized the vector γ0 such that γ0,0 = 1. This can
be done without loss of generality, and we will later show that this makes the model
identifiable under ML estimation.

Let µ = (β, γ), where β is the transformation defined in (II.4.4). The function Lt(Ût |
µ) is not necessarily jointly concave in µ. However, we will show that after a proper
transformation of the parameters, the log-likelihood function is strictly and jointly concave
in the transformed parameters when the data has an initial price exploration and there is
a sufficient number of adoptions. Specifically, consider the following transformation:

µ′ := (γjβ1, γjβ2, γjβ3, j = 0, 1, . . . , n)>. (II.5.3)

Here, µ′ is a vector of size 3(n+ 1). By definition, µ′3j+` = γjβ` where j = 0, 1, . . . , n and
` = 1, 2, 3. At time t, for each adoption i = 0, 1, . . . , D̂t, we can construct the following
3(n+ 1)-dimensional column vectors from the data Ût:

yi,s :=
(
bj,n(r̂s), bj,n(r̂s) · i, bj,n(r̂s) · i2, j = 0, 1, . . . , n

)>
, for any s ∈ [ti, ti+1]
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Then, the log-likelihood function under the transformed parameters µ′ simplifies to:

Lt(Ût | µ′) =
D̂t−1∑
i=0

lnµ′
>
yi,ti+1 −

D̂t−1∑
i=0

ti+1∫
ti

µ′
>
yi,sds−

t∫
t
D̂t

µ′
>
yD̂t,sds. (II.5.4)

It is easy to check that Lt(Ût | µ′) is jointly concave in µ′. In fact, Proposition II.4 next
states that it is strictly concave under some condition on the initial prices.

Proposition II.4. If D̂t ≥ 3(n+ 1) and if the price sequence (r̂ti+1
, i = 0, . . . , 3n+ 2) is

chosen such that the matrix

Y :=
(
y0,t1 y1,t2 · · · y3n+2,t3n+3

)
∈ R3(n+1)×3(n+1) (II.5.5)

has full rank, then the log-likelihood function Lt(Ût | µ′) is strictly and jointly concave
in µ′.

Note that the condition that Y is full rank is a condition on price exploration. Intu-
itively, this condition can be achieved if the prices offered to the first 3(n+ 1) adoptions
are sufficiently different. Hence, µ′ is identifiable under MLE if there is an initial price
exploration phase.

We next discuss how to recover µ from µ′. Due to our normalization γ0 = 1, we
have β1 = µ′1, β2 = µ′2, and β3 = µ′3. Furthermore, for any j = 1, . . . , n, we have
γj = µ′3j+1/µ

′
1 = µ′3j+2/µ

′
2 = µ′3j+3/µ

′
3. Given the data Ût, we can find the ML estimator

of µ′ by solving:
max
µ′
Lt(Ût | µ′)

s.t. µ′1 ≥ 0, µ′3 ≤ 0

µ′3j+1/µ
′
1 = µ′3j+2/µ

′
2, j = 1, . . . , n

µ′3j+2/µ
′
2 = µ′3j+3/µ

′
3, j = 1, . . . , n

(II.5.6)

We denote the solution to (II.5.6) as µ̂′t. We can then construct µ̂t = (β̂t, γ̂t) from the
solution µ̂′t.

Optimization model (II.5.6) has a strictly concave objective function (under the Propo-
sition II.4 condition) and a non-convex feasible set (due to nonlinear equality constraints).
Hence, we cannot use efficient techniques for convex optimization. Observe, however, that
if (µ′1, µ

′
2, µ

′
3) is fixed, then the problem has linear equality constraints, so the feasible set is

convex. Therefore, a method for solving (II.5.6) is to search for the largest log-likelihood
value over the space (µ′1, µ

′
2, µ

′
3) where, at each point in the space, a strictly concave
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function is maximized subject to linear equality constraints.
We next adapt the data-driven pricing policies MBP-MLE and MBP-MLE-Limited to

the case when x(·) is an unknown Bernstein polynomial. Whenever a parameter es-
timate is required in MBP-MLE and MBP-MLE-Limited, we use the ML estimators of
(p0, q0,m0, γ0). In fact, we can establish the rate of convergence of ML estimators, similar
to Lemma II.3. This is because the log-likelihood function Lt(Ût | µ) is continuously dif-
ferentiable and element-wise concave in all parameters. As a result, all arguments in the
proof of Lemma II.3 apply to ML estimators of µ0 = (β0, γ0). This gives us the following
Lemma II.3′.

Lemma II.3′. For any fixed time t, if k ≥ 3(n+ 1) and Y defined in (II.5.5) is full rank,
then

Eµ0

(
‖β̂t − β0‖2 | Dπ

t = k
)
≤ αβ
k + 1

, and

Eµ0

(
‖γ̂t − γ0‖2 | Dπ

t = k
)
≤ αγ
k + 1

,

where αβ, αγ are constants that are independent of m0.

The next step is to establish the relationship between the pricing errors and the es-
timation errors, similar to Lemma II.4. Let r∗t (µ, d) be the Markovian Bass price for
parameters µ = (β, γ) when the cumulative adoption is d and the elapsed time is t.
Below is our next result.

Lemma II.4′. Consider a parameter sequence {µt = (pt, qt,mt, γt,0, . . . , γt,n), t ≥ 0}
where µt is an Ft-measurable random vector, and pt, qt,mt, γt,j are finite, and pt + qt > 0

and mt > 0 for all t ≥ 0 and j = 0, . . . , n almost surely. If π is the policy that offers the
Markovian Bass price with parameter µt, i.e., rπt = r∗t (µt, D

π
t ), then for any t ∈ (0, T ],

Eµ0

[
|r∗t − rπt |2 | Ft

]
= Θ

(
Eµ0

[
‖µt − µ0‖2 | Ft

])
+O

(
1

m0

)
for some α > 0 independent of m0.

Therefore, utilizing Lemma II.3′, Lemma II.4′ and Proposition II.3, we derive similar
results as Theorem II.4 and Theorem II.5 under the extension to an unknown marketing
effort function.
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II.5.5 Discussion of why learning occurs for “free"

It should be noted that our bound O (lnm0) on MBP-MLE and MBP-MLE-Limited
coincides with the fundamental lower bound on revenue loss in Theorem II.2. It also
coincides with the lower bound derived in Broder and Rusmevichientong (2012) for the
class of well-separated problems. The well-separated condition means that any two distinct
parameters would generate non-intersecting expected demand curves. Although the model
in our setting is past dependent, the O (lnm0) revenue loss of MBP-MLE and MBP-MLE-
Limited still matches the fundamental lower bound.

When x(·) is known, it is surprising that the lower bound is achieved even if both
policies do not explicitly change price for the purpose of increasing learning accuracy
(i.e., experiment with price). In fact, both policies exploit the current information by
using the ML estimates as if they are the true parameters. We call this “learning-for-
free.” However, “learning-for-free” does not always happen when x(·) is unknown. As
shown in Proposition II.4, we need an initial price exploration phase to ensure the model
parameters can be uniquely identified. But, free learning occurs after this initial price
exploration phase.

We next discuss why learning occurs for free when x(·) is known and the parameters
of the Markovian Bass model are estimated using maximum likelihood. Note that the
log-likelihood function (II.4.3) is changing continuously over time even when price is
unchanged. Hence, the ML estimators are continuously updated in time regardless of
the price path. From Lemma II.3, the accuracy of the ML estimators increases as more
people adopt. Indeed, the ML estimators will converge to the true parameters under any
pricing policy as time t increases. The parameters will also converge under pricing that
exploits the current parameter estimates. Hence, exploration and exploitation can occur
simultaneously when the parameters are estimated using the maximum likelihood.

MBP-MLE allows continuous price changes, so the benefit from the increasingly ac-
curate ML estimators is immediately realized through pricing that exploits the current
estimates. This explains why the revenue loss is O(lnm0) even without changing prices
for the explicit purpose of price exploration. On the other hand, MBP-MLE-Limited has
limited opportunities to change prices. Though the ML estimators are continuously up-
dated and will converge to the true parameters with more adoptions (c.f. Lemma II.3 and
Lemma II.3′), the changes in the estimators are only reflected onto the price at the limited
price change epochs. Therefore, a key to limiting the revenue loss of MBP-MLE-Limited is
to judiciously set the intervals between price changes so that the information is exploited
late enough for an accurate estimator, but early enough for the price change to have an
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(a) Deviation of m̂ = −50% (b) Deviation of m̂ = 450%

Figure II.3: Cumulative revenue of MBP-MLE, MBP-MLE-Limited, and no-learning rel-
ative to the upper bound R∗ of the optimal pricing-and-learning revenue and 95% confi-
dence intervals.

impact on the total revenue. One possibility is to set the adoptions between price changes
to increase exponentially. Theorem II.5 and the ensuing discussion show that such a choice
achieves O(lnm0) revenue loss. Note that increasing the length of the exploitation periods
over time is similar to other policies proposed in the pricing-and-learning literature (see
for example Broder and Rusmevichientong 2012; den Boer 2015a).

The same logic discussed above is also behind why free learning occurs after the initial
price exploration phase in the case of an unknown x(·) function.

II.6 Numerical Study

We compare the performance of MBP-MLE, MBP-MLE-Limited, and a no-learning pric-
ing policy (i.e., MBP policy based on prior parameter values without updating) relative to
the optimal policy of the pricing-and-learning problem (II.2.9). We do this by numerically
computing the difference between the expected revenues of these heuristics to R∗, which
is the optimal expected revenue if the firm knows the parameter vector θ0.

Figure II.3 shows how the revenues are changing with respect to the initial modeling
error (i.e., by how much the initial parameter values are different from the true values).
In these examples, we assume that true parameters are θ0 = (p0, q0,m0) = (0.4, 0.6, 100).
The x-axis represents the percentage deviation (θ̂ − θ0)/θ0 of the initial estimate θ̂ =

(p̂, q̂, m̂) from the true parameters. We vary the percentage deviation of p̂ + q̂ from
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(d) Percentage Regret of MBP-MLE-Limited

Figure II.4: Cumulative revenue loss and percentage cumulative revenue loss of MBP-
MLE and MBP-MLE-Limited.

−90% to 400%, while the deviation of m̂ is −50% in (a) and 450% in (b). While the
revenue from the optimal policy can be explicitly computed, the revenues from other
policies are computed from a simulation with 102 trials. Along with the average revenue,
we show the 95% confidence intervals. The two panels of Figure II.3 cover all scenarios,
namely (overestimate p0 +q0, overestimate m0), (overestimate p0 +q0, underestimate m0),
(underestimate p0 +q0, overestimate m0), and (underestimate p0 +q0, underestimate m0).

In all the scenarios, the performances of MBP-MLE and MBP-MLE-Limited give us on
average 30% more revenue compared with MBP without learning. On the other hand, the
performance of a policy that uses only initial estimates degrades sharply as the error gets
large. In some instances, such a policy can lose more than 70% of the potential revenue.
In contrast, a policy with at most six price changes (MBP-MLE-Limited) based on the
data can perform as well as the optimal policy and a policy that requires continuous
price changes (MBP-MLE) for most cases except when initial errors are extremely large
(around 400%). Even in these cases, MBP-MLE-Limited is significantly better than the
no-updating policy. This implies that, if the firm is able to make a few price adjustments
after a launch based on the demand data, it can reap substantially more revenue.

Figures II.4 (a) and (b) illustrate how the algorithms perform as T becomes large
while keeping m0 fixed at a finite number. This is a setting that is not considered in
our asymptotic regime. We observe that the percentage revenue loss of MBP-MLE and
MBP-MLE-Limited, shown in Panels (c) and (d), decrease rapidly. Each dot in the figure
is the average revenue loss from a simulation of 102 trials. All cases assume that the
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true parameters are (p0, q0,m0) = (0.05, 0.1, 160) and initial parameters are (p̂, q̂, m̂) =

(0.4, 0.6, 280). We also assume that x(r) = e−r. From Figure II.4, we clearly see that the
revenue loss of policy MBP-MLE-Limited grows faster than that of MBP-MLE.

Note that MBP-MLE does not rely on a prior distribution of the unknown parameters.
Therefore, a natural question is: can the performance be improved by a Bayesian estimator
that uses a prior distribution? To answer this question, we conduct experiments on a data-
driven pricing policy that uses the maximum a posteriori (MAP) estimator. The MAP
estimator is the parameter value with the highest posterior probability value. Here, the
posterior distribution is computed by updating the prior distribution using Bayes’ rule
after taking into consideration the observed data. We devise a new policy where we use
the MAP estimate in the MBP price (in Theorem II.1). Accordingly, we name this new
policy MBP-MAP.

In the new experiments, we use MAP to estimate β = (β1, β2, β3), and assume a prior
distribution for β. Because β1 > 0 and β3 < 0, we assume the prior of β1 and −β3

follows a gamma distribution with the shape parameter to be α = 8. Because the sign
of β2 is free, we assume the prior of β2 follows a normal distribution N (µ, µ2/α). In the
experiments, we test two cases: (a) the mean of the Bayesian prior is the true value, (b)
the mean of the Bayesian prior deviates from the true value by −80%.
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Figure II.5: The true values of the parameters are m0 = 150, p0 = 0.4, q0 = 0.6, T = 40.
We run 100 experiments of the price sample paths and plot the average with the 95%
confidence interval.

Figure II.5 plots the sample average of the price paths (in 100 samples) and 95%
confidence intervals under the oracle policy, MBP-MLE, and MBP-MAP. We can see that
MBP-MLE (blue curve) and MBP-MAP with an accurate prior (green curve) have average
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price paths that converge to the optimal price (orange curve). In the short term when
there is little data, MBP-MAP with an accurate prior converges faster than MBP-MLE.
However, if the prior distribution is inaccurate, MBP-MAP (red curve) has an average price
path that is significantly different than the optimal price path. This highlights a weakness
of a Bayesian approach in our setting where pricing mistakes can have a lingering effect:
that the performance can be very sensitive to the accuracy of the prior when problem
size m0 is relatively small. On the other hand, the quality of prior knowledge has little
impact on MBP-MLE.

II.7 Conclusion

This chapter considers how the firm can incorporate learning into pricing decisions
for a new product when the demand model parameters are unknown but can be learned
from data collected over time. Since firms often do not have sufficient information about
adoption behavior and future demand, our work shows that the ability to integrate real-
time sales data into the pricing decision can significantly increase revenue.

To develop the mathematical machinery that allows us to capture learning, we propose
a new stochastic adoption model, called the Markovian Bass model, that features all the
factors affecting state transitions as the generalized Bass model (Bass , 1969; Bass et al.,
1994). We then show that our Markovian Bass model converges to the Bass model as the
market size grows.

Building on this foundation, we study the setting where the seller forms an inference
about the unknown Markovian Bass model parameters using maximum likelihood esti-
mation (MLE). We derive the seller’s optimal pricing-and-learning policy that strikes a
balance between price experimentation and revenue earning. While we are able to char-
acterize the value function of the optimal policy (MBP-MLE-Learning), it is difficult to
solve for the optimal policy due to the curse of dimensionality.

Instead, we propose two computationally tractable pricing policies that utilize the ML
estimator: MBP-MLE when the retailer has full flexibility to change the price, and MBP-
MLE-Limited when the firm must limit the number of its price changes. We show that the
worst-case revenue loss of the MBP-MLE grows sub-linearly in the market size. Through
a theoretical analysis, we show that the MBP-MLE-Limited achieves the same order of
worst-case expected revenue loss as long as the price change intervals are carefully chosen
(i.e., the number of adopters between price changes is growing exponentially).

Our framework shows that one can use MLE to derive the optimal learning policy or
to develop simple data-driven algorithms with bounded revenue loss when the underlying
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stochastic process is a continuous time Markov chain. Our result can be applied to
other stochastic optimization problems (e.g., pricing, inventory) where the structure and
evolution of MLE are well-behaved and leads to state reductions or efficient algorithm
development.
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CHAPTER III

On the performance of certainty-equivalent pricing

III.1 Introduction

In recent years, many companies have used dynamic pricing as one of the levers to
improve their sales revenue. Starting from the travel and hospitality industries with
perishable inventory, dynamic pricing is now used in retail, logistics, services, and so
on. The objective of dynamic pricing is to maximize the expected revenue over a finite
selling horizon. An optimal dynamic pricing policy chooses the price that maximizes the
expected revenue for the remainder of the horizon, given the current state (e.g., inventory,
cumulative sales, etc.) and the future demand.

In many settings, future demand is uncertain and depends on factors that can change
over time. For example, when future demand is driven by a network effect, then demand
depends on cumulative sales. When inventory availability has a negative or positive effect
on future demand (known as scarcity or display effects), then demand is affected by the
state (e.g., inventory level) of the dynamical system.

These examples of state-varying demand have long been recognized phenomena in
marketing and operations management literature. For example, network effects are mod-
eled in the seminal Bass diffusion model (Bass , 1969) which is found to fit the empirical
demand curve of new products quite well. In this model, sales of a new product are
primarily driven by word-of-mouth from satisfied customers. Display effects (demand is
high when inventory is high) have been observed in sales data by Wolfe (1968); Smith
and Achabal (1998); Caro and Gallien (2012). This effect is attributed to more people
noticing the product if there is more inventory. Scarcity effects (demand is high when
inventory is low) have been observed experimentally or empirically by Van Herpen et al.
(2009); Balachander et al. (2009); Cui et al. (2019); Cachon et al. (2018). This effect is
attributed to the increase in perceived value because of exclusivity, creating a sense of
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urgency among customers to “act fast”. With the rise of e-commerce and social media
platforms where network or inventory effects could be amplified, it is not surprising that
the demand for a product could depend on past sales or inventory.

In order to determine the optimal prices in such settings, the seller must know the
distribution of future demand. However, when demand is a complex and state-varying
stochastic process, the seller may not have complete demand information. In many set-
tings, the seller’s best available information is the estimate of the average demand in
future periods. Indeed, estimating conditional means from data uses standard statistical
methodologies (relying on strong results like the law of large numbers), whereas estimating
an entire distribution requires a much larger data set and more sophisticated approaches.

In this chapter, we study a periodic-review1 pricing problem over a finite horizon and
with finite inventory when the demand distribution is state-varying. The key features
that distinguish our demand model from others in the dynamic pricing literature are that
we assume that the future demand and its distribution are state-dependent (where the
state variables in our setting are the total past sales and the current inventory level)
and that the seller only has limited information about the demand distribution. When
demand is state-dependent, a pricing mistake not only reduces the current period revenue,
but also changes future demand since the mistake affects cumulative sales and available
inventory. Thus, price in one period has a lingering effect on future demand. Furthermore,
when there is a limited number of opportunities to change price, the price chosen at each
period has persistent implications beyond the current period. Lack of knowledge about
the demand distribution makes the pricing decision more difficult and nonoptimal pricing
more consequential.

Certainty equivalent (CE) pricing policies are commonly used when the seller has access
to the expected demand rather than the entire distribution. Specifically, these policies
rely on solving the deterministic counterparts of the stochastic problem by replacing all
random variables with their expected values. An “open-loop” CE policy implements the
optimal price sequence of the deterministic model. Although actual prices of this policy
can change during a sales season, they are static in the sense that the deterministic
problem is solved once to obtain the price schedule for the entire season. In contrast, a
“closed-loop” CE policy re-optimizes the deterministic model on a rolling horizon using
current inventory information at the beginning of each period. Hence, prices are adjusted

1Periodic review means that prices can only be changed at the start of each period. While a continuous
review of pricing is ubiquitous in analytical models of dynamic pricing, periodic pricing changes are often
more appropriate in reality (Yang and Zhang , 2014; Bitran and Mondschein, 1997). Indeed, periodic
pricing schemes are widely observed in practice. For example, many brick-and-mortar stores update their
prices weekly as changing prices often requires changing price stickers and are costly to implement.
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over time based on the realizations of demands in past periods.
Both open-loop and closed-loop CE pricing policies are well-studied under a canonical

setting where demands across time are independent and price is reviewed continuously
(Gallego and Van Ryzin, 1994; Jasin, 2014). However, even though the phenomena of
state-varying demand and periodic pricing reviews are well-recognized to occur in practice,
to the best of our knowledge, there has been yet no study of how CE pricing policies
perform when the problem setting exhibits these features. Our work addresses this gap.

A major challenge with this setting is that the state-dependent demand results in
non-convex stochastic and deterministic problems that are challenging to analyze. A
modeling contribution of our paper is to introduce a general state-dependent demand
modeling framework where the certainty equivalent policy is amenable to analysis. Our
framework is general in the sense that it includes many of the state-dependent demand
models proposed in the literature, such as Bass (1969); Smith and Achabal (1998); Shen
et al. (2013); Smith and Agrawal (2017).

An initial focus of our analysis is to establish the tractability of solving for the optimal
CE policies. The deterministic version of the stochastic problem appears to be difficult
to solve at first, due to demand censoring terms in the objective and non-convex con-
straints. However, through a series of transformations, we show the problem is equivalent
to a convex optimization model that has a unique interior solution, and hence can be
solved efficiently through interior point methods. Hence, solving for the CE policy is
computationally tractable.

Next, we study the analytic performance bounds for the CE policies by comparing their
expected revenues against the true (unknown) optimal expected revenue. We do this in
two steps. First, we show that for any demand distribution whose conditional mean
satisfies simple regularity assumptions, the optimal revenue of the deterministic model is
an upper bound for the stochastic optimal expected revenue. Although a deterministic
upper bound can be trivially established in the canonical dynamic pricing setting (e.g.,
Gallego and Van Ryzin 1994), these standard techniques cannot be used in our setting with
state-dependent demand and periodic price changes. Hence, we develop a novel induction
argument and establish this upper bound using dynamic programming reformulations of
the deterministic and stochastic problems.

Second, we show that as the initial inventory and the expected demand are both scaled
by m, the gap between the expected revenue of a CE policy (open-loop or closed-loop)
and the deterministic upper bound grows in the order O(

√
m). We refer to this gap as the

expected revenue loss. Since the deterministic revenue scales linearly in m, our analysis
implies that both CE policies are asymptotically optimal as the problem scale increases.
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In our setting with state-dependent demand, proving the O(
√
m) upper bound on the

revenue loss is challenging since the analysis must apply for any state-dependent distribu-
tion (satisfying some regularity conditions). By constructing an appropriate martingale
and utilizing the Azuma-Hoeffding inequality, we show that the sequences of states vis-
ited by the CE policies converge (as m increases) to the states visited by the deterministic
optimal policy.

When demands are independent across periods, Jasin (2014) proves that re-optimization
can reduce the revenue loss from O(

√
m) to O(logm). We show that when demand is

state-dependent, this same order reduction cannot be guaranteed for a re-optimization
policy. We do this by proving that in our setting the expected revenue loss of both
CE policies is lower bounded by Ω(

√
m). Hence, our O(

√
m) bound on the expected

revenue loss is tight for both CE policies. What this means is that re-optimization has
less benefit in our setting compared to its benefit under independent demand. In the lat-
ter setting, the reduction to O(logm) requires the condition that more inventory strictly
improves the revenue (condition µD > 0 in Theorem 1 of Jasin 2014). However, in our
setting of state-dependent demand, more inventory could result in a strictly lower revenue.
An example where this could happen is when scarcity boosts sales, so higher inventory
results in a lower demand rate.

In our numerical experiments with small m, we show that there is a benefit for re-
optimization. This benefit increases as the number of review periods increases or as the
conditional mean of future demand becomes more nonlinear in the state variables. Fur-
ther, both CE policies perform very well, even when m is small (and thus far from the
asymptotic limit of m → ∞). Combined with our asymptotic results, this suggests that
the CE approach can be used in both large and small markets. To derive a policy that can
be used in practice, our policy explicitly takes as an input the number of price changes
allowed during a selling season. We show, through large-scale numerical experiments,
that just a few price changes are needed to recover nearly the same profit as an optimal
policy for a continuous-time model with arbitrarily many price-change opportunities. The
numerical experiments also provide guidance for choosing the number of price changes.
In our simulations, as little as two to five price changes suffice to recover more than 95%

of potential revenue from a continuous-time model. A little bit of price flexibility goes a
long way. This is reminiscent of Gallego and Van Ryzin (1994)’s finding that a fixed price
is sufficient to recover the potential benefits of full dynamic pricing at the asymptotic
rate O(1/

√
m) for stationary demand. There is one notable difference. Because future

demand depends on price, cumulative sales, and remaining inventory in our model, we
show analytically that a fixed-price policy performs poorly.
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Finally, we extend our analysis to the case where the firm needs to determine the
initial inventory (in addition to prices) and show that the CE policy performs well in a
joint pricing and inventory problem under state-dependent demand. We believe this to
be the first such result in the literature.

III.1.1 Literature review

In the operations literature, deterministic (CE) formulations are extensively studied,
with a focus on deriving their structural properties. Thomas (1970); Rajan et al. (1992);
Smith and Achabal (1998); Chen et al. (2001); Deng and Yano (2006);Geunes et al. (2006);
Shen et al. (2013) study the joint decisions of pricing and production/inventory policies
with deterministic demand. Sethi et al. (2008) propose the optimal advertising and pric-
ing for a monopoly product under a deterministic demand process. Krishnamoorthy et al.
(2010) extend the analysis to a duopoly market. Banker et al. (1998) use a determinis-
tic optimization problem to study quality management. However, none of these papers
theoretically analyze how well CE policies perform in stochastic settings.

On the other hand, the performance guarantee of CE policies are commonly studied
in revenue management literature, where such policies are adopted either because of their
simplicity (Gallego and Van Ryzin, 1994) or because the stochastic problem is difficult
to solve (Gallego and Van Ryzin, 1997; Bumpensanti and Wang , 2020; Lei et al., 2021).
A number of papers establish theoretical performance bounds for CE policies. The vast
majority of the papers that analyze CE policies for dynamic pricing problems make two
general modeling assumptions (Gallego and Van Ryzin, 1994, 1997; Jasin and Kumar ,
2012, 2013; Jasin, 2014). First, demand is assumed to follow a specific stochastic process
(e.g. a Poisson process) that depends only on the current price, so future demand is in-
dependent of the past demand. Second, they assume price can be changed continuously.
We refer to these two conditions as the classical dynamic pricing setting. The first con-
dition results in a customer’s purchase affecting the seller’s current revenue but not its
future demand. The second condition allows the seller to shut off demand immediately
(by charging a high price) at the moment inventory runs out. Together, these two con-
ditions allow associated CE problems to be formulated as a linear or convex programs.
Thus, theoretical analyses of these settings utilize existing tools from linear or convex
optimization (e.g., strong duality).

Under the assumption that customers arrive according to a homogeneous Poisson
process, Gallego and Van Ryzin (1994) show that a fixed price is the solution to the
CE problem, and the fixed-price CE policy is asymptotically optimal. In particular, they
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show the revenue loss of the CE pricing policy is O(
√
m)2 when the total demand and

the initial inventory are both scaled by m. Gallego and Van Ryzin (1994) is the first
paper to show that, under certain conditions, a fixed-price CE policy performs close to
the optimal policy with continuous price changes. Since then, a number of papers show
similar guarantees for open-loop CE policies. For instance, Gallego and Van Ryzin (1997)
and Jasin (2014) provide performance guarantees for open-loop CE controls in the network
revenue management setting.

One potential weakness of an open-loop policy is that the price (which was computed
assuming a representative sample path) is not adjusted to actual demand realizations. To
overcome this, a number of papers examine the effectiveness of using reoptimization and
modifying a CE policy with closed-loop feedback. Some have studied settings in which
closed-loop CE policies do not always outperform open-loop policies, such as in booking
limit and bid price controls for network revenue management (Jasin and Kumar , 2013).
On the other hand, there are papers showing that closed-loop policies outperform open-
loop policies (Maglaras and Meissner , 2006; Chen and Farias , 2013). Jasin and Kumar
(2012) show that implementing a closed-loop CE policy in a probabilistic manner for a
network revenue management (NRM) problem can have a revenue loss upper bounded by
O(1), which is independent of the problem scale. Bumpensanti and Wang (2020) establish
a similar loss bound by re-solving the deterministic linear program approximation for the
NRM problem under a less restrictive assumption. Reiman and Wang (2008) propose a
closed-loop CE pricing policy where the re-solving time is endogenously determined by
the heuristic. The expected revenue loss of their policy is o(

√
m).

Different from the above settings studied in RM literature, we examine how CE policies
perform under general state-dependent demand settings where the seller reviews prices
periodically. In particular, we consider the case where demand depends on the cumulative
sales and/or on the remaining inventory. Our analysis does not need to assume a specific
demand distribution and is general enough to include existing demand settings in the RM
literature such as continuous-time Poisson demand arrivals. Accordingly, we contribute
to the dynamic literature by providing general conditions under which the CE policy can
be an effective alternative to solving the original stochastic optimization problem.

We conclude this section with a table (Table III.1) that positions our work among
those we found closest to our setting. As the reader can see, antecedent models in the
dynamic pricing literature share some (but not all) of the features of our framework.
The dynamic pricing literature is vast, each paper in the table is only representative of a

2Notation O,Ω,Θ are defined in Section III.1.2.
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Table III.1: An overview of closely related papers in the literature.

State-dependent
demand

Periodic
pricing Stockout

Partial
demand

information
Inventory
decision

Gallego and Van Ryzin (1994) No No No No(a) No

Bitran and Mondschein (1997) No Yes
Lost
sales No Initial

Feng and Gallego (2000) Yes No(b) No No No

Shen et al. (2013) Yes No

Backlog
& lost
sales No Replenish

Yang and Zhang (2014) Yes Yes Backlog No Replenish

This work Yes Yes
Lost
sales Yes Initial

(a) Original paper assumes Poisson demand distribution.
(b) Considers only finitely many price levels.

number of papers with related questions, models, and results.

III.1.2 Preliminaries

Throughout the paper we use the big O notation in expressions f(x) = O (g(x))

where f and g are positive real-valued functions if there exists an r ∈ R such that
f(x) < rg(x) for x sufficiently large. Similarly, if f(x) = Ω (g(x)), then f(x) > rg(x).
When f(x) = O (g(x)) and f(x) = Ω (g(x)), it is represented by f(x) = Θ (g(x)).

III.2 Modeling framework

We present the limited information periodic review pricing problem when the only
information about the stochastic per-period demand is its conditional expectation. In
this model, a monopolist is selling a product with finite inventory α > 0 over a finite
horizon. The firm can dynamically change the price, but these price changes can only
occur periodically at certain price review periods {1, 2, . . . , T}. After the firm chooses a
price πt ≥ 0 for period t, a random variable Dt is realized, representing the demand in
period t. After the demand Dt is realized, it is satisfied to the maximum extent using
the remaining inventory. We denote the remaining inventory at the end of period t as Nt,
where N0 = α. Any unmet demand is lost. Goods not sold by the end of period T are
salvaged at a (normalized) value of 0. The firm does not know the true distribution of
Dt, but it knows the conditional expectation of Dt. Specifically, conditional on the state
at period t and the price, the expectation of Dt is a known function of the price πt, of the
cumulative past sales, and of the remaining inventory.
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The challenge when the firm only knows the conditional expectation of demand is that,
if it makes a pricing mistake due to limited information, these mistakes can be costly since
future demand is state-dependent. This is because the demand depends on the past sales
and the remaining inventory, so any past pricing mistakes can have a lasting effect on
future demand. In this paper, we will present pricing policies that only make use of the
information on the conditional expectation of demand and analyze their performance in
an asymptotic setting (specified in Section III.4.2). In the asymptotic setting, we scale
both the expected demand rate and initial inventory by a factor of m > 0 while keeping
number of price changes T fixed. This means we consider the setting where both demand
and inventories are large.

III.2.1 Demand model

We begin by describing the demand model. Let Pt denote the total cumulative demand
up to period t, where Pt =

∑t
s=1Ds. We define Ft = σ(P0, P1, . . . , Pt) to be the smallest

σ-field where variables P0, P1, . . . , Pt are measurable and let F = {F0,F1, . . .} be the
associated filtration.

A distinctive feature of our model is that the per-period demand Dt is a random
variable whose distribution may depend on the demand realizations from past periods.
However, we assume that conditional on Ft−1 and the price πt, the distribution of Dt only
depends on the price, on the cumulative sales α−Nt−1, and on the remaining inventory
Nt−1. Note that the cumulative sales α−Nt−1 is not the same as the cumulative demand
Pt−1. It is possible that α −Nt−1 < Pt−1, which happens whenever the seller stocks out
due to the cumulative demand Pt−1 exceeding the initial inventory N0 = α.

This feature of the demand model is formalized next.

Assumption III.1. Conditioning on Ft−1 and price πt, the distribution of Dt depends
only on πt, the remaining inventory Nt−1, and the cumulative sales α−Nt−1. Furthermore,

E[Dt | Ft−1] = λ(Nt−1, α) · x(πt) (III.2.1)

for some functions λ and x. /

The term λ(Nt−1, α) represents how the remaining inventory Nt−1 and the cumulative
sales α−Nt−1 affect the expected demand in the next period, and so we call λ the sales
and inventory sensitivity (SIS) function. We call x(πt) the price sensitivity function since
it represents the effect of price on the expected demand. We assume that the seller knows
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Notation Description
T number of price review periods
πt price at period t
Dt stochastic demand in period t
Nt remaining inventory at the end of period t
α initial inventory level
x(πt) price sensitivity function of demand
λ(Nt−1, α) sales and inventory sensitivity (SIS) function of demand

Table III.2: Notation for modeling framework.

the functions λ(·, ·) and x(·), and that the only information available to the seller about
the demand distribution is the functional form of the conditional expectation.

Assumption III.1 states that the expected demand is of a multiplicative form which
separates the effect of the current period price from the effect of past sales and inven-
tory. Many papers use multiplicative demand functions; for instance, Smith and Agrawal
(2017); Bass et al. (1994); Krishnan et al. (1999). See the review paper Urban (2005) for
additional discussion. The assumption that the mean demand can depend on cumulative
sales and available inventory enables us to capture situations where demand is driven by
network effects (e.g., the word-of-mouth effect) or inventory availability (e.g., the scarcity
effect). Table III.2 summarizes the notation of our framework, working from (III.2.1) as
a primitive.

Assumption III.2. The SIS and price-sensitivity functions have the following properties:

(i) x : [0,∞) 7→ [0, 1]. Moreover, there exists a finite choke price πc where x(πc) = 0.
(ii) x is continuously differentiable and strictly decreasing (that is, x′(π) < 0 for all

π ≥ 0). This implies that the inverse x−1 : [0, 1] 7→ [0,∞) exists and is a decreasing
function.

(iii) The virtual value function, π + x(π)
x′(π)

, is increasing in π.
(iv) ρ(π) , πx(π) is continuously differentiable in π and ρ′′(π) exists for all π < πc.
(v) λ : [0,∞)2 7→ [0, λ] for some λ > 0, and λ(n, α) > 0 for any 0 < n ≤ α.
(vi) λ is jointly concave and continuously differentiable in both of its arguments.
(vii) π`(n) , x−1(n/λ(n, α)) is differentiable in n for n ∈ [0,∞). /

Assumption III.2(i)-(iv) are standard properties of a price sensitivity function in the
revenue management literature. The condition in Assumption III.2(i) that x(π) ≤ 1 is
without loss of generality since, if it does not hold, we can simply scale the λ function cor-
respondingly. The range [0, 1] gives an interpretation of price sensitivity as proportionally
“clawing back” on “raw” demand. The existence of the choke price implies that if the price

50



is too high, no one buys. Assumption III.2(iii) is common in the inventory and revenue
management literatures, as it facilitates establishing the concavity of value functions (for
a discussion, see Ziya et al. 2004; Lariviere 2006). Here, π + x(π)

x′(π)
is known as the virtual

value function since it represents the virtual value of the marginal demand resulting from
a marginal price change to π. Assumption III.2(iv) implies that the effective revenue rate
ρ is a strictly concave function and so has a unique maximizer π̄ in [0, πc]. That is, price
π̄ provides the optimal effective revenue rate. Assumption III.2(vii) is an assumption on
both λ and x. It states that the lowest price π`(n) that can be charged without stocking
out a supply of n in expectation is differentiable in n.

The following examples illustrate how a variety of demand models studied in the
literature satisfy the conditions of Assumptions III.1 and III.2.

Example 1 (Sales-dependent demand). The generalized Bass model of Bass et al. (1994)
and Krishnan et al. (1999) describes demand that is influenced by customers who have
previously bought the product. Given a population of size k, the expected demand under
this model is E[Dt | Ft−1] = λ (Nt−1, α)xt, where

λ(Nt−1, α) = (k − α+Nt−1)

(
p+ q · α−Nt−1

k

)
, (III.2.2)

and xt captures the effect of advertising or price on the average demand. If xt = x(πt)

is a time-stationary function of price, then it is a price sensitivity function of the form
we study in this paper. Existing literature usually assumes the price sensitivity function
x takes the form of an exponential (Shen et al., 2013) or linear (Raman and Chatterjee,
1995) function. In both these cases, x is consistent with Assumption III.2. Note that λ
in (III.2.2) also satisfies Assumption III.2. /

Example 2 (Scarcity effect on demand). Yang and Zhang (2014) and Sapra et al. (2010)
model the scarcity effect in an additive demand model. Note that the assumptions used
in their paper satisfy all of Assumption III.2, but their demand format is in additive form,
thus violating Assumption III.1. However, the multiplicative version of Yang and Zhang
(2014) fits our framework and assumptions. To see this, the expected demand (written
in our notation) is E[Dt | Ft−1] = λ(Nt−1)x(π), where λ(Nt−1) is twice differentiable and
concave decreasing in the remaining inventory Nt−1. The scarcity effect is captured since
λ is decreasing in Nt−1. /

Example 3 (Display effect on demand). Smith and Agrawal (2017) model inventory
display effects through the expected demand function E[Dt | Ft−1] = λ(Nt−1)x(π).3 The

3Smith and Agrawal (2017) consider a multi-location inventory model where inventory is sold to
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display effect is captured by the fact that λ is an increasing function of Nt−1. A canonical
case that leads to several analytic results in Smith and Agrawal (2017) can be adapted to
our framework with minor modification as follows:

λ(Nt−1) = k(Nt−1/(kNr))
β (III.2.3a)

x(π) = e−γπ/ce − εx, (III.2.3b)

where k is a market size, Nr and ce are reference values, and 0 < β < 1, γ > 0, and εx > 0.
Note that λ is concave, reflecting a diminishing marginal rate of return. Including εx in
(III.2.3b) is a modification of the model in Smith and Agrawal (2017) (which assumes
εx = 0) so that a finite choke price exists. Since the choice of εx is arbitrary, it does not
change the results and insights of their paper. We can easily verify that these choices for
λ and x satisfy Assumption III.2. /

We also make the following assumption on the variance.

Assumption III.3. There exists a constant σ ≥ 0 such that the conditional variance of
Dt for every period t does not exceed σE(Dt | Ft−1).

Assumption III.3 implies that, relative to the mean, the variance of demand does not
become too large. This is not a restrictive assumption. Assumption III.3 is not any
stronger than what is assumed in classical dynamic pricing literature where it assumed
that demand follows a Poisson or Bernoulli process (Gallego and Van Ryzin 1994; Jasin
2014) which satisfy Assumption III.3. In fact, we are imposing weaker assumptions than
in those works since we are not assuming a specific demand model for our analysis to work.
As we show in the following example, many variations of demand models where underlying
randomness is governed by normal distributions, Poisson processes, and Markov chains
satisfy this assumption. If σ = 0 then demand is deterministic, which is also included in
the class of demand models considered this paper.

Example 4. The following are a few distributions that satisfy Assumption III.3:

(a) Dt = λ(Nt−1, α)x(πt) + εt, where εt is a random component that has a normal
distribution with zero mean and variance σ,

customers in multiple locations and the seller must decide how to allocate a fixed inventory between
locations. Our model is for a single location, so we adapt the single-location development (in Section 1)
of Smith and Agrawal (2017). Focusing on Smith and Agrawal (2017) was largely an arbitrary choice, any
number of display effect demand models could have been set into our framework (for example, Kopalle
et al. 1999; Wang and Gerchak 2001).
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(b) Dt has a Poisson distribution with mean λ(Nt−1, α)x(πt). A common demand dis-
tribution assumed in dynamic pricing literature is a Poisson process with constant
arrival rate λ. This demand model fits our framework since it satisfies Assump-
tions III.1 to III.3.

(c) Dt is an aggregation of a continuous time Markov chain with transition rate

λ(Nt−1, α)x(πt).

III.2.2 The dynamic pricing problem with complete information

We first formulate the dynamic pricing problem when the seller has complete informa-
tion of the demand process. When the seller does not have explicit information about the
demand distribution, the corresponding stochastic optimization model cannot be solved.
However, this model later serves as a baseline to evaluate the performance of the certainty-
equivalent policies which operate on partial information.

Starting with initial inventory α, the seller chooses a price for each period based on
the state. (We call this a periodic-review pricing policy or simply pricing policy.) By
Assumption III.1, the conditional distribution of demand Dt given Ft−1 depends on the
remaining inventory Nt−1, and the cumulative sales α −Nt−1. Therefore, the remaining
inventory Nt−1 is sufficient to describe the state of the system at time t. Formally, a
pricing policy π : [0,∞) × {1, . . . , T} 7→ R+ (where R+ is the set of nonnegative real
numbers) determines the price πt = π(Nt−1, t) to charge at review period t given state
Nt−1. The seller chooses an Ft-adapted pricing policy π to influence the demand during
the selling horizon. The expected total revenue of a pricing policy π is

V π(T ) = E

[
T∑
t=1

π(Nt−1, t)
(
Dt − [Dt −Nt−1]+

)]
. (III.2.4)

Note that, in our problem setting, the demand Dt can exceed the inventory Nt−1. Hence,
a demand censoring term is included in the objective function as the total sales cannot
exceed the remaining inventory. It means that, at each period, the revenue is earned
only on actual sales min(Nt−1, Dt) = Dt − [Dt −Nt−1]+. In the next period, the seller
will start with the remaining inventory Nt = [Nt−1 −Dt]

+ for all t ≥ 1, where N0 = α.
The expectation in (III.2.4) is taken with respect to a stochastic demand process that is
consistent with Assumptions III.1 to III.3.

Remark III.1 (Notational conventions). The superscript π of V π(T ) denotes decisions
by the seller. Since we examine how the number of price changes (T ) affects the algorithm
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and resultant profits, we do not suppress T . /

In light of the properties of the price sensitivity function x, we can recast the seller’s
decision problem. Assumption III.2(ii) allows us to introduce a new variable yt = x(πt)

called the induced demand intensity for price πt (or simply intensity) at review period
t. The price πt = x−1(yt) is uniquely determined by the intensity yt, thus, every pricing
policy π has an equivalent demand intensity policy y : [0,∞)×{1, . . . , T} 7→ [0, 1]. Note
that for any intensity policy y, by Assumption III.1 we have

E [Dt | Ft−1] = λ(Nt−1, α)y(Nt−1, t), for all t = 1, . . . , T. (III.2.5)

As the existing literature (e.g. Gallego and Van Ryzin 1994) shows, intensity control
problems are easier to analyze than pricing problems, and so we recast the problem as
one where the seller is choosing an intensity policy. The expected revenue of an intensity
policy y is

V y(T ) , E

[
T∑
t=1

x−1 (y (Nt−1, t))
(
Dt − [Dt −Nt−1]+

)]
. (III.2.6)

Discussion of the set of candidate (feasible) intensity policies is needed to complete
the description of the seller’s problem. We let Y , {y : [0,∞) × {1, . . . , T} → [0, 1] |
Ft-adapted} denote the set of all feasible policies. The seller’s problem is to choose
a feasible intensity policy (and thus pricing policy) to maximize the expected revenue,
which is equivalent to solving the following problem:

V ∗(T ) , max
y∈Y

V y(T ). (P)

We denote the optimal value of this optimization problem (P) by V ∗(T ). Consistent with
our discussion in Remark III.1, parameter T remains an argument of the function V ∗(T ).

