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ABSTRACT

The steady decline of response rates in probability surveys, in parallel with the fast emer-

gence of large-scale unstructured data (“Big Data”), has led to a growing interest in the use

of such data for finite population inference. However, the non-probabilistic nature of their

data-generating process makes big-data-based findings prone to selection bias. When the

sample is unbalanced with respect to the population composition, the larger data volume am-

plifies the relative contribution of selection bias to total error. Existing robust approaches

assume that the models governing the population structure or selection mechanism have

been correctly specified. Such methods are not well-developed for outcomes that are not

normally distributed and may perform poorly when there is evidence of outlying weights. In

addition, their variance estimator often lacks a unified framework and relies on asymptotic

theory that might not have good small-sample performance.

This dissertation proposes novel Bayesian approaches for finite population inference

based on a non-probability sample where a parallel probability sample is available as the

external benchmark. Bayesian inference satisfies the likelihood principle and provides a uni-

fied framework for quantifying the uncertainty of the adjusted estimates by simulating the

posterior predictive distribution of the unknown parameter of interest in the population.

The main objective of this thesis is to draw robust inference by weakening the modeling

assumptions because the true structure of the underlying models is always unknown to the

analyst. This is achieved through either combining different classes of adjustment methods,

i.e. quasi-randomization and prediction modeling, or using flexible non-parametric models

including Bayesian Additive Regression Trees (BART) and Gaussian Process (GP) Regres-

sion.

More specifically, I modify the idea of augmented inverse propensity weighting such that

BART can be used for predicting both propensity scores and outcome variables. This offers
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additional shields against model misspecification beyond the double robustness. To eliminate

the need for design-based estimators, I take one further step and develop a fully model-

based approach where the outcome is imputed for all non-sampled units of the population

via a partially linear GP regression model. It is demonstrated that GP behaves as an

optimal kernel matching tool based on the estimated propensity scores. To retain double

robustness with good repeated sampling properties, I estimate the outcome and propensity

scores jointly under a unified Bayesian framework. Further developments are suggested for

situations where the reference sample is complex in design, and particular attention is paid

to the computational scalability of the proposed methods where the population or the non-

probability sample is large in size. Throughout the thesis, I assess the repeated sampling

properties of the proposed methods in simulation studies and apply them to real-world

non-probability sampling inference.

Keywords: doubly-robust, pseudo-weighting, prediction modeling, Bayesian Additive Re-

gression Trees, Gaussian Process Regression.
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CHAPTER I

Introduction

1.1 Non-probability samples

The 21st century is witnessing a re-emergence of non-probability sampling in various

domains (Murdoch and Detsky, 2013; Daas et al., 2015; Lane, 2016; Senthilkumar

et al., 2018). On the one side, probability sampling, which has dominated the survey

methodology realm for decades, is facing new challenges, mainly because of a steady

drop in response rates and increased costs (Groves, 2011; Johnson and Smith, 2017;

Miller, 2017). On the other side, new modes of data collection using sensors, web

portals, and smart devices have emerged that routinely capture a variety of human

activities. These automated processes have led to an ever-accumulating massive vol-

ume of unstructured information, so-called “Big Data” (Couper, 2013; Kreuter and

Peng, 2014; Japec et al., 2015). While being cheaper, larger, faster, and more detailed

make Big Data appealing as an alternative or supplement to probability surveys, the

non-probabilistic nature of their data-generating process introduces new impediments

to valid inference for such data.

Non-probability sampling has a long history of being a cheap and timely alterna-

tive to conducting a full census of a larger population. Matching by a set of known

population auxiliary totals, also termed quota selection, constitutes one of the earliest

strategies to achieve balance in sampling (Kiaer, 1897; Rao and Fuller, 2017). Ever

1



since the role of random selection was recognized by Neyman’s seminal effort in the

mid-1930s, purposive methods were quickly abandoned by scientific sampling. It was

through his study that the design-based mode of inference found its way to the survey

methodology domain, where estimation relies entirely on the randomization distribu-

tion (Neyman, 1934). Neyman demonstrated that equal probabilities of selection are

not a necessary requirement to get unbiased estimates in stratified sampling.

As a result, any sampling design in which all population units are assigned a

known non-zero chance of being selected became the standard definition for probabil-

ity sampling (Särndal et al., 2003). This not only negates the influence of unobserved

effect modifiers on the selection mechanism (Elliott, 2016) but allows for undoing

the sampling procedure by the analyst using inverse probability weighting (Narain,

1951; Horvitz and Thompson, 1952; Hájek, 1971). The history of probability sam-

pling is replete with attempts to improve the sampling efficiency statistically and

with respect to budget, logistics, and sampling frame constraints, but at the expense

of additional complexity in the sample design, such as stratification and multi-stage

clustering. Theories for design-based inference and variance estimation under such

sampling designs have been well-documented in Kish (1965); Cochran (1977); Särndal

et al. (2003) and Fuller (2011).

Since non-response and imperfect sampling frames are two unavoidable obstacles

to fully random selection, parallel efforts have been devoted to developing post-survey

adjustment techniques to limit the resulting bias (Holt and Smith, 1979). Weight-

ing class adjustment and post-stratification via raking are the most commonly used

methods to compensate for unit non-response and undercoverage in the large-scale

surveys conducted by federal statistical agencies, which usually appear as a factor

applied to the base weights (Brick and Kalton, 1996; Kalton and Flores-Cervantes,

2003; Valliant et al., 2018). A more recent add-on to post-survey adjustment involves

model-assisted methods, such as general regression estimator, that incorporate fea-
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tures of matching based on known control totals into probability sampling (Deville

and Särndal, 1992; Deville and Tillé, 2004).

Along with these developments, there has been a persisting decline in the response

rate of probability samples (Miller, 2017; Groves, 2011). According to a report by

Pew Research Center, the average response rate in telephone surveys has dropped

by 75% over the past two decades (Keeter et al., 2017; Dutwin and Lavrakas, 2016),

and the trend for in-person household surveys is similar (Meyer et al., 2015; Williams

and Brick, 2018). Researchers speculate that multiple factors, including the rising

response burden from a multitude of surveys with lengthy and sophisticated instru-

ments, busier-than-ever lifestyles, and increased privacy concerns, contribute to this

downward trend (Brick and Williams, 2013). It is perhaps because of this issue that

pollsters increasingly fail to predict the outcomes of the political elections in the U.S.

(Forsberg, 2020; Vittert et al., 2020).

This downward trend not only imposes excess implementational costs for refusal

conversion but casts doubt on the external validity of probability survey-based find-

ings (Presser and McCulloch, 2011; Groves, 2011). In the absence of accurate auxiliary

information for non-respondents, post-survey adjustments will fail to correct for the

non-response bias (West and Little, 2013). Although responsive and adaptive survey

designs have increased the response propensities (Groves and Heeringa, 2006; Brick

and Tourangeau, 2017; Tourangeau et al., 2017), these approaches may not remain

effective forever as the cost of refusal conversion continues to rise (Luiten et al., 2020).

Parallel to this paradigm, large-scale unstructured data, which I collectively term

“Big Data”, are becoming increasingly available thanks to the recent advances in mea-

surement technologies (Groves, 2011; Johnson and Smith, 2017). Examples include

political views shared on social media, Google searches for particular terms, payment

transactions recorded by online stores, electronic health records of the patients ad-

mitted to a group of hospitals, videos captured by traffic cameras, and mobile GPS
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trajectory data by satellite. This broad range of data examples share several common

characteristics in terms of volume, velocity, variety, and veracity (Couper, 2013).

Though usually not targeted to answer pre-specified research questions, Big Data

can address questions that are not easily answered by traditional surveys. Surveys are

often cross-sectional, whereas Big Data are often longitudinal, collecting by real-time

sampling (Johnson and Smith, 2017). In addition, Big Data are more cost-efficient,

and unlike probability surveys, the data collection cost is not a linear function of the

sample size (Tam and Clarke, 2015). Its immense size makes Big Data a rich resource

for rare event studies, predictive analysis as well as small area estimation (Rao, 2015;

Lohr et al., 2017; Kim et al., 2018). Because of these features, there exist a growing

hope that Big Data can be used for official statistics in the near future (Struijs et al.,

2014; Kitchin, 2015; Beręsewicz et al., 2018).

However, concerns have been over the use of Big Data for finite population in-

ference (Hargittai, 2015; Buelens et al., 2014), because the mechanism of selection

of their elements is often unknown and beyond the control of researchers. Unlike

probability surveys, such data may lack explicit definitions of the target population,

sampling frame, and the mechanism by which data elements are selected. When the

sample is unbalanced with respect to the target population composition, larger data

volume even increases the relative contribution of selection bias to total error (Raghu-

nathan, 2015). In the words of Meng (2016): “the bigger the data, the more certain we

will miss our target”. Meng et al. (2018) call this phenomenon a “Big Data Paradox”,

and show that the effective sample size compared with probability sampling drops

dramatically when even trivial degrees of selection bias are present.

There may be situations where conducting a probability survey may not be prac-

tical. This is usually the case in many clinical and epidemiological studies, e.g. ran-

domized clinical trials (RCTs), though the emphasis in such studies is on internal

validity rather than on generalizability to a larger population. For finite population
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inference, opt-in panels are now widely used for web surveys in social and public

opinion research as a cheap and fast method of data collection. The potential selec-

tion bias in such methods of sampling prompted the American Association for Public

Opinion Research (AAPOR) to issue two comprehensive task force reports on the

use of non-probability samples. Neither recommends the use of online panels, and

the authors emphasize that these samples tend to give less accurate estimates than

probability samples and that checking the required modeling assumptions is difficult

(Baker et al., 2010, 2013).

The majority of the inferential methods for non-probability samples borrow their

core idea from the causal inference context, where the goal is obtaining internally valid

associations between exposures and an outcome variable from observational studies

by removing the effects of potential confounders. Analogies between the external

validity in non-probability samples, i.e. generalizability to a larger population and the

internal validity in causal inference for observational data have been well-recognized

(Mercer et al., 2017; Stuart et al., 2018; Kohler et al., 2019). While RCTs deal

with randomly assigning the sampled units to the treatment group, in probability

sampling, it is the population units that are assigned randomly to the sample. Elliott

(2016) emphasizes that RCTs negate the influence of unobserved confounders, whereas

probability samples negate the influence of effect modifiers.

In contrast, both observational studies and non-probability samples suffer from

the fact that the corresponding assignment mechanisms are unknown to the analyst.

Two widely studied strategies in causal inference encompass imputing the “potential

outcome” and balancing the sample across levels of the exposure given a set of ob-

served confounders. Both strategies rely on a “strongly ignorable” condition, under

which the assignment mechanism is assumed to be completely at random with ad-

equate observed samples at each level of confounders. Matching, stratification, and

weighting are three common technical approaches to achieve balance in the second

5



strategy (Rubin, 1976; Rosenbaum and Rubin, 1983). While these methods are dis-

cussed in detail elsewhere throughout this thesis, substantial issues may arise when

adapting the causal inference methods to a non-probability sample setting.

Adjustments for non-random sampling require auxiliary information observed for

the entire population, or a probability survey representing that population (Thomp-

son, 2019). They rely on well-specified underlying models, while the true structure of

these models is almost always unknown in reality. My goal is to develop robust and

efficient methods that weaken the modeling assumptions and account for the sampling

design of the probability survey. By efficiency, I mean not only computation scalabil-

ity, but reduced variance of the adjusted estimators as well. Note that checking this

is limited to empirical assessments by comparing the length of confidence intervals.

Specifically, I employ non-parametric Bayesian modeling for the prediction that not

only captures non-linear associations as well as high-order interactions automatically

but also allows for direct quantification of the uncertainty of the proposed estimator

by simulating the posterior predictive distributions.

The focus of this thesis is on a situation where a well-designed probability sam-

ple is available as an external benchmark. For the benchmark sample, a range of

sampling designs is investigated from independent selection with unequal probabili-

ties of selection to stratified multistage cluster sampling. Throughout the thesis, I

assume a strongly ignorable selection mechanism, given the common set of observed

auxiliary variables in the probability and non-probability samples. That is the non-

probability sample is assumed to arise from a probability sample design but with

unknown non-zero selection probabilities, and that the auxiliary variables fully deter-

mine the selection mechanism in the non-probability sample. It is also assumed that

the measurement of auxiliary variables is error-free in both samples. In the following

subsection, I define these assumptions more formally.
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1.2 Notation, assumptions and a general framework

Denote by U a finite population of size N , which may be known or unknown. For

i = 1, ..., N , let yi be the realized value of a scalar outcome variable, Y , in U , and

xi = [xi1, xi2, ..., xip]
T the values of a p-dimensional set of relevant auxiliary variables,

X. Let SA be a non-probability sample selected from U with (xTi , yi) observed and nA

being the sample size. The main objective of descriptive inference is to learn about

an unknown population quantity that is a function of Y , e.g. Q(y). Throughout this

thesis, I consider this quantity to be the finite population mean, i.e. Q(y) = ȳU =∑N
i=1 yi/N . Suppose δAi = I(i ∈ SA) represents the inclusion indicator variable of SA

for i ∈ U whose distribution can be explained by xi. Since the selection mechanism in

SA is unknown, valid inference about Q(y) requires the following strong conditions:

C1. Positivity—The nonprobability sample SA actually does have a probabilistic

sampling mechanism, albeit unknown. That means p(δAi = 1|xi) > 0 for all

possible values of xi in U .

C2. Ignorability—the selection mechanism of SA is fully governed by x, which

implies that Y |= δA|X. Then, for i ∈ U , the pseudo-inclusion probability asso-

ciated with SA is defined as πAi = p(δAi = 1|xi).

C3. Independence—units in SA are selected independently given x, i.e. δAi |= δAj |xi, xj

for i 6= j ∈ U . This assumption is made to avoid unnecessary complications;

where required, I will relax this condition by considering SA to be clustered.

Note that C1-C2 are collectively called a strongly ignorable condition by Rosenbaum

and Rubin (1983).

Now, suppose SR is a parallel reference survey of size nR, in which the same set

of covariates, X, has been measured, but Y is unobserved. Also, let δRi = I(i ∈ SR)

denote the inclusion indicator variable associated with SR for i ∈ U . Units of SR
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may be selected independently or through a stratified multistage cluster sampling

design. Being a full probability sample implies that the selection mechanism in SR

is ignorable given its design features, i.e. p(δRi |yi, di) = p(δRi |di) for i ∈ U , where

di = [di1, di2, ..., diq]
T denotes a q-dimensional set of associated design variables. The

inclusion probabilities in SR as πRi = p(δRi = 1|di) for i ∈ U , are known, but typically

only observed for i ∈ SR. Most often, probability survey data are accompanied by a

set of sampling weights that are supposed to be inversely proportional to the selection

probabilities, i.e. wRi ∝ 1/πRi . The sampling weights may comprise of post-survey

adjustments for ineligibility, non-response, and non-coverage errors in addition to the

sampling design (Korn and Graubard, 1999; Valliant et al., 2018).

