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Abstract 
 

Population scale genomic analyses have informed the development of novel therapeutics, 

diagnostics, and understanding of disease etiology. Among the recent developments in human 

genetic association analyses, electronic health record (EHR) linked biobanks and population 

scale whole genome sequencing (WGS) have provided fertile ground for association discovery. 

In tandem with the emergence of these approaches, novel computational and statistical 

approaches are needed to address the methodological challenges of working with these data.  

In Chapter 2, I present study design recommendations and meta-analysis results for 

genetic association studies applied to clinical laboratory data in EHR linked biobanks. We 

conducted genome-wide association studies (GWAS) of 70 clinical lab traits from both the 

Michigan Genomics Initiative (MGI) and BioVU from the University of Vanderbilt health 

system. In addition to the discovery of novel association results, we conducted systematic study 

design analyses in parallel across the two biobanks to inform recommendations for association 

studies of lab traits.  

In Chapter 3, I present a novel sparse Mendelian randomization (MR) method for causal 

inference. MR methods are an instrumental variable approach for inferring the causal effect of an 

exposure on an outcome using genetic variants as an instrument. Under settings where the 

proportion of genetic variants that are causal is low, current approaches that assume dense 

genetic architectures may have poor statistical power. Here, we present a novel Bayesian MR 

method using a horseshoe prior which can be applied to summary statistics. The horseshoe prior 

is a continuous-scale shrinkage prior which facilitates variable selection. We use simulations to 



 xii 

evaluate the performance of the method across genetic architectures. We apply the method to lab 

trait GWAS summary statistics.  

In Chapter 4, I present a novel method for estimating the rate at which somatic clones are 

expanding in clonal hematopoiesis. Clonal hematopoiesis refers to a state of mosaicism in blood 

defined by the acquisition of oncogenic driver mutations at an appreciate clone size and can be 

identified using WGS. Previous approaches for describing the growth of these mutations have 

relied on longitudinal sequencing methods. Here, we develop a Bayesian hierarchical model for 

estimating the parameters that describe the expansion of driver variants. In contrast to previous 

reports, our method only requires a single draw of blood. We validate the method using 

simulations and longitudinal amplicon sequencing. We apply our method to ~5,000 samples with 

clonal hematopoiesis from the Trans-Omics for Precision Medicine (TOPMed) sequencing 

initiative, enabling association studies of the molecular determinants of clonal expansion. 
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Chapter 1 Introduction 

Background 

 
Analysis of human genetic data has facilitated discovery of disease etiology, novel 

diagnostics, and therapeutics. Although any two randomly sampled human genomes are highly 

similar, alleles at a subset of polymorphic sites associate with both disease and non-disease traits. 

Despite the immense scientific interest in studying genetic variation, until the current 

millennium, genotyping was very costly. The human genome project cost $2.7 billion USD to 

complete (Human Genome Project FAQ). Recent advances in genomics have precipitously 

reduced genotyping and sequencing costs. In 2021, the cost to sequence a whole human genome 

is approximately $1,000 USD, which is five orders of magnitude smaller than the cost from 2006 

(DNA Sequencing Costs: Data). Decreasing costs have facilitated a deluge of human genetics 

data. In tandem with unprecedented population scale repositories of genotype data, numerous 

statistical and computational challenges have emerged. Among these, two will be of interest in 

this dissertation – association discovery in electronic health record (EHR) linked biobanks and 

variant calling in whole genomes.  

Electronic health records are digital containers of patient linked health data. They may 

include data on disease state, clinical laboratory measurements, free text from physicians, or 

other sources of data. These data are collected during routine clinical care primarily for billing 

purposes rather than research use. As EHRs collect numerous variables of interest to biomedical 
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researchers, they represent a potential trove of valuable information. Linking these data to 

genotypes enables genetic association discovery with the numerous phenotypes.  

Causal Inference Using Genetic Instruments and PheWAS 

Recently, numerous studies have performed genetic association studies (GWAS) in a 

comprehensive manner, using every phenotype available in an EHR-linked biobank, an analysis 

termed PheWAS (phenome-wide association study (Denny et al., 2010)). Much interest has 

focused on using billing codes to define dichotomous disease phenotypes (Zhou et al., 2018). 

Similarly, clinical lab traits have emerged as a useful intermediate phenotype for many disease 

states. Clinical lab traits include lipid measurements, (e.g. low-density lipoprotein), blood cell 

indices (e.g., white blood cell count), and glucose measurements, among others. Like studying 

gene expression data, clinical lab traits provide a phenotype that may be upstream of disease and 

therefore ‘closer’ in some sense to genetic variation. For disease traits that are defined based on 

dichotomizing a continuous lab trait, studying the underlying lab may also yield increased 

power. Parallel efforts to disease PheWAS are needed to facilitate optimal study design and 

association studies with lab traits. In Chapter 2, I discuss LabWAS (lab-wide association study) 

and provide study design and methods recommendations for studying genetic variation in this 

class of EHR derived phenotypes.  

LabWAS introduces two primary challenges when compared to the classic PheWAS 

analysis. First, in contrast to working with ICD10 derived phecodes (Denny et al., 2010; Zhou et 

al., 2018), clinical lab traits lack a standardized coding scheme. This means that when comparing 

traits from two different health systems, the same trait may have two different names. The same 

lab trait may also be measured through different diagnostic assays across health systems, leading 

to different measurement scales and potential batch effects. As we describe in Chapter 2, the 
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ostensibly facile task of matching lab traits across health systems requires an interdisciplinary 

team of biostatisticians and pathologists. Second, as clinical lab traits are quantitative traits with 

informative missingness and longitudinal measurement, different statistical methods than 

PheWAS are required. The literature provides no consensus on best practices for analysis of 

clinical lab traits. For example in (Verma et al., 2018), the median summary statistic is used to 

summarize multiple lab measurements, but in (Kanai et al., 2018), the mean is used and several 

health state covariates are included in the regressions. In Chapter 2, we comprehensively assess 

competing statistical procedures for discovery of associated genetic variants, which we perform 

in parallel across multiple biobanks. We anticipate that our analysis will serve as a reference 

point for analyses of lab traits in other biobanks. 

As GWAS have now been performed across of a variety of phenotypic modalities, 

researchers have sought to interrogate the causal network among multiple traits. Germline 

genetic variants have many attractive properties as instruments for causal inference – they are 

static throughout life, have little measurement error, and in a temporal sense precede the advent 

of most heritable disease. Crucially, they are frequently independent of environmental 

confounders. These properties facilitate causal inferences where traditional observational 

epidemiology may be less permissive of causal interpretation. Mendelian randomization (MR) is 

an instrumental variable method that uses genetic variation as an instrument for an exposure 

(Davey Smith and Ebrahim, 2003), for use in inferring the causal effect between an exposure and 

an outcome phenotype.   

With the advent of Biobank derived PheWAS, summary statistics are now abundant, and 

provide an easy source for genetic instrumentation (Bycroft et al., 2017; Zhou et al., 2018; 

Hemani et al., 2018). These troves of association summary statistics enable causal inference 
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between two traits that may not even be measured on the same individuals (Pierce and Burgess, 

2013). Despite the convenience of MR, appropriate instrument selection remains vexing, a 

challenge that we further explore in Chapter 3. Instrument selection is in some sense a variable 

selection problem, and the initial signals from GWAS can be refined through consideration of 

linkage disequilibrium (LD). In a Bayesian framework, priors that reflect the expected genetic 

architecture can also provide improved variable selection over standard maximum likelihood 

(Zhou et al., 2013). In Chapter 3, we explore a novel sparse MR method motivated by these 

considerations. This method is also partly motivated by the advances in genotyping technologies. 

As whole genomes have become less costly and genotype imputation methods have become 

more accessible (Taliun et al., 2021; Das et al., 2016), GWAS have been performed on 

increasingly larger sets of genetic variants. As genotyping arrays are typically enriched for 

disease-associated variation, the density of causal variants has likely decreased as variant 

genotyping expands beyond the sites on genotyping arrays. This suggests that methods that 

assume sparsity among causal variants are more useful today than the past.  

Somatic Variation Derived from Whole Genomes and the Dynamic Human Genome 

Most human genetics research has focused on inherited, or germline variation – the 

differences between human genomes that are inherited from our parents and that remain static 

throughout life. However, our genomes vary not only between individuals but also within. We 

are all mosaics of genomes, acquiring mutations as we age (Jaiswal and Ebert, 2019). Beyond the 

acquisition of mutations, telomeres, which reside at the ends of chromosomes, also decrease with 

aging (Blackburn, 1991). Most of this acquired variation has no bearing on disease. However, the 

recent study of somatic variation in blood of healthy adults has indicated that many of us acquire 

deleterious oncogenic mutations in a small fraction of our blood cells (Jaiswal et al., 2017; Bick 
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et al., 2020). Serendipitously, whole genomes derived from peripheral blood enable interrogation 

of these dynamic elements without additional assays. However, as population whole genome 

sequencing is not primarily intended for this purpose, novel computational methods are needed 

to derive and measure these dynamic quantities.  

 Large scale WGS enables detection of somatic variation and telomere lengths in blood 

(Bick et al., 2020; Taub et al., 2020). Somatic variant calls can be used to detect the presence of 

leukemogenic clonal expansions in blood, a state called clonal hematopoiesis of indeterminate 

potential (CHIP). CHIP is aging related phenomenon, and previous reports have associated CHIP 

with increased risk for cardiovascular disease and hematologic malignancy (Jaiswal et al., 2017). 

CHIP is a heterogenous phenomenon, as it is comprised of a diverse class of mutations and may 

present in varying fractions of blood cells. The proportion of blood cells harboring a mutation, 

termed the clone size, has been shown to be predictive of deleterious phenotypic consequences 

(Bick Alexander G. et al., 2020). This implies that early detection of quickly growing clones 

may enable earlier therapeutic intervention. However, no methods currently exist for the 

estimation of clonal expansion from a single draw of blood.  

In Chapter 4, we explore the derivation of statistical estimators of clonal expansion using 

WGS from whole blood. We develop a hierarchical Bayesian model for the estimation of 

parameters that govern a stochastic process that describes clonal expansion rate. We leverage 

recent advances in probabilistic programming languages (Stan Development Team, 2020) to 

efficiently sample from the posterior using Hamiltonian Monte Carlo. Using the largest tranche 

to date of genomes from CHIP carriers, we also use clonal expansion as a phenotype in GWAS, 

yielding potential molecular targets for therapeutics that may modulate clonal expansion. We 

anticipate that these advances will contribute to novel diagnostics and therapeutics for CHIP.  
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In summary, in this dissertation I make a number of contributions towards modern 

challenges in computational genetics. I anticipate that our results and methods will further 

progress in EHR-linked biobanks and population scale repositories of whole genomes.  
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Chapter 2 LabWAS: Novel Findings and Study Design Recommendations From a Meta-
Analysis of Clinical Labs in Two Independent Biobanks1 

 

Introduction 

Laboratory testing is a key component of modern medicine. Laboratory measurements 

provide a glimpse into the functioning of the human body, allowing clinicians to diagnose and 

monitor disease. In most health systems, lab measurements are routinely captured in patient 

Electronic Health Records (EHRs) alongside disease diagnoses, free text notes and medical 

procedures to provide a detailed, longitudinal health history (Carolina and Carolina, 2013). 

EHRs present exciting research potential by providing broad phenotyping on large cohorts with 

minimal cost(Wei and Denny, 2015; Hanauer et al., 2015).  

Several large-scale genetic studies have already leveraged biobanks linked to EHRs, such 

as the UK Biobank(Bycroft et al., 2017), Japan Biobank(Nagai et al., 2017), FinnGen(FinnGen) 

and HUNT(Krokstad et al., 2013), as sources of phenotypes for Genome-wide Association 

Studies (GWAS) (Bycroft et al., 2017; Nagai et al., 2017; FinnGen; Krokstad et al., 2013)[4–7]. 

The phenotypes are typically based on International Classification of Diseases (ICD) codes 

                                                 
 

1 This chapter has been published in PLOS Genetics. I am a co-first author of the publication.   
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mapped to dichotomous traits(Wei et al., 2017). Although disease is often thought of in 

all-or-nothing binary states, many diseases exist on a continuum with the ultimate clinical 

diagnosis occurring once a relevant quantitative laboratory measurement exceeds a pre-

determined threshold. For example, hypercholesteremia, diabetes mellitus and chronic kidney 

disease are each diagnosed almost entirely on measurements of low density lipoprotein (LDL), 

glycated hemoglobin (or glucose) and creatinine, respectively. Laboratory measurements can 

therefore be a more sensitive measure of underlying health than diagnosis and may provide a 

more powerful outcome for analysis. As an example, the hypercholesterolemia and coronary 

artery disease risk locus PSCK9 was initially discovered based on quantitative LDL 

measurement rather than clinical diagnosis (Chen et al., 2005; Shioji et al., 2004). In contrast to 

binary disease phenotypes, there are fewer examples of genetic analyses of EHR-derived 

quantitative lab values(Kanai et al., 2018; Kullo et al., 2010; Klarin et al., 2018). Hereafter, we 

use the term lab traits to refer to quantitative biomarkers assayed through clinical laboratory 

testing (e.g., “creatinine", "LDL cholesterol"), and the term lab measurements to refer to realized 

values of these tests stored in patient EHRs. 

The rich source of quantitative lab measurements in EHR cohorts comes with unique 

concerns. Quantitative traits collected specifically for research purposes typically use a 

controlled experimental design to ensure consistency among samples. In contrast, lab 

measurements contained in EHRs are a historical record of medical care. As such, patients may 

have hundreds of lab measurements for some traits and none for others, depending on their 

specific health history and utilization of the health system. The measurements can be collected in 

times of sickness or good health leading to substantial variation in measurements for the same 

lab. Lab measurements can also be artificially modified by prescription medication, such as 
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statin use for lowering LDL cholesterol.  Moreover, recruitment mechanisms and health system 

demographics can dramatically shape the overall health of the biobank cohort, which in turn 

dictates lab measurements available for analysis. The broad impact of using such “real world” 

measurements for genetic association studies is unclear. Questions remain over the effect and 

robustness of analytic choices made when analyzing EHR-based lab traits including how best to 

summarize complicated, longitudinal lab measurements and whether comorbid diseases highly 

correlated with lab measurements must be considered. Prior studies are not consistent in 

addressing these concerns. For example, GWAS of EHR-derived quantitative traits in Biobank 

Japan enrolled patients with at least 1 of 47 diagnoses and controlled for all 47 diagnoses while 

testing each lab (Kanai et al., 2018). In contrast, an analysis of labs within the Geisinger EHR 

did not control for underlying disease states (Verma et al., 2018). The variety of methods to 

summarize lab measurements and models to test for genetic association indicates that the 

question of how to analyze these data remains unsettled.  

 

In this paper we explore strategies for analyzing quantitative lab measurements extracted 

from EHRs and describe the first large-scale meta-analysis of EHR-derived lab traits across 

independent health systems. We used lab measurements and genetic data from two academic 

health systems: the BioVU cohort from Vanderbilt University(Roden et al., 2008)  and the 

Michigan Genomics Initiative (MGI) from Michigan Medicine(Fritsche et al., 2018). Meta-

analysis offers a mechanism to increase sample size and power for detecting genetic risk variants 

but comes with distinct challenges for EHR lab traits, particularly matching lab traits between 

health systems and determining specific analysis protocols. The cohorts differ dramatically in 

their recruitment mechanisms, patient composition and recording format for lab measurements: 
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MGI was predominantly recruited through inpatient surgical encounters at Michigan Medicine 

whereas BioVU recruitment required outpatient appointments at Vanderbilt University Medical 

Center. As a result, MGI is enriched for diseases treated surgically such solid tumors (Fritsche et 

al., 2018). This heterogeneity reflects the reality of EHR-based phenotyping, and strategies must 

be developed for future collaborative work on the growing number of EHR-linked biobanks.  

Our initial challenge was identifying which labs to meta-analyze between the health 

systems. Accurately matching labs is complicated by the fact that no standardized coding scheme 

exists for lab measurements. Dichotomous disease traits are readily matched between health 

systems using the ubiquitous ICD coding system for disease diagnoses(McCarty et al., 2011). 

Although the Logical Observation Identifiers Names and Codes (LOINC) system offers the 

promise of interoperability for lab traits, it is cumbersome and maps poorly onto other 

ontologies(Bodenreider, 2008). For example, there are 21 distinct codes for blood glucose which 

might not be used consistently between institutions. Moreover, health systems may adopt their 

own idiosyncratic internal terminology for electronic recording of lab results. Based on a 

methodical manual review of EHR text descriptions and lab measurements, we identified 70 lab 

traits between BioVU and MGI that could be matched with high confidence. We extracted 

previously identified variants for these lab traits from the GWAS catalog to serve as true positive 

variants for assessing subsequent analyses. Our meta-analysis replicated nearly 75% of these true 

positive variants, validating both the accuracy of lab matches across health systems and the 

overall quality of the EHR lab data. Further, we discovered 31 novel lab-associated variants 

across 22 labs, including the first reported associations for the saliva and pancreatic enzyme 

amylase and bicarbonate CO2, a gaseous waste product from metabolism carried in the blood. 
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We immediately replicated 22 (71%) of these novel associations using an independent second set 

of BioVU samples.   

The meta-analysis required several strategic choices regarding data preparation and 

statistical analysis. We explored the consequences of various analytic choices using a series of 

mirrored analyses performed in MGI and BioVU. In particular, we varied the summary statistic 

for lab measurements and the inclusion of covariates to control for comorbid diseases in the 

GWAS. We compared the results between the independent biobank cohorts to assess consistency 

of effects. We hypothesized that alternative summary statistics to the basic mean could provide 

more powerful genetic analyses. We considered: the median lab measurement due to robustness 

against data recording errors and extreme measurements, the first available lab measurement to 

mitigate the effects of prescription drugs on modifiable lab traits, and the maximum recorded 

measurement to magnify variation in extreme measurements. The comorbidity analysis 

compared GWAS results from models that included indicator covariates for a wide array of 

diseases to models that did not.   

The complete set of GWAS summary statistics from this analysis are broadly available to 

the research community. We encourage others to use this data to replicate their own GWAS 

findings and perform hypothesis-driven lookups on specific SNPs or lab traits of interest. Our 

results are viewable through an interactive PheWeb web browser(Gagliano Taliun et al., 2020) at 

http://pheweb.sph.umich.edu/mgi-biovu-labs and available for bulk download at 

https://phewascatalog.org/labwas and ftp://share.sph.umich.edu/mgi_biovu_labwas/. 

Methods 

 

https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fphewascatalog.org%2Flabwas&data=02%7C01%7Clisa.bastarache%40vumc.org%7Ca67b4e926afa493b9eb408d80c952eab%7Cef57503014244ed8b83c12c533d879ab%7C0%7C0%7C637273182161396599&sdata=2rypgHVMvqdwIlr3mj3LLemunQ8sPGYdHyvTmAXVrOY%3D&reserved=0
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Datasets 

We analyzed data from two university hospital biobanks that link electronic health 

records with genetic data: BioVU from Vanderbilt University and the Michigan Genomics 

Initiative (MGI) from Michigan Medicine. We restricted our analysis to unrelated patients of 

European ancestry because of insufficient patient sample sizes and a paucity of known variants 

in non-European populations.  

The BioVU cohort has been described previously(Roden et al., 2008). Briefly, DNA was 

extracted from surplus blood samples and genotyping data was linked to de-identified EHR data. 

For this study, we used a cohort of 20,515 individuals genotyped on the Multi-Ethnic 

Genotyping Array (MEGA) from Illumina and estimated to be of European ancestry by 

admixture(Alexander et al., 2009). We included 843,242 SNPs that passed standard marker QC 

filters and had a minor allele frequency >1%. We retrieved all available lab measurements in this 

cohort that occurred when the subject was at least 18 years of age.  