III.3 Certainty-equivalent policies

Note that solving the stochastic pricing problem (P) requires knowing the demand
distribution at all states. This is not possible in our setting as the seller only knows the
conditional expectation of demand: λ(·, ·) and x(·). In this section, we introduce pricing
policies that only require the limited information in our setting. We refer to these as the
certainty-equivalent (CE) policies, since they rely on solving a deterministic counterpart
of the stochastic pricing problem (P).
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III.3.1 A deterministic optimization model

We first introduce a deterministic optimization model refered to as (D†):

V D†(T ;u, α) , max
n∈RT+1

y∈RT

T∑
t=1

x−1(yt) min (λ(nt−1, α)yt, nt−1) (D†a)

s.t. nt = [nt−1 − λ(nt−1, α)yt]
+ for all t = 1, . . . , T (D†b)

n0 = u (D†c)

yt ∈ [0, 1] for all t = 1, . . . , T. (D†d)

Note u and α are parameters of (D†), and we assume that 0 ≤ u ≤ α. Here, u and α can
both be interpreted as inventory levels. Whenever u = α, we can check that (D†) is the
deterministic relaxation of (P), where we replace all random variablesDt with their expec-
tations λ(nt−1, α)yt. Note that (D†) determines a vector of intensities y = (y1, y2, . . . , yT ),
whereas (P) finds an intensity policy function y : [0,∞) × {1, . . . , T} 7→ [0, 1]. Here,
n = (n1, n2, . . . , nT ) is the vector of remaining inventories under the deterministic demand
model. Once a feasible vector y is chosen, the associated feasible vector n is immediately
determined.

Note that the objective function (D†a) in the deterministic model contains censored
terms, hence it is non-differentiable. Furthermore, (D†b) is a non-convex constraint.
Hence, at first, the problem appears difficult to solve. However, we will overcome this dif-
ficulty by showing that problem (D†) is equivalent to the following deterministic problem
without censoring terms:

V D(T ;u, α) , max
n∈RT+1

y∈RT

T∑
t=1

x−1(yt)λ(nt−1, α)yt (Da)

s.t.
T∑
t=1

λ(nt−1, α)yt ≤ u (Db)

nt = nt−1 − λ(nt−1, α)yt for all t = 1, . . . , T (Dc)

n0 = u (Dd)

yt ∈ [0, 1] for all t = 1, . . . , T. (De)

We refer to the model above as (D). Note that (D) has an additional constraint (Db)
which eliminates solutions (n, y) where the total demand exceeds inventory u. The equiv-
alence between (D) and (D†) is established in the following theorem:
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Theorem III.1. For any T and 0 ≤ u ≤ α, the following holds:

V D(T ;u, α) = V D†(T ;u, α).

Moreover, finding an optimal solution to (D) suffices to solve (D†).

Theorem 1 implies that it suffices to solve problem (D) as the deterministic relax-
ation of the stochastic problem (P). This is important since the objective function (Da)
of the deterministic relaxation (D) does not have demand censoring terms (i.e., non-
differentiability), which makes it an easier problem to solve. We will refer to the optimal
value of (D) when u = α simply as V D(T ) to be consistent with the fact that the optimal
value of (P) is V ∗(T ).

We will later introduce two CE policies in Section III.3.2, a closed-loop CE policy (CE-
CL) and an open-loop CE policy (CE-OL). These two CE policies set the intensity (and
equivalently, price) in each period based on solutions to the deterministic model (D) for
given u and α values. Hence, the complexity of the CE policies depends on the feasibility
and computational effort needed to solve the nonlinear optimization problem (D). We
discuss these properties of (D) next.

At first glance, the deterministic problem in (D) is not necessarily a convex optimiza-
tion problem since the objective function is not concave and the constraints are nonlinear
in the decision variables (n, y). This contrasts with the setting of Gallego and Van Ryzin
(1994) where λ(nt, α) is a constant for all nt, resulting in a concave objective function
and linear constraints. However, we can reformulate (D) into an equivalent convex op-
timization problem with decision variables d1, . . . , dT through a simple transformation:

d1 = λ(u, α)y1, (III.3.3a)

d2 = λ(u− d1, α)y2, (III.3.3b)

d3 = λ(u− d1 − d2, α)y3, (III.3.3c)
...

dT = λ(u− d1 − d2 − . . .− dT−1, α)yT . (III.3.3d)

Here, dt can be interpreted as the deterministic demand in period t, which depends on
the amount of inventory remaining after previous periods, u− d1 − d2 − . . .− dt−1. This
allows us to reformulate (D) into the following optimization problem, which we refer to
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as (D′):

V D(T ;u, α) = max
d∈RT

T∑
t=1

x−1

(
dt

λ(u− d1 − d2 − . . .− dt−1, α)

)
· dt (D′a)

s.t.
T∑
t=1

dt ≤ u (D′b)

dt ∈ [0, λ(u− d1 − d2 − . . .− dt−1, α)] for all t = 1, . . . , T. (D′c)

The advantage of (D′) is that it is a convex optimization problem with a unique
optimal solution, as we establish next. Hence, (D′) can be solved efficiently with com-
mercial off-the-shelf solvers using standard convex optimization algorithm. This means
that we can efficiently find the solution of the deterministic counterpart (D), whereas the
stochastic problem (P) cannot be solved due to insufficient information about the demand
distribution.

Theorem III.2. The following hold:

(i) The objective function (D′a) is jointly concave in d, and the set of all solutions
satisfying constraints (D′b)–(D′c) is a convex set.

(ii) The value function V D(T ;u, α) is strictly jointly concave in (u, α) for every fixed T .

Observe that (D′) is always feasible since the solution d where dt = 0 for all t is feasible.
(Note that by Assumption III.2(ii), an intensity 0 is in the domain of x−1.) Moreover,
from our continuity assumptions on x and λ, the feasible region of (D′) is nonempty and
compact, and the objective function (D′a) is continuous, so at least one optimal solution
exists (by Weierstrass’s Theorem). In fact, (D′) has a unique optimal solution, which we
establish in Theorem III.3.

Theorem III.3 (Uniqueness). For any (u, α) and T with 0 ≤ u ≤ α, problem (D′) has
a unique optimal solution dD = (dD

1 , d
D
2 , . . . , d

D
T ).

Theorem III.2 implies that (D′) can be solved efficiently by any standard convex
optimization algorithm (e.g., Newton’s method) or an off-the-shelf commercial solver. In
the next result, we show that the optimal solution to (D′) lies in the interior of the feasible
set. This implies that one can deploy interior point methods to determine the optimal
solution.
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Theorem III.4 (Positive intensity is optimal). If 0 < u ≤ α, then the unique optimal
solution dD to (D′) lies in the interior of the feasible set, i.e., λ(u− dD

1 − . . .− dD
t−1, α) >

dD
t > 0 for all t.

III.3.2 Two certainty-equivalent policies

We next introduce two certainty-equivalent (CE) policies that can be implemented
by utilizing the solution of the deterministic model (D) which sets the intensity in each
period. The fact that the reformulated problem (D′) is well-behaved (Theorem III.2)
implies that the CE policies can be computed efficiently.

We first describe an open-loop certainty-equivalent policy (CE-OL). “Open-loop” refers
to the fact that we only solve the deterministic relaxation (D) once (with u = α) at the
beginning of the selling horizon (time 0). After finding the optimal vector yD, the open-
loop certainty-equivalent intensity policy yOL is determined by setting yOL(Nt−1, t) = yD

t

for all inventory levels Nt−1 ∈ [0, α] and t = 1, . . . , T . Algorithm III.1 below describes
the CE-OL policy.

Algorithm III.1 Intensity (price) sequence when applying policy yOL.
1: procedure Open-loop Certainty Equivalent Pricing(α, T )
2: dD ← optimal solution of (D′) with u = α

3: for t← 1 to T do
4: yD

t ← dD
t /λ(α− dD

1 − dD
2 − . . .− dD

t−1, α)

5: set intensity yD
t by offering price x−1(yD

t ) . set current intensity (price)
6: end for
7: end procedure

On the other hand, a closed-loop certainty-equivalent policy (CE-CL) re-optimizes the
deterministic problem for the remaining horizon given the current state in each period,
and determines the price to set in each period.

We denote this policy as yCL. At the start of the selling horizon when the initial
inventory is N0 = α, CE-CL chooses the same price as CE-OL by solving (D) with u = α

and setting yCL(N0, t = 1) = yD
1 . However, for the subsequent pricing periods, the two

policies diverge since CE-CL determines the next price from re-optimizing (D) with up-
dated information about the remaining inventory. In particular, suppose that at the
beginning of period t, the remaining inventory is Nt−1. Then CE-CL will solve (D) with
u = Nt−1 and with T − t + 1 periods, resulting in an optimal deterministic intensity
vector yD = (yD

1 , y
D
2 , . . . , y

D
T−t+1). Note that the length of this vector is T − t + 1, which
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is the number of remaining review periods. CE-CL will set intensity yCL(Nt−1, t) = yD
1 .

Algorithm III.2 below is a description of the CE-CL intensity policy.

Algorithm III.2 Intensity (price) sequence when applying policy yCE.
1: procedure Closed-Loop Certainty Equivalent Pricing(α, T )
2: N0 ← α . initialize inventory
3: for t← 1 to T do
4: dD ← optimal solution of (D′) with u = Nt−1 and T − t+ 1 periods
5: yD

1 ← dD
1 /λ(Nt−1, α)

6: set intensity yD
1 by offering price x−1(yD

1 ) . set current intensity (price)
7: observe sales min{Dt, Nt−1} by the end of period t
8: Nt ← Nt−1 −min{Dt, Nt−1} . update available inventory
9: end for
10: end procedure

Although the CE-CL policy requires re-solving (D′) in every period, solving each in-
stance of (D′) does not require much effort because problem (D′) is a convex optimization
problem. In our numerical experiments on a Macbook Pro with an Intel i5 processor, it
takes less than 10 seconds to solve (D′) with T = 22 using a basic interior point algorithm
coded in Python. Note that in (D′), the number of variables is T and the number of con-
straints is T + 1. Neither of the CE policies require solving for the intensity in all possible
states. More specifically, the CE-CL policy can be implemented and solved on-the-fly by
observing the available inventory at the start of each period (that is, there is no need to
anticipate the available inventory).

III.4 Analysis of certainty-equivalent policies

Our goal in this section is to analyze the performance of the two policies proposed in
Section III.3.2. The main challenge in analysis is that the demand in period t can depend
on the past sales or available inventory. As a result, any pricing mistake in the current
period affects current demand and the demand in future periods. Another challenge is
that, while our goal is to propose an algorithm that only utilizes partial information
(i.e., conditional mean), the performance analysis must apply to all demand distributions
satisfying Assumptions III.1 to III.3. The main result of this section is that the CE policies
are asymptotically optimal. Specifically, in the regime where the initial inventory and the
expected demand both scale by a factor m, we will show that the relative revenue loss of
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the CE policies compared to the true (unknown) optimal revenue converges to zero with
the rate O(1/

√
m).

Our approach in proving the convergence rate is through two steps. The first step is to
show that the optimal deterministic revenue V D(T ) is an upper bound to the (unknown)
optimal stochastic revenue V ∗(T ). Recall that V D(T ) is the optimal value of (D) when
u = α, and V ∗(T ) is the optimal value of (P). The second step is to establish a rate
of convergence for the CE policy’s expected revenue to its upper-bound V D(T ) in the
asymptotic regime of increasing inventory and expected demand.

III.4.1 Upper bound on V ∗(T )

The challenge in proving that V D(T ) is an upper bound for V ∗(T ) in our setting
comes from the fact that demands are state-dependent and prices can only be changed
periodically.

To see why, consider a situation where the demand rate is a constant λ (independent
of the state) and price can be changed continuously. Due to continuous price changes,
as soon as the inventory stocks out, any pricing policy can set the choke price and turn
off demand. Therefore, without loss of generality, we can assume that the total demand
does not exceed the initial inventory α, so

∫ T
0
dDt ≤ α. We denote by V λ(T ) the optimal

expected revenue. Let yλ = (yλt ) be the optimal intensity policy. Following the proof
technique of Lemma 1 in Gallego and Van Ryzin 1994, for any µ ≥ 0

V λ(T ) = E

 T∫
0

x−1(yλt )dDt

 ≤ E

 T∫
0

x−1(yλt )dDt + µ

α− T∫
0

λyλt dt


≤ max

yt:t∈[0,T ]

 T∫
0

x−1(yt)λytdt+ µ

α− T∫
0

λytdt

 .

(III.4.1)

The first inequality is from Langrangian relaxation since we know that the expected de-
mand cannot exceed α. The second inequality is from maximizing pointwise for each t and
by Jensen’s inequality. Note that the right-hand side of (III.4.1) is the Lagrangian relax-
ation of the deterministic model. The deterministic counterpart is a convex optimization
problem (since x−1(yt)yt is concave in yt), so strong duality holds and the right-hand side
is equal to V D(T ) when taking the infimum over µ ≥ 0.

In our setting with state-dependent demand and periodic price changes, this same
approach cannot be used to establish the upper bound. The first issue is that price
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changes are periodic, so the stochastic objective (III.2.6) has a demand censoring term.
This means that the deterministic relaxation (D†) is a non-convex optimization problem
and strong duality does not necessarily hold. Even though we showed the equivalence
of (D†) to the model (D) without censoring (see Theorem III.1), note that constraint
(Db) is non-convex so strong duality is still not guaranteed if this constraint is relaxed.
A second issue comes from the fact that demand is state-dependent. As a result, the
pointwise maximum in (III.4.1) cannot be taken in our setting since the expected demand
in period t depends on the remaining inventory Nt−1, which in turn depends on previous
intensities y1, . . . , yt−1.

Our proof overcomes both issues by establishing the bound, not directly on (D) and
(P), but through mathematical induction on their dynamic programming (DP) counter-
parts. Specifically, the DP counterpart of (D) for any u ∈ [0, α] is:

RD(u, T ) , max
y∈[0,1]

x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) (III.4.2)

s.t. λ(u, α)y ≤ u,

where the base case is RD(u, 0) = 0 for all u ∈ [0, α]. Observe that RD(u, T ) can be
thought of as the deterministic revenue-to-go if the remaining inventory is u and there
are T periods remaining. Hence, we have V D(T ) = RD(α, T ).

Similarly, for any u ∈ [0, α], the stochastic optimization problem (P) has a dynamic
programming counterpart:

R∗(u, T ) , max
y∈[0,1]

Ey,u
[
x−1(y)

(
D − [D − u]+

)
+R∗([u−D]+, T − 1)

]
. (III.4.3)

Here, Ey,u is the expectation with respect to the distribution of per-period demandD when
the remaining inventory at the start of the period is u, and y is the current period intensity.
Recall that y, u affect the distribution of D, including but not limited to its conditional
mean λ(u, α)y. The base case is R∗(u, 0) = 0 for all u ∈ [0, α]. Note that R∗(u, T ) can
be thought of as the optimal expected revenue-to-go if the remaining inventory is u and
there are T periods remaining. Hence, V ∗(T ) = R∗(α, T ).

Our focus on the DP formulations overcomes the two issues we identified at the outset
of this subsection. The first issue (potential lack of strong duality) is resolved because
when we condition on u, T , the constraint in λ(u, α)y ≤ u in (III.4.2) is linear in y. Using
mathematical induction, we can also establish that the objective of (III.4.2) is strictly
concave in y due to the concavity assumption on λ(·, ·). Hence, strong duality holds for
the Lagrangian relaxation of (III.4.2). Strong duality is the crucial step to establishing
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the upper bound. The second issue (inability to take a pointwise maximum) is resolved
because we take the maximum of (III.4.3) only for the revenue-to-go, and the effect of
current yt on future periods is absorbed in the term R∗([u−D]+, T −1). Combining these
ideas allows us to prove the upper bound result.

Aided by the DP formulations and this proof idea, the following result establishes that
the optimal expected revenue-to-go is bounded above by the deterministic revenue-to-go.

Proposition III.1 (Upper bound). For any T ≥ 1, V ∗(T ) ≤ V D(T ). More generally, for
any 0 ≤ u ≤ α, R∗(u, T ) ≤ RD(u, T ).

We prove this result through mathematical induction on T , starting from establishing
the bound for T = 1. The complete proof can be found in Appendix B.2.6.

III.4.2 Asymptotic regime

Consider a scaled version of the problem, where we introduce m ∈ Z+ as a scaling
factor. Thus, we scale the initial inventory to be equal to αm. At the same time, for any
period t = 1, . . . , T , we assume that the scaled random demand, denoted as Dm

t , has a
conditional mean satisfying the following assumption:

Assumption III.4. The conditional expectation of the demand Dm
t has a SIS function

λm that scales in m such that

λm(Nm
t−1, αm) = mλ

(
Nm
t−1

m
,α

)
, (III.4.4)

where λ is a function that is independent ofm and that satisfies Assumption III.2(v)–(vi).

Here, Nm
t−1 denotes the inventory level at the start of period t, which is a Ft−1-

measurable random variable. By definition, Nm
0 = αm. Assumption III.4, together

with Assumption III.1, implies that the conditional expectation of demand scales up with
m. Note that Assumption III.4 is only required for the proof of asymptotic optimality.
Assumption III.4 is not restrictive and can be easily satisfied. For example, if the demand
rate is a constant λ such as in a homogeneous Poisson process, Assumption III.4 holds by
simply scaling the demand rate as λm.

In the demand model of Example 1, Assumption III.4 holds if the market size scales
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as km. Indeed, from (III.2.2), we have that

λm(Nm
t−1, αm) =

(
km− αm+Nm

t−1

)(
p+ q

αm−Nm
t−1

km

)
= m

(
k − α+

Nm
t−1

m

)(
p+ q

α−Nm
t−1/m

k

)
= mλ

(
Nm
t−1

m
,α

)
.

In the demand model of Example 3, Assumption III.4 also holds when the market size
scales as km. From (III.2.3a), we have

λm(Nm
t−1) = (km)

(
Nm
t−1

(km)Nr

)β
= m · k

(
(Nm

t−1/m)

kNr

)β
= mλ(Nm

t−1/m).

Additionally, Assumption III.4 holds if for all m ∈ Z+, we have λm = λ where λ is a
homogeneous function of degree 1. The property by definition means that λ(Nm

t−1, αm) =

mλ(Nm
t−1/m,α).

The scaled version of the pricing problem (denoted by problem Pm) is defined as:

V ∗(m,T ) , max
y∈Y

V y(m,T ), (Pm)

which we denote as (Pm), where the expected revenue V y(m,T ) of policy y is defined as:

V y(m,T ) , E

[
T∑
t=1

x−1
(
y(Nm

t−1, t)
) (
Dm
t − [Dm

t −Nm
t−1]+

)]
. (III.4.5)

Recall that Y is the set of all intensity policies y that are Ft-measurable. The dynamics
of the remaining inventory is Nm

t = [Nm
t−1 −Dm

t ]+, where Nm
0 = αm is the scaled initial

inventory. For any m, the distribution of Dm
t satisfies Assumptions III.1 to III.3.

We use (Dm) to denote the scaled counterpart of the deterministic model (D) where
α is replaced with αm and λ(nt−1, α) is replaced by λm(nt−1, αm). Per our discussion
in Section III.3.1, if u = αm, then (Dm) is the deterministic counterpart to the scaled
stochastic problem (Pm). Let V D(m,T ) denote the optimal value of (Dm) when we set
u = αm. Note that V D(1, T ) = V D(T ).

An immediate consequence of Proposition III.1 is that V ∗(m,T ) ≤ V D(m,T ). The
implication of this is that a policy y is asymptotically optimal if, as m increases, the
bound on its expected revenue loss, V D(m,T )−V y(m,T ), grows at a slower rate than the
growth rate of V D(m,T ). Note that V D(m,T ) grows linearly in m. This is because, due
to (III.4.4), λm(mn,mα) = mλ(n, α) for any n ∈ [0, α]. Hence, when we set u = αm for
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(Dm) and u = α for (D), we can check that their respective optimal solutions, (nD,m, yD,m)

and (nD, yD), have the property that nD,m = mnD and yD,m = yD. This implies that
V D(m,T ) = mV D(T ), hence the linear growth of V D(m,T ).

We will analyze the convergence rate of the expected revenue loss under our proposed
policies, yOL and yCL. For scaling factor m, yOL and yCL are based on solutions to the
scaled model (Dm) instead of (D). Given m, let V OL(m,T ) and V CL(m,T ) denote the
expected revenue under the CE-OL and CE-CL, respectively. Hence, the expected revenue
losses under CE-OL and CE-CL are V D(m,T ) − V OL(m,T ) and V D(m,T ) − V CL(m,T ),
respectively. In Section III.4.3, we show that both expected revenue losses are lower
bounded by Ω(

√
m). Then, in Section III.4.4 we show that both expected revenue losses

are upper bounded by O(
√
m) (i.e., slower than linear). Hence, the CE policies are

asymptotically optimal as m grows large since the relative revenue loss compared to the
true (unknown) optimal policy is O(1/

√
m).

Showing that V D(m,T ) − V OL(m,T ) and V D(m,T ) − V CL(m,T ) are both O(
√
m)

does not immediately follow from standard argument in the existing literature (e.g., Gal-
lego and Van Ryzin 1994; Jasin 2014). This is because, in our setting, the demand is a
random variable that depends on the path of remaining inventory through the function
λ. Therefore, the deviation of the expected revenue from V D(m,T ) does not just depend
on the expected stock-out level, it also depends on deviations of the path of remain-
ing inventory from the optimal inventory solution (nD,m

0 , . . . , nD,m
T ) of the deterministic

counterpart (Dm) when u = αm. Hence, it is crucial to establish the convergence of
the demand inventory paths to their deterministic equivalents (see Lemmas III.1 and B.4
below). Assumption III.3 is crucial for this step since it implies that the variance does
not grow too fast as the problem scales up, so the normalized demand Dm

t /m can be well
approximated by its mean as m scales up. Most notably, the demand paths and inventory
paths under the certainty-equivalent policies also converge to the deterministic optimal
path, making the relative revenue losses of both CE policies converge to zero.

III.4.3 Lower bound on CE expected revenue loss

It is known that for the open-loop certainty equivalent policy, a lower bound on
V D(m,T ) − V OL(m,T ) is Ω(

√
m) (see Remark 2 in Jasin 2014). In the next result, we

formally establish that in our setting with state-dependent demand, under the closed-loop
certainty-equivalent policy, V D(m,T )− V CL(m,T ) is also lower bounded by Ω(

√
m).

Theorem III.5. There exists a distribution satisfying Assumptions III.3 and III.4 such
that the expected revenue loss under CE-CL is V D(m,T )− V CL(m,T ) = Ω(

√
m).
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Jasin (2014) shows that when the demand follows a price-controlled Bernoulli process,
then under a regularity condition the re-optimization certainty-equivalent pricing policy
can achieve an O(logm) bound on the expected revenue loss. The O(logm) bounds
relies on the independence of demand in each period, which helps with the martingale
construction and the tight characterization of dual variables in the certainty equivalent
problem. Due to the state-dependence of demand in our setting, we cannot use the
arguments of Jasin (2014) to show that the CE-CL policy has a revenue loss that grows
O(logm).

III.4.4 Upper bound on CE expected revenue loss

We next show that the expected revenue loss of the open-loop policy, V D(m,T ) −
V OL(m,T ), and of the closed-loop policy, V D(m,T )−V CL(m,T ), both grow in the order
O(
√
m). Hence our lower bound result implies that, under a setting with state-dependent

demand and periodic price reviews, both certainty equivalent policies have an expected
revenue loss that is Θ(

√
m).

We begin by analyzing the loss under the open-loop policy. We introduce some nota-
tion. Observe that the open-loop policy yOL is a static, but time-varying policy. Thus,
we use yOL

t to denote the deterministic period t intensity using the open-loop policy yOL4.
For a given m, let N̄m = (N̄m

0 , . . . , N̄
m
T ) be the stochastic sequence of inventory levels

under the open-loop certainty-equivalent policy yOL. Note that N̄m
0 = αm.

The next lemma states that the normalized inventory N̄m
t /m of the open-loop policy

converges in expectation to the deterministic optimal inventory nD
t solution to (D) when

u = α. Hence, even though the conditional expectation of demand is state-dependent in
our setting, this lemma implies that the expected demand rate of the open-loop policy
converges in expectation to the deterministic optimal demand rate.

Lemma III.1 (Convergence of remaining inventory and SIS). If nD = (nD
1 , . . . , n

D
T ) is the

solution to (D) when u = α, then the following hold:

E
∣∣∣∣N̄m

t

m
− nD

t

∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T, (III.4.6)

E
∣∣∣∣λ(N̄m

t

m
,α

)
− λ

(
nD
t , α

)∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T. (III.4.7)

The proof of this lemma is in Appendix B.2.8. The challenge in the proof lies in the
fact that the demands across periods are dependent, so we cannot write the remaining

4Since it is open-loop, yOL
t is independent of demand realization
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inventory N̄m
t as the sum of independent random variables and use standard convergence

results. We overcome this challenge by constructing an appropriate martingale so that
we can apply the Azuma-Hoeffding’s inequality for martingales to find the gap between
N̄m
t and its unconditional expectation E

(
N̄m
t

)
without knowing the functional form of λ

and its unconditional distribution.
With the help from Lemma III.1, we are able to show that the difference from V D(m,T )

of the expected uncensored revenue of yOL is order O(
√
m). The uncensored revenue

(corresponding to the first term in (III.4.8) below) is computed, assuming all demands
can be sold irrespective of the inventory level. The proof is in Appendix B.2.9.

Lemma III.2 (Convergence of uncensored revenue). The following holds:∣∣∣∣∣E
(

T∑
t=1

x−1
(
yOL
t

)
λm
(
N̄m
t−1, αm

)
yOL
t

)
− V D(m,T )

∣∣∣∣∣ = O
(√
m
)
. (III.4.8)

Though the bound in Lemma III.2 is for an uncensored setting, we use this result to
derive the loss bound for the expected revenue in the censored setting.5 This, combined
with Proposition III.1, establishes the asymptotic bound for the expected revenue loss of
yOL (Theorem III.6 below). Specifically, the proof of the next result (in Appendix B.2.10)
shows that the censored revenue V OL(m,T ) converges to the uncensored revenue as m
grows large.

Theorem III.6 (Expected revenue loss of open-loop CE policy). The following holds:

1− V OL(m,T )

V ∗(m,T )
≤ 1− V OL(m,T )

V D(m,T )
= O

(
1/
√
m
)
. (III.4.9)

The implication of Theorem III.6 is that the open-loop policy performs well if the
problem scale m is large. It is important to note that the asymptotic optimality result of
Theorem III.6 applies for any demand distribution, as long as Assumptions III.1 to III.3
hold.

The analysis of the expected revenue loss under the closed-loop policy, yCL, proceeds
similarly to that of yOL except with one key difference. The difference is that we need
to show yCE(n, t) is Lipschitz continuous in any n ∈ [0, αm]. This is formalized in the
following lemma.

5We use the Scarf bound (Scarf , 1958), which establishes the expected difference between a truncated
random variable and itself, to show the difference between the censored revenue and the uncensored
revenue.
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Lemma III.3 (Lipschitz continuous policy). There exists Cy such that, for any n, n′ ≥ 0,

∣∣yCE(n, t)− yCE(n′, t)
∣∣ ≤ Cy |n− n′| , for all t = 1, . . . , T.

This is property is important since, unlike the open-loop policy that has a static price
sequence, yCL results in a stochastic price sequence that dynamically changes based on
the past realizations of demand. Since yCE is a Lipschitz continuous function in n, then
the difference in price at two inventory levels does not grow too fast, compared to the
difference in inventory level. This is a desirable since it leads to a relatively stable pricing
policy against inventory dynamics.

With this key property, we can establish convergence of the inventory sequence under
yCE to the deterministic inventory sequence. This is formalized in Lemma B.4, which is
stated and proved in Appendix B.2.12. This then allows us to show that the uncensored
expected revenue under yCE has a gap from V D(m,T ) that is O(

√
m). This is formalized

in Lemma B.5, which is stated and proved in Appendix B.2.13. Note that Lemma B.4
and Lemma B.5 are the counterparts of Lemma III.1 and Lemma III.2 for the closed-loop
policy.

Hence, as with the open-loop policy, the closed-loop certainty equivalent policy yCE is
asymptotically optimal to the stochastic periodic pricing problem as the problem scale m
grows large. Its proof is in Appendix B.2.14.

Theorem III.7 (Expected revenue loss of closed-loop CE policy). The following holds:

1− V CE(m,T )

V ∗(m,T )
≤ 1− V CE(m,T )

V D(m,T )
= O

(
1/
√
m
)
. (III.4.10)

The asymptotic optimality of the closed-loop policy holds for any demand distribution
that satisfies Assumptions III.1 to III.3

III.4.5 Discussion of our analysis

We would like to point out two distinctive features in our problem that make our
analysis of the CE policies different from earlier works in dynamic pricing literature.

The first feature is that the demand in each period is state-dependent, hence the
demands across periods are dependent. Unlike the case where demands are independent
(among many examples are Gallego and Van Ryzin 1994; Maglaras and Meissner 2006;
Jasin and Kumar 2013), we need to introduce new mathematical machinery to prove the
asymptotic optimality of the CE policies. For example, we establish the upper bound result
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of Proposition III.1 by converting the problem to dynamic programming formulations
of (P) and (D). If the demands were independent, this upper bound can be shown by
Lagrangian relaxation directly on the multi-period model. This deterministic upper bound
implies asymptotic optimality of the CE policies if the expected demand “path” converges
to the deterministic demand path. But in our setting with inventory-dependent demand,
this requires first proving that the stochastic inventory levels of the CE policies converge
to the optimal deterministic inventory levels. This is non-trivial to show when demands
are state-dependent, since the cumulative sales (and the resultant inventory level) in the
previous periods affect the demand and inventory of the current period. To prove this
inventory path convergence, we define a super-martingale with a bounded difference and
use a martingale concentration inequality, as seen in the proofs of Lemmas III.1 and B.4.
Note that when the demands are independent, it is unnecessary to show the inventory
path convergence for the CE policies to be asymptotically optimal.

The second feature is that the prices are reviewed periodically. Hence, the inventory
may stock out during a period, resulting in a demand censoring term in the revenue
function. Censored demands make the analysis non-trivial even if the demands were
independent. For example, when there is no censoring, an upper bound can be established
using straightforward arguments since the deterministic relaxation is a convex problem as
we discussed in Section III.4.1. Many existing works in dynamic pricing literature assume
continuous price changes (combined with Poisson demand arrivals), so without loss of
generality, demand is uncensored. This is because any continuous review pricing policy
can simply turn off demand by setting a high price once inventory reaches zero. Due to
the uncensored demand, the analysis in those continuous price review models is tractable.
Perhaps a setting resembling limited price changes is Section 5.1 of Gallego and Van Ryzin
(1994) which considers a compound Poisson process where, at each Poisson arrival time, a
random demand size is observed. However, they restricted their analysis to policies where
the resulting total demand does not exceed inventory almost surely, so there is no demand
censoring in the objective. With periodic pricing reviews, reasonable policies could result
in lost sales on some demand sample paths. Hence, our analysis of asymptotic optimality
needs to hold in the case of demand censoring. We are able to overcome the challenge of
demand censoring in several steps of the analysis. First, we show the connection of the
censored deterministic relaxation (D†) to a model (D) where deterministic demand cannot
exceed inventory. This property of the deterministic solution is used in several places of
the proofs, such as in establishing the deterministic upper bound (Proposition III.1) and
in proving the inventory path convergence of the CE policies (Lemmas III.1 and B.4).
Second, we bound the difference between the censored and uncensored expected revenues

68



by bounding the expected lost sales using Scarf (1958), as can be seen in the proofs of
Theorems III.6 and III.7.

III.5 Extensions

III.5.1 Joint optimization of starting inventory and pricing

We next study an extension where the seller sets the initial inventory along with prices.
At time 0, the seller decides an initial inventory N0 = α by choosing α ≥ 0, and incurs a
procurement cost c per each unit of inventory. Suppose that the demand distribution is
dependent on the starting inventory and is state-dependent, where the state is the current
inventory level. Specifically, the demand distribution satisfies Assumptions III.1 to III.3.
The seller only knows the conditional expectation of the per-period demand through the
functions λ and x.

If the seller knew the distribution of per-period demand, then her goal will be to maxi-
mize the expected profit by jointly optimizing the initial inventory and the periodic-review
pricing policy. In this case, she will solve a stochastic dynamic optimization problem to
decide the initial inventory α and the pricing policy. The expected profit of a decision
(α,y) is

Qα,y(T ) , E

[
T∑
t=1

x−1 (y (Nt−1, t))
(
Dt − [Dt −Nt−1]+

)]
− cα,

where N0 = α and Nt = [Nt−1 −Dt]
+ for all t ≥ 1. Note that Qα,y(T ) = V α,y(T ) − cα,

where we write V α,y(T ) instead of V y(T ) to emphasize that α is a decision variable.
Hence, under full knowledge of the demand distribution, the seller’s decision problem is

Q∗(T ) , max
α≥0

max
y∈Y

Qα,y(T ). (P′)

The only difference from Section III.2.2 is that now α is a decision variable.
We now introduce a certainty-equivalent policy that only requires knowledge of the

functions λ and x that specify the conditional expectation of per-period demand. Consider
the following problem:

QD(T ) , max
α≥0

QD,α(T ) := max
α≥0

V D,α(T )− cα, (D′)

where we write V D,α(T ) instead of V D(T ) to emphasize that α is a decision variable
that affects the expected revenue through the inventory constraint and in scaling the
demand rate through λ(n, α). Note that QD,α(T ) in (D′) is the deterministic counterpart
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of maxy∈YQ
α,y(T ) in (P′).

The certainty-equivalent policy solves the deterministic counterpart (D′) to set the
initial inventory αCE ≥ 0. Given α = αCE, the policy then sets yCE : [0,∞)×{1, . . . , T} 7→
[0, 1] as either one of the certainty-equivalent intensity policies described in the previous
sections, where CE ∈ {OL,CL}. We denote the expected profit of the certainty-equivalent
policy of the joint inventory and pricing problem as QCE(T ).

Algorithm III.3 gives a description of the CE policy.

Algorithm III.3: Setting initial inventory and prices with the CE policy.

1: procedure Certainty Equivalent(T )
2: αCE ← optimal solution of (D′)
3: set N0 = αCE . set initial inventory
4: set prices according to the CE-policy (open-loop or closed-loop) for (αCE, T )

5: end procedure

Computing the certainty-equivalent policy for a joint inventory and pricing policy is
tractable. Recall that in Theorem III.2(ii), we prove that the deterministic value function
V D(T ;u, α) is jointly concave in (u, α) for a given T . This implies that solving for the
certainty-equivalent market coverage αCE can be simply done by gradient methods like
the Newton algorithm.

Consider a setting where we scale by a factor m both the initial inventory and the
expected demand by (III.4.4). We denote the optimal expected profit as Q∗(m,T ) and
the expected profit of the certainty-equivalent policy is QCE(m,T ). As in the case with
the certainty-equivalent pricing policies, we show that the expected profit loss under
Algorithm III.3 grows sub-linearly in m – this means that our proposed joint decision
policy is asymptotically optimal. This is formally established in Theorem III.8. The
proof is in Appendix B.3.1.

Theorem III.8 (Expected profit loss of CE policies). The following holds:

1− QCE(m,T )

Q∗(m,T )
= O

(
1/
√
m
)
. (III.5.1)

This result shows that the CE policy guarantees a close-to-optimal expected profit
when the scale of inventory and demand is large. This result is somewhat surprising
since αCEm is not necessarily equal to the optimal initial inventory of the mth stochastic
problem (which we denote by α∗m). Hence, the fact that the CE policy may choose a
different initial inventory implies that the asymptotic optimality in Theorem III.8 does not
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follow immediately from Theorems III.6 and III.7. But the implication of Theorem III.8
is that when m is large enough, the scaled down initial inventory α∗ is close to αCE.

III.5.2 Analysis of a fixed-price policy

When the demand rate is time-stationary and independent, a fixed-price policy (i.e.,
setting the same price for all time periods) is known to be asymptotically optimal (Gallego
and Van Ryzin, 1994). We next analyze the performance of such a policy under our
problem setting with state-dependent demand.

Given the initial inventory α ≥ 0, we first define the fixed-price policy ySP. If α is
sufficiently large, the fixed-price policy fixes a price corresponding to intensity ȳ, where ȳ ∈
[0, 1] is the unique maximizer of the revenue function, i.e., ȳ , arg maxy∈[0,1] x

−1(y)y. In
other words, if the inventory constraint is nonbinding, the policy chooses the intensity that
maximizes the current period revenue only, without considering the effects of inventory
and sales on demand. If the inventory constraint is binding, the policy instead chooses
the intensity so that the expected total demand equals the initial inventory, i.e., the fixed
point yso of the equation (the superscript “so” stands for “stockout price”):

ȳso =
α∑T

t=1 λ
(
nȳ

so

t−1, α
) ,

where, for any y ∈ [0, 1], (ny0, n
y
1, . . . , n

y
T ) is defined as the deterministic sequence with

ny0 = α and nyt = nyt−1 − λ(nyt−1, y)y for all t ∈ T . Note that ȳso can be found by fixed
point iteration.

Mathematically, given any initial inventory α ≥ 0, the fixed-price policy ySP is defined
for every (n, t) ∈ (0, α]× T as:

ySP (n, t) = ySP ,

{
ȳ, if α ≥

∑T
t=1 λ

(
nȳt−1, α

)
ȳ,

ȳso, otherwise.
(III.5.2)

To implement this, the seller will charge the price ySP for all T periods.
Under the joint inventory and pricing problem, the fixed-price policy sets initial in-

ventory αSP by solving
QD′(T ) , max

α≥0
V D′,α(T )− cα, (S)

where V D′,α is the deterministic revenue with initial inventory α and fixed-price policy
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ySP. Specifically,

V D′,α(T ) ,
T∑
t=1

x−1
(
ySP)λ(nSP

t−1, α)ySP, (III.5.3)

where nSP
0 = α and nSP

t = nSP
t−1 − λ(nSP

t−1, α)ySP for all t ≤ T . Then given αSP, it sets ySP

as the fixed-price policy just described with α = αSP. The fixed-price policy is outlined
in Algorithm III.4.

Algorithm III.4: Setting the initial inventory and prices based on fixed-price policy.

1: procedure Fixed Policy(T )
2: αSP ← optimal solution of (S)
3: set N0 = αSP . set initial inventory
4: set prices with Fixed Pricing(αSP, T )

5: end procedure
6:

7: procedure Fixed Pricing(α, T )
8: ySP ← ȳ or ȳso based on cases in (III.5.2) for α
9: for t← 1 to T do
10: set intensity ySP by offering price x−1(ySP) . set current intensity (price)
11: end for
12: end procedure

We next state the main result of this subsection which describes the performance of
the fixed-price policy under our setting. Under the setting where the expected demand
and the initial inventory are scaled by m, we denote the expected profit of the fixed-price
policy (mαSP,ySP) as QSP(m,T ). For any α ≥ 0, we denote V SP,α(m,T ) as the expected
revenue under the stochastic model of the fixed-price policy ySP with initial inventory
mα, and V ∗,α(m,T ) as the expected revenue under the optimal pricing policy with initial
inventory mα.

Proposition III.2 (Profit loss of the fixed-price policy). When T ≥ 2, if the following
conditions hold for a fixed α ≥ 0:

(i) ∂
∂y
V D (T − 1;α− λ(α, α)y, α)

∣∣∣
y=ȳ
6= 0, and

(ii) α ≥
∑T

t=1 λ(nȳt−1, α)ȳ,

then V ∗,α(m,T ) − V SP,α(m,T ) = Ω(m). If (i)–(ii) hold for α = αSP, then Q∗(m,T ) −
QSP(m,T ) = Ω(m).
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The proof is in Appendix B.3.2. Condition (i) of Proposition III.2 implies the myopic
optimal intensity ȳ is not the optimal first-period price for deterministic model V D(T ).
Condition (ii) implies that initial inventory is sufficiently large. Proposition III.2 shows
that both profit loss and revenue loss of a fixed-price policy grows at least linearly in the
scaling factor m.

One may think that the reason that the fixed-price policy performs poorly is that it
may not start with the optimal initial inventory, i.e., αSP 6= α∗. However, Proposition III.2
shows that, regardless of the initial inventory level, the profit loss grows at least at a linear
rate in the scaling factor as long as the initial inventory level is sufficiently large. This
shows that the inability to adjust the price results in a much greater loss when demand
depends on inventory and cumulative sales.

In contrast, the certainty-equivalent policies allow the seller to adjust price, even if
the price sequence is static (i.e., open-loop policy). Thus, whether the future demand is
driven by past sales or by inventory availability or by both, the seller can account for the
current revenue as well as the future revenue when setting prices. The difference in the
fixed pricing policy and a certainty-equivalent policy can be demonstrated when T = 2.
Proposition III.2 shows that a fixed price results in a loss growing at least at a linear rate in
the scaling factor. By contrast, the revenue and profit loss of certainty-equivalent policies
are order O(

√
m), which implies asymptotic optimality (see Theorems III.6 to III.8). This

means, even a single opportunity to change the price (based on the sales and inventory)
can substantially reduce the revenue or profit loss.

III.6 Numerical Studies

In this section, we conduct several numerical experiments to demonstrate the per-
formance of the certainty-equivalent policies (CE-OL and CE-CL). We first illustrate the
analytic properties of the deterministic value function V D(T ). In Section III.6.2, we show
the CE-OL and CE-CL converge fast numerically and can achieve close-to-optimal perfor-
mance even in instances with a small scaling factorm. In Section III.6.4, we experiment on
the number of price changes and demonstrate the value of increased flexibility in pricing.

III.6.1 The deterministic revenue V D,α(T ) and the initial inventory problem

We illustrate the deterministic revenue function V D,α(T ) with a concrete example.
Following Example 3, we choose price sensitivity function x(π) = e−γπ−cx. We consider a
case where the demand is influenced by both the past purchases and inventory availability
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by setting the SIS function to be a mixture of the SIS functions in Examples 1 and 3,
respectively. In particular,

λ(n, α) =
(
wλ(1)(n, α) + (1− w)λ(2)(n, α)

)
∆t, (III.6.1)

where λ(1)(n, α) = ((n− α2 + 1)/Nr)
β (cf. (III.2.3a)) and

λ(2)(n, α) = (1− (α− n)) (p+ q(α− n))

(cf.(III.2.2)), and ∆t is the constant length of each time period. (We include the constant
∆t because later on we examine the effect of changing ∆t to change the number of price
change opportunities within a fixed time.) Note that we modified (III.2.3a) so that λ(n, α)

is jointly concave in (n, α). These modifications have no effect on the qualitative properties
of the optimal prices in Smith and Agrawal (2017). Here λ(n, α) in (III.6.1) is jointly
concave in (n, α). The parameters used in this example are (p, q,Nr, β, γ, cx, T,∆t) =

(0.4, 0.6, 25, 0.6, 0.001, 0.01, 10, 2).

Figure III.1 plots the optimal value function V D,α(T ) as a function of the initial inven-
tory α with different weights w of the SIS function (III.6.1). Without loss of generality, we
normalize the demand so that we impose the constraint α ∈ [0, 1]. The figure illustrates
that V D,α(T ) is concave in α, which agrees with item (ii). When w = 0, only the network
effect (the positive effect of sales on demand) comes into play, and so it is optimal to serve
the market fully (α = 1). When w = 1, only scarcity effects are felt and the optimal initial
inventory is α = 0.68. When w = 0.5 (network effect, saturation effect, and scarcity effect
are all present), the optimal choice of inventory is α = 0.84. This complex example with
all three effects present shows that we should choose α < 1 in the presence of a scarcity
effect of inventory.

III.6.2 Revenue loss of the certainty-equivalent policy

We next illustrate the performance of the CE policies on the demand pattern considered
in Section III.6.1. We set w = 0.5 in (III.6.1) so that both display and word-of-mouth
effects are present. From the previous experiments, the CE policy sets initial inventory
αCE = 0.84. The dynamic pricing policy yCE is based on re-optimizing (D) in each period
with updated inventory levels. The policy yOL does not re-optimize the revenue in each
period but sets time-varying prices.

We vary the inventory and demand scaling factor m from 100 to 3000, with discretiza-
tions shown in the horizontal axis of Figure III.2. For each m, we randomly generate
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Figure III.1: The deterministic revenue function (D) plotted against the initial inventory
α, for different values of w in (III.6.1).