Now, I combine the two samples and define SC = SA ∪ SR with nC = nA + nR

being the total sample size. While X and D may overlap or correlate, in addition to

the aforementioned conditions, I also assume

C4. Independence of samples— conditional on [X,D], SR and SA are selected

independently, i.e. δA |= δR|X,D.

Considering C1-C4, the joint density of yi, δAi and δRi based on a “selection model”

can be factorized by

p(yi, δ
A
i , δ

R
i |xi, di; θ, β) = p(yi|xi, di; θ)p(δAi |xi; β)p(δRi |di), ∀i ∈ U (1.1)

where η = (θ, β) are unknown parameters indexing the conditional distribution of

Y |X,D and δA|X, respectively. The conditional density p(yi|xi, di; θ) denotes the un-

derlying model that governs the response surface structure of a superpopulation from

which U has been selected. Also, p(δAi |xi; β) and p(δRi |di) denote the randomization

distributions associated with the selection mechanisms of SA and SR, respectively.

Note that the latter does not depend on any unknown parameter as SR is a proba-

bility sample with a known sampling design.
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Figure 1.1 depicts the data structure in both the finite population and the com-

bined sample. Generally, in a non-probability sample setting Sobs = {xi, di, yj, πRk |i ∈

SC , j ∈ SA, k ∈ SR} is assumed to be observed (shaded area), while Smis = {πAi , yj|i ∈

SA, j ∈ SR} is missing and has to be imputed. The following subsection gives an

overview of the proposed methods across the next chapters.
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Figure 1.1: Data structure in the population and the combined sample.
Note: To simplify visualizing δR and δA, I have assumed that SR ∩ SA = ∅.

1.3 Overview of the following chapters

In Chapter II, I develop a robust two-step Bayesian pseudo-weighting approach us-

ing Bayesian Additive Regression Trees (BART). The flexibility of BART as a pre-

dictive tool can offer a strong shield against misspecifying the selection propensity

model. I compare the performance of the proposed method with those of two alterna-

tive pseudo-likelihood-based techniques in terms of repeated sampling properties in

a simulation study. Under BART, point and variance estimators are obtained using

Rubin’s combining rules. I also demonstrate the consistency of the adjusted estimates

and develop a sandwich-type variance estimator based on Generalized Linear Models

(GLM) under the strongly ignorable condition. Finally, I apply the proposed method

to the naturalistic driving data from the Safety Pilot Model Deployment using the

2009 National Household Travel Survey (NHTS) as a benchmark.
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To further protect against model misspecification, Chapter III suggests combining

the proposed pseudo-weighting method in Chapter II with a prediction model based

on Augmented Inverse Propensity Weighting (AIPW). This yields double robustness

that guarantees consistency in the adjusted estimator when the underlying model of

either approach holds. As in Chapter II, I utilize Rubin’s combining rules to ob-

tain the point and variance estimators under BART. Under GLM, I also assess the

asymptotic properties of the proposed method theoretically. The repeated sampling

properties of the proposed estimator are then checked under different model speci-

fication scenarios. Considering the 2017 NHTS as a benchmark, I eventually apply

the proposed method to the naturalistic driving data from the second phase of the

Strategic Highway Research Program (SHRP2).

In Chapter IV, I develop a fully Bayesian approach by modeling the joint dis-

tribution of the outcome variable and the sample inclusion indicator, which allows

for directly simulating the posterior predictive distribution of the unknown popula-

tion quantity. This method utilizes a partially linear Gaussian process regression as

the prediction model that non-parametrically links the estimated propensity scores

to the response surface. I show that Gaussian process (GP) regression behaves as a

non-parametric matching technique based on the estimated propensity scores, which

yields double robustness and reduced sensitivity to outlying pseudo-weights. I as-

sess the repeated sampling properties of the proposed method through Monte Carlo

simulation studies and apply it to SHRP2/NHTS data to estimate police-reportable

crash rates per distance unit driven in the U.S. As a second application, I estimate

severe crash injury rates in different body regions in the U.S. based on the Crash

Injury Research Engineering Network (CIREN) data as the non-probability sample

and considering the Crashworthiness Data System (CDS) as a benchmark. Finally,

in Chapter V, I highlight the main findings across these four chapters and close the

dissertation by discussing limitations and potential areas for future research.
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CHAPTER II

Robust Bayesian Quasi-random Inference for

Non-probability Samples

2.1 Introduction

This chapter has been motivated by a desire for finite population inference based on

naturalistic driving studies (NDS), which are one real-world example of Big Data for

rare event investigations. Since traffic collisions are inherently rare events, measuring

accurate pre-crash behaviors as well as exposure frequency in normal driving demands

accurate long-term follow-up of the population of drivers. Thus, NDS are designed to

continuously monitor drivers’ behavior via in-vehicle sensors, cameras, and advanced

wireless technologies (Guo et al., 2009). The detailed information collected by NDS

are considered a rich resource for assessing various aspects of transportation such as

traffic safety, crash causality, and travel patterns (Huisingh et al., 2018; Tan et al.,

2017). However, because of the high administrative and technical costs, participants

are usually recruited voluntarily via convenience samples from limited geographical

areas. Therefore, inference based on the NDS data may suffer from selection bias.

It is apparent that classical design-based approaches cannot be applied to an

NDS sample directly for making finite population inference, even though one could

imagine that willingness to participate is quite random. The main reason is that
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the probabilities of selection are missing in a non-probability sample and cannot be

estimated from the sample itself (Chen et al., 2019). Thus, as recommended by

the American Association for Public Opinion Research (AAPOR) task force on non-

probability samples, adjustment methods should rely on models and external auxiliary

information (Baker et al., 2013). One potential solution might be treating the NDS

sample as a quasi-random sample but with unknown selection probabilities and then

employing models to estimate the pseudo-inclusion probabilities for units of the NDS

(Valliant and Dever, 2011; Elliott and Valliant, 2017).

Also known as quasi-randomization (QR), this method borrows the idea of propen-

sity scores (PS) adjustment from Rosenbaum and Rubin (1983) for causal inference

in observational studies. However, in a non-probability sample setting, estimating the

propensity of being selected in the sample cannot be performed without the assistance

of external data. In many situations, there can be found a well-designed probabil-

ity sample properly representing the target population for inference. Such a sample

is often termed a “reference survey”. Combining the non-probability sample with a

reference survey, Terhanian et al. (2000) expand the QR method to improve the po-

tential selection bias in web surveys by fitting the propensity model on the combined

sample. Since then, PS-based matching, subclassification, and inverse weighting have

been widely used to adjust for the selection bias in such samples (Lee, 2006; Rivers,

2007; Lee and Valliant, 2009; Valliant and Dever, 2011; Brick, 2015).

To guarantee unbiasedness, it is critical to assume that the selection mechanism

in the non-probability sample is ignorable, i.e. the set of common covariates is fully

characterizing the selection mechanism. In the nonresponse adjustment context, Lit-

tle and Vartivarian (2005) emphasize that adjustments are effective in bias reduction

as long as the auxiliary variables are strongly associated with both the analytic vari-

able of interest and nonresponse mechanism; otherwise, they will only inflate the

variance without substantial reduction in bias. It is also essential to correctly specify
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the underlying model governing the selection mechanism of population units in the

sample. A big challenge arises from the fact that the true propensity model is almost

always unknown to the analyst in a non-probability sample setting. In addition, esti-

mating the PS requires auxiliary information to be available for the entire population

units, while external data are often limited to a reference survey (Zhang, 2019).

When units in the reference survey are selected independently with unequal inclu-

sion probabilities, to predict the PS, Valliant et al. (2018)[p.565-603] suggest using a

weighted logistic regression with a pseudo-maximum likelihood estimation (PMLE)

of parameters. Recently, an alternative expansion of the pseudo-likelihood function

is given by Chen et al. (2019) for the PS model, where the population-level term is

replaced by its Horvitz Thompson (HT)-estimator from the reference survey. How-

ever, PMLE is a design-based method where the population log-likelihood function

is approximated by its weighted estimate from the sample. Despite being design-

consistent, the solutions of the estimating equations may not be efficient when the

sampling weights are highly variable (Little, 2004). More importantly, this paramet-

ric method is limited to the likelihood-based models with an exponential family, so it

cannot be applied to a broader range of predictive methods. In situations where the

true propensity model is unknown or variable selection is a hurdle because of high-

dimensional covariates, one might hope to be able to use more flexible predictive

methods such as modern tree-based methods, which automatically perform variable

selection and take into account non-linear associations and high-order interactions.

Alternatively, Elliott et al. (2010) propose a two-step approach where pseudo-

inclusion probabilities are directly derived by multiply applying the Bayes rule. This

method, which I term as propensity-adjusted probability prediction (PAPP), compu-

tationally separates the sampling weights from the propensity model. This can be

especially advantageous when the goal is applying a broader range of predictive meth-

ods, such as algorithmic tree-based methods, for the PS prediction. Being able to use
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more flexible non-parametric predictive methods helps us further protect against mis-

specifying the QR model. This chapter aims to employ Bayesian Additive Regression

Trees (BART) to predict the PS based on the PAPP method. BART provides a strong

predictive tool by automatically handling complex associations as well as multi-way

interactions (Chipman et al., 2007). The idea of BART is based on the sum-of-trees

regression approximating the outcome variable as an unspecified function of predic-

tors. However, to avoid trees from overfitting, a set of prior distributions is assigned

to the trees’ structure as well as parameters in the terminal nodes. Given the data,

these priors are updated through a Bayesian backfitting Monte Carlo Markov Chain

(MCMC) algorithm (Chipman et al., 2010).

BART is especially desirable for high-dimensional data where variable selection

is a big challenge (Hill et al., 2011; Spertus and Normand, 2018). In addition, the

posterior predictive distribution produced by BART makes it easier to quantify the

uncertainty due to the pseudo-weights (Tan et al., 2019). BART has advantages in

PS adjustment in the presence of heterogeneous treatment effects (Kern et al., 2016;

Hahn et al., 2020; Wendling et al., 2018). Mercer (2018) recently employed BART to

adjust for selection bias in non-probability samples, but in order to properly account

for the sampling weights in the adjustments, the author employs a weighted Bayesian

bootstrap technique to multiply impute the auxiliary variables for the non-sampled

units of the population. When the non-probability sample or the finite population

is large in size, such a method may not be tractable computationally as one has to

fit BART repeatedly on the simulated synthetic populations. In addition, Tan et al.

(2019) exploits BART to compare different adjustment methods including inverse

propensity weighting in an item-missing imputation setting.

When BART is applied, I employ a two-step Bayesian framework where PS are

multiply imputed as the first step using the posterior predictive draws simulated by

BART, and then Rubin’s combining rules are used to aggregate the pseudo-weighted
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estimates for the construction of point and interval estimates (Kaplan and Chen, 2012;

Rubin, 1976). For the application of this chapter, I am interested in generating a set

of pseudo-weights for the Safety Pilot Model Deployment (SPMD) sample, which is a

large-scale NDS. Participants in the SPMD have been selected through a combination

of convenience and snowball sampling, and geographically, the sample is limited to

the Ann Arbor area. Therefore, the SPMD sample may not be representative of the

population of U.S. drivers. In particular, I use the 2009 National Household Travel

Survey (NHTS) as the reference sample, which is a nationally representative telephone

survey of the U.S. population. My goal is to develop a set of pseudo-weights that can

be used for improving the generalizability of the sample in any SPMD-specific study.

I evaluate the performance of estimated pseudo-weights by comparing the weighted

estimates for some trip-related measures in both SPMD and NHTS, as well as in a

Monte Carlo simulation study.

The rest of the chapter is organized as follows: In Section 2.2, I start by reviewing

the theoretical background behind the QR approaches including PAPP and PMLE

with additional proofs given in Appendix 2.6. Variance estimation under pseudo-

weighting and ad hoc methods of weight trimming are also discussed in this section.

In Section 2.3, I provide a simulation study to evaluate the proposed methods. Sec-

tion 2.4 describes the data and auxiliary variables I used in the current chapter and

presents the results of pseudo-weighting on SPMD data at the individual level. Fi-

nally, Section 2.5 reviews the strengths and weaknesses of the study in more detail

and suggests some future research directions.

15



2.2 Methods

2.2.1 Quasi-randomization

Consider the assumptions C1-C4 determined in Section 1.2. To simplify the notation,

I define x∗i = [xi, di], a (p+ q)-dimensional vector of all auxiliary variables associated

with SA and SR. Now, suppose SA and SR have trivial overlap, i.e. p(δAi + δRi =

2) ≈ 0. This assumption is reasonable when the sampling fraction in both samples

is small. Note that under the ignorable assumption, the propensity model for SA

depends on X observed for the entire population. Thus, given the combined sample,

SC = SA ∪ SR, with nC = nA + nR being the sample size, it is reasonable to expect

that the pseudo-inclusion probabilities, πAi ’s, are a function of both xi and di for

i ∈ SC . Let zi = I(i ∈ SA|δi = 1) be the indicator of subject i belonging to the

non-probability sample in the combined sample where δi = δAi + δRi . Note that since

SA ∩ SR = ∅, δi can take values of either 0 or 1 as below:

δi =

 0, if δRi = 0 and δAi = 0

1, if δRi = 1 or δAi = 1

As discussed earlier, in quasi-randomization (QR), SA is treated as if the self-

selection mechanism of the population units mimics a stochastic process, but with

unknown selection probabilities. Then, attempts are made to estimate these missing

quantities in SA based on the external auxiliary information, which involves modeling

f(δAi |xi; β) in Eq. 1.1. However, this requires full knowledge about xi for the entire

population.