The MGI cohort has also been described previously(Fritsche et al., 2018). Briefly, MGI 

samples were recruited primarily through surgical encounters at Michigan Medicine and 

provided consent for linking of their EHRs and genetic data for research purposes. MGI samples 

were genotyped on customized Illumina HumanCoreExome v12.1 bead arrays. European 

samples were identified using Principal Component Analysis. We used a data freeze consisting 

of 37,354 unrelated European individuals for this analysis. MGI samples were imputed to the 

Haplotype Reference Consortium using the Michigan Imputation Server(Das et al., 2016), 

providing ~14 million SNPs with a minimac imputation quality R2>0.3 and an allele frequency 

greater than 1e-6. We analyzed the set of ~800K overlapping SNPs between the MGI imputed 

genotypes and the BioVU MEGA array for this study. 
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Harmonization of Labs Between Health Systems and the GWAS Catalog 

 

We extracted all available clinical lab measurements and metadata from the electronic 

health records of MGI samples and BioVU samples.  `We collapsed distinct labs when obvious 

duplications were present (e.g., “Eosinophils” and “EOSINOPHILS”). Available metadata 

differed slightly between the health systems but included brief text descriptions, unit of 

measurements, and range for normal values. We excluded individual lab measurements taken 

outside the health system labelled as “External.”  In cases where multiple tests examined the 

same analyte, e.g. blood glucose, we removed point of care (POC) tests which are more 

susceptible to technical artifacts and tend to be deployed in intensive care or emergency settings 

where acute disease or treatment effects supervene determinants of the underlying baseline 

(Nichols, 2011; Larsson et al., 2015). Lab traits were matched between the Vanderbilt and 

Michigan health systems based on manual curation of the metadata including recorded lab 

names, clinical descriptions, measurement units, range of measurements, and patient count.  

Disease phenotypes 

 

In order to study the effect of underlying health conditions we extracted ICD9 and ICD10 

diagnosis codes from the EHR of the BioVU and MGI cohorts. We searched for diagnosis for 42 

diseases with the potential to alter a clinical lab measurement (Supplementary Table). We started 

with the disease list used in the BioBank Japan lab analysis(Kanai et al., 2018) and removed 

diseases which do not occur in our population (e.g. febrile seizures of infancy) and those 

expected to have minimal effect on labs (e.g. cataracts). We supplemented their list with chronic 

diseases expected to have a large impact on labs due to their prevalence (e.g. hypertension). We 
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created an indicator variable for each disease (1 if the sample had at least one qualifying ICD 

code for the specific disease and a 0 otherwise) to include as covariates in GWAS regression 

analyses.  

Statistical Analysis 

 

Intra-cohort Genome-wide Association Studies  

We first performed GWAS analysis of each lab trait separately in the MGI and BioVU 

cohorts. We performed multiple GWAS for each lab, varying the statistic used to summarize the 

longitudinal lab measurements for each sample (mean, median, first available measurement and 

maximum available measurement) and the inclusion of binary indicators for diagnosis comorbid 

diseases in the GWAS regression. 

For each GWAS, the distribution of lab summary statistics was inverse normalized separately 

within the MGI and BioVU cohorts prior to regression analysis. In a separate analysis of the 

BioVU cohort, we determined that inverse normalization of lab values performed better than 

applying no transformation, or a log or square root transformation for controlling GWAS type I 

error. Genome-wide association tests were performed on the inverse normalized traits using 

additive linear regression models containing age, sex and four principal components as 

covariates. The comorbidity model controlled for disease status by inclusion of an additional 42 

covariates for the binary disease phenotypes. The regression analyses were performed in the 

BioVU cohort using PLINK(Purcell et al., 2007) and in the MGI cohort using epacts 3.3.0 

(Kang, 2014). 
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Comparison of p-values across cohorts  

We treated the GWAS of mean trait value with no disease covariates as the default. We 

quantified the impact of each alternate analysis strategy relative to the default analysis by 

computing the log fold change in p-value between the alternative and default analysis for each 

analyzed SNP. That is, for each SNP we compute the quantity 

Δ𝑝𝑝 = − log10(𝑝𝑝-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑖𝑖 / 𝑝𝑝-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ) 

for the MGI analysis and the BioVU analysis separately. A positive value of Δ𝑝𝑝 indicates a SNP 

that increases in significance (smaller p-value) when the alternate summary statistic. A negative 

value of Δ𝑝𝑝 indicates a decrease in significance for the alternate analysis. Scatterplots of Δ𝑝𝑝 

computed in MGI and BioVU summarize the magnitude and consistency of change in p-value 

significance between the cohorts (Figure 4 for an example, Supplementary Material). We 

performed LD-pruning on non-catalog SNPs to simplify the scatterplots Since most SNPs are not 

associated with the lab trait of interest, alternative summarizations simply result in independent 

noise between the two cohorts, resulting in a diamond shaped pattern centered at the origin.   

We implemented a heuristic to formally distinguish the SNPs with largest changes in p-value 

between the alternative and default analysis methods from those with movement due simply to 

random noise. The heuristic generates a bounding quadrilateral polygon around the diamond 

cluster of points, generated using simulated annealing to determine the bounding coordinates of a 

polygon containing 99.9% of all SNPs. We defined SNPs outside the boundaries of the polygon 

as those with largest simultaneous changes in p-values in both cohorts.  Catalog SNPs located 

outside the bounding polygon were classified as having either a concordant increased effect if p-

value significance increased in both MGI and BioVU, a concordant decrease effect if p-value 
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significance decreased in both MGI and BioVU or a discordant effect if the p-value increased in 

significance in one cohort but decreased in the other. 

Meta-analysis  

We meta-analyzed the GWAS results from the MGI and BioVU default analysis (mean 

trait value, no disease covariates). The meta-analysis was performed using METAL by combining 

study-specific GWAS effect size estimates and standard errors (Willer et al., 2010). We 

computed genomic control inflation factors (λGC) on a set of LD-pruned SNPs for each meta-

analyzed lab.      

GWAS Catalog Variants  

We created a list of previously identified genetic associations for each analyzed lab trait 

using the GWAS catalog(Buniello et al., 2019) (downloaded 9/27/2017). We searched the 

catalog for quantitative phenotypes matching our analyzed labs using pattern matching in the 

DISEASE_TRAIT, MAPPED_TRAIT, and P_VALUE_TEXT columns. We searched for each 

lab using multiple potential string patterns, for example “AST”, “aspartate aminotransferase”, 

“SGOT”, and “serum glutamine oxaloacetic aminotransferase”. For purposes of replication, we 

limited our catalog search to studies of European cohorts performed on adults of both sexes 

without disease-based sampling (e.g. glucose measurements in type 2 diabetes samples) and 

required a reported p-value of at least 5e-8. We considered a catalog association replicated if the 

meta-analysis p-value for our corresponding lab was < 0.05 and the BioVU and MGI studies had 

the same direction of effect.   
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Definition of novelty  

We report novel lab-SNP associations as those reaching genome-wide significance that 

have not been previously reported in European populations and are not reasonably expected 

based on existing SNP-lab associations in similar labs. We used the following criteria: meta-

analysis p-value <5e-8, consistent direction of effect between MGI and BioVU and at least 1 

megabase from any previously reported SNP for the given lab or a related lab in the GWAS 

catalog. Here, we define related labs as those which are commonly ordered as part of a panel of 

correlated tests (e.g. AST and ALT for liver function) or arithmetically-dependent traits (e.g. 

LDL and total cholesterol), and therefore likely to indicate the same biological association. We 

report the “peak” or most significant SNP when a group of novel SNPs are in linkage 

disequilibrium.  

Replication of Novel Associations  

We performed a replication analysis of novel associations identified in the meta-analysis 

using an independent cohort of BioVU samples that became  available after the original meta-

analysis was performed. This replication cohort consisted of 29,043 European ancestry adult 

individuals with extant lab data recruited using the same procedure as the initial BioVU cohort, 

genotyped on the same MEGA genotyping array, and subjected to the same data QC procedure. 

We declared a novel association to be replicated if the replication p-value was <0.05 and the 

direction of effect was consistent with that from the meta-analysis. 

Ethics statement 

Data were collected according to Declaration of Helsinki principles. MGI study 

participants’ consent forms and protocols were reviewed and approved by the University of 

Michigan Medical School Institutional Review Board (IRB ID HUM00099605 and 
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HUM00155849). Opt-in written informed consent was obtained for each MGI participant. 

BioVU is Vanderbilt University's biobank of DNA extracted from leftover and otherwise 

discarded clinical blood specimens. BioVU operates as a consented biorepository; all individuals 

must sign the BioVU consent form in order to donate future specimens. 

Results 

 

We extracted all available clinical lab measurements from the electronic health records 

(EHRs) for genotyped samples in two academic biobank cohorts: the Michigan Genomics 

Initiative(Fritsche et al., 2018) (MGI) at Michigan Medicine and the BioVU(Roden et al., 2008) 

at Vanderbilt University. In total, this consisted of 35,785,074  lab measurements in 50,743  MGI 

samples, and 28,929,660 lab measurements in 61,378 BioVU samples. We focused on samples 

of European ancestry in both cohorts due to insufficient sample sizes in other ancestry groups. 

Genetic analyses were performed on the set of ~800K overlapping SNPs between the MGI 

imputed genotypes and the BioVU MEGA array genotypes.  

We analyzed 70 labs matched with high confidence between the health systems and 

having at least 1,000 samples with the lab measured in each health system by(Table 1).     We 

searched the GWAS catalog for known genetic associations among the 70 lab traits to serve as 

“true positive” variants to validate the data and assess competing analysis strategies. We 

identified 4,140 such associations, of which, 1,313 (32%) across 48  different traits were in the 

set of overlapping markers tested in the meta-analysis . Many lab traits have been well studied 

(Willer et al., 2013; Astle et al., 2016) and provided many testable catalog SNPs. LDL, for 

example, had 84 catalog SNPs that could be directly tested in our meta-analysis. Alternatively, 
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several labs had relatively few or no catalog SNPs, including labs for which either no variant was 

reported in the catalog or the catalog variants were not typed in at least one of our cohorts.   

Meta-Analysis of Labs in MGI and BioVU 

 

The 70 EHR-derived lab traits were first analyzed separately in the cohorts using the 

mean measurement as the individual-level outcome. The meta-analysis sample size differed 

between labs, ranging from 7,429 for uric acid to 46,382 for hematocrit (Figure 1), reflecting the 

frequency with which different labs are administered in health systems.  Several labs have 

previously been studied in much larger cohorts, including the differential panel of 10 white blood 

cell measures, analyzed in >170K samples in the UK BioBank(Astle et al., 2016). However, this 

meta-analysis provides the largest sample size for 34 labs, including 14 clinical lab traits with no 

previously reported study in the GWAS catalog at the time of our analysis. Genomic control 

lambda values (λGC) confirmed the meta-analyses were well-controlled(Devlin et al., 2001). The 

mean λGC across all labs was 1.035, ranging between 0.995 and 1.103. Consistent with 

polygenicity(B. K. Bulik-Sullivan et al., 2015), traits with a larger numbers of catalog variants 

had, on average, larger λGC values. The mean λGC for labs with zero testable catalog SNPs was 

1.020.  Labs with one to twenty testable Catalog SNPs had mean λGC of 1.028 and labs with 

greater than 20 testable Catalog SNPs had mean λGC of 1.066.  

 

Replication of GWAS Catalog SNPs 

We first performed a replication analysis of the 1,313 GWAS catalog SNPs to validate 

the EHR-derived lab traits. Overall, we replicated 982 of the GWAS catalog SNPs, giving an 

overall replication rate of 74.8% (Table 1). Replication rates varied across the individual labs; 
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however, we did replicate at least one catalog SNP for each of the 48 traits with a testable 

catalog SNP. Replication rates were high for several previously well-studied traits, including red 

blood cell indices (MCHC, MCH, MCV), metabolic measures (glucose and HgbA1C) and 

creatinine. The lowest replication rates occurred for the differential panel of white blood cell 

traits (neutrophils, lymphocytes) which included catalog SNPs discovered in the much larger UK 

Biobank cohort(Bycroft et al., 2017). Interestingly, replication rates differed among the well-

studied lipid panel traits. We replicated a lower percentage of catalog SNPs for LDL cholesterol 

and total cholesterol compared to triglycerides and HDL cholesterol. 

Several factors influenced our ability to replicate individual catalog SNPs (Figure 2), 

each consistent with statistical power rather than adequate matching of labs as the primary 

limiting factor. Replication increased sharply with the number of publications reporting the 

association, as quantified using the PMID citation count from the GWAS catalog (Figure 2A). 

Associations reported only once in the catalog are a mix of true unreplicated associations and 

false positives, whereas associations reported more than once have already been replicated and 

are likely real. We replicated 70% (699 of 1000) of associations reported only a single time. That 

rate increased to 77% (196 of 256) for associations reported twice, 91% for associations reported 

three times and nearly 100% (56 of 57) for associations reported four or more times. Importantly, 

this analysis provides the first replication for 699 previously reported quantitative lab trait 

associations, increasing the likelihood that these are true genotype-phenotype associations 

(Supplementary Table).  

Replication rate was also dependent on both the best previously reported p-value for the 

association and the sample size of the study reporting the association (Figure 2B & 2C). Our 

replication rate was lowest, between 55%-65%, for associations whose best reported p-value was 
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just above genome-wide significance of 5e-8 but increased sharply thereafter.  We replicated 

~85% of catalog SNPs with best reported p-value <1e-15 and over 90% of catalog SNPs with 

best p-value <1e-20. Replication rate increased with the relative size of our meta-analysis 

compared to the largest reported study. We replicated approximately 90% of catalog SNPs for 

which our meta-analysis was at least as large as prior studies reporting the association.   

Novel Associations 

We identified 264 SNP-lab trait pairs representing potentially novel associations. Based 

on visual inspection, these SNPs corresponded to 31 distinct peaks for which we report the lead 

SNP having the strongest association signal at each peak (Table 2).  

We performed a replication analysis of the 31 lead SNPs using an independent cohort of 

29,043 BioVU patients that became available after the initiation of our primary analysis. . One 

SNP potentially novel for both immature granulocytes measures failed QC filtering in the 

replication cohort and could not be tested for replication. In total, we replicated 22 of the 31 

(71%) novel associations (Table 2). Among the 24 replicated novel SNPs are the first 

associations for amylase (Amyl) and bicarbonate (CO2).  We identified and replicated additional 

associations for alanine aminotransferase (ALT), alkaline phosphate (AlkP), Relative count of 

basophils (BasoR), total bilirubin (Bili), calcium (Ca), creatinine phosphokinase (CPK), glucose 

(gluc), mean corpuscular hemoglobin concentration (MCHC), lipase, and thyroid stimulating 

hormone (TSH).  

Several of our novel findings have biological or existing evidence that support the 

association. Three of the associations have recently been identified for the same lab in non-

European cohorts. rs855791, a missense variant in TMPRSS6 (transmembrane serine protease 6), 

and rs8022180, an intronic variant in TRAF3, were shown to be associated with bilirubin and 
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serum total protein level, respectively, in a Japanese population(Kanai et al., 2018). rs112574791 

is in the glutamic--pyruvic transaminase gene GPT, a gene associated with alanine 

aminotransferase levels in the Korea Biobank(Moon et al., 2019). Our results confirm these prior 

findings and suggest a cross-ethnic effect in European populations.  

The intronic variant rs8051363 in CTRB1 was associated with both amylase and lipase, 

clinical assays of pancreas function used to diagnose pancreatitis. While the SNP itself has 

previously been linked to blood protein measurements(Sun et al., 2018), the CTRB1 gene 

encodes chymotrypsin, a component of digestive enzyme secreted by the pancreas, and was 

previously shown to be associated with alcoholic chronic pancreatitis(Rosendahl et al., 2018). A 

second novel SNP for lipase, rs9377343, is an intronic variant in FUT9, a gene that showed 

association with diabetic neuropathy in a trans-ethnic meta-analysis(Iyengar et al., 2015). 

The amylase-associated SNP rs1930212 resides near three amylase genes (AMY2B, 

AMY2A and AMY1) on chromosome 1, each of which encodes enzymes that digest starch into 

sugar(Usher et al., 2015). Copy number variation for amylase genes is hypothesized to have been 

subject to selective sweeps corresponding to starch content in human diets(Inchley et al., 2016). 

The rs1930212 SNP tags a known deletion of AMY2A, a pancreatic amylase enzyme, most 

common in populations historically lacking starch rich diets(Inchley et al., 2016).  

One of our novel results for calcium, rs2839899, is an intronic variant in GNAQ (G 

protein subunit alpha q), a signaling protein involved in response to various hormones. Variation 

in GNAQ is associated with Sturge-Weber syndrome(Shirley et al., 2013), a hereditary vascular 

malformation syndrome which can lead to deposits of calcium (calcification) in the brain. 
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Three SNPs showed associations with glucose. rs7607980 is a missense variant in 

COBLL1 previously linked to fasting blood insulin and Type 2 diabetes(Kooner et al., 2011; 

DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al., 2014; Morris 

et al., 2012). rs9273364 is located near HLA-DQB1-AS1, a gene associated with T2D(Xue et al., 

2018). And, although it did not replicate in our analysis, rs896854, a variant mapping to both 

NDUFAF6 and TP53INP1, has recent associations with T2D(Voight et al., 2010) and eosinophil 

count(Kichaev et al., 2019) among UK biobank participants. 

We note that several associations occurred within the HLA region on chromosome 6, 

notably for glucose, hemoglobin A1C, and TSH. These variants are likely segregating with HLA 

types, which are strongly associated with various autoimmune diseases including diabetes and 

autoimmune thyroiditis, which have strong effects in these particular labs. 

Genetic Correlation of Clinical Labs  

We computed the genetic correlation between pairs of labs using LD score regression(B. 

Bulik-Sullivan et al., 2015) to learn about shared genetic basis of these traits (Figure 3). We 

restricted analysis to the 50 lab traits with heritability of at least 7% based on recommendations 

by the developers of LDscore regression that estimation of genetic correlation can be unreliable 

when one of trait has heritability close to zero. We observe strong positive correlations among 

lab traits of similar function. For example, the liver enzymes alanine aminotransferase (ALT) 

and aspartate aminotransferase (AST) were strongly correlated, as were the measures of renal 

function Blood Urea Nitrogen (BUN) and creatinine (Creat). Prothrombin time (PT), a measure 

of clot formation time and a derivative measure International Normalized Ratio (INR) were 

positively correlated as expected. More surprisingly, INR was also positively correlated with 
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vitamin D. While vitamin K is known to be required for the formation of prothrombin, the 

correlation with Vitamin D suggests a potential covariance in nutrition or nutrient absorption. 

A prominent cluster of labs (top right corner of the heatmap) contains primarily white blood cell 

traits including measures of immature granulocytes, lymphocytes, monocytes and neutrophils. 

The immature granulocytes also showed a strong correlation with ferritin (ferrit), an iron storage 

and acute phase protein. Ferritin and immature granulocytes can both be elevated during severe 

acute inflammation, explaining this correlation.  

As expected, HgbA1C and glucose were strongly correlated. More interestingly, they also 

clustered with Red cell Distribution Width (RDW) and Erythrocyte Sedimentation Rate 

(SedRat).  This cluster of labs showed negative associations with high density lipoprotein 

(HDL), mean cell hemoglobin concentration (MCHC), and mean cell hemoglobin (MCH). This 

supports a pathophysiology where the metabolic syndrome (obesity, elevated glucose, low HDL) 

is linked by complex mechanisms to persistent low-level inflammation (elevated SedRat), and 

anemia of chronic disease (elevated RDW, low MCH, low MCHC). 

We identified a cluster containing red cell indices – mean cell hemoglobin concentration 

(MCHC), mean cell hemoglobin (MCH), and mean cell volume (MCV) – with total bilirubin 

(Bili) and transferrin saturation (%SAT). This reflects the biology of hemoglobin – iron is 

carried to red cell precursors by transferrin and incorporated into heme and thence hemoglobin, 

red cells are filled with hemoglobin, and at the end of a red cell lifecycle, heme is broken down 

into bilirubin. 

Additional clusters include (1) calcium (Ca), albumin (Alb) and total protein in blood (TProt), 

(2) thyroid stimulating hormone (TSH) and lactate dehydrogenase (LDH), and (3) hematocrit 

(HCT), red blood cell count (RBC) and hemoglobin (Hgb) with free tetraiodothyronine (FT4).  
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Albumin (Alb) is the major blood protein, so Alb levels are unsurprisingly correlated with total 

blood protein (TProt). Calcium homeostasis is driven by free calcium, while albumin acts as a 

calcium sink, therefore calcium (Ca) levels would reasonably be expected to correlate with Alb 

(Payne et al., 1973). 