2 × 104 demand sample paths following a bounded support Poisson distribution; we im-
plement the dynamic pricing policies yOL and yCE, and record the realized revenue on each
path. The revenue averaged over the sample paths, which we denote by V̄ OL(m,T ) and
V̄ CE(m,T ), are the approximations for the expected revenue of the certainty-equivalent
policies, V αCE,yOL

(m,T ) and V αCE,yCE
(m,T ) respectively. We also note the 95% confidence

intervals of this sample average.
Since the optimal revenue V ∗(m,T ) is impossible to compute for problems with an

unknown distribution, we compute V D(m,T ) (which is an upper bound of V ∗(m,T )) for
comparison. Based on our sample approximation for V OL(m,T ) and V CE(m,T ) for each
m, we compute an upper bound for the revenue losses of the CE-OL and CE-CL policies as
(V D(m,T ) − V̄ OL(m,T ))/V D(m,T ) and (V D(m,T ) − V̄ CE(m,T ))/V D(m,T ), which are
shown as the points in Figure III.2. The figure also shows the 95% confidence intervals
of the revenue loss bound. From Theorem III.7, we know that the upper bound on the
revenue loss is O(1/

√
m), which is tightly traced by the 1/

√
m fit, shown with a dashed

line in Figure III.2. We further observe that the revenue losses by implementing both
yOL and yCE are very small (∼ 0.15% when m = 3000). This implies that, for a product
with scaling factor even as small as 100–3000 (small expected demand per period), the
certainty-equivalent policies perform well. One may wonder how well the best fixed-price
policy performs for the same problem. In all our examples, the fixed-price policy has a
percentage revenue loss greater than or equal to 30% (we omit this from the figure to
better highlight the difference between CE-OL, CE-CL, and the optimal policy).

75



100 300 500 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

m

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

1.8%

2.0%

P
er

ce
nt

ag
e 

re
ve

nu
e 

lo
ss

1
√m  fit

Percentage revenue loss (CL)
Percentage revenue loss (OL)

Figure III.2: Upper bound on the percentage revenue loss of the certainty-equivalent
policies against the optimal value of the stochastic problem. The fixed-price policy has a
bound on percentage revenue loss that is at least 30% (not shown in graph).
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Figure III.3: Value of resolving by increas-
ing number of price changes
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Figure III.4: Value of resolving by increas-
ing the concavity of the SIS function

III.6.3 The benefit of re-optimization in non-asymptotic setting

In contrast to the open-loop policy CE-OL, the closed-loop policy CE-OL requires
solving the deterministic problem (D) with the updated information in each period where
the firm can change price. One important question is how beneficial is reoptimization.
From Theorem III.5, we know that in an asymptotic regime, CE-CL does not improve
the revenue loss of CE-OL (which grows at the rate of

√
m) in any meaningful way. To

see where the benefit of reoptimization exists in non-asymptotic settings, we conduct a
numerical study comparing the two policies.

Figure III.3 shows how the gain from re-optimization over the open-loop policy changes
as the number of price changes T increases. In this example, demand follows a Poisson
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distribution and the Bass SIS function defined in (III.2.2) with p fixed at 0.01, when
q = 1.0, and k = 20. The figure shows that more frequent re-optimization is beneficial
as more opportunities of adjust prices reduce the probability of an early stock-out during
the selling horizon and generate more revenue out of the remaining inventory. We note
that benefit of re-optimization has an increasing trend if there are more opportunities for
changing prices

Figure III.4, on the other hand, shows how the gain from re-optimization changes
by changing q while keeping everything else the same. Since −∂2λ

∂n2 ∝ q, changing q is
equivalent to changing the concavity of λ. Our example shows that the gain increases as
the SIS function becomes more concave. This is because when the SIS function function is
highly non-linear and concave, the static CE-OL current price typically deviates more from
the optimal policy. For instance, if the SIS function follows a Bass function, as defined in
(III.2.2), the second-order derivative with respect to inventory decreases with q, where q
is the imitation parameter in Bass’s terminology. This means that as q increases (more
people imitate), the seller will lose significant revenue by not re-optimizing (D).

To understand the performance gap between CE-OL and CE-CL policy intuitively,
consider the following. The closed-loop policy re-optimizes the price in each period.
As a result, given state information, under the closed-loop policy the expected demand
does not exceed the remaining inventory. This implies that the conditional expected
inventory follows E(Nt | Ft−1) = Nt−1 − λ(Nt−1, α)yCL(Nt−1, t), which moves similarly
to the deterministic path nD

t = nD
t−1 − λ(nD

t−1, α)yD
t . This means that, as m increases,

N̂m
t /m will be quite close to nD

t . In contrast, CE-OL policy does not guarantee that the
conditional expectation of Nt/m is close to nD

t . This is because, given the inventory state,
the open-loop price can result in an expected demand that is greater than the inventory, so
E(Nt | Ft−1) 6= Nt−1 − λ(Nt−1, α)yOL

t . Although, as m increases, the normalized demand
will not overshoot its expectation more than 1/

√
m, we can intuitively see the absolute

deviation of the normalized inventory N̄m
t /m from nD

t under the open-loop policy might
be larger than that of the closed-loop policy because of the former policy’s lost sales in
expectation. Furthermore, as the number of review periods T increases or the concavity
of λ increases, the deviation of N̄m

t /m from nD
t will be worse because demand variance

increases in T and the difference in expected demand increase in −∂2λ
∂n2 . This, in turn,

increases the probability that there will be lost sales under the open-loop policy. However,
we note that yOL

t and yCL
t are close as m increases.
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III.6.4 Revenue loss due to limited price changes

The certainty-equivalent policies we consider are discrete-time policies that assume
that the underlying demand is modeled as a discrete-time process. Hence, an interesting
question to ask is: how much revenue can the discrete-time policy lose if the true demand
is a continuous-time process? To answer this question, we use one of the CE policies, CE-
CL, to illustrate the performance. We run experiments on demand that is modeled as a
continuous-time Markov chain with the state variable Nm, where Nm = αm,αm−1, ..., 0.
If n is the current inventory level, the transition rate is λ(n, αm)x(π)/∆t, with λ(n, αm)

given in (III.6.1). That is, conditional on current inventory level n, the probability of
having one sale during a time period of length o(t) is

P
(
Nm
t+o(t) = n+ 1 |Nm

t = n
)

= λ (n, αm) o(t)

and there is o(t) probability of having more than one sale during a time period of length
o(t).

To see the loss due to the discrete approximation, we experiment with different values
for ∆t, the length of time between price changes. We do this while keeping the total
planning horizon length T̄ = T∆t unchanged. In particular, the case when ∆t approaches
zero represents continuous price changes, which serves as a benchmark for the discrete-
time model. For a given (T,∆t) pair, we compute the CE-CL policy (αCE,yCE) and
implement the discrete-time policy in 8×103 sample paths simulated from the continuous-
time Markov chain process.

For the various values of T , Table III.3 reports the average revenue (and 95% confidence
intervals) of the certainty-equivalent policy normalized against the average revenue with
T = 45 price changes (i.e., the continuous-time policy benchmark). Notice that we can see
diminishing marginal returns when increasing the number of price changes. Consistent
with Section III.6.2, we observe a sharp increase in revenue when the number of price
changes increases from 1 to 10. However, we observe that 10 price changes is almost as
good as continuous price changes.

These results provide numerical evidence that a few price changes is good enough to
capture the revenue from changing price continuously (which is very costly in practice).
A small number of prices go a long way. We believe the most important reason for this is
the fact that the SIS function λ(n, α) is assumed to be jointly concave in (n, α) so that the
demand rate is relatively “flat” compared to other convex forms. Moreover, because of the
concavity of λ, in Lemma III.3, we found that the deterministic optimal policy is Lipschitz
continuous in the remaining inventory. This means the difference in the two policies is
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Table III.3: The expected revenue of the discrete-time policy normalized with the expected
revenue of a continuous-time policy

T: Number of
price changes 1 2 4 5 10 17 22 35 45

95 % CI
lower bound 70.3% 95.6% 97.9% 98.4% 99.4% 99.6% 99.8% 99.9% 100.0%

Expected
normalized revenue 70.3% 95.6% 97.9% 98.5% 99.4% 99.7% 99.8% 100.0% 100.0%

95 % CI
upper bound 70.3% 95.7% 98.0% 98.5% 99.4% 99.7% 99.9% 100.0% 100.0%

not too large when the inventory level changes, which implies the deterministic optimal
policy is a relatively stable pricing policy. With the optimal price path to be relatively
stable, a well-designed policy with one price change in the middle can have the ability to
roughly trace the optimal path, which can recover most of the revenue. However, we note
that such policy (piecewise constant pricing) is not asymptotically optimal in the face of
a continuous-time dependent demand model.

III.7 Conclusion

Certainty equivalent (CE) policies are widely used in practice because they are easy
to compute and require a minimal amount of information. The performance guarantee
of CE policies has been extensively studied in the literature under settings where demand
is independent across periods. In contrast to the demand models studied in the previous
literature on CE policies, our demand model is able to capture two distinct forces that
critically influence future demand. The first force is that future demands are influenced
by past cumulative sales. The word-of-mouth effect is an example of this force. The
second force is that future demand is influenced by inventory availability. This force is
often manifested in forms of scarcity (in case of luxury or fad items) or billboard effect
and can be found in many markets today. Moreover, we consider a periodic review pricing
policy, which is commonly practiced in reality. Our work also provides a justification for
the current literature studying dynamic pricing for a product with non-stationary demand
using a deterministic approach.

We analyze two CE pricing policies: an open-loop CE policy (CE-OL) and a closed-
loop CE policy (CE-CL). We show that as the scaling factor m increases, both CE pricing
policies are asymptotically optimal with a regret rate of Θ(

√
m), when compared with

the optimal policy. However, in a non-asymptotic setting, CE-CL performs consistently
better than CE-OL, especially when the number of price change periods increases and
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when the conditional expectation of demand is highly nonlinear in past cumulative sales
and available inventory. This result highlights the importance of re-optimization in the
face of sales and inventory dependent demand. We then extend our results to the case
where the seller chooses initial inventory along with price in each period. We also show
that when demand depends on time, cumulative sales, and/or inventory availability, the
asymptotic performance of CE policies does not change.

To further explore the difference of dynamic pricing under sales and inventory de-
pendent demand against traditional demand assumptions used in the dynamic pricing
literature, we also evaluate the performance of the static pricing policy (which was proven
to be optimal in classical settings). We show that the revenue loss from static pricing can
be huge and it grows at least at the rate of a linear function when demand is dependent
on cumulative sales and inventory.

An accompanying numerical study shows the performance and implementability of
both CE pricing policies. We also show that the CE-CL policy performs close optimality
even in cases where the scaling factor is not large. Furthermore, we show that significant
revenue improvement can be achieved by just a few price changes.

There are several future directions for our work. One is to extend the framework to
the multi-product case where those products share the same market. Another extension
is to consider strategic customers. The customers can strategically wait until there is a
discount. Sapra et al. (2010) touch on this with the wait-list effect, where here it may be
that a customer registers some interest in the product (follows on Twitter) but is waiting
for a sale. Another direction is to incorporate learning into our model. In this chapter,
we assume that the conditional expectation of the demand is known. It is possible to
approximate the expectation using available data throughout the selling horizon.
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CHAPTER IV

Valuing influence

IV.1 Introduction

Influencer marketing — promoting products or services through social-media influ-
encers — has been a popular practice in recent years. Influencers are individuals who
share their impressions of a particular product category (such as fashion, technology, gam-
ing, travel) in order to shape the opinions of their followers. They create content on social
media platforms (e.g., YouTube, Instagram, and Facebook) with active followers who con-
sume this content. Influencers earn money through their reputation, which includes being
consistent and true to their values. Companies leverage these well-earned reputations in
exchange for money, to target customers who follow influencers. Companies recognize
the value of influencers in spreading valuable information about their products, particu-
larly information that they may not be able to credibly communicate themselves. This
marketing practice allows companies to attract interest in a product from pre-selected
active customers. According to a report from Wondershare (Brown, 2020), a platform
providing video-making software, the top ten richest content creators on YouTube earned
between $10 million to $15.5 million in 2019. InfluencerDB, a platform that collects data
on influencer marketing, reports that spending on Instagram influencers alone exceeded
$5 billion in 2018 (Vardhman, 2019).

Although companies spend large sums on influencer marketing, 61% of them find it
difficult to identify effective influencers for their product campaign MediaKix (2019). An
effective influencer increases brand awareness and converts awareness into sales. Influ-
encers are typically paid by companies by a flat rate per “post”, where a post is a video,
picture, or message on a social media platform. Revenue-sharing arrangements exist but
are much rarer in practice.1 However, the value of a post is hard to assess. The following

1Verified through personal communication with social media influencers.
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questions are still largely unanswered:

(i) how lucrative is it for a company to work with a given influencer?
(ii) who is the ideal influencer to post about a given product?
(iii) what attributes of an influencer make her more or less valuable to a company?

This work aims to develop an analytical model designed to answer these and related
questions.

In order to value influence, several factors must be considered. First, and most ob-
viously, is the number of followers that form the audience of the influencer. In industry
practice, influencers are categorized based on the number of followers they have: nano
(500–5,000 followers), micro (5,000–30,000 followers), power (30,000–500,000 followers),
and celebrity (more than 500,000 followers). According to a survey of more than 2,500
influencers from January 2019 to March 2019 released by Klear (2019), the pay rate per
post for a celebrity is more than 20 times that of a nano-influencer.

The size of the following is a commonly used factore for valuing influencers in prac-
tice. Their impact is somewhat well-understood and therefore not a major focus of our
research. Our interest is in the informational value of influencers; that is, the nature of
how followers update their beliefs upon receiving the influencer’s opinion. To our knowl-
edge, the information value of influencers has not been carefully explored in the literature.
Below, we describe two dimensions of an influencer’s ability to change the beliefs of her
followers: reputation and charisma.

Followers shape their beliefs of the product based on the influencer’s historical repu-
tation; that is, how revealing her posts are regarding the true nature of the product. An
influencer who always endorses products, even if they turn out to have bad quality, is
considered to have a bad reputation. The post of such an influencer reveals little infor-
mation. The positive review of an influencer who is more selective in their praise carries
more information.

Moreover, different followers may put different weights on the influencer’s opinion
versus the opinions of others. Devotees only listen to the influencer, while skeptics learn
from both the influencer and other followers. The influencer’s charisma is the fraction of
her followers who are devotees. Because of the existence of skeptics, followers cannot be
considered to be independent decision makers. The revenue generated from the influencer
is affected by the dynamic belief processes of followers, which evolve from the influencer’s
post and the actions of other followers. The greater the charisma of an influencer, the
less dependency there is among the decisions of her followers.

In this on-going project, we want to provide a framework for valuing an influencer
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based on her reputation and charisma. To our knowledge, this is a far more comprehensive
model of influence than commonly used in practice, yet our results remain tractable and
intuitive. Accordingly, our results provide practical guidance for companies when selecting
influencers. Additionally, our modeling framework allows us to identify the features of a
company’s “ideal” influencer.

A key factor that makes our model insightful – and challenging to analyze – is the
complexity of the interactions between followers who dynamically form their beliefs. We
handle this complexity through a diffusion approximation, which makes the comparison
among different influencers possible. Moreover, for the optimal signaling scheme that
maximizes the expected revenue of the company, we show that it suffices to consider
the strategy where the influencer restricts to two possible signals. This is achieved by
formulating the problem into a semi-infinite linear program. This implies that using a
complicated strategy that selects a signal among infinitely many possible options is not
helpful in improving revenue.

IV.2 Connections to existing literature

Our model and results are closely related to (i) the marketing and economics literature
on strategic communication and information transmission from firms to customers, and
(ii) operations and computer science literature on algorithmic information design and
optimal signaling mechanisms.

The problem of how firms use information to manipulate the opinions of customers
has been extensively studied in the marketing literature. Traditionally, word-of-mouth is
endogenously created by customers who experience the product. In contrast, a growing
body of literature investigates how a firm’s exogenous manipulation of word-of-mouth can
be lucrative. Godes and Mayzlin (2009) provide empirical evidence that firms can exoge-
nously create word-of-mouth to drive sales of a product with low awareness. This practice
is more effective when using less loyal customers or acquaintances of target customers to
spread the word because their opinions are considered to be less biased and more credible.
It is the first work that empirically shows that word-of-mouth can be partially controlled
by firms. Our works continues in this vein, as we examine the phenomena of how com-
panies can use opinion leaders (influencers) with independent credibility and messaging
power to impact the evolving beliefs of followers in a social context.

Different from our setting, many marketing papers have explored alternative mechanics
for shaping the opinions of their customers. A prime example is the manipulation of online
reviews by firms. For example, Mayzlin et al. (2014) use review data on TripAdvisor and
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Expedia to identify firm manipulation, adding positive reviews to their hotels and negative
reviews to their competitors. Mayzlin (2006) and Dellarocas (2006) propose theoretical
models to study the persuasiveness of online reviews, knowing that some of the reviews are
manipulated by firms. Chakraborty and Harbaugh (2014) develop a theoretical model to
show that puffery, which is the claim about product strengths made by the company itself
without providing evidence, conveyed to a buyer can be useful in increasing revenue. The
intuition behind their result is that when the initial purchase probability is low, puffery
increases customers’ purchasing probabilities because it emphasizes some attributes of the
product that are of interest to certain group of customers.

However, today’s consumers are becoming even more savvy. They are aware that
anonymous information and online opinions can be manipulated. This partially explains
the rise in prominence of social network influencers whose job is to have credibility and
authenticity in the online space. The goal of the firm is not to manipulate the mes-
sage of influencers, but precisely the opposite, to select influencers whose genuine and
unmanipulated messaging lines up with the interests of the firm.

Influencers, however, do not operate in a vacuum. It is also important to consider
the effect that their followers have on each other. Kozinets et al. (2010) studies word-of-
mouth marketing among bloggers and finds that, after the initial campaign by the blogger
(analogous to an influencer), so-called network co-production of the marketing message
by the blog readers can shape the narrative in a social network. Using empirical evidence,
Hamami (2019) finds that product reviews of early adopters can change the beliefs about
product quality in later-arriving customers. Effects of this type are captured in our
model by the existence of skeptics who “shape” the message of the influencer and must be
considered in valuing an influencer’s post.

Our framework also contributes to the economics literature on information transmis-
sion and persuasion. The economics literature has long understood the importance of
credibility in communication. For instance, Crawford and Sobel (1982) propose the clas-
sic cheap-talk game where there is an informed signal sender and an uninformed receiver
who will react to the sender’s signal. In a cheap talk game, there always exists a “bab-
bling” equilibrium that no one has any incentive to communicate anything meaningful
and informative. Thereafter, the generalizations of the cheap-talk game includes multiple
senders (Gilligan and Krehbiel , 1989; Krishna, 2001; Battaglini , 2002; Ambrus and Lu,
2010), multiple equilibria and equilibrium selection (Farrell , 1993; Chen, 2011; Kartik ,
2009; Chen et al., 2008; Gordon, 2011), and so on (see Sobel (2013) for a comprehensive
survey). Many traditional methods for influencing word-of-mouth marketing may fall into
the “cheap talk” paradigm. These methods have diminishing impact as the notion of on-
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line credibility has become more visible. Thus, the cheap talk setting does not as readily
apply to our problem because (i) both the influencer (signal sender) and the company
need not be better informed than their customers of whether the product will have a
bigger or smaller market (before demand is realized), and (ii) the value of an influencer
who endorses products online stems from her credibility (she loses the long-run reputation
for being a cheap talk sender).

Accordingly, models of credible communication, as studied in the Bayesian persuasion
literature, take on greater relevance for studying word-of-mouth marketing. In a Bayesian
persuasion model, the sender commits to a signaling mechanism that stochastically deter-
mines her messaging. The uninformed receiver is a rational Bayesian learner who decides
on an action after learning from the sender’s signal. The signaling mechanism can be
interpreted as how much information the sender wants to share with the uninformed re-
ceiver. Kamenica and Gentzkow (2011) and Rayo and Segal (2010) provide conditions
under which the persuasion is effective, i.e., the sender achieves higher expected payoff by
committing to a signaling strategy. Our work is closely related to the persuasion literature
because the influencer’s reputation cannot be changed in the short run, an implementa-
tion of the notion of commitment. The company benefits from sponsoring an influencer
only if the reputation of the influencer can “persuade” more followers to make purchases.

Since the seminal work of Kamenica and Gentzkow (2011), the study of Bayesian per-
suasion has developed rapidly. The most relevant strand to our setting are generalizations
to multiple receivers. This literature can be divided into two settings, whether the sender
sends private signals or public signals. Arieli and Babichenko (2019) and Candogan and
Drakopoulos (2020) study the optimal signaling mechanism in the setting that the sender
sends private (possibly different) signals to different receivers. Our focus is on public
signaling mechanisms. In practice, a social media influencer sends public messages to all
of her followers. This public display of “content” is the key driver of follower engagement.

For Bayesian persuasion literature with public signals, Alonso and Câmara (2016a)
and Alonso and Câmara (2016b) consider the public signaling mechanism in a voting
setting. The most significant distinction of our model is that we allow certain group
of receivers not only to learn from the signal sent by the sender, but also purchasing
behavior of others in the social network. Candogan (2019) studies a persuasion game
where receivers are socially connected via a network. He proposes tractable algorithms
to solve for the static equilibrium. Each receiver’s utility depends on the state of the
world and the decisions of others in the network. Our work differs from his by making
the receivers’ utilities and belief processes micro-founded. Specifically, we model decision
dependency among receivers via their dynamic learning behavior. We often see in practice
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that purchases within a group of friends is more like a contagion than a simultaneous-move
game amenable to equilibrium analysis. To the best of our knowledge, we are the first to
consider a Bayesian persuasion sender (the influencer) followed by sequentially arriving
receivers (followers) that can learn from one another.

The sequential arrival of receivers shares commonalities with several papers in a grow-
ing literature in operations management that employs Bayesian persuasion as a modeling
framework. Lingenbrink and Iyer (2019) design optimal signaling mechanisms in a queu-
ing setting. The sender sends private signals about the queue length to sequentially
arriving receivers. They formulate the problem as an infinite linear program and analyze
the optimal solution in the queue’s steady-state distribution. Lingenbrink and Iyer (2018)
use a two-period model to illustrate the efficacy of public signals in online retail. They
propose the optimal signaling strategy of the firm as the solution to a fractional knapsack
problem.

A common criticism of Bayesian persuasion models is to put doubt on the sender’s
ability to credibly commit to her signaling mechanism and, moreover, questions whether
any given signaling strategy can be implemented in practice. This criticism particularly
applies to the operations management literature, who, by nature, focus on practical as-
pect of implementation. Our model does not make the (arguably) strong assumption that
firms can commit to and implement an arbitrary signalling strategy. Indeed, influencer
marketing precisely allows for the firm to leverage alternative signaling mechanisms via
influencers. The seller in our setting does not have the ability to credibly provide their
desired signal to its target customers. The influencer is the intermediary to carry the mes-
sage with her long-term reputation. We take the seller’s perspective to analyze whether
it is profitable to choose a particular influencer with certain features (i.e., reputation,
charisma, number of followers, and effective period of the signal).
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CHAPTER V

Conclusion and future work

Decision making in uncertain, history-dependent, and non-stationary markets is the
theme of my doctoral research. In the information age, we see more and more commu-
nication between companies and their customers, and among customers themselves. It
is common to see markets with these three features. My dissertation provides answers
and practical solutions to Rvenue Management (RM)/Supply Chain Management (SCM)
problems when the company faces those complications (uncertainty, history dependency,
and non-stationarity) in the market condition. It also inspires me to explore a broader
area: how would the complications change the decisions in a supply chain with risk de-
pendency or information sharing in the supply chain network? Nowadays, companies in
the supply chain also have stronger linkages through many technologies (e.g., blockchain).
This is the next step in my research agenda.

Overall, the goal of my research is to extend our understanding of the “socia” com-
ponent in RM/SCM problems: relationships among customers and firms, as well as cus-
tomers themselves. In those relationships, people (firms and customers) choose what to
reveal to one another and how to learn from one another. I call this a “relationship-driven”
approach to Operations Management (OM) research. The core of relationship-driven OM
is as follows: one decides what to share with each other and how to react to (by opera-
tions decisions or information strategies) what is shared. These relationships have become
prominent because of shifting technologies and the sheer amount and complexity of infor-
mation available in recent years. Nowadays, the Covid-19 pandemic has further changed
the nature of human interactions. This brings research opportunities to relationship-
driven OM: how will the new relationship among people impact operations decisions?
Does a lack of human connection caused by social distancing lead less information shar-
ing? What is the result? Exploring more into relationship-driven OM problems is my
current and future research focus. I believe it to be a powerful lens into the important
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questions facing our discipline. Moreover, I am always excited to see the linkage be-
tween the real world and my research and potentially to contribute to the real practice of
RM/SCM in this new age.
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Proofs of chapter II
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A.1 Algorithms

Algorithm A.1 Numerically solve HJB equation (II.3.3) for V
Require: Step size dt, horizon length T = Ndt, model parameters (p0, q0,m0), x(·),

termination criteria ε, max iterations Niter

Ensure: Function V : {0, 1, ...,m0} × [0, T ]→ R+

1: V (m0, :)← 0, V (:, 0)← 0 . Set boundary conditions
2: for all t ∈ {dt, 2dt, . . . , Ndt} do
3: for all d ∈ {m0 − 1,m0 − 2, . . . , 1} do
4: k ← 0, ν0 ← V (d, t− dt) . ν is the estimate for V (d, t)

5: ν−1 ← ν0 + 2ε

6: while |νk − νk−1| > ε and k ≤ Niter do . Find ν using fixed point iteration
7: r ← inf

{
r : r ≥ − x(r)

x′(r)
− V (d+ 1, t) + νk

}
. Solve (II.3.2) for r∗

8: νk+1 ← V (d, t− dt) + dt(m0 − d)(p+ q d
m0

)x(r)2

x′(r)
. Numerically solve

(II.3.3) for ν
9: k ← k + 1

10: end while
11: V (d, t)← νk

12: end for
13: end for

Algorithm A.2 Numerically solve HJB equation (A.11) for V MLE

Require: Step sizes dt, dp, dq, horizon length T = Ndt, model parameters m0, x(·),
termination criteria ε, max iterations Niter, a large integer M

Ensure: Function V MLE : {0, 1, ...,m0} × [0, T ]× [0,∞)× [0,∞)→ R+

1: V MLE(m0, :, :, :)← 0, V MLE(:, 0, :, :)← 0 . Set boundary conditions
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2: for all t ∈ {dt, 2dt, . . . , Ndt} do
3: for all d ∈ {m0,m0 − 1, . . . , 0} do
4: k ← 0, ν0(:, :)← V MLE(d, t− dt, :, :) . ν(:, :) is the estimate for V MLE(d, t, :, :)

5: ν−1 ← ν0 + 2ε

6: while ‖νk − νk−1‖ > ε and k ≤ Niter do . Find ν(:, :) using fixed point
iteration

7: for all p ∈ {0, dp, . . . ,Mdp} do
8: for all q ∈ {0, dq, . . . ,Mdq} do
9: Compute ηp, ηq from (A.8), (A.9)
10: ∇dV ← V MLE(d+ 1, t, p+ ηp, q + ηq)− νk(p, q)
11: if p ∈ [dp, (M − 1)dp] and q ∈ [dq, (M − 1)dq] then
12: Use centered difference to estimate ∇pV and ∇qV from νk, i.e.,
13: ∇pV ← (νk(p+ dp, q)− νk(p− dp, q)) /(2dp)

14: ∇qV ← (νk(p, q + dq)− νk(p, q − dq)) /(2dq)
15: else
16: Use forward or backward difference to estimate ∆pV or ∆qV from

νk

17: end if
18: r ← inf

{
r : r ≥ − x(r)

x′(r)
−∇dV +∇pV ηp +∇qV ηq

}
. Solve (A.10)

for r∗

19: νk+1(p, q)← V MLE(d, t− dt, p, q) + dt(m0 − d)(p+ q d
m0

)x(r)2

x′(r)
.

Numerically solve (A.11) for ν
20: end for
21: end for
22: k ← k + 1

23: end while
24: V (d, t, :, :)← νk(:, :)

25: end for
26: end for

A.2 Proofs

A.2.1 Proof of Proposition II.1

Proof. We will use the arguments adapted from Chapter 11 (“Density dependent popu-
lation processes") in the book Ethier and Kurtz (2005) to prove (II.2.7). We follow the
proof idea used in the book, but the results we cite are well established lemmas/theorems
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in the literature. We will use the prefix EK to denote the sections and results in the
Ethier and Kurtz (2005) book.

In the proof below, we decompose the difference D
r,m0
t

m0
− F r

t into a martingale divided
by m0 and a term that diminishes as m0 grows. The martingale term converges to zero
almost surely by Doob’s martingale convergence theorem. In order to show the variance
of D

r,m0
t

m0
decreases in the order of 1/m0 as m0 increases, we use a continuous time diffusion

process (contains Brownian motion) to approximate the asymptotic distribution of D
r,m0
t

m0
.

Then we directly compute the asymptotic variance using Itô’s isometry. The following is
the detailed proof.

First, we introduce some notations. Let Zλ be an exponentially distributed r.v. with
mean 1/λ. Let Y := {Y (t), t ≥ 0} be a standard Poisson process with intensity 1. Let Yj
be the jth inter-arrival time of Y . Note that Yj has the same distribution as Z1. We also
define Ỹ := {Y (t)− t, t ≥ 0}, which is a “centered” Poisson process with mean zero. Let
Zr,m0

j , 1 ≤ j ≤ m0, be the jth inter-adoption time in Dr,m0 = {Dr,m0
t , t ≥ 0} and tj−1 be

the time that cumulative adoption hits j − 1.
Define the function A(y) := (1− y)(p0 + q0y), y ∈ [0, 1]. Note that ξ(j) = m0A(j/m0)

is the portion of the adoption rate unaffected by the price when the state of process Dr,m0

is j. We use the fact that we can write Zλ in terms of Z1 as Zλ = 1
λ
Z1. Hence, we can

write {Dr,m0
t , t ≥ 0} in terms of Y by letting

Zr,m0

j , sup

t ≥ 0 :

t∫
0

m0A

(
j − 1

m0

)
x(rs+tj−1

)ds ≤ Yj

 .

Then, we know {Dr,m0
t , t ≥ 0} can be constructed via the standard Poisson process Y

with

Dr,m0
t = Y

 t∫
0

m0A

(
Dr,m0
s

m0

)
x(rs)ds

 .

The above transformation is commonly seen in the literature to construct martingales
and it is also shown in Theorem 4.1 of Chapter 6 in Ethier and Kurtz (2005).
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Therefore, using the newly defined processes and function, we have

Dr,m0
t

m0
=

1

m0
Y

 t∫
0

m0A

(
Dr,m0
s

m0

)
x(rs)ds

− t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds+

t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds

=
1

m0
Ỹ

m0

t∫
0

A

(
Dr,m0
s

m0

)
x(πs)ds

+

t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds.

(A.1)

First, since p0 > 0 and q0 > 0 (from our model assumption), we have that the quadratic
function A(y) is bounded above by Ā := p0 + (q0−p0)2

4q0
for any y ∈ [0, 1]. Therefore,∣∣∣∣∣∣ 1

m0

Ỹ

m0

t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m0

sup
0≤u≤t

Ỹ

m0

u∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

m0

sup
u≤t

Ỹ

m0Ā

u∫
0

x(rs)ds

∣∣∣∣∣∣ ,
(A.2)

Sending m0 to infinity on both sides of (A.2), we have

lim
m0→∞

∣∣∣∣∣∣ 1

m0

Ỹ

m0

t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds

∣∣∣∣∣∣ ≤ lim
m0→∞

∣∣∣∣∣∣ 1

m0

sup
u≤t

Ỹ

m0Ā

u∫
0

x(rs)ds

∣∣∣∣∣∣ = 0.

(A.3)
The right hand side of (A.3) is zero almost surely by Doob’s martingale convergence
theorem.

Therefore, by (A.1) and the definition of F r
t in (II.2.1), we have

∣∣∣∣Dr,m0
t

m0

− F r
t

∣∣∣∣ =

∣∣∣∣∣∣ 1

m0

Ỹ

m0

t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds

+

t∫
0

[
A

(
Dr,m0
s

m0

)
−A (F r

s )

]
x(rs)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m0

Ỹ

m0

t∫
0

A

(
Dr,m0
s

m0

)
x(rs)ds

∣∣∣∣∣∣︸ ︷︷ ︸
∆1

+

t∫
0

∣∣∣∣A(Dr,m0
s

m0

)
−A (F r

s )

∣∣∣∣x(rs)ds︸ ︷︷ ︸
∆2

.

(A.4)
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To bound ∆2, note that A′(y) = q0 − p0 − 2yq0. Hence, we have

∆2 ≤ max
y∈[0,1]

|A′(y)| ×
t∫

0

∣∣∣∣Dr,m0
s

m0

− F r
s

∣∣∣∣x(rs)ds ≤ |q0 + p0|
t∫

0

∣∣∣∣Dr,m0
s

m0

− F r
s

∣∣∣∣x(rs)ds. (A.5)

Thus, substituting (A.5) into (A.4) and let X(t) :=
∫ t

0
x(rs)ds, we have

∣∣∣∣Dr,m0
t

m0

− F r
t

∣∣∣∣ ≤ ∆1 + |q0 + p0|
t∫

0

∣∣∣∣Dr,m0
s

m0

− F r
s

∣∣∣∣ dX(s).

By Gronwall’s inequality, we have∣∣∣∣Dr,m0
t

m0

− F r
t

∣∣∣∣ ≤ min
{

∆1e
|q0+p0|

∫ t
0 x(rs)ds, 2

}
. (A.6)

According to (A.3), we have ∆1 → 0 almost surely as m0 →∞. Taking m0 to infinity
on both sides of (A.6), we have

lim
m0→∞

∣∣∣∣Dr,m0
t

m0

− F r
t

∣∣∣∣ = 0 almost surely,

proving the first part of the proposition.
We next analyze the convergence of the variance of Dr,m0 . To do this, we define the

new stochastic process V r,m0
t :=

√
m0

(
D
r,m0
t

m0
− F r

t

)
. We also define {V r

t , t ≥ 0} to be
stochastic process satisfying the following stochastic differential equation:

dV r
t = A′(F r

t )x(rt)V
r
t dt+

√
A(F r

t )x(rt)dWt (A.7)

where {Wt, t ≥ 0} is the standard Brownian motion (i.e., mean is zero, variance is t).
Note that the solution of (A.7) is

V r
t =

t∫
0

e
∫ t
s A
′(F ru)x(ru)du

√
A(F r

s )x(rs)dWs. (A.8)

We can directly use EK Theorem 2.3 in Chapter 11 (p.458) (or e.g., Kurtz (1971)
Theorem 3.1, equation (1.5) in Norman et al. (1974)) to get the following result: For a
given t, we have that V r,m0

t converges to V r
t in distribution as m0 → ∞. Therefore, we
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can find the asymptotic variance of V r,m0
t by Itô’s isometry, and it is equal to

Var (V r
t ) (A.9)

=

t∫
0

(
e
∫ t
s A
′(F ru)x(ru)du

√
A(F rs )x(rs)

)2
ds

= F rt (1− F rt ) + (1− F rt )

·
2q0/p0

[
(p0 + q0)

∫ t
0 x(rs)ds− 1 + e−(p0+q0)

∫ t
0 x(rs)ds

]
+ (q0/p0)2

(
1− e−(p0+q0)

∫ t
0 x(rs)ds

)2

(
1 + q0/p0e

−(p0+q0)
∫ t
0 x(rs)ds

)3
+ e(p0+q0)

∫ t
0 x(rs)ds

≤ F rt (1− F rt ) + (1− F rt )
2q0/p0

[
(p0 + q0)

∫ t
0 x(rs)ds− 1 + e−(p0+q0)

∫ t
0 x(rs)ds

]
+ (q0/p0)2

e(p0+q0)
∫ t
0 x(rs)ds

≤ F πt (1− F rt ) + (1− F rt )α

(
t

et

)
(A.10)

for some α > 0 independent of m0. By the definition of V r,m0
t , we have Var (V r,m0

t ) =

m0Var
(
D
r,m0
t

m0

)
. Therefore, for any t ≥ 0, we conclude that the asymptotic variance of

D
r,m0
t

m0
decreases with rate 1/m0.

A.2.2 Proof of Lemma II.2

Proof. We will drop the subscript θ0 from Eθ0 for simplicity of notation. Note that we
have

E
∣∣∣∣Dr,m0

t

m0

− F r
t

∣∣∣∣ ≤ E
∣∣∣∣Dr,m0

t

m0

− E
(
Dr,m0
t

m0

)∣∣∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣E(Dr,m0
t

m0

)
− F r

t

∣∣∣∣︸ ︷︷ ︸
(b)

.

To prove the lemma, we will prove that (a) has an upper bound that is O
(
1/
√
m0

)
, while

(b) has an upper bound that is O (1/m0).
We first bound (a). Fixing time t, we consider the adoption states at time t of each

individual within the population of size m0. We denote their adoption states as ζi(t) for
i = 1, 2, ...,m0. If ζi(t) = 1, then individual i has adopted the product by time t, and
ζi(t) = 0 otherwise. Hence, Dr,m0

t =
∑m0

i=1 ζi(t), where D
r,m0
t is the number of adoptions

by time t.
Since the population is homogeneous, then ζ1(t), ζ2(t), . . . , ζm0(t) are a priori identi-

cally distributed. We next derive an expression for their mean. Let us define F r,m0
t :=

E
(
D
r,m0
t

m0

)
. Since Dr,m0

t =
∑m0

i=1 ζi(t), we know that 1
m0

∑m0

i=1 E (ζi(t)) = E
(
D
r,m0
t

m0

)
=

F r,m0
t . Since the population is homogeneous, this means that E (ζi(t)) = Pr (ζi(t) = 1) =
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F r,m0
t for all i = 1, . . . ,m0.
Let X := {ζ1(t), . . . , ζm0(t)} be the set of adoption states, which are identical Bernoulli

random variables with mean F r,m0
t . Note that 1

m0
Dr,m0
t = 1

m0

∑m0

i=1 ζi(t) is the sample
average of a random sample (with size m0) taken without replacement from X . Hoeffding
inequality can be used to bound the deviation of the sample average from its mean when
sampling is done without replacement (Bardenet et al., 2015). Therefore, we can use
Hoeffding inequality to bound (a). Specifically, for any ε > 0,

P
{∣∣∣∣Dr,m0

t

m0

− E
(
Dr,m0
t

m0

)∣∣∣∣ > ε

}
= P

{∣∣∣∣∣ 1

m0

m0∑
i=1

ζi(t)− F r,m0
t

∣∣∣∣∣ > ε

}
≤ 2 exp

(
−2m0ε

2
)
.

Hence, we have

E
∣∣∣∣Dr,m0

t

m0

− E
(
Dr,m0
t

m0

)∣∣∣∣ =

∞∫
0

P
{∣∣∣∣Dr,m0

t

m0

− E
(
Dr,m0
t

m0

)∣∣∣∣ > ε

}
dε

≤
∞∫

0

2e−2m0ε2dε =
2√
2m0

√
π = O

(
1
√
m0

)
,

thus, proving the bound for (a).
We next bound (b). Let us define f r,m0

t := d
dt
F r,m0
t = 1

m0

d
dt
E (Dr,m0

t ). Hence, recalling
that λ(·, ·) defined in (II.2.3) is the adoption rate function, we have

f r,m0
t =

1

m0

E [λ(Dr,m0
t , rt)] (A.11)

= E
[(

1− Dr,m0
t

m0

)(
p0 + q0

Dr,m0
t

m0

)
x(rt)

]
=

(
p0E

(
1− Dr,m0

t

m0

)
+ q0E

(
Dr,m0
t

m0

−
(
Dr,m0
t

m0

)2
))

x(rt)

=

(
p0 (1− F r,m0

t ) + q0

(
F r,m0
t − E

[(
Dr,m0
t

m0

)2
]))

x(rt)

=

(
p0 (1− F r,m0

t ) + q0

(
F r,m0
t − (F r,m0

t )2 − Var
(
Dr,m0
t

m0

)))
x(rt). (A.12)
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Dividing both sides of (A.12) by (1− F r,m0
t )(p0 + q0F

r,m0
t ), we have

f r,m0
t

(1− F r,m0
t )(p0 + q0F

r,m0
t )

= x(rt)

1−
q0Var

(
D
r,m0
t

m0

)
(1− F r,m0

t )(p0 + q0F
r,m0
t )


= x(rt)

[
1− q0

m0

F r,m0
t +O(1)

(
t
et

)
p0 + q0F

r,m0
t

]
,

(A.13)

where the last equality follows from (A.10).
The differential equation (A.13) is similar to the deterministic Bass model (II.2.1),

except with a modified market effort function. Hence, modifying (II.2.2) results in

E
(
Dr,m0
t

m0

)
= F r,m0

t =

1− exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

)
1 + q0

p0
exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

) .
(A.14)

Then, from (II.2.2) and (A.14),∣∣∣∣E(Dr,m0
t

m0

)
− F r

t

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1− e

−(p0+q0)

∫ t
0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

1 + q0
p0
e
−(p0+q0)

∫ t
0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m
s

)
x(rs)ds

− 1− e−(p0+q0)
∫ t
0 x(rs)ds

1 + q0
p0
e−(p0+q0)

∫ t
0 x(rs)ds

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

∫ t
0 x(rs)ds∫

∫ t
0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 dX

∣∣∣∣∣∣∣∣∣∣∣∣

≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt

(1)2

∣∣∣∣∣∣∣∣∣∣∣∣

∫ t
0 x(rs)ds∫

∫ t
0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

dX

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the last inequality follows from Assumption II.1 (ii).
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Hence,

∣∣∣∣E(Dr,m0
t

m0

)
− F r

t

∣∣∣∣ ≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt

(1)2

∣∣∣∣∣∣∣
t∫

0

q0

m0

F r,m0
s +O(1)

(
s
es

)
p0 + q0F

r,m0
s

x(rs)ds

∣∣∣∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)

x̄ut

e(p0+q0)x̄lt

1

m0

=
t

et
O
(

1

m0

)
,

where the last inequality follows from
q0F

r,m0
s +q0O(1)( s

es )
p0+q0F

r,m0
s

= O(1) and Assumption II.1 (ii),
proving that (b) has an upper bound that is O(1/m0).

A.2.3 Proof of Theorem II.1

Proof. We can write the value function V (d, t) by enumerating the outcomes after δt time
units. Hence, for any d ∈ {0, 1, . . . ,m0 − 1} and t ∈ (0, T ], we have

V (d, t) = max
r∈(−∞,∞)

{
(r + V (d+ 1, t− δt))λ(d, r)δt+ V (d, t− δt) (1− λ(d, r)δt) + o(δt)

}
,

where λ(·, ·) is defined in (II.2.3). On both sides of the equation, we subtract V (d, t−δt),
divide by δt, then take the limit as δt approaches zero. This results in the HJB equation

∂V

∂t
= max

r∈(−∞,∞)
{rλ(d, r) + [V (d+ 1, t)− V (d, t)]λ(d, r)} . (A.15)

We will show existence of a unique solution V (·, ·) to (A.15) at the end of this proof.
We next derive the optimal solution r∗(d, t) to the right-hand side of (A.15). Denote

the objective function of the right-hand side of (A.15) by J(r, d, t). Since λ(d, r) =

ξ(d)x(r), then

∂J

∂r
= λ(d, r)x′(r)

(
r +

x(r)

x′(r)
+ V (d+ 1, t)− V (d, t)

)
. (A.16)

Note that x′(r) < 0 (Assumption II.1(iii)) and since d ≤ m0 − 1, we have λ(d, r) > 0.
Therefore, the first order condition ∂J

∂r
= 0 is satisfied by r = r∗(d, t), where r∗(d, t) is

defined in the theorem as the solution to (II.3.2). Note that (II.3.2) has a unique solution.
This is because, rearranging (II.3.2) as

0 = −r − x(r)

x′(r)
− V (d+ 1, t) + V (d, t), (A.17)
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the right-hand side is strictly decreasing in r (Assumption II.1(iv)), implying that there
is a unique root to the equation (A.17).