Suppose X is linearly associated with the logit of the unknown selection proba-

bilities of SA in U . I have

log

{
πA(xi)

1− πA(xi)

}
= β0 + xTi β1 i ∈ U (2.1)
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where βT = [β0, β
T
1 ] is a set of p + 1 unknown parameters. Therefore, the true

propensity scores (PS) in U are given by

πA(xi) = e(xi; β) =
exp{β0 + xTi β1}

1 + exp{β0 + xTi β1}
i ∈ U (2.2)

Assuming that δAi follows Bernoulli distribution with the success probability πAi ,

which is the case under a Poisson sampling design, the likelihood function of β given

the selection indicators in U , δAU = [δA1 , δ
A
2 , ..., δ

A
N ]T , is given by

L(β; δAU |xU)
N∏
i=1

e(xi; β)δ
A
i [1− e(xi; β)]1−δ

A
i (2.3)

where xU is a design matrix defined across the units of U . The log-likelihood function

is then obtained by taking the log transformation as below:

l(β; δAU |xU) =
N∑
i=1

δAi log{e(xi, β)}+
N∑
i=1

(1− δAi )log{1− e(xi, β)}

=
N∑
i=1

δAi log

{
e(xi, β)

1− e(xi, β)

}
+

N∑
i=1

log{1− e(xi, β)}

(2.4)

As seen, the first term in Eq. 2.4 is reduced to sum over i ∈ SA, because δAi = 0 for

i ∈ S̄A, but the second term still depends on i ∈ U . Since πRi ’s are known for SR,

Chen et al. (2019) suggest replacing the second term with its HT -estimator, which is

design-consistent, from SR, i.e.

l∗(β;x) =

nA∑
i=1

log

{
e(xi, β)

1− e(xi, β)

}
+

nR∑
i=1

log{1− e(xi, β)}/πRi

=

nA∑
i=1

xTi β −
nR∑
i=1

log{1 + exp(β0 + xTi β1)}/πRi

(2.5)

Taking the first-order derivative with respect to β yields a score function, and a

pseudo-maximum likelihood estimation (PMLE) of model parameters is obtained by
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solving the following estimating equations:

U(β) =
∂l∗

∂β
=

nA∑
i=1

xi −
nR∑
i=1

e(xi, β)xi/π
R
i = 0 (2.6)

Since Eq. 2.6 is non-linear with respect to β, a numerical method such as the Newton-

Raphson iterative procedure is needed to solve such estimating equations. As illus-

trated, these equations depend only on i ∈ SC . Therefore, the estimate of the πAi ’s is

obtained by plugging the solution of Eq. 2.6, i.e. β̂, into Eq. 2.2. I call this approach

PMLE-C for short.

Alternatively, Valliant and Dever (2011) recommend modeling Zi for i ∈ SC using

a weighted logistic regression where weights are given by

w∗i =


wRi , for i ∈ SR

1, for i ∈ SA
(2.7)

The rationale behind this approach is that units in SR should be weighted up such

that SR properly represents the non-sampled part of the population, i.e. SB̄. Thus,

the sampling weights are suggested to be normalized such that
∑nR

i=1w
R
i = N − nA

(Valliant et al., 2018, p. 574). As a notable advantage, such a model can be imple-

mented by standard software that supports complex sample analysis. The pseudo-

log-likelihood function is then given by

l∗∗(β; z|x) =

nC∑
i=1

w∗i zilog{e(xi, β)}+

nC∑
i=1

w∗i (1− zi)log{1− e(xi, β)}

=

nA∑
i=1

log

{
e(xi, β)

1− e(xi, β)

}
+

nA∑
i=1

log{1− e(xi, β)}+

nR∑
i=1

log{1− e(xi, β)}/πRi

(2.8)
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which leads to solving a different system of estimating equations as below:

U∗(β) =

nC∑
i=1

w∗i xi[zi − e(xi, β)]

=

nA∑
i=1

xi −
nR∑
i=1

xie(xi, β)/πRi −
nA∑
i=1

xie(xi, β) = 0

(2.9)

Once β̂ is obtained, Wang et al. (2020c) suggest estimating the pseudo-inclusion

probabilities in SA by π̂Ai ∝ e(xi; β̂)/[1 − e(xi; β̂)]. This is because the use of odds

transformation eliminates the duplicated units of SA in the pseudo-population created

by the wRi ’s. I abbreviate this approach as PMLE-V. Note that both approaches lead

to a standard logistic regression problem if SR is a simple random sample (SRS). As

long as the QR model is correctly specified, one can show that the inverse PS weighted

(IPSW) mean from SA yields a consistent and asymptotically unbiased estimate for

the population mean under certain regularity conditions. Sandwich-type variance

estimators under these PMLE approaches have been also developed in Chen et al.

(2019) and Wang et al. (2020c).

With one additional assumption, which is mutual exclusiveness of the two samples,

i.e. SA∩SR = ∅, I show that estimating πAi ’s can be reduced to modeling Zi for i ∈ SC ,

but eliminates the need for constructing a pseudo-likelihood function. Intuitively,

one can view the selection process of the i-th population unit in SA as being initially

selected in the joint sample (δi = 1) and then being selected in SA given the combined

sample (Zi = 1). By conditioning on x∗i , the selection probabilities in SA are factorized

as
p(δAi = 1|x∗i ) = p(δAi = 1, δi = 1|x∗i )

= p(δAi = 1|δi = 1, x∗i )p(δi = 1|x∗i )

= p(Zi = 1|x∗i )p(δi = 1|x∗i ) i ∈ S

(2.10)

Note that the last expression in Eq. 2.2 results from the definition of Zi given SC .

The same factorization can be derived for the selection probabilities in SR. Thus, we
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have

p(δRi = 1|x∗i ) = p(Zi = 0|x∗i )p(δi = 1|x∗i ) (2.11)

By dividing the two sides of the equations 2.2 and 2.3, one can get rid of p(δi = 1|x∗i )

and obtain the pseudo-selection probabilities in SA as below:

p(δAi = 1|x∗i ) = p(δRi = 1|x∗i )
p(Zi = 1|x∗i )
p(Zi = 0|x∗i )

(2.12)

It is clear that p(δRi = 1|x∗i ) = πRi as x∗i contains di and the sampling design of SR is

known given di.

Note that Eq. 2.12 is identical to the pseudo-weighting formula Elliott and Valliant

(2017) derive for a non-probability sample. Unlike the PMLE approach, modeling Zi

in SC can be performed using the standard binary logistic regression or any alternative

classification methods, such as supervised machine learning algorithms. Under a

logistic regression model, I have

p(Zi = 1|x∗i ) =
exp{β0 + βT1 x

∗
i }

1 + exp{β0 + βT1 x
∗
i }

(2.13)

where β denotes the vector of model parameters being estimated via maximum likeli-

hood estimation (MLE). Hence, in situations where πRi is known or can be calculated

for i ∈ SA, the estimate of πAi for i ∈ SA is given by

π̂Ai = πRi exp{β̂0 + β̂T1 x
∗
i } = πRi

pi(β̂)

1− pi(β̂)
(2.14)

where β̂ denotes the MLE estimate of the logistic regression model parameters, and

pi(β̂) is a shorthand of p(Zi = 1|x∗i ; β̂). Intuitively, one can envision that the first

factor in 2.14 treats SA as if it is selected under the design of SR, and the second
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factor attempts to balance the distribution of x in SA with respect to that in SR.

Having πAi estimated based on 2.14 for all i ∈ SA, one can construct the Hájek-type

pseudo-weighted estimator for the finite population mean as below:

ˆ̄yPAPW =
1

N̂A

nA∑
i=1

yi
π̂Ai

(2.15)

where N̂A =
∑nA

i=1 1/π̂Ai . Hereafter, I refer to the estimator in 2.8 as propensity-

adjusted probability weighting (PAPW). Under mild regularity conditions, the ig-

norable assumption in SA given x, the logistic regression model and the additional

assumption of SA ∩ SR = ∅, Appendix 2.6.1 shows that this estimator is consistent

and asymptotically unbiased for ȳU . Further, when πRi is known, the sandwich-type

variance estimator for ˆ̄yPAPW is given by

V̂ ar
(
ˆ̄yPAPW

)
=

1

N2

nA∑
i=1

{
1− π̂Ai

}(yi − ˆ̄yPAPW
π̂Ai

)2

− 2
b̂T

N2

nA∑
i=1

{
1− pi(β̂)

}(yi − ˆ̄yPAPW
π̂Ai

)
x∗i

+ b̂T

[
1

N2

n∑
i=1

pi(β̂)x∗ix
∗T
i

]
b̂

(2.16)

where

b̂T =

{
1

N

nA∑
i=1

(
yi − ˆ̄yPAPW

π̂Ai

)
x∗Ti

}{
1

N

n∑
i=1

pi(β̂)x∗ix
∗T
i

}−1

(2.17)

and π̂Ai is the estimated pseudo-selection probability based on Eq. 2.14 for i ∈ SA.

See Appendix 2.6.1 for the derivation.

In situations where πRi is unknown for i ∈ SA, Elliott and Valliant (2017) suggest

predicting this quantity for units of the non-probability sample. Note that, in this

situation, it is no longer required to condition on di in addition to xi. Treating πRi

as a random variable for i ∈ SA conditional on xi, one can obtain this quantity by

regressing the πRi ’s on the xi’s in the reference survey. According to Pfeffermann and

21



Sverchkov (2009), I have

p(δRi = 1|xi) =

∫ 1

0

p(δRi = 1|πRi , xi)p(πRi |xi)dπRi

=

∫ 1

0

πRi p(π
R
i |xi)dπRi

= E(πRi |xi) i ∈ SR.

(2.18)

However, since the outcome is continuous bounded taking values within (0, 1), fitting a

Beta regression model is recommended (Ferrari and Cribari-Neto, 2004). An alterna-

tive approach (not considered here) would use the equality P (δRi |xi) = E−1(wRi |xi, δRi =

1) for wRi = 1/πRi to model wRi rather than πRi (Pfeffermann and Sverchkov, 1999a).

Note that, πRi is fixed given di as SR is a probability sample, but conditional on xi,

πRi can be regarded as a random variable.

I call this approach propensity-adjusted probability prediction (PAPP). This two-

step derivation of pseudo-inclusion probabilities is especially useful, as it separates

sampling weights in SR from the propensity model computationally. When the true

model is unknown, this feature enables us to fit a broader and more flexible range

of models, such as algorithmic tree-based methods. It is worth noting that modeling

E(πRi |xi) does not impose an additional ignorable assumption in SR given x, because

in the extreme case if δRi |= xi, that means weighted and unweighted distributions

of x are identical in SR, and therefore the πRi ’s can be safely ignored in propensity

modeling. when the distribution of x is identical in the two samples, êi/(1− êi) will

become a constant for all the units in SA. Then, I can assume the two samples are

matched, so the only action to be taken is predicting selection probabilities for units

in SA. If SR is drawn under SRS, then, π̂Ri will be fixed for units in SA, so all I need

to do is balancing the distribution of x in SA with respect to that in SR by estimating

the inverse of the odds of being in the probability sample.

In situations where πRi is incalculable for i ∈ SA, deriving a sandwich-type vari-
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ance estimator for the PAPP-based mean becomes complicated. Therefore, to incor-

porate the uncertainties due to both sampling and estimating the pseudo-weights into

variance estimation, I use a delete-one jackknife repeated replication (JRR) method

proposed by Elliott (2009). To this end, I initially treat the samples in SC as two

independent strata. At each replication i (i = 1, 2, ..., nC), I then drop the i-th obser-

vation from either stratum and re-estimate the PAPP-based mean denoted by ˆ̄y
(i)
PAPP .

The variance estimator is then given by

V̂ ar(ˆ̄yPAPP ) =
nR − 1

nR

nR∑
i=1

(ˆ̄y
(i)
PAPP − ˆ̄yPAPP )2 +

nA − 1

nA

nA∑
i=1

(ˆ̄y
(i)
PAPP − ˆ̄yPAPP )2 (2.19)

where ˆ̄y
(i)
PAPP is the pseudo-weighted sample mean after deleting observation i and

ˆ̄yPAPP =
∑n

i=1
ˆ̄y

(i)
PAPP/nC .

2.2.2 Bayesian Additive Regression Trees

BART is a flexible ensemble of trees method, which allows handling non-linear rela-

tionships as well as multi-way interaction effects. The idea of BART is based on the

sum-of-trees, where trees are sequentially modified on the basis of residuals from the

other trees. In a tree-based method, the variation in the response variable is explained

by hierarchically splitting the sample into more homogeneous subgroups (Green and

Kern, 2012). As illustrated in Figure 2.1, a binary-structured tree consists of a root

node, a set of interior nodes, a set of terminal nodes associated with parameters and

decision rules that links these nodes (Abu-Nimeh et al., 2008).

2.2.2.1 BART for continuous outcomes

Suppose y = f(x) + ε as is the case in every statistical model, where y ∈ R is a

continuous outcome, x denotes an n× p matrix of covariates, and ε ∼ N(0, σ2) is the
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Figure 2.1: Example of a binary-structured trees model

error term. BART will then approximate the outcome as below:

y ≈
m∑
j=1

f(x, Tj,Mj) (2.20)

where Tj is the j-th tree with bj terminal nodes, and associatedMj = (µ1j, µ2j, . . . , µbjj)
T

parameters. BART is a Bayesian approach, since it assigns prior distributions to T ,

M , and σ (Chipman et al., 2010; Tan et al., 2016). Assuming an independence struc-

ture between trees, we can define the prior as follows:

p
[
(T1,M1), ..., (Tm,Mm), σ−2

]
=

[
m∏
j=1

p(Tj,Mj)

]
p(σ−2) (2.21)

Using the multiplication law of probability, the joint distribution of p(Tj,Mj) can be

written as:
p(Tj,Mj) = p(Mj|Tj)p(Tj)

=

bj∏
i=1

p(µij|Tj)p(Tj)
(2.22)

where i = 1, ..., bj denotes the terminal node parameters for tree j. Therefore, the

joint distribution in 2.21 can be factored as below:

p
[
(T1,M1), ..., (Tm,Mm), σ−2

]
=

 m∏
j=1

{ bj∏
i=1

p(µij|Tj)
}
p(Tj)

 p(σ−2) (2.23)
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Suggested by Chipman et al. (2007), the following distributions can be used for µij|Tj

and σ−2:

µij|Tj ∼ N(µµ, σ
2
µ) (2.24)

σ−2 ∼ G(
ν

2
,
νλ

2
) (2.25)

The prior for Tj involves three components of the tree structure: length of the tree,

decision rules, and the choice of covariate at a given node. However, prior specification

for Tj depends on several factors, and detailed discussions can be found in Chipman

et al. (2010). Given the data, these parameters are updated through a combination

of the “Bayesian backfitting” and MCMC Gibbs sampler method. The trained trees

are then summed up to approximate the outcome variable. Finally, m is typically

assumed to be fixed but can be assessed by cross-validation.

2.2.2.2 BART for binary outcomes

For the binary outcome, a probit link function is usually employed in the sense that

y is an indicator variable dichotomizing a normally distributed latent continuous

outcome like y∗ at a real value c so that:

y =


1 y* > c

0 y∗ ≤ c
, y∗ ∼ N(0, 1) (2.26)

Therefore, the new model will be given by:

G(x) = Φ−1[p(y = 1|x)] =
m∑
j=1

f(x, Tj,Mj) (2.27)

where Φ−1[.] is the inverse of standard normal CDF. Since we implicitly assumed

σ ≡ 1, the only priors we need to specify are p(µij|Tj) and p(Tj). In order to be able
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to draw the posterior distribution of Tj and µij, we need to generate the latent contin-

uous variable, y∗, given yk. Chipman et al. (2010) recommends a data augmentation

method based on the following algorithm:

y∗k =


max(Φ(G(xk)) if yk = 1

min(Φ(G(xk)) if yk = 0

(2.28)

Since the structure of priors is very similar to BART for continuous outcomes (Tan

et al., 2016), we update the estimates G(xk) after drawing samples from Tj’s and

µij’s. To apply BART in this chapter, I utilize the ‘BayesTree’ and ‘BART ’ packages

in R.