 

Hematocrit (HCT), red blood cell count (RBC) and hemoglobin (Hgb) are interrelated 

measures of oxygen carrying capacity in blood and unsurprisingly correlated. In our study, they 

are also correlated with free tetraiodothyronine (FT4). Anemia (low HCT, RBC, and Hgb) may 

be a feature of hypothyroidism (low FT4), and tetraiodothyronine - thyroid hormone - has been 

reported to play a role in red cell maturation (McDermott, 2009; Gao et al., 2017). 

 

A final cluster was identified linking thyroid stimulating hormone (TSH) to lactate 

dehydrogenase (LDH). Muscle breakdown, manifesting as weakness, is a feature of 

hypothyroidism, and therefore other laboratory anomalies seen in hypothyroidism include release 

of muscle enzymes including LDH (McDermott, 2009; Chertow et al., 1974). 

Analytic strategies for EHR-derived lab traits 

 

We explored the impact of analytic choices on downstream analysis by performing 

parallel GWAS analyses in the MGI and BioVU cohorts with one of the analytic steps perturbed 

from our original analysis: either the individual-level statistic used to summarize longitudinal lab 

measurements (median, maximum measurement, first available measurement) or the inclusion of 

covariates for underlying comorbid health conditions. We performed these analyses on the 22 lab 
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traits for which there were least 20 testable GWAS catalog SNPs, using the catalog SNPs to 

interpret the effect of each analytic strategy on true risk variants.  

Summary statistic  

 

Overall, 13.3% of testable catalog SNPs showed a major change in significance when 

using the median as opposed to mean value for the summary statistic (Table 3). The median 

rarely resulted in a consistent improvement for both MGI and BioVU. Only 0.4% of catalog 

SNPs had concordant increased effect compared to 7.6% with concordant decreasing effect and 

5.2% with a discordant effect. Creatinine was the sole lab for which using median lab value had 

a greater number of catalog SNPs with concordant increased significance than catalog SNPs with 

concordant decreased significance. Even here the effect was small, only two of the 36 catalog 

SNPs had a concordant increase in significance.  

In comparison, the first available measurement and the maximum measurement had a 

greater impact on association p-values for catalog SNPs. In both cases, the alternate summary 

statistic was most likely to cause a concordant decrease in significance. Using the first available 

measurement resulted in concordant increase for only 3.1% of catalog SNPs, whereas 16.9% of 

catalog SNPs had a concordant decrease and 4.5% had discordant changes in significance. Using 

the maximum available measure had similar performance (5.6% concordant increase, 18.3% 

concordant decrease, 5.5% discordant). 

Despite an overall trend of reducing significance of known risk variants, several related 

labs for blood oxygen carrying capacity did benefit from using the first available or maximum 

measurements. Red blood cell count (RBC), hematocrit (HCT) and hemoglobin (Hgb) each 

showed concordant increase in significance for several of their respective catalog SNPs without 
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negatively impacting remaining catalog SNPs. This likely reflects red cell biology.  Conditions 

that decrease oxygen carrying capacity, such as blood loss or iron deficiency are far more 

common than those that increase it, polycythemia vera or severe obstructive sleep apnea, for 

example. Thus, maximum measurement of an individual’s oxygen carrying capacity more likely 

represents the genetically determined set point. 

Controlling for comorbid disease  

 

The comorbidity model, containing binary covariates for 42 comorbid diseases with the 

potential to alter lab values, produced the largest proportion of catalog SNPs (6.2%) with 

concordant increased significance in MGI and BioVU among the alternate analysis strategies 

considered. Despite this, a roughly equal number of catalog SNPs had discordant effects (6.8%) 

between the two cohorts.  

The clearest example of a substantial and consistent effect on catalog SNPs between MGI 

and BioVU was for HDL and Mean platelet volume (MPV). Interestingly, in contrast to this 

result for HDL , LDL had no catalog SNPs with concordant increase in significance and seven 

catalog SNPs with concordant decrease.  

Discussion 

 

This study represents the first cross-health system study of EHR-derived lab traits at large 

scale. We performed meta-analysis GWAS of 70 lab traits and have made these association 

results easily accessible to the research community. Thoroughly dissecting each lab-SNP 

combination is a daunting task. Here, we focused on replication of GWAS catalog variants to 

validate our data and highlighted novel genetic associations. We anticipate that our full results, 
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including those which do not reach genome-wide significance will be useful in replicating future 

novel results, in studies which synthesize findings across multiple SNPs, or in hypothesis-driven 

studies which require less stringent thresholds. 

Our study serves as a proof-of-principle for performing cross-health-system genetic 

analysis of EHR-derived lab traits. The high replication rate for known GWAS variants indicates 

that EHR lab traits can be well-matched between discordant health systems and that 

measurements taken during real-life medical interactions sufficiently reflect those taken under 

more idealized experimental conditions. Moreover, this implies that mechanisms underlying 

variation in lab traits among healthy populations also act in a health system population with 

diseased individuals, strengthening their clinical relevance. By comparing various analytic 

strategies, we show that there is no optimal strategy that holds across all lab traits. In fact, we 

observed many instances in which the alternate analysis simultaneously increased significance 

for some risk variants and decreased significance for others. Thus, even within a given lab trait, 

an optimal strategy for variant discovery might not exist. We also considered a summary statistic 

based on Area Under the Curve for the longitudinal lab data (Tai, 1994; Wolever and Jenkins, 

1986) (citation). Analysis in the MGI cohort showed that this measure performed consistently 

worse than the mean lab measurement (Supplementary Material). A potential area of future 

research would be determining if multiple versions of a lab trait can be combined into an 

omnibus test that simultaneously increases power across all risk variants. We encourage 

researchers to use our results across the various analysis strategies to guide decisions about how 

best to analyze their traits of interest. 

The primary strength of our study was the access to two independent biobank cohorts. 

Using two cohorts provides an increase in sample size and power over analyzing and reporting 



 31 

on each cohort separately. In addition, the two-cohort design adds a built-in internal consistency 

check to our results by requiring effect sizes to be in the same direction in both cohorts. This 

additional requirement reduced the potential for unknown biases in the health system cohorts to 

create spurious results when replicating GWAS catalog SNPs or novel association discovery. 

Further, the independent cohorts provided the means to rigorously examine the portability of 

analytic strategies between biobanks. A similar analysis performed in a single cohort could 

produce recommendations over fitted to one specific context. Use of multiple sites increases the 

generalizability of our recommendations. This study was further strengthened by the fortuitous 

availability of an independent tranche of BioVU samples that provided an immediate replication 

cohort for the novel findings of our meta-analysis. 

Our study has implications for the design and analysis of similar studies in the future. 

Matching and analyzing lab data between health systems is difficult and requires substantial 

content knowledge. This study benefited from a multi-disciplinary team consisting of clinical 

experts to lead the categorization of the raw lab data extracts and statistical geneticists to guide 

analytic strategies. We leaned heavily on GWAS catalog SNPs to serve as positive controls. We 

recommend researchers to incorporate an explicit replication step to validate lab data prior to 

testing novel hypotheses. Summarizing the longitudinal measurements simply using the mean 

proved relatively robust across labs but was by no means optimal in all scenarios. Future studies 

can benefit from considering a summary statistic suited to the specific lab trait being evaluated. 

Our analysis also highlights that close attention must be paid to differences in the preparation 

and analysis of EHR phenotypes, particularly longitudinal lab measurements. Failing to replicate 

a prior finding can be due to lack of a true effect but also a variety of differences between 

biobank cohorts and analytic procedures.  
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We were motivated to examine the effect of controlling for disease status because of its 

use in the analysis of lab traits in BioBank Japan(Kanai et al., 2018). Controlling for diseases or 

risk factors such as tobacco use is a common practice(Astle et al., 2016). We considered testing 

the effect of each disease individually but discarded it as cumbersome. Our strategy reflects a 

broad-spectrum approach in which diagnoses that are rare or have limited effect on a lab can be 

rationalized as not causing harm by remaining in the model. The effect of controlling for 

comorbid diseases can be unpredictable. For example, within the components of a lipid panel, 

controlling for disease status led to a net improvement for HDL catalog SNPs, a net worsening 

for LDL catalog SNPs, and had cohort-specific impact on triglycerides. From a methodological 

standpoint, this argues for careful consideration of comorbid disease covariates. From a practical 

standpoint, the absence of diagnostic data should not be seen as precluding use of a clinical lab 

data. 

A limitation of studying clinical labs in real-life cohorts is that some measurements will 

be affected by medication. We were unable to formally address the effect of medication because 

of unreliable measurements of medication. However, it remains an important consideration for 

future EHR-based lab studies and requires further study. There was indication that in situations 

where a disease diagnosis is likely to be accompanied by medication, for example a diagnosis of 

dyslipidemia with lipid labs, controlling for disease status diagnosis serves as a reasonable proxy 

to treatment status. As research interest in EHR phenotypes increases, we anticipate that 

improved capture of prescription data will facilitate the identification of medication effects. 

A further limitation of this study is the number of analyzed genetic variants. The study 

was restricted to ~800K SNPs because BioVU imputed genotypes were unavailable at time of 

analysis. Although this limited our ability to discover novel variation, the number of SNPs was 
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more than sufficient to perform the primary purpose of the paper, a proof-of-principle replication 

analysis across a broad range of clinical labs and analytic strategies. However, there are likely 

many loci remaining to be discovered for these labs, particularly the understudied traits. 

In conclusion, we report the first lab-wide genome-wide association study linking data 

between two independent EHR-based cohorts. We achieved a high degree of replication of prior 

associations and report a modest number of new associations. In melding these data sets, we 

addressed key questions in design and analysis of ‘real world’ data that are increasingly relevant. 
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Table 2.1: Summary of clinical lab traits tested, including meta-analysis samples size, number of testable GWAS catalog SNPs, 
number of replicated catalog SNPs and replication rate 

 

Lab 

Name Category Description 

Meta-

Analysis 

Sample Size 

Number of 

Testable 

GWAS 

Catalog 

SNPs 

Number of 

Catalog SNPs 

Replicated in 

Meta-Analysis 

Replication Rate 

(%) 

Alb Liver 

function 

Albumin, most 
abundant blood 

protein 

39,513 5 4 80 

AlkP Liver 

function 

Alkaline 
phosphatase, bile 

duct and bone 
enzyme released by 

damage 

39,809 3 1 33 

ALT Liver 

function 

ALanine 
aminoTransferase, 

liver enzyme 
released by damage 

40,116 0 0 N/A 

Amyl Pancreas Amylase, digestive 
pancreas enzyme 

released by damage 

10,368 0 0 N/A 

AST Liver 

function 

ASpartate 
aminoTransferase, 

liver enzyme 
released by damage 

40,176 0 0 N/A 

BasoAB Differential Basophils, white 

blood cell type 

(absolute number) 

29,653 19 12 63 

BasoRE Differential Basophils, white 
blood cell type 

(relative 
proportion) 

32,578 11 7 64 

BEAR Blood gas Base Excess 
ARterial, Acid-
base measure of 

metabolic acidosis 
or alkalosis 

8,895 0 0 N/A 

Bili Liver 

function 

Total Bilirubin, 

heme byproduct 

excreted by liver 

38,416 4 4 100 
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BNP Heart failure Brain Natriuretic 
Protein, Signaling 
protein from heart 

under stress 

9,369 1 1 100 

BUN Renal 

function 

Blood Urea 
Nitrogen Protein 

byproduct excreted 
by kidneys 

45,922 0 0 N/A 

Ca Electrolytes Calcium, blood 
electrolyte 

46,100 9 7 78 

Chol Lipid panel Total cholesterol 23,642 91 60 66 

CKMBRe Cardiac 

markers 

Creatine Kinase 
Muscle Brain 

isoform, relative, 
Enzyme in heart 

released by damage 

10,964 0 0 N/A 

Cl Electrolytes Chloride, blood 
electrolye 

45,920 0 0 N/A 

CPK Cardiac 

markers 

Creatine 
PhosphoKinase, 

enzyme in skeletal 
and cardiac muscle 
released by damage 

15,150 0 0 N/A 

Creat Renal 

function 

Creatinine, creatine 
byproduct excreted 

by kidneys 

46,027 36 29 81 

CRP Inflammator

y 

C-reactive protein, 
marker of 

inflammation 

12,447 16 7 44 

EoAB Differential Eosinophils, white 
blood cell type 

(absolute count) 

29,912 31 25 81 

EoRE Differential Eosinophils, white 
blood cell type 

(relative 
proportion) 

26,980 28 18 64 

Ferrit Iron Ferritin, iron 
storage protein 

11,744 6 1 17 

FT4 Thyroid 

function 

Free 
tetraiodothyronin, 

active thyroid 
hormone 

15,868 0 0 N/A 

Gluc Metabolic Blood glucose 46,027 18 16 89 

HCO3 
(CO2) 

Blood gas Bicarbonate, main 

blood pH buffer 

45,932 0 0 N/A 
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HCT Complete 

blood count 

Hematocrit, 
measure of blood 
oxygen carrying 

capacity 

46382 36 20 56 

HDL Lipid panel High density 
lipoprotein 
cholesterol 

23,318 101 84 83 

Hgb Complete 

blood count 

Hemoglobin, 
oxygen carrying 

protein 

46,159 34 18 53 

HgbA1C Metabolic Hemoglobin A1C, 
measure of blood 

glucose over 
previous 90 days 

17,407 11 10 91 

IGranAB Differential Immature 
granulocytes, 

immature white 
blood cell type 

(absolute count) 

30,744 0 0 N/A 

IGranRE Differential Immature 
granulocytes, 

immature white 
blood cell type 

(relative 
proportion) 

30,683 0 0 N/A 

INR Coagulation International 
Normalized Ratio, 
derivative of PT 

used to dose 
anticoagulants 

33,695 0 0 N/A 

Iron Iron Iron 11,317 4 3 75 

K Electrolytes Potassium, blood 
electrolyte 

45,941 0 0 N/A 

LAC Blood gas Lactic acid, marker 
of tissue hypoxia 

8,792 0 0 N/A 

LDH Tumor 

markers 

Lactate 
dehydrogenase, 
enzyme found in 
many cell types 

released by damage 

9,734 0 0 N/A 

LDL Lipid panel Low density 
lipoprotein 
cholesterol 

22,896 84 58 69 

Lipase Pancreas Lipase, digestive 
pancreas enzyme 

released by damage 

12,649 2 2 100 
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LymphA
B 

Differential Lymphocytes, 
white blood cell 
type (absolute 

count) 

32,548 35 22 63 

LymphRE Differential Lymphocytes, 
white blood cell 

type (relative 
proportion) 

32,553 20 10 50 

MCH Red cell 

indices 

Mean corpuscular 

hemoglobin, used 

to differentiate 

causes of anemia 

46,159 64 57 89 

MCHC Red cell 

indices 

Mean corpuscular 
hemoglobin 

concentration, used 
to differentiate 

causes of anemia 

46,157 20 19 95 

MCV Red cell 

indices 

Mean corupuscular 
volume, used to 

differentiate causes 
of anemia 

46,153 77 68 88 

Mg Electrolytes Magnesium, blood 
electrolyte 

22,773 4 4 100 

MonoAB Differential 

 

Monocytes, white 
blood cell type 

(absolute count) 

32,587 43 32 74 

MonoRE Differential Monocytes, white 
blood cell type 

(relative 
proportion) 

32,594 15 12 80 

MPV Coagulation Mean platelet 
volume 

40,058 84 73 87 

Na Electrolytes Sodium, blood 
electrolyte 

45,933 0 0 N/A 

pCO2 Blood gas Arterial partial 
pressure of CO2, 

measure of 
ventilation  

9,516 0 0 N/A 

pH Blood gas Arterial pH 10,279 0 0 N/A 

Phos Electrolyte Phosphorus, blood 
electrolyte 

21,618 5 4 80 

PLT Complete 

blood count 

Platelet count, clot 
forming measure 

46,145 102 84 82 
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PMNAB Differential Neutrophils, white 
blood cell type 

(absolute count) 

32,595 35 15 43 

PMNRE Differential Neutrophils, white 
blood cell type 

(relative 
proportion) 

29,435 21 7 33 

pO2 Blood gas Arterial partial 
pressure of oxygen, 

measure of 
oxygenation  

9,557 0 0 N/A 

PT Coagulation 

panel 

Prothrombin time, 
clot forming 

measure 

33,671 1 1 100 

PTT Coagulation 

panel 

Partial 
Thromboplastin 

Time, clot forming 
measure 

30,972 9 6 67 

RBC Complete 

blood count 

Red Blood Cell 
count, measure of 

blood oxygen 
carrying capacity 

46,158 50 31 62 

RDW Red cell 

indices 

Red cell 

Distribution Width, 

measure of 

variability in MCV, 

used to 

differentiate causes 

of anemia 

44,281 29 21 72 

%SAT Iron Transferrin 

saturation, measure 

of available iron 

transport capacity 

10,180 4 3 75 

SedRat Inflammator

y markers 

Erythrocyte 
Sedimentation Rate 
(ESR), non-specific 

marker of 
inflammation 

13,945 5 5 100 

TIBC Iron Total Iron Binding 
Capacity, measure 
of iron transport 
capacity, used to 

10,397 1 1 100 
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calculate transferrin 
saturation 

TProt Liver 

function 

Total Protein in 
blood 

38,352 2 2 100 

Trigs Lipid panel Triglycerides, 
tested as part of 

cholesterol panels 

23,963 73 63 86 

Troponin Cardiac 

markers 

Troponin I, heart 
protein released by 

damage 

10,106 0 0 N/A 

TSH Thyroid 

function 

Thyroid 
Stimulating 

Hormone, test of 
thyroid function 

and feedback 

27,441 1 1 100 

UCrea Renal 

function 

Urine creatinine, 
measure of kidney 

function 

10,522 0 0 N/A 

UricA Gout Uric acid, 
nucleotide 

breakdown product 
elevated in gout 

7,429 17 14 82 

Vi-B12 Nutrition Vitamin B12, used 
in DNA synthesis 

12,506 7 7 100 

Vit-D Nutrition Vitamin D storage 
form, regulates 

calcium and 
phosphorus 

12,250 6 6 100 

WBC Complete 

blood count 

White Blood Cell 
count 

46,100 33 27 82 

TOTAL    1313 982 74.8 
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Table 2.2: Summary of Novel findings 

     MGI-BioVU Meta-Analysis BioVU Replication Cohort  

Lab SNP Chr:Pos Allele 1 

Allele 

2 N Beta P-Value N Beta P-Value Replicated 

AlkP rs3843738 17:43739194 A G 39,809 0.04 2.51E-08 22,920 0.01 3.58E-01 No 

AlkP rs73004933 19:19675696 T C 39,809 0.08 4.47E-09 22,730 0.05 7.14E-03 Yes 

ALT rs112574791 8:145730221 A G 40,116 0.18 3.02E-08 23,007 0.15 5.80E-04 Yes 

Amyl rs1930212 1:104324819 A G 10,368 -0.25 1.48E-45 3,573 -0.18 4.69E-09 Yes 

Amyl rs8051363 16:75255217 A G 10,368 0.10 1.07E-10 3,564 0.09 4.51E-04 Yes 

BasoRE rs386785158 15:70744437 T C 29,653 0.06 7.94E-13 16,191 0.04 2.10E-04 Yes 

Bili rs855791 22:37462936 A G 39,890 0.04 2.34E-08 22,918 0.04 1.00E-05 Yes 

BUN rs10516957 4:95949206 T C 45,922 -0.06 1.35E-08 25,245 0.01 6.11E-01 No 

Ca rs6727384 2:97400324 A G 46,100 -0.04 5.13E-10 25,200 -0.05 2.06E-07 Yes 

Ca rs2839899 9:80350999 A G 46,100 0.04 6.76E-09 25,194 0.03 9.47E-03 Yes 

Cl rs1030025 2:103105611 A T 45,920 0.05 4.68E-10 25,204 0.02 9.16E-02 No 

FT4 rs10122824 9:139109861 T G 15,868 0.07 1.00E-09 9,721 0.07 7.28E-07 Yes 

Glucose rs7607980 2:165551201 T C 46,027 -0.05 4.27E-09 25,312 -0.04 2.09E-03 Yes 

Glucose rs896854 8:95960511 T C 46,027 -0.04 1.55E-09 25,311 0.01 3.64E-01 No 

Glucose rs9273364 6:32626302 T G 46,027 0.05 2.63E-11 24,801 0.05 3.10E-06 Yes 

HgbA1C rs3130628 6:31609272 T C 17,407 -0.08 1.23E-08 7,340 0.03 3.79E-02 No 

HCO3 

(CO2) 

rs1799913 11:18047255 T G 45,932 -0.04 5.89E-09 25,219 -0.04 7.82E-07 Yes 
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HCO3 

(CO2) 

rs77375846 2:103155075 T C 45,932 -0.10 9.33E-25 25,217 -0.06 2.78E-05 Yes 

IGranRE rs13284665 9:131513370 A G 30,683 0.22 6.61E-74 QC Fail N/A N/A No 

IGranAB rs13284665 9:131513370 A G 30,744 0.13 6.76E-35 QC Fail N/A N/A No 

K rs10039139 5:137164863 T G 45,941 0.07 8.32E-16 25,211 0.06 1.83E-06 Yes 

Lipase rs9377343 6:96512220 A G 12,649 -0.10 4.79E-14 5,564 -0.08 3.60E-05 Yes 

Lipase rs8051363 16:75255217 A G 12,649 0.13 2.00E-20 5,549 0.07 8.39E-04 Yes 

MCHC rs12352830 9:80041132 C G 46,157 -0.04 4.37E-08 26,243 -0.04 5.77E-05 Yes 

MonoRE rs117358683 12:44145965 A G 32,594 -0.23 2.69E-08 16,185 0.04 4.07E-01 No 

MPV rs11212635 11:108310702 A T 40,058 0.04 9.55E-09 17,333 -0.01 3.68E-01 No 

TProt rs8022180 14:103263020 A G 38,352 0.04 7.24E-10 19,665 0.03 2.63E-03 Yes 

Trigs rs6847598 4:76750356 T C 23,963 -0.05 1.58E-08 12,526 -0.03 1.48E-02 Yes 

TSH rs12590163 14:105223525 T C 27,441 -0.05 4.68E-08 17,042 -0.04 6.76E-04 Yes 

TSH rs310766 3:12233482 A G 27,441 -0.06 1.66E-08 17,079 -0.05 1.42E-05 Yes 

TSH rs9275141 6:32651117 T G 27,441 0.05 3.47E-09 17,054 0.04 8.64E-04 Yes 

 



 42 

Table 2.3: Classification of catalog SNPs for alternate summary statistics 

     

 

https://drive.google.com/file/d/1hlaLOY0wLQli_V6zvgGXhSk8bviLgxit/view?usp=sharing 
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Table 2.4: Classification of catalog SNPs for the comorbidity model, which includes covariates for various lab-altering diseases. 