We next show that r∗(d, t) is the unique maximizer of J(r, d, t) for any (d, t). Using
the fact that V (d+ 1, t)− V (d, t) = −r∗ − x(r∗)

x′(r∗)
, we have

∂2J

∂r2

∣∣∣
r=r∗

=
ξ(d)

x′(r)

[
2x′(r)2 − x(r)x′′(r)

]
. (A.18)

Since 2x′(r)2−x(r)x′′(r) ≥ 0 (Assumption II.1(iv)), and x′(r) < 0 (Assumption II.1(iii)),
it follows that ∂2J

∂r2

∣∣
r=r∗

≤ 0. Hence r∗(d, t) is the unique maximizer of the right-hand
side of the HJB equation (A.15) and is therefore the unique optimal price given state
(d, t). Finally we can use the equation ∂J

∂r
= 0 where r = r∗(d, t), to reformulate (A.15)

as (II.3.3).
To complete the proof, we will show that there exists a unique solution V to the HJB

equation (A.15). By Theorem VII.T3 (page 208) in Brémaud (1981), a unique solution
exists if we can replace max

r∈(−∞,∞)
in (A.15) with max

r∈Ut
where Ut is a compact set, and if

rλ(d, r) and λ(d, r) are continuous and uniformly bounded in r and d. To show the first
condition, note that (II.3.2) implies that

|r∗(d, t)| ≤
∣∣∣∣ x(r∗(d, t))

x′(r∗(d, t))

∣∣∣∣+ |V (d+ 1, t)− V (d, t)| .

Note that λc(r) = m0(p0 + q0)x(r) is an upper bound for the adoption rate in our system
at any state (d, t) and price r. Therefore, |V (d + 1, t) − V (d, t)| can be loosely bounded
by the optimal T -period expected revenue in a system where the adoption rate is λc(r).
By Gallego and Van Ryzin (1994), this expected revenue has a deterministic upper bound
JD = Tm0(p0 + q0) sup

r∈(−∞,∞)

rx(r). By Assumption 1(v), rx(r) is bounded by a finite Cx,

so JD is finite. Furthermore, Assumption 1(iv) implies that |x(r)/x′(r)| is bounded for
any r. Hence,

u := sup
r∈(−∞,∞)

∣∣∣∣ x(r)

x′(r)

∣∣∣∣+ JD.

is a finite value that bounds the magnitude of r∗(d, t). Hence, we can replace the maxi-
mization in (A.15) with max

r∈Ut
where Ut = [−u, u]. This fulfills the first condition.

To satisfy the remaining conditions, we need to show that rλ(d, r) and λ(d, r) in (A.15)
are continuous and uniformly bounded in r, d.

First, note that λ(d, r) = x(r)ξ(d), where ξ(d) = (m0− d)(p0 + d
m0
q0). By a change of
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variables y = d/m0, we can write ξ(y) = m0(1 − y)(p0 + q0y) which attains a maximum
value of m0

4q0
(p0 + q0)2 when y = 1

2
− p0

2q0
. Therefore, ξ(d) ≤ m0

4q0
(p0 + q0)2 for any d.

Furthermore, from Assumption 1(ii), we have λ(d, r) ≤ x̄u m0

4q0
(p0 + q0)2.

To check whether rλ(d, r) = rx(r)ξ(d) is uniformly bounded, note that from Assump-
tion 1(iv), there exists a unique maximizer of rx(r). We define it as r#. Therefore, we
know that rλ(d, r) is continuous and uniformly bounded by r#x(r#)m0

4q0
(p0 + q0)2 for any

r, d.
Thus, there exists a unique solution to the HJB equation (A.15).

A.2.4 Lemma A.1 and proof

The following lemma provides monotonicity properties of the value function V with
respect to the state variables (d, t) and the demand model parameters θ0 = (p0, q0,m0).

Lemma A.1. The value function V (d, t; θ0) has the following properties:

(i) V (d, t; θ0) is monotone increasing in t ∈ [0, T ],
(ii) V (d, t; θ0) is monotone decreasing in d for d > m0

(
1
2
− p0

2q0

)
(iii) V (d, t; θ0) is monotone increasing in p0, q0 and m0 for any (d, t) ∈ {0, 1, . . . ,m0} ×

[0, T ].

Proof. We prove the three parts of the lemma below.

1. From (II.3.3), ∂
∂t
V (d, t) is nonnegative due to the assumption that x′(r) < 0 for all

r (Assumption II.1 (iii)). Therefore, for all d ∈ {0, 1, 2, ...,m0}, V (d, t) is monotone
increasing in t ∈ [0, T ].

2. To prove the monotonicity of V with respect to d, we temporarily treat d as a
continuous variable. Then by (A.15), since ∂V (d,t)

∂t
= J(r, d, t)

∣∣
r=r∗(d,t)

, we have that

∂2V (d, t)

∂d∂t
=
∂J(r, d, t)

∂r

∂r

∂d

∣∣∣
r=r∗(d,t)

+
∂J(r, d, t)

∂d

∣∣∣
r=r∗(d,t)

(A.19)

Note that the first term in the RHS is zero, hence

∂2V (d, t)

∂d∂t
=
∂λ(d, r)

∂d
[r + V (d+ 1, t)− V (d, t)]

∣∣∣
r=r∗(d,t)

+ λ(d, r)
∂[V (d+ 1, t)− V (d, t)]

∂d

∣∣∣
r=r∗(d,t)

= −x(r∗(d, t))2

x′(r∗(d, t))

(
q0 − p0 − 2q0

d

m0

)
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+
∂[V (d+ 1, t)− V (d, t)]

∂d
(m0 − d)

(
p0 + q0

d

m0

)
x(r∗(d, t)),

where the second equality follows from (II.3.2) and from the definition of λ(·, ·).
If we define g(d, t) := ∂V (d,t)

∂d
, then g(d, 0) = 0 and

∂g

∂t
+

[
(m0 − d)

(
p0 + q0

d

m0

)
x(r∗(d, t))

]
g

= −x(r∗(d, t))2

x′(r∗(d, t))

(
q0 − p0 − 2q0

d

m0

)
+
∂V (d+ 1, t)

∂d
(m0 − d)

(
p0 + q0

d

m0

)
x(r∗(d, t)),

(A.20)

which is a linear differential equation. Solving this differential equation using
standard techniques, results in

∂V (d, t)

∂d
e

(m0−d)(p0+ d
m0

q0)(h1(t)+z1)︸ ︷︷ ︸
(1)

=

t∫
0

e
(m0−d)(p0+ d

m0
q0)(h1(s)+z1)︸ ︷︷ ︸

(2)

·

−x(r∗)2

x′(r∗)

(
q0 − p0 − 2q0

d

m0

)
︸ ︷︷ ︸

(3)

+ (m0 − d)

(
p0 +

d

m0
q0

)
x(r∗)

∂V (d+ 1, s)

∂d︸ ︷︷ ︸
(4)

ds,

(A.21)

For all d > m0

(
1
2
− p0

2q0

)
, we show ∂V (d,t)

∂d
≤ 0 by induction. When d = m0− 1, (4)

is zero. The sign of ∂V
∂d

depends on (1), (2), (3). (1), (2) are always nonnegative, and
(3) is negative when d > m0

(
1
2
− p

2q0

)
. Suppose ∂V (k,t)

∂k
≤ 0 for all m0

(
1
2
− p0

2q0

)
<

k = d+1, . . . ,m0−2. We will then show ∂V (d,t)
∂d
≤ 0. According to (A.21), ∂V (d,t)

∂d
≤ 0

because all (1), (2), (3), (4) ≤ 0.
3. Taking the partial integral of (II.3.2) w.r.t r∗ and rearranging the terms, we have

that
∂r∗(d, t)

∂ [V (d, t)− V (d+ 1, t)]

[
2x′(r∗)2 − x(r∗)x′′(r∗)

x′(r∗)2

]
= 1. (A.22)

Hence, taking the partial derivative of (II.3.3) w.r.t. p0 and using (A.22), we have

∂2V (d, t)

∂p0∂t
= −x(r∗)2

x′(r∗)
(m0 − d)

− (m0 − d)

(
p0 +

d

m0
q0

)
2x′(r)2x(r)− x(r)2x′′(r)

x′(r)2

∣∣∣
r=r∗
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· ∂r∗(d, t)

∂ [V (d, t)− V (d+ 1, t)]

∂[V (d, t)− V (d+ 1, t)]

∂p0
.

Defining g(d, t) := ∂V (d,t)
∂p0

, we have g(d, 0) = 0 and

∂g

∂t
+ (m0 − d)

(
p0 +

d

m0

q0

)
x(r∗)g

= −x(r∗)2

x′(r∗)
(m0 − d) + (m0 − d)

(
p0 +

d

m0

q0

)
x(r∗)

∂V (d+ 1, t)

∂p0

,

(A.23)

which we solve using the same techniques as (A.20), resulting in

∂V (d, t)

∂p0

e
(m0−d)

(
p0+ d

m0
q0
)

(h1(t)+z1)︸ ︷︷ ︸
(1)

=

t∫
0

e
(m0−d)

(
p0+ d

m0
q0
)

(h1(s)+z1)︸ ︷︷ ︸
(2)

·

−x(r∗)2

x′(r∗)
(m0 − d)︸ ︷︷ ︸

(3)

+ (m0 − d)

(
p0 +

d

m0

q0

)
x(r∗)

∂V (d+ 1, s)

∂p︸ ︷︷ ︸
(4)

 ds.

As we know ∂V (m0,t)
∂p0

= 0 for all t ∈ [0, T ], then ∂V (m0−1,t)
∂p0

≥ 0 for all t ∈ [0, T ]

because (1), (2), (3) above are always positive and (4) = 0. Similarly, we can deduce
that ∂V (m0−2,t)

∂p0
, ∂V (m0−3,t)

∂p0
, . . . , ∂V (0,t)

∂p0
are all nonnegative for all t because (4) in these

cases become nonnegative. This proves that V (d, t) is monotone increasing in p0.
We can use the same technique to prove monotonicity of the value function in q0

and in m0. Defining g1 := ∂V (d,t)
∂q0

and g2 := ∂V (d,t)
∂m0

(here we treat m0 as a continuous
parameter) results in the following corresponding ordinary differential equations:

∂g1

∂t
+ (m0 − d)(p0 +

d

m0
q0)x(r∗)g1

= −x(r∗)2

x′(r∗)
(m0 − d)

d

m0︸ ︷︷ ︸
(5)

+(m0 − d)(p0 +
d

m0
q0)x(r∗)

∂V (d+ 1, t)

∂q0
,

∂g2

∂t
+ (m0 − d)(p0 +

d

m0
q0)x(r∗)g2

= −x(r∗)2

x′(r∗)
(p0 +

d2

m0
2
q0)︸ ︷︷ ︸

(6)

+(m0 − d)(p0 +
d

m0
q0)x(r∗)

∂V (d+ 1, t)

∂m0
.
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Note that the difference between the two ODEs are from (5) and (6), which are
both positive, so can be analyzed in the same way that we did for (A.23). Therefore,
V (d, t) is partially monotone increasing in p0, q0,m0.

A.2.5 Proof of Corollary II.1

Proof. For the case where x(r) = e−r, (II.3.2) results in r∗(d, t) = 1−V (d+1, t)+V (d, t).
Hence, condition (II.3.3) becomes

∂

∂t
V (d, t) = (m0 − d)

(
p0 +

d

m0
q0

)
e−2r∗(d,t)

e−r∗(d,t)
= ξ(d)eV (d+1,t)−V (d,t)−1. (A.24)

Given the boundary conditions of (II.3.3), we can solve the system backwards:

• From (A.24) when d = m0 − 1, and since V (m0, t) = 0 for all t ≥ 0, we know that

∂

∂t
V (m0 − 1, t) = ξ(m0 − 1)e−1−V (m0−1,t).

This partial differential equation is solved by V (m0−1, t) = ln
(
ξ(m0−1)

e
t+ 1

)
, hence

∂V (m0 − 1, t)

∂t
=

(
ξ(m0 − 1)

e

) / (ξ(m0 − 1)

e
t+ 1

)
(A.25)

• From (A.24), and (A.25), we know

∂V (m0 − 1, t)

∂t

∂V (m0 − 2, t)

∂t
=
ξ(m0 − 2)

e

(
ξ(m0 − 1)

e
t+ 1

)
e−V (m0−2,t)−2.

This is solved by V (m0 − 2, t) = ln
(
ξ(m0−1)ξ(m0−2)

2e2
t2 + ξ(m0−2)

e
t+ 1

)
. Hence,

∂V (m0 − 2, t)

∂t
(A.26)

=

(
ξ(m0 − 1)ξ(m0 − 2)

e2
t+

ξ(m0 − 2)

e

) / (ξ(m0 − 1)ξ(m0 − 2)

2e2
t2 +

ξ(m0 − 2)

e
t+ 1

)
.

(A.27)

• From (A.24), we know

∂V (m0 − 1, t)

∂t

∂V (m0 − 2, t)

∂t

∂V (m0 − 3, t)

∂t
= ξ(m0 − 1)ξ(m0 − 2)ξ(m0 − 3)e−V (m0−3,t)−3.
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Substituting (A.25)–(A.27), this reduces to a partial differential equation whose
solution is

V (m0 − 3, t)

= ln

(
ξ(m0 − 1)ξ(m0 − 2)ξ(m0 − 3)

3!e3
t3 +

ξ(m0 − 2)ξ(m0 − 3)

2!e2
t2 +

ξ(m0 − 3)

e
t+ 1

)
.

This then provides us with ∂V (m0 − 3, t)/∂t.
• We can continue to solve for V (0, t):

V (0, t)

= ln

(
ξ(m0 − 1)ξ(m0 − 2)...ξ(0)

m0!

(
t

e

)m0

+
ξ(m0 − 2)ξ(m0 − 3)...ξ(0)

(m0 − 1)!

(
t

e

)m0−1

+ ...+ 1

)

= ln

m0∑
j=1

∏j−1
i=0 ξ(i)

j!

(
t

e

)j
+ 1

 .

A.2.6 Proof of Proposition II.2

Proof. It suffices to show the Hessian matrix of
∑D̂t−

i=0 ln fi(β) with respect to β is negative
definite. Note that for i = 0, 1, 2, 3, ..., D̂t− − 1,

∇2
β ln fi(β) =

−1

(β1 + β2i+ β3i2)2
·

1 i i2

i i2 i3

i2 i3 i4

 ,

and ∇2
β ln fi(β) = 0 for i = D̂t−. Hence, for any z = (z1, z2, z3)>,

z>∇2
β

D̂t−∑
i=0

ln fi(β)

 z = −
D̂t−−1∑
i=0

(z1 + iz2 + i2z3)2

(β1 + β2i+ β3i2)2
≤ 0

Hence, the Hessian matrix is negative semidefinite.
To show that the Hessian matrix is negative definite, we need the additional condition

that D̂t− ≥ 3. Under this condition, for any z 6= 0,

z>∇2
β

D̂t−∑
i=0

ln fi(β)

 z = − z
2
1

β2
1

− (z1 + z2 + z3)2

(β1 + β2 + β3)2
− (z1 + 2z2 + 4z3)2

(β1 + 2β2 + 4β3)2
−
D̂t−−1∑
i=3

(z1 + iz2 + i2z3)2

(β1 + β2i+ β3i2)2
.
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Note that z1 = 0, z1 + z2 + z3 = 0 and z1 + 2z2 + 4z3 = 0 can only occur simultaneously
if z = 0. Hence, − z2

1

β2
1
− (z1+z2+z3)2

(β1+β2+β3)2 − (z1+2z2+4z3)2

(β1+2β2+4β3)2 is strictly less than zero for any z 6= 0.

This means that we need the condition that D̂t− ≥ 3 for ∇2
β(
∑D̂t−

i=0 ln fi(β)) ≺ 0. Since

Lt(Ût| β) =
∑D̂t−

i=0 ln fi(β), we can conclude that ∇2
βLt(Ût| β) ≺ 0 when D̂t− ≥ 3.

A.2.7 Proof of Lemma II.3

Proof. All the expectations in this proof are conditioning on Dπ
t = k where k ≥ 3. For

simplicity of notation, we will use Dt instead of Dπ
t to denote the cumulative adoptions

at time t. Since Dt ≥ 3, we know that the ML estimator θ̂t is unique.
Note from (II.4.2) that if either p̂t = +∞ or q̂t = +∞ or m̂t = +∞, then the likelihood

function is 0. Then, we know there exist finite δ̄1, δ̄2, δ̄3 such that p̂t ≤ p0 + δ̄1, q̂t ≤ q0 + δ̄2

and m̂t ≤ m0 + δ̄3. Note that the ML estimator θ̂t = (p̂t, q̂t, m̂t) can be written as

θ̂t = arg max
θ≥0
Lt(Ût; θ) = θ0 + arg min

u≥−θ0
−

Dt∑
i=0

ln
fi(θ0 + u)

fi(θ0)
,

where u = (up, uq, um), θ0 = (p0, q0,m0), and fi(θ) is defined in (II.4.2). If we denote the
optimizer of the right-hand side as û = (ûp, ûq, ûm), then θ̂t = θ0 + û.

We analyze the estimation error |p̂t − p0|. Suppose |p̂t − p0| > δ for some δ̄1 ≥ δ > 0.
This implies that ûp lies outside [−δ, δ]. Since the objective function on the right-hand-
side is 0 when u = 0, and since the log-likelihood function is continuous and element-wise
concave in p, then either

−
Dt∑
i=0

ln
fi(θ0 + δe1)

fi(θ0)
≤ 0 or −

Dt∑
i=0

ln
fi(θ0 − δe1)

fi(θ0)
≤ 0,

where e1 := (1, 0, 0). Note that under the Markovian Bass model, the value fi(θ) for any
θ is stochastic since its value depends on ti and ti+1, which are random adoption times.
Here, ti denotes the time of the i-th adoption, where i = 0, . . . , Dt.

Let Pθ0(·) denote the probability under a demand process that follows a Markovian
Bass model with parameter vector θ0 = (p0, q0,m0). Therefore,

Pθ0 {|p̂t − p0| > δ}

≤ Pθ0

{
−

Dt∑
i=0

ln
fi(θ0 + δe1)

fi(θ0)
≤ 0

}
+ Pθ0

{
−

Dt∑
i=0

ln
fi(θ0 − δe1)

fi(θ0)
≤ 0

}

106



≤ 2Pθ0

{
−

Dt∑
i=0

ln
fi(θ0 + δe1)

fi(θ0)
≤ 0

}
= 2Pθ0

{
Dt∏
i=0

fi(θ0 + δe1)

fi(θ0)
≥ 1

}

= 2Pθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
≥ 1

 ≤ 2Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)


= 2Eθ0

Eθ0

· · ·Eθ0
Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−1

 | FtDt−2

 · · · | Ft1
 | F0

 .

(A.28)

The second inequality is because fi is an increasing function in p. The last equality is due
to the law of iterated expectations.

We next analyze (A.28) starting from the innermost conditional expectation. We have

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−1

 =

√√√√Dt−1∏
i=0

fi(θ0 + δe1)

fi(θ0)
Eθ0

(√
fDt(θ0 + δe1)

fDt(θ0)
| FtDt−1

)

=

√√√√Dt−1∏
i=0

fi(θ0 + δe1)

fi(θ0)

 ∞∫
tDt−1

√
fDt(θ0 + δe1)

fDt(θ0)
fDt(θ0)dtDt


=

√√√√Dt−1∏
i=0

fi(θ0 + δe1)

fi(θ0)

 ∞∫
tDt−1

√
fDt(θ0 + δe1)

√
fDt(θ0)dtDt

 .

(A.29)
The first equality is because {fi(θ), i = 0, . . . , Dt − 1} are all FtDt−1

-measurable. The
second equality is because, given the information set FtDt−1

, fDt(θ0) is the conditional
probability distribution of the adoption time tDt under a Markovian Bass model with pa-
rameter θ0. Hence, we next want to derive a bound on

∫∞
tDt−1

√
fDt(θ0 + δe1)

√
fDt(θ0)dtDt .

Note that

1

2

∞∫
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt

=
1

2

∞∫
tDt−1

(
fDt(θ0 + δe1) + fDt(θ0)− 2

√
fDt(θ0 + δe1)fDt(θ0)

)
dtDt

= 1−
∞∫

tDt−1

√
fDt(θ0 + δe1)fDt(θ0)dtDt ,
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where the last equality is because the integral of the probability density function

∞∫
tDt−1

fDt(θ)dtDt

is equal to 1 for any θ. Therefore,

∞∫
tDt−1

√
fDt(θ0 + δe1)fDt(θ0)dtDt = 1− 1

2

∞∫
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt .

(A.30)
The integral on the right-hand side is the Hellinger distance between fDt(θ0 + δe1) and
fDt(θ0), which are probability densities of the adoption time tDt .

Note that the Hellinger distance can be lower bounded by the K-L divergence (corollary
4.9 in Taneja and Kumar 2004). Specifically,

1

2

∞∫
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt ≥
1

4
√
R
Eθ0
(

ln
fDt(θ0)

fDt(θ0 + δe1)
| FtDt−1

)
,

(A.31)
where R is a constant such that R ≥ minδ

1
fDt (θ0+δe1)

≥ 1
m0p0

. We will next bound the
right-hand side of (A.31).

Define CI := (p0 + δ̄1 + q0)2. Note that

∂2

∂δ2
ln

fDt(θ0)

fDt(θ0 + δe1)
=

1

(p0 + δ + Dt
m0
q0)2
≥ 1

(p0 + δ̄1 + q0)2
=

1

CI
,

where the inequality is because p0 + δ ≤ p0 + δ̄1.
Furthermore, since the expectation of the Fisher score under the true parameter is

zero, we have

Eθ0

(
∂

∂δ
ln

fDt(θ0)

fDt(θ0 + δe1)

∣∣∣∣∣
δ=0

| FtDt−1

)
= 0.
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Hence, we have

Eθ0
(

ln
fDt(θ0)

fDt(θ0 + δe1)
| FtDt−1

)
= Eθ0

 δ∫
0

∂

∂z
ln

fDt(θ0)

fDt(θ0 + ze1)
dz | FtDt−1


= Eθ0

 δ∫
0

(
∂

∂z
ln

fDt(θ0)

fDt(θ0 + ze1)
− ∂

∂z
ln

fDt(θ0)

fDt(θ0 + ze1)

∣∣∣
z=0

)
dz | FtDt−1


= Eθ0

 δ∫
0

z∫
0

∂2

∂z′2
ln

fDt(θ0)

fDt(θ0 + z′e1)
dz′ | FtDt−1

 ≥ 1

2CI
δ2.

Therefore, (A.31) reduces to

1

4
√
RCI

δ2 ≤
∞∫

tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt. (A.32)

Hence, from (A.30), we have

∞∫
tDt−1

√
fDt(θ0 + δe1)fDt(θ0)dtDt = 1− 1

2

∞∫
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt

≤ exp

−1

2

∞∫
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt

 ≤ exp

(
− 1

8
√
RCI

δ2

)
,

where the first inequality is because e−x ≥ 1− x for all x. The second inequality is from
(A.32). Hence, from (A.29), we have

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−1

 ≤
√√√√Dt−1∏

i=0

fi(θ0 + δe1)

fi(θ0)
· exp

(
− 1

8
√
RCI

δ2

)
. (A.33)

This provides a bound for the innermost conditional expectation in (A.28).
Observe that all the terms in the bound (A.33) are FtDt−2

-measurable, except for
the term

√
fDt−1(θ0 + δe1)/fDt−1(θ0). Taking the conditional expectation of both sides

in (A.33) given FtDt−2
, and using the same logic as the above arguments to bound the
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right-hand side, we have

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−2

 ≤
√√√√Dt−2∏

i=0

fi(θ0 + δe1)

fi(θ0)
· exp

(
− 2

8
√
RCI

δ2

)

We can proceed iteratively to evaluate (A.28) as we take conditional expectations given
FtDt−3, FtDt−4, F0, resulting in

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)

 ≤ Eθ0
(

exp

(
− Dt + 1

8
√
RCI

δ2

))

Hence, we have that

Pθ0{|p̂t − p0| > δ | Dt = k} ≤ 2Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| Dt = k

 ≤ 2 exp

(
− k + 1

8
√
RCI

δ2

)

if δ ≤ δ̄1 and otherwise, Pθ0{|p̂t − p0| > δ | Dt = k} = 0. This implies that

Eθ0
[
(p̂t − p0)2 | Dt = k

]
=

∞∫
0

Pθ0
{

(p̂t − p0)2 > δ | Dt = k
}

dδ =

∞∫
0

Pθ0
{
|p̂t − p0|2 >

√
δ | Dt = k

}
dδ

≤
∞∫

0

2 exp

(
− k + 1

16
√
RCI

δ

)
dδ =

8
√
RCI

k + 1
.

Thus, we have shown that the mean squared error of p̂t is bounded by αp
k+1

for some αp
that is independent of m0 and t. Hence, to prove the lemma, we only need to show a
similar bound for m̂t, q̂t. Similar bounds can be obtained for m̂t, q̂t following the same
steps with the only difference on the definition of CI .

For q̂t, the estimation variance of q̂t grows as Dt/m0 approaches zero. To avoid
this issue when Dt/m0 is small, we perform a transformation on the parameters of
the likelihood function. Specifically, we let p′ = p − q. Thus, MLE estimates the
model parameters θ′ = (p′, q,m) of a Markovian Bass model where the adoption rate
is λ(j, r; θ′) = (m − j)

(
p′ + q

(
1 + j

m

))
x(r). Note that the analysis of the estimation

error for p̂′t is the same as that for p̂t. With the transformation, we can safely write the
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second order derivative of the log-likelihood function with respect to q. We have

Eθ′0

[
∂2

∂δ2
ln

fDt(θ
′
0)

fDt(θ
′
0 + δe2)

| FtDt−1

]
= Eθ′0


(

1 + Dt
m0

)2

(
p0
′ +
(

1 + Dt
m0

)
(q0 + δ)

)2 | FtDt−1


≥ Eθ′0


(

1 + Dt
m0

)2

(
p0
′ +
(

1 + Dt
m0

)
(q0 + δ̄2)

)2 | FtDt−1

 ,
where the inequality is because q0 + δ ≤ q0 + δ̄2. Defining CI := (p0 + q0 + δ̄2)2, we have
that

Eθ′0


(

1 + Dt
m0

)2

(
p0 +

(
1 + Dt

m0

)
(q0 + δ̄2)

)2 | FtDt−1

 ≥ 1(
p0 + q0 + δ̄2

)2 =
1

CI
.

Following the same steps in bounding the estimation error of p̂t, we know

Pθ0{|q̂t − q0| > δ | Dt = k} ≤ 2Eθ0


√√√√ Dt∏

i=1

fi(θ0 + δe2)

fi(θ0)

∣∣∣Dt = k

 ≤ 2 exp

(
− k + 1

8
√
RCI

δ2

)
.

This implies that

Eθ0
[
(q̂t − q0)2 | Dt = k

]
=

∞∫
0

Pθ0
{

(q̂t − q0)2 > δ | Dt = k
}

dδ =

∞∫
0

Pθ0
{
|q̂t − q0|2 >

√
δ | Dt = k

}
dδ

≤
∞∫

0

2 exp

(
− k + 1

16
√
RCI

δ

)
dδ =

8
√
RCI

k + 1
.

(A.34)

Thus, we have shown that the mean squared error of q̂t is bounded by αq
k+1

for some αq
that is independent of m0 and t.

For m̂t, we have

∂2

∂δ2
ln

fDt(θ0)

fDt(θ0 + δe3)
≥ 1

(m0 + δ −Dt)2
≥ 1

(δ̄3)2
.

So CI for m̂t is (δ̄3)2. Following the same steps for bounding the mean squared estimation
error of q̂t and p̂t, this means that the mean squared error of m̂t is bounded by αm/(k+1)

for some αm that is independent of m0 and t.
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A.2.8 Lemma A.2 and proof

We next state a result that is useful for the proofs of Proposition II.3 and Lemma II.4.

Lemma A.2. Given any two pricing sample paths r = (rt, t ≥ 0) and r′ = (rt, t ≥ 0), if
Dr,m0 = (Dr,m0

t , t ≥ 0) and Dr′,m0 = (Dr′,m0
t , t ≥ 0), respectively, denote the cumulative

adoption process with market potential m0, then for any t ≥ 0,

Eθ0

∣∣∣∣∣Dr,m0
t

m0

− Dr′,m0
t

m0

∣∣∣∣∣ = α1
t

et
|rt − r′t|+O

(
1
√
m0

)
, (A.35)∣∣∣∣∣Eθ0

(
Dr,m0
t

m0

− Dr′,m0
t

m0

)∣∣∣∣∣ = α2
t

et
|rt − r′t| (A.36)

for some α1 > 0, α2 > 0 independent of m0.

Observe from Lemma A.2 that the expectation of the absolute difference is greater
than the absolute value of the expected difference by O

(
1/
√
m0

)
. This is because the un-

certainty of the Markovian Bass model, Var (Dr,m0
t /m0), decreases in the order ofO(1/m0)

(Proposition II.1).

Proof. We first define for any t ≥ 0,

F r
t =

1− e−(p0+q0)
∫ t
0 x(rs)ds

1 + q0/p0e
−(p0+q0)

∫ t
0 x(rs)ds

,

F r′

t =
1− e−(p0+q0)

∫ t
0 x(r′s)ds

1 + q0/p0e
−(p0+q0)

∫ t
0 x(r′s)ds

,

which are the deterministic Bass functions under price processes r and r′. We have

∣∣∣F r
t − F r′

t

∣∣∣ =

∫ t
0 x(r′s)ds∫

∫ t
0 x(rs)ds

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 dX

≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)
∫ t
0 x(rξu)du(

1 + q0/p0e
−(p0+q0)

∫ t
0 x(rξu)du

)2

∣∣∣∣∣∣
t∫

0

x(rs)ds−
t∫

0

x(r′s)ds

∣∣∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt

∣∣∣∣∣∣
t∫

0

x(rs)ds−
t∫

0

x(r′s)ds

∣∣∣∣∣∣ =
t

et
O (|rt − r′t|) ,
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where
∫ t

0
x(rξs)ds is in the between of

∫ t
0
x(rs)ds and

∫ t
0
x(r′s)ds. Here the second inequality

comes from Assumption II.1 (ii).
Note that for any t ≥ 0,

Eθ0

∣∣∣∣∣Dr,m0
t

m0
− Dr′,m0

t

m0

∣∣∣∣∣ ≤ ∣∣∣F rt − F r′t ∣∣∣+ Eθ0

∣∣∣∣Dr,m0
t

m0
− F rt

∣∣∣∣+ Eθ0

∣∣∣∣∣Dr′,m0
t

m0
− F r′t

∣∣∣∣∣
=
∣∣∣F rt − F r′t ∣∣∣+O

(
1
√
m0

)
.

where the last relationship follows from Lemma II.2. Using the bound on |F r
t − F r′

t |
proves (A.35).

We next prove (A.36). For any t ≥ 0, define

F r,m0
t := Eθ0

(
Dr,m0
t

m0

)
, F r′,m0

t := Eθ0

(
Dr′,m0
t

m0

)
.

Following the proof in Lemma II.2 in deriving (A.14), both F r,m0
t and F r′,m0

t can be
expressed in the following form:

F r,m0
t =

1− exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

)
1 + q0

p0
exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

) .
Note that

d

dX

(
1− e−(p0+q0)X

1 + q0
p0
e−(p0+q0)X

)
=

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 .
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Therefore,∣∣∣∣∣Eθ0
(
Dr,m0
t

m0

− Dr′,m0
t

m0

)∣∣∣∣∣ = |F r,m0
t − F r′,m0

t |

=

∫
t

0

(
1− 1

m0

q0F
r′,m0
s

p0+q0F
r′,m0
s

)
x(r′s)ds∫

∫
t

0

(
1− 1

m0

q0F
r,m0
s

p0+q0F
r,m0
s

)
x(rs)ds

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 dX

≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt(1−1/m0)

(1)2

∣∣∣∣∣∣
t∫

0

x(rs)ds−
t∫

0

x(r′s)ds

∣∣∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt(1−1/m0)

∣∣∣∣∣∣
t∫

0

x(rs)ds−
t∫

0

x(r′s)ds

∣∣∣∣∣∣ =
t

et
O (|rt − r′t|) ,

where the first inequality is from Assumption II.1 (iii). This proves (A.36).

A.2.9 Lemma A.3 and proof

We next state a result that is also useful for the proof of Proposition II.3.

Lemma A.3. Given any two price sample paths r = (rt, t ≥ 0) and r′ = (rt, t ≥ 0), if
Dr,m0 = (Dr,m0

t , t ≥ 0) and Dr′,m0 = (Dr′,m0
t , t ≥ 0), respectively, denote the cumulative

adoption process with market potential m0, then for any t ≥ 0,∣∣∣∣∣Eθ0
(
ξ(Dr,m0

t )

m0

− ξ(Dr′,m0
t )

m0

)∣∣∣∣∣ ≤ (p0 + q0)α1
t

et
|rt − r′t| , (A.37)

and ∣∣∣∣Eθ0 ( ξ(Dr,m0
t )

ξ(Dr′,m0
t )

)∣∣∣∣ = 1 + α2
t

et
|rt − r′t|
m0

(A.38)

for some α1 > 0, α2 > 0 independent of m0.

Proof. Using the definition of ξ(·) in (II.2.4), we can write

ξ(d)

m0

=
(m0 − d)

m0

(
p0 + q0

d

m0

)
= p0 + (q0 − p0)

(
d

m0

)
− q0

(
d

m0

)2

.
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From this, and using the fact that d
dy

(p0 + (q0 − p0)y − q0y
2) = q0 − p0 − 2q0y, we have

∣∣∣∣∣Eθ0
(
ξ(Dr,m0

t )

m0

− ξ(Dr′,m0
t )

m0

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣Eθ0


D
r,m0
t /m0∫

D
r′,m0
t /m0

(q0 − p0 − 2q0y)dy


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣Eθ0
 sup
y∈[0,1)

(q0 − p0 − 2q0y)

D
r,m0
t /m0∫

D
r′,m0
t /m0

dy


∣∣∣∣∣∣∣∣

≤ (p0 + q0)

∣∣∣∣∣Eθ0
(
Dr,m0
t

m0

− Dr′,m0
t

m0

)∣∣∣∣∣ .
Then, (A.37) follows from Lemma A.2.

To prove (A.38), note that

d

dy
(ln ξ(y)) =

q0 − p0 − 2q0y/m0

(m0 − y)(p0 + q0y/m0)
.

Therefore, we have∣∣∣∣Eθ0 ( ξ(Dr,m0
t )

ξ(Dr′,m0
t )

)∣∣∣∣
=

∣∣∣∣Eθ0 (eln ξ(Dr,m0
t )−ln ξ(D

r′,m0
t )

)∣∣∣∣
=

∣∣∣∣∣∣∣∣Eθ0
exp


D
r′,m0
t∫

D
r,m0
t

q0 − p0 − 2q0y/m0

(m0 − y)(p0 + q0y/m0)
dy



∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣Eθ0
exp

 sup
0≤y≤m0−1

q0 − p0 − 2q0y/m0

(m0 − y)(p0 + q0y/m0)

D
r′,m0
t∫

D
r,m0
t

dy



∣∣∣∣∣∣∣∣

=

∣∣∣∣∣Eθ0
(

exp

{
sup

0≤y≤m0−1

(q0 − p0)m0 − 2q0y

m0(m0 − y)(p0 + q0y/m0)

(
Dr,m0
t

m0

− Dr′,m0
t

m0

)})∣∣∣∣∣
≤

∣∣∣∣∣Eθ0
(

exp

{
sup

0≤y≤m0−1

max{q0 − p0, 2q0}(m0 − y)

m0(m0 − y)(p0 + q0y/m0)

(
Dr,m0
t

m0

− Dr′,m0
t

m0

)})∣∣∣∣∣
≤

∣∣∣∣∣Eθ0
(

exp

{
max{q0 − p0, 2q0}

m0p0

(
Dr,m0
t

m0

− Dr′,m0
t

m0

)})∣∣∣∣∣ = 1 +
t

et
O
(
|rt − r′t|
m0

)
,
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where the second inequality follows from the fact that when x > y ≥ 0 and max{c1, c2} ≥
0, c1x− c2y ≤ max{c1, c2}(x− y), and the last equality is from Lemma A.2 and

exp

(
t

et
O
(
|rt − r′t|
m0

))
= 1 +

t

et
O
(
|rt − r′t|
m0

)
.

A.2.10 Proof of Proposition II.3

Proof. Recall that θ0 = (p0, q0,m0) denotes the true parameter set. To prove the result,
we discretize [0, T ] into N small intervals with length δt, where δt is arbitrarily small.
Let v(d, nδt,Ft) denote the expected revenue-to-go function under policy π when current
cumulative demand is d, where d ∈ {0, 1, . . . ,m0}, the remaining time is nδt, where
n ∈ {1, 2, . . . , N}, and the information set is Ft. Note that this expectation is taken with
respect to the true parameter set θ0.

We denote by rπ(d, nδt,Ft) the price offered under policy π given the state (d, nδt,Ft).
To simplify notation, we will drop Ft as an argument in v and rπ, but emphasize that
the policy π relies on the information set. For any d ≤ m0− 1, we can write the expected
revenue-to-go as

v(d, nδt) = rπ(d, nδt) · ξ(d)x(rπ(d, nδt))δt

+ [v(d+ 1, (n− 1)δt)− v(d, (n− 1)δt)] · ξ(d)x(rπ(d, nδt))δt+ v(d, (n− 1)δt),

(A.39)

where the adoption probability ξ(d)x(r)δt is under a Markovian Bass demand model with
parameter vector θ0. Note that v(m0, nδt) = 0 for any n, since all customers have already
adopted.

Given the state (d, nδt), where d ∈ {0, . . . ,m0} and n ∈ {1, . . . , N}, let V (d, nδt) be
the optimal expected revenue-to function of the hindsight optimal policy π∗ which knows
the true value θ0. For any d ≤ m0 − 1, V (d, nδt) can be expressed as

V (d, nδt) = r∗(d, nδt) · ξ(d)x(r∗(d, nδt))δt

+ [V (d+ 1, (n− 1)δt)− V (d, (n− 1)δt)] · ξ(d)x(r∗(d, nδt))δt+ V (d, (n− 1)δt),

(A.40)

where r∗(d, t) is the optimal price offered under the optimal policy π∗ given state (d, t),
defined in Theorem II.1. Note that V (m0, nδt) = 0 for any n.
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Let Dπ = (Dπ
t , t ≥ 0) and D∗ = (D∗t , t ≥ 0) be the cumulative demand process under

π and π∗, respectively. Let (rπt , t ≥ 0) and (r∗t , t ≥ 0) denote the price process under π
and π∗, respectively. For any n = 0, 1, . . . , N − 1, we define

Ψn := Eθ0 (|V (D∗nδt, T − nδt)− v(Dπ
nδt, T − nδt)| | Fnδt)

= Eθ0

(∣∣∣∣∣
N−1∑
s=n

r∗sδtD
∗
sδtδt−

N−1∑
s=n

rπsδtD
π
sδtδt

∣∣∣∣∣ | Fnδt
)

as the conditional expectation of the difference in the revenue-to-go between π∗ and π,
starting from time nδt on the discretized grid, and given the information available at time
nδt. To prove the proposition, we will use induction to prove for any n = 0, 1, . . . , N − 1,

Ψn = O

(
Eθ0

[
N−1∑
s=n

Dπ
sδt + 1

sδt+ t0
(rπsδt − r∗sδt)2δt | Fnδt

])
. (A.41)

Here, O describes the limiting behavior as m0 grows, and the terms inside O are poten-
tially affected bym0. Proposition II.3 is an implication of this result since R∗−R(π) = Ψ0.

To aid in our induction analysis, we next introduce some notation. For a fixed sample
path ω, we denote the realization of Dπ and D∗ as (dπω,t, t ≥ 0) and (d∗ω,t, t ≥ 0), respec-
tively. For a fixed sample size ω, we denote the realization of the price process under π
and π∗ as (ρπω,t, t ≥ 0) and (ρ∗ω,t, t ≥ 0), respectively.
Base case: To prove (A.41), we first check the base step at n = N − 1. In this case,
time is (N − 1)δt = T − δt, and there is δt time remaining. For a fixed sample size ω,
note that

|V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)|

=
∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt

∣∣
≤
∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt

∣∣︸ ︷︷ ︸
(A)

+
∣∣ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt

∣∣︸ ︷︷ ︸
(B)

.

(A.42)

We examine (A) and (B) separately.

• Bounding (A): Recall that we have proved in Theorem II.1 that the optimal
policy maximizes the revenue-to-go for any given state, and satisfies the first order
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condition for any given state. Therefore, given the state (d∗ω,T−δt, δt), we have

∂[rξ(d∗ω,T−δt)x(r)δt]

∂r

∣∣∣
r=ρ∗ω,T−δt

= 0. (A.43)

Then, we can derive the upper bound of (A) as follows:

(A) =

∣∣∣∣∣∣∣
ρ∗ω,T−δt∫
ρπω,T−δt

∂[rξ(d∗ω,T−δt)x(r)δt]

∂r
dr

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ρ∗ω,T−δt∫
ρπω,T−δt

(
∂[rξ(d∗ω,T−δt)x(r)δt]

∂r
− 0

)
dr

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ρ∗ω,T−δt∫
ρπω,T−δt

(
∂[rξ(d∗ω,T−δt)x(r)δt]

∂r
−
∂[rξ(d∗ω,T−δt)x(r)δt]

∂r

∣∣∣
r=ρ∗ω,T−δt

)
dr

∣∣∣∣∣∣∣ (A.44)

=

∣∣∣∣∣∣∣
ρ∗ω,T−δt∫
ρπω,T−δt

r∫
ρ∗ω,T−δt

∂2[zξ(d∗ω,T−δt)x(z)δt]

∂z2
dzdr

∣∣∣∣∣∣∣
≤ ξ(d∗ω,T−δt)δt · sup

z∈(−∞,∞)

∣∣∣∣ ∂2

∂z2
(zx(z))

∣∣∣∣ ·
∣∣∣∣∣∣∣
ρ∗ω,T−δt∫
ρπω,T−δt

r∫
ρ∗ω,T−δt

dzdr

∣∣∣∣∣∣∣
≤ 1

2
Cxxξ(d

∗
ω,T−δt)(ρ

π
ω,T−δt − ρ∗ω,T−δt)2δt. (A.45)

Here, (A.44) comes from (A.43), while (A.45) comes from Assumption II.1(v).
We replace ξ(d∗ω,T−δt) in (A.45) by

ξ(d∗ω,T−δt)

ξ(dπω,T−δt)
ξ(dπω,T−δt). Then, according to Lemma A.3,

(A.45) is bounded above by

1

2
Cxx

(
1 +

T − δt
eT−δt

O (1)

)
ξ(dπω,T−δt)(ρ

π
ω,T−δt − ρ∗ω,T−δt)2δt

=
1

2
Cxx

(
1 +

1

(T − δt)3
o (1)

)
ξ(dπω,T−δt)(ρ

π
ω,T−δt − ρ∗ω,T−δt)2δt. (A.46)

• Bounding (B): To analyze the upper bound of (B), according to Assumption II.1(v),
we know

(B) ≤ sup
r∈(−∞,∞)

|rx(r)| ·
∣∣ξ(d∗ω,T−δt)− ξ(dπω,T−δt)δt∣∣ ≤ Cx

∣∣∣∣∣ξ(d∗ω,T−δt)
(
ξ(dπω,T−δt)

ξ(d∗ω,T−δt)
− 1

)
δt

∣∣∣∣∣ .
(A.47)

We replace ξ(d∗ω,T−δt) in (A.47) by
ξ(d∗ω,T−δt)

ξ(dπω,T−δt)
ξ(dπω,T−δt). Then from (A.47) and

118



Lemma A.3,

(B) (A.48)

≤ Cx

∣∣∣∣∣ξ(dπω,T−δt)
(

1 +
T − δt
eT−δt

O

(∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣
m0

))
T − δt
eT−δt

O

(∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣
m0

)
δt

∣∣∣∣∣
≤ Cx

∣∣∣∣∣ξ(dπω,T−δt)
(

1 +
1

(T − δt)3
O

(∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣
m0

))
T − δt
eT−δt

O

(∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣
m0

)
δt

∣∣∣∣∣ .
(A.49)

Note that the bound on (A) and (B) both rely on the term ξ(dπω,T−δt). Therefore, to
proceed with the proof, we need the following claim.

Claim A.1. If at time t, the cumulative demand under π is Dπ
t , the following holds:

E(ξ(Dπ
t ) | Ft) ≤ α1

E
[∫ t+t0

0
ξ(Dπ

s )x(rπs )ds | Ft
]

t+ t0

 = α2

(
Dπ
t + 1

t+ t0

)
(A.50)

for some α1 > 0, α2 > 0 independent of m0.

To prove the claim, we first notice that for all j = 0, 1, . . . ,m0−1 and any 0 < h ≤ 1/m0,
we have p0 ≤ ξ(j) ≤ m0

(p0+q0)2

4q0
, which implies ξ(Dπ

t ) ≤ Θ(m0) almost surely.