2.2.3 A robust two-step Bayesian approach using BART

A two-step Bayesian approach views the problem as a multiple imputation scenario,

which involves two sequential steps: (1) design—where the unknown pseudo-weights

are multiply imputed, and (2) analysis—where the population unknown quantity is

estimated given any set of imputed pseudo-weights. Rubin’s combining rules are

then employed to aggregate them for the construction of both point and variance

estimates (Rubin, 1976). Although there is no explicit modeling for the outcome,

this approach separates the QR model from the outcome model. This precludes the

notorious feedback between the two models that occurs when jointly estimating the PS

and outcome variable(s), which negatively impacts the estimate of model parameters

under QR (Zigler, 2016; Zigler et al., 2013).

For the first step, one can use the posterior predictive distribution simulated by

BART to multiply impute the pseudo-weights in SA based on the PAPP method. This

chapter considers the more complicated situation where πRi is not calculable for units

of SA. As will be seen in Section 2.4, this is the case in the empirical study. Under this

setting, one can use BART for modeling both πRi and Zi given the common auxiliary
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variables xi. Suppose BART approximates p(Zi = 1|xi) by an arbitrary function h

based on the data augmentation technique described in Section 2.2.2.2 as below:

Φ−1[p(Zi = 1|xi)] = h(xi) ∀i ∈ S (2.29)

where Φ−1 is the inverse CDF of the standard normal distribution.

For modeling πRi , I first employ a logit transformation to map the values of πRi

from (0, 1) to R. By applying BART to a continuous outcome, I have

log

(
πRi

1− πRi

)
= k(xi) + εi ∀i ∈ SR (2.30)

where k is a sum-of-trees function approximated by BART. I denote these functions by

h(m)(.) and k(m)(.) for the m-th draw of the posterior distribution (m = 1, 2, ...,M),

respectively. Then, for the m-th imputation, a posterior predictive draw for πAi is

given by

π̂
A(m)
i =

{
exp[k(m)(xi)]

1 + exp[k(m)(xi)]

}{
Φ[h(m)(xi)]

1− Φ[h(m)(xi)]

}
(2.31)

For a known N , the final estimate of the population mean is given by

ˆ̄yPAPP =
1

M

M∑
m=1

ˆ̄y
(m)
PAPP (2.32)

where

ˆ̄y
(m)
PAPP =

1

N̂

nA∑
i=1

yi

π̂
A(m)
i

(2.33)

When N is unknown to the analyst, it can be estimated by N̂
(m)
A =

∑nA

i=1 1/π̂
A(m)
i

for the m-th imputation in ˆ̄y
(m)
PAPP . This estimator is expected to be approximately

unbiased for the population mean even when the true functional form of the QR

model is unknown to the analyst.

The variance estimator for the estimator in 2.32 can be obtained using the Rubin’s
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combining rules for finite multiple imputation (Rubin, 2004) as below:

V̂ ar(ȳPAPP ) = V̄W + (1 +
1

M
)VB (2.34)

where V̄W =
∑M

m=1 var(ȳ
(m)
PAPP )/M , VB =

∑M
m=1(ȳ

(m)
PAPP − ˆ̄yPAPP )2/(M − 1), and

ˆ̄yPAPP is given by Eq. 2.32. In the current article, this method was used for variance

estimation for the PAPP under BART, and JRR was used for all other approaches.

2.2.4 Weight trimming

As discussed before, pseudo-weighting sometimes tends to produce highly extreme

weights when either SR or SA lacks adequate observations for some levels of x. Trim-

ming is a potential solution, in which “influential” weights are identified and modified.

The most commonly used type of trimming is the ad hoc method, where weights above

a pre-specified cut-off point are forced to that value, and the outstanding weights are

redistributed across the rest of the units. The choice of the cut-off point is contro-

versial, but the existing options are reviewed and evaluated in Chen et al. (2017b).

Here I consider two methods to find such a cut-point: (1) the contribution to entropy

procedure and (2) median plus multiple of the interquartile range. The entropy pro-

cedure (“Trim 1”) compares the contribution of each weight to the sampling variance.

This is performed by systematically comparing the individual weights with a constant

value computed by the average of the square weights of the sample. In this method,

the cut-point is defined as:

Kn =

√√√√c

nA∑
i=1

ŵ2
i /nA, i ∈ SA (2.35)

where c is an arbitrary constant and can be chosen empirically, and ŵi = 1/π̂Ai . In

the present study, I set c = 5. The median plus multiple of the interquartile range
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method (“Trim 2”) detects outliers by assuming a symmetric distribution for the

analytic variable. To construct the cut-point, I may use 4 or 5 times the interquartile

range (IQR). Therefore, the cut-point of detecting extreme weights will be:

Kn = ŵi + c× (Q3 −Q1) (2.36)

where w̃, Q1, and Q3 are the median, 1st and 3rd quartiles of pseudo-weights, respec-

tively, and c is again an arbitrary constant and can be set to 5 (Potter and Zheng,

2015). Alternative model-based weight trimming methods using random effects or

variable selection methods can be considered as well (Elliott and Little, 2000), al-

though I do not pursue such approaches here.

2.3 Simulation study

I designed a simulation study to evaluate the performance of the proposed PAPP in

this article and to compare it with the pseudo-likelihood method proposed by Valliant

et al. (2018) (PMLE-V) and its extension proposed by Chen et al. (2019) (PMLE-C)

in terms of improvement rates in selection bias and other repeated sampling prop-

erties. For a better assessment of BART against the alternative models, non-linear

associations including quadratic terms as well as interactions were taken into account

in constructing the variables.

2.3.1 Simulation design

First, I generated a hypothetical population of size N = 100, 000 with two sets of

dependent covariates, D = {D1, D2} and X = {X1, X2}, from a multivariate normal
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distribution with the following correlation structure:



D1

D2

X1

X2


∼MVN





0

1

0

1


,



1 −ρ/2 ρ −ρ/2

−ρ/2 1 −ρ/2 ρ

ρ −ρ/2 1 −ρ/2

−ρ/2 ρ −ρ/2 1




(2.37)

where X represents a set of observed common covariates that are associated with both

the outcome variables of interest and the selection indicator in the non-probability

sample, SA, and D corresponds to a set of design features in the reference survey, SR.

Note that ρ characterizes how strongly the design variables of SR are associated with

those of SA; I initially set ρ = 0.8, but later considered other values ranging from 0 to

0.9. Given X, I specified a continuous response variables, Y c, and a binary response

variable, Y b, in the population as below:

Y c
i |Xi = xi ∼ N(µ = −2 + x1i − 2x2i + 3x1ix2i, σ

2 = 1) (2.38)

Y b
i |Xi = xi ∼ BER

(
p =

e2−x1i+2x2i−3x1ix2i

1 + e2−x1i+2x2i−3x1ix2i

)
(2.39)

To draw samples corresponding to NHTS and SPMD from the hypothetical pop-

ulation, I considered an informative sampling strategy with unequal probabilities of

inclusion, where the selection mechanism is given through a logistic function as below:

p(δRi = 1|Di = di) =
e−1−0.5d21i−d2i

4(1 + e−1−0.5d21i−d2i)
(2.40)

p(δAi = 1|Xi = xi) =
e−3−x1i+x2−0.5x1iw2i

2(1 + e−3−x1i+x2i−0.5x1ix2i)
(2.41)

where δRi and δAi denote sample indicators of subject i ∈ U being selected for SR and

SA, respectively. This is a case where, given X, the sampling design is ignorable in

SA, but not in SR. For simplicity, I ignored further complexity in the sample design
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of the reference survey like clustering or stratification. In order to consider the second

sample as a non-probability survey, it is assumed that inclusion probabilities for that

sample are unknown, and X is the only set of observed covariates in both SR and SA.

The population mean of the outcome variables were Ȳ c = 4.01 and Ȳ b = 20.23%.

I then repeatedly drew samples of sizes nR = 200 and nA = 1000 with a systematic

PPS design based the two sets of unequal probabilities of selections generated above.

In each iteration, I applied PAPP, PMLE-V and PMLE-C approaches to estimate

the pseudo-inclusion probabilities based on a GLM with two-way interactions. Under

the PAPP method, BART and CART were also used to estimate pseudo-weights.

Furthermore, the two trimming techniques described in Section 2.2.3 were assessed in

mitigating the effect of outlying weights, while setting c = 5. The simulation was then

replicated K = 1, 000 times, where for each iteration, the pseudo-weighted mean and

95% CI of the response variables, Y c and Y b, were estimated. Relative bias (rBias),

relative root mean square error (rMSE), the nominal coverage rate of 95% CIs (crCI)

and standard error ratio (rSE) were calculated by

rbias(ˆ̄yPW ) = 100× 1

K

K∑
k=1

(
ˆ̄y

(k)
PW − ȳU

)
/ȳU (2.42)

rMSE(ˆ̄yPW ) = 100×

√√√√ 1

K

K∑
k=1

(
ˆ̄y

(k)
PW − ȳU

)2

/ȳU (2.43)

crCI(ˆ̄yPW ) = 100× 1

K

K∑
k=1

I

(∣∣ˆ̄y(k)
PW − ȳU

∣∣ < z0.975

√
var(ˆ̄y

(k)
PW )

)
(2.44)

rSE(ˆ̄yPW ) =
1

K

K∑
k=1

√
var(ˆ̄y

(k)
PW )/

√√√√ 1

K − 1

K∑
k=1

(
ˆ̄y

(k)
PW − ¯̄yPW

)2

(2.45)

where ˆ̄y
(k)
PW denotes the pseudo-weighted mean for the k-th iteration, ¯̄yPW =

∑K
k=1 ȳ

(k)
PW/K,

and ȳU is the finite population true mean. For the GLM and CART, I used a modified

delete-one Jackknife repeated replication (JRR) method and for BART, a conditional

variance method with M = 500 as described in Section 2.2.4 was applied. To eval-
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uate the proposed variance estimation methods, I computed the ratio of estimated

standard error (SE) over the true SE to evaluate my proposed method of variance

estimation under pseudo-weighting based on BART.

2.3.2 Simulation results

Table 2.1 summarizes the simulation results based on the two different quasi-random

methods with ρ fixed at 0.80. Overall, the simulation results suggest a better perfor-

mance of PAPP compared to the PMLE methods in reducing selection bias. Under

the GLM, PAPP gives smaller rBias and rMSE than both PMLE methods when no

trimming is applied. However, when more complex associations come into play in

describing the outcome variables and the selection mechanism of sample units, the

use of classical modeling approaches may not be an appropriate solution to estimate

the pseudo-weights. For both continuous and categorical outcome variables, I found

that the rMSE value for the PAPP approach with BART was closest to the same

quantity in fully weighted estimates. (By fully weighted I mean adjustment based

on the (unknown) true weights). With no trimming, it seems PMLE-V outperforms

PMLE-C with respect to rBias and rMSE. Compared to other modeling methods,

PAPP with CART worked worst in terms of both bias and rMSE.

However, it seems that all the pseudo-weighting techniques tend to generate some

influential pseudo-weights because trimming reduces the bias in almost all situations.

My simulation reveals that trimming is an effective way to treat the outlying weights,

and that, given c = 5, the method based on IQR performs a bit more efficiently than

the entropy method. Under trimming the smallest value of rBias was associated with

the PMLE-C method.

Regarding variance estimation, my primary simulation results showed that the

previously proposed method based on JRR overestimates the variance substantially

for BART and CART. It was not surprising as empirical findings show that JRR does
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Table 2.1: Comparing the performance of pseudo-weighting approaches in the simu-
lation study.

Continuous outcome (Y c) Binary outcome (Y b)
Method rBias rMSE crCI rSE rBias rMSE crCI rSE

Unweighted 125.64 125.75 0.00 0.98 -70.38 70.47 0.00 1.01
Fully weighted 0.23 7.78 93.90 0.96 0.31 15.97 94.60 0.97
PMLE-V
GLM trim no -16.98 43.78 87.00 0.98 7.85 49.22 95.00 1.16

trim 1 11.98 30.58 91.80 0.89 -23.23 32.00 59.10 0.77
trim 2 3.05 30.17 89.50 0.92 -12.09 29.94 77.90 0.88

PMLE-C
GLM trim no -26.04 57.93 88.10 1.05 17.19 66.34 96.50 1.23

trim 1 7.99 31.49 91.80 0.94 -20.30 32.05 63.50 0.78
trim 2 -0.72 32.41 88.80 0.94 -8.86 32.54 78.30 0.86

PAPP
GLM trim no -15.08 21.98 82.60 1.01 5.91 26.95 95.40 1.04

trim 1 6.26 16.28 90.80 0.93 -20.54 25.76 52.60 0.75
trim 2 -3.57 16.13 90.70 0.98 -8.28 20.48 82.90 0.85

BART trim no -3.93 14.56 96.90 1.04 -6.12 21.85 89.60 1.00
trim 1 3.65 13.36 96.60 1.04 -15.82 22.84 78.20 1.01
trim 2 1.20 12.44 96.50 1.03 -12.88 20.91 83.30 0.99

CART trim no 69.04 70.92 30.90 2.08 -36.13 38.08 45.10 1.85
trim 1 83.28 84.44 12.40 1.58 -41.98 42.86 4.40 1.17
trim 2 74.46 75.87 17.50 1.70 -38.88 40.17 17.10 1.31

NOTE 1: PMLE-V: Pseudo-maximum likelihood estimation method by Valliant
& Dever (2011); PMLE-V: Pseudo-maximum likelihood estimation method by
Chen et al (2019); PAPP: Propensity-adjusted Probability Prediction; GLM:
Generalized Linear Model; BART: Bayesian Additive Regression Trees; CART:
Classification and Regression Trees.
NOTE 2: Variance estimation under BART is based on the conditional variance
method and for the rest of models, a delete-one Jackknife repeated replication
method is used.
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not work well with non-linear estimators. Even under the GLM, the JRR tends to

slightly overestimate the variance, though trimming mitigates this to some extent.

For the PAPP based on BART, my proposed method performs very well for both

continuous and binary outcomes as the values of SE ratio are very close to 1 for both

continuous and binary outcomes, with the nominal 95% CI coverage rate tending to

be closest to the nominal rate.

Finally, figure 2.2 depicts the effect of different values of ρ on rMSE and SE ratio

through a heatmap. For the rMSE, darker colors indicate larger values of rMSE, but

for SE-ratio darker colors show values closer to 1. I consider ρ = 0, 0.1, ..., 0.9, where

ρ = 0 implies that design of SR is non-ignorable given X and ρ = 1 implies the

design of both SR and SA is ignorable given X. As illustrated, for both continuous

and binary outcomes, smaller values of rMSE are associated with PAPP based on

BART. This is while the performance of the PAPP method is almost robust across all

different values of ρ. For the binary outcome, the worst situation is associated with

the PMLE-C method. Regarding the variance estimation, it seems more accuracy is

achieved by PAPP with GLM regardless of the type of outcome variable. Finally, an

extension to the simulation for further comparing the PAPP method with alternative

approaches has been given in Appendix 2.6.3.