  Comorbidity Model 

 

 

Lab 

 

Testable 

Catalog 

SNPs 

Concordant 

Increased 

Significance 

Concordant 

Decreased 

Significance 

 

Discordant 

Effect 

Chol 91 2 5 2 

Creat 36 1 3 2 

EoAB 31 0 0 0 

EoRE 28 0 0 1 

HCT 36 2 0 2 

HDL 101 15 2 2 

Hgb 34 1 0 0 

LDL 84 0 7 2 

LymphAB 35 2 0 4 

LymphRE 20 0 0 0 

MCHC 20 2 0 2 

MCH 64 1 7 26 

MCV 77 9 1 4 

MonoAB 43 5 0 1 

MPV 84 18 0 5 

PLT 102 5 1 4 

PMNAB 35 0 2 1 

PMNRE 21 0 0 2 

RBC 50 2 0 5 

RDW 29 0 1 3 

Trigs 73 3 3 7 

WBC 33 2 2 2 
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Total 
1127 

70  

(6.2%) 

34  

(3.0%) 

77  

(6.8%) 
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Figures 

 

Figure 2.1:  Scatterplot of 𝛥𝛥𝑝𝑝 in MGI and BioVU when using the first available measure rather than the mean measurement in a 
GWAS of Cholesterol level. 

 

 

 

Δ𝑝𝑝 is the -log fold change in p-value at a SNP for using an alternate analysis, in this case the first 

available lab measurement. Each dot is a SNP, with red dots indicating GWAS catalog SNPs for 

the specific lab trait. The white diamond contains 99.9% of SNPs and is used to identify SNPs 

with the largest changes in p-value due to the alternate analysis. SNPs outside the bounding 

diamond in the top right (green) quadrant show a concordant increase in significance in both 

MGI and BioVU, that is, SNPs for which the alternative strategy increases significance in both 

cohorts. Conversely, SNPs in the bottom left (blue) quadrant show a concordant decrease in 

significance in both MGI and BioVU. SNPs in either the top left or bottom right (yellow) 
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quadrants have a discordant effect, indicating a large increase in p-value in one cohort but a large 

decrease in p-value in the second cohort. In this example, one catalog SNP showed a concordant 

increase in significance when using the first available lab measure, 11 catalog SNPs had a 

concordant decrease in significance and one SNP had discordant effects. The complete set of 

scatterplots for each analyzed lab and alternative analysis strategy (summary statistic and 

comorbidity model) are included in the Supplementary Material. Tables 3 and 4 summarize the 

movement of catalog SNPs for each lab and analysis strategy.   
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Figure 2.2: Sample sizes for 70 clinical lab traits from the meta-analysis of BioVU and MGI EHRs (red triangles) and the previous 
largest reported GWAS in a European cohort (black circles). 

 

Our meta-analysis provides the largest GWAS for 34 lab traits, including the first for 14. 

Asterisks along the bottom row indicate labs for which we identified a novel genetic association. 
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Figure 2.3: Replication rates for GWAS catalog SNPs of clinical labs. 

 

The replication rates increased with (A) the number of times an association was reported in the 

GWAS catalog, (B) the most significant p-value previously reported for the association, and (C) 

the ratio of sample size in our meta-analysis to that of the previous largest study. 
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Figure 2.4: Pairwise genetic correlation of clinical lab traits. 

 

 

We restricted to labs with heritability of at least 7%. Squares are colored only for correlations 

having a p-value <0.05 for the null hypothesis of correlation equal to zer 
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Supporting Information 

 

Supplementary Table 2.5: List of ICD-10 codes used for defining binary trait comorbidities in MGI and BioVU participants for the 
comorbidity GWAS model. 

Disease Phecode ICD10 

Hypertension 401 I10 

Dyslipidemia 272.1 E78 

Ischemic heart disease 411 I24, I25 

Type 2 diabetes 250.2 E11 

Overweight, obesity 278 E66 

Tobacco use disorder 318 Z72.0, F17 

Osteoarthritis 740 M19 

Asthma 495 J45 

Epilepsy 345 G40 

Hypothyroidism 244 E03 

Cerebrovascular disease 433 I67, I69 

Heart failure 428 I50 

Osteoporosis, osteopenia 743 M80, M81, M83 

Chronic airway obstruction 496 J44 

Atrial fibrillation 427.2 I48 

Arrhythmia NOS 427.5 I49 

Chronic kidney disease 585.3 N18 
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Chronic liver disease and cirrhosis 571 K70, K71, K72, K73, K74, K75, 

K76, K77 

Alcohol use disorder 317 F10 

Iron deficiency anemia 280 D50 

Type 1 diabetes 250.1 E10 

Breast cancer 174 C50 

Bipolar 296.1 F31 

Rheumatoid arthritis 714 M05 

Peripheral vascular disease 443 I73 

Prostate cancer 185 C61 

Lung cancer 165 C34 

Leukemia 204 C91, C92, C93, C94, C95 

Non-Hodgkin lymphoma 202 C82, C83, C84, C85, C86, C88, 

C90, C96 

Colorectal cancer 153 C18 

Thyroiditis 245 E06 

Thyrotoxicosis 242 E05 

Aplastic anemia 284 D60, D61 

Liver cancer 155 C22 

Pancreatic cancer 157 C25 

Endometrial cancer 182 C54 

Hodgkin disease 201 C81 

Cervical carcinoma 180.1 C53 
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Ovarian carcinoma 184.11 C56 

Gastric cancer 151 C16 

Esophageal cancer 150 C15 

Gallbladder and 

cholangiocarcinoma 

159.3 C23 
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Supplementary Table 2.6: Table of 1,313 SNPs extracted from the GWAS Catalog based on prior associations with the lab traits 
and SNPs considered in this study. These associations have been reported at least once in a mixed-sex, adult, European-
predominant population not selected for the presence of any disease. 

 

https://drive.google.com/file/d/1LLEBNEHQx8WAhvA-iThxc46xt2dRD-

AD/view?usp=sharing 
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Supplementary Table 2.7: Comparison of GWAS results based on the Area Under the Curve (AUC) summary statistic and the 
default mean value summary statistic. 

Lab 
Normal 
Range Units 

Number 
of Catalog 

SNPs 

Smaller  
p-value 

for AUC 

Larger  
p-value 

for 
AUC 

𝝌𝝌𝟐𝟐 test 
for  

p-value 
change 

 
Median 

fold 
change 

Chol (-Inf, 200) mg/dL 92 20% 80% 5.3E-09  5.5 
Creat (0.7, 1.3) MG/DL 36 25% 75% 2.7E-03  11.1 
EoAB (-Inf, 0.8) K/MM3 31 35% 65% 1.1E-01  14.9 
EoRE (-Inf, 6) % 28 36% 64% 1.3E-01  4.4 
HCT (39, 50.2) % 36 28% 72% 7.7E-03  12.4 
HDL (40, Inf) mg/dL 102 13% 87% 5.3E-14  44.1 
Hgb (13.5, 17) g/dL 34 32% 68% 4.0E-02  2.2 
LDL (-Inf, 100) mg/dL 85 19% 81% 9.0E-09  8.1 
LymphAB (0.8, 5) K/MM3 35 26% 74% 4.1E-03  9.3 
LymphRE (20.5, 45.5) % 20 35% 65% 1.8E-01  4.5 
MCH (27, 32) pg 64 6% 94% 2.6E-12  5744.8 
MCHC (32, 36) g/dL 20 10% 90% 3.5E-04  1119.8 
MCV (81, 99) fl 77 9% 91% 7.0E-13  2916.6 
MonoAB (0.1, 1) K/MM3 43 12% 88% 4.8E-07  258.4 
MPV (9, 12.2) fl 84 6% 94% 6.8E-16  13873.8 
PLT (150, 400) K/MM3 102 10% 90% 4.7E-16  37.4 
PMNAB (1.8, 10.1) K/MM3 35 29% 71% 1.1E-02  2.1 
PMNRE (43, 65) % 21 33% 67% 1.3E-01  1.3 
RBC (3.9, 5.3) M/MM3 50 20% 80% 2.2E-05  5.8 
RDW (11.5, 15) % 29 14% 86% 9.6E-05  13.2 
Trigs (-Inf, 150) mg/dL 74 15% 85% 1.5E-09  77.9 
WBC (4, 10) K/MM3 33 15% 85% 6.2E-05  9.7 
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Supplementary Text 2.1 

GWAS of Area Under the Curve summary statistics of lab traits 

We performed a GWAS of lab traits in MGI samples using an Area Under the Curve 

(AUC) approach to summarize the longitudinal lab measurements. We performed the analysis on 

the 22 lab traits with 20+ catalog SNPs and compared performance to GWAS with arithmetic 

mean as the outcome. To construct the AUC statistic, we defined clinically relevant thresholds 

for each lab trait to differentiate normal variation in measurements from measurements 

potentially indicative of underlying disease (Table S2, below). The thresholds were based on 

Normal Range criteria in the EHR and clinical guidance of co-authors. A lab trait could have 

either an upper threshold, a lower threshold or both depending on the clinical use for diagnosis. 

For example, the normal range for Red Blood Cell Count (RBC) trait had a lower threshold of 

3.9 M/MM3 and an upper threshold of 5.3 M/MM3 since both low and high RBC measurements 

can be indicative of health problems. In contrast, Low-Density Lipoprotein (LDL) had only an 

upper threshold of 100 mg/dL since high values of LDL are clinically relevant for disease 

diagnosis.  

We computed individual-level summary statistics that account for both the magnitude 

and duration of time that longitudinal lab measurements were outside the normal range 

thresholds. For a given lab trait, let 𝑡𝑡𝑙𝑙 be the lower threshold and 𝑡𝑡𝑢𝑢 be the upper threshold for 

clinical relevance. Let 𝑚𝑚𝑖𝑖𝑖𝑖 be the 𝑗𝑗𝑡𝑡ℎ lab measurement in the 𝑖𝑖𝑡𝑡ℎ subject. Any measurement 

satisfying 𝑡𝑡𝑙𝑙 ≤ 𝑚𝑚𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑢𝑢 is therefore within the “Normal” range of measurements for the given 

lab trait. Next, define 

𝑦𝑦𝑖𝑖𝑖𝑖 = �
𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑢𝑢

0
𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑙𝑙

if 𝑚𝑚𝑖𝑖𝑖𝑖 > 𝑡𝑡𝑢𝑢
if 𝑡𝑡𝑙𝑙 ≤ 𝑚𝑚𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑢𝑢
if 𝑚𝑚𝑖𝑖𝑖𝑖 < 𝑡𝑡𝑙𝑙

 . 
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The quantity 𝑦𝑦𝑖𝑖𝑖𝑖 is therefore equal to zero if the measurement 𝑚𝑚𝑖𝑖𝑖𝑖 is in the Normal range and 

equal to the amount outside the Normal range otherwise. Notably, 𝑦𝑦𝑖𝑖𝑖𝑖 is positive if the 

measurement 𝑚𝑚𝑖𝑖𝑖𝑖 is above the upper threshold and negative if it is below the lower threshold.  

Thus measurements above the upper threshold accumulate positive area and measurements 

below the lower threshold accumulate negative area. We set 𝑡𝑡𝑙𝑙 = −∞ for labs with only an upper 

threshold and 𝑡𝑡𝑢𝑢 = ∞ for labs with only a lower threshold.  

We computed the accumulated Area Under the Curve statistic for the 𝑖𝑖𝑡𝑡ℎ sample based on 

the Trapezoidal Method as follows: 

𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖  = ∑ 1
2
∆𝑖𝑖𝑖𝑖  (𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑖𝑖+1)𝑛𝑛𝑖𝑖−1

𝑗𝑗=1 , 

where 𝑛𝑛𝑖𝑖 is the number of measurements for the 𝑖𝑖𝑡𝑡ℎ sample and ∆𝑖𝑖𝑖𝑖 is the time (in days) between 

the 𝑗𝑗𝑡𝑡ℎ and (𝑗𝑗 + 1)𝑠𝑠𝑠𝑠 measurements for the 𝑖𝑖𝑡𝑡ℎ sample. For an individual with only a single 

measurement, we defined the AUC as equivalent to the value of𝑦𝑦𝑖𝑖1. We performed GWAS of the 

AUC values using the same procedure described in the Methods section of the main text.  

We found that the AUC-based GWAS performed poorly compared to the standard 

GWAS of mean trait value based on change in p-values for GWAS catalog SNPs (Table S2). For 

each lab trait, we computed the proportion of catalog SNPS with smaller p-values (increased 

significance) and larger p-values (decreased significance) in the AUC GWAS. Assuming the 

AUC statistic and the mean statistic are equally powerful for summarizing the longitudinal lab 

measures, we expect that p-values for AUC GWAS will increase for 50% of catalog SNPs on 

average and decrease for approximately 50% solely due to chance. We found that for all 22 lab 

traits tested, most catalog SNPs had larger p-values for the analysis based on the AUC summary 

statistic. That is, the AUC statistic resulted in p-values that with reduced significance. The 

imbalance was quite extreme: 9 labs traits had >80% of catalog SNPs increase in magnitude and 
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18 lab traits had p<0.05 for a 𝜒𝜒2 test for equal proportions of catalog SNPs with increasing and 

decreasing significance. Further, we computed the median fold change across all catalog SNP p-

values for each, where fold change greater than 1 indicates a larger p-value for the AUC analysis. 

All 22 lab traits have median fold change >1 further emphasizing the overall reduced 

performance of our AUC statistic compared to the standard mean statistic. 

The AUC style statistic presents several attractive features for summarizing complex 

longitudinal lab data; however, we found our implementation to be poor in comparison the basic 

mean value. We suggest some key limitations of the AUC statistic when applied to the lab 

measurements. First, restricting the AUC to area outside the clinically thresholds is akin to a 

censoring natural trait variation and reducing the effective sample size to patients with non-

Normal measurements. As an example, 14.5% of samples in the LDL GWAS had AUC values of 

0 because none of the LDL measurements for these sample were above the clinical threshold. 

The use of clinical thresholds is further complicated by the potentially subjective nature of their 

selection. Second, the AUC statistic can be unduly influenced by individual outlier 

measurements, particularly those that occur far in time from other measurements. Because the 

AUC statistic accounts for time between measurements through the Δ𝑖𝑖𝑖𝑖 term, a single 

measurement outside clinical thresholds is dramatically upweighted if no other measures are 

taken closely in time afterward. This property is particularly problematic because EHR lab 

measurements represent a highly imbalanced study design in which successive measurements 

can routinely occur far apart in time. The AUC statistic might be more effective in a balanced 

study design with similar numbers of lab measurements at fixed time intervals.   
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Despite the poor performance here, further refinement in the implementation of an AUC-style 

summary statistic for EHR lab data could produce more favorable results and is an area for future 

research.  

 

Supplementary Figure 2.5: The following set of scatterplots show the -log10 fold changes in p-value at individual SNPs when 
comparing GWAS of our default summary statistic (mean) to GWAS based on an alternative statistic (median, maximum or first 
available). 

https://drive.google.com/file/d/1KtCQ2-BKEas6rudOXJfgZZTq9PrzoKkP/view?usp=sharing 

 

Please refer to the Methods section for a complete description. The x-axis corresponds the fold 

changes for the SNP in MGI and the y-axis corresponds to the fold changes for BioVU. Positive 

log-fold changes indicate that the alternative statistic yielded a smaller (more significant) p-value 

than using the mean as a summary statistic. The upper-right (green) quadrant plots SNPs that 

decreased in p-value in both cohorts for the alternative statistic. The lower-left (blue) quadrant 

plots SNPs that increased in p-value in both cohorts. The two remaining quadrants indicate SNPs 

with discordant changes in p-value between the cohorts. GWAS catalog SNPs are plotted in red, 

novel SNPs for a given lab (if applicable) are plotted in purple, and the remaining SNPs are LD-

pruned (for plotting convenience) and plotted in black. The white diamond displays an empirical 

null distribution of fold changes for non-associated SNPs. The first 22 pages display the three 

alternative summary statistics (maximum value, median value, and first available measurement) 

for a single lab. The following six pages contain the analogous plots showing log fold change in 

p-values for the comorbidity model, which includes binary covariates for various comorbid 

diseases with the potential to impact lab measures, to a default analysis that does not account for 

comorbidities. 
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Chapter 3 Sparse Bayesian Mendelian Randomization Increases Power for Estimation of 
Causal Effects 

Introduction 

Genome-wide association studies (GWAS) have identified numerous disease-associated 

loci in recent years, advancing our understanding of disease etiology (Visscher et al., 2017). 

GWAS have contributed to discovering novel biological mechanisms in cardiovascular disease 

(Teslovich et al., 2010; Willer et al., 2013), type 2 diabetes (Mahajan et al., 2018), and 

psychiatric phenotypes (Ripke et al., 2014), among others. The advent of large-scale biobanks, 

which link electronic health record (EHR) derived phenotypes to genotype data, has accelerated 

these analyses, enabling simultaneous association studies across thousands of phenotypes at 

sample sizes that approach 500,000 (Bycroft et al., 2017; Klarin et al., 2018).  

Despite the preponderance of disease-associated loci and steadily increasing sample 

sizes, our understanding of the causal links between phenotypes remains limited in comparison. 

This foundational epidemiological work has been limited by the challenges of implementing 

study designs that permit causal inference, such as randomized experiments. Observational data, 

which are easier to collect, are far more common, but make causal inferences more challenging. 