Since ξ(d) = (m0 − d)
(
p0 + q0

d
m0

)
is a concave function in d, then we have that, for

any 0 ≤ s ≤ t,
ξ(Dπ

s ) ≥ min{ξ(0), ξ(Dπ
t )} = min{m0p0, ξ(D

π
t )}.

Therefore,

t∫
0

ξ(Dπ
s )x(rπs )ds ≥ min{m0p0, ξ(D

π
t )}

t∫
0

x(rπs )ds ≥ α3(ξ(Dπ
t ))

t∫
0

x(rπs )ds ≥ α4(ξ(Dπ
t )t)

for some α3 > 0, α4 > 0 independent of m0. Here the last inequality comes from Assump-
tion II.1(ii). Then we can take E(· | Ft) on both sides and yields

E(ξ(Dπ
t ) | Ft) ≤ α1

E
[∫ t

0
ξ(Dπ

s )x(rπs )ds | Ft
]

t


with α1 = 1/α4. which gives us (A.50). Note that we use Dπ

t + 1 and t + t0 in the final
bound to avoid meaningless fractions. This concludes the claim.

Now we are ready to prove the base case. From (A.46) and (A.49), we have that the
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following constraint holds almost surely:

|V (D∗T−δt, δt)− v(Dπ
T−δt, δt)|

≤ ξ(Dπ
T−δt)

(
1 +

1

(T − δt)3
o

(∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣
m0

))
δt (A.51)

·

[
1

2
Cxx

(
ρπω,T−δt − ρ∗ω,T−δt

)2
+ Cx

T − δt
eT−δt

O

(∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣
m0

)]
. (A.52)

From the condition of the proposition, E
[∣∣ρπω,T−δt − ρ∗ω,T−δt∣∣] ≥ α

(
T−δt

m0eT−δt

)
. Therefore,

taking the conditional expectation of (A.52) given FT−δt, (A.46) dominates (A.49). This
results in

ΨN−1 = O(1)E
(
ξ(Dπ

T−δt) | FT−δt
) (
ρπω,T−δt − ρ∗ω,T−δt

)2
δt

≤ O(1)
Dπ
T−δt + 1

T − δt+ t0

(
ρπω,T−δt − ρ∗ω,T−δt

)2
δt.

The last relation is due to Claim A.1. Here, t0 = Ω(m0
−1), which can be interpreted as the

inter-arrival time to have one more adoption. It is at least in the order of m0
−1 because

the expected adoption rate is linear in ξ(j), j = 0, 1, . . . ,m0 − 1, and ξ(j) is always less
than m0

(p0+q0)2

4q0
. This finishes our base step.

Inductive step: We assume that the result (A.41) holds for n+ 1. Specifically,

Ψn+1 := E
(∣∣V (D∗(n+1)δt, T − (n+ 1)δt)− v(Dπ

(n+1)δt, T − (n+ 1)δt)
∣∣ | F(n+1)δt

)
= O

(
Eθ0

[
N−1∑
s=n+1

Dπ
sδt + 1

sδt+ t0
(ρπω,sδt − ρ∗ω,sδt)2δt | F(n+1)δt

])
(A.53)

where the O represents the limiting effect of increasingm0. We will prove that this implies
that it also holds for n.

For a fixed sample ω, we have that

|V
(
d∗ω,nδt, T − nδt

)
− v

(
dπω,nδt, T − nδt

)
|

=
∣∣∣ ρ∗ω,nδtξ(d∗ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt

+ V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)
∣∣∣
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≤ (A) + (B) + (C) (A.54)

where (C) = |V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)|,

(A) =
∣∣∣ ρ∗ω,nδtξ(d∗ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(d∗ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

∣∣∣
and

(B) =
∣∣∣ ρπω,nδtξ(d∗ω,nδt)x(ρπω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt

∣∣∣
We will bound (A), (B), and (C) separately.

• Bounding (A): Note that (A) = |(A1)− (A2)| where

(A1) = ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

(A2) = ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

The only difference between (A1) and (A2) is ρ∗ω,nδt and ρπω,nδt. Recall from The-
orem II.1 that ρ∗ω,nδt = r∗(d∗ω,nδt, T − nδt) satisfies the first order condition of the
revenue-to-go function for the state (d∗ω,nδt, T − nδt). Therefore, following similar
steps to when we proved bound (A.45), we can show that (A) is upper bounded by

1

2
C̄xxξ(d

∗
ω,nδt)(ρ

∗
ω,nδt − ρπω,nδt)2δt

where

C̄xx := sup
r

∣∣∣∣∂2[rx(r)]

∂r2
+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
x′′(r)

∣∣∣∣
≤ Cxx +

∣∣∣∣ x(r̄)

x′(r̄)
+ r̄

∣∣∣∣ · sup
r

∣∣x′′(r)∣∣ ,
where r̄ is the price that optimizes the expected revenue-to-go given state (d∗ω,nδt, T−
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(n+ 1)δt). The inequality follows from V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T −
(n+1)δt) = − x(r̄)

x′(r̄)
− r̄ (Theorem II.1) and from Assumption II.1(v). Note that from

Assumption II.1(iv), x(r)
x′(r)

+ r is finite since r is finite.
Hence, (A) is upper bounded by

O
(
ξ(d∗ω,nδt)(ρ

∗
ω,nδt − ρπω,nδt)2δt

)
= O

(
ξ(dπω,nδt)(ρ

∗
ω,nδt − ρπω,nδt)2δt

)
. (A.55)

Here the equality comes from the same argument as when we bounded (A.45) with
(A.46).

• Bounding (B): Note that (B) ≤ (B1) + (B2), where

(B1) =
∣∣ρπω,nδtx(ρπω,nδt) · (ξ(d∗ω,nδt)− ξ(dπω,nδt))δt

∣∣ ,
(B2) =

∣∣[V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)
]
ξ(d∗ω,nδt)

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)

∣∣ · x(ρπω,nδt)δt

We examine the bounds of (B1) and (B2) separately.
Using the same arguments in deriving the bounds (A.47) and (A.49), we have

(B1) ≤ Cx
∣∣∣∣ξ(dπω,nδt)(1 +

T − δt
eT−δt

o (1)

)
nδt

enδt
O (1) δt

∣∣∣∣ . (A.56)

Furthermore, the order of (B2) cannot exceed

= O
(∣∣[V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)]ξ(d∗ω,nδt)x(ρ∗ω,nδt)

−[v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)]ξ(dπω,nδt)x(ρπω,nδt)
∣∣ δt)
(A.57)

= O
(∣∣V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

∣∣) . (A.58)

Here, (A.57) can be interpreted as the difference between the expected revenue loss
of having one more adoption under the optimal policy π∗ and that under the policy
π. Hence, (A.57) is upper bounded by (A.58), which is the difference between the
total expected revenue-to-go under π∗ and under π.

From (A.54), and from the bounds (A.55), (A.56) and (A.58), the following constraint
must hold almost surely:

|V (D∗nδt, T − (n+ 1)δt)− v(Dπ
nδt, T − (n+ 1)δt)|
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≤ O
(
ξ(Dπ

nδt)(ρ
∗
ω,nδt − ρπω,nδt)2δt

)
+O

(
ξ(Dπ

nδt)
nδt

enδt
δt

)
+O (|V (D∗nδt, T − (n+ 1)δt)− v(Dπ

nδt, T − (n+ 1)δt)|) .

From the condition of the proposition, E[(r∗nδt − rπnδt)2] = Ω
(
nδt
enδt

)
. Therefore, taking the

conditional expectation of the above bound given Fnδt

Ψn ≤ O
(
E [ξ(Dπ

nδt) | Fnδt] (r∗nδt − rπnδt)
2 δt
)

+ E [Ψn+1 | Fnδt]

≤ O
(
Dπ
nδt + 1

nδt+ t0

(
ρ∗ω,nδt − ρπω,nδt

)2
δt

)
+ E [Ψn+1 | Fnδt]

= O

(
E

[
N−1∑
s=n

Dπ
sδt + 1

sδt+ t0

(
ρπω,sδt − ρ∗ω,sδt

)2 | Fnδt

])

Here, the second inequality is due to Claim A.1. The last step is due to the inductive
assumption. This finishes the induction proof.

A.2.11 Claim A.2 and proof

The claim below is useful for proving Theorem II.2 and Theorem II.3.

Claim A.2. Under Assumption II.2, the upper bound in Proposition II.3 is tight. Specif-
ically,

R∗ −R(π) = Ω

E

 T∫
0

ξ(D∗t )(r
π
t − r∗t )2dt

 .

Proof. Proof of Claim A.2 Using similar logic as the proof of Proposition II.3, we use
induction to prove the more general result on a discretized time horizon:

Ψn = Ω

(
E

[
N−1∑
s=n

ξ(D∗sδt)(r
π
sδt − r∗sδt)2δt | Fnδt

])
. (A.59)

for all n = 0, 1, . . . , N − 1. Note that Ψ0 = R∗ − R(π). We need to revise the proof
of Proposition II.3 in several steps to show (A.59). Following the logic of the proof of
Proposition II.3, we first consider the base step n = N −1 with δt time remaining. Recall
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from (A.42) that

|V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)|

=
∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt

∣∣
≤
∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt

∣∣︸ ︷︷ ︸
(A)

+
∣∣ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt

∣∣︸ ︷︷ ︸
(B)

.

Let us denote (A’) and (B’) as the terms inside the absolute values in (A) and (B),
respectively. Therefore, we have

|V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)| = |(A’) + (B’)| ≥ |(A’)| − |(B’)| = (A)− (B),

where the inequality is due to the triangle inequality: |x+ y| ≥ |x| − |y|. Note that

(A) =

∣∣∣∣∣∣∣
ρ∗ω,T−δt∫
ρπω,T−δt

r∫
ρ∗ω,T−δt

∂2[zξ(d∗ω,T−δt)x(z)δt]

∂z2
dzdr

∣∣∣∣∣∣∣
≥ 1

2
Cξ(d∗ω,T−δt)(ρ

π
ω,T−δt − ρ∗ω,T−δt)2δt = Θ

(
ξ(d∗ω,T−δt)(ρ

π
ω,T−δt − ρ∗ω,T−δt)2δt

)
.

(A.60)

The equality follows from the arguments in (A.45), and the inequality follows from As-
sumption II.2. Also, from (A.49), we know that

(B) ≤ Cx
∣∣∣∣(1 +

1

(T − δt)3
o (1)

)
T − δt
eT−δt

O
(
ξ(dπω,T−δt)

)
δt

∣∣∣∣ ,
which diminishes fast.

Therefore, combining the arguments above, we have

ΨN−1 = E
[∣∣V (D∗T−δt, δt)− v(Dπ

T−δt, δt)
∣∣] ≥ E [(A)]− E [(B)]

≥ Ω
(
E
[
ξ(D∗T−δt)(r

π
T−δt − r∗T−δt)2δt

])
− T − δt

eT−δt
· O(E

[
ξ(Dπ

T−δt)
]
)δt

= Ω
(
E
[
ξ(D∗T−δt)(r

π
T−δt − r∗T−δt)2δt

])
.

The last relationship is due to the condition of Proposition II.3, E[(rπT−δt − r∗T−δt)2] ≥
α( T−δt

eT−δt
). This finishes the base step.
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For the inductive step, we assume that the result holds for n+ 1. Specifically,

Ψn+1 = Ω

(
E

[
N−1∑
s=n+1

ξ(D∗sδt)(r
π
sδt − r∗sδt)2δt | F(n+1)δt

])
. (A.61)

We need to show that this implies the result holding for n.
We revise the proof of Proposition II.3 as follows. First, recall from (A.54), we have

|V
(
d∗ω,nδt, T − nδt

)
− v

(
dπω,nδt, T − nδt

)
|

=
∣∣∣ ρ∗ω,nδtξ(d∗ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt

+ V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)
∣∣∣.

We let (C”) := V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt),

(A”) := ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(d∗ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

and

(B”) := ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt.

Then, because of the triangle inequality |x+ y| ≥ |x| − |y|, we know

|V (d∗ω,nδt, T − nδt)− v(dπω,nδt, T − nδt)| = |(C”) + (A”) + (B”)| ≥ |(C”) + (A”)| − |(B”)| .
(A.62)

Note that (A”) ≥ 0 and (C”) ≥ 0 because (A”) is the difference between the expected
revenue during δt under optimal price ρ∗ω,nδt

ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

125



and the expected revenue under the suboptimal price ρπω,nδt

ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt,

and (C”) is the optimal expected revenue minus the expected revenue given the sub-
optimal price path. Hence, we know the right hand side of (A.62) equals to (C”)+ (A”)−
|(B”)|.

We know the following holds from the definition of π∗:

|(A”)| (A.63)

= ξ(d∗ω,nδt)δt (A.64)

·
∣∣∣
ρ∗ω,nδt∫
ρπω,nδt

r∫
ρ∗ω,nδt

(
∂2zx(z)

∂z2
+ [V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt)]x′′(z)

)

dzdr
∣∣∣

≥ ξ(d∗ω,nδt)δt · inf
z

∣∣∣∣ ∂2

∂z2
(zx(z))−

(
x(r̄)

x′(r̄)
+ r̄

)
x′′(z)

∣∣∣∣ ·
ρ∗ω,nδt∫
ρπω,nδt

r∫
ρ∗ω,nδt

dzdr,

where r̄ is the price that optimizes the expected revenue-to-go given state (d∗ω,nδt, T −
(n+ 1)δt). Hence, according to Assumption II.1 and Assumption II.2, we know

|(A”)| = Θ
(
ξ(d∗ω,nδt)(ρ

∗
ω,nδt − ρπω,nδt)2δt

)
(A.65)

Note that |(B”)| does not exceed the order of |(C”)| according to (A.58). Therefore,
together with (A.61) and (A.65), we know from taking the conditional expectation of
(A.62) given Fnδt that:

Ψn = Ω
(
E
[
|V (D∗nδt, T − (n+ 1)δt)− v(Dπ

nδt, T − (n+ 1)δt)|+ ξ(D∗nδt) (r∗nδt − rπnδt)
2 δt | Fnδt

])
= Ω

(
E

[
N−1∑
s=n

ξ(D∗sδt) (rπsδt − r∗sδt) δt | Fnδt

])
,

where the last equation follows from the inductive hypothesis. end proof of Claim A.2
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A.2.12 Proof of Lemma II.4

Proof. Consider any t ∈ (0, T ]. Recall that r∗t (θ, d) denotes the Markovian Bass price if t
is the elapsed time, d is the cumulative adoptions, and θ is the parameter set. Note that
θ0 = (p0, q0,m0) is the true parameter set, and θt = (pt, qt,mt) is the parameter set used
in policy π as an input to r∗t (·, ·) to determine the price at time t. The following holds
almost surely:

(r∗t (θt, D
π
t )− r∗t (θ0, D

∗
t ))

2 = Θ

[r∗t (θt, D
π
t )− r∗t (θ0, D

π
t )]2︸ ︷︷ ︸

(A)

+ Θ

[r∗t (θ0, D
π
t )− r∗t (θ0, D

∗
t )]

2︸ ︷︷ ︸
(B)

 .

Note that Θ is the limiting effect on (A) and (B) as m0 grows.
Bounding (A): The difference of the two prices in the (A) is due to the parameter
difference. We first examine (A). Define p̄ := max{p0, pt} and p := min{p0, pt}. Since
p0, pt are positive and finite values, then so are p̄, p. We similarly define q̄, q, m̄,m. Let
P := [p, p̄]× [q, q̄]× [m, m̄].

From the property that |x− y|> (infz∇h(z)) ≤ h(x)− h(y) ≤ |x− y|> (supz∇h(z)),
we have that

(A)

≤ Θ

( sup
(p,q,m)∈P

∣∣∣∣∂r∗t∂p
∣∣∣∣
)2

(p0 − pt)2 +

(
sup

(p,q,m)∈P

∣∣∣∣∂r∗t∂q
∣∣∣∣
)2

(q0 − qt)2 +

(
sup

(p,q,m)∈P

∣∣∣∣∂r∗t∂m

∣∣∣∣
)2

(m0 −mt)
2

 ,
and

(A)

≥ Θ

[(
inf

(p,q,m)∈P

∣∣∣∣∂r∗t∂p
∣∣∣∣)2

(p0 − pt)2 +

(
inf

(p,q,m)∈P

∣∣∣∣∂r∗t∂q
∣∣∣∣)2

(q0 − qt)2 +

(
inf

(p,q,m)∈P

∣∣∣∣∂r∗t∂m

∣∣∣∣)2

(m0 −mt)
2

]
,

Here we treat m as a continuous variable.
We first analyze |∂r∗t /∂p|. Using the equation (II.3.2) satisfied by r∗t (θ, d), we differ-

entiate r∗t with respect to p and rearranging terms, we get that for any d,∣∣∣∣∂r∗t (θ, d)

∂p

∣∣∣∣ =

∣∣∣∣ ∂∂p [V (d, T − t)− V (d+ 1, T − t)]
/(2x′(r∗t )

2 − x(r∗t )x
′′(r∗t )

x′(r∗t )
2

)∣∣∣∣ (A.66)
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Note that if we rearrange (A.23), where g(d, t) = ∂V (d,t)
∂p

, we have

∂

∂p
[V (d, T − t)− V (d+ 1, T − t)]︸ ︷︷ ︸

(A1)

=
∂2V (d, T − t)

∂p∂t
· 1

(m− d)
(
p+ d

mq
)
x(r∗t )︸ ︷︷ ︸

(A2)

− x(r∗t )

x′(r∗t )

1

p+ d
mq

.

(A.67)
We now examine (A2) on the right-hand side of (A.67). From the HJB equation (A.15),
note that ∂

∂t
V (d, T − t) = J(r∗t (θ, d), d, T − t) where J(r, d, t) := rλ(d, r) + [V (d+ 1, t)−

V (d, t)]λ(d, r). Hence, using chain rule, we know

∂2V (d, T − t)
∂p∂t

= −∂J(r, d, T − t)
∂r

∣∣∣
r=r∗t

∂r∗t
∂p
− ∂J(r, d, T − t)

∂p

∣∣∣
r=r∗t

= 0− ∂J(r, d, T − t)
∂p

∣∣∣
r=r∗t

≤ 0.

Moreover, because the partial effect of p on the expected revenue rate cannot exceed the
rate when all the remaining population (m−d) directly adopt the product without being
affected by the current price r∗t , we know

∂2V (d, T − t)
∂p∂t

≥ −(m− d)r∗tx(r∗t ).

Hence, from these lower and upper bounds that we derived for ∂2V (d,T−t)
∂p∂t

, (A.67) implies
that

− r∗t
p+ d

m
q
− x(r∗t )

x′(r∗t )

1

p+ d
m
q
≤ (A1) ≤ − x(r∗t )

x′(r∗t )

1

p+ d
m
q
. (A.68)

Therefore, we substitute (A.68) into (A.66) to get

∣∣∣∣∂r∗t∂p
∣∣∣∣ ≤ ∣∣∣∣ x′(r∗t )

2

2x′(r∗t )
2 − x(r∗t )x

′′(r∗t )

∣∣∣∣ ·
(∣∣∣∣∣ x(r∗t )

x′(r∗t )

1

p+ d
m
q

∣∣∣∣∣+

∣∣∣∣∣ r∗t
p+ d

m
q

∣∣∣∣∣
)
≤ Mx̄u

Cd(p+ q)
Θ (1) ,

where the last inequality follows from Assumption II.1(i), (iv) and since r∗t does not scale
up with the market size m. The latter is because when m0 grows, the demand process
converges to the deterministic Bass model (Proposition II.1). Hence, the optimal price r∗t
should also converge to the optimal price under the deterministic Bass model, which is
not affected by the market size.

Using similar arguments as above, we have∣∣∣∣∂r∗t∂q
∣∣∣∣ ≤ ∣∣∣∣ x′(r∗t )

2

2x′(r∗t )
2 − x(r∗t )x

′′(r∗t )

∣∣∣∣ ·
(∣∣∣∣∣ x(r∗t )

x′(r∗t )

d
m

p+ d
m
q

∣∣∣∣∣+

∣∣∣∣∣ r∗t
p+ d

m
q

∣∣∣∣∣
)
≤ Θ

(
Mx̄u

Cd(p+ q)

)
,
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and∣∣∣∣∂r∗t∂m

∣∣∣∣ ≤ ∣∣∣∣ x′(r∗t )
2

2x′(r∗t )
2 − x(r∗t )x

′′(r∗t )

∣∣∣∣ ·
(∣∣∣∣∣ x(r∗t )

x′(r∗t )

p+ d2

m2 q

(m− d)(p+ d
mq)

∣∣∣∣∣+

∣∣∣∣∣ r∗t
p+ d

mq

∣∣∣∣∣
)
≤ Mx̄u

Cd

p+ q

pm
Θ (1) .

Hence, it follows that (A) = Θ(‖θt − θ0‖2).

Bounding (B): Note that the difference in the two prices in (B) is due to the difference
in past sales. Specifically, the model parameters are the same. For any d and θ0 =

(p0, q0,m0), we define fd := (1− d
m0

)
(
p0 + q0

d
m0

)
. From chain rule, we have

Eθ0 [|r∗t (θ0, D
∗
t )− r∗t (θ0, D

π
t )| | Ft]

≤ Eθ0

[
sup

d∈[D∗t ∧Dπt , D∗t ∨Dπt ]

∣∣∣∣∂r∗t (θ0, d)

∂fd

∣∣∣∣ · sup
d∈[D∗t ∧Dπt , D∗t ∨Dπt ]

∣∣∣∣ ∂fd
∂(d/m0)

∣∣∣∣ · ∣∣∣∣Dπ
t

m0

− D∗t
m0

∣∣∣∣ | Ft
]
.

(A.69)
Note that supd∈[0,m0] |∂fd/∂(d/m0)| = (p0 + q0). Hence, to bound (A.69), we need to
evaluate the bound of |∂r∗t /∂fd|.

From (II.2.2), F r
t < 1 for all t ≤ T and any deterministic price sequence r. Hence,

there exists δ > 0 such that 1 − F r
t > δ for all t ≤ T . One example of δ is 1 − F r

T >

1 − (p0 + q0)x̄uT if (p0 + q0)x̄uT < 1. From (A.14), for any pricing sample path rω of
policy π∗, E(Drω

t /m0) < F rω
t < 1− δ. Therefore, E(1−D∗t /m0) > δ, implying that

Eθ0
[
fD∗t
]

= Eθ0
[(

1− D∗t
m0

)(
p0 + q0

D∗t
m0

)]
> γδ := δ × p0.

Also since E[D∗t /m0 | Ft] = E
[∫ t

0
(1− D∗s

m0
)(p0 + q0

D∗s
m0

)x(r∗s)ds | Ft
]
for all t and the inte-

grand is positive, we have E (1−D∗t /m0 | Ft) > δ as well, so

Eθ0
[
fD∗t | Ft

]
= Eθ0

[(
1− D∗t

m0

)(
p0 + q0

D∗t
m0

)
| Ft
]
> γδ. (A.70)

For any (d, t), we differentiate (II.3.3) by fd for both sides, which yields

∂2V (d, T − t)
∂fd∂t

/
m0 +

x(r∗t )
2

x′(r∗t )
+ fd

2x(r∗t )x
′(r∗t )

2 − x(r∗t )
2x′′(r∗t )

x′(r∗t )
2

∂r∗t
∂fd

= 0. (A.71)

Then,

γδ · inf
r

∣∣∣∣2x(r)x′(r)2 − x(r)2x′′

x′(r)2

∣∣∣∣ · Eθ0 (∣∣∣∣∂r∗t (θ0, D
∗
t )

∂fd

∣∣∣∣ | Ft) (A.72)
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≤ Eθ0
(
fD∗t ·

∣∣∣∣2x(r∗t )x
′(r∗t )

2 − x(r∗t )
2x′′(r∗t )

x′(r∗t )
2

· ∂r
∗
t (θ0, D

∗
t )

∂fd

∣∣∣∣ | Ft) (A.73)

= Eθ0

(∣∣∣∣∣∂2V (D∗t , T − t)
∂fd∂t

/m0 +
x(r∗t (θ0, D

∗
t ))

2

x′(r∗t (θ0, D∗t ))

∣∣∣∣∣ | Ft
)

(A.74)

= Eθ
(∣∣∣∣∂2V (D∗t , T − t)

∂fd∂t
/m0 +

∂V (D∗t , T − t)
∂t

/(fD∗tm0)

∣∣∣∣ | Ft) (A.75)

where (A.73) follows from (A.70), (A.74) follows from (A.71), (A.75) is from (II.3.3).
Note that V (D∗t , T − t) = Eθ0

(∫ t
0
m0fD∗sx(r∗s(θ0, D

∗
s))r

∗
s(θ0, D

∗
s)ds | Ft

)
. Hence,

Eθ0
(
∂2V (D∗t , T − t)

∂fd∂t

/
m0 | Ft

)
= r∗t (θ0, D

∗
t )x(r∗t (θ0, D

∗
t )),

Eθ0
(
∂V (D∗t , T − t)

∂t

/
(fD∗tm0) | Ft

)
= r∗t (θ0, D

∗
t )x(r∗t (θ0, D

∗
t )),

so an upper bound for (A.72) is 2 supr |rx(r)| ≤ 2Cx from Assumption II.1(v). Moreover,
also from Assumption II.1, we can show that infr

∣∣∣2x(r)x′(r)2−x(r)2x′′(r)
x′(r)2

∣∣∣ ≥ Cdx̄
l

M2 , then

Eθ0
(∣∣∣∣∂r∗t (θ0, D

∗
t )

∂fd

∣∣∣∣ | Ft) ≤ 2CxM
2

γδCdx̄l
. (A.76)

Using the same arguments, we can also get the same upper bound for d = Dπ
t , and also

for any d ∈ [Dπ
t ∧D∗t , Dπ

t ∨D∗t ].
Hence, from (A.69) and (A.76), we have

Eθ0 [|r∗t (θ0, D
∗
t )− r∗t (θ0, D

π
t )| | Ft] ≤

2CxM
2

γδCdx̄l
· (p0 + q0) · Eθ0

[∣∣∣∣Dπ
t

m0

− D∗t
m0

∣∣∣∣ | Ft]
Therefore, it follows that

E
[
(r∗t (θ0, D

∗
t )− r∗t (θ0, D

π
t ))2 | Ft

]
= O

(
Eθ0

[(
D∗t
m0

− Dπ
t

m0

)2

| Ft

])

≤ α
(
t

et

)2

E
[
(r∗t (θ0, D

∗
t )− r∗t (θ0, D

π
t ))2 | Ft

]
+O

(
1

m0

) (A.77)

for some α > 0 independent of m0, where the last relationship follows due to Lemma A.2.
This concludes our bound on (B).
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Therefore, from the bounds on (A) and (B), we can conclude that

E
[
(r∗t (θ0, D

∗
t )− r∗t (θt, Dπ

t ))2 | Ft
]

= Θ
(
E
[
‖θt − θ0‖2 | Ft

])
+O

(
1

m0

)
.

A.2.13 Proof of Theorem II.2

The Bayesian Cramer-Rao bound will be useful in our proof of Theorem II.2. It states
that, under some regularity conditions, the distribution of an estimator of an absolutely
continuous function g of θ cannot have a variance less than the classical informational
bound.

Lemma A.4 (Bayesian Cramer-Rao bound.). Let {f(· | θ) : θ ∈ Θ} be a family of
probability density functions on some sample space X , where the parameter space Θ is a
closed interval on the real line. Let µ(θ) be some probability density on θ ∈ Θ. Suppose
that µ and f(x | ·) are both absolutely continuous, and that µ converges to zero at the
endpoints of the interval Θ. If X is the random sample, let ĝ(X) denote an estimator of
g(θ), where g : Θ 7→ R is an absolutely continuous function. Then,

Eθ
[
(ĝ(X)− g(θ))2] ≥ (

Eθ
[

d
dθ
g(θ)

])2

Eθ
[(

d
dθ

ln f(X | θ)
)2
]

+ E
[(

d
dθ

lnµ(θ)
)2
]

where Eθ[·] denotes the expectation with respect to the joint distribution of f(X | θ) and
µ(θ).

Proof. Proof of Theorem II.2.
To prove the lower bound, we only need to consider the case where one parameter,

say q0, is unknown. This is because more unknown and independent parameters can only
worsen the revenue loss. Hence, we assume only θ0 = q0 is unknown.

First, using the Bayesian Cramer-Rao inequality (Lemma A.4), we show the following
claim which is a lower bound on the pricing error for any pricing-and-learning policy
π̃ ∈ Π. (In this proof, we use the tilde notation to distinguish the policy π̃ from the
mathematical constant π.)

Claim A.3. Suppose x(r) = e−r for r ∈ [0, 2). Let θ = q0 be a random variable taking
values in Θ =

[
1
4
, 5

4

]
with the density µ(θ) = 2[cos (π(θ − 3/4))]2. Then for any pricing-
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and-learning policy π̃ ∈ Π,

Eθ
[
(rπ̃t − r∗t )2 | Ft

]
≥ α

(
1

Dπ̃
t

)
(A.78)

for some α > 0 independent of m0.

Proof. Proof of Claim A.3. For some t ∈ (0, T ), let X denote the sample path at time
t under policy π̃. Specifically, X = (Ds, s ∈ [0, t]), where we drop the superscript π̃ to
simplify notation. Using the notation of Lemma A.4, the density function given Ft is

f(X | θ) =
Dt∏
i=0

fi(θ),

where fi(θ), i = 0, 1, . . . , Dt are defined in (II.4.2). With abuse of notation, we also set
g(θ) = r∗t (θ) and ĝ(X) = rπ̃t (X).

We will first bound Eθ
[

d
dθ
g(θ)

]
. Since x(r) = e−r for r ∈ [0, 2), then according to

Theorem II.1, we have that

r∗t (θ) = 1 + [V (D∗t , T − t; θ)− V (D∗t + 1, T − t; θ)],

where V (d, t; θ) has the closed-form expression given in (II.1). Therefore, if D∗t = d, we
have

d

dθ
r∗t (θ) =

∂ [V (d, T − t)− V (d+ 1, T − t)]
∂θ

≥ α1

 ∂

∂q0

ln

1 +

Π
m0−1
i=d (m0−i)q0m0−dtm0−d

(m0−d)!em0−d

1 +
∑m0−d−1

j=1 Πd+j−1
i=d (m0 − i) q0

jtj

j!ej


= α2 ((m0 − d) ln q0) ≥ α2 ln q0

for some α1 > 0, α2 > 0 independent of m0. Therefore, we know that(
Eθ
[

d

dθ
g(θ)

])2

=

(
Eθ
[

d

dθ
r∗t (θ)

])2

≥ Ω(1). (A.79)

Also, we have

Eθ

[(
d

dθ
lnµ(θ)

)2
]

= Eθ
[
16π2 (cos(π(θ − 3/4)) sin(π(θ − 3/4)))2] ≤ 16π2. (A.80)
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To bound Eθ
[(

d
dθ

ln f(X | θ)
)2
]
, we use the following standard result (Cover , 1999):

Eθ

[(
d

dθ
ln f(X | θ)

)2

| Ft

]
= −Eθ

[
d2

dθ2
ln f(X | θ) | Ft

]
= −Eθ

[
d2

dθ2

Dt∑
i=0

ln fi(θ) | Ft

]

=
Dt∑
i=0

−Eθ
[

d2

dθ2
ln fi(θ) | Ft

]
.

Thus,

Eθ

[(
d

dθ
ln f(X | θ)

)2

| Ft

]
=

Dt∑
i=0

−Eθ
[

d2

dθ2
ln fi(θ) | Ft

]
≤

Dt∑
i=0

1

1 · q0
2

= (Dt + 1) /q0
2.

(A.81)
Hence, taking (A.79),(A.80),(A.81) into Lemma A.4, we have

Eθ
[
(rπ̃t − r∗t )2 | Ft

]
= Eθ

[
(ĝ(X)− g(θ))2 | Ft

]
≥ α3

(
1

Dt + 1 + 16π2

)
= α

(
1

Dt + 1

)
(A.82)

for some α > 0, α3 > 0 independent of m0.
end proof of Claim A.3 �

Next, we want to apply Claim A.2 to prove the lower bound on regret. Thus, we
need to check whether Assumption II.2 and the condition of Proposition II.3 hold. Notice
that,

∣∣∣ ∂2

∂r2 [re−r]
∣∣∣ = (2− r)e−r, so Assumption II.2 holds. Also, from Claim A.3, we know

E
[
(rπ̃t − r∗t )2 | Ft

]
≥ α

(
1

Dπ̃t +1

)
. Since

E
(

1

Dπ̃
t + 1

| Ft
)

=
1∫ t

0
(m0 −Dπ̃

s )
(
p0 + q0

Dπ̃s
m0

)
ds+ 1

≥ 1

x̄um0(p0 + q0)t
≥ α′te−t/m0,

for some α′ independent of t and m0. This implies that the condition of Proposition II.3
is satisfied. Hence, from Claim A.2, we have

R∗ −R(π̃) = Ω

E

 T∫
0

ξ(D∗t )(r
π̃
t − r∗t )2dt


= Ω

E

 T∫
0

ξ(Dπ̃
t )(rπ̃t − r∗t )2dt

 (A.83)
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= Ω

E

 T∫
0

ξ(Dπ̃
t )

1

Dπ̃
t + 1

dt

 (A.84)

where (A.83) comes from the same analysis of (A.46) by replacing ξ(D∗t ) by ξ(D∗t )

ξ(Dπ̃t )
ξ(Dπ̃

t ),
and (A.84) comes from Claim A.3.

Then, we finally prove the lower bound on regret. Since E(Dπ̃
t + 1 | Ft) ≤

maxs≤t ξ(D
π̃
s ) · 1 · (t + t0) with t0 = Θ

(
m−1

0

)
(we add t0 here to avoid meaningless cases

where t = 0), we know

(A.84) ≥ α

E

 T∫
0

ξ(Dπ̃
t )

maxs≤t ξ(Dπ̃
s )

1

t+ t0
dt


≥ α

E

 T∫
0

γδ

(p0 + q0)2/(4q0)

1

t+ t0
dt

 = Ω(lnm0)

(A.85)

for some α > 0 independent of m0, where the second inequality comes from (A.70).
This concludes our proof.

A.2.14 Proof of Theorem II.3

Proof. To simplify notation in this proof, we refer to θ̂0 as θ instead. LetDπ = (Dπ
t , t ≥ 0)

denote the cumulative adoption process under policy π that offers the price r∗t (θ, d) when
the state is (d, t). Recall that r∗t (θ, d) is the Markovian Bass price (Theorem II.1) under
parameter set θ and state (d, t).

Note that R∗−R(π) can be interpreted as the expected revenue loss of mis-specifying
the demand parameter as θ, when the true parameter is θ0. From Lemma II.4, we
know that E[|rπt − r∗t |] = Ω(te−tm0

−1). Since Assumption II.2 holds, then according
to Claim A.2, we have

R∗ −R(π) ≥ Eθ0

 T∫
0

ξ(D∗t )(r
π
t − r∗t )2dt


≥ m0

[
min
F∈[0,1]

(1− F )(p0 + q0F )

]
· Eθ0

 T∫
0

Eθ0
[
(rπt − r∗t )2 | Ft

]
dt


≥ m0

[
min
F∈[0,1]

(1− F )(p0 + q0F )

]
·

T∫
0

Θ
(
‖θ − θ0‖2) dt
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= E2TΩ(m0).

The second inequality is because by definition ξ(d) = m0

(
1− d

m0

)(
p0 + q0

d
m0

)
for any d.

The third inequality is because of Lemma II.4. The equality is due to ‖θ0− θ‖2 = E2.

A.2.15 Proof of Theorem II.4

Proof. Recall that θ0 = (p0, q0,m0) denotes the true parameter vector. For notational
convenience, we will use π to denote the MBP-MLE policy πM. Consequently, we will
denote the price process and the demand process under MBP-MLE as rπ = (rπt , t ≥ 0)

and Dπ = (Dπ
t , t ≥ 0), respectively. The price process under the hindsight optimal policy

is r∗ = (r∗t , t ≥ 0).
We will use Proposition II.3 and Lemma II.4 to prove the theorem. Therefore, we need

to check whether the conditions required in Proposition II.3 and Lemma II.4 are satisfied.
The condition required in Lemma II.4 is that p̂t, q̂t and m̂t are finite values, and that

p̂t + q̂t > 0 and mt > 0. This can be observed from checking the likelihood function `t.
Since D̂t ≥ 3, we know that m̂t > D̂t − 1, because otherwise, the likelihood function is
either 0 or negative. If both p̂t and q̂t are zero, the likelihood function is 0. If either
p̂t = +∞ or q̂t = +∞ or m̂t = +∞, then the likelihood function is 0. Therefore, the ML
estimates satisfy the condition of Lemma II.4.

We check that E[|rπt − r∗t |] ≥ αte−tm0
−1 for all t ∈ [0, T ], which is the condition

needed for Proposition II.3. Conditional on Ft, when the state is (d, t), policy π offers
price r∗t (θ̂t, d), which is the Markovian Bass price when the parameter set is the ML
estimate θ̂t = θ̂t(Ût). Hence,

E[|rπt − r∗t |] = E [E [|rπt − r∗t | | Ft]] = Ω
(
E
[
E
[∥∥∥θ̂t − θ0

∥∥∥ | Ft]]) = Ω

(
E
(

1√
Dπ
t + 1

))
≥ 1

m0

≥ αte−tm0
−1.

Here, the first bound comes from Lemma II.4. The second bound comes from Lemma II.3.
Hence, the condition needed for Proposition II.3 is met.

To prove R∗−R(π) ≤ O (lnm0), according to Proposition II.3, it suffices to show that

E

 T∫
0

Dπ
t + 1

t+ t0
(rπt − r∗t )2dt

 = O (lnm0) .

We know from Lemma II.3 that, for any t ∈ (0, T ], the conditional expected estimation
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errors are
E
(
(p̂t − p0)2 | Ft

)
= O

(
(Dπ

t + 1)−1
)
, (A.86)

E
(
(q̂t − q0)2 | Ft

)
= O

(
(Dπ

t + 1)−1
)
, (A.87)

E
(
(m̂t −m0)2 | Ft

)
= O

(
(Dπ

t + 1)−1
)
. (A.88)

Also, we know (Dπ
t + 1)−1 dominates O (1/m0). This is because

1

m0

≤ O
(
(Dπ

t + 1)−1
)
.

Then by Lemma II.4, it suffices to show that

E

 T∫
0

Dπ
t + 1

t+ t0
‖θ̂t − θ0‖2dt

 = O (ln(m0T + 1)) .

Notice that the initial revenue loss when Dπ
t ≤ 3 is at most ln(m0). Then, by conditioning

on Ft,

E

E

 T∫
0

Dπ
t + 1

t+ t0
|p̂t − p0|2dt | FT

+ E

E

 T∫
0

Dπ
t + 1

t+ t0
|q̂t − q0|2dt | FT


+ E

E

 T∫
0

Dπ
t + 1

t+ t0
|m̂t −m0|2dt | FT

 ≤ E

 T∫
0

1

t+ t0
dt

 = O(ln(m0)),

where the last inequality follows from (A.86)–(A.88). This proves the theorem.

A.2.16 Proof of Theorem II.5

Proof. For convenience, we will use π to denote the MBP-MLE-Limited policy πM-Lim.
Recall that θ̂t = θ̂t(Ût) denotes the ML estimator of the parameter set, given data Ût.
Note that θ̂t influences the policy only if t is a price change epoch. We will denote
θ̂π = (θ̂πt , t ≥ 0) as the parameter process under MBP-MLE-Limited, where θ̂πt is equal to
the ML estimator at the most recent price change epoch. Given state (d, t), recall that
r∗t (θ0, d) denotes the Markovian Bass price when the demand parameter set is θ0. We will
denote by rπt (θ̂πt , d) the price offered under MBP-MLE-Limited given state (d, t). We will
denote the demand process under MBP-MLE-Limited as Dπ = (Dπ

t , t ≥ 0). The demand
process under the hindsight optimal policy is D∗ = (D∗t , t ≥ 0).

We will use Proposition II.3 to prove the theorem. Note that the condition of the
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proposition that E[(rπt − r∗t )2] = Ω(te−t) for all t is satisfied. This is because the pricing
error of MBP-MLE-Limited is larger than that of MBP-MLE, and we showed that the
condition is true for the latter policy when proving Theorem II.4 in Section A.2.15.

According to Proposition II.3, we know it suffices to examine the bound for

E

E
 T∫

0

Dπ
t + 1

t+ t0
(r∗t − rπt )2 dt | FT

 . (A.89)

With probability 1, we can decompose the pricing error as follows:(
r∗t (θ0, D

∗
t )− rπt (θ̂πt , D

π
t )
)2

=
(
r∗t (θ0, D

∗
t )− r∗t (θ0, D

π
t ) + r∗t (θ0, D

π
t )− rπt (θ0, D

π
t ) + rπt (θ0, D

π
t )− rπt (θ̂πt , D

π
t )
)2

= Θ

|r∗t (θ0, D
∗
t )− r∗t (θ0, D

π
t )|2︸ ︷︷ ︸

(A)

+ Θ

|r∗t (θ0, D
π
t )− rπt (θ0, D

π
t )|2︸ ︷︷ ︸

(B)



+ Θ

∣∣∣rπt (θ0, D
π
t )− rπt (θ̂πt , D

π
t )
∣∣∣2︸ ︷︷ ︸

(C)

 ,

because of the triangle inequality.
Similar to how we proved Lemma II.4 (Section A.2.12), specifically from (A.77), taking

the expectation of (A) conditioning on Ft is bounded by

1

m0

= O
(
E
[
‖θ̂π − θ0‖2 | Ft

])
,

where the equality is from Lemma II.3. According to Lemma II.4, (C) is also bounded by
O
(
E
[
‖θ̂π − θ0‖2|Ft

])
.

Let us consider the expected cumulative regret (during one price cycle) resulting from
(B) when the true parameter set θ0 is used by the policy π. Specifically, suppose that t is
the start of a price cycle whose length is the time until the next ct adoptions. Specifically,
MBP-MLE-Limited sets the price rπt for the entire price cycle, which it computes from the
deterministic equivalent of the optimal prices (r1, r2, . . . , rct) and inter-adoption times
(∆t1,∆t2, . . . ,∆tct), as described in Section II.4.2.2. If the cycle’s inter-adoption times
under π and π∗ are equal to (∆t1,∆t2, . . . ,∆tct), then the revenue loss only comes from π
using a constant price during a price change epoch, instead of using flexible prices by π∗.
In this case, r∗t+τi−1

= ri where τi−1 :=
∑i−1

k=1 ∆tk is the time elapsed after the (i − 1)th
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adoption in the cycle. Hence, the revenue loss due to (B) is zero since

ct∑
i=1

r∗t+τi−1
ξ(Dπ

t + i− 1)x(r∗t+τi−1
)∆ti −

ct∑
i=1

rπt ξ(D
π
t + i− 1)x(rπt )∆ti

=

ct∑
i=1

riξ(D
π
t + i− 1)x(ri)∆ti −

(
ct∑
i=1

ξ(Dπ
t + i− 1)∆ti

)(∑ct
j=1 rjx(rj)ξ(D

π
t + j − 1)∆tj∑ct

j=1 ξ(D
π
t + j − 1)∆tj

)
= 0.

where the first equality is from (II.4.7). However, revenue loss will not be zero because
of the error from approximating the inter-adoption times. We use D̂π to denote the
corresponding demand sequence from the approximated inter-adoption times. Specifically,
under process D̂π, we have D̂π

t = Dπ
t and an additional adoption after ∆t1, after ∆t2,

and so on. Hence, along with the analysis above, (B) is bounded above in the order of(
r∗t (θ0, D

π
t )− r∗t (θ0, D̂

π
t )
)2

, which is in the same order as (A).
Now, taking the bounds on (A), (B), and (C) into (A.89), to prove the theorem, it

suffices to bound

E

 T∫
0

Dπ
t + 1

t+ t0

[
(p0 − p̂πt )2 + (q0 − q̂πt )2 + (m− m̂π

t )2
]

dt
∣∣FT

 . (A.90)

Define ti as the earliest time between T and the occurence of the ith adoption under
policy π. Recall that Ci is the number of adoptions in price cycle Ci under π, and
C[i] :=

∑i
k=0Ci. Furthermore, the ML estimator θ̂πt is only updated at the start of each

price cycle. Hence, using Lemma II.3, we know that on any demand sample path, (B.1)
can be bounded by

t1∫
0

1

t+ t0
dt+

t2∫
t1

1 + 1

t+ t0
dt+

t3∫
t2

2 + 1

t+ t0
dt+ · · ·+

tC0∫
tC0−1

C0 − 1 + 1

t+ t0
dt

+

tC[0]+1∫
tC[0]

C[0] + 1

t+ t0

1

C[0] + 1
dt+

tC[0]+2∫
tC[0]+1

C[0] + 1 + 1

t+ t0

1

C[0] + 1
dt+ · · ·+

tC[0]+C1∫
tC[0]+C1−1

C[0] + C1 − 1 + 1

t+ t0

1

C[0] + 1
dt

+ · · ·

+

tC[K−1]+1∫
tC[K−1]

C[K−1] + 1

t+ t0

1

C[K−1] + 1
dt+ · · ·+

tC[K−1]+CK∫
tC[K−1]+CK−1

C[K−1] + CK − 1 + 1

t+ t0

1

C[K−1] + 1
dt

≤

tC[0]∫
0

C[0]

t+ t0
dt+

tC[1]∫
tC[0]

C[1]

t+ t0

1

C[0] + 1
dt+

tC[2]∫
tC[1]

C[2]

t+ t0

1

C[1] + 1
dt+ . . .+

tC[K]∫
tC[K−1]

C[K]

t+ t0

1

C[K−1] + 1
dt

≤
(

max

{
C0, 1 + max

i=1,2,...,K

Ci
Ci−1

}) T∫
0

1

t+ t0
dt = O

((
max

{
C0, 1 + max

i=1,2,...,K

Ci
Ci−1

})
ln(m0T )

)
.
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Here, the last inequality is because, for any i = 1, 2, . . . ,K,

C[i]

C[i−1] + 1
=
C0 + C1 + . . .+ Ci−1 + Ci
C0 + C1 + . . .+ Ci−1 + 1

≤ 1 +
Ci

C0 + . . .+ Ci−1 + 1
≤ 1 +

Ci
Ci−1

Therefore, we can conclude that

R∗ −R(π) = O
(

max

{
C0, 1 + max

i=1,2,...,K

Ci
Ci−1

}
· lnm0

)
.