2.4 Application

2.4.1 Safety Pilot Model Deployment

Launched in 2012 by the University of Michigan Transportation Research Institute,

the SPMD is one of the world’s largest ongoing NDS, collecting data from over 3,100

instrumented vehicles, including cars, vans, trucks, and buses. SPMD also char-

acterizes a real-world implementation of connected vehicle safety systems with the

primary aim of testing Dedicated Short Range Communications (DSRC)-based con-
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Figure 2.2: Evaluating the effects of the degree of design ignorability in the reference
survey given common auxiliary variables in the simulation study. UWD=unweighted;
FWD=fully weighted

35



nected vehicle communication technology (Narla, 2013). The smallest unit in the

SPMD database is called a basic safety message (BSM), which includes vehicle tra-

jectories, driver-vehicle interactions, and video records. The average time of partici-

pation in the study was approximately one person-year. Participants in SPMD were

mostly volunteers from the southeast Michigan area, especially those in and around

the city of Ann Arbor, recruited in a one-year period (August 2012 to August 2013)

through a combination of snowball and convenience sampling techniques.

When a participant’s vehicle is switched on, a data acquisition system (DAS),

installed on the vehicles, starts recording GPS coordinates as well as corresponding

timestamps 10 times per second and continues recording until it is switched off. In

SPMD, a trip can be defined as the time interval during which the vehicle is on.

Unique IDs are generated by the DAS for each participant and for each trip. Using

these key features, I could identify trips in SPMD and measure several characteristics

of trips, including trip distance, trip duration, trip average speed, and the start/end

time of trips. I built a data set based on the trip summary information, where

each record corresponds to a specific trip made by a specific vehicle. Over six million

records of trips were available in the raw data, but after the data cleaning process, this

number was reduced to 4,591,884. Detailed information about the vehicles including

vehicle age, vehicle type, odometer reads, and vehicle make as well as gender and

age of participants were recorded at the time of recruitment and joined to the trip

summary dataset.

2.4.2 National Household Travel Survey

In the present chapter, I used data from the seventh round of the NHTS conducted

from March 2008 through May 2009 as the reference survey. The NHTS is a nation-

ally representative survey, repeated cross-sectionally approximately every seven years,

that characterizes personal travel behaviors among the civilian, non-institutionalized
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population of the United States. The 2009 NHTS was a telephone survey, in which

participants were selected systematically using a list-assisted random digit dialing

(RDD) technique. All eligible individuals aged ≥18 years within households were

recruited for interviews conducted by landline. Proxy interviews were requested for

younger household members who were <15 years old. Interviews were conducted

in English or Spanish and data were collected using computer-assisted telephone in-

terview (CATI) technology. Furthermore, a travel diary was mailed to the selected

households to record trips made on a randomly assigned travel day by household

members.

The initial sample size is approximately 25,000, representing all 50 States of the

U.S. as well as the District of Columbia. However, an additional 125,000 households,

including 20 states and Metropolitan Planning Organizations (MPO), were purchased

for their respective regions (Santos et al., 2011), and these have been accounted for in

the overall weighting scheme. The overall response rate of 19.8% is based on ’useable’

households, defined as those in which at least 50% of household members completed

an interview. Of those who completed the interview, 72% filled out the travel diary

(Santos et al., 2011). In NHTS, a travel day is defined from 4:00 AM of the assigned

day to 3:59 AM of the following day on a typical weekday. On weekends, it begins on

Friday at 6:00 PM and ends on Sunday at midnight. A trip is defined as that made

by one person in any mode of transportation. A total of 308,901 eligible individuals

aged ≥5 took part in the study, for which 1,294,219 trips were recorded.

2.4.3 Auxiliary variables and analysis plan

As mentioned in the methods section, because of the ignorable assumption, the com-

mon auxiliary variables available in both the non-probability sample and the reference

survey play a key role in the quasi-random approach. Therefore, particular attention

was paid to identify and build as many common variables as possible that are ex-
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pected to be predictors of pseudo-inclusion probabilities. However, since the SPMD

sample is gathered from a limited geographical area, in order to be able to generalize

the findings to the U.S. population of drivers, I have to assume that no other variable

than those common covariates investigated in this study will contribute to the geo-

graphical dispersion of the outcome variables of interest. This assumption is in fact

embedded in the ignorable condition in the SPMD given the observed set of common

covariates.

In the current study, the ultimate goal was to generate and assign pseudo-weights

to individuals in SPMD, so I used the individual-level data. Two distinct sets of

covariates were considered: (1) demographic information of the drivers including gen-

der, age, and population size of the residential areas, and (2) vehicle characteristics,

including vehicle age, vehicle type, vehicle make, and odometer readings. Figure 2.3

compares the frequency distribution/kernel density of common auxiliary variables in

SPMD with weighted ones in NHTS.
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Figure 2.3: Comparison of frequency distributions of common auxiliary variables,
including (a) gender, (b) population size of residential area, (c) vehicle make, (d)
vehicle type, (e) participants age, (f) vehicles age and (g) odometer reads, between
SPMD and NHTS (weighted)

Although demographic information as common auxiliary variables seems to be
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essential in the calibration process, such data were limited to gender and age in

SPMD. Moreover, the item-missing rate was 13.1% for gender and 30.5% for age. I

assumed volunteers in SPMD were the drivers for the whole trips recorded throughout

the participation time. In addition, there was no information available about partici-

pants’ residential areas in the SPMD dataset. However, I could predict the residential

area based on the mode of start location of trips made between 6:00 PM and 12:00

PM every day. Before performing any statistical analysis, several further attempts

were built to make the two datasets comparable. I filtered out all the individuals in

NHTS who were passengers of the vehicle, not the driver. Any trips for which public

transportation was used were dropped. Furthermore, I only kept trips that involved

passenger cars, SUVs, vans, or pickup trucks in the NHTS.

Detailed information in SPMD was collected on vehicles characteristics at the

time of registration. Vehicle age (truncated at 25 years), vehicle type (passenger car,

SUV, van, and pickup truck), vehicle make (American, Asian, and European), and

odometer readings were the variables identified in common between the two datasets.

Besides the auxiliary variables, I considered multiple trip-related measures as outcome

variables for evaluating weighted estimates in terms of bias. One major structural

difference between NHTS and SPMD is that trips made within one pre-specified day

per individual, while in SPMD, individuals were followed up for several months and

years. Therefore, in both studies, I computed trip characteristics on a daily basis, and

then considered the mean over days of follow-up for each individual in SPMD. Using

this approach, I constructed several outcome variables including the total duration

of trips per day, the total distance of trips per day, mean average speed, and mean

time-of-day of trips.
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2.4.4 Results

I initially compared the discrepancies in the distribution of auxiliary variables between

the two data sets. Figure 2.3 illustrates that the largest distributional discrepancies

among the set of common auxiliary variables are the population size of participants’

residential area. The SPMD sample is largely limited to the Southeast Michigan area,

especially in and around Ann Arbor, so it was expected that SPMD underrepresents

the most and least densely populated areas. Men are underrepresented in the SPMD

compared to the population of U.S. drivers, while participants in SPMD (mean=45.4;

sd=13.3) tend to be younger than NHTS (mean=54.4; sd=12.8). I found no substan-

tial differences in the vehicle characteristic distributions.

As discussed in Section 2.2, estimating pseudo-weights based on the PAPP ap-

proach requires modeling two conditional probabilities, (1) p(δRi = 1|Xi = xi), and

(2) p(Zi = 0|Xi = xi). Since probabilities of selection in NHTS are bounded within

(0, 1), I modeled the logit transformation of the selection probabilities in NHTS, which

maps the values to (−∞,∞). Considering the first 100 iterations as the burn-in pe-

riod, MCMC with 1,100 iterations was applied to train the model. the pseudo-R2

values associated with BART was 17.1%. I also utilized cross-validation to evaluate

the predictive accuracy of the fitted model. The average Pseudo-R2 for training and

test data was 17.6% and 17.8%, respectively. In addition, I compared the predictive

power of BART with some regression-based models, including linear regression, Pois-

son regression, beta regression, and adaptive spline, and found that BART performs

much better than all these alternatives (See Table 2.2). Then, the logit of inclusion

probabilities were projected to individuals in SPMD using the common covariates.

To estimate the propensity scores, i.e. P (Zi = 1|Xi = xi), I combined the two

datasets, and created the Zi (i = 1, 2, ..., n) indicator. Again, BART was used to

model the binary outcome Z on the common set of covariates. I then compared the

classification power of BART against some regression-based models such as binary
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logistic regression and algorithmic classification methods such as CART based on the

area under the curve (AUC) of the receiver operating characteristic (ROC). AUC

can be considered as a proper measure to test the predictive accuracy of propensity

models. The largest value of AUC (93.2%) was pertaining to BART (the ROC curve is

displayed in figure 2.4). In addition, I estimated the pseudo-weights for units in SPMD

based on the pseudo-likelihood approach by Valliant et al. (2018) (PMLE-V) and its

extension by Chen et al. (2019) (PMLE-C) as discussed in section 2.2. These two

also involved modeling P (Zi = 1|Xi = xi) but through a weighted logistic regression

model, where parameters estimation is achieved by solving the equations 2.6 and 2.9,

respectively.

Table 2.2: Comparing the goodness-of-fit of BART with other existing methods,
I=main effects in the model; II=two-way interaction effects were included

Model RMSE R2/Pseudo-R2

Original scale of response
Linear Regression I 0.02 5.94
Linear Regression II 0.02 6.00
Poisson Regression I 0.02 5.87
Poisson Regression II 0.02 6.27
Beta Regression I 0.02 5.01
Beta Regression II 0.02 5.20
Multivariate adaptive spline 0.02 5.66
Bayesian Additive Regression Trees 0.02 6.93
Log Scale of response
Linear Reg I 1.35 14.95
Linear Reg II 1.35 15.27
Multivariate adaptive spline 1.35 14.97
Bayesian Additive Regression Trees 1.33 17.07

Final pseudo-weights were obtained for samples in SPMD after normalizing them

so that the sum of the estimated pseudo-weights in SPMD is equal to the sum of

the weights in NHTS. Figure 2.5 compares the kernel density of estimated propensity

scores in the log scale based on BART between SPMD and NHTS. As illustrated,

there is a lack of common support on the left tail of the PS distribution in SPMD.
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Figure 2.4: ROC curve analysis for comparing the prediction power of BART with
other existing methods

Figure 2.6 displays how the PAPP approach corrects for the discrepancies in the

distribution of auxiliary variables compared to unweighted distributions in figure 2.3.

I then contrast the performance of different quasi-random methods on the actual

data by estimating pseudo-weighted estimates and associated 95% confidence inter-

vals (CI) for several outcome variables in common between SPMD and NHTS. These

variables include mean daily frequency of trips, mean daily total time of trips (Min-

utes), mean average speed (Km/h), mean daily start time of the trips, mean annual

mileage (Km), mean daily percentages of trips started between 6-10 AM, mean stop

duration per trip, mean daily percentage of trips using interstates, mean time spent

on interstates per trip, and mean annual mileage. The point estimates and associ-

ated 95% CIs under different quasi-randomization approaches and different weight

trimming methods are compared with weighted estimates in NHTS in figure 2.7.

In addition, I show point estimates and associated 95% CIs for some SPMD-

specific outcomes in figure 2.8, including the mean daily percentage of trips started

between 6-10 AM, mean daily percentage of trips used the interstate, mean percent-

42



age of trips duration spent on the interstate, and mean percentage of stop duration

per trip. Detailed numerical comparisons for these two sets of outcome variables

by demographics and vehicle characteristics are provided in Tables 2.3 through 2.8

in Appendix 2.6.2. The percentage of trimmed pseudo-weights, obtained by PAPP

with BART, was 17.2% and 14.2% in the entropy and interquartile range methods,

respectively, with c = 5.
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Figure 2.5: Comparing the distributions of estimated propensity scores between
SPMD and NHTS (log scale)

51.853.7
48.246.3

0

25

50

75

100

Male Female
gender

pe
rc

en
t (

%
)

(a)

36.1
41.6

8.710.7 108.1

45.3
39.6

0

25

50

75

100

0−50 50−200 200−500 500+
population size (x1000)

(b)

56.3
51

38.2
44.2

5.54.8
0

25

50

75

100

American Asian European
make

(c)

56.3
52.4

9.38.4

20.821.9
13.6

17.2

0

25

50

75

100

Car Van SUV Pickup
type

Study

SPMD
NHTS

(d)

0.00

0.01

0.02

0.03

25 50 75
age (yrs)

de
ns

ity

(e)

0.000

0.025

0.050

0.075

0 5 10 15 20 25
age (yrs)

(f)

0.0

0.2

0.4

0.6

0 5 10
Mileage (log scale)

Study
NHTS
SPMD

(g)

Figure 2.6: Comparison of frequency distributions of common auxiliary variables,
including (a) gender, (b) population size of residential area, (c) vehicle make, (d)
vehicle type, (e) participants age, (f) vehicles age and (g) odometer reads, between
weighted SPMD using pseudo-weighting approach and weighted NHTS
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Although the findings of actual data analysis vary across different outcome vari-

ables, it seems that none of the untrimmed pseudo-weights performs well in bias

correction. Instead, for all the outcome variables with the exception of the mean

daily start time of trips, trimming pseudo-weights appears to be significantly effec-

tive in reducing bias and improving stability. This might be evidence of outlying

pseudo-weights generated by the QR approach. Given the constant c = 5, a smaller

bias was obtained for the trimming based on the IQR than entropy. These findings

on trimming were consistent with the simulation results.
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Figure 2.7: Evaluation of pseudo-weights by comparing weighted estimates of the daily
frequency of trips between NHTS and SPMD: (a) Mean daily frequency of trips, (b)
Mean daily total trip duration, (c) Mean daily total distance driven, (d) Mean trip
average speed, (e) Mean daily start time of the trip, and (f) Mean annual mileage. The
dashed line and surrounding shadowed area represent weighted estimates and 95% CIs
in NHTS, respectively. UWD=unweighted; Trim 1=pseudo-weights trimmed based
on the entropy method; Trim 2=pseudo-weights trimmed based on the IQR method

These interpretations can be generalized to those outcome variables in figure 2.8,

though no benchmark is available. Overall, PAPP ends up with relatively wide 95%
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Figure 2.8: Weighted estimates of some SPMD-specific outcomes: (a) Mean daily
frequency of trips used interstate, (b) Mean percentage of trip spent on interstate, (c)
Mean percentage of stop duration per trip, and (d) Mean percentage of trips started
between 6-10am. UWD=unweighted; Trim 1=pseudo-weights trimmed based on the
entropy method; Trim 2=pseudo-weights trimmed based on the IQR
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CIs, indicating the existence of influential pseudo-weights. However, it seems trim-

ming works efficiently in treating such outlying pseudo-weights. According to Ta-

bles 2.3-2.8 in Appendix 2.6.2, adjusted values for the SPMD using pseudo-weighting

are generally in the direction I would expect: interstate use might be expected to

be for shorter trips in a suburban area that underrepresents very rural areas, and

to include a large fraction in a sample with typical morning commutes as employed,

white-collar workers. It is less clear why SPMD might underrepresent trips with more

stops.