However, under certain circumstances, Mendelian randomization (MR) methods enable causal 

inference on observational data available in biobank. The premise and epistemology of MR 

refers to Mendel’s law of independent assortment, suggesting that random inheritance of paternal 
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or maternal alleles is akin to a randomized experiment, which would preclude the effect of 

confounding and reverse causation, which are otherwise ubiquitous concerns when using 

observational data for causal inference. 

MR is an instrumental variable (IV) analysis employing observed germline genetic 

variation as an instrument for an exposure (Davey Smith and Ebrahim, 2003). An instrument for 

an exposure is typically constructed using the single-variant association statistics from an 

association study in order to estimate the causal effect of the exposure on an outcome after 

employing MR machinery, typically a form of regression analysis. MR requires three 

assumptions: relevance, independence, and exclusion. The relevance assumption requires that the 

variants are truly associated with the exposure, which can be assessed through common 

regression test-statistics. The independence assumption requires that the instrument variants are 

not associated with any unmeasured confounders, and the exclusion assumption requires that the 

effect of the instrumental variants on the outcome is completely mediated through the exposure. 

The independence and exclusion assumptions are challenging to assess, given that studies rarely 

contain all possible covariates and confounders, meaning that they cannot be explicitly tested. 

The analysis of complex traits complicates assumption validation in MR, as often confounders 

that may be associated with genotypes are unknown, including those related to population 

stratification. Recent MR methods have posited statistical methods that use mixture modeling 

assumptions to assess whether there is evidence of pleiotropy (Qi and Chatterjee, 2019; Morrison 

et al., 2020).   

Although the first assumption is readily tested by examining the exposure GWAS p-

values and effect sizes, variable selection in a high-dimensional setting remains challenging, and 

single-variant summary statistics rarely incorporate shrinkage information that may yield better 
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selection. In practice, many variants are in linkage disequilibrium (LD), which leads to 

challenging instrument selection. Many MR methods require independent variants (Zhu et al., 

2016; Bowden et al., 2016), necessitating choosing among seemingly equivalent variants for the 

purposes of IV analysis. Many GWAS-associated loci result in large association peaks (Zhang 

and Lupski, 2015) in non-coding regions, which rarely conclusively implicate a single variant 

conclusively. However, modern advances in MR methods enable simultaneous use of correlated 

instruments (Yuan et al., 2020), leading to increased power. Nevertheless, instrument selection 

remains a challenging step in MR. 

Imputation methods and whole-genome sequencing (WGS) have enabled association 

mapping at a fine resolution, increasing GWAS in both sample size and variant density. The 

greater density of variants includes a swath of low-frequency variants and variants in low-LD. 

Indeed, recent analysis from the GIANT consortium (Wainschtein et al., 2019) suggests that 

low-LD and low-MAF variants contribute a substantial portion to heritability of complex traits. 

Phenotypes with substantial heritability contributions from these variants may benefit from 

assuming a sparse genetic architecture, given that their effects are more poorly tagged by other 

variants than common variants in high-LD regions. The abundance of these low-frequency and 

low-LD variants in GWAS summary statistics will continue to increase with modern imputation 

panels (Taliun et al., 2021) and more common WGS. As GWAS data continue to grow faster in 

variant density than sample size, methods that assume a sparse causal architecture are likely to be 

beneficial.  

Furthermore, MR was initially only applied in single-sample settings where both 

exposure and outcome were available on the same set of individuals. Recent methods have been 

introduced that allow for an exposure and outcome from possibly overlapping sets of samples, 
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which are referred to as two-sample MR (Pierce and Burgess, 2013). These methods have 

provided additional convenience as often the exposure and outcome of interest come from 

distinct studies. To permit this convenience, methods have been developed to use existing 

GWAS summary statistics (Zhu et al., 2016) rather than require individual level data from two 

separate studies, which often presents challenges with data privacy and data sharing. This has 

necessitated modified likelihoods that must be constructed without access to the underlying 

individual level data, and typically use sufficient statistics of the data to construct approximate 

likelihoods (Zhu and Stephens, 2017).  

Building on recent advances in MR methodology, we here introduce a sparse Bayesian 

two-sample MR method, which we term SPARMR (SPARse Mendelian Randomization), which 

has improved power and decreased estimation error when the genetic architecture is sparse, 

compared to methods that assume a dense causal architecture. SPARMR can be applied to 

GWAS summary statistics from separate studies and performs simultaneous causal effect 

estimation and testing. Unlike most applications of sparse regression to genetic association 

studies, SPARMR does not use a spike-and-slab prior, which has a combinatorial computational 

complexity, but instead uses a horseshoe prior from the family of continuous shrinkage priors. 

The horseshoe prior has previously been applied in MR with application to a pleiotropy term 

(Berzuini et al., 2020), but to our knowledge has not been applied for instrument selection. 

Unlike the spike-and-slab prior, continuous-scale shrinkage priors facilitate the use of efficient 

Hamiltonian Monte-Carlo samplers. Continuous-scale shrinkage priors have also been applied in 

the context of polygenic risk scores (Ge et al., 2019).  Here we offer a convenient application 

interface to the model, which is implemented with Tensorflow Probability (Dillon et al., 2017). 

We demonstrate the effectiveness of SPARMR in a two-sample setting through simulations 
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derived from 1000 Genomes Project (Auton et al., 2015). We apply our method to investigate the 

effects of lipids on cardiovascular outcomes in UK Biobank, and conclude with a discussion.  

Materials and Methods 

SPARMR Overview 

We denote the exposure as X, and the outcome as Y. We are interested in the causal effect 

of X on Y, using a set of bi-allelic genotypes G (n x p) to construct an instrument. Let 𝐿𝐿𝑋𝑋, 𝐿𝐿𝑦𝑦 be 

the matrices of non-genotype covariates that may include principal components or other relevant 

covariates for X and Y. We model the joint distribution of X and Y as 

𝑓𝑓 ��𝑌𝑌�=𝑦𝑦𝑋𝑋�=𝑥𝑥� �𝐺𝐺� = 𝑁𝑁2 �𝐺𝐺 �
𝜃𝜃𝜃𝜃
𝜃𝜃 �

,�
𝜎𝜎𝑦𝑦2 𝜌𝜌
𝜌𝜌 𝜎𝜎𝑥𝑥2

�� 

Where 𝑌𝑌� = 𝑌𝑌 − 𝐿𝐿𝑦𝑦�𝐿𝐿𝑦𝑦𝑡𝑡𝐿𝐿𝑦𝑦�
−1𝐿𝐿𝑦𝑦𝑡𝑡 𝑌𝑌, and. 𝑋𝑋� = 𝑋𝑋 − 𝐿𝐿x�𝐿𝐿𝑥𝑥𝑡𝑡𝐿𝐿𝑥𝑥�

−1𝐿𝐿𝑥𝑥𝑡𝑡 𝑋𝑋 . We interpret 𝛼𝛼 as the effect 

of X on Y and 𝜃𝜃 as the effect of 𝐺𝐺 on 𝑋𝑋�. Let 𝜎𝜎𝑥𝑥2 be the residual variance of 𝑋𝑋� after conditioning 

on G, and 𝜎𝜎𝑦𝑦2 the residual variance of  𝑌𝑌� . Let 𝜌𝜌 be the residual covariance between X and Y after 

conditioning on G. 

In practice, we do not observe the individual sample values from G, X, or, Y, but rather 

sufficient statistics of the data, and we instead formulate an alternative summary statistic 

likelihood. We use summary statistics (coefficient point estimates and standard errors) from the 

two GWAS of X and Y and denote the summary statistics as �𝛽𝛽𝑋𝑋� , 𝑠𝑠𝑥𝑥� � and �𝛽𝛽𝑦𝑦�, 𝑠𝑠𝑦𝑦� �. We assume 

the coefficients come from the marginal association between the matrix of possibly correlated 

genotypes, G, and the phenotype (X or Y). We assume that the marginal association statistics 

have already been adjusted for population stratification and cryptic relatedness through the 

inclusion of principal components (Price et al., 2006; Novembre and Stephens, 2008) or 
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application of a mixed model (Kang et al., 2010; Loh, 2015; Zhou et al., 2018). We assume that 

other relevant covariates have already been included in the respective GWAS. 

If the summary statistics come from two studies with no sample overlap, then it is 

reasonable to assume 𝜌𝜌 = 0. For the purposes of exposition, we assume no sample overlap. In 

this setting, the bivariate Gaussian likelihood can be expressed as 𝐿𝐿�𝑌𝑌� ,  𝑋𝑋��𝐺𝐺�  =

 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�(𝑌𝑌�−𝐺𝐺𝐺𝐺𝐺𝐺 )2

𝜎𝜎𝑦𝑦2
+ (𝑋𝑋�−𝐺𝐺𝐺𝐺 )2

𝜎𝜎𝑥𝑥2
�� (2𝜋𝜋)−1�𝜎𝜎𝑦𝑦2𝜎𝜎𝑥𝑥2�

−1/2
 . Expanding out the exponentiated term 

yields −𝑦𝑦𝑡𝑡�𝑦𝑦�−2𝑦𝑦𝑡𝑡�𝐺𝐺𝐺𝐺𝐺𝐺+𝛼𝛼2𝜃𝜃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺
2𝜎𝜎𝑦𝑦2

− 𝑥𝑥𝑡𝑡�𝑥𝑥�−2𝑥𝑥𝑡𝑡�𝐺𝐺𝐺𝐺+𝜃𝜃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺
2𝜎𝜎𝑥𝑥2

 . Following (Yang et al., 2012), we can 

approximate these terms using summary statistics derived from the GWAS results and external 

genome population databases. We assume the genotypes have been centered at their mean value, 

2 ∗  𝐴𝐴𝐴𝐴 , where AF is the allele frequency of the alt-allele. Let 𝐺𝐺𝑡𝑡𝐺𝐺 = 𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺)� = 𝑛𝑛Δ1/2𝑅𝑅Δ1/2, 

where R is the variant correlation or LD matrix, and the Δ is a diagonal matrix of SNP variances, 

both of which can be estimated from an external LD reference and minor allele frequency (MAF) 

database, such as 1000 Genomes (Auton et al., 2015) if the sample population is included in 

1000 Genomes. Let 𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺𝑡𝑡𝐺𝐺) and 𝑦𝑦𝑡𝑡�𝐺𝐺 = 𝐷𝐷𝐵𝐵𝑦𝑦�. We do not estimate the σ𝑦𝑦2or σ𝑥𝑥2, but 

rather approximate them with the expected σ2� from the single SNP regression in the exposure 

and outcome respectively with the smallest p-value. We approximate other terms following 

(Yang et al., 2012). We use this summary statistic likelihood along with our prior specification to 

perform MCMC inference to estimate the posterior.  

Prior specifications 

We assume a horseshoe prior over the genotype effects θ. The classical horseshoe 

estimator (Carvalho et al., 2010), introduced in the normal means setting, is represented as: 

θ𝑖𝑖 ~𝑁𝑁(0, λ𝑖𝑖2τ2), λ𝑖𝑖~𝐶𝐶+(0,1), τ~𝐶𝐶+(0,1) 
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Where 𝐶𝐶+denotes the Half-Cauchy distribution over 𝑅𝑅+. The horseshoe prior includes local scale 

parameters λ𝑖𝑖 ∈ 𝑅𝑅+, which control the extent to which individual SNPs are shrunk, and a global 

scale parameter τ ∈ 𝑅𝑅+, which induces shrinkage across all SNPs. The etymology of the name 

“horseshoe” refers to the observation that the shrinkage induced by the prior looks like a 

horseshoe – that is, coefficients are either completely shrunk toward 0, or have very little 

shrinkage. The horseshoe results in a similar shrinkage effect to a spike and slab prior 

(Supplementary Figure 1). 

We motivate the use of a sparse prior by the empirical observation that associated 

variants are relatively infrequent, even for complex phenotypes. Height, widely considered as the 

canonical polygenic trait, has 3,290 independent SNPs according to a 2018 meta-analysis of 

~700,000 individuals from the GIANT consortium (Yengo et al., 2018). The number of 

segregating polymorphisms humans very likely exceeds one billion, according to whole-genome 

analysis from the NHLBI Trans-Omics for Precision Medicine (TOPMed) consortium (Taliun et 

al., 2021), implying a density of 3.29𝑥𝑥10−6 for the most polygenic trait in terms of independent 

associated variants, assuming that we already have discovered a comprehensive set of variation 

associated with height.  

Modern theoretical population genetics models also tend to implicate a small number of 

causal loci relative to the entire genome. The omni-genic model (Boyle et al., 2017), suggests 

that nearly any gene that is expressed in a trait-relevant tissue is likely to have some causal 

contribution to a given phenotype. Despite ostensibly implicating a far greater density of causal 

variants than alternative models of genetic architecture in complex traits, many traits will be 

sparse in the number of trait-relevant expressed genes compared to the entire genome. This is 

contrast with the infinitesimal model introduced by RA Fisher (Fisher, 1919), which assumes 
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that the variant effects are exchangeable with respect to a gaussian prior, i.e θ𝑖𝑖~𝑁𝑁(0,σ2), 

implying that causal effects are dense. 

Another useful property of the horseshoe distribution is its limited shrinkage of large 

coefficients compared to lasso regression (Carvalho et al., 2009). Rare variants that abrogate 

function of disease relevant genes may have large effect in association studies, especially in traits 

under negative selection (Zuk et al., 2014; Pritchard, 2001). Current priors that assume an 

infinitesimal model are likely to shrink these large effects more strongly than is necessary (Zhou 

et al., 2013). As these large effect rare variants are potentially of keen interest towards informing 

potential therapeutic options, properly incorporating their effects in a Mendelian Randomization 

setting is useful. Although GWAS of complex traits to date generally have identified few rare 

variants of large effect (Fuchsberger et al., 2016), this is more likely to occur in the future given 

the advent of sequencing of large scale biobanks, such as the effort to sequence all UK Biobank 

participants and the All of Us initiative from the NIH.  

On the causal effect parameter α, we place the following mixture prior: 

𝛼𝛼~.5 ∗ 𝑁𝑁�0,σ𝛼𝛼1
2 � + .5 ∗ 𝑁𝑁�0,𝜎𝜎𝛼𝛼2.

2 � 

With the second gaussian representing a “spike” of a null causal effect, akin to a continuous 

approximation of a spike-and-slab prior. To estimate an inferential statistic, we post-process the 

MCMC samples to determine the proportion of samples where α was more likely to be generated 

by the slab 𝑁𝑁�0,σ𝛼𝛼1
2 � distribution. In practice, we set σ𝛼𝛼1

2  = 1.0 and σ𝛼𝛼2
2  = 0.001. We used this 

approximation instead of a traditional discrete latent variable as this approach is precluded by 

Hamiltonian Monte-Carlo approaches that require a differentiable likelihood. We refer to this 

statistic as a posterior inclusion probability (PIP), a common inferential statistic in Bayesian 

methods (Wen et al., 2016; Benner et al., 2016). 
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The variable selection performed here with a continuous shrinkage prior is facilitated 

with a Bayesian approach. Several frequentist approaches exist for variable selection, including 

the lasso, best subsets-regression, and step-wise regression. However, these approaches are 

limited either by computational complexity (best-subsets) or by challenging statistical hypothesis 

testing (lasso). As MR is both an estimation and testing problem, inference is among its goals. A 

Bayesian approach enables both sparse estimation via an estimate of the expectation of the 

posterior distribution when a sparse prior is used, and inference, through Bayesian model 

selection.  

Prior specification and parameter initialization  

In practice, the heavy tails of the 𝐶𝐶+ distribution make reliable MCMC sampling 

challenging. We do not use the 𝐶𝐶+distribution, but instead a folded T-distribution with 4 degrees 

of freedom, which offers similar benefits to the 𝐶𝐶+and is more amenable to computation. We 

also fix the global shrinkage parameter τ using heuristics from (Piironen and Vehtari, 2017) 

based on the expected number of causal variants. We initialize θ𝑖𝑖 with a random draw from the 

horseshoe distribution, and we initialize α using a draw from estimate of the slope of the linear 

regression of 𝛽𝛽𝑦𝑦� on 𝛽𝛽𝑥𝑥�.  

Sampling of Posterior 

We sample from the posterior using the No-U-Turn sampler (NUTS) (Hoffman and 

Gelman, 2014) as implemented in the Tensorflow Probability probabilistic programming 

language (Dillon et al., 2017), using four separate MCMC chains with 800 burn-in samples each. 

To asses convergence, we calculate effective sample size (ess) and the 𝑅𝑅� statistic for each 

parameter using the Arviz (Kumar et al., 2019) package.  
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Posterior SNP summary statistics 

 Although SPARMR estimates a full posterior distribution for each θ𝑖𝑖, in practice point 

estimates are frequently of interest. We used the posterior mean of each θ𝑖𝑖 as the point estimate. 

Additionally, similar to the spike-and-slab, we can derive quantities that indicate the extent of 

shrinkage for each SNP i. We can calculate a pseudo inclusion probability by comparing the 

local shrinkage posterior for a given SNP to a threshold, λ𝑐𝑐, i.e 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑃𝑃(λ𝑖𝑖  >  λ𝑐𝑐). 

Greater λ𝑖𝑖 values indicate less shrinkage.  

Simulating summary statistics 

We performed simulation to compare SPARMR to other two-sample Mendelian 

Randomization methods. We used 2,504 individuals from 1000 Genomes Phase 3, from a 0.5 Mb 

chunk from chr22 in a gene dense region (chr22:37200001-37700000). We split the 2,504 

samples into two mutually exclusive sets of 1,252 samples two emulate a two-sample setting. We 

simulated the phenotypes with multiple genetic architectures, and varied the sparsity, the 

proportion of genetic variants with non-zero coefficients π, between 0.1% and 1%. That is, we 

simulate the causal genetic variant effect sizes according to the mixture distribution, 

θ𝑖𝑖~(1 − π)δ0 + 𝜋𝜋𝜋𝜋(0,𝜎𝜎θ2) . 

We fixed the ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐺𝐺θ)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
 to 20% for the exposure, a similar heritability to 

those of many laboratory traits (Sinnott-Armstrong et al., 2021), including lipids and blood cell 

traits. We varied the causal effect size α between .05 and 1.0 for the type 2 simulations and fixed 

the causal effect parameter to 0 for the type 1 simulation. Because the variance of the outcome 

was fixed to 1, this implies that the variance explained by the exposure on the outcome was 

α2ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 For each setting, we ran 1,000 simulations, and calculating single-SNP marginal 

summary statistics for each simulation. In total, we ran 16,000 simulations, with 2,000 of them 



 74 

being type 1 error simulations, setting the maximum false discovery rate for a method is 12.5% 

(if it rejected the null on every simulation). We did not include a horizontal pleiotropy effect. 

Many of the SNPs are in high LD with one another, we did not perform LD pruning, and 

proceeded with correlated instruments.  

Estimation of LD 

We estimated LD directly on the 1000 Genomes genotypes using all available samples 

(n=2,504). We calculate the LD matrix using the corrcoef function from the Python numpy 

package (Harris et al., 2020). As the number of variants exceeded the number of samples, the 

observed correlation matrix was not positive definite, necessitating further processing. We used 

the nearPD function from the Matrix package (Bates et al., 2019) to find the ‘nearest’ positive 

definite correlation matrix.  

Alternative Two-Sample Mendelian Randomization Methods 

We compared our method to five other MR methods observed in the literature. We 

included (1) inverse-variance weighted average (IVW, (Burgess et al., 2013)), (2) Egger 

regression (Bowden et al., 2015), (3) MRMix (Qi and Chatterjee, 2019), (4) weighted median 

(Bowden et al., 2016), and (5) Summary Mendelian Randomization (SMR) (Zhu et al., 2016). 

For IVW, Egger Regression, and weighted median estimator, we used the implementations in the 

MendelianRandomization R package (Yavorska and Burgess, 2017). Although historically these 

estimators were constructed with independent SNPs in mind, the MendelianRandomization 

package provides an option for the user to specify a correlation matrix if correlated SNPs are 

used, which we have done here. We used the single SNP with the smallest pvalue in the exposure 

GWAS as the instrument for SMR. Except for SMR, we used the same input SNPs for every 

method including SPARMR. We determined the input SNPs by including those with a pvalue < 
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5e-8 in the exposure association summary statistics, as pre-filtering of SNPs based on pvalue is a 

common practice. The number of input SNPs average 165.2, the median 121, the minimum 10, 

and the maximum 749.  