A.2.17 Proof of Proposition II.4

Proof. We only need to analyze the concavity of the first term in (II.5.4), since the re-
maining terms are linear in µ′. We denote the first term as φ(µ′) :=

∑D̂t−1
i=0 lnµ′>yi,ti+1 .

In what follows, we will show that φ(µ′) is strictly and jointly concave in µ′.
To show φ(µ′) is strictly concave in µ′, we need to show that its Hessian is negative

definite. For any k = 1, 2, . . . , 3(n+ 1), ` = 1, 2, . . . , 3(n+ 1), we have

∂

∂µ′k
φ(µ′) =

D̂t−1∑
i=0

y
i,ti+1

k

µ′>yi,ti+1
,

∂2

∂µ′kµ
′
`

φ(µ′) = −
D̂t−1∑
i=0

y
i,ti+1

k y
i,ti+1

`

(µ′>yi,ti+1)2
.

Therefore, for any vector z ∈ R3(n+1), we have

z>∇2
µ′φ(µ′)z = −

D̂t−1∑
i=0

(z>yi,ti+1)2

(µ′>yi,ti+1)2
≤ 0. (A.91)

Hence, φ(µ′) is jointly concave in µ′. We next show that it is strictly concave. Note that
since D̂t ≥ 3(n+ 1), we can write

z>∇2
µ′φ(µ′)z = −

3n+2∑
i=0

(z>yi,ti+1)2

(µ′>yi,ti+1)2
−

D̂t−1∑
i=3(n+1)

(z>yi,ti+1)2

(µ′>yi,ti+1)2
.

Since the columns of Y are linearly independent, then the first term in the right-hand
side is strictly negative for any z 6= 0. Therefore, z>∇2

µ′φ(µ′)z < 0 for all z 6= 0, hence
φ(µ′) is strictly concave.
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A.2.18 Proof of Lemma II.3′

Proof. For simplicity of notation, we will use Dt instead of Dπ
t to denote the cumulative

adoptions at time t. Let µ = (β, γ) be the parameter vector where β = (β1, β2, β3)

and γ = (γj)
n
j=0. From our discussion in Section II.5.4, note that the ML estimator

µ̂t = (β̂t, γ̂t) is unique since Dt ≥ 3(n + 1) and Y is full rank. Note from (II.4.2) that
if either γ̂j = +∞ or γ̂j = −∞, then the likelihood function is 0 or negative. Then, we
know there exist finite δ̄j, j = 0, 1, · · · , n such that γ0 − δ̄j ≤ γ̂j ≤ γ0 + δ̄j.

If µ0 = (β0, γ0) are the true parameters, note that µ̂t = (β̂t, γ̂t) can be written as:

µ̂t = arg max
µ:β1≥0,
β3≤0

Lt(Ût;µ) = µ0 + arg min
u:ub1≥−β01,
ub3≤−β03

−
Dt∑
i=0

ln
fi(µ0 + u)

fi(µ0)
,

where u = (ub1, ub2, ub3, (ugj)
n
j=0). Let us denote by û the solution of the minimization

problem on the right-hand side above. Hence, µ̂t = µ0 + û.
The result Eµ0 [|β̂tj − β0j|2 | Dt = k] ≤

αβj
k+1

for j = 1, 2, 3 and for some αβj that is
independent of m0 can be shown using a proof similar to that of Lemma II.3. Hence, to
complete the proof of Lemma II.3′, we will need to establish that Eµ0 [|γ̂tj − γ0j|2 | Dt =

k] ≤ αγj
k+1

for all j = 0, . . . , n and for some αγj independent of m0.
We examine the estimation error |γ̂tj − γ0j| for some j = 0, . . . , n. Let us denote ej

to be the (n + 4)-dimensional binary vector, where the entry is equal to 1 only at the
(j + 4)-th index. Suppose that |γ̂tj − γ0j| > δ for some δ̄j ≥ δ > 0. This implies that ûgj
lies outside the interval [−δ, δ]. Since the objective value is 0 when u = 0, and since the
log-likelihood function is continuous and element-wise concave in γj, then either

−
Dt∑
i=0

ln
fi(µ0 + δej)

fi(µ0)
≤ 0 or −

Dt∑
i=0

ln
fi(µ0 − δej)
fi(µ0)

≤ 0.

Note that under the Markovian Bass model, the value fi(µ) for any µ = (β, γ) is stochastic
since its value depends on ti and ti+1, which are random adoption times. Here, ti denotes
the time of the i-th adoption, where i = 0, . . . , Dt.

Let Pµ0(·) denote the probability under a demand process that follows a Markovian
Bass model with parameter vector µ0. Therefore,

Pµ0{|γ̂tj − γ0j| > δ}

≤ Pµ0

{
−

Dt∑
i=0

ln
fi(µ0 + δej)

fi(µ0)
≤ 0

}
+ Pµ0

{
−

Dt∑
i=0

ln
fi(µ0 − δej)
fi(µ0)

≤ 0

}
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= Pµ0

{
Dt∏
i=0

fi(µ0 + δej)

fi(µ0)
≥ 1

}
+ Pµ0

{
Dt∏
i=0

fi(µ0 − δej)
fi(µ0)

≥ 1

}

≤ Pµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
≥ 1

+ Pµ0


√√√√ Dt∏

i=0

fi(µ0 − δej)
fi(µ0)

≥ 1


≤ Eµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)

+ Eµ0


√√√√ Dt∏

i=0

fi(µ0 − δej)
fi(µ0)

 . (A.92)

Hence, we need to bound the two terms in (A.92). We demonstrate how we can bound
the first term, since the second term can be bounded following similar arguments. By the
law of iterated expectations we know that the first term in (A.92) can be written as

Eµ0


√√√√Dt∏

i=0

fi(µ0 + δej)

fi(µ0)

 = Eµ0

· · ·Eµ0

Eµ0


√√√√Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−1

 | FtDt−2

 · · · | F0

 .

(A.93)

We will analyze this expression, starting from the innermost conditional expectation.
Note that

Eθ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−1

 =

√√√√Dt−1∏
i=0

fi(µ0 + δej)

fi(µ0)
Eµ0

(√
fDt(µ0 + δej)

fDt(µ0)
| FtDt−1

)

=

√√√√Dt−1∏
i=0

fi(µ0 + δej)

fi(µ0)

 ∞∫
tDt−1

√
fDt(µ0 + δej)

fDt(µ0)
fDt(µ0)dtDt


=

√√√√Dt−1∏
i=0

fi(µ0 + δej)

fi(µ0)

 ∞∫
tDt−1

√
fDt(µ0 + δej)

√
fDt(µ0)dtDt

 .

(A.94)
Here, the first equality is because {fi(µ), i = 0, . . . , Dt−1} are all FtDt−1

-measurable. The
second equality is because, given the information set FtDt−1

, fDt(µ0) is the conditional
probability density function of the adoption time tDt under a Markovian Bass model with
parameter vector µ0. Hence, we will next derive a bound on

∞∫
tDt−1

√
fDt(µ0 + δej)

√
fDt(µ0)dtDt .
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Note that

1

2

∞∫
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt

=
1

2

∞∫
tDt−1

(
fDt(µ0 + δej) + fDt(µ0)− 2

√
fDt(µ0 + δej)fDt(µ0)

)
dtDt

= 1−
∞∫

tDt−1

√
fDt(µ0 + δej)fDt(µ0)dtDt,

where the last equality is because the integral of the probability density function

∞∫
tDt−1

fDt(µ)dtDt

is equal to 1 for any µ. Therefore,

∞∫
tDt−1

√
fDt(µ0 + δej)fDt(µ0)dtDt = 1− 1

2

∞∫
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt.

(A.95)
The integral on the right-hand side is the Hellinger distance between fDt(µ0 + δej) and
fDt(µ0), which are probability densities of the adoption time tDt .

Note that the Hellinger distance can be lower bounded by the K-L divergence (see
corollary 4.9 in Taneja and Kumar 2004). Specifically,

1

2

∞∫
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

≥ 1

4
√
R
Eµ0

(
ln

fDt(µ0)

fDt(µ0 + δej)
| FtDt−1

)
,

(A.96)

where R is a constant such that R ≥ minδ
1

fDt (µ0+δej)
≥ 1

m0p0x̄u
, where x̄u is defined in

Assumption II.1. We will next derive a bound on the right-hand side.
Note that if we define CI := (x(r; γ0) + δ̄jbj,n(r))2/bj,n(r)2 for some r ∈ (0, 1), we have

∂

∂δ
ln

fDt(µ0)

fDt(µ0 + δej)
= −

bj,n(rtDt )∑
i 6=j γ0ibi,n(rtDt ) + (γ0j + δ)bj,n(rtDt )

,
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and

∂2

∂δ2
ln

fDt(µ0)

fDt(µ0 + δej)
=

bj,n(rtDt )
2(∑

i 6=j γ0ibi,n(rtDt ) + (γ0j + δ)bj,n(rtDt )
)2 ≥

1

CI
.

Note that CI is independent of m0.
Furthermore, since the expectation of the Fisher score under the true parameter is

zero, we have

Eµ0

(
∂

∂δ
ln

fDt(µ0)

fDt(µ0 + δej)

∣∣∣
δ=0
| FtDt−1

)
= 0.

Hence, a simple calculation yields

Eµ0

(
ln

fDt(θ0)

fDt(µ0 + δej)
| FtDt−1

)
= Eµ0

 δ∫
0

∂

∂z
ln

fDt(µ0)

fDt(µ0 + zej)
dz | FtDt−1


= Eµ0

 δ∫
0

(
∂

∂z
ln

fDt(µ0)

fDt(θ0 + zej)
− ∂

∂z
ln

fDt(µ0)

fDt(θ0 + zej)

∣∣∣
z=0

)
dz | FtDt−1


= Eµ0

 δ∫
0

z∫
0

∂2

∂z′2
ln

fDt(θ0)

fDt(µ0 + z′ej)
dz′ | FtDt−1

 ≥ 1

2CI
δ2.

Then, (A.96) reduces to

1

4
√
RCI

δ2 ≤
∞∫

tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt−1.

Hence, from (A.95), we have

∞∫
tDt−1

√
fDt(µ0 + δej)fDt(µ0)dtDt = 1− 1

2

∞∫
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt

≤ exp

−1

2

∞∫
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt

 ≤ exp

(
− 1

8
√
RCI

δ2

)
,

where the first inequality is because e−x ≥ 1− x for all x.
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Hence, from (A.94), we have

Eθ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−1

 ≤
√√√√Dt−1∏

i=0

fi(µ0 + δej)

fi(µ0)
exp

(
− 1

8
√
RCI

δ2

)
. (A.97)

This provides a bound for the innermost conditional expectation in (A.93). Observe that
all of the terms in the right-hand side of (A.97) are FtDt−2

-measurable, except for the
term

√
fDt−1(µ0 + δej)/fDt−1(µ0). Hence, if we take the conditional expectation on both

sides of (A.97) given FtDt−2
, and use the same logic as our arguments above, we get

Eµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−2

 ≤
√√√√Dt−2∏

i=0

fi(µ0 + δej)

fi(µ0)
· exp

(
− 2

8
√
RCI

δ2

)

We can proceed iteratively to evaluate (A.94) as we take conditional expectations given
FtDt−3, FtDt−4, F0, resulting in

Eθ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)

 ≤ Eµ0

(
exp

(
− Dt + 1

8
√
RCI

δ2

))

Using similar arguments, we can get the same bound for the second term in (A.92).
Therefore, we have

Pµ0{|γ̂tj − γ0j| > δ} ≤ 2Eµ0

(
exp

(
− Dt + 1

8
√
RCI

δ2

))
.

Hence,

Eµ0

[
(γ̂tj − γ0j)

2 | Dt = k
]

=

∞∫
0

Pµ0

{
(γ̂tj − γ0j)

2 > δ | Dt = k
}

dδ

=

∞∫
0

Pµ0

{
|γ̂tj − γ0j|2 >

√
δ | Dt = k

}
dδ

≤
∞∫

0

exp

(
− k + 1

8
√
RCI

δ

)
dδ =

8
√
RCI

k + 1
.
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A.2.19 Proof of Lemma II.4′

Proof. The proof of Lemma II.4′ follows exactly the same steps as the proof of Lemma II.4.
The only difference is to show

∣∣∣∂r∗t∂γi

∣∣∣ is bounded. Because x(r) is linear in every γi, we
have γi to be in the similar positions to p or q. Therefore, following the steps to bound∣∣∣∂r∗t∂p ∣∣∣ or ∣∣∣∂r∗t∂q ∣∣∣ gives us the desired result. We next discuss how to bound

∣∣∣∂r∗t∂γi

∣∣∣.
Using the equation (II.3.2) satisfied by r∗t (θ, d), we differentiate r∗t with respect to γi

and rearranging terms, we get that for any d,∣∣∣∣∂r∗t (µ, d)

∂γi

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂

∂γi
[V (d, T − t)− V (d+ 1, T − t)]−

bi,n(r∗t )x
′(r∗t )− x(r∗t )

(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

x′(r∗t )
2

2x′(r∗t )
2 − x(r∗t )x

′′(r∗t )

x′(r∗t )
2

∣∣∣∣∣∣∣∣∣ .
(A.98)

Similar to (A.67), we have

∂

∂γi
[V (d, T − t)− V (d+ 1, T − t)]︸ ︷︷ ︸

(A1)

=
∂2V (d, T − t)

∂γi∂t
· 1

(m− d)
(
p+ d

m
q
)
x(r∗t )︸ ︷︷ ︸

(A2)

−
2x(r∗t )x

′(r∗t )bi,n(r∗t )− x(r∗t )
2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

x′(r∗t )
2

.

(A.99)

We now examine the absolute value of (A2) on the right-hand side of (A.99). Because
the partial effect of γi on the expected revenue rate cannot exceed the rate when all the
remaining population (m − d) are directly affected by γi without being affected by the
current price r∗t , we know∣∣∣∣∂2V (d, T − t)

∂γi∂t

∣∣∣∣ ≤ (m− d)(p+ qd/m)r∗t bi,n(r∗t ).

Hence, we can bound the absolute value of (A1) as follows:

|(A1)| ≤ r∗t bi,n(r∗t )

x(r∗t )
+

∣∣∣∣∣2x(r∗t )x
′(r∗t )bi,n(r∗t )− x(r∗t )

2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

x′(r∗t )
2

∣∣∣∣∣ .
(A.100)
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Therefore, we substitute (A.100) into (A.98) to get∣∣∣∣∂r∗t (µ, d)

∂γi

∣∣∣∣ ≤ ∣∣∣∣ r∗t bi,n(r∗t )x
′(r∗t )

2

x(r∗t ) (2x′(r∗t )
2 − x(r∗t )x

′′(r∗t ))

∣∣∣∣
+

∣∣∣∣∣2x(r∗t )x
′(r∗t )bi,n(r∗t )− x(r∗t )

2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

2x′(r∗t )
2 − x(r∗t )x

′′(r∗t )

∣∣∣∣∣
+

∣∣∣∣∣bi,n(r∗t )x
′(r∗t )− x(r∗t )

(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

2x′(r∗t )
2 − x(r∗t )x

′′(r∗t )

∣∣∣∣∣
≤ M 2

x̄lCd
bi,n(r∗t ) +

2Mx̄u

Cd
bi,n(r∗t ) +

∣∣∣∣∣ x̄u2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

Cd

∣∣∣∣∣+
M

Cd
bi,n(r∗t )

+

∣∣∣∣∣ x̄u
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i− nr∗t )

Cd

∣∣∣∣∣
where the inequality follows from Assumption II.1(i),(ii), (iv). Note that all terms on the
RHS of the inequality does not scale up with the market size m0 and is finite since r∗t
does not scale up with the market size m0 all γi are finite.

A.2.20 Proof of Proposition A.1

Proof. Suppose the value of m0 is known. Given the data Ût = {(rπs , Dπ
s ), s ≤ t} at time

t ≥ t2, let θ̂t = (p̂t, q̂t) denote the ML estimator of (p0, q0). Note that since Dπ
t ≥ 2, we

can verify that Lt in (II.4.3) is strongly concave. Hence, (p̂t, q̂t) is the unique maximizer of
Lt. Since the log-likelihood function is jointly concave in βt (Proposition II.2), and since
βt is an affine function of θ̂t, then θ̂t satisfy first-order conditions. Specifically, (p̂t, q̂t) is
the solution to the following system of equations in variables (p, q):

0 =
∂Lt
∂p

=

Dπt −1∑
j=0

1

p+ j
m0
q
−

t∫
0

(m0 −Dπ
s )x(rπs )ds, (A.101)

0 =
∂Lt
∂q

=

Dπt −1∑
j=0

j
m0

p+ j
m0
q
−

t∫
0

(m0 −Dπ
s )
Dπ
s

m0

x(rπs )ds. (A.102)

Note that the value of the ML estimator (p̂t, q̂t) is changing continuously in time.
This is because the first-order conditions (A.101),(A.102) are changing over time. The
temporal change of the first-order conditions is impacted by a combination of a continuous
phenomenon (time t) and a discrete phenomenon (the pure jump process Dπ

t ). Hence,
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the differential (dp̂t, dq̂t) is also impacted by a continuous phenomenon and a discrete
phenomenon. However, an explicit form of the differential equation is not immediately
obvious from (A.101),(A.102).

We will apply Itô’s lemma to derive the stochastic differential equation of (dp̂t, dq̂t).
Intuitively speaking, Itô’s lemma is a chain rule defined on stochastic processes. Many
readers may be more familiar with Itô’s lemma as applied to functions of Brownian motion.
Here, our call is to a modified Itô’s lemma that applies to jump processes (see Section
11.5.1 in Shreve 2004). Specifically, suppose that Xt = Xc

t + Dt is a stochastic process,
where Dt is a pure jump process and Xc

t is a continuous-path process with differential
form:

Xc
t = Xc

0 +

t∫
0

ΓsdWs +

t∫
0

Θsds,

where Wt is a standard Wiener process (Brownian motion) and Γs and Θs are adapted
processes. In differential notation, we write

dXc
s = ΓsdWs + Θsds, dXc

sdX
c
s = Γ2

sds.

Then the following theorem (adapted from Theorem 11.5.4 in Shreve 2004) provides the
expression for the dynamics of a function of a jump process Xt.

Theorem A.1 (Itô-Doeblin formula for a jump process). Let Xt be a jump process and
let f(t, x) a function whose first and second partial derivatives appearing in the following
formula are defined and are continuous. Then,

f(t,Xt) = f(0, X0) +

t∫
0

ft(s,Xs)ds+

t∫
0

fx(s,Xs)dX
c
s +

1

2

t∫
0

fxx(s,Xs)dX
c
sdX

c
s

+
∑

0<s≤t

[f(s,Xs)− f(s,Xs−)] .

Let f p(t,Dπ
t ), f q(t,Dπ

t ) denote the functions that map (t,Dπ
t ) to the ML estimators

p̂t, q̂t. Note that these functions are defined from the implicit equations (A.101),(A.102).
Hence, since (dp̂t, dq̂t) = (df p(t,Dπ

t ), df q(t,Dπ
t )), we can get the differential equation

for the ML estimators by applying Itô’s lemma on the functions f p, f q of the pure jump
process Dπ

t .
Using the notation from the Itô-Doeblin formula, Xt = Xc

t +Dπ
t in our case is a jump
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process where Xc
t = 0 for all t. Hence, from Theorem A.1, any function f(t,Dπ

t ) satisfies

f(t,Dπ
t ) = f(0, Dπ

0 ) +

t∫
0

ft(s,D
π
s )ds+

∑
0<s≤t

[
f(s,Dπ

s )− f(s,Dπ
s−)
]
.

We can write this in differential form as:

df(t,Dπ
t ) = ft(t,D

π
t )dt+

[
f(t,Dπ

t− + 1)− f(t,Dπ
t−)
]

dDπ
t .

We can apply this result to get the differential equations of the ML estimators:

dp̂t = df p(t,Dπ
t ) = f pt (t,Dπ

t )︸ ︷︷ ︸
=µp

dt+
[
f p(t,Dπ

t− + 1)− f p(t,Dπ
t−)
]︸ ︷︷ ︸

=ηp

dDπ
t (A.103)

dq̂t = df q(t,Dπ
t ) = f qt (t,Dπ

t )︸ ︷︷ ︸
=µq

dt+
[
f q(t,Dπ

t− + 1)− f q(t,Dπ
t−)
]︸ ︷︷ ︸

=ηq

dDπ
t . (A.104)

Therefore, in order to determine the explicit form of the differential equations (dp̂t, dq̂t),
we need to determine the continuous change (µp and µq), as well as the discrete change
(ηp and ηq).

As can be seen in (A.103),(A.104), the continuous change µp,µq in the ML estimators
can be found by deriving the expressions for f pt = ∂p̂t

∂t
and f qt = ∂q̂t

∂t
. Recall that (p̂t, q̂t) are

the solutions to the system of equations (A.101),(A.102). Therefore, we can substitute
(p̂t, q̂t) into these equations, then take their partial derivative with respect to t. This gives
us:

0 = −

Dπt −1∑
j=0

1(
p̂t + j

m0
q̂t

)2

 ∂p̂t
∂t
−

Dπt −1∑
j=0

j
m0(

p̂t + j
m0
q̂t

)2

 ∂q̂t
∂t
− (m0 −Dπ

t )x(rπt ),

0 = −

Dπt −1∑
j=0

j
m0(

p̂t + j
m0
q̂t

)2

 ∂p̂t
∂t
−

Dπt −1∑
j=0

(
j
m0

)2

(
p̂t + j

m0
q̂t

)2

 ∂q̂t
∂t
− (m0 −Dπ

t )
Dπ
t

m0

x(rπt ).

Solving the system of equations for ∂p̂t
∂t

and ∂q̂t
∂t
, we get

µp = f pt (t,Dπ
t ) =

∂p̂t
∂t

= −
(
σ2
p + σ2

pq

Dπ
t

m0

)
(m0 −Dπ

t )x(rπt ), (A.105)

µq = f qt (t,Dπ
t ) =

∂q̂t
∂t

= −
(
σ2
pq + σ2

q

Dπ
t

m0

)
(m0 −Dπ

t )x(rπt ) (A.106)
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where we define

(
σ2
p σ2

pq

σ2
pq σ2

q

)
:=


1

∆2

Dπt −1∑
j=0

(
j
m0

)2

(
p̂t + j

m0
q̂t

)2 − 1

∆2

Dπt −1∑
j=0

j
m0(

p̂t + j
m0
q̂t

)2

− 1

∆2

Dπt −1∑
j=0

j
m0(

p̂t + j
m0
q̂t

)2

1

∆2

Dπt −1∑
j=0

1(
p̂t + j

m0
q̂t

)2


(A.107)

and

∆2 :=

Dπt −1∑
j=0

1(
p̂t + j

m0
q̂t

)2


Dπt −1∑

j=0

(
j
m0

)2

(
p̂t + j

m0
q̂t

)2

−
Dπt −1∑

j=0

j
m0(

p̂t + j
m0
q̂t

)2


2

.

Note that ∆2 > 0 by Cauchy-Schwarz inequality, so all elements in the matrix (A.107)
are finite. Hence, µp and µq defined in (A.105),(A.106) are the terms multiplied to dt in
the stochastic differential equations of dp̂t, dq̂t, respectively, defined in (A.103),(A.104).

We can further simplify the expressions for σ2
p, σ

2
pq, σ

2
q . We do this by first defining the

vectors vp = (vp,j),vq = (vq,j) to be Dπ
t -dimensional vectors with entries

vp,j =
1

p̂t + j−1
m0
q̂t
, vq,j =

j−1
m0

p̂t + j−1
m0
q̂t
, for j = 1, . . . , Dπ

t

If α is the angle between vectors a and b, then due to the identity cosα = a·b
‖a‖‖b‖ , we have

that

1− cos2 α =
∆2(

Dπt −1∑
j=0

1(
p̂t+

j
m0

q̂t
)2

)(
Dπt −1∑
j=0

(
j
m0

)2

(
p̂t+

j
m0

q̂t
)2

) .

Therefore, we can rewrite σ2
p, σ

2
pq, σ

2
q as

σ2
p =

1

1− cos2 α

Dπt −1∑
j=0

1(
p̂t + j

m0
q̂t

)2


−1

=
1

1− cos2 α
· 1

‖vp‖2

σ2
q =

1

1− cos2 α

Dπt −1∑
j=0

(
j
m0

)2

(
p̂t + j

m0
q̂t

)2


−1

=
1

1− cos2 α
· 1

‖vq‖2
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σ2
pq = − cos2 α

1− cos2 α

Dπt −1∑
j=0

j
m0(

p̂t + j
m0
q̂t

)2


−1

= − cos2 α

1− cos2 α
· 1

v>p vq

We next derive the expression for the jump size ηp, ηq in (A.103),(A.104). We will
use the property that Eθ0(p̂t | Ft) = p̂t and Eθ0(q̂t | Ft) = q̂t. Therefore, p̂t and q̂t are
Ft-martingales, by definition, with Eθ0(dp̂t | Ft) = Eθ0(dq̂t | Ft) = 0. Therefore, taking
the conditional expectation of (A.103), (A.104), and using the property that Eθ0(dDπ

t |
Ft) = (m0 −Dπ

t )
(
p̂t +

Dπt
m0
q̂t

)
x(rπt )dt, we have

0 = Eθ0(dp̂t | Ft) =

[
µp + ηp(m0 −Dπ

t )

(
p̂t +

Dπ
t

m0

q̂t

)
x(rπt )

]
dt

0 = Eθ0(dq̂t | Ft) =

[
µq + ηq(m0 −Dπ

t )

(
p̂t +

Dπ
t

m0

q̂t

)
x(rπt )

]
dt.

Using the expression of µp, µq from (A.105),(A.106), we can solve for ηp, ηq:

ηp =
−µp

(m0 −Dπ
t )
(
p̂t +

Dπt
m0
q̂t

)
x(rπt )

=
σ2
p + σ2

pq
Dπt
m0

p̂t +
Dπt
m0
q̂t
, (A.108)

ηq =
−µq

(m0 −Dπ
t )
(
p̂t +

Dπt
m0
q̂t

)
x(rπt )

=
σ2
pq + σ2

q
Dπt
m0

p̂t +
Dπt
m0
q̂t
. (A.109)

Substituting the expressions (A.105),(A.106) for µp, µq and expressions (A.108),(A.109)
for ηp, ηq into (A.103), (A.104) results in the differential equations (A.4) and (A.5). This
concludes the proof of the proposition.

A.2.21 Proof of Theorem A.2

Proof. The dynamic programming formulation is

V MLE(d, t, p, q)

= max
r

{
rλ(d, r)δt+ V MLE(d+ 1, t− δt, p+ ηp + µp(r)δt, q + ηq + µq(r)δt)λ(d, r)δt

+ V MLE(d, t− δt, p+ µp(r)δt, q + µq(r)δt) [1− λ(d, r)δt] + o(δt)
}
.
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Subtracting both sides by V MLE(d, t− δt) and then dividing by δt results in

1

δt

[
V MLE(d, t, p, q)− V MLE(d, t− δt, p, q)

]
= max

r

{
rλ(d, r) +

[
V MLE(d+ 1, t− δt, p+ ηp, q + ηq)− V MLE(d, t− δt, p+ µp(r)δt, q + µq(r)δt)

]
· λ(d, r)

+
V MLE(d, t− δt, p+ µp(r)δt, q + µq(r)δt)− V MLE(d, t− δt, p, q + µq(r)δt)

µp(r)δt
· µp(r)

+
V MLE(d, t− δt, p, q + µq(r)δt)− V MLE(d, t− δt, p, q)

µq(r)δt
· µq(r) +

o(δt)

δt

}
,

where µp(r), µq(r), ηp, ηq are defined in (A.8),(A.9). Substituting the expressions for
µp(r),µq(r), then taking the limit on both sides as δt approaches 0, and using (A.4),(A.5),
we get

∂V MLE

∂t
= max

r

{
rλ(d, r) +

[
V MLE(d+ 1, t, p+ ηp, q + ηq)− V MLE(d, t, p, q)

]
λ(d, r)

− ∂V MLE

∂p

(
σ2
p + σ2

pq

d

m0

)
(m0 − d)x(r)− ∂V MLE

∂q

(
σ2
pq + σ2

q

d

m0

)
(m0 − d)x(r)

}
.

We denote the objective function of RHS by JMLE(d, t, p, q, r). Note that

∂JMLE

∂r
=
λ(d, r)

x(r)
(rx′(r) + x(r))−

[
∂V MLE

∂p

(
σ2
p + σ2

pq

d

m0

)
+
∂V MLE

∂q

(
σ2
pq + σ2

q

d

m0

)]
(m0 − d)x′(r)

+ λ(d, r)
x′(r)

x(r)
[V (d+ 1, t, p+ ηp, q + ηq)− V (d, t, p, q)]

We can verify that the first order sufficient condition ∂JMLE

∂r
= 0 is satisfied by r∗(d, t, p, q)

in (A.10). Plugging back r∗ to the dynamic program, we get (A.11).

A.3 Pricing and learning in a Markovian Bass model

Suppose that the seller knows the demand follows a Markovian Bass model, however
she does not know the true parameter vector θ0. Instead, at time t she infers the unknown
parameters from the information set Ft. Specifically, she infers the parameters from the
price and sales data Ût at time t using a statistical inference method.

Recall the seller’s pricing-and-learning problem:

sup
π∈Π

ED|F0

 T∫
0

rπt dDπ
t

∣∣∣ F0

 = sup
π∈Π

ED|F0

 T∫
0

ED|Ft [rπt dDπ
t | Ft]

∣∣∣ F0

 . (A.1)

Here, her objective is to choose a Ft-adapted pricing policy that maximizes her total
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expected revenue. Since she does not know θ0, the conditional expectation ED|Ft in (A.1)
is with respect to the inferred demand distribution from the price and sales data at time
t.

In general, there are two schools of statistical inference: Bayesian and frequentist.
A Bayesian framework represents uncertainty about the possible values of the demand
parameters through a probability distribution. The evidence (data) collected over time is
used to update the confidence about the inference, represented by a posterior probability
distribution over the possible parameter values. If the seller uses Bayesian inference to
learn the demand parameters, let V B(t, Ût) denote her inferred optimal expected revenue-
to-go at time t given data Ût = ((ru, Du), u ≤ t). We can write V B as:

V B(t, Ût) = max
rt

{∑
θ∈Θ

P(θ | Ût) · Eθ
[
rt · (Dt+h −Dt) + V B

(
t+ h, Ût ∪ (rt, Dt+h)

) ∣∣∣ Dt

]}
(A.2)

= max
rt

{∑
θ∈Θ

P(θ | Ût) ·
{
λ(Dt, rt; θ)h ·

[
rt + V B

(
t+ h, Ût ∪ (rt, Dt + 1)

)]
+(1− λ(Dt, rt; θ)h) · V B

(
t+ h, Ût ∪ (rt, Dt)

)}
+ o(h)

}
,

where the second equality enumerates the outcomes during a small time period [t, t+h].
Here, P(· | Ût) is the posterior probability distribution over the possible parameter values
in set Θ. The posterior distribution is computed using Bayes’ theorem from a prior
distribution P0(θ), θ ∈ Θ, and the likelihood function P(Ût | θ). We note from (A.2) that
the uncertainty about the demand parameters is reflected in the posterior distribution
that changes over time as more evidence is collected. The uncertainty about the inter-
arrival times is modeled by using (II.2.5) to enumerate the probability of zero, one, or
more arrivals during the time period [t, t+ h].

Bayesian inference is commonly used for deriving the optimal pricing and learning
policy in Operations Management literature (see section 4.1.2 in den Boer 2015a for a
survey of works using a Bayesian approach). This approach is attractive since, as can
be seen in (A.2), the chosen pricing decision considers the seller’s confidence about the
different model alternatives. However, there are several drawbacks to this approach. The
main criticism is that the prior distribution is subjective information, and different prior
distributions may result in different posteriors and different pricing policies. A second
criticism is that, past literature often assumes the set Θ has only two parameter vector
values. This assumption aids in deriving an expression for the optimal pricing and learning
policy. However, in practice, it is difficult to impose this assumption in practice where
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parameter values can take on an infinite possibility of values.
A frequentist school of statistical inference does not have these drawbacks. The fre-

quentist school is rooted in the philosophy that there is only one true value for the param-
eters, so it does not make sense to assign probabilities (prior or posterior) for the different
parameter values. For example, the inference from maximum likelihood estimation (MLE)
is a point estimate since it chooses the model parameters which has the highest likelihood
of observing the data.

If the seller uses a MLE approach, let V MLE(t, Ût) be her inferred optimal expected
revenue-to-go at time t given data Ût. If θ̂(Ût) denotes the ML estimator, then by
enumerating outcomes, we can write V MLE as

V MLE(t, Ût) = max
rt

{
Eθ̂(Ût)

[
rt · (Dt+h −Dt) + V MLE

(
t+ h, Ût ∪ (rt, Dt+h)

) ∣∣∣ Dt

]}
(A.3)

= max
rt

{
λ
(
Dt, rt; θ̂(Ût)

)
h ·
[
rt + V MLE

(
t+ h, Ût ∪ (rt, Dt + 1)

)]
+
(

1− λ
(
Dt, rt; θ̂(Ût)

)
h
)
· V MLE

(
t+ h, Ût ∪ (rt, Dt)

)
+ o(h)

}

We observe from comparing (A.3) to (A.2) that the MLE pricing-and-learning prob-
lem infers a point estimate from the data. In contrast, the Bayesian pricing-and-learning
problem infers probabilities to the possible parameter values. This contrast is due to the
different philosophies of Bayesian inference and frequentist inference. Nevertheless, the
similarities between (A.2) and (A.3) are noteworthy. First, both models use an inference
about the demand model parameters (informed by the data) to compute the seller’s in-
ferred expected revenue-to-go. Specifically, in computing the value-to-go, they do not rely
on θ0 which is unknown to the seller. Second, both models capture parameter uncertainty
since they both assume that the data, hence the inference about the parameters, changes
over time. Third, they model how prices affect both the current period revenue as well as
the data used for future inference.

A.3.1 Optimal pricing and learning policy with ML inference

We will next derive the optimal pricing-and-learning policy that solves (A.3). For ease
of exposition, we present our analysis for the case where p0 and q0 are unknown, but m0

is known. Our analysis can be extended to the case where m0 is also unknown, which we
discuss at the end of this subsection.

153



Remark A.1. Ifm0 is known, the log-likelihood function Lt in (II.4.3) is strongly concave
in (p, q) when D̂t ≥ 2. The proof is similar to that of Proposition II.2. We can also check
that if D̂t = 0 or if D̂t = 1, then ∇(p,q)Lt = 0 has no solution, so the seller cannot form
an inference through MLE. Hence, we will assume in this section that while Dt < 2, the
seller offers the Markovian Bass prices under some initial guess θ̂0 of the parameters.

The ML estimator θ̂(Ût) = (p̂t, q̂t) is the seller’s inference about the demand parame-
ters based on the data Ût at time t. Hence, to maximize the seller’s inferred revenue-to-go
(A.3), we need to analyze how the change in the state from (t, Ût) to (t + h, Ût+h) in a
small time period of length o(h) would affect her future inference θ̂(Ût+h) = (p̂t+h, q̂t+h).
This analysis will allow us to reduce the dimension of the state space, resulting in a more
tractable decision problem.

To aid in our analysis we assume that the seller forms her inference by solveing the
unconstrained model maxθ Lt(Ût | θ). Hence, the MLE solution satisfies the first-order
condition ∇θLt = 0. This allows us to prove the following proposition which establishes
that the change in the ML estimate (dp̂t, dq̂t) depends only on the price rπt−, on the
current ML estimate (p̂t−, q̂t−), and on the cumulative number of adoptions Dπ

t−; it does
not depend on the entire sample path of adoptions.

Proposition A.1. If t2 = inf{t : Dπ
t ≥ 2}, then {(p̂t, q̂t), t ≥ t2} satisfies the stochastic

differential equations:

dp̂t =
σ2
p + σ2

pq
Dπt−
m0

p̂t− +
Dπt−
m0
q̂t−

[
dDπ

t −
(
p̂t− +

Dπ
t−

m0

q̂t−

)
(m0 −Dπ

t−)x(rπt−)dt

]
, (A.4)

dq̂t =
σ2
pq + σ2

q
Dπt−
m0

p̂t− +
Dπt−
m0
q̂t−

[
dDπ

t −
(
p̂t− +

Dπ
t−

m0

q̂t−

)
(m0 −Dπ

t−)x(rπt−)dt

]
. (A.5)

Here, variables σ2
p, σ

2
q , σ

2
pq are defined as follows:

(
σ2
p σ2

pq

σ2
pq σ2

q

)
:=


1

1− cos2 α
· 1

‖vp‖2
− cos2 α

1− cos2 α
· 1

v>p vq

− cos2 α

1− cos2 α
· 1

v>p vq

1

1− cos2 α
· 1

‖vq‖2

 , (A.6)

where vp and vq are Dπ
t−-dimensional column vectors with entries

vp,j =
1

p̂t− + j−1
m0
q̂t−

, vq,j =

j−1
m0

p̂t− + j−1
m0
q̂t−

, for j = 1, 2, . . . , Dπ
t−
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and α is the angle between vectors vp and vq.

Note that σ2
p, σ

2
q , σ

2
pq in (A.6) can be interpreted as estimated variances and covariances

of estimated parameters (the actual variance-covariance matrix contains the true values of
p0 and q0). Note that since ‖vp‖2 and ‖vq‖2 are in the order of Θ

(
1

Dπt +1

)
and 0 < α < π

2
,

so are σ2
p, σ

2
q , σ

2
pq. Therefore, the updates dp̂t, dq̂t to the ML estimators will approach zero

as adoptions increase. This observation is consistent with Lemma II.3.
We prove Proposition A.1 by noting that the value of the log-likelihood function Lt is

continuously changing in time, with jumps for each new adoption. Hence, the differential
(dp̂t, dq̂t) is impacted by a continuous phenomenon and a discrete phenomenon. We apply
Itô’s lemma to derive the stochastic differential equation of (dp̂t, dq̂t). Intuitively speaking,
Itô’s lemma is a chain rule defined on stochastic processes. Since the first-order condition
∇θLt|θ=θ̂t = 0 is an implicit function of θ̂t = (p̂t, q̂t), we apply Itô’s lemma on this implicit
function. Note that in the proposition, the differential equation holds for t ≥ t2, which
ensures that the first-order condition can be met by a unique solution (see Remark A.1).

The literature on learning under continuous-time stochastic processes typically focuses
on deriving asymptotic properties (such as weak consistency and asymptotic normality) of
ML estimators in a CTMC. Zhao and Xie (1996) study MLE for nonhomogeneous Poisson
processes where the transition rates are only affected by time. Keiding et al. (1975) and
Küchler and Sorensen (2006) study estimations for simple linear birth-death processes.
In contrast, Proposition A.1 establishes the evolution over time of ML estimators to the
Markovian Bass model. Note that the martingale property of (p̂t, q̂t) is consistent with
the general results of the partial derivatives of log-likelihood functions for exponential
families derived in Küchler and Sorensen (2006) Theorem 8.1.2.

An implication of Proposition A.1 is that the state variables (Dπ
t−, t, p̂t−, q̂t−) encap-

sulate the information sufficient to choose a price that maximizes the seller’s inferred
revenue-to-go function in (A.3). Given (Dπ

t−, p̂t−, q̂t−), Proposition A.1 states that dp̂t, dq̂t

are random variables that depend on dDπ
t . But given state (t, Ût) in (A.3), the seller infers

dDπ
t to follow a Markovian Bass model with parameter θ̂t−. Hence, the seller’s inferred

revenue-to-go function (A.3) only depends on the state through variables (Dπ
t−, t, p̂t−, q̂t−).

Hence, we can reduce the dimension of V MLE in (A.3). Let V MLE(d, t, p, q) denote the
seller’s inferred revenue-to-go where d is the cumulative number of adoptions, t is the
time remaining in the horizon, and (p, q) are the current ML estimators. For any d ≥ 2,
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we have

V MLE(d, t, p, q)

= max
r

{(
r + V MLE(d+ 1, t− δt, p+ ηp + µp(r)δt, q + ηq + µq(r)δt)

)
· λ(d, r; p, q)δt

+ V MLE(d, t− δt, p+ µp(r)δt, q + µq(r)δt) · [1− λ(d, r; p, q)δt] + o(δt)
}
,

(A.7)

where

µp(r) := −
(
σ2
p + σ2

pq

d

m0

)
(m0 − d)x(r), ηp :=

σ2
p + σ2

pq
d
m0

p+ d
m0
q
, (A.8)

µq(r) := −
(
σ2
pq + σ2

q

d

m0

)
(m0 − d)x(r), ηq :=

σ2
pq + σ2

q
d
m0

p+ d
m0
q
, (A.9)

and σ2
p, σ

2
q , σ

2
pq are defined in (A.6) with p̂t− = p, q̂t− = q, and Dπ

t− = d.
The next result characterizes the optimal pricing-and-learning policy, which we refer

as the MBP-MLE-Learning policy.

Theorem A.2 (MBP-MLE-Learning). Let r∗(d, t, p, q) be the price offered under the op-
timal policy π∗ to the Markovian Bass pricing-and-learning problem (A.1) when d ∈
{2, 3, . . . ,m0− 1} is the total past sales, t ∈ [0, T ] is the time remaining in the sales hori-
zon, and the seller uses MLE to infer demand with (p, q) as the current ML estimators.
Then r∗(d, t, p, q) is the solution to the equation

r = − x(r)

x′(r)
−V MLE(d+1, t, p+ηp, q+ηq)+V MLE(d, t, p, q)+

∂V MLE

∂p
ηp+

∂V MLE

∂q
ηq, (A.10)

where ηp,ηq are defined in (A.8),(A.9), and V MLE(·, ·, ·, ·) is a function that solves the HJB
differential equation

∂

∂t
V MLE(d, t, p, q) +

x(r∗(d, t, p, q))2

x′(r∗(d, t, p, q))

(
p+

d

m0

q

)
(m0 − d) = 0, (A.11)

with boundary conditions V MLE(m0, t, p, q) = 0 for all t ∈ [0, T ], (p, q) ∈ <2, and
V MLE(d, 0, p, q) = 0 for all d ∈ {0, 1, . . . ,m0}, (p, q, ) ∈ <2.
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Note that (A.10) could be rearranged as:

r∗ =− x(r∗)

x′(r∗)
− V MLE(d+ 1, t, p, q) + V MLE(d, t, p, q)︸ ︷︷ ︸

Price exploitation

+ V MLE(d+ 1, t, p, q)− V MLE(d+ 1, t, p+ ηp, q + ηq) +
∂V MLE

∂p
ηp +

∂V MLE

∂q
ηq︸ ︷︷ ︸

Price exploration (=0 when σ2
p,σ

2
q ,σ

2
pq=0)

.