2.5 Discussion

In the present chapter, I sought to improve the representativeness of Big Data in

SPMD, which is a large-scale naturalistic driving study. In particular, I was interested

in using the quasi-randomization approach so that a single set of pseudo-weights are

created and can be applied easily in any post hoc statistical analysis. To correct for

selection bias in point estimates, two general quasi-randomization methods, PAPP

and PMLE, were applied. For the earlier method, I was able to employ BART to

predict components of PAPP, and results were compared with respect to reduction

in bias.

The simulation findings generally reflect that the PAPP outperforms the tradi-

tional method of inverse propensity weighting. Generalizing this result to those I

found from the application is somewhat limited as there was some evidence of non-

ignorability given the available set of common covariates. However, in the absence of

strongly predictive covariates, the use of advanced supervised machine learning tech-

niques such as BART can produce less biased estimates for population inference than

traditional linear and generalized linear model approaches. Furthermore, a partial

lack of common support in the distribution of auxiliary variables led to increased bias

and wide CIs, which demands more advanced trimming methods for identifying and
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treating outlying pseudo-weights.

Note that BART seems to be more sensitive to the problem of inadequate common

support compared to the GLM with only main effects included. This is mainly because

BART automatically accounts for high-order interactions. Therefore, what matters

to be checked for the positivity assumption under BART is the common support with

respect to the joint distribution of the auxiliary variables. The problem becomes

more severe if BART is able to accurately predict the selection mechanism but fails to

appropriately model the outcome. I believe these are the two major reasons explaining

why we observed relatively wide 95% CIs under the PAPP method with BART.

Hill and Su (2013) propose a criterion based on BART for identifying the common

support in the causal inference context. The authors highlight the fact that failure to

properly detect the regions with inadequate common support leads to invalid inference

because of imbalance with respect to covariates’ joint distribution or inappropriate

extrapolation by the propensity model.

One of the major challenges to the present research was that the definition of a trip

in SPMD did not quite match that in NHTS. As discussed briefly in the introduction,

trips in SPMD are captured by DAS instruments while in NHTS, trips are recorded

through a travel diary, which relies on estimates and individuals’ memories. This

may cause a kind of differential measurement error in covariates. The other major

challenge in this study arose from the structural differences in the design of the two

studies, SPMD and NHTS. In NHTS, trip diaries were filled out for only one day

for each survey participant while in SPMD, individuals were followed up for several

months or even years.

The other weakness of this study was the limited set of auxiliary variables and

especially demographics, which might question the design ignorability condition in

SPMD. Having further relevant covariates, such as race and education level, observed

could potentially improve the performance of adjustments. Finally, some studies
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suggest that sampling weights and sampling design of the reference survey should be

incorporated in modeling the propensity scores, i.e. p(Zi = 1|Xi = xi), in the pseudo-

weighting approach. However, I was unable to do so, because the current version of

BART does not incorporate sample weights for a binary outcome variable.

An interesting issue arises in the construction of the propensity score models for

sample membership. While accurate assessment of this propensity is important, over-

fitting these models can lead to complete separation, yielding to highly variable and

unstable weights. In the NHTS/SPMD application, the state of residence indicator

would be such a variable. This is similar to the setting in causal inference where lack

of overlap in the propensity of being treated can sometimes be obtained by includ-

ing a sufficient number of covariates (Westreich et al., 2011). In such a setting one

must make the assumption that these variables are not associated with the targets

of inference. Here future work that borrows from the causal inference literature on

propensity score construction (Griffin et al., 2017) may be fruitful.

When the design of the reference survey involves clustering and stratification, the

current pseudo-weighting methods may not be appropriate as they assume indepen-

dence among observations. One potential approach in such situations is to generate

a synthetic population by undoing the sampling design through a finite population

bootstrap method. Once auxiliary variables are imputed for the whole population,

then, a simple propensity model can be used to estimate pseudo-weights. Another

alternative approach to quasi-randomization is the super-population technique, in

which models are fitted to predict the outcome variable for the non-sampled units

of the population. However, unlike quasi-randomization, adjustments need to be

repeated operationally for any analytic variable.

As a third approach, this method can be combined with quasi-randomization to

construct a doubly robust estimator, where estimates are consistent if either model

holds. This provides protection against model misspecification. One may be inter-
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ested in applying the doubly robust approach on SPMD data to do calibration for a

set of specific outcomes, and then compare it with the quasi-randomization approach

in terms of reduction in selection bias. Finally, as I discussed earlier, the measurement

error structure in organically collected data may appear differently than survey data.

The authors would like to suggest research on how to adjust for such differential mea-

surement errors when adjusting for selection bias, which is especially the case when

combining Big Data with survey data.

Finally, I analyzed complete data only, which means all cases for whom at least

one common covariate was missing were excluded from the analysis. While imputing

missing data under the missing at random condition based on the same set of common

covariates should not result in reductions in bias or variance, there may be settings

where additional covariate information for item-level missingness is available above

and beyond that associated with the differing sampling mechanism. Hence dealing

with missing data is an important topic for future research.
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2.6 Appendix

2.6.1 Theoretical proofs

Suppose there exists an infinite sequence of finite populations Uν of sizes Nν with ν =

1, 2, ...,∞. Corresponding to Uν are a non-probability sample SA,ν and a probability

sample SR,ν with nA,ν and nR,ν being the respective sample sizes. Also, let us assume

that Nν→∞, nA,ν→∞ and nR,ν→∞ as ν→∞, while nA,ν/Nν→fA, and nR,ν/Nν→fR

with 0 < fR < 1 and 0 < fA < 1. However, from now on, we suppress the subscript

ν for rotational simplicity. In order to be able to make unbiased inference based on

SA, we consider the following conditions:

1. The set of observed auxiliary variables, X, fully governs the selection mechanism

in SA. This is called an ignorable condition, implying p(δAi = 1|yi, xi) = p(δAi =

1|xi) for i ∈ U .

2. The SA actually does have a probability sampling mechanism, albeit unknown.

This means p(δAi = 1|xi) > 0 for all i ∈ U .

3. Units of SR and SA are selected independently from U given the observed aux-

iliary variables, X∗, i.e. δRi |= δAj |X∗ for i 6= j.

4. The sampling fractions, fR and fA, are small enough such that the possible

overlap between SR and SA is negligible, i.e. SR ∩ SA = ∅.

5. The true underling models for Y |X∗ and δA|X and δR|X are known.

In addition, to be able to drive the asymptotic properties of the proposed estimators,

we consider the following regularity conditions according to Chen et al. (2019):

1. For any given x, ∂m(x; θ)/∂θ exists and is continuous with respect to θ, and

|∂m(x; θ)/∂θ| ≤ h(x; θ) for θ in the neighborhood of θ, and
∑N

i=1 h(xi; θ) =

O(1).
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2. For any given x, ∂2m(x; θ)/∂θT exists and is continuous with respect to θ,

and maxj,l |∂2m(x; θ)/θj∂θl| ≤ k(x; θ) for θ in the neighborhood of θ, and∑N
i=1 k(xi; θ) = O(1).

3. For ui = {xi, yi,m(xi; θ)}, the finite population and the sampling design in SR

satisfy N−1
∑nR

i=1 ui/π
R
i −N−1

∑N
i=1 ui = Op(n

−1/2
R ).

4. There exist c1 and c2 such that 0 < c1 ≤ NπAi /nA ≤ c2 and 0 < c1 ≤ NπRi /nR ≤

c2 for all i ∈ U .

5. The finite population and the propensity scores satisfy N−1
∑N

i=1 y
2
i = O(1),

N−1
∑N

i=1 ||xi||3 = O(1), and N−1
∑N

i=1 π
A
i (1 − πAi )xix

T
i is a positive definite

matrix.

Note that while we assume πRi is calculable for i ∈ SA throughout the proofs, exten-

sions can be provided for situations where πRi need to be predicted for i ∈ SA.

2.6.1.1 Asymptotic properties of PAPW estimator

Since β̂ is the MLE estimate of β in the logistic regression of Zi on x∗i , it is clear

that β̂ p→ β. Two immediate result of this are that π̂Ai
p→ πAi and E(π̂Ai |x∗i ) = πAi where

π̂Ai is defined as in 2.6. Now, we prove the consistency and asymptotic unbiasedness

of the PAPW estimator in 2.14. To this end, we show that ˆ̄yPAPW − ȳU = Op(n
−1/2
A ).

Consider the following set of estimating equations:

Φn(η) =


n−1

∑n
i=1 Zi(yi − ȳU)/πAi

n−1
∑n

i=1{Zi − pi(β)}x∗i

 =


N−1

∑N
i=1 δ

A
i (yi − ȳU)/πAi

N−1
∑N

i=1 δi{Zi − pi(β)}x∗i

 = 0 (2.46)

where η = (ȳU , β).
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In the following, we show that EδA [Φn(η̂)|x∗i ] = 0. We start with the first compo-

nent of Φn(η̂)

EδA

[
1

N

N∑
i=1

EδA(δAi )(yi − ȳU)

πAi

∣∣x∗i
]

=
1

N

N∑
i=1

EδA(δAi |x∗i )(yi − ȳU)

πAi

=
1

N

N∑
i=1

πAi (yi − ȳU)

πAi

= 0

(2.47)

Noting that EδA [Φn(η̂)] = Eδ[EZ{Φn(η̂)|δi = 1}], for the second component, we have

EδA

[
1

N

N∑
i=1

δi{Zi − pi(β)}xi
∣∣∣∣xi
]

= Eδ

[
EZ

{
1

N

N∑
i=1

δi{Zi − pi(β)}xi
∣∣δi = 1, xi

}]

= Eδ

[
1

N

N∑
i=1

δi{EZ(Zi|δi = 1, xi)− pi(β)}x∗i

]

= Eδ

[
1

N

N∑
i=1

δi{pi(β)− pi(β)}x∗i

]

= 0

(2.48)

Now, we apply the first-order Taylor approximation to Φn(η̂) around η1 as below:

η̂ − η1 = [E{φn(η1)}]−1Φn(η1) +Op(n
−1/2
A ) (2.49)

where φn(η) = ∂Φn(η)/∂η.

∂

∂ȳU

[
1

N

N∑
i=1

δAi
(yi − ȳU)

πAi

]
= − 1

N

N∑
i=1

δAi
πAi

(2.50)
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∂

∂β

[
1

N

N∑
i=1

δAi
(yi − ȳU)

πAi

]
=

∂

∂β

[
1

N

N∑
i=1

δAi
πAi

{
pi(β)

1− pi(β)

}
(yi − ȳU)

]

= − 1

N

N∑
i=1

δAi
πAi

(yi − ȳU)x∗Ti

(2.51)

∂

∂β

[
1

N

N∑
i=1

δi
{
Zi − pi(β)

}]
= − 1

N

N∑
i=1

δipi(β) [1− pi(β)]x∗ix
∗T
i (2.52)

Therefore, we have

φn(η1) =

− 1
N

∑N
i=1

δAi
πA
i

− 1
N

∑N
i=1

δAi
πA
i

(yi − ȳU)x∗Ti

0 − 1
N

∑N
i=1 δipi(β) [1− pi(β)]x∗ix

∗T
i

 (2.53)

Thus, it follows that ˆ̄yPM = ȳU +Op(n
−1/2
A ).

Now, we turn to deriving the asymptotic variance estimator for ˆ̄yPM . According

to the sandwich formula, we have

V ar(η̂1) = [E{φn(η1)}]−1 V ar
{
φn(η1)

} [
E{φn(η1)}T

]−1
+Op(n

−1
A ) (2.54)

Given the fact that

E(δi = 1|x∗i ) =
p(δAi = 1|x∗i )
p(Zi = 1|x∗i )

=
πRi

1− pi(β)
(2.55)

It can be shown that

E
{
φn(η1)

}
=

−1 − 1
N

∑N
i=1(yi − ȳU)x∗Ti

0 − 1
N

∑N
i=1 π

A
i [1− pi(β)]x∗ix

∗T
i

 (2.56)
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And

[
E
{
φn(η1)

}]−1
=

−1 bT

0 −
[

1
N

∑N
i=1 π

A
i [1− pi(β)]x∗ix

∗T
i

]−1

 (2.57)

where

bT =

{
1

N

N∑
i=1

(yi − ȳU)x∗Ti

}{
1

N

N∑
i=1

πAi
{

1− pi(β)
}
x∗ix

∗T
i

}−1

(2.58)

Now, the goal is to calculate V ar
{
φn(η1)

}
. We know that

V arδA

(
1

N

N∑
i=1

δAi (yi − ȳU)

πAi

∣∣∣∣xi
)

=
1

N

N∑
i=1

(yi − ȳU)2

(πAi )2
πAi (1− πAi )

=
1

N

N∑
i=1

{
1− πAi
πAi

}
(yi − ȳU)2

(2.59)

V arδA

(
1

N

N∑
i=1

δi
{
Zi − pi(β)

}∣∣∣∣x∗i
)

= Eδ

[
V arZ

(
1

N

N∑
i=1

δi
{
Zi − pi(β)

}∣∣δi = 1, x∗i

)]

+ V arδ

[
δiEZ

(
1

N

N∑
i=1

δi
{
Zi − pi(β)

}∣∣δi = 1, x∗i

)]

=
1

N2
Eδ

(
N∑
i=1

δ2
i V arZ(Zi)x

∗
ix
∗T
i

∣∣∣∣x∗i
)

+ 0

=
1

N2

N∑
i=1

πRi pi(β)x∗ix
∗T
i

(2.60)

Cov

(
1

N

N∑
i=1

δAi (yi − ȳU )

πAi
,

1

N

N∑
i=1

δi
{
Zi − pi(β)

}∣∣∣∣x∗i
)

= Eδ

[
EZ

(
1

N

N∑
i=1

δi
Zi(yi − ȳU )

πAi

∣∣∣∣δi = 1, x∗i

)]

=
1

N2

N∑
i=1

{
1− pi(β)

}
(yi − ȳU )x∗i

(2.61)
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Therefore, we have

V ar
{

Φn(η1)
}

=

 1
N2

∑N
i=1{(1− πAi )/πAi }(yi − ȳU ) 1

N2

∑N
i=1

{
1− pi(β

)
}(yi − ȳU )x∗Ti

1
N2

∑N
i=1

{
1− pi(β

)
}(yi − ȳU )x∗i

1
N2

∑N
i=1 π

A
i

{
1− pi(β)

}
x∗ix

∗T
i


(2.62)

The final asymptotic variance estimator of ˆ̄yPAPW is given by

V ar
{

ˆ̄yPAPW
}

=
1

N2

N∑
i=1

{
1− πAi
πAi

}
(yi − ȳU)2 − 2

bT

N2

N∑
i=1

{
1− pi(β)

}
(yi − ȳU)x∗i

+ bT

[
1

N2

N∑
i=1

πAi
{

1− pi(β)
}
x∗ix

∗T
i

]
b

(2.63)

To obtain the variance estimate based on the observed samples of SA and SR, we

substitute the population components with their estimates from the samples.