Briefly, we describe the alternative two-sample methods. IVW performs a weighted 

linear regression of the outcome coefficients on the exposure coefficients, where the weights are 

the inverse square standard errors of the outcome coefficients, an approach very similar to two-

stage least squares. Egger regression is similar to IVW with the exception that the absolute value 

of the exposure coefficients is used, and the sign of the outcome coefficients is altered to match 

the sign of exposure coefficients prior to absolute value transformation. The intercept can be 

interpreted as an estimator of the average horizontal pleiotropic effect across the included 

instruments.  

As IVW, Egger regression, MRMix, and SMR are frequentist estimators, they produce p-

values in contrast to SPARMR, which produces PIPs. To calibrate our comparison, we evaluate 

all estimators with respect to power and false discovery rate at different thresholds of their 

respective summary tail measures. This ensures that power evaluations are interpreted within 

context of matched false positive and false discovery rates.  

IVW, Egger, weighted median, and MRMix all either assume no distribution on the 

causal effects or assume the effects are dense. In contrast, SMR assumes the causal architecture 

is sparse, which aligns it more closely with SPARMR in this setting. All methods used are 

capable of application to a two-sample summary statistic setting.  

Analysis of the effect Laboratory Trait Values on Coronary Artery Disease 

We use summary statistics from a GWAS of laboratory trait values from the Michigan 

Genomics Initiative (MGI), which have been previously described (Goldstein et al., 2020). 
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Briefly, MGI is a biobank with samples recruited from the University of Michigan Health 

System and has samples which are primarily of European ancestry. We included the low-density 

lipoprotein (LDL) from 11,016 individuals and estimated its effect on coronary artery disease 

(Phecode 411). For some individuals, multiple LDL measurements were recorded, and in such 

cases we used the arithmetic mean. We computed GWAS summary statistics using EPACTS 

(Kang, 2014) including age, sex, and four genetic ancestry PCs as covariates, and inverse normal 

transformed the phenotype. The genotypes were imputed with the Haplotype Reference 

Consortium (HRC) panel (Das et al., 2016) and we included all genotypes with imputation Rsq 

of at least 0.30. We used summary statistics from UK Biobank for coronary artery disease. The 

UK Biobank has been described previously (Bycroft et al., 2017). These genotypes were imputed 

with the HRC and the summary statistics were computed with SAIGE (Zhou et al., 2018) to 

account for case-control imbalance.  

Results 

We introduce a two-sample sparse Bayesian method for Mendelian Randomization on 

summary statistics, as described in materials and methods. Our method models multiple 

correlated instruments and uses a continuous shrinkage prior on the coefficients. We refer to our 

method as Sparse Mendelian Randomization (SPARMR) and is implemented in a publicly 

available python package. We investigated the false positive and false negative error frequencies 

and the empirical false discovery rate of our method. We evaluated the false positive rate 

(Supplementary Figure 2) and false discovery rate (Supplementary Figure 3) of the methods by 

multiple decision thresholds stratified by the sparsity of the true causal variants (i.e., the 

proportion of variants that have non-zero effects on the exposure). The false positive rate of the 

frequentist methods varied, and SMR was the closest to correct nominal coverage (i.e., if the null 
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was rejected at a p-value of < .05, we expect 5% of the null simulations to reject the null), 

followed by MRMix. Egger regression, IVW, and weighted median displayed marked type one 

error inflation, with false positive rates exceeding 25% at a p-value threshold of .001. The false 

positive rate of SPARMR exceeded 25% at PIP thresholds below 50%. Aligning the decision 

thresholds of SPARMR with the frequentist methods in terms of false positive rate or false 

discovery rate enables calibrated comparison of the power of these methods under various 

settings.  

SPARMR is well-powered under sparse settings 

We observed the power of these methods under varying causal effect sparsity and effect 

size. SPARMR, SMR, and weighted median performed similarly in both sparsity settings (Figure 

1), with the other methods indicated less power. SMR had the greatest power in the sparsest 

setting, and its performance decreased as the causal variant density increased. In contrast, the 

weighted median estimator was more highly powered under the denser setting.  
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Figure 3.1: Power across different False discovery Rate Thresholds 

Power is observed marginalized over multiple causal effect sizes, stratified by causal effect 

sparsity. 95% CI intervals are displayed with lines at each of the points, the interval calculated 

with the asymptotic gaussian approximation to the binomial.   
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Estimation of bias in causal effect estimates 

We compared the α estimates from the different MR methods. The frequentist methods report a 

point estimate for α, while SPARMR produces a posterior distribution. We used the posterior 

mean as the point estimate for SPARMR. All estimators displayed little bias for α values less 

than 0.35 (Figure 2). As the α increased, so did bias in the respective estimates. The frequentist 

estimators were frequently conservative, with SMR displaying the least bias. SPARMR was anti-

conservative among the higher α settings, which may reflect biases induced by approximations 

in the likelihood calculation. However, we briefly remark that in real applications α will often be 

smaller than these large settings.   
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Figure 3.2: Distribution of estimated causal effects stratified by causal effect 

Each point is a point estimate from a single simulation, and the box plots display a summary of 

the distribution within each of the causal effect settings. The results are marginalized across the 

two sparsity settings. The true causal effect estimate from the simulation is labeled at the top 

panel and represented by a dashed black line.  

  



 81 

 

Estimating the causal effect of LDLR variation on ischemic heart disease 

 

The causal effect of variation in LDL on variation in ischemic heart disease has been well 

described (Kathiresan et al., 2008; Willer et al., 2013). We asked whether SPARMR could 

recapitulate known causal associations of large effect to demonstrate as a proxy for a positive 

control. However, despite the overall association between LDL and ischemic heart disease, the 

mechanisms through which genetic variation alters expected LDL levels in adulthood varies, 

with some loci more well characterized than others. We focus on SNPs within LDLR, a gene 

which encodes the low-density-lipoprotein receptor and is well described as a locus for LDL 

variation.  

We performed a GWAS of LDL in MGI, controlling for age, sex, and genetic ancestry 

principal components (see Methods). Variants LDLR were associated with LDL in the MGI 

cohort at genome wide significance (Supplementary Figure S4), fulfilling the instrument strength 

assumption of Mendelian Randomization. The T allele of the lead variant rs6511720, which is a 

ClinVar (Landrum et al., 2016) variant for familial hypercholesterolemia, was associated with a 

0.15 decrease in standard deviations of LDL (pvalue = 1.2e-13). For these same variants, we 

calculated LD directly on the MGI genotypes, and included variants where the MAC exceeded 

40. MGI and UK Biobank both primarily have samples of European ancestry, suggesting that 

MGI genotypes provide an appropriate reference for estimating LD. The estimated correlation 

matrix was not positive definite, so we used the nearPD function from the R package Matrix 

(Bates et al., 2019) to find the ‘nearest’ positive definite correlation matrix. We used pre-

computed GWAS summary statistics from UK Biobank that were imputed into the same panel as 



 82 

the MGI data (see Methods). SPARMR estimated a large effect (𝛼𝛼� = 0.78, 95% credible interval: 

(0.48, 1.09), 𝑅𝑅 =  1.0� ) of LDL on ischemic heart disease, consistent with prior reports. The 

effect sizes can be interpreted as the expected effect of an increase in the exposure by one 

standard deviation on the log-odds of the outcome.  
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Figure 3.3: SPARMR recapitulates positive control of causal effect of low-density lipoprotein (LDL) on coronary artery disease 
(CAD). 

GWAS summary stats for LDL were estimated using the Michigan Genomics Initiative, and 

summary statistics for CAD are estimated from UK Biobank. The estimate here is applied to 53 

common SNPs in LDLR. Dotted line indicates estimated causal effect from SPARMR. Points are 

colored based on pseudo-PIP estimates from SPARMR, which indicates which SNPs were 

selected.  
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Discussion 

Our results permit several conclusions. Firstly, SPARMR is well-powered to detect 

causal association in settings where the genetic architecture of the exposure is sparse. As a 

demonstration of the method, we applied SPARMR to two real-world GWAS from MGI and UK 

Biobank to estimate the causal association of LDL-linked variation on coronary artery disease. 

Our method recapitulates a known ‘positive control’ and demonstrates the ability to characterize 

the effect of less well studied loci. We expect that our method will prove useful when the 

assumption of dense causal architecture is unlikely to be true, a setting that appears increasingly 

common as the ratio of variants to sample sizes continues to increase with the advent of large-

scale genotype imputation panels and increased WGS sequencing of biobanks. Traditional least-

squares methods without shrinkage priors are challenging by high dimensional variable selection.  

We observed several informative results regarding the performance of all the tested 

methods. SPARMR performed similarly to the weighted median estimator and SMR in terms of 

power compared to FDR. The weighted median estimator was motivated by the desire apply MR 

when some unknown proportion of the variants are invalid. In contrast to IVW, the weighted 

median estimator can provide consistent estimates when at least 50% of the effect size weight 

comes from valid instruments. This setting has some similarity to ours, when several of the 

variants that we are testing are not causal due the sparse assumption. Strikingly, the weighted 

median estimator appears to have similar behavior in this setting with an explicit sparse 

assumption. SMR also performed well, consistent with its ultra-sparse assumption that only a 

single variant is causal. It performed remarkably well given that more than a single SNP was 

assumed to be causal. In practice, choosing the single instrument for SMR remains challenging, 
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though the above results suggest that it performs well even when multiple causal variants are 

present.  

It is challenging to validate the assumptions for MR in practice, which often prohibits the 

definitive declaration of estimates as causal. The most prominent challenges include instrument 

selection and horizontal pleiotropy. Our method ameliorates the former in a sparse setting but 

does not help with the latter. Many recent innovations have focused on detecting and correcting 

for horizontal pleiotropy. We view these efforts has as essential contributions as pleiotropy is 

abundant in most MR analyses of complex traits. However, these methods are not without 

statistical limitations, as introduction of parameters that permit the identification of horizontal 

pleiotropy results in increased degrees of freedom which reduces power when no pleiotropy is 

present. Indeed, prior reports have shown that MRMix is underpowered when sample sizes are 

small relative to traditional approaches (Qi and Chatterjee, 2019). These methods essentially 

reduce type 1 error at the consequence of increased type 2 error. We propound that study design, 

especially the choice of exposure and outcome, is the most important determinant of the validity 

of MR analyses and encourage such analyses in well-understood exposure-outcome systems 

where knowledge of confounders is known. We posit that SPARMR is best applied in 

conjunction with principled study design and existing sensitivity checks for validity of 

instruments, including the potential application of bidirectional MR. Future directions include 

possible extensions of our method to include a sparse prior for pleiotropic effects, although 

parameter identifiability would be challenging. Improving the compute time of our method is 

also a direction of future research – the use of MCMC in this case, although providing principled 

finite-sample uncertainty estimates, increases the compute time relative to the frequentist 

methods that use asymptotic approximations to derive the test statistics.  
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Supplementary Information 

 

Supplementary Figure 1: The density of the horseshoe distribution with 𝜏𝜏 = 1. The distribution 

has a sharp peak near 0 and has heavy tails to accommodate large effect sizes.  
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Supplementary Figure 2: False positive rate by method and test-statistic threshold. In the top 

panel, the false positive rates of the frequentist methods are displayed for 6 different p-value 

thresholds (p < .001, .010, .050, .100, .200, .500). The expected coverage of the tests is displayed 

by the dotted black line which plots y = x. On the left is the setting where the causal variants 

have a sparsity of .001, and on the right a sparsity of .001. In the bottom panel, the false positive 

rate of SPARMR is evaluated at 5 PIP thresholds (PIP > 0, .10, .50, .95, .99). The simulations 

are marginalized over multiple effect size settings.  
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Supplementary Figure 3: False discovery rate by method and test-statistic threshold. In the top 

panel, the false discovery rates of the frequentist methods are displayed for 6 different p-value 

thresholds (p < .001, .010, .050, .100, .200, .500). On the left is the setting where the causal 

variants have a sparsity of .001, and on the right a sparsity of .001. In the bottom panel, the false 

positive rate of SPARMR is evaluated at 5 PIP thresholds (PIP > 0, .10, .50, .95, .99). The 

simulations are marginalized over multiple effect size settings.  
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Supplementary Figure 3.4: LocusZoom plot of LDL GWAS in the Michigan Genomics Initiative 

(MGI).  

rs6511720 is the highlighted SNP. LD is computed with respected to rs6511720, and is estimated 

using an 1000 Genomes reference panel.  
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Chapter 4 Clonal Hematopoiesis is Driven by Aberrant Activation of TCL1A 

Main 

Aging is characterized by the accumulation of somatic mutations which frequently are 

benign. However, some mutations confer proliferative advantages resulting in an expanded 

lineage of cells, termed a clone. Clonal hematopoiesis of indeterminate potential (CHIP) is 

defined by the acquisition of specific cancer-associated mutations in hematopoietic stem cells 

(HSC) from persons without a blood cancer(Steensma et al., 2015). Previous reports have 

associated CHIP with increased risk for hematologic malignancy, coronary heart disease, and 

mortality(Jaiswal et al., 2014; Genovese et al., 2014; Xie et al., 2014). In contrast to small 

clones, which are ubiquitous in older individuals and are benign, large clones are less common 

and more likely to result in hematologic malignancy and cardiovascular disease(Jaiswal et al., 

2017; Bick Alexander G. et al., 2020). However, few determinants of clonal expansion have 

been identified to date, partially due to the lack of large cohorts with serially sampled blood over 

several years. Using 5,551 CHIP carriers derived from 127,946 deep (38x) whole genomes from 

the NHLBI Trans-omics for Precision Medicine (TOPMed) initiative(Taliun et al., 2019; Bick et 

al., 2020), here we developed a sequencing based method for approximating the rate of clonal 

expansion from a single timepoint, termed PACER, which was validated using ultra-high depth 
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(>300x) longitudinal sequencing. Using PACER, we performed the first large-scale investigation 

of the germline determinants of clonal expansion. 

Development and validation of PACER 

We identified high-confidence somatic mutations in peripheral blood by analyzing the 

TOPMed WGS with GATK Mutect2(Cibulskis et al., 2013). To remove sequencing artifacts and 

germline variants we performed stringent variant filtering and quality control. We identified 

CHIP carriers using a curated list of leukemogenic driver mutations (Supplementary Table 1) 

(Methods). We identified 6,158 CHIP mutations in 5,551 individuals. As shown in our previous 

report, the prevalence of CHIP was strongly associated with age at blood draw, and >75% of 

these mutations were in DNMT3A, TET2, or ASXL1.   

We hypothesized that the number of passenger mutations present in the WGS data of 

CHIP carriers could be used to estimate the rate of expansion of the clone.  As the passengers 

accrue at a rate that is fairly constant rate over time and that is similar between 

individuals(Osorio et al., 2018), they can be used to date the acquisition of the driver (Figure 1a). 

For two individuals of the same age and with clones of the same size, we expect the clone with 

more passengers to be more fit, as it expanded to the same size in less time. Typically, one would 

need to isolate single-cell colonies derived from HSCs in order to calculate the total passenger 

mutation burden (Lee-Six et al., 2018). However, we hypothesized that this measure could also 

be approximated from WGS data from whole blood DNA. The variant allele fraction (VAF), 

defined as the proportion of sequencing reads at a locus containing the mutant allele, is an 

approximate measure of clone size.  As the clone expands, the VAF of both the driver and 

passenger mutations increases. The number of passengers in any given cell is simply the sum of 

the mutations present prior to the acquisition of the driver event (founding passengers) and 
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mutations acquired after the driver event (subclonal passengers). At VAF values of greater than 

5-10%, the detectable passengers are far more likely to be founding passengers than subclonal 

passengers. This is because the subclonal passengers are private to each subsequent division of 

the original mutant cell, and, in the absence of second driver event, quickly fall below the limit 

of detection in bulk tissue. Furthermore, as the size of the clone also determines the number of 

detectable passengers from WGS, high fitness clones will harbor more detectable passengers 

than lower fitness clones that arose at the same time. Based on these observations, we used the 

detectable passengers as a composite measure of clone fitness and birth date. 

To estimate the number of passengers, we first obtained Mutect2 variant calls from the 

whole genome for each CHIP carrier and a subset of people without detectable CHIP. As the raw 

variant calls are expected to contain a combination of true somatic variants, germline variants, 

and sequencing artifacts, we implemented a series of filters to enrich for the detection of true 

passengers. As the frequency of mutations across individuals is a function of both mutation rate 

and fitness(Watson et al., 2020),  we first selected only those variants that were found in a single 

individual (singletons) in the dataset, as recurrent variants are enriched for germline 

polymorphisms and recurrent artifacts. We also excluded variants with a VAF greater than 35%, 

as these would be enriched for germline polymorphisms. As different base substitutions varied in 

their association with age at blood draw, we selected only C-T and T-C mutations, as these were 

the most strongly age-associated. On average, the CHIP carriers had 237 passengers (95% CI: 

229-246), the median value was 206, and the maximum value was 16,279. Of the CHIP carriers, 

90% had a single driver mutation. The passengers were enriched by 54% (95% CI: 51%-57%) in 

the CHIP carriers (Extended Data Fig 1) compared to the controls after adjusting for age and 

study using a negative binomial regression. In the controls without CHIP, we presumed the 
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detected “passengers” were incompletely removed artifacts or, in some people, reflective of 

unidentified clonal hematopoiesis. The passengers were also positively associated with age, on 

average increasing by 13.7% (95% CI: 13.0%-14.3%) each decade.  

We validated the passengers as an estimator of fitness theoretically and empirically. For 

the theoretical validation, we constructed a simulation of HSC dynamics to characterize the 

relationship between fitness and detectable passenger counts (Supplementary Information 1). We 

estimated a passenger mutation rate per diploid genome per year of 2.3, or a per-base pair rate of 

3.83𝑥𝑥10−10. Assuming 100,000 HSCs, this results in a per-base-pair passenger mutation rate of 

3.83𝑥𝑥10−15 per HSC clone per year without correction for the sensitivity of the sequencing 

technology used. This number is substantially lower than previous estimates using WGS from 

single hematopoietic colonies, likely due the low sensitivity of detecting true passengers in 

whole blood DNA compared to the gold standard of single-cell derived colonies. Nonetheless, 

we were able to use this data to derive a hierarchical Bayesian latent-variable estimator of clone 

fitness (Methods) and confirmed its strong correspondence to the observed passenger counts 

(supplement S2). 

To empirically validate the passengers, we used ultra-high depth sequencing in 80 CHIP 

carriers from the Women’s Health Initiative (WHI) from two time points using single-molecule 

molecular inverse probe sequencing(Hiatt et al., 2013) (smMIPS) targeted to the CHIP driver 

genes (Methods). We called somatic variants in these samples using an ensemble of 

VarScan(Koboldt et al., 2012), GATK Mutect2(Cibulskis et al., 2013), and manual inspection 

through IGV(Robinson et al., 2011) (Methods). We defined clonal expansion by dividing the 

change in VAF by the change in time (years) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 of the driver variants identified at the first 

blood draw. Of the sequenced carriers, the majority had clones that were constant in size or 
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expanded. We constructed a simple estimator of  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 using only the passengers, VAF, and age 

from the first blood draw (Methods). This estimator predicted the inverse normal transformed 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (Rsq = 32.5%, Adjusted Rsq = 28.6%, pvalue = 1.5e-4, Figure 1b, Figure 1c). After 

adjusting for the passenger counts, age was negatively associated with  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, suggesting that 

clones acquired later in life were on average less fit than those acquired by younger individuals. 

We also observed that VAF at the first time point was negatively associated with 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 after 

adjustment for the other covariates, which may reflect the largest clones saturating in clonality. 

These results suggested that inferring clonal expansion from age and VAF-adjusted passenger 

mutation counts was able to predict not only past growth, but also future growth rate. We termed 

this approach PACER (passenger-approximated clonal expansion rate). 