(A.12)
Hence, the MBP-MLE-Learning policy has two components. The first is the Markovian
Bass price (MBP) in (II.3.2), but using the current parameter estimates. This component
maximizes the revenue by exploiting the current information. Because of estimation
errors, the firm experiments with prices that allow it to learn quickly. This is captured
in the second component, which acts as a “perturbation" to allow the firm to improve
estimation by setting a price possibly lower than MBP. Note that the perturbation term
fades over time as the estimates become more accurate.

The values for V MLE can be found numerically using a method such as finite differences
(see Appendix A.1).

Remark A.2. The pricing-and-learning setting is related to restless bandits problems
where the rewards of all arms evolve (Whittle, 1988; Cohen and Solan, 2013). This
resembles the evolving rate of adoptions over time because of changing cumulative adop-
tions, which affects the revenue rate of all possible prices (arms). In addition to differences
in the problem setup (continuous time and price), a key difference in our setting is that
learning does not occur at the same rate: some prices (arms) induce higher adoption rates
and accelerate learning (see Lemma II.3). In the bandit problems, this is equivalent to
the case where some arms let you learn faster.

Remark A.3. Thus far, we assumed that p0 and q0 are unknown, but the value of m0

is known. If m0 is also unknown, Proposition A.1 can be extended by transforming θ̂t =

(p̂t, q̂t, m̂t) into β̂t = (β̂t1, β̂t2, β̂t3) according to (II.4.4). Deriving the stochastic differential
equation for β̂t follows exactly the same procedure as the proof of Proposition A.1. This is
because the adoption rate is linear in (β1, β2, β3), which is analogous to the case where the
adoption rate is linear in (p, q) if m0 is known. Accordingly, we can derive an analogue
to Theorem A.2 which is the optimal pricing-and-learning policy when the parameters
(β00, β01, β02) are inferred from maximum likelihood.
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APPENDIX B

Proofs of chapter III

B.1 Companion results

Lemma B.1. Define r(y) := x−1(y)y. Under Assumption III.2, the following hold:

(i) r(y) is continuously differentiable, strictly concave and r′′ exists for all y ∈ [0, 1],
(ii) there exists a unique optimal solution ȳ to the optimization problem maxy∈[0,1] r(y),

and
(iii) yh(n) , n/λ(n, α) is differentiable in n for n ∈ [0, α]. (yh(n) is the highest intensity

not causing lost sales in expectation.)

Proof. We prove r(y) is strictly concave in y first. Using the product and inverse differ-
entiation rules, and the fact that π = x−1(y), yields

d2

dy2
[x−1(y)y] =

2− x′′(π)y

x′(π)2

x′(π)
.

By Assumption III.2(ii) the denominator is negative. Assumption III.2(iii) implies, after
taking derivatives, that 2− x′′(π)x(π)

x′(π)2 > 0. Since yi ∈ [0, 1], this implies that the numerator
is positive. Thus, d2

dy2 [x−1(y)y] < 0 and the strict concavity of r(y) follows.
Besides the concavity of r(y), the other properties are immediate from the relationships

y = x(π), ρ(π) = r(y), the properties of x−1, and Assumption III.2(iv),(vii).
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B.2 Section III.3 proofs

B.2.1 Proof of Theorem III.1

Proof. Any feasible solution to (D) is also feasible in (D†), so V D(T ;u, α) ≤ V D†(T ;u, α).
To show “≥”, we will show that any feasible solution y to (D†) where total demand exceeds
inventory can be converted to a feasible solution with no stockout, and whose objective
(D†a) is at least as large as that of y.

Let y = (y1, y2, . . . , yT ) be any policy that has positive lost sales (n can be accordingly
determined by y), i.e., λ(nt−1, α)yt > nt−1 for some period t. Let s be the index of the
last period with lost sales. We will modify policy y into a policy y′ with one less period
of lost sales, where the objective function (D†a) under y′ is no worse than that under y.
More specifically, set y′s = ns−1

λ(ns−1,α)
, and y′t = yt for all t 6= s. Note that y′ is feasible to

problem (D) and y′s < ys.
The only difference between the objective value (D†a) under y′ and that under y is

the revenue in period s. We have the difference to be

x−1(y′s) min (λ(ns−1, α)y′s, ns−1)︸ ︷︷ ︸
revenue under y′s

−x−1(ys) min (λ(ns−1, α)ys, ns−1)︸ ︷︷ ︸
revenue under ys

= x−1(y′s)ns−1 − x−1(ys)ns−1 ≥ 0

where the last inequality comes from the fact that x−1(·) is a decreasing function by
Assumption III.2(ii). Hence, the objective of y′ is no worse than that of y. We next
modify the solution y′ so that there is one less period with lost sales, and the objective is
no worse. We do this until there are no more periods with lost sales. This completes our
proof.

B.2.2 Proof of Theorem III.2

Proof. (i) We first show that the objective function (D′a) is jointly concave in d. To
this end, we define the effective revenue function r(y) := x−1(y)y, so the objective
function (D′a) is equivalent to

T∑
t=1

λ(u− d1 − d2 − . . .− dt−1, α) · r
(

dt
λ(u− d1 − d2 − . . .− dt−1, α)

)
. (B.1)

To proceed, we require the following claim.

Claim B.1. The function (d′, λ) 7→ λ · r
(
d′

λ

)
is strictly concave in (d′, λ).
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Claim B.1 follows from Boyd and Vandenberghe (2004) page 39 (convexity of the
perspective function).

We now show that each term in the summation of (B.1) is jointly concave in
(d1, d2, . . . , dT ). Consider any θ ∈ [0, 1], d1 = (d1

1, d
1
2, . . . , d

1
T ) and d2 = (d2

1, d
2
2, . . . , d

2
T ).

We define the vector d̄ , θd1 + (1− θ)d2, where d̄t = θd1
t + (1− θ)d2

t .
Consider an arbitrary index t. Because λ(n, α) is jointly concave in (n, α) by As-
sumption III.2(vi), then

λ(u− d̄1 − d̄2 − . . .− d̄t−1, α)

≥ θλ(u− d1
1 − d1

2 − . . .− d1
t−1, α) + (1− θ)λ(u− d2

1 − d2
2 − . . .− d2

t−1, α)︸ ︷︷ ︸
λ̄

.

(B.2)

From the definition of r, we have that

λ(u− d̄1 − d̄2 − . . .− d̄t−1, α) · r
(

d̄t
λ(u− d̄1 − d̄2 − . . .− d̄t−1, α)

)
= d̄t · x−1

(
d̄t

λ(u− d̄1 − . . .− d̄t−1, α)

)
≥ d̄t · x−1

(
d̄t
λ̄

)
= λ̄ · r

(
d̄t
λ̄

)
> θλ(u− d1

1 − . . .− d1
t−1, α) · r

(
d1
t

λ(u− d1
1 − . . .− d1

t−1, α)

)
+ (1− θ)λ(u− d2

1 − . . .− d2
t−1, α) · r

(
d2
t

λ(u− d2
1 − . . .− d2

t−1, α)

)
where the first inequality follows from the fact that x−1 is a monotone decreasing
function and from (B.2). The second inequality follows Claim B.1. Hence, this
shows that each term in the summation (B.1) is jointly concave in d = (d1, . . . , dT ).
This proves that the objective function (D′a) is a jointly concave function in d.
We next show that the set of solutions d that satisfy constraints (D′b)–(D′c) is a
convex set. To show this, we want to show that for any feasible d1 = (d1

1, d
1
2, . . . , d

1
T ),

d2 = (d2
1, d

2
2, . . . , d

2
T ) and any θ ∈ [0, 1], that d̄ = θd1 + (1 − θ)d2 is also feasible.

Clearly, (D′b) is a linear constraint in d, so we only need to check that d̄t ≤ λ(u−
d̄1 − . . .− d̄t−1, α) for all t.

d̄t = θd1
t + (1− θ)d2

t
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≤ θλ(u− d1
1 − . . .− d1

t−1, α) + (1− θ)λ(u− d2
1 − . . .− d2

t−1, α)

≤ λ(u− d̄1 − . . .− d̄t, α),

where the first inequality follows from the feasibility of d1 and d2, and the second
inequality follows from (B.2). This completes the proof.

(ii) We prove the strict concavity of V D(T ;u, α) through a reformulation of (D) using
the transformation dt = λ(nt−1, α)yt to yield:

V D(T ;u, α) = max
n,d

T∑
t=1

x−1

(
dt

λ(nt−1, α)

)
· dt

s.t.
T∑
t=1

dt ≤ u

nt = nt−1 − dt for all t ≥ 1

n0 = u

0 ≤ dt ≤ λ(nt−1, α) for all t ≥ 1.

(B.3)

For any (u1, α1) ≥ 0 and (u2, α2) ≥ 0, we denote the optimal solution of V D(T ;u1, α1)

and V D(T ;u2, α2) by (n1, d1) and (n2, d2), respectively. We may assume, without
loss of generality, that (n1, d1) 6= (n2, d2). Given any θ ∈ (0, 1), our goal is to con-
struct a new solution from (n1, d1), (n2, d2) that is feasible to (B.3) with u = ū ,

θu1 + (1− θ)u2 and α = ᾱ , θα1 + (1− θ)α2, and whose objective value is strictly
greater than θV D(T ;u1, α1) + (1− θ)V D(T ;u2, α2). Since V D(T ; ū, ᾱ) is no smaller
than the objective value of any feasible solution, V D(T ; ū, ᾱ) > θV D(T ;u1, α1) +

(1− θ)V D(T ;u2, α2). This proves the strict concavity of V D in (u, α).
Set n̄ , θn1 + (1 − θ)n2 and d̄ , θd1 + (1 − θ)d2. It is easy to check that (n̄, d̄) is
feasible to (B.3) with u = ū and α = ᾱ. It remains to show that this solution has
a strictly better revenue than θV D(T ;u1, α1) + (1 − θ)V D(T ;u2, α2). The revenue
under (n̄, d̄) for period t is

g(d̄t, n̄t) , x
−1

(
θd1

t + (1− θ)d2
t

λ(θn1
t + (1− θ)n2

t , θα1 + (1− θ)α2)

)
·
(
θd1

t + (1− θ)d2
t

)
.
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Accordingly, our goal becomes showing

T∑
t=1

g(d̄t, n̄t) > θ ·
T∑
t=1

x−1

(
d1
t

λ(n1
t , α1)

)
d1
t + (1− θ) ·

T∑
t=1

x−1

(
d2
t

λ(n2
t , α2)

)
d2
t

= θV D(α1, T ) + (1− θ)V D(α2, T ).

(B.4)

In fact, we will show that there is a dominance of revenue in every period:

g(d̄t, n̄t) > θx−1

(
d1
t

λ(n1
t , α1)

)
d1
t + (1− θ)x−1

(
d2
t

λ(n2
t , α2)

)
d2
t . (B.5)

To show (B.5), we note that g(d, n) = λ(n, α) · r
(

d
λ(n,α)

)
, where r is the effective

revenue function r(y) := x−1(y)y defined in Appendix B.1.

We now show (B.5), because λ(n, α) is jointly concave in (n, α) by Assumption III.2(vi),
hence λ(n̄t, ᾱ) ≥ θλ(n1

t , α1) + (1 − θ)λ(n2
t , α2). Then because x−1 is a monotone

decreasing function, we have

g(d̄t, n̄t) ≥ x−1

(
θd1

t + (1− θ)d2
t

θλ(n1
t , α1) + (1− θ)λ(n2

t , α2)

)
·
(
θd1

t + (1− θ)d2
t

)
=
(
θλ(n1

t , α1) + (1− θ)λ(n2
t , α2)

)
· r
(

θd1
t + (1− θ)d2

t

θλ(n1
t , α1) + (1− θ)λ(n2

t , α2)

)
> θλ(n1

t , α1)r

(
d1
t

λ(n1
t , α1)

)
+ (1− θ)λ(n2

t , α2)r

(
d2
t

λ(n2
t , α2)

)
= θx−1

(
d1
t

λ(n1
t , α1)

)
d1
t + (1− θ)x−1

(
d2
t

λ(n2
t , α2)

)
d2
t ,

where the first equality is from the definition of r, and the last inequality is from Claim B.1.
This establishes (B.5), which in turn yields (B.4). This completes the proof.

B.2.3 Proof of Theorem III.3

Proof. We first show (D) has a unique solution. Then via the transformation in (D′),
this implies that (D′) has a unique optimal solution.

We prove this result through a dynamic programming reformulation of the determin-
istic program (D). (Note that in practice this DP does not need to be solved to determine
V D, which can be found more efficiently using interior-point methods as we discuss in Sec-
tion III.3. This DP is only used for the purpose of analysis and proof.)

Fix α. For any u ∈ [0, α], consider the following dynamic programming counterpart
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of (D):

RD(u, T ) = max
y

x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) (B.6a)

s.t. λ(u, α)y ≤ u, (B.6b)

where the base case is RD(u, 0) for all u ∈ [0, α]. Note that V D(T ;u, α) = RD(u, T ).
Further, we can construct an optimal solution (D) by solving the dynamic programming
equations (B.6). Hence, to show that (D) has a unique solution, we need to show that
(B.6) has a unique solution. Since the feasible set of (B.6) is compact, to show that (B.6)
has a unique solution, it suffices to show that the objective function,

RD,y(u, T ) , x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) (B.7)

is strictly concave in y.

Claim B.2. RD,y(u, T ) is strictly concave in y.

The first term of RD,y(u, T ) is strictly concave in y from Lemma B.1(i). To see that the
second term is also concave, its second-order derivative with respect to y is

λ(u, α)2 ∂2

∂u′2
RD(u′, T − 1)

∣∣∣
u′=u−λ(u,α)y

≤ 0,

where |u′=u means the term is evaluated at u′ = u, and the inequality comes from Theo-
rem III.2(ii) and the fact that RD(u′, T − 1) = V D(T ;u′, α).

B.2.4 Proof of Theorem III.4

The proof requires the following lemma.

Lemma B.2. Let (n, y) be a feasible solution to (D), where y 6= 0. If yi = 0 for some
index i, there exists a feasible solution (n′, y′) with (n′, y′) 6= (n, y) and whose objective
value is the same as (n, y).

Proof of Lemma B.2. We define the following procedure to move yi = 0 to the last period
T to yield a solution (n′, y′) that gives the same objective value as (n, y).
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Algorithm B.1

1: procedure Move(i, n, y)
2: (n′t = nt, y

′
t = yt) for all t ≤ i− 1

3: (n′t = nt+1, y
′
t = yt+1) for all i ≤ t ≤ T − 1

4: (n′T = nT , y
′
T = 0)

5: return (n′, y′)

6: end procedure

Since y 6= 0, the new policy generated from MOVE(i, n, y) for an appropriately chosen
i results in (n′, y′) 6= (n, y). (This is not true if the only nonzero entry of y is the first
index; in which case, we modify the move procedure so that yi = 0 is moved to the first
period.) It is easy to check that (n′, y′) is a feasible solution to (D) since (n, y) is feasible.

Finally, we show that (n′, y′) has the same objective value as (n, y). Notice that n′ is
constructed by shifting every nt with t ≥ i + 1 to one index smaller. The ending period
remaining inventory is n′T = nT . Hence,

T∑
t=1

x−1(yt)λ(nt−1, α)yt =
i−1∑
t=1

x−1(yt)λ(nt−1, α)yt +
T∑

t=i+1

x−1(yt)λ(nt−1, α)yt

=
i−1∑
t=1

x−1(y′t)λ(n′t−1, α)y′t +
T−1∑
t=i

x−1(y′t)λ(n′t−1, α)y′t.

Here, the first equality comes from yi = 0. The second equality comes from how Algo-
rithm B.1 (MOVE(i)) constructs y′.

Now we can proceed with the proof of the theorem.

Proof of Theorem III.4. We denote the unique optimal solution to (D) by (nD, yD) where
nD = (nD

0 , n
D
1 , . . . , n

D
T ) and yD = (yD

1 , . . . , y
D
T ). We first show (D) has the following

properties:

(i) the optimal solution is strictly positive (i.e., dD > 0), and
(ii) the remaining inventory nD is a strictly decreasing sequence.

Then via the transformation in (D′), this implies that the optimal solution dD to (D′) lies
in the interior of the feasible set (i.e., λ(u− d1 − . . .− dt−1, α) > dD

t > 0).
We first claim that for any u ∈ (0, α], the optimal partial solution yD of (D) is such

that yD 6= 0. This is because the objective value of y = 0 is 0. However, the objective
value for y′ where y′1 = u/λ(u, α) and y′i = 0 for i 6= 1 is x−1 (u/λ(u, α))u > 0. Note
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that y′ is feasible since y′1 is the intensity that depletes all remaining inventory u. Hence,
y = 0 cannot be optimal, so yD 6= 0.

We prove that yD > 0 using contradiction. Assume there exists an i such that yD
i = 0.

Then, according to Lemma B.2, we can construct a different solution with the same
objective value. This contradicts Theorem III.3 that the optimal solution of (D) is unique.

B.2.5 Strong duality of dynamic programming counterpart of (D)

For a fixed α, note that RD(u, T ) in (B.6) is the dynamic programming counterpart
of (D). We next establish a strong duality result for the DP formulation. This result is
used in later proofs, notably Proposition III.1.

Lemma B.3. Fix α. For any u ∈ (0, α],

RD(u, T ) = inf
µ≥0

LD,µ(u, T ), (B.8)

where, for any µ ≥ 0, LD,µ(u, T ) is defined as:

LD,µ(u, T ) , max
y∈[0,1]

{
x−1(y)λ(u, α)y +RD (u− λ(u, α)y, T − 1) + µ (u− λ(u, α)y)

}
. (B.9)

Proof. We use Slater’s condition for convex programming duality (see page 226 in Boyd
and Vandenberghe 2004). Recall, to invoke the Slater condition, we need to show that
(B.6) is a convex optimization problem with a feasible point that satisfies its constraints
strictly. Observe that all the constraints in (B.6) are affine in y. The objective function is
concave in y, as established in Claim B.2. Hence, (B.6) is a convex optimization problem

The next step is to demonstrate that there exists a feasible solution to (B.6) that satis-
fies the inequality constraint (B.6b) strictly. Notice that any y ∈ (0,min{1, u/λ(u, α)}) is
strictly feasible to (B.6) because since u > 0 and with Assumption III.2(v), u/λ(u, α) > 0.
Hence, Slater’s condition implies (B.8) holds.

B.2.6 Proof of Proposition III.1

Proof. We first introduce the dynamic programming counterpart of (D†) for any u ∈ [0, α]:

RD0(u, T ) , max
y∈[0,1]

x−1(y) min (λ(u, α)y, u) +RD0
(
[u− λ(u, α)y]+ , T − 1

)
.

Fix α. We will make use of mathematical induction on T to prove R∗(u, T ) ≤
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RD0(u, T ) = RD(u, T ) for any u ∈ [0, α]. If we are able to prove this, this proves the
rest of the proposition since V ∗(T ) = R∗(α, T ) and V D(T ) = RD(α, T ).

For the base case with T = 1, we define the optimal expected revenue R∗(u, 1) for any
given remaining inventory u ≤ α as:

R∗(u, 1) , max
y∈[0,1]

Ey,u
[
x−1 (y) min (D,u)

]
(B.10a)

For a given y, let us denote the objective value (B.10a) as V y(u, 1).
Consider any y ∈ [0, 1]. We have that

V y(u, 1) = Ey,u
[
x−1(y) min (D,u)

]
≤ max

y0∈[0,1]
Ey0,u

[
x−1(y0) min (D,u)

]
= max

y0∈[0,1]
x−1(y0)Ey0,u [min(D,u)]

≤ max
y0∈[0,1]

x−1(y0) min (Ey0,u(D), u) (B.11)

= max
y0∈[0,1]

x−1(y0) min (λ(u, α)y0, u) . (B.12)

Here, (B.11) comes from min(D,n) is a concave function of D and Jensen’s inequality.
(B.12) comes from Ey0,u(D) = λ(u, α)y0. From the definition of RD0(u, 1), the right-hand
side of (B.11) is equal to RD0(u, 1). Therefore, we have that

V y(u, 1) ≤ RD0(u, 1). (B.13)

The last step to finish the base case of induction is to take the supremum of the left-hand
side of (B.13) over all y ∈ [0, 1]. This yields R∗(u, 1) ≤ RD0(u, 1) = RD(u, 1).

For the inductive step, assume that for any T ≤ T ′, we have R∗(u, T ) ≤ RD0(u, T )

for any given u ≤ α. We prove R∗(u, T ′ + 1) ≤ RD0(u, T ′ + 1) for all u ≤ α to finish the
inductive step.

Note that we can reformulate R∗(u, T ′ + 1) as:

R∗(u, T ′ + 1) = max
y∈[0,1]

Ey,u
[
x−1(y)

(
D − [D − u]+

)
+R∗([u−D]+, T ′)

]
(B.14a)

s.t. Ey,u(D) = λ(u, α)y. (B.14b)

Claim B.3. The maximization problem (B.14) is feasible and R∗(u, T ′ + 1) is bounded.

We know y = 0 is a feasible solution. Moreover, the objective function (B.14a) is bounded
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below by zero and bounded above by x−1(ȳ)λ(u, α)ȳ + maxu∈[0,1]R
D0(u, T ′) <∞, where

ȳ is defined in Lemma B.1(ii). This concludes the claim.

Now, consider any y ∈ [0, 1] feasible to (B.14b). We denote its objective value (B.14a)
as V y(u, T ′ + 1). Then for any γ, we have that

V y(u, T ′ + 1) ≤ Ey,u
[
x−1(y)

(
D − [D − u]+

)
+R∗([u−D]+, T ′)

]
+ γ (Ey,u(D)− λ(u, α)y)

(B.15a)

≤ max
y0∈[0,1]

Ey0,u

[
x−1(y0)

(
D − [D − u]+

)
+R∗([u−D]+, T ′) + γ (D − λ(u, α)y0)

]
(B.15b)

≤ max
y0∈[0,1]

Ey0,u

[
x−1(y0)

(
D − [D − u]+

)
+RD0([u−D]+, T ′) + γ (D − λ(u, α)y0)

]
.

(B.15c)

Here, (B.15c) comes from the inductive hypothesis. Since (B.15) is true for all feasible
y, taking the supremum of V (y;u, T ′ + 1) over y ∈ [0, 1] satisfying (B.14b), we have that
R∗(u, T ′ + 1) is bounded above by (B.15c).

Note that (B.15c), and hence R∗(u, T ′ + 1), is bounded above by

max
y0∈[0,1],
d∈<

{
x−1(y0)

(
d− [d− u]+

)
+RD0([u− d]+, T ′) + γ (d− λ(u, α)y0)

}
. (B.16)

Note that (B.16) is an upper bound because d, being a decision variable that can
take any value, results in a larger value than (B.15c). Since (B.16) is an upper bound to
V y(u, T ′ + 1) for any values of γ, we take the infimum over all possible values resulting
in the upper bound (B.17) as follows:

R∗(u, T ′+1) ≤ inf
γ

max
y0∈[0,1],
d∈<

{
x−1(y0)

(
d− [d− u]+

)
+RD0([u− d]+, T ′) + γ (d− λ(u, α)y0)

}
.

(B.17)
Next, we will prove that the right-hand side of (B.17) equals RD(u, T ′+ 1). Note that

γ = 0 is the solution to (B.17) because otherwise, d can be chosen such that the value
of (B.17) is +∞. Then, for the problem in (B.17), it suffices to restrict d ≤ u, since any
d > u does not improve the value of the objective function. Thus, we know for any µ ≥ 0,
the right-hand side of (B.17) is upper bounded by

inf
γ

max
y0∈[0,1],
d≤u

{
x−1(y0)

(
d− [d− u]+

)
+RD0([u− d]+, T ′) + γ (d− λ(u, α)y0) + µ(u− d)

}
.

(B.18)
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Because (B.18) is the upper bound of (B.17) for any µ ≥ 0, we can take the infimum of
(B.18) and yield the final upper bound of (B.17) as follows

R∗(u, T ′ + 1) ≤ inf
γ,µ≥0

max
y0∈[0,1],
d≤u

{
x−1(y0)d+RD0(u− d, T ′) + γ (d− λ(u, α)y0) + µ(u− d)

}
.

(B.19)
Since RD is equivalent to RD0 , we observe that the right-hand side of (B.19) is the dual
problem of RD and according to Lemma B.3, we can simplify (B.19) as

R∗(u, T ′ + 1) ≤ max
y0∈[0,1]

{
x−1(y0)λ(u, α)y0 +RD(u− λ(u, α)y0, T

′)
}

= RD(u, T ′ + 1).

This finishes our inductive step.

B.2.7 Proof of Theorem III.5

Proof. It suffices to consider a two-period setting (T = 2) and we set α = λ(α, α)yD
1 +

λ(nD
1 , α)yD

2 where yD
2 = arg maxy∈[0,1] x

−1(y)y and α > λ(α, α)yD
1 +

√
λ(α, α)yD

1 . This α
is a fixed point such that when demand is deterministic, under the optimal deterministic
policy, it uses up all the inventory.

Let λ(·, ·) be a general homogeneous function with degree 1. Hence, λ(nm,αm) =

mλ(n, α). So, if we let λm = λ for all m, then Assumption III.4 is satisfied.
Suppose that demand follows a three-point distribution such that for any t = 1, 2,

given yt and Ft−1, the conditional probability of Dm
t is:

P
(
Dm
t = λ(Nm

t−1, αm)yt −
√
λm(Nm

t−1, αm)yt | Ft−1

)
= 1/3,

P
(
Dm
t = λ(Nm

t−1, αm)yt | Ft−1

)
= 1/3,

P
(
Dm
t = λ(Nm

t−1, αm)yt +
√
λ(Nm

t−1, αm)yt | Ft−1

)
= 1/3.

By construction, E[Dm
t | Ft−1] = λ(Nm

t−1, αm)yt and this distribution satisfies Assump-
tion III.3 because Var(Dm

t |Ft−1) = 2
3
λm(Nm

t−1, αm)yt.
We prove the theorem by analyzing the expected revenue loss under each outcome of

Dm
1 . Note that, by definition of policy CE-CL, we have yCL

1 = yD
1 . Also, Nm

0 = αm.
Let E0 denote the event {Dm

1 = λ(Nm
0 , αm)yCL

1 } = {Dm
1 = λ(αm,αm)yD

1 }. Under E0,
there is no stockout in period 1 due to our choice of α, so the period 1 revenue of CE-CL is
equal to x−1(yCL

1 )Dm
1 = x−1(yD

1 )λ(αm,αm)yD
1 . Note that this coincides with the period

1 revenue in V D(m,T ). So given event E0, the period 1 revenue loss of CE-CL is zero.
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Under E0, since there is no period 1 stockout, then together with the constraints of
(D) and the fact that λ is homogeneous with degree 1, we have:

Nm
1 = αm−Dm

1 = αm− λ(αm,αm)yD
1 = m

(
α− λ(α, α)yD

1

)
= mnD

1 . (B.20)

Recall that nD,m
1 = mnD

1 . So, under CE-CL, the remaining inventory at the end of period
1 is the same as that under the deterministic model V D(m,T ). This implies that, under
event E0, we have that yCL

2 = yD
2 .

Combining these observations, we know that under E0, the conditional expected rev-
enue loss of CE-CL is equal to:

0 + E
[
x−1(yD

2 )λ(mnD
1 , αm)yD

2 − x−1(yCL
2 ) min(Dm

2 , N
m
1 ) | E0

]
= x−1(yD

2 )λ(mnD
1 , αm)yD

2 − x−1(yD
2 )E

[
Nm

1 − [Nm
1 −Dm

2 ]+ | E0

]
.

(B.21)

From (B.20), Nm
1 = m(α− λ(α, α)yD

1 ) on E0, which implies from our choice of α that
Nm

1 = mλ(nD
1 , α)yD

2 = λ(mnD
1 , αm)yD

2 . Thus, (B.21) reduces to

x−1(yD
2 )λ(mnD

1 , αm)yD
2 − x−1(yD

2 )λ(mnD
1 , αm)yD

2 + x−1(yD
2 )E

(
[Nm

1 −Dm
2 ]+ | E0

)
= x−1(yD

2 )E
(
[λ(mnD

1 , αm)yD
2 −Dm

2 ]+ | E0

)
= x−1(yD

2 )E
(
[λ(Nm

1 , αm)yD
2 −Dm

2 ]+ | E0

)
=

1

3
x−1(yD

2 )
√
λ(mnD

1 , αm)yD
2 = Θ(

√
m). (B.22)

Hence, given E0, the conditional expected revenue loss of CE-CL is Θ(
√
m).

Denote the two events:{
Dm

1 = λ(αm,αm)yCL
1 −

√
λ(αm,αm)yCL

1

}
and

{
Dm

1 = λ(αm,αm)yCL
1 +

√
λ(αm,αm)yCL

1

}
as E1 and E2, respectively. Let r1 and r2 denote the conditional expected revenue of

CE-CL given E1 and E2, respectively. Here, the conditional expectation is with respect to
the three-point demand process.

Consider a new demand process. For t = 1, demand follows a two-point distribution
such that given yt, the conditional probability of Dm

1 is:

P
(
Dm

1 = λ(Nm
0 , αm)y1 −

√
λ(Nm

0 , αm)y1 | F0

)
= 1/2,

P
(
Dm

1 = λ(Nm
0 , αm)y1 +

√
λ(Nm

0 , αm)y1 | F0

)
= 1/2.

169



For t = 2, demand follows the three-point distribution introduced earlier.
Note that the difference between the old and the new demand processes is only the

demand distribution in period 1. So, given the period 1 demand realization, the condi-
tional expected revenue of CE-CL is the same under both processes. Hence, r1 (r2) is also
the conditional expected revenue of CE-CL given E1 (E2) under the new demand process.
Since now Ω = E1 ∪ E2, then r1/2 + r2/2 is the expected revenue of CE-CL under the new
process.

Hence, if r∗ is the optimal expected revenue under the new demand process, then:

1

3
r1 +

1

3
r2 =

2

3

(r1

2
+
r2

2

)
≤ 2

3
r∗ ≤ 2

3
V D(m,T ). (B.23)

Here, the last inequality comes from Proposition III.1 and from the fact that V D(m,T )

is also the deterministic model under the new process.
Therefore, putting (B.22) and (B.23) together, we have the expected revenue loss of

CE-CL satisfies

V D(m,T )− V CL(m,T )

=
1

3
x−1(yD

2 )
√
λ(mnD

1 , αm)yD
2 +

1

3
(V D(m,T )− r1) +

1

3
(V D(m,T )− r2)

≥ 1

3
x−1(yD

2 )
√
λ(mnD

1 , αm)yD
2 + 0 = Θ(

√
m).

This completes the proof.

B.2.8 Proof of Lemma III.1

Proof. When demand is deterministic, Lemma III.1 holds trivially.
When demand is not deterministic, we prove the lemma by induction. Defining Īmt =

N̄m
t /m, let Īm = (Īm0 , . . . , Ī

m
T ) be the stochastic sequence of normalized inventory under

policy yOL. The base case is t = 0, where all policies start with Īm0 = α = nD
0 , and hence

λ
(
Īm0 , α

)
= λ(nD

0 , α) = λ(α, α). Therefore, (III.4.6) and (III.4.7) hold for t = 0.
For the induction step, assume that (III.4.6) and (III.4.7) hold for t− 1, i.e.,

E
∣∣Īmt−1 − nD

t−1

∣∣ ≤ Θ(1/
√
m) (B.24)

E
∣∣λ(Īmt−1, α)− λ(nD

t−1, α)
∣∣ ≤ Θ(1/

√
m). (B.25)

We prove that both properties hold for t.
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To prove (III.4.6) for t, notice that by adding and subtracting E
(
Īmt
)
,

E
∣∣Īmt − nD

t

∣∣ = E
∣∣Īmt − E

(
Īmt
)

+ E
(
Īmt
)
− nD

t

∣∣ ≤ E
∣∣Īmt − E

(
Īmt
)∣∣+

∣∣E (Īmt )− nD
t

∣∣ .
(B.26)

We will show that both terms in (B.26) are O(1/
√
m).

Consider first term, E
∣∣Īmt − E

(
Īmt
)∣∣. Note that P

(
Īmt = k/m

)
is the probability that

the remaining inventory at time t is equal to k. For a given Nm
t , let ξ1(t), . . . , ξm(t) be

identically distributed stochastic processes such that
∑m

i=1 ξi(t) = N̄m
t . By this construc-

tion, we know E(ξi(t) | N̄m
t = k) = k

m
. Therefore, we observe

E
(
Īmt
)

=
αm∑
j=0

j

m
· P
(
Īmt =

j

m

)
=

αm∑
j=0

E
(
ξi(t) | Īmt =

j

m

)
· P
(
Īmt =

j

m

)
= E(ξi(t)).

We further assume that ξ1(t), ξ2(t), . . . , ξm(t) are randomly sampled (without replace-
ment) from a population X, where X = {ξ1(t), . . . , ξM(t)} for some large M . Here,
ξ1(t), ξ2(t), . . . , ξM(t) areM identically distributed processes such that∑M

i=1 ξi(t) = ME
(
Īmt
)
.

Given t, we define the new random variables

ηi , ξi(t)− E
(
Īmt
)
, for i = 1, . . . ,m.

From our definition of process ξi(t) above, we have E(ηi) = 0. Let Yk ,
∑k

i=1 ηi for
k = 1, . . . ,m, and let Y0 = 0. Observe that

E (ξk(t) | Yk−1) =
ME

(
Īmt
)
−
∑k−1

i=1 ξi(t)

M − (k − 1)

=
ME

(
Īmt
)
− Yk−1 − (k − 1)E(Īmt )

M − (k − 1)

=
−Yk−1

M − (k − 1)
+ E(Īmt ).

(B.27)

Here, the first equality is because
∑M

i=1 ξi(t) = ME(Īmt ) and ξk(t), ξk+1(t), . . . , ξM(t)

are identically distributed. The second equality comes from the definition of Yk−1 =∑k−1
i=1 ξi(t)− (k − 1)E(Īmt ).
We further define Zk , Yk

M−k , which implies

Zk =
Yk−1

M − k
+

ηk
M − k

=
M − k + 1

M − k
Zk−1 +

ηk
M − k

. (B.28)
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Now, we analyze the conditional expectation of ηk
M−k , which is

E
(

ηk
M − k

|Z0, . . . , Zk−1

)
= E

(
ηk

M − k
|Y0, . . . , Yk−1

)
=

−Yk−1

(M − (k − 1)) (M − k)
= − Zk−1

M − k
.

(B.29)

Plugging (B.29) into (B.28), we have

E(Zk | Z0, . . . , Zk−1) =
M − k + 1

M − k
Zk−1 −

Zk−1

M − k
= Zk−1.

Therefore, {Zk, k = 0, . . . ,m} is a martingale with respect to the filtration

(σ(Z0, . . . , Zk))k=0,1,2,...,m−1

where σ(Z0, . . . , Zk) is the σ-algebra generated by Z0, . . . , Zk.
Since |Zk − Zk−1| ≤ 2α

M−k+1
almost surely, the Hoeffding inequality (applied to mar-

tingale) yields

P
(
|Zm| ≥

m

M −m
ε

)
≤ 2 exp

(
− m2ε2

8m
(
1− m−1

M

)
α2

)
for any ε ≥ 0 (B.30)

where the bound of
∑m

k=1
4α2

(M−k+1)2 comes from Lemma 2.1 in Serfling (1974). By inte-
grating (B.30) over ε ≥ 0, we have

E
(
M −m
m

|Zm|
)
≤
√

8πα2

√
m

.

This implies that

E

∣∣∣∣∣
m∑
j=1

ξj(t)−mE
(
Īmt
)∣∣∣∣∣ ≤ √8πmα2.

Because Īmt = N̄m
t /m, the first term on the RHS of (B.26) is O(m−

1
2 ).

For the second term in (B.26), we want to bound the difference between E
(
Īmt
)
and

nD
t . From the definition of Īmt , we know

E
(
Īmt | Ft−1

)
= E

([
Īmt−1 −

Dm
t

m

]+

| Ft−1

)
=

1

m
E
([
N̄m
t−1 −Dm

t

]+ | Ft−1

)
.

A well-known result by Scarf (1958) is that for any random variable X with mean µ
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and standard deviation σ,

E([a−X]+) ≤ 1

2

(√
σ2 + (µ− a)2 − (µ− a)

)
.

Note E(Dm
t | Ft−1) = λm

(
N̄m
t−1, αm

)
yOL
t and, by Assumption III.3, Var(Dm

t | Ft−1) ≤
σλm

(
N̄m
t−1, αm

)
yOL
t . Since N̄m

t−1 is not random when conditioning on the filtration Ft−1,
and from (III.4.4) we have

E
(
Īmt | Ft−1

)
≤ 1

2

(√
σλ(Īmt−1, α)yOL

t

m
+ (λ(Īmt−1, α)yOL

t − Īmt−1)2 −
(
λ(Īmt−1, α)yOL

t − Īmt−1

))

≤ 1

2

(√
σλ(Īmt−1, α)yOL

t

m
+
∣∣λ(Īmt−1, α)yOL

t − Īmt−1

∣∣− (λ(Īmt−1, α)yOL
t − Īmt−1

))
,

where the equality is because Īmt = (Imt−1 −Dm
t /m)+.

Taking the expectation on both sides conditional on F0, we get

E
(
Īmt | F0

)
≤ 1

2
E

√σλ(Īmt−1, α)yOL
t

m
+
∣∣∣λ(Īmt−1, α)yOL

t − Īmt−1

∣∣∣− (λ(Īmt−1, α)yOL
t − Īmt−1

)
| F0


≤ 1

2

(
Θ(m−

1
2 ) + nD

t−1 − λ(nD
t−1, α)yD

t + nD
t−1 − λ(nD

t−1, α)yD
t

)
= Θ(m−

1
2 ) + nD

t−1 − λ(nD
t−1, α)yD

t . (B.31)

The last inequality comes from the inductive hypotheses (B.24),(B.25). In addition to
this upper bound, we know that E(Īmt | F0) = E

([
Īmt−1 −Dm

t /m
]+) is lower bounded by

E
(
E
(
Īmt−1 −

Dm
t

m
| Ft−1

))
= E

(
Īmt−1 − λ

(
Īmt−1, α

)
yOL
t

)
≥ nD

t−1−λ(nD
t−1, α)yD

t −Θ(m−
1
2 ),

(B.32)
where the equality follows from (III.4.4). The inequality is from the inductive hypothesis.
Hence, (B.31) and (B.32) imply that

∣∣E(Īmt )− nD
t

∣∣ =
∣∣E(Īmt )− nD

t−1 + λ(nD
t−1, α)yD

t

∣∣ = O(m−
1
2 )

Therefore, we can conclude that the RHS two terms of (B.26) are both bounded by
O(m−

1
2 ), thus giving us (III.4.6) for all t. For a given t, (III.4.7) follows by the Lipschitz
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continuity of λ and (III.4.6):

E
∣∣λ (Īmt , α)− λ(nD

t , α)
∣∣ ≤ CλE ∣∣Īmt − nD

t

∣∣ = O
(
m−

1
2

)
.

This concludes the proof.

B.2.9 Proof of Lemma III.2

Proof. Let (nD, yD) be the optimal solution of (D) with initial inventory α and u = α.
We can easily check that, because λm(mn,mα) = mλ(n, α) for any n ∈ [0, α] because
of (III.4.4), (D) with an initial inventory mα will have an optimal solution (mnD, yD).
Therefore, V D(m,T ) =

∑T
t=1 x

−1(yD
t )mλ(nD

t−1, α)yD
t . By factoring out m, we can write

the LHS of (III.4.8) as

m

∣∣∣∣∣E
[

T∑
t=1

(
x−1

(
yOL
t

)
λ

(
N̄m
t−1

m
,α

)
yOL
t − x−1(yD

t )λ(nD
t−1, α)yD

t

)]∣∣∣∣∣
≤ mE

∣∣∣∣∣
T∑
t=1

(
x−1

(
yOL
t

)
λ

(
N̄m
t−1

m
,α

)
yOL
t − x−1(yD

t )λ(nD
t−1, α)yD

t

)∣∣∣∣∣
≤ m

T∑
t=1

E
∣∣∣∣x−1

(
yOL
t

)
λ

(
N̄m
t−1

m
,α

)
yOL
t − x−1(yD

t )λ(nD
t−1, α)yD

t

∣∣∣∣
= m

T∑
t=1

x−1(yD
t )yD

t E
∣∣∣∣λ(N̄m

t−1

m
,α

)
− λ(nD

t−1, α)

∣∣∣∣ . (B.33)

Here, the first inequality comes from |EX| ≤ E|X| as a result of Jensen’s inequality. The
second inequality comes from the triangle inequality and the linearity of expectation. To
prove the proposition, since T is a finite number, it is sufficient to show each term inside
the summation of (B.33) is O(m−

1
2 ).

This is true because, from (III.4.7) of Lemma III.1, we know for any t,

E
∣∣∣∣λ(N̄m

t−1

m
,α

)
− λ(nD

t−1, α)

∣∣∣∣ = O(m−
1
2 ).

This concludes the proof.
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B.2.10 Proof of Theorem III.6

Proof. First, we note that V ∗(m,T ) is greater or equal to the revenue from a single-price
policy and so is strictly positive. To prove the theorem, it is sufficient to show that

1− V OL(m,T )

V D(m,T )
≤ 1− (1− k)

(
1− C

2

√
σ

m
− k
)
, (B.34)

where k = Θ(1/
√
m) and C is some constant that is independent of m.

Let N̄ = (N̄m
0 , . . . , N̄

m
T ) be the stochastic sequence of remaining inventories under yOL

and define Īmt , N̄m
t /m. From (III.2.6), we have

V OL(m,T ) = E

[
T∑
t=1

E
[
x−1

(
yOL
t

)
(Dm

t − [Dm
t − N̄m

t−1]+) | Ft−1

]]
. (B.35)

Note that N̄m
t−1 and Īmt−1 are not random when conditioning on the filtration Ft−1. Fur-

thermore, we have E(Dm
t | Ft−1) = mλ(Īmt−1, α)yOL

t and, by Assumption III.3, Var(Dm
t |

Ft−1) ≤ σmλ(Īmt−1, α)yOL
t . Hence, by applying the Scarf bound and from (III.4.4), we get

E
[[
Dm
t − N̄m

t−1

]+ | Ft−1

]
≤

√
σmλ

(
Īmt−1, α

)
yOL
t +

(
N̄m
t−1 −mλ

(
Īmt−1, α

)
yOL
t

)2
2

−
(
N̄m
t−1 −mλ

(
Īmt−1, α

)
yOL
t

)
2

≤ 1

2

√
σmλ

(
Īmt−1, α

)
yOL
t +

1

2

∣∣∣N̄m
t−1 −mλ(Īmt−1, α)yOL

t

∣∣∣− 1

2

(
N̄m
t−1 −mλ(Īmt−1, α)yOL

t

)
. (B.36)

Taking the expectation conditioning on F0 on both sides of (B.36), we have

E
[
E
[[
Dm
t − N̄m

t−1

]+ | Ft−1

]
| F0

]
≤ E

[
1

2

√
σmλ

(
Īmt−1, α

)
yOL
t

]
+O(

√
m)

+
1

2

∣∣mnD
t−1 −mλ(nD

t−1, α)yD
t

∣∣− 1

2

[
mnD

t−1 −mλ(nD
t−1, α)yD

t

]
= E

[
1

2

√
σmλ

(
Īmt−1, α

)
yOL
t

]
+O

(√
m
)
. (B.37)

Here, the first inequality comes from Lemma III.1 and since yOL
t = yD

t for all t. The
equality is because nD

t = nD
t−1 − λ(nD

t−1, α)yD
t due to constraint (Dc), and nD

t ≥ 0 due to
the no-stockout constraint (Dc).
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Therefore, using (III.4.4) and plugging (B.37) into the RHS of (B.35) yields

V OL(m,T )

≥ E

[
T∑
t=1

x−1
(
yOL
t

)(
mλ

(
Īmt−1, α

)
yOL
t −

1

2

√
σmλ

(
Īmt−1, α

)
yOL
t

)]
−O(

√
m)

= E

[
T∑
t=1

x−1
(
yOL
t

)
mλ

(
Īmt−1, α

)
yOL
t

]
− 1

2

√
σm E

[
T∑
t=1

x−1
(
yOL
t

)√
λ
(
Īmt−1, α

)
yOL
t

]
−O(

√
m)

= E

[
T∑
t=1

x−1
(
yOL
t

)
mλ

(
Īmt−1, α

)
yOL
t

]

×

1− 1

2

√
σ

m

E
[∑T

t=1 x
−1
(
yOL
t

)√
λ
(
Īmt−1, α

)
yOL
t

]
E
[∑T

t=1 x
−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

]
︸ ︷︷ ︸

(∗∗)

−O
(
1/
√
m
)
 . (B.38)

We get the first equality by multiplying x−1 term inside. The second equality comes from
pulling out the first expectation term.