V̂ ar
{

ˆ̄yPAPW
}

=
1

N2

nA∑
i=1

{
1− π̂Ai

}(yi − ȳU
π̂Ai

)2

− 2
b̂T

N2

nA∑
i=1

{
1− pi(β̂)

}(yi − ȳU
π̂Ai

)
x∗i

+ b̂T

[
1

N2

n∑
i=1

pi(β̂)x∗ix
∗T
i

]
b̂

(2.64)

where

b̂T =

{
1

N

nA∑
i=1

(
yi − ȳU
π̂Ai

)
x∗Ti

}{
1

N

n∑
i=1

pi(β̂)x∗ix
∗T
i

}−1

(2.65)

2.6.2 Further extensions of the simulation study

I extend the simulation study to further assess the performance of pseudo-weighting

approaches in terms of bias reduction and other repeated sampling properties. To

show that my PAPP method can potentially work better than those based on a PMLE

approach, comparisons are made under various scenarios as below:

1. The sampling design is ignorable for both SR and SA given the set of observed

common auxiliary variables, X.
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2. The sampling design of SR is non-ignorable given X, but its design variable, D,

is available for units in SA as well.

3. The sampling design of SR is non-ignorable given X, but D is not available for

units in SA.

4. I replicate the simulation studied by Chen et al. (2017b) to assess how my

method performs compared to Chen’s method.

For the first three scenarios, a hypothetical population of size N = 100, 000 is

initially generated, for which two covariates, {X,D}, are considered with the following

distribution: D
X

 ∼MVN


0

0

 ,

1 ρ

ρ 1


 (2.66)

where D denotes a design variable in SR, and X describes the selection mechanism

in SA. Here, I set ρ = 0.4, because in reality one would expect some degrees of

correlation between the identified set of common covariates and the design variables

of SR. Given X and D, two outcome variables, one continuous (Y c) and one binary

(Y b), are constructed as below:

Y c
i |Xi = xi, Di = di ∼ N(µ = 2 + di + xi, σ

2 = 1) (2.67)

Y b
i |Xi = xi, Di = di ∼ BER

(
p =

e−1+di+xi

1 + e−1+di+xi

)
(2.68)

In each scenario, I consider an informative sampling strategy with unequal probabil-

ities of inclusion, where the selection mechanism of SA and SR depends on X and/or

D, respectively. A Poisson sampling method is then employed to draw samples of SR

and SA, in a way that the average sample sizes remain nR = 200 and nA = 1000,

respectively. I choose a situation where nR << nA, which might be the case in a Big

Data setting.
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The simulation is iterated K = 1, 000 times, where for each time, the adjusted

mean, standard error (SE), and 95% confidence intervals (CIs) of the response vari-

able are estimated. To make the quasi-random approaches fairly comparable, a GLM

is fitted to estimate all three pseudo-weighting approaches, PAPP, PMLE-V, and

PMLE-C. In addition, I use a modified delete-one JRR method discussed in sec-

tion 2.2.4 to estimate the variance. To evaluate the repeated sampling properties of

the comparing method, relative bias (rBias), relative root mean square error (rMSE),

the nominal coverage rate of 95% CIs (crCI), and SE ratio (rSE) are calculated.

2.6.2.1 Scenario 1:

Under this scenario, I define the measures of size corresponding to SR and SA as

below:

πR(xi) = P (δRi = 1|Xi = xi) =
e−6.34+0.5xi

1 + e−6.34+0.5xi
(2.69)

πA(xi) = P (δAi = 1|Xi = xi) =
e−4.67−0.4xi

1 + e−4.67−0.4xi
(2.70)

where δRi and δAi are the indicators of being selected in SR and SA, respectively.

Dependence of both designs on the same set of covariates implies that given X,

ignorable condition holds for both SR and SA. I later assume that πAi ’s are unknown,

and estimate them based on the observed X using different quasi-random approaches.

The simulation results of this scenario have been illustrated in Table 2.3. For

both binary and continuous outcome variables, the values of rBias and rMSE are

both smaller for the proposed PAPP than those using the PMLE idea. This is not

unexpected as PAPP relies on the ignorable condition for both samples. The two

PMLE approaches perform quite similarly in terms of bias reduction. Furthermore,

it seems the JRR variance estimator works accurately, as the values of SE-ratio and
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95% CIs are close to 1 and 95%, respectively.

Table 2.3: Comparing the performance of adjustment methods in the scenario 1.

Continuous outcome (Y c) Binary outcome (Y b)
rel- rel- Cov. SE rel- rel- Cov. SE

Measure bias rMSE rate ratio bias rMSE rate ratio

Unweighted -19.62 19.80 0.00 1.03 -19.05 19.55 0.90 0.98
Fully weighted 0.02 3.01 94.50 1.01 -0.04 5.25 94.90 1.00
PAPP 0.37 4.56 95.10 1.01 0.33 6.28 94.60 1.00
PMLE-V 2.05 8.27 94.80 1.01 2.12 9.60 95.30 1.01
PMLE-C 2.39 8.58 95.10 1.01 2.47 9.91 95.70 1.02

NOTE 1: GLM has been used to predict the pseudo-weights for all approaches.
NOTE 2: Variance estimation is based on a delete-one Jackknife repeated repli-
cation method.

2.6.2.2 Scenario 2

Now I consider a situation where the design of SR is non-ignorable given X. To do

so, I define the selection probabilities in the two samples as below:

πR(xi) = P (δRi = 1|Di = di) =
e−6.34+0.5di

1 + e−6.34+0.5di
(2.71)

πA(xi) = P (δAi = 1|Xi = xi) =
e−4.67−0.4xi

1 + e−4.67−0.4xi
(2.72)

Under this scenario, I assume that X and D are observed in both SR and SA. This

is usually the case when full information about the design of the reference survey is

provided to the analyst. PAPP pseudo-weights are then estimated based on both

X and D, but estimates for PMLE pseudo-weights only require modeling X as the

predictor.

As illustrated in Table 2.4, the PAPP still gives the smallest values of rBias and

rMSE for both binary and continuous outcome variables compared to the PMLE

methods. In addition, the JRR variance estimator continues to perform well with

slight overestimation according to the quantities of SE-ratio and 95% CI rates.
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Table 2.4: Comparing the performance of adjustment methods in the scenario 2.

Continuous outcome (Y c) Binary outcome (Y b)
rel- rel- Cov. SE rel- rel- Cov. SE

Measure bias rMSE rate ratio bias rMSE rate ratio

Unweighted -27.32 27.50 0.00 1.00 -23.13 23.52 0.00 0.96
Fully weighted 0.07 3.47 94.90 1.00 0.13 5.25 93.90 0.97
PAPP -0.02 5.88 87.60 1.21 0.08 6.66 90.80 1.24
PMLE-V 1.00 8.20 85.70 1.17 1.03 8.60 88.70 1.21
PMLE-C 1.38 8.43 85.90 1.18 1.38 8.82 88.60 1.21

NOTE 1: GLM has been used to predict the pseudo-weights for all approaches.
NOTE 2: Variance estimation is based on a delete-one Jackknife repeated repli-
cation method.

2.6.2.3 Scenario 3:

The third scenario is quite similar to the second scenario with a difference in that I

assume this time that D is unobserved in the non-probability sample, SA. Therefore,

all I can rely on is to estimate PAPP pseudo-weights based on the observed X.

Table 2.5 exhibits the results for bias and variance estimation. As displayed, in terms

of bias improvement, PAPP still performs best among the whole applied methods for

both outcome variables. The values of SE-ratio also indicate an accurate estimator

of variance by the JRR method.

Table 2.5: Comparing the performance of adjustment methods in the scenario 3.

Continuous outcome (Y c) Binary outcome (Y b)
rel- rel- Cov. SE rel- rel- Cov. SE

Measure bias rMSE rate ratio bias rMSE rate ratio

Unweighted -35.61 35.77 0.00 0.99 -27.73 28.02 0.00 0.98
Fully weighted -0.03 4.00 94.00 0.97 -0.01 5.11 94.40 0.98
PAPP 0.05 6.81 95.90 1.07 0.10 6.71 95.90 1.06
PMLE-V 2.01 12.27 95.30 1.06 1.81 11.02 95.40 1.06
PMLE-C 2.55 12.72 95.20 1.06 2.28 11.41 95.60 1.06

NOTE 1: GLM has been used to predict the pseudo-weights for all approaches.
NOTE 2: Variance estimation is based on a delete-one Jackknife repeated repli-
cation method.

In addition, I replicate the simulation under this scenario for different values of ρ.
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It is apparent that ρ = 0 means non-ignorability given X in the probability sample,

and ρ = 1 is a situation identical to Scenario I, where I have ignorability given X in

both probability and non-probability sample. As illustrated in Table 2.6, for all the

values of ρ, smaller values of rBias and rMSE are associated with the PAPP. There

is evidence of more stability of bias and rMSE for the PAPP method, while these

quantities are consistently increasing with the increase in ρ value for both PMLE

methods.

Table 2.6: Comparing the values of rBias and rMSE for different methods across
different values of ρ.

Continuous outcome (Y c) Binary outcome (Y b)
ρ UWD FWD PAPP PMLE-V PMLE-C UWD FWD PAPP PMLE-V PMLE-C

rBias
0 -19.9 -0.13 -0.01 0.43 0.69 -18.90 -0.32 -0.18 0.28 0.54
0.1 -21.88 -0.22 -0.06 0.66 0.96 -20.40 -0.33 -0.16 0.56 0.85
0.2 -23.72 -0.10 -0.09 0.45 0.77 -21.43 -0.27 -0.23 0.31 0.61
0.3 -25.78 -0.13 -0.25 0.59 0.94 -22.43 -0.04 -0.10 0.72 1.05
0.4 -27.48 0.09 0.29 1.30 1.69 -23.34 0.16 0.38 1.34 1.70
0.5 -29.53 -0.08 0.23 1.38 1.81 -24.66 -0.07 0.24 1.32 1.70
0.6 -31.66 -0.08 -0.09 1.43 1.89 -25.58 -0.17 -0.14 1.24 1.65
0.7 -33.61 -0.16 0.34 2.12 2.63 -26.89 -0.26 0.22 1.82 2.27
0.8 -35.61 -0.03 0.05 2.01 2.55 -27.73 -0.01 0.10 1.81 2.28
0.9 -38.06 -0.23 0.21 2.85 3.46 -28.52 0.16 0.57 2.84 3.36

rMSE
0 20.08 3.03 4.65 5.51 5.64 19.33 4.96 6.00 6.77 6.88
0.1 22.07 3.18 4.88 6.09 6.24 20.82 5.15 6.29 7.23 7.37
0.2 23.91 3.32 5.14 6.43 6.59 21.84 5.12 6.34 7.40 7.54
0.3 25.94 3.23 5.58 7.36 7.55 22.78 4.94 6.34 7.74 7.92
0.4 27.65 3.56 5.90 8.30 8.56 23.71 5.25 6.78 8.73 8.96
0.5 29.69 3.58 6.59 9.42 9.71 25.00 5.17 6.96 9.37 9.63
0.6 31.82 3.61 6.54 10.22 10.54 25.90 5.13 6.80 9.76 10.04
0.7 33.76 3.70 6.93 11.67 12.09 27.17 5.02 7.17 10.90 11.26
0.8 35.77 4.00 6.81 12.27 12.72 28.02 5.11 6.71 11.02 11.41
0.9 38.21 3.93 7.42 14.21 14.78 28.81 5.23 6.94 12.45 12.94

UWD=unweighted; FWD=fully weighted.
GLM has been used to predict the pseudo-weights for all approaches.
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2.6.3 Supplemental results on SPMD/NHTS data

Tables 2.7 through 2.12 provide detailed numerical estimates of mean trip speed, mean

daily start time of trips, mean percentage of stop duration per trip, daily percent of

trips using interstate highways, daily percent of trip duration spent on interstate

highways, and mean annual miles, by gender, age, urbanicity, and vehicle age, type,

and make. (See Figures 2.7 and 2.8 for overall estimates.)