 

PACER predicts fitness of distinct driver mutations 

Building on recent computational estimates of variant fitness(Watson et al., 2020), we 

estimated the distribution of passengers across the most common CHIP driver genes. We 

stratified the DNMT3A carriers by whether the driver mutation was a missense mutation at 

position 882 into DNMT3A R882+ and DNMT3A R882- carriers. We used DNMT3A R882- as a 

reference point and estimated the relative abundances of passengers in other genes using 

negative binomial regression adjusting for age and study. Consistent with previous reports, 

splicing genes (SF3B1, SRSF2, U2AF1) and JAK2 V617F mutations had the highest PACER 

values, while DNMT3A R882- was among the lowest (Figure 1d). Mutations in TET2, ASXL1, 

PPM1D, TP53, ZBTB33, and GNB1 were in the next tier and had approximately the same level 

of fitness estimated from PACER. Relative to the R882- carriers, we observed a modest increase 
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fitness in the R882+ carriers. These observations are concordant with prior empirical estimates of 

variant fitness derived from longitudinal sequencing of samples with clonal hematopoiesis(Desai 

et al., 2018).  

 

Genome wide association study of PACER 

To characterize the molecular pathways associated with clonal expansion, we performed 

a genome-wide association study (GWAS) of the inverse normal transformed passenger counts 

of CHIP carriers. We included age at blood draw, study, VAF, and the first ten genetic ancestry 

principal components, and used SAIGE(Zhou et al., 2018) to estimate the single variant 

association statistics among 19,913,304 variants. The GWAS identified a single locus at 

genome-wide significance at TCL1A (Figure 2a). We used SuSIE(Wang et al.) to fine-map 

(Methods) a 200kb region surrounding TCL1A which identified a credible set containing a single 

variant rs2887399 (Extended Data Fig. 2). Each additional T allele was associated with a 

decrease in passenger count z-score by 0.15 (pvalue = 4.5e-12). The alt-allele is common, 

occurring in 26% of TOPMed haplotypes. rs2887399 lies in a core promoter of TCL1A as 

defined by the Ensembl regulatory build(Dr et al., 2015) (Figure 3a) 162 base-pairs from the 

canonical transcription start site (TSS) and in a CpG island. Analysis of the variant by the Open 

Targets(Carvalho-Silva et al., 2019) variant-to-gene (V2G) function also nominated TCL1A as 

the causal gene. TCL1A has been implicated in prior reports as driver gene in lymphocytic 

malignancy, but no connection to clonal hematopoiesis or HSC biology has previously been 

described.  

We then asked whether any genetic variation associated with the passenger counts was 

specific to different CHIP mutations. We performed separate GWAS of passenger counts for 
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carriers of TET2, DNMT3A, ASXL1, and splicing mutations. In TET2 carriers, we observed 

variation at the SASH1-UST locus was associated with passenger counts. The lead variant 

rs4897025 is a common (MAF = 43%) intergenic variant that was associated with decreased 

passenger count burden (beta = -0.3, pvalue = 2.8e-8). Previous reports have observed that 

downregulation of SASH1 is associated with increased risk for breast cancer(Zeller et al., 2003).  

In DNMT3A carriers we observed no association between rs4897025 and passenger counts 

(pvalue = 7.4e-1), consistent with its effect in the non-stratified passenger count GWAS (pvalue 

= 1.4e-2). In TET2 carriers the effect size of alt-alleles of rs2887399 was larger than in the non-

stratified GWAS (beta = -0.15 in non-stratified GWAS, beta = -0.24 in TET2 carrier GWAS). 

We observed no other germline variation that was associated with passenger counts in the other 

CHIP gene stratified GWAS, possibly due to limiting sample size. 

We examined the association between the burden of rare variation with passenger counts 

in the 200kb region surrounding TCL1A. We used the SCANG rare variant scan procedure(Li et 

al., 2019) to estimate the association, including all variants with a MAC <= 300 (MAF <= 

3.7%). The SCANG procedure estimates the association between rare variants in moving 

windows across the genome and estimates the size of the windows. SCANG did not identify any 

regions at exome-wide significance (2.5e-06), though did identify one region within an order of 

magnitude (pvalue = 6.6e-06, family-wise pvalue = 2e-03, Extended Data Fig. 3). After 

conditioning on the rs2887399 genotypes in the rare variant analysis, the signal was attenuated, 

suggesting limited evidence for an independent rare-variant signal from rs2887399 in the same 

region (<1 Mb, Extended Data Fig. 4). We identified only 10 putative loss-of-function (pLOF) 

carriers of TCL1A TOPMed wide, so were underpowered to examine the burden of these 

variants.  
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We performed an expanded search of rare variation associated with the passengers. We 

used 1,698 genes associated with ‘cancer’ according to Open Targets (Carvalho-Silva et al., 

2019) to define variant groups (Supplementary Table 2). We performed SCANG association 

tests at every gene and its 150 Kb flanking region, including both coding and non-coding 

variants with a MAC <= 300. We identified 15 windows associated with passenger counts at 

Bonferroni significance (pvalue = 2.9e-5, Supplementary Table 3). We identified an intergenic 

region 113kb from the TSS of TNFAIP3 (pvalue = 5.4e-7) that is a distal enhancer of TNFAIP3 

(GeneHancer(Fishilevich et al., 2017)).  

As the allele frequency of rs2887399 varies by population, we asked whether passenger 

count was associated with the first two genetic ancestry principal components. We observed a 

positive association between values on the PC1 axis with singleton counts. Even after 

conditioning on the rs2887399 dosage, the association remained. A linear regression with 

rs2887399 dosage and the first two principal components as covariates explained 4% of the 

variation in the inverse-normal transformed passenger counts. Ancestry estimation using 

RFMix(Maples et al., 2013) indicated a modest depletion of passengers in Sub-Saharan African 

genomes relative to European and East Asian genomes (Methods, Extended Data Fig. 5).  

 

Association of TCL1A genotype to CHIP driver genes 

We asked whether the association between rs2887399 and passenger counts was 

modified by CHIP driver gene. Using DNMT3A as the reference, we investigated whether other 

genes had different effect estimates for rs2887399. We observed that alt-allele dosage in 

rs2887399 was more protective in TET2 than DNMT3A (beta = -0.23, pvalue = 2e-03, Figure 

2b), but we were underpowered to detect effects in other genes. These results suggest that the 
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protective effects of rs2887399 vary by CHIP driver mutation and are weaker in DNMT3A 

compared to TET2. As the alt-homozygotes of rs2887399 were depleted for other CHIP 

mutations, we were underpowered to estimate the association between rs2887399 dosage and 

passenger counts in the other CHIP genes.  

 

Functional impact of TCL1A genotype on CHIP 

To further interrogate the effect of rs2887399 on CHIP, we also performed association 

tests between the variant and the prevalence of specific driver genes. In our previous 

analysis(Bick et al., 2020) we reported that the T allele was associated with increased risk for 

DNMT3A mutation. Here, in an expanded analysis of 74,974 individuals, we observed that 

rs2887399 is protective for (Figure 2c) multiple non-DNMT3A driver mutations, and splicing 

mutations. The alternate homozygous genotype was associated with decreased risk of acquisition 

of multiple non-DNMT3A mutations (OR = 0.20, 95% CI: 0.06 – 0.51, Figure 3d, Methods). 

These results indicate that rs2887399 increases risk for low fitness DNMT3A clones but is 

protective against clones that more strongly predict progression to frank hematologic 

malignancy(Desai et al., 2018), including JAK2, ASXL1, SRSF2, and SF3B1, and was especially 

protective against the acquisition of >1 non-DNMT3A driver mutations. The latter are 

particularly relevant clinically, as these persons have the greatest risk of transformation, and in 

some cases may already have early-stage MDS. 

Previous analysis of blood cell indices in UK Biobank(Bycroft et al., 2017) have 

implicated rs2887399 in reduced blood cell counts (Figure 2d), consistent with altered 

hematopoiesis. To further characterize the disease associations of rs2887399, we performed a 

phenome-wide association study (PheWAS) lookup in UK Biobank. Although no genome-wide 
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significant associations were identified among the case-control phenotypes, the alt-allele was 

nominally protective against myeloproliferative neoplasms (beta = -0.12, pvalue = 2.7e-02) and 

leukemia (beta = -0.11, pvalue = 1.0e-02). Previous reports have also identified that the alt-allele 

of rs2887399 increases risk for mosaic loss of the Y chromosome(Thompson et al., 2019; Zhou 

et al., 2016) (beta = 0.20, pvalue = 6.0e-11), indicating a convergence of variation at the locus 

affecting multiple distinct clonal phenomena. A PheWAS lookup of gene-based test statistics 

using 45,596 UK Biobank(Bycroft et al., 2017) exomes identified a nominal association between 

TCL1A coding variants with other anemias (UKB exome phewas(Zhao et al., 2020), phecode 

285, pvalue = 2.3e-2).   

Next, we functionally characterized the rs2887399 locus. We first asked if the variant 

was associated with TCL1A expression in any cell type. As identified in the GTEx v8 eQTL 

release(Consortium, 2020), the alt-allele reduces expression of TCL1A in whole blood 

(normalized effect size = -0.13, pvalue = 1.4e-5, Figure 3a). The association is likely driven by 

B-cells, as TCL1A is highly expressed in B-cells but appears to have absent or low expression in 

all other cell types except plasmacytoid dendritic cells. We also did not see expression of TCL1A 

in normal human HSCs or myeloid progenitors in publicly available gene expression datasets. 

We next asked whether CHIP-associated mutations might alter the regulation of the TCL1A locus 

in HSCs.  

Given the mutation specific associations of rs2883799, we asked whether the regulation 

of TCL1A varied by CHIP driver gene mutation. Using a reference of chromatin accessibility in 

normal and pre-leukemic HSCs (pHSCs)(Corces et al., 2016), we examined the ATAC-seq 

readout at the TCL1A promotor. Consistent with the lack of TCL1A transcripts in normal HSCs, 

we observed that the promoter was not accessible in either normal human donor HSCs, or pHSCs 
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from patients with AML without any driver mutations. We also did not observe accessible 

chromatin in two carriers of DNMT3A mutated pHSCs. In contrast, in the two patients with TET2 

mutated pHSCs the TCL1A promoter was clearly accessible.   These observations led us to 

propose the following mechanistic model: Normally, the TCL1A promoter is inaccessible and 

gene expression is absent in HSCs. In the presence of driver mutations in TET2, ASXL1, SF3B1, 

SRSF2, JAK2, and possibly other genes, the TCL1A promoter becomes accessible, permitting 

gene expression and driving clonal expansion of the mutated cells. The presence of the alt-allele 

of rs2887399 inhibits accessibility of chromatin at the TCL1A promoter, leading to reduced 

expression of TCL1A RNA, and abrogating clonal advantage due to the mutations. 

DISCUSSION 

Using the largest dataset of CHIP whole genomes to date, we have generated several 

novel insights into clonal expansion. We developed PACER, a method that allows us to infer 

clonal expansion rate from a single time point.  The passenger counts represent a composite 

measure of the fitness and birth date of an underlying clone and provides a simple predictor of 

clonal expansion. Our results extend and apply recently developed theory on the evolutionary 

fitness of clones to permit estimation of fitness of a clone within a single individual, but used 

passenger mutation counts in contrast to previous efforts which used the VAFs of driver variants. 

Unlike prior methods, PACER can also be used to perform association tests for novel factors 

associated with clonal expansion. Using PACER we show that the fitness effect of mutations in 

different driver genes can vary considerably, in accordance with other recent reports. 

In a GWAS for PACER, we identified as the top hit a common variant of large effect in 

the promoter of TCL1A.  Remarkably, this variant is associated with protection from several 

CHIP driver variants, including gene mutations that heretofore have not had known targets 
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promoting clonal expansion such as TET2, ASXL1, SF3B1, and SRSF2. Analysis of a chromatin 

accessibility atlas(Corces et al., 2016) nominated a putative mechanism where some CHIP 

mutations allow chromatin to become accessible at the TCL1A promoter and the gene to be 

transcribed, an effect which may be abrogated by the protective allele.  The large protective 

effect seen with the rs2887399 alt-allele suggests that TCL1A expression may be the dominant 

factor for clonal expansion due to these mutations. Prior work has shown that it is deregulated in 

T-cell leukemia and lymphoma(Hecht et al., 1984), chronic lymphocytic leukemia, and that it is 

a co-activator of Akt kinases(Laine et al., 2000), but there have not been prior studies linking 

TCL1A to HSC biology or clonal hematopoiesis. How TCL1A expression causes clonal 

expansion of HSCs is an important question for future studies.  

PACER represents a powerful tool for studying factors influencing clonal expansion, but 

our study has limitations. The sequencing coverage in TOPMed WGS was 38x, which inhibits 

detection of mutations with VAFs below 5%(Bick et al., 2020). More sensitive assays would 

increase detection of both driver and passenger mutations, would allow for phylogenetic analyses 

of the mutations that require accurate variant allele fractions and would reduce error in 

estimation of clonal expansion using PACER Additionally, the use of bulk-WGS precludes 

analysis of the co-occurrence of passenger and driver mutations in the same HSCs, which would 

refine our definition of passenger mutations. 

Nonetheless, PACER represents a powerful tool for studying clonal expansion in human 

WGS datasets. Despite the limitations of the sequencing technologies used, we also briefly 

remark that analysis of high-VAF passengers is key to the estimation of clonal expansion with 

this method, as it is only the passengers that occur on the predominant clone that is informative 
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here. Although our analysis has focused on clonal expansion in blood cells, PACER may be 

adapted to study clonal expansion in any tissue where pre-malignant clones exist.  

 

 

Methods 

Study Samples 

Whole genome sequencing (WGS) was performed on 127,946 samples as part of 51 

studies contributing to Freeze 8 NHLBI TOPMed program as previously described(Taliun et al., 

2019). None of the TOPMed studies included selected individuals for sequencing because of 

hematologic malignancy. Each of the included studies provided informed consent. Age was 

obtained for 82,807 of the samples, and the median age was 55, the mean age 52.5, and the 

maximum age 98. The samples have diverse reported ethnicity (40% European, 32% African, 

16% Hispanic/Latino, 10% Asian).  

WGS Processing, Variant Calling and CHIP annotation 

BAM files were remapped and harmonized through the functionally equivalent 

pipeline(Regier et al., 2018). SNPs and indels were discovered across TOPMed and were jointly 

genotyped across samples using the GotCloud pipeline(Jun et al., 2015). An SVM filter was 

trained to discriminate between high- and low-quality variants. Variants were annotated with 

snpEff 4.3(Cingolani et al., 2012). Sample quality was assessed through mendelian discordance, 

contamination estimates, sequencing converge, and among other quality control metrics.  

Putative somatic SNPs were called with GATK Mutect2(Cibulskis et al., 2013), which 

searches for sites where there is evidence for alt-reads that support evidence for variation, and 
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then performs local haplotype assembly. We used a panel of normals to filter sequencing 

artifacts and used an external reference of germline variants to exclude germline calls. We 

deployed this pipeline on Google Cloud using Cromwell(Voss et al., 2017).  

As described in our previous report, samples were annotated as having CHIP if the 

Mutect2 output contained at least one variant in a curated list of leukemogenic driver mutations 

with at least three alt-reads supporting the call. We expanded the list of driver mutations to 

include those in recently identified CHIP genes, increasing the number of CHIP cases from our 

previous report.  

We called somatic singletons by identifying somatic variants that appeared in a single 

individual among the CHIP carriers and 23,320 additional controls for a total of 28,391 

individuals. We excluded any variant that appeared in TOPMed Freeze 5 (463 million variants). 

We excluded variants with a depth below 25 or above 100 and excluded any variants in low 

complexity regions or segmental duplications, as these are challenging for variant calling. We 

only included somatic singletons that were aligned to the primary chromosomal contigs. We 

excluded any variant with a VAF exceeding 35% as these may be enriched for germline variants 

that were not included in our other filters. We used cyvcf2(Pedersen and Quinlan, 2017) to parse 

the Mutect2 VCFs and encoded each variant in an int64 value using the variant key 

encoding(VariantKey: A Reversible Numerical Representation of Human Genetic Variants | 

bioRxiv). We developed a bespoke Python application to perform the singleton identification and 

filtering.  

Amplicon sequencing validation 

Targeted sequencing of the CHIP driver genes from 80 samples from the Women’s 

Health Initiative (WHI) was performed using single-molecule molecular inversion probe 
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sequencing (smMIPS(Hiatt et al., 2013)). Reads were aligned with bwa-mem and processed with 

the mimips pileline (cite). We called somatic variants using an ensemble of VarScan(Koboldt et 

al., 2012), Mutect2(Cibulskis et al., 2013), and manual inspection with IGV(Robinson et al., 

2011).  

Single Variant Association 

Single variant association for each variant in Freeze 8 with a MAC > 20 was performed 

with SAIGE(Zhou et al., 2018) using the TOPMed Encore analysis server. To identify 

associations between rs2887399 and the acquisition of specific CHIP mutations, we used the 

same methods as our previous report on an analysis set of 74,974 individuals, including 4,697 

cases and 70,277 controls. Age, genotype inferred sex, the first ten genetic ancestry principal 

components, and study were included as covariates.  

We performed SAIGE single variant association analyses on the passengers including age 

at blood draw, sex, VAF, study, and the first ten genetic ancestry principal components as 

covariates. We applied an inverse normal transformation to the passenger counts. We declared 

variants from this analysis as significant if their pvalue was less than 5e-8.  

Estimation of association between rs2887399 genotypes and CHIP mutation acquisition 

 We coded the rs2887399 genotypes as a categorical variable rather than a linear 

quantitative coding to estimate effects separately for the heterozygotes and the alt-homozygotes 

using the ref-homozygotes as the reference level. We estimated the associations using firth 

logistic regression to reduce bias in estimation resulting from low cell counts(Ma et al., 2013), 

and included age, genotype inferred sex, and the first ten genetic ancestry components as 

covariates.  
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Finemapping of the TCL1A region 

We applied SuSIE(Wang et al.) to the genotypes included in a 200kb region surrounding 

TCL1A. We used the same covariates as the single variant association analysis. We used the 

posterior inclusion probabilities (PIP) and credible sets identified by SuSIE to identify the 

putative causal variant. We used LD directly calculated on the genotypes as opposed to an 

external reference.  

Rare Variant Analyses 

We performed gene-based tests on 1,698 cancer associated genes their flanking regions 

using the SCANG(Li et al., 2019) procedure. We identified these genes by downloading the 

targets associated with cancer in Open Targets(Carvalho-Silva et al., 2019), and then filtered to 

include only genes with an association score of 1.0. The most prevalent CHIP driver genes were 

included among this list. We used the inverse normal transformed passenger counts as the 

phenotype with the same covariates as before. We specified the minimum size of the grouped 

regions as 30 variants and the maximum as 200. We included all PASS variants with a minor 

allele count greater than four and less than 300 (MAF of 3.7% in the analyzed samples). We 

parsed the genotypes using cyvcf2 and stored them as dgCMatrix using the Matrix(Bates et al., 

2019) package from the R 3.6.1 programming language(R Core Team, 2020).  

We set the p-value filter to calculate SKAT test-statistics at 5e-4. We did not group the 

variants by annotation and we declared regions as significant if their pvalue was less than 2.9e-5 

(.05 / 1,698). We controlled for relatedness by incorporating a sparse kinship matrix as estimated 

by the PC-AiR method from the GENESIS R package(Gogarten et al., 2019). We specified 

separate residual variance terms for each study to control for heterogeneous residual variance. 

We grouped together all studies where the number of analyzed samples was less than 200.   
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Enrichment of passengers by driver gene 

We estimated the association between the driver genes and the passenger counts using 

DNMT3A as the reference in a negative binomial regression using the glm.nb function from the 

MASS R package(Venables and Ripley, 2002). We included age, study, VAF, and sex as 

covariates. We included driver genes with at least 30 mutations and reported genes that had a 

different effect relative effect than DNMT3A if the pvalue of the coefficient was less than 1e-2. 

Estimation of passenger mutation rate, clone fitness, and clone birth date 

We developed a hierarchical Bayesian latent variable model using the Stan(Stan 

Development Team, 2020b, 2020a) probabilistic programming language. We used the negative 

binomial likelihood with a mean and overdispersion parameterization to facilitate interpretation. 