We first derive a lower bound for the first term in (B.38). Note that yOL does not scale
with m since it is constructed from solutions of (D), which do not depend on m. From
Lemma III.2, we know that the difference between the first term in (B.38) and V D(m,T )

scales in O(
√
m). This is slower than the speed of scaling Θ(m) of V D(m,T ). Hence,

E

(
T∑
t=1

x−1
(
yOL
t

)
mλ

(
Īmt−1, α

)
yOL
t

)
≥ V D(m,T )(1− k), (B.39)

where k = Θ(m−
1
2 ).

Next, we derive an upper bound for the term (∗∗), which results in a lower bound for
the middle term in (B.38). Note that from Cauchy-Swartz inequality, the numerator of
(∗∗) is bounded above by

E


√√√√ T∑

t=1

x−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

√√√√ T∑
t=1

x−1
(
yOL
t

)
≤ E


√√√√ T∑

t=1

x−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

√Tx−1 (0)

≤

√√√√E

[
T∑
t=1

x−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

]√
Tx−1 (0),
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where the first inequality comes from Assumption III.2(ii), and the last inequality comes
from Jensen’s inequality and the fact that

√
z is a concave function. Hence,

(∗∗) ≤

√√√√ Tx−1(0)

E
[∑T

t=1 x
−1
(
yOL
t

)
λ
(
Īmt−1, α

)
yOL
t

] ≤√ Tx−1(0)

V D(α, T )(1− k)
,

where the last inequality comes from (B.39).
Since Θ(m−

1
2 ) decreases as m grows, we know there exists some constant Θ(1), unaf-

fected by m, such that Θ(m−
1
2 ) ≤ Θ(1). Therefore, we know

√
1

1− k
=

√
1

1−Θ(m−
1
2 )
≤

√
1

1−Θ(1)
= Θ(1).

Hence, we have that

(∗∗) ≤

√
Tx−1(0)

V D(T )
Θ(1) , C. (B.40)

Finally, we take (B.39) and (B.40) into (B.38), resulting in

V OL(m,T ) ≥ V D(m,T )(1−O(1/
√
m))

(
1− 1

2

√
σ

m
C −O(1/

√
m)

)
.

This completes the proof.

B.2.11 Proof of Lemma III.3

Proof. We prove the lemma by showing that yCE(n, t) has a bounded derivative with
respect to n for n ∈ [0, α] because

∣∣yCE(n, t)− yCE(n′, t)
∣∣ =

∣∣∣∣∣∣
n∫

n′

∂yCE(u, t)

∂u
du

∣∣∣∣∣∣ ≤ max
u∈[n′,n]

∣∣∣∣∂yCE(u, t)

∂u

∣∣∣∣ |n− n′|.
Because the analysis for t = T (i.e., the last period) is different from the analysis for
t < T , we analyze the two cases separately.

When t = T , we define the following partitions of the set [0, α]:

S1 =

{
n ∈ [0, α] :

n

λ(n, α)
< ȳ

}
and S2 =

{
n ∈ [0, α] :

n

λ(n, α)
≥ ȳ
}
.
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When t = T , we have

yCE(n, t) =

{
n

λ(n,α)
if n ∈ S1

ȳ if n ∈ S2

,

where ȳ is defined in Lemma B.1(ii). When n ∈ S1, yCE(n, t) has bounded derivative
w.r.t. n because of Lemma B.1(iii). For n ∈ S2, the function is constant, so the derivative
is 0.

Now consider t < T . We will prove that the derivative of yCE(n, t) w.r.t. n is bounded
for n ∈ [0, α]. By definition, yCE(n, t) = yD

0 (n, T − t+ 1) where

yD
0 (n, T − t+ 1) = arg max

y≤ n
λ(n,α)

RD,y(n, T − t+ 1),

where RD,y(n, T ′) = x−1(y)λ(n, α)y + V D(T ′;n− λ(n, α)y, α) was defined in (B.7).
By Claim B.2, RD,y(n, T − t+ 1) is strictly concave in y for a given (n, α, T − t+ 1).

Let ȳt,n to be the value that satisfies

∂

∂y
RD,y(n, T − t+ 1)

∣∣∣
y=ȳt,n

= λ(n, α)
∂

∂y

(
x−1(y)y

) ∣∣∣
y=ȳt,n

− λ(n, α)
∂V D(T − t;n′, α)

∂n′

∣∣∣
n′=n−λ(n,α)ȳt,n

= 0,

so
∂

∂y

(
x−1(y)y

) ∣∣∣
y=ȳt,n

=
∂V D(T − t;n′, α)

∂n′

∣∣∣
n′=n−λ(n,α)ȳt,n

. (B.41)

Then, by defining

S′1 =

{
n ∈ [0, α] :

n

λ(n, α)
< ȳt,n

}
and S′2 =

{
n ∈ [0, α] :

n

λ(n, α)
≥ ȳt,n

}
,

we know

yCE(n, t) =

{
n

λ(n,α)
if n ∈ S′1

ȳt,n if n ∈ S′2.

From Lemma B.1(iii), the derivative of yCE(n, t) w.r.t. n is bounded when n ∈ S′1. When
n ∈ S′2, the derivative of yCE(n, t) = ȳt,n w.r.t. n. To this, differentiate (B.41) with respect
to n through chain rule. We let λ1(n, α) denote the first order partial derivative of λ(n, α)

w.r.t. n. Specifically, we have

∂ȳt,n
∂n

(
x−1(y)y

)′′ ∣∣∣
y=ȳt,n

=

(
1− λ1(n, α)ȳt,n − λ(n, α)

∂ȳt,n
∂n

)
∂2V D (T − t;n′, α)

∂n′2

∣∣∣
n′=n−λ(n,α)ȳt,n

.

(B.42)
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Rearranging terms in (B.42) yields the following relationship:

∣∣∣∣∂ȳt,n∂n

∣∣∣∣ =

∣∣∣∣∣∣∣∣
(1− λ1(n, α)ȳt,n)

∂2V D (T − t;n′, α)

∂n′2

∣∣∣
n′=n−λ(n,α)ȳt,n

(x−1(y)y)′′
∣∣∣
y=ȳt,n

+ λ(n, α)
∂2V D (T − t;n′, α)

∂n′2

∣∣∣
n′=n−λ(n,α)ȳt,n

∣∣∣∣∣∣∣∣ . (B.43)

The term on the RHS of (B.43) is bounded (i.e., the denominator is nonzero) because
r′′(y) < 0 is defined for y ∈ [0, 1] according to Lemma B.1(i), ∂2V D (T − t;n′, α)/∂n′2 < 0

is defined for n′ ∈ [0, 1] (Theorem III.2(ii)), and λ(n, α) is continuous differentiable for
n ∈ [0, α] and finite α ≥ 0. This concludes our proof.

B.2.12 Lemma B.4 and proof

Before stating the lemma, we begin with introducing new notation.
For a given m, we define the stochastic sequence of inventory levels under the closed-

loop policy as N̂m = (N̂m
0 , N̂

m
1 . . . , N̂m

T ), where N̂m
0 = αm. Recall that yCL sets the

price in period t by optimizing the deterministic problem (Dm) on a rolling horizon,
by replacing T with T − t and setting u = N̂m

t−1. (As we discussed in Section III.4.2,
(Dm) is the scaled version of (D). Hence, by the inventory constraint (Db), the period t
conditional expected demand under policy CE-CL would never exceed Nm

t−1.)

Lemma B.4 (Convergence of remaining inventory and SIS). If nD = (nD
1 , . . . , n

D
T ) is the

solution to (D) when u = α, then the following hold:

E

∣∣∣∣∣N̂m
t

m
− nD

t

∣∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T (B.44)

E

∣∣∣∣∣λ
(
N̂m
t

m
,α

)
− λ

(
nD
t , α

)∣∣∣∣∣ = O
(
1/
√
m
)
, for all t = 1, . . . , T (B.45)

Proof. The proof is analogous to that of Lemma III.1 in Appendix B.2.8. We start by
defining the sequence of random variables (Îm0 , Î

m
1 , . . . , Î

m
T ), where Îmt = N̂m

t /m is the
normalized remaining inventory at time t under the closed-loop policy yCE when the
initial inventory and the expected demand are scaled by m. Note that Îm0 = α.

We will prove the lemma by induction. The base case is t = 0, where we note that
Îm0 = nD

0 = α, and hence λ(Îm0 , α) = λ(nD
0 , α) = λ(α, α). Therefore, (B.44) and (B.45)

hold for t = 0. For the induction step, we assume that (B.44) and (B.45) hold for t− 1.
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Specifically,

E
∣∣∣Îmt−1 − nD

t−1

∣∣∣ = O
(
1/
√
m
)
, (B.46)

E
∣∣∣λ(Îmt−1, α

)
− λ

(
nD
t−1, α

)∣∣∣ = O
(
1/
√
m
)
, (B.47)

We will show these properties (B.44),(B.45) hold for t.
To prove (B.44) for t, notice that by adding and subtracting E(Îmt ),

E
∣∣∣Îmt − nD

t

∣∣∣ = E
∣∣∣Îmt − E

(
Îmt

)
+ E

(
Îmt

)
− nD

t

∣∣∣ ≤ E
∣∣∣Îmt − E

(
Îmt

)∣∣∣+
∣∣∣E(Îmt )− nD

t

∣∣∣ .
(B.48)

We will show that both terms in the right side of (B.48) are O(1/
√
m).

Following the similar argument from the proof of Lemma III.1 in Appendix B.2.8 until
(B.30), we have the first term on the RHS of (B.48) is O(1/

√
m). For the second term

in (B.48), we want to bound the difference between E(Îmt ) and nD
t . From the definition

of Îmt , we know

E(Îmt | Ft−1) = E

([
Îmt−1 −

Dm
t

m

]+

| Ft−1

)
=

1

m
E
([
N̂m
t−1 −Dm

t

]+

| Ft−1

)
.

Note E(Dm
t | Ft−1) = λm

(
N̂m
t−1, αm

)
yCE

(
N̂m
t−1, t

)
and, by Assumption III.3, we also

have a bound on the variance Var(Dm
t | Ft−1) ≤ σλm(N̂m

t−1, αm)yCE(N̂m
t−1, t). Therefore

since N̂m
t−1 is not random when conditioning on the filtration Ft−1, and using the Scarf

bound and (III.4.4), we have

E(Îmt | Ft−1)

≤ 1

2

√σλ(Îmt−1, α)yCE(N̂m
t−1, t)

m
+
(
λ(Îmt−1, α)yCE(N̂m

t−1, t)− Îmt−1

)2

−
(
λ(Îmt−1, α)yCE(N̂m

t−1, t)− Îmt−1

)
≤ 1

2

√σλ(Îmt−1, α)yCE(N̂m
t−1, t)

m
+
∣∣∣λ(Îmt−1, α)yCE(N̂m

t−1, t)− Îmt−1

∣∣∣− (λ(Îmt−1, α)yCE(N̂m
t−1, t)− Îmt−1

)
≤ Îmt−1 − λ(Îmt−1, α)yCE(N̂m

t−1, t) +
1

2

√
σλ(Îmt−1, α)yCE(N̂m

t−1, t)

m
.

The last inequality comes from the fact that given inventory level N̂m
t−1 at time t, the

next price chosen by policy yCE always satisfies N̂m
t−1−λ(N̂m

t−1, αm)yCE(N̂m
t−1, t) ≥ 0 since

it resolves (D) with updated inventory level u = N̂m
t−1 which has a constraint (Db) that
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the total expected demand cannot exceed inventory N̂m
t−1. Therefore, we have

E(Îmt | Ft−1) ≤ Îmt−1 − λ(Îmt−1, α)yCE(N̂m
t−1, t) + Θ(m−

1
2 ). (B.49)

Taking the expectation on both sides conditioning on F0, we have the upper bound

E(Îmt ) ≤ E
(
Îmt−1 − λ(Îmt−1, α)yCE(N̂m

t−1, t)
)

+ Θ(1/
√
m)

We also have a lower bound from the following arguments:

E(Îmt ) = E

((
Îmt−1 −

Dm
t

m

)+
)

≥ E
(
Îmt−1 −

Dm
t

m

)
= E

(
E
(
Îmt−1 −

Dm
t

m
| Ft−1

))
= E

(
Îmt−1 − λ(Îmt−1, α)yCE(N̂m

t−1, t)
)
,

where the last relationship uses (III.4.4). Hence,

0 ≤ E
(
Îmt − Îmt−1 + λ(Îmt−1, α)yCE(N̂m

t−1, t)
)
≤ Θ(1/

√
m). (B.50)

This implies that∣∣∣E(Îmt )− nD
t

∣∣∣ =
∣∣∣E(Îmt )− nD

t−1 + λ(nD
t−1, α)yD

t

∣∣∣
≤
∣∣∣E(Îmt−1 − λ(Îmt−1, α)yCE(N̂m

t−1, t)
)
− nD

t−1 + λ(nD
t−1, α)yD

t

∣∣∣+ Θ(1/
√
m) (B.51)

≤ E
∣∣∣Îmt−1 − λ(Îmt−1, α)yCE(N̂m

t−1, t)− nD
t−1 + λ(nD

t−1, α)yD
t

∣∣∣+ Θ(1/
√
m) (B.52)

≤ E|Îmt−1 − nD
t−1|+ E|λ(Îmt−1, α)yCE(N̂m

t−1, t)− λ(nD
t−1, α)yD

t |+ Θ(1/
√
m) (B.53)

≤ E
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ E
∣∣∣λ(Îmt−1, α)yCE(N̂m

t−1, t)− λ(nD
t−1, α)yCE(N̂m

t−1, t)
∣∣∣︸ ︷︷ ︸

(∗)

+ E
∣∣∣λ(nD

t−1, α)yCE(N̂m
t−1, t)− λ(nD

t−1, α)yD
t

∣∣∣︸ ︷︷ ︸
(∗∗)

+Θ(1/
√
m), (B.54)

where (B.51) follows from (B.50), (B.52) is from Jensen’s inequality, (B.53) is from
triangle inequality and monotonicity of expectation, (B.54) is derived by subtracting and
adding λ(nD

t−1, α)yCE(N̂m
t−1, t) and using the triangle inequality.

To analyze the bound for (∗), we know λ is Lipschitz continuous. This is because λ
is continuously differentiable in its two variables (Assumption III.2(vi)), so there exists a
Cλ such that |λ(n, α)− λ(n′, α)| ≤ Cλ|n − n′| for all n, n′, and fixed α. Also, we know
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yCE(N̂m
t−1, t) ≤ 1 by Assumption III.2(i). Therefore,

(∗) ≤ 1 · CλE
∣∣∣Îmt−1 − nD

t−1

∣∣∣
To analyze the bound for (∗∗), we know from Lemma III.3 that yCE(n, t) is Lipschitz con-
tinuous in n with some Lipschitz constant Cy. Furthermore, observe that yCE(mnD

t , t) =

yD
t . Another important property of yCE we need is that yCE(mn, t;mα) under initial

inventory is mα is the same as yCE(n, t;α) under initial inventory is α. This is because
yCE solves optimization model (D) where the optimal intensity is invariant under scaling
since, for any n ∈ [0, α], λ(mn,mα) = mλ(n, α) due to (III.4.4). Therefore,

(∗∗) = E
∣∣∣λ(nD

t−1, α)yCE(N̂m
t−1, t;mα)− λ(nD

t−1, α)yCE(mnD
t , t;mα)

∣∣∣
= E

∣∣∣λ(nD
t−1, α)yCE(Îmt−1, t;α)− λ(nD

t−1, α)yCE(nD
t , t;α)

∣∣∣
≤ λ̄CyE

∣∣∣Îmt−1 − nD
t−1

∣∣∣ (B.55)

where the inequality is due to the Lipschitz continuity of yCE(n, t) in n, and because λ is
upper bounded by λ̄ according to Assumption III.2(v). Therefore, we conclude∣∣∣E(Îmt )− nD

t

∣∣∣ ≤ E
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ 1 · CλE
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ λ̄CyE
∣∣∣Îmt−1 − nD

t−1

∣∣∣+ Θ(1/
√
m),

= O
(
1/
√
m
)
, (B.56)

where (B.56) comes from the inductive hypothesis (B.46).
Therefore, we can conclude that the RHS two terms of (B.48) are both bounded by

O (1/
√
m), thus giving us (B.44) for all t by induction. For a given t, (B.45) follows by

the Lipschitz continuity of λ and (B.44):

E
∣∣∣λ(Îmt , α)− λ(nD

t , α)
∣∣∣ ≤ CλE ∣∣∣Îmt − nD

t

∣∣∣ = O
(
1/
√
m
)
.

This concludes the proof.

B.2.13 Lemma B.5 and proof

An important implication of Lemma B.4 is that the intensity policy yCE converges to
the deterministic sequence yD since, with Lemma III.3, we know that yCE is Lipschitz
continuous. These properties allow us show that the uncensored expected revenue under
yCE has a gap from V D(m,T ) that is O(

√
m). This is formalized in the lemma below.

182



Lemma B.5 (Convergence of uncensored revenue).∣∣∣∣∣E
(

T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)
λm(N̂m

t−1, αm)yCE(N̂m
t−1, t)

)
− V D(m,T )

∣∣∣∣∣ = O
(√
m
)
.

(B.57)

Proof. By definition of V D and from property (III.4.4) of λm,

V D(m,T ) =
T∑
t=1

x−1(yD
t )mλ(nD

t−1, α)yD
t .

Hence, defining Îmt−1 = N̂m
t−1/m, we can write the LHS of (B.57) as

m

∣∣∣∣∣E
[

T∑
t=1

(
x−1

(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

)]∣∣∣∣∣
≤ mE

∣∣∣∣∣
T∑
t=1

(
x−1

(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

)∣∣∣∣∣
≤ m

T∑
t=1

E
∣∣∣x−1

(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

∣∣∣ . (B.58)

Here, the first inequality comes from |EX| ≤ E|X| as a result of Jensen’s inequality. The
second inequality comes from triangle inequality and linearity of expectation. To prove
the proposition, since T is a finite number, it is sufficient to show each term inside the
summation of (B.58) is O (1/

√
m).

Note that for any t,

E
∣∣∣x−1

(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)− x−1(yD
t )λ(nD

t−1, α)yD
t

∣∣∣
= E

∣∣∣r (yCE(N̂m
t−1, t)

)
λ(Îmt−1, α)− r(yD

t )λ(nD
t−1, α)

∣∣∣ , (B.59)

where r(y) = x−1(y)y is the per-period revenue rate. Our goal is to show that (B.59) is
O(1/

√
m).

We first prove the Lipschitz continuity of the function r(y). From Lemma B.1(i), r(y)

is concave in y and is continuously differentiable for y ∈ [0, 1]. Therefore, there exists Cr
such that

|r(y)− r(y′)| ≤ Cr|y − y′|. (B.60)

Additionally, r(y) ≤ f̄ = r(ȳ) where ȳ is defined in Lemma B.1(ii). Hence, if we subtract
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and add the term r(yCE(N̂m
t−1, t))λ(nD

t−1, α) inside the absolute value in (B.59), by triangle
inequality, (B.59) is upper bounded by

E
∣∣∣r (yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)− r

(
yCE(N̂m

t−1, t)
)
λ(nD

t−1, α)
∣∣∣

+ E
∣∣∣r (yCE(N̂m

t−1, t)
)
λ(nD

t−1, α)− r(yD
t )λ(nD

t−1, α)
∣∣∣

≤ f̄ E
∣∣∣λ(Îmt−1, α)− λ(nD

t−1, α)
∣∣∣+ λ̄Cr E

∣∣∣yCE(N̂m
t−1, t)− yD

t

∣∣∣ , (B.61)

where the second term of (B.61) comes from (B.60) and Assumption III.2(v). Hence, it
suffices to show the two terms in (B.61) are bounded by O(1/

√
m). This is true because,

from (B.45) of Lemma B.4, for any t,

E
∣∣∣λ(Îmt−1, α)− λ(nD

t−1, α)
∣∣∣ = O

(
1/
√
m
)
.

Moreover, by definition, yCE results from re-optimizing the deterministic equivalent at
each time period, hence we have that yCE(mnD

t−1, t) = yD
t . We use the property of yCE

that yCE(mn, t;mα) under initial inventory is mα is the same as yCE(n, t;α) under initial
inventory is α. This is because yCE solves optimization model (D) where the optimal
deterministic intensity solution is invariant under scaling since (III.4.4) implies that, for
any n ∈ [0, α], λm(mn,mα) = mλ(n, α). Therefore,

E
∣∣∣yCE

(
N̂m
t−1, t

)
− yD

t

∣∣∣ = E
∣∣∣yCE

(
N̂m
t−1, t;mα

)
− yCE(mnD

t−1, t;mα)
∣∣∣

= E
∣∣∣yCE

(
Îmt−1, t;α

)
− yCE (nD

t−1, t;α
)∣∣∣

≤ CyE
∣∣∣Îmt−1 − nD

t−1

∣∣∣ = O
(
1/
√
m
)
,

where the inequality is from Lemma III.3, and the last equality is from (B.44) of Lemma B.4.
This concludes the proof.

B.2.14 Proof of Theorem III.7

Proof. First, we note that V ∗(m,T ) is greater or equal to the revenue from a single-price
policy and so is strictly positive. To prove the theorem, it is sufficient to show that

1− V CE(m,T )

V D(m,T )
≤ 1− (1− k)

(
1− C

2

√
σ

m

)
, (B.62)

where k = Θ(1/
√
m) and C is some constant that is independent of m.

Recall N̂m = (N̂m
0 , . . . , N̂

m
T ) is the stochastic sequence of remaining inventories under
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yCE, where initial inventory is N̂m
0 = αm. Then from (III.2.6), we have

V CE(m,T ) = E

[
T∑
t=1

E
[
x−1

(
yCE(N̂m

t−1, t)
)

(Dm
t − [Dm

t − N̂m
t−1]+) | Ft−1

]]
. (B.63)

We next define random variable Îmt , N̂m
t /m for all t, where Îm0 = α. Note that

N̂m
t−1, Î

m
t−1 are not random when conditioning on the filtration Ft−1. Further, E(Dm

t |
Ft−1) = mλ(Îmt−1, α)yCE(N̂m

t−1, t) and, by Assumption III.3,

Var(Dm
t | Ft−1) ≤ σmλ(Îmt−1, α)yCE(N̂m

t−1, t).

Therefore, by the Scarf bound and from (III.4.4) we have

E
[
[Dm

t − N̂m
t−1]+ | Ft−1

]
≤ 1

2

(√
σmλ(Îmt−1, α)yCE(N̂m

t−1, t) +
(
N̂m
t−1 −mλ(Îmt−1, α)yCE(N̂m

t−1, t)
)2

−
(
N̂m
t−1 −mλ(Îmt−1, α)yCE(N̂m

t−1, t)
))

If we multiply the numerator and denominator of the right-hand side by the same term√
σmλ(Îmt−1, α)yCE(N̂m

t−1, t) +
(
N̂m
t−1 −mλ(Îmt−1, α)yCE(N̂m

t−1, t)
)2

+
(
N̂m
t−1 −mλ(Îmt−1, α)yCE(N̂m

t−1, t)
)
,

then we have the following:

E
[
[Dm

t − N̂m
t−1]+ | Ft−1

]
≤ 1

2

σmλ(Îmt−1, α)yCE(N̂m
t−1, t)√

σmλ(Îmt−1, α)yCE(N̂m
t−1, t) + (N̂m

t−1 −mλ(Îmt−1, α)yCE(N̂m
t−1, t))

2 +
(
N̂m
t−1 −mλ(Îmt−1, α)yCE(N̂m

t−1, t)
)

≤ 1

2

σmλ(Îmt−1, α)yCE(N̂m
t−1, t)√

σmλ(Îmt−1, α)yCE(N̂m
t−1, t) + (N̂m

t−1 −mλ(Îmt−1, α)yCE(N̂m
t−1, t))

2

≤ 1

2

√
σmλ(Îmt−1, α)yCE(N̂m

t−1, t). (B.64)

The second inequality is because, conditional on Ft−1, N̂m
t−1−λ(N̂m

t−1, αm)yCE(N̂m
t−1, t) ≥

0. This is because, at time t the closed-loop policy solves the deterministic problem
(D) with parameter u = N̂m

t−1 and initial inventory αm, which has a constraint that the
expected demand cannot exceed u.
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Therefore, plugging (B.64) into the RHS of (B.63), we observe that

V CE(m,T ) ≥ E

[
T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)(

mλ(Îmt−1, α)yCE(N̂m
t−1, t)−

1

2

√
σmλ(Îmt−1, α)yCE(N̂m

t−1, t)

)]

= E

[
T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)
mλ(Îmt−1, α)yCE(N̂m

t−1, t)

]

− 1

2

√
σm E

[
T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)√

λ(Îmt−1, α)yCE(N̂m
t−1, t)

]

= E

[
T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)
mλ(Îmt−1, α)yCE(N̂m

t−1, t)

]

×

1− 1

2

√
σ

m

E
[∑T

t=1 x
−1
(
yCE(N̂m

t−1, t)
)√

λ(Îmt−1, α)yCE(N̂m
t−1, t)

]
E
[∑T

t=1 x
−1

(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)
]

︸ ︷︷ ︸
(∗∗)

 . (B.65)

We get the first equality by multiplying x−1 term inside. The second equality comes from
pulling out the first expectation term.

We first derive a lower bound for the first term in (B.65). Note that yCE does not scale
with m since it it is constructed from the intensity solution of (D) which is scale-invariant
due to property (III.4.4) of λ. From Lemma B.5, we know that the difference between
the first term in (B.65) and V D(m,T ) scales in O(

√
m). This is slower than the speed of

scaling Θ(m) of V D(m,T ). Hence,

E

[
T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)
mλ(Îmt−1, α)yCE(N̂m

t−1, t)

]
≥ V D(m,T )(1− k) (B.66)

where k = Θ(1/
√
m).

Next, we want to derive an upper bound for the term (∗∗), which results in a lower
bound for the second term in (B.65). From Cauchy-Swartz inequality, the numerator of
(∗∗) is bounded above by

E


√√√√ T∑

t=1

x−1
(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)

√√√√ T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)

≤ E


√√√√ T∑

t=1

x−1
(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)

√Tx−1 (0)

≤

√√√√E

[
T∑
t=1

x−1
(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)

]√
Tx−1 (0),
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where the first inequality comes from Assumption III.2(ii), and the last inequality comes
from Jensen’s inequality and the fact that

√
z is a concave function. Hence,

(∗∗) ≤

√√√√ Tx−1(0)

E
[∑T

t=1 x
−1
(
yCE(N̂m

t−1, t)
)
λ(Îmt−1, α)yCE(N̂m

t−1, t)
] ≤√ Tx−1(0)

V D(T )(1− k)
,

where the last inequality comes from (B.66).
Since Θ(1/

√
m) decreases as m grows, we know there exists some constant Θ(1) un-

affected by m such that Θ(1/
√
m) ≤ Θ(1). Therefore, we know

√
1

1− k
=

√
1

1−Θ(1/
√
m)
≤

√
1

1−Θ(1)
= Θ(1).

Hence, we have that

(∗∗) ≤

√
Tx−1(0)

V D(T )
Θ(1) , C. (B.67)

Finally, we take (B.66) and (B.67) into (B.65), resulting in

V CE(m,T ) ≥ V D(m,T )(1− k)

(
1− 1

2

√
σ

m
C

)
.

This completes the proof.

B.3 Section III.5 proofs

B.3.1 Proof of Theorem III.8

Proof. We denote as (α∗,y∗) the optimal inventory and pricing policy of the stochastic
problem (P′) for some demand process that satisfies Assumptions III.1 to III.3. Because
QCE(m,T ) = V α

CE,yCE
(m,T )− cαCEm, we first analyze the bound for V α

CE,yCE
(m,T )

and then get QCE(m,T ) by subtracting cαCEm.
Let (Nm

0 , N
m
1 , . . . , N

m
T ) be the sequence of stochastic remaining inventories under the

joint initial inventory and pricing policy (mαCE,yCE). Define Imt , Nm
t /m. From (B.65)
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and (B.67), we know

V α
CE,yCE

(m,T ) ≥ E

(
T∑
t=1

x−1
(
yCE (Nm

t−1, t
))
mλ

(
Imt−1, α

CE
)
yCE (Nm

t−1, t
))(

1− 1

2

√
σ

m
C

)
.

(B.1)

Note that Lemmas III.2 and B.5 implies that

E

(
T∑
t=1

x−1
(
yCE (Nm

t−1, t
))
mλ

(
Imt−1, α

CE)yCE (Nm
t−1, t

))
≥ m

(
V D,αCE

(T )− k
)
, (B.2)

where k = O (1/
√
m) and k ≥ 0. Therefore, subtracting both sides of (B.1) by cαCEm,

and using (B.2), we have

V α
CE,yCE

(m,T )− cαCEm︸ ︷︷ ︸
QCE(m,T )

≥ m
(
V D,αCE

(T )− k
)(

1− 1

2

√
σ

m
C

)
− cαCEm. (B.3)

Now we analyze the RHS of (B.3) to connect it to Q∗(m,T ). Define k1 = 1
2

√
σ
m
C

where C is defined in (B.67) with α = αCE.
Factoring out m (1− k1) in the RHS of (B.3) results in

m(1− k1)

(
V D,αCE

(T )− k − cαCE

1− k1

)

= m(1− k1)

V D,αCE
(T )− cαCE︸ ︷︷ ︸

QD,αCE
(T )

−k + cαCE − cαCE

1− k1

 subtracting and adding cαCE

≥ m(1− k1)

V D,α∗(T )− cα∗︸ ︷︷ ︸
QD,α∗(T )

−k − cαCE k1

1− k1

 definition of αCE so QD,αCE
(T ) ≥ QD,α∗(T )

= (1− k1)

(
V D,α∗(m,T )− cα∗m−mk − cαCEm

k1

1− k1

)
multiplying m inside

≥ (1− k1)

(
V α
∗,y∗(m,T )− cα∗m−mk − cαCEm

k1

1− k1

)
from Proposition III.1

= (1− k1)

V α∗,y∗(m,T )− cα∗m︸ ︷︷ ︸
Q∗(m,T )

−(m+ cαCEm)k2

 (B.4)
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with k2 = Θ (1/
√
m) because

k1

1− k1

= Θ

(
1√
m− 1

)
.

Dividing (B.3) and the RHS of (B.4) by Q∗(m,T ) = V α
∗,y∗(m,T )− cα∗m yields

QCE(m,T )

Q∗(m,T )
≥ (1− k1)

(
1− k2 ·

m+ cαCEm

V α
∗,y∗(m,T )− cα∗m

)
.

Hence, to prove (III.5.1), it suffices to show

m+ cαCEm

V α
∗,y∗(m,T )− cα∗m

= O(1).

This is true because

m+ cαCEm

V α
∗,y∗(m,T )− cα∗m

=
m
(
1 + cαCE

)
m (V D(T )−O(1/

√
m)− cα∗)

= Θ

(
1 + cαCE

V D(T )− cα∗

)
,

which is constant in m. This concludes the proof.

B.3.2 Proof of Proposition III.2

Since it is not possible to characterize the exact revenue difference between the optimal
and the fixed price policy, to prove Proposition III.2, we utilize the bound established
by V D. To see this, an implication of our results in Section III.3 is 0 ≤ V D(m,T ) −
V ∗(m,T ) ≤ O(

√
m) (Proposition III.1, Theorem III.7). In other words, V D(m,T ) is a

good approximation of the optimal revenue in an asymptotic regime. Hence, if we are
able to show for any α ≥ 0 that

V D,α(m,T )− V SP,α(m,T ) = Ω(m), (B.5)

then this establishes the first statement in Proposition III.2. Note that this also proves
the second statement since the profit loss of the fixed price policy (αSP,ySP) is bounded
below by the revenue loss of ySP with α = αSP.

We need two key results to prove (B.5). The first key result in establishing (B.5) is
to show that V D,α(m,T ) − V D′,α(m,T ) = Θ(m), where V D′,α(m,T ) is the deterministic
revenue under the fixed price defined in (III.5.3) when the initial inventory is αm. This
is formalized in the following lemma (whose proof is in Appendix B.3.3) that states that
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the difference grows at a linear rate in m.

Lemma B.6 (Revenue loss of the fixed price policy for deterministic problems). When
T ≥ 2, for a fixed α ≥ 0, if

(i) ∂
∂y
V D (T − 1;α− λ(α, α)y, α)

∣∣∣
y=ȳ
6= 0, and

(ii) α ≥
∑T

t=1 λ(nȳt−1, α)ȳ,

then V D,α(m,T )− V D′,α(m,T ) = Θ(m).

Condition (i) of Lemma B.6 implies the myopic optimal intensity ȳ is not the optimal
first-period price the deterministic model V D(T ). Condition (ii) means that we have a
sufficient amount of initial inventory if we use to set the price at x−1(ȳ).

The second key piece is the following lemma, which can be established from results
in Section III.3, is that the gap between the expected revenue V SP,α(m,T ) and the de-
terministic revenue V D′,α(m,T ) is O(

√
m). Note that by V SP,α(m,T ) we mean the ex-

pected revenue of the fixed price policy under the stochastic problem. The proof is in
Appendix B.3.6.

Lemma B.7. For a fixed α ≥ 0,

V SP,α(m,T ) ≤ V D′,α(m,T ) +O(
√
m).

Now we are ready to prove the proposition.

Proof of Proposition III.2. From the definition that Q∗(m,T ) is the optimal profit, we
know Q∗(m,T ) ≥ V ∗,α

SP
(m,T )−mαSPc. Then,

Q∗(m,T )−QSP(m,T ) ≥
(
V ∗,α

SP
(m,T )−mαSPc

)
−
(
V SP,αSP

(m,T )−mαSPc

)
= V ∗,α

SP
(m,T )− V SP,αSP

(m,T ).

Hence, to prove the proposition, it suffices to show V ∗,α(m,T )− V SP,α(m,T ) = Ω(m) for
any fixed α ≥ 0.

We know that V ∗,α(m,T ) is bounded below by V CE,α(m,T ). Hence, by Theorem III.7,
we have that V ∗,α(m,T ) ≥ V D,α(m,T )−O(

√
m). This and Lemma B.7 result in

V ∗,α(m,T )− V SP,α(m,T ) ≥ V D,α(m,T )−O(
√
m)− V D′,α(m,T )−O(

√
m). (B.6)
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Moreover, according to Lemma B.6, we know the RHS of (B.6) equals to Θ(m)−O(
√
m),

which is Ω (m). This concludes the proof.

B.3.3 Proof of Lemma B.6

Proof. Consider an arbitrary α ≥ 0 satisfying the conditions of the lemma. Recall the
definition RD(u, T ) in (B.6), where V D(T ) = RD(α, T ).

Due to condition (ii) of the lemma and from (III.5.2), we have that ySP = ȳ. Define
the recursive equations

RD′(u, T ) = x−1(ȳ)λ(u, α)ȳ +RD′(α− λ(u, α)ȳ, T − 1),

where RD′(u, 0) = 0 for all u ∈ [0, α]. Note that V D′(T ) = RD′(α, T ).
We next define

RD,y(u, T ) , x−1(y)λ(u, α)y +RD(α− λ(u, α)y, T − 1) and

RD′,y(u, T ) , x−1(y)λ(u, α)y +RD′(α− λ(u, α)y, T − 1),

where RD(u, T ) is defined in (B.6). Note that RD,y(u, T ) is the objective in (B.6). From
the definition of yD

1 , when u = α, RD,y(α, T ) achieves its maximum value V D(T ) when
y = yD

1 . We observe that

V D(T )− V D′(T ) = RD,yD
1 (α, T )−RD,ȳ(α, T )︸ ︷︷ ︸

(a)

+RD,ȳ(α, T )−RD′,ȳ(α, T )︸ ︷︷ ︸
(b)

. (B.7)

In (B.7), (b) ≥ 0 because

(b) = RD (α− λ(α, α)ȳ, T − 1)−RD′ (α− λ(α, α)ȳ, T − 1) ≥ 0

since RD(·, ·) = V D(·, ·) defined in (D), and RD′(·, ·) is the objective value of model (D)
when yt = ȳ for all t (we can check that ȳ is feasible to (D)). Therefore, the RHS of (B.7)
is lower bounded by (a).

Because RD,y is strictly concave in y (Claim B.2) and since yD
1 > 0 (Theorem III.4),

then we know

∂RD,y(α, T )

∂y

∣∣∣
y = yD

1

=
∂

∂y
x−1(y)λ(α, α)y

∣∣∣
y = yD

1︸ ︷︷ ︸
(c)

+
∂

∂y
RD(α− λ(α, α)y, T − 1)

∣∣∣
y = yD

1︸ ︷︷ ︸
(d)

= 0.

(B.8)
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Condition (i) of Lemma B.6 states that (d) 6= 0 which, combined with (B.8), implies
that (c) 6= 0. Since ȳ is the unique value that can make ∂

∂y
x−1(y)λ(α, α)y equal to zero

(Lemma B.1(ii)), we conclude yD
1 6= ȳ. Therefore, by the mean value theorem, there exists

a y′ ∈
(
min{ȳ, yD

1 },max{ȳ, yD
1 }
)
such that

(a) = RD,yD
1 (α, T )−RD,ȳ(α, T ) =

∂RD,y(α, T )

∂y

∣∣∣
y=y′

(yD
1 − ȳ). (B.9)

Note that (a) ≥ 0 because yD
1 is the maximizer of RD,y(α, T ). Note that the derivative

term in (B.9) is nonzero because y′ 6= yD
1 and yD

1 is the unique maximizer of RD,y(α, T )

(Lemma B.1(ii)). Further, since yD
1 6= ȳ, we have that (a) > 0. Hence, V D(T )−V SP(T ) >

0. This implies that V D(m,T ) − V SP(m,T ) = m
(
V D(T )− V SP(T )

)
= Θ(m). This

concludes our proof.

B.3.4 Corollary B.1 and proof

Corollary B.1. Given α ≥ 0, let (Nm
0 , N

m
1 , . . . , N

m
T ) denote the sequence of stochas-

tic remaining inventory under policy ySP with Nm
0 = αm. Define Imt , Nm

t /m. Let
nD′ = (nD′

0 , . . . , n
D′
T ) be the deterministic sequence of remaining inventory when fixing

y = (ySP, . . . , ySP) with initial inventory α. Then the following hold:

E
∣∣∣Imt − nD′

t

∣∣∣ = O
(
1/
√
m
)

and
E
∣∣∣λ (Imt , α)− λ

(
nD′
t , α

)∣∣∣ = O
(
1/
√
m
)
.

Proof. The only difference between Corollary B.1 and Lemma B.4 is the gap between the
stochastic intensity sequence and the deterministic intensity sequence. In Lemma B.4
(using the notation in the proof of Lemma B.4), we apply yCE to the stochastic problem
and accordingly get normalized inventory (Îmt )t; and we apply yD to the deterministic
problem and accordingly have nD. However, in Corollary B.1, we apply (ySP, . . . , ySP) to
the stochastic problem and accordingly get normalized inventory (Imt )t; and we apply the
same (ySP, . . . , ySP) to the deterministic problem and accordingly have nD′ . As a result,
the key difference between the proofs of Lemma B.4 and Corollary B.1 is the logic to
have the same (∗∗) in (B.54) upper bounded by (B.55). Note that the definition of ySP in
(III.5.2) also guarantees that inventory constraint is satisfied in expectation, so the logic
in the proof stays the same as Lemma B.4.

In Lemma B.4, (using the notation in the proof of Lemma B.4) we have the gap
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between yCE and yD is

E
∣∣∣yCE

(
N̂m
t−1, t

)
− yD

t

∣∣∣ ≤ λ̄CyE ∣∣∣Îmt−1 − nD
t−1

∣∣∣ = O
(
1/
√
m
)
. (B.10)

Note that (B.10) is the key to have (∗∗) ≤ (B.55) in the proof of Lemma B.4. To
get (B.10), the crucial part is the Lipschitz continuity of policy yCE proved in Lemma III.3.
Therefore, in Corollary B.1, if we also have the gap between y sequences applied to the
stochastic and deterministic problems is O(1/

√
m), then we are done. In fact, for Corol-

lary B.1, we apply the same sequence (ySP, . . . , ySP) to both stochastic and deterministic
problems, so clearly

E
∣∣ySP (Nm

t−1, t
)
− ySP

∣∣ = 0,

thus is O(1/
√
m). Therefore, we get the same bound as (B.55) in the proof of Lemma B.4.

Then, Corollary B.1 holds by applying the same logic as the proof of Lemma B.4.

B.3.5 Corollary B.2 and proof

Corollary B.2. Given α ≥ 0, let (Nm
0 , N

m
1 , . . . , N

m
T ) denote the sequence of stochastic

remaining inventory under policy ySP with Nm
0 = αm. Define Imt , Nm

t /m. Then,∣∣∣∣∣E
(

T∑
t=1

x−1
(
ySP(Nm

t−1, t)
)
λ
(
Imt−1, α

)
ySP(Nm

t−1, t)

)
− V SP(α, T )

∣∣∣∣∣ = O
(
1/
√
m
)
.

Proof. Similar to the proof of Corollary B.1 (see Appendix B.3.4), the only difference
between Corollary B.2 and Lemma B.5 is the gap between the stochastic intensity sequence
and the deterministic intensity sequence. In Lemma B.5 (using the notation in the proof
of Lemma B.5), we apply yCE to the stochastic problem and accordingly get the remaining
inventory (N̂m

t )Tt=0 and the expected revenue

E

(
T∑
t=1

x−1
(
yCE

(
N̂m
t−1, t

))
λm
(
N̂m
t−1, α

)
yCE

(
N̂m
t−1, t

))
;

and we apply yD to the deterministic problem (D) and accordingly have nD and the
deterministic revenue V D(α, T ). However, in Corollary B.1, we apply (ySP, . . . , ySP) to the
stochastic problem and accordingly get the normalized inventory (Imt )t and the expected
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revenue

E

(
T∑
t=1

x−1(ySP)λm
(
Nm
t−1, α

)
ySP

)
;

and we apply the same (ySP, . . . , ySP) to the deterministic problem (D) and accordingly
have nD′ and the deterministic revenue V D′(α, T ).

The proof of Corollary B.2 follows exactly the same logic of the proof of Lemma B.5.
Whenever we use Lemma B.4 in the proof of Lemma B.5, we replace these with Corol-
lary B.1. Whenever we use Lemma III.3 to bound E

∣∣∣yCE
(
N̂m
t−1, t

)
− yD

t

∣∣∣, we do not need

them because we have zero gap between two sequences of y, that is E
∣∣ySP

(
Nm
t−1, t

)
− ySP

∣∣ =

0.

B.3.6 Proof of Lemma B.7

Proof. Given α ≥ 0, let (Nm
0 , N

m
1 , . . . , N

m
T ) denote the sequence of stochastic remaining

inventory under policy ySP with Nm
0 = αm. Define Imt , Nm

t /m.
First we notice that

V α,ySP
(m,T ) ≤ mE

(
T∑
t=1

x−1(ySP)λ
(
Imt−1, α

)
ySP

)
(B.11)

because the RHS is the expected revenue under ySP without the inventory constraint.
According to Corollary B.2 (see Appendix B.3.5), we know

mV SP(α, T )−O(
√
m) ≤ mE

(
T∑
t=1

x−1(ySP)λ
(
Imt−1, α

)
ySP

)
≤ mV SP(α, T ) +O(

√
m). (B.12)

Plugging (B.12) into RHS of (B.11), we get

V α,ySP
(m,T ) ≤ mV SP,α(T ) +O(

√
m) = V SP,α(m,T ) +O(

√
m).
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