We used the identity function to link the passenger counts to the predictors as we modeled the 

effects on an additive scale. We modeled the expectation and overdispersion of the passenger 

counts observed at time (𝑡𝑡𝑖𝑖) as  

E�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖(𝑡𝑡𝑖𝑖)� = 𝜇𝜇𝑇𝑇𝑖𝑖 + 𝑠𝑠𝑖𝑖(𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑖𝑖) +  𝛼𝛼𝑘𝑘 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖(𝑡𝑡𝑖𝑖) ~ 𝑁𝑁𝑁𝑁(𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖(𝑡𝑡𝑖𝑖)), 𝐼𝐼(𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)θ0 + �1 − 𝐼𝐼(𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)�θ1) 

 

Where 𝑇𝑇𝑖𝑖 is the time of the driver acquisition for sample i with a blood draw at time 𝑡𝑡𝑖𝑖, 𝜇𝜇 is the 

mutation rate per diploid genome per year for the HSC population, 𝑠𝑠𝑖𝑖 is the fitness of the clone, 

and 𝛼𝛼𝑘𝑘 represents a study specific random intercept for sample i included in study k. We can 

interpret 𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑖𝑖 as the lifetime of the clone in years. We used a negative binomial likelihood as 

there was overdispersion relative to a Poisson distribution.  

We included several constraints and priors on the parameters to make them identifiable. 

We constrained 𝑇𝑇𝑖𝑖 to be positive but exceeded by 𝑡𝑡𝑖𝑖 such that the parameter would be in yearly 
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units. We included case-control specific overdispersion terms 𝜃𝜃0 and 𝜃𝜃1 as the CHIP carriers had 

greater dispersion. To adjust for batch effects, we included a random intercept, as the amount of 

singletons in controls varied by study.  

To include the constraint on 𝑇𝑇𝑖𝑖, we defined 𝑇𝑇𝑖𝑖 = ψ𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖, with ψ𝑖𝑖 constrained between 

0 and 1, and 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 is the age at blood draw. We placed a Beta(1, 1.3) prior on ψ𝑖𝑖, which is 

equivalent to the supposition that the driver mutation is twice as likely to be acquired in the 

second half of life (at the time of blood draw) then the first. We assumed the study specific 

deviations were exchangeable with respect to a 𝑁𝑁(0,20) prior, providing some shrinkage on the 

study specific intercepts. We placed a 𝑁𝑁(0,1) prior on the 𝑠𝑠𝑖𝑖 parameter to aid identification. 

Further details are described in the supplement.  

To estimate the posterior, we used the Stan Hamiltonian Monte-Carlo (HMC) sampler 

with four separate chains, and used 400 samples of burn-in. We assessed convergence using the 

Rhat and effect-sample size statistics. We tried multiple parameterizations to reduce the number 

of divergent transitions. We performed posterior predictive checks to assess the model fit.  

Simulation of HSC dynamics 

We simulated the number of cells within an HSC clone as a birth-death continuous time 

Markov chain, which models the size of an HSC clone as the composite of simultaneous Poisson 

birth and Poisson death point processes. Following Watson et al.(Watson et al., 2020), HSCs 

could transition to one of three states: asymmetric renewal, symmetric self-renewal, and 

symmetric differentiation. The rate of transition was determined by the symmetric differentiation 

rate of the cell per year, which was set to five. The symmetric self-renewal and symmetric 

differentiation increase and decrease the size of the HSC clone respectively. As asymmetric 

division does not affect the size of the clone, we did not explicitly simulate transition to this 
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state. The proclivity towards self-renewal was determined by the fitness of the clone. We set the 

entire HSC population to acquire a single driver mutation during the ‘lifetime’ of the simulation.  

Passengers were accumulated over time using a birth Poisson point process. We then 

calculated the number of ‘detectable’ passengers that preceded the acquisition of the driver based 

on whether the underlying clone had expanded to a great enough proportion of HSC cells. We 

examined the association between the number of detectable passengers and the fitness of the 

underlying HSC clone. We implemented this simulation in the Julia programming language 

1.4(Bezanson et al., 2017). 

 

Data Availability 

Individual whole-genome sequence data for TOPMed whole genomes, individual-level 

harmonized phenotypes and the CHIP variant call sets used in this analysis are available through 

restricted access via the dbGaP TOPMed Exchange Area available to TOPMed investigators. 

Controlled-access release to the general scientific community via dbGaP is ongoing. Accession 

numbers for these datasets are: 
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Figures 

 

Figure 4.1: Estimating Clonal Expansion using Passenger Counts in TOPMed Genomes. 

A, A schematic depiction of using passenger counts to estimate the rate of expansion of a 

hematopoietic stem cell (HSC) clone that expands due to the acquisition of a driver mutation. 

The passengers (blue) that precede the driver (red) can be used to date the acquisition of the 

driver. B, The observed clonal expansion rates (dVAFdT), as expressed in the change in variant 

allele frequency (VAF) over time (years), were associated with increased passenger counts. C, A 

multivariate model including passenger counts, age at blood draw, and VAF indicates the 

relative contributions of age and VAF over a baseline model. D, The relative abundances of 

passenger counts were estimated for CHIP driver genes with at least 30 cases using a negative 
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binomial regression, adjusting for age at blood draw and study. The coefficients are relative to 

DNMT3A R882- CHIP.  
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Figure 4.2: Identifying the Inherited Determinants of Clonal Expansion. 

A, A genome-wide association study (GWAS) of passenger counts identifies TCL1A as a 

genome-wide significant locus. B, The association between the genotypes of rs2887399 and 

passenger counts varied between TET2 and DNMT3A. Alt-alleles were associated with 

decreased passengers in TET2 mutation carriers, in contrast to DNMT3A carriers, where no 

association was observed. C, The association between alt-alleles at rs2887399 and acquisition of 

specific CHIP mutations varies by CHIP mutations. Alt-alleles increased risk for acquiring 

DNMT3A mutations but decreased risk for acquiring splicing mutations. D, Previously identified 

phenotypic associations with rs2887399.  
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Figure 4.3: Functional Characterization of TCL1A Locus 

A, Finemapping of the TCL1A locus identified a single causal variant, rs2887399, highlighted 

with a gray bar. Rs2887399 is an eQTL of TCL1A in whole blood (GTEx v8). The three ATAC-

seq panels indicate differential chromatin accessibility at the promoter of TCL1A. B, Multiz 

alignments across multiple species are shown for the TCL1A locus. The TCL1A promoter is not 

conserved in murine models.  
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Extended Data Figures 

 

Extended Data Figure 4.4: CHIP carriers are enriched for passengers 

The passenger counts are enriched by 54% (95% CI: 51%-57%) after adjusting for age and study 

using a negative binomial regression. The different colors in the density plots correspond to 

quartiles of the marginal probability distributions. As the density estimates are smoothed, the 

underlying data points are indicated with hash marks. The data use a log2 scale, such that an 
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increase by 1 indicates a single doubling has occurred. 

 

Extended Data Figure 4.5: Finemapping identifies a single causal variant (PIP > 50%) rs2887399. 

The posterior inclusion probabilities (PIP) as estimated by SuSIE are plotted on the y-axis, and 

the genomic position of a 0.8 Mb region including TCL1A is plotted on the x-axis. The linkage 

disequilibrium (LD) estimates are plotted on a color scale and are estimated on the genotypes 

used for association analyses.   
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Extended Data Figure 4.6: Rare variant analysis of TCL1A locus identifies a suggestive signal prior to conditioning on rs2887399 

Rare variant analyses were performed using the SCANG rare variant scan procedure including 

all variants with a minor allele count less than 300. Identified rare variant windows are plotted as 

gray rectangles where the width corresponds to the size of the genomic region and the height 

corresponds to the pvalue of the SCANG test statistic for the window.   
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Extended Data Figure 4.7: Conditioning on rs2887399 attenuates independent rare variant signal. 

Rare variant analyses were performed including the rs2887399 genotypes as covariate.  
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Extended Data Figure 4.8: Genetic ancestry is associated with passenger counts 

Ancestries were estimated for each genome using RFMix, a supervised machine learning method 

trained on a reference panel from the Human Genome Diversity Panel. Sub-saharan genomes 

were modestly depleted of passengers.  
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Supplementary Information 1: Theoretical Simulation of PACER 

PACER Simulation Parameters 

We assume that the accumulation of passenger mutations is described by a Poisson birth-death 

stochastic process. As the birth and death rates scale with the number of HSCs, we assume a 

linear birth-death process. 

We assume that the birth rate for a given hematopoietic stem cell (HSC) 𝑖𝑖 at time 𝑡𝑡 with fitness 

𝑠𝑠𝑖𝑖(𝑡𝑡)) is 𝜆𝜆𝑖𝑖(𝑡𝑡) ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜔𝜔 ∗ 𝑋𝑋𝑖𝑖(𝑡𝑡) ∗ (1 + 𝑠𝑠𝑖𝑖(𝑡𝑡)) ∗ 𝑑𝑑𝑑𝑑), where 𝑑𝑑𝑑𝑑 represents the amount of time 

in years, and 𝜔𝜔 represents the number of stem cell divisions per year. We assume that the death 

rate can be described as 

𝜓𝜓𝑖𝑖(𝑡𝑡) ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜔𝜔 ∗ 𝑋𝑋𝑖𝑖(𝑡𝑡) ∗ (1 − 𝑠𝑠𝑖𝑖(𝑡𝑡)) ∗ 𝑑𝑑𝑑𝑑) 

. The death rate is the rate at which an HSC divides into two differentiated cells, and the birth 

rate is the rate at which an HSC divides into two HSCs. We don’t consider asymmetric HSC 

differentiation as this would not change the clone size. The HSC clone cell count is defined as 

𝑋𝑋𝑖𝑖(𝑡𝑡) = ∑ 𝜆𝜆𝑖𝑖𝑙𝑙≤𝑡𝑡 (𝑙𝑙) − 𝜓𝜓𝑖𝑖(𝑙𝑙), and the HSC clone size (a fraction of the total cell population) is 

𝑉𝑉𝑉𝑉𝐹𝐹𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝑖𝑖(𝑡𝑡)
∑ 𝑋𝑋𝑗𝑗𝑗𝑗 (𝑡𝑡)

. 

We start with 500 HSC clones, each with 200 identical cells in each clone 𝑋𝑋𝑖𝑖(𝑡𝑡 = 0) = 200. 

Each cell divides once every three years (= 1/3), and each clone with an initial 𝑠𝑠𝑖𝑖(𝑡𝑡 = 0) = 0. At 

each iteration, we also center the 𝑠𝑠𝑖𝑖(𝑡𝑡) such that 𝑠𝑠𝑖𝑖(𝑡𝑡) = 0. This means that there are 100,000 

total HSCs at the start of the simulation. 

For each clone, we set the passenger mutation rate: 
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1. 𝜇𝜇𝑝𝑝, the passenger accumulation rate, 𝐴𝐴𝑖𝑖(𝑡𝑡) ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖(𝑡𝑡) ∗ 𝜇𝜇𝑝𝑝 ∗ 𝑑𝑑𝑑𝑑) 

Where 𝐴𝐴𝑖𝑖(𝑡𝑡) is the number of passengers accumulated in a given clone through time 𝑡𝑡. We set 

𝜇𝜇𝑝𝑝 = 0.006, which is the passenger mutation rate of a diploid genome for a single HSC per year. 

This implies a mutation rate of 6 passengers per year for a clone with 1000 cells, and a mutation 

rate of 600 passengers per year across the entire population of 100,000 HSCs. We will later 

consider the effects of an insensitive sequencing assay that captures a small fraction of the 

passengers. 

We assign a single driver to one of the HSC clones, which is randomly selected among the HSC 

clones. The time of acquisition is uniformly drawn from each cell division after 10 years, such 

that are driver is equally likely to be acquired at either 10 years or 78 years. We simulate the 

HSC population across a lifetime of 90 years. We refer to the time of driver acquision as 𝑇𝑇𝑑𝑑. 

We assume that each HSC clone can at most acquire a single driver, which represents a similar 

HSC population to the TOPMed CHIP driver carriers. 

If an HSC clone 𝑖𝑖 acquires a driver at time 𝑡𝑡, we set 𝑠𝑠𝑖𝑖(𝑡𝑡) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(4,16). A 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(4,16) random 

variable is bounded between 0 and 1 and has an expectation of 0.20. An HSC with 𝑖𝑖(𝑡𝑡) = 0.20 

will self-renew 60% of the time, and terminally differentiate 40% of the time. 

For a given HSC population, we simulate 90 years, and track the accumulation of passengers and 

drivers. To incorporate the censoring from using 38x sequencing coverage, we simulate whether 

a given passenger would be observed at 38x coverage by sampling the number of alt-reads from 

𝑅𝑅 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(38,𝑉𝑉𝑉𝑉𝐹𝐹𝑖𝑖(𝑡𝑡)) and comparing 𝑅𝑅 ≥ 2, since two reads are required by our variant 

calling process. We refer to 𝑃𝑃(𝑅𝑅 ≥ 2|𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑣𝑣) = 𝑃𝑃(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(38, 𝑣𝑣𝑣𝑣𝑣𝑣) ≥ 2) We refer to 
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the passengers that would be detected at 38x coverage as the censored founding passengers, 

𝐴𝐴𝐶𝐶𝑖𝑖(𝑡𝑡), where 𝑡𝑡 = 𝑇𝑇𝑑𝑑 . 

We ran the simulation 10,000 times, where at most a single HSC clone acquires a driver 

mutation. We then compared 𝐴𝐴𝐶𝐶𝑖𝑖(𝑇𝑇𝑑𝑑) to the fitness of the clone at the end of each simulation. 

PACER Simulation Results 

Supplementary Figure S6 

 

We observed a modest concordance between the founding censored passengers with the fitness 

of each HSC at the end of the simulation (spearman = 0.09, pvalue < 2.2e-16, Supplementary 

Figure S6). This suggests that the censored founding passengers are proportional to the fitness of 
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the driver mutations. Stochastic drift of the HSC clone sizes contributes substantial residual 

variance. 

Supplementary Figure S7 

We observe no concordance between the uncensored founding passengers with fitness 

(Supplementary Figure S7). 
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Supplementary Tables 

Supplementary Table 4.1: List of CHIP mutations queried 

 

 

https://drive.google.com/file/d/1WMiMKrRiZjeboRz3Z88lT0LvYN6VryVq/view?usp=sharing 
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Chapter 5 Conclusion 
 

In this dissertation, we propose three contributions to modern statistical challenges in 

human genetics. These contributions map onto two principal axes – 1) how do we leverage EHR-

linked biobanks to advance association discovery and characterize disease etiology 2) how can 

we use population scale whole genome sequencing efforts to characterize the dynamic genome 

of blood cells. Towards our first axis, we propose study design recommendations for conducting 

GWAS of EHR derived lab traits and develop a novel MR method for inferring the causal 

relationship between two traits. Towards our second, we leverage over 100,000 whole genomes 

from the NHLBI Trans-Omics for Precision Medicine program (TOPMed) (Taliun et al., 2021) 

to identify ~5,000 carriers of specific class of oncogenic mosaicism in blood and develop a 

Bayesian model of clonal expansion. Here, we briefly review these contributions, and embed 

them with the broader landscape of biostatistics and human genetics. We discuss limitations and 

potential future extensions.  

LabWAS and study design recommendations 

In chapter 2, we introduce the notion of LabWAS, which is a PheWAS (Denny et al., 

2010) analysis of clinical lab traits. To our knowledge, this study is the first to comprehensively 

conduct parallel analyses of study design decisions for GWAS of EHR derived lab traits. This 



 136 

study utilized GWAS from 70 lab traits from two independent biobanks – the Michigan 

Genomics Initiative, and BioVU from the Vanderbilt health system. The work benefited from an 

interdisciplinary team of statistical genetics, genetic epidemiologists, and clinical pathologists.  

 Among the impetus for this work was the dissensus regarding basic analytic decisions 

that we observed in the literature. Previous efforts varied greatly in choice of summary statistics 

and covariate adjustment. When these decisions were emphasized, justifications were often 

tailored to a single biobank. Permitted by the fortuitous availability of two independent biobanks, 

we were able to systematically assess the concordance of different analytic decisions. We 

concluded with a set of recommendations that may be generally appropriate for lab trait GWAS 

but emphasize that there is no single optimal analysis pipeline. There was considerable 

heterogeneity in the effects of analysis decisions across the labs. For example, the maximum 

measurement increased empirical power relative to using the median for a subset of blood cell 

indices, but decreased power elsewhere.  

 The future bears no shortage of additional biobanking efforts. The All of Us Initiative 

from the NIH (The “All of Us” Research Program, 2019) aims to sequence ~1,000,000 genomes 

and link them to phenotypes. As these efforts accelerate, meta-analyses between biobanks will 

become more common place. We anticipate that our results and study design recommendations 

will benefit these future endeavors.  

 We briefly remark that although the conclusions are derived from two biobanks, the 

ability to generalize our recommendations to other biobanks remains unclear. Future work is 

needed to expand the study design analyses across more than two biobanks. Such an expanded 

analysis may further identify which analytic strategies transcend biobank differences and which 

should be tailored to individual health systems.  
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Sparse Mendelian Randomization 

Permitted by the accessibility of GWAS summary statistics, analyses that infer causal 

effects between two traits have become commonplace. These methods incorporate assumptions 

regarding the genetic architecture of analyzed traits. As traits vary in genetic architecture, 

bespoke MR methods can be optimized for application. In Chapter 3, we introduce a sparse MR 

method called SPARMR (SPARse Mendelian Randomization), for application to traits where a 

dense genetic architecture is ill-suited. In concert with recent advances in fine-mapping methods 

(Wang et al., 2020), we develop a method that assumes most variants are not causal. We present 

simulations that demonstrate the performance of the method in various settings.  

 The method presented here is enabled by the advent of probabilistic programming 

languages (PPL), which make random variables first class citizens. Here, we implemented our 

method using Tensorflow probability (TFP) (Dillon et al., 2017), which abstracts away model 

definition from MCMC sampling. TFP facilitates efficient sampling using Hamiltonian Monte-

Carlo, which typically out performs traditional MCMC approaches in many common settings 

(Betancourt, 2018). PPLs have become increasingly common in genomics (Berzuini et al., 

2020), as their flexibility and performance facilitates the rapid development of bespoke statistical 

models.  

 We remark that despite recent advances in MR methods, causal inference between two 

traits using GWAS summary statistics remains challenging. Disease associations are often highly 

pleiotropic (Morrison et al., 2020; Verbanck et al., 2018), and incomplete knowledge of all 

relevant confounders makes causal interpretation challenging unless the disease system is very 

well characterized. Although methods that make inference more robust to pleiotropy mitigate 

this to some degree, we submit that study design has a much larger role in the application of MR.  
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Using WGS to study oncogenic mosaicism in blood 

In chapter 4, we called somatic mutations genome wide across ~127,000 samples from 

the Trans-Omics for Precision Medicine (TOPMed) consortium (Taliun et al., 2021). These 

samples were extracted primarily from whole blood and were sequenced to 38x coverage on 

average. Cross-referencing these somatic variant calls identified ~5,000 carriers of a 

leukemogenic class of point mutations – a state called clonal hematopoiesis of indeterminate 

potential (CHIP). The landscape of somatic variation is diverse, and includes several variants 

with no fitness effects, which are sometimes referred to as passengers. Here we used the 

passengers to construct a mutational clock. As the data are likely generated by an underlying 

stochastic mutational process, we developed a Bayesian hierarchical model to describe the 

underlying process for passenger mutation acquisition.  

Our estimates are limited by the sensitivity of 38x WGS, which was not collected with 

somatic variant calling in mind. We called variants using only a single tissue sample, which 

likely enriches our call-set for artifacts relative to traditional paired-tumor somatic variant 

calling. We anticipate that as paired-tumor samples become increasingly available, similar 

analyses may become possible with a refined somatic variant call-set.  

To date, no therapeutic interventions exist for CHIP, despite its phenotypic consequences. 

We anticipate that as molecular pathways that modulate clonal expansion are identified, 

promising new avenues for diagnostics and therapeutics will arise. We speculate that detection of 

oncogenic mosaicism in the blood of older individuals may someday become routine in clinical 

care.  
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Summary 

The current era represents an exciting opportunity for computational genetics. As 

sequencing costs plummet, a future where human genomes are routinely sequenced seems 

eminently possible. In this dissertation, I make three contributions towards addressing the 

challenges that result from this data deluge. With eagerness and curiosity, I look forward to 

future progress.  
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