Table 2.7: Weighted mean trip average speed (Km/h) across demographics and vehicle
characteristics

Unweighted PAPP PMLE-V PMLE-C
Characteristic n Mean Mean 95% CI Mean 95% CI Mean 95% CI

Gender
Male 785 43.06 45.8 (45.01,46.58) 44.79 (43.79,45.8) 44.79 (43.79,45.8)

Female 1,239 42.32 46.53 (45.8,47.27) 45.34 (44.36,46.32) 45.34 (44.36,46.32)
Age group

≤25 124 42.1 47.11 (44.42,49.79) 44.27 (41.62,46.92) 44.27 (41.62,46.92)
(25-45] 898 43.23 46.8 (46.03,47.58) 46.25 (45.19,47.31) 46.25 (45.19,47.31)
(45-65] 856 42.68 46.43 (45.69,47.17) 45.93 (44.93,46.92) 45.93 (44.93,46.92)
>65 146 38.83 41.12 (39.72,42.52) 40.51 (38.69,42.34) 40.51 (38.69,42.34)

Urban size
≤50 169 51.84 51.83 (50.35,53.31) 52.13 (50.8,53.46) 52.13 (50.8,53.46)

(50-200] 1,665 40.79 40.76 (40.35,41.16) 40.92 (40.42,41.41) 40.92 (40.42,41.41)
(200-500] 81 52.15 51.95 (50.26,53.63) 51.9 (50,53.8) 51.9 (50,53.8)

>500 109 48.95 48.49 (47.04,49.94) 49.12 (47.69,50.56) 49.12 (47.69,50.56)
Vehicle age

≤5 948 43.54 47.44 (46.73,48.15) 46.81 (45.69,47.93) 46.81 (45.69,47.93)
(5-10] 750 42.47 46.45 (45.63,47.27) 45.28 (43.9,46.66) 45.28 (43.9,46.66)
>10 326 40.23 43.4 (42.25,44.55) 42.15 (40.8,43.5) 42.15 (40.8,43.5)

Vehicle type
Car 1,171 42.53 46.19 (45.31,47.07) 45.09 (44.08,46.1) 45.09 (44.08,46.1)

Pickup 50 43.56 47.47 (44.81,50.12) 45.36 (42.26,48.46) 45.36 (42.26,48.46)
SUV 583 43.43 47.47 (46.67,48.26) 45.95 (44.72,47.19) 45.95 (44.71,47.19)
Van 220 40.59 43.34 (42.17,44.52) 42.68 (41.24,44.12) 42.68 (41.24,44.12)

Vehicle make
American 959 44.08 49.22 (48.59,49.86) 49.86 (48.42,51.3) 49.86 (48.42,51.3)

Asian 919 41.18 43.7 (42.95,44.45) 43.33 (42.26,44.41) 43.33 (42.26,44.41)
European 146 41.95 45.78 (43.82,47.74) 44.22 (41.58,46.86) 44.22 (41.58,46.86)

Total 2,024 42.61 46.51 (45.94,47.07) 45.57 (44.69,46.45) 45.57 (44.69,46.45)

NOTE 1: Weights are trimmed using the IQR method.
NOTE 2: Variance estimates for 95% CIs are based on the conditional variance
method.
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Table 2.8: Weighted daily percentage of trips started between 6AM-10AM across
demographics and vehicle characteristics

Unweighted PAPP PMLE-V PMLE-C
Characteristic n Mean Mean 95% CI Mean 95% CI Mean 95% CI

Gender
Male 783 22.24 22.12 (21.45,22.78) 22.3 (21.51,23.08) 22.3 (21.51,23.08)

Female 1,237 21.94 21.78 (21.34,22.22) 21.86 (21.29,22.44) 21.86 (21.29,22.44)
Age group

≤25 123 17.79 16.89 (15.17,18.61) 17.58 (15.39,19.78) 17.58 (15.39,19.78)
(25-45] 896 23.57 23.52 (22.99,24.04) 23.45 (22.76,24.15) 23.45 (22.76,24.15)
(45-65] 855 21.66 21.8 (21.24,22.36) 21.71 (20.94,22.48) 21.71 (20.94,22.48)
>65 146 18.65 18.98 (17.58,20.39) 19.05 (17.43,20.67) 19.05 (17.43,20.67)

Urban size
≤50 169 22.86 22.28 (20.91,23.65) 22.67 (21.35,23.99) 22.67 (21.35,23.99)

(50-200] 1,662 22.01 21.48 (21,21.95) 21.87 (21.39,22.36) 21.87 (21.39,22.36)
(200-500] 81 20.52 20.25 (18.26,22.25) 20.59 (18.73,22.46) 20.59 (18.73,22.46)

>500 108 22.69 22.79 (21.14,24.45) 22.42 (20.65,24.19) 22.42 (20.65,24.19)
Vehicle age

≤5 947 22.35 22.29 (21.78,22.8) 22.39 (21.77,23.01) 22.39 (21.77,23.01)
(5-10] 749 22.22 22.09 (21.5,22.69) 22.27 (21.53,23.01) 22.27 (21.53,23.01)
>10 324 20.82 20.51 (19.37,21.64) 20.67 (19.27,22.06) 20.67 (19.27,22.06)

Vehicle type
Car 1,170 22.07 21.89 (21.36,22.42) 22.12 (21.52,22.72) 22.12 (21.52,22.72)

Pickup 49 21.22 21.01 (18.55,23.47) 21.24 (18.56,23.92) 21.24 (18.56,23.92)
SUV 581 22.06 21.92 (21.3,22.53) 22 (21.33,22.67) 22 (21.33,22.67)
Van 220 22.16 22.19 (21.2,23.17) 22.07 (20.99,23.15) 22.07 (20.99,23.15)

Vehicle make
American 956 21.8 22.08 (21.53,22.62) 22.16 (21.05,23.26) 22.16 (21.05,23.26)

Asian 918 22.22 21.91 (21.33,22.49) 22.16 (21.52,22.79) 22.16 (21.52,22.79)
European 146 22.69 22.71 (21.24,24.17) 22.77 (21.24,24.31) 22.77 (21.24,24.31)

Total 2,020 22.06 21.95 (21.57,22.33) 22.06 (21.57,22.55) 22.06 (21.57,22.55)

NOTE 1: Weights are trimmed using the IQR method.
NOTE 2: Variance estimates for 95% CIs are based on the conditional variance
method.
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Table 2.9: Weighted mean percentage of stop duration per trips across demographics
and vehicle characteristics.

Unweighted PAPP PMLE-V PMLE-C
Characteristic n Mean Mean 95% CI Mean 95% CI Mean 95% CI

Gender
Male 783 10.71 10.53 (10.19,10.86) 10.55 (10.01,11.1) 10.55 (10.01,11.1)

Female 1,237 11.3 10.4 (10.15,10.64) 10.64 (10.23,11.06) 10.64 (10.23,11.06)
Age group

≤25 123 11.34 10.4 (9.52,11.28) 10.95 (9.81,12.1) 10.95 (9.81,12.1)
(25-45] 896 11.4 10.79 (10.52,11.06) 10.85 (10.39,11.31) 10.85 (10.39,11.31)
(45-65] 855 10.8 10.15 (9.84,10.45) 10.2 (9.69,10.7) 10.2 (9.69,10.7)
>65 146 10.41 9.77 (9.1,10.43) 10 (9.07,10.92) 10 (9.07,10.92)

Urban size
≤50 169 9.46 9.46 (8.75,10.17) 9.43 (8.68,10.18) 9.43 (8.68,10.18)

(50-200] 1,662 11.39 11.35 (11.13,11.56) 11.29 (10.87,11.71) 11.29 (10.87,11.71)
(200-500] 81 8.71 8.44 (7.62,9.26) 8.65 (7.59,9.71) 8.65 (7.59,9.71)

>500 108 10.52 10.41 (9.72,11.1) 10.35 (9.63,11.07) 10.35 (9.63,11.06)
Vehicle age

≤5 947 10.96 10.11 (9.83,10.39) 10.23 (9.7,10.77) 10.23 (9.7,10.77)
(5-10] 749 10.93 10.36 (10.05,10.67) 10.5 (10.02,10.98) 10.5 (10.02,10.98)
>10 324 11.72 11.39 (10.9,11.89) 11.41 (10.77,12.06) 11.41 (10.77,12.06)

Vehicle type
Car 1,170 10.78 10.16 (9.87,10.44) 10.31 (9.82,10.8) 10.31 (9.82,10.8)

Pickup 49 10.75 10.05 (9.1,11) 10.54 (9.48,11.61) 10.54 (9.48,11.61)
SUV 581 11.45 10.83 (10.46,11.2) 11.04 (10.48,11.6) 11.04 (10.48,11.6)
Van 220 11.69 10.99 (10.45,11.53) 11.22 (10.48,11.96) 11.22 (10.48,11.96)

Vehicle make
American 956 11.07 10.03 (9.74,10.32) 9.95 (8.71,11.19) 9.95 (8.71,11.19)

Asian 918 11.14 10.71 (10.44,10.98) 10.73 (10.26,11.2) 10.73 (10.26,11.2)
European 146 10.66 10.18 (9.55,10.81) 10.22 (9.41,11.02) 10.22 (9.41,11.02)

Total 2,020 11.07 10.39 (10.19,10.59) 10.51 (10.1,10.93) 10.51 (10.1,10.93)

NOTE 1: Weights are trimmed using the IQR method.
NOTE 2: Variance estimates for 95% CIs are based on the conditional variance
method.
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Table 2.10: Weighted daily percentage of trips used interstate across demographics
and vehicle characteristics.

Unweighted PAPP PMLE-V PMLE-C
Characteristic n Mean Mean 95% CI Mean 95% CI Mean 95% CI

Gender
Male 783 11.35 12.81 (12.11,13.5) 12.35 (11.47,13.24) 12.35 (11.47,13.24)

Female 1,237 10.59 13 (12.39,13.61) 12.27 (11.52,13.02) 12.27 (11.52,13.02)
Age group

≤25 123 11.1 15.82 (13.21,18.43) 13.11 (10.44,15.78) 13.11 (10.44,15.78)
(25-45] 896 11.66 13.82 (13.14,14.5) 13.49 (12.61,14.37) 13.49 (12.61,14.37)
(45-65] 855 10.68 12.6 (11.93,13.26) 12.37 (11.5,13.23) 12.37 (11.5,13.23)
>65 146 7.15 7.32 (6.44,8.2) 7.49 (6.33,8.66) 7.49 (6.33,8.66)

Urban size
≤50 169 14.99 15.37 (13.67,17.06) 14.96 (13.24,16.67) 14.96 (13.24,16.67)

(50-200] 1,662 9.82 9.64 (9.26,10.03) 9.84 (9.39,10.28) 9.84 (9.39,10.28)
(200-500] 81 18.35 18.33 (15.79,20.88) 18.22 (15.63,20.81) 18.22 (15.63,20.81)

>500 108 15.26 14.08 (12.07,16.09) 15.3 (13.27,17.33) 15.3 (13.27,17.33)
Vehicle age

≤5 947 11.76 14.04 (13.38,14.7) 13.72 (12.78,14.65) 13.72 (12.78,14.65)
(5-10] 749 10.48 12.42 (11.72,13.12) 11.88 (10.88,12.88) 11.88 (10.88,12.88)
>10 324 9.25 11.53 (10.46,12.61) 10.63 (9.32,11.93) 10.63 (9.32,11.93)

Vehicle type
Car 1,170 11.06 13.3 (12.58,14.02) 12.69 (11.85,13.54) 12.69 (11.85,13.54)

Pickup 49 9.2 10.45 (8.37,12.54) 9.79 (7.34,12.24) 9.79 (7.34,12.24)
SUV 581 11.23 13.39 (12.66,14.12) 12.52 (11.5,13.55) 12.52 (11.5,13.55)
Van 220 9.44 11 (10.03,11.98) 10.61 (9.47,11.75) 10.61 (9.47,11.75)

Vehicle make
American 956 11.8 14.37 (13.66,15.08) 14.79 (12.43,17.16) 14.79 (12.43,17.16)

Asian 918 9.98 11.64 (10.97,12.31) 11.41 (10.48,12.34) 11.41 (10.48,12.34)
European 146 10.58 12.36 (10.82,13.9) 11.71 (9.96,13.46) 11.71 (9.96,13.46)

Total 2,020 10.88 13.08 (12.61,13.55) 12.57 (11.91,13.23) 12.57 (11.91,13.23)

NOTE 1: Weights are trimmed using the IQR method.
NOTE 2: Variance estimates for 95% CIs are based on the conditional variance
method.
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Table 2.11: Weighted mean trip duration spent on interstate by demographics and
vehicle characteristics.

Unweighted PAPP PMLE-V PMLE-C
Characteristic n Mean Mean 95% CI Mean 95% CI Mean 95% CI

Gender
Male 783 3.5 4.07 (3.77,4.37) 3.87 (3.49,4.26) 3.88 (3.49,4.26)

Female 1,237 3.32 4.2 (3.98,4.42) 3.93 (3.64,4.22) 3.93 (3.64,4.22)
Age group

≤25 123 3.53 4.91 (4.13,5.68) 4.15 (3.28,5.03) 4.15 (3.28,5.03)
(25-45] 896 3.55 4.32 (4.07,4.57) 4.2 (3.86,4.53) 4.2 (3.86,4.53)
(45-65] 855 3.38 4.16 (3.87,4.45) 4.05 (3.64,4.45) 4.05 (3.64,4.45)
>65 146 2.35 2.33 (2.03,2.64) 2.42 (2.06,2.78) 2.42 (2.06,2.78)

Urban size
≤50 169 5 5.01 (4.3,5.72) 4.97 (4.21,5.73) 4.97 (4.21,5.73)

(50-200] 1,662 3 2.92 (2.79,3.05) 2.98 (2.83,3.13) 2.98 (2.83,3.13)
(200-500] 81 5.68 5.6 (4.81,6.39) 5.57 (4.78,6.36) 5.57 (4.78,6.36)

>500 108 5.24 4.71 (3.99,5.44) 5.18 (4.44,5.92) 5.18 (4.44,5.92)
Vehicle age

≤5 947 3.8 4.71 (4.45,4.96) 4.55 (4.19,4.9) 4.55 (4.19,4.9)
(5-10] 749 3.18 3.85 (3.55,4.14) 3.66 (3.24,4.09) 3.66 (3.24,4.09)
>10 324 2.69 3.44 (3.09,3.79) 3.15 (2.72,3.59) 3.15 (2.72,3.59)

Vehicle type
Car 1,170 3.4 4.19 (3.93,4.44) 3.95 (3.66,4.24) 3.95 (3.66,4.24)

Pickup 49 2.73 3.2 (2.53,3.87) 2.95 (2.18,3.73) 2.95 (2.18,3.73)
SUV 581 3.54 4.43 (4.05,4.81) 4.09 (3.57,4.6) 4.09 (3.57,4.6)
Van 220 3.06 3.73 (3.33,4.12) 3.56 (3.07,4.05) 3.56 (3.07,4.05)

Vehicle make
American 956 3.75 4.83 (4.52,5.14) 5 (4.28,5.72) 5 (4.28,5.72)

Asian 918 3.03 3.61 (3.38,3.84) 3.5 (3.18,3.82) 3.5 (3.18,3.82)
European 146 3.34 3.86 (3.33,4.38) 3.68 (3.07,4.28) 3.68 (3.07,4.28)

Total 2,020 3.39 4.21 (4.02,4.39) 4 (3.74,4.26) 4 (3.74,4.26)

NOTE 1: Weights are trimmed using the IQR method.
NOTE 2: Variance estimates for 95% CIs are based on the conditional vari-
ance method.
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Table 2.12: Weighted mean annual mileage by demographics and vehicle characteris-
tics.

Unweighted PAPP PMLE-V PMLE-C
Characteristic n Mean Mean 95% CI Mean 95% CI Mean 95% CI

Gender
Male 785 20.29 23.29 (22.23,24.34) 22.05 (20.73,23.37) 22.05 (20.73,23.37)

Female 1,239 20.51 23.92 (23.22,24.63) 22.9 (21.97,23.83) 22.9 (21.97,23.83)
Age group

≤25 124 18.73 22.19 (20.01,24.38) 20.01 (17.63,22.38) 20.01 (17.63,22.38)
(25-45] 898 20.74 23.91 (23.09,24.74) 23.24 (22.18,24.31) 23.24 (22.18,24.31)
(45-65] 856 20.93 24.43 (23.5,25.35) 23.84 (22.55,25.14) 23.84 (22.55,25.14)
>65 146 17.02 18.79 (17.23,20.34) 18.37 (16.24,20.51) 18.37 (16.24,20.51)

Urban size
≤50 169 28.66 28.54 (26.43,30.64) 28.9 (26.81,30.99) 28.9 (26.81,30.99)

(50-200] 1,665 18.75 18.48 (18,18.97) 18.5 (18.03,18.98) 18.5 (18.03,18.98)
(200-500] 81 28.06 27.21 (25.59,28.84) 27.44 (25.9,28.98) 27.44 (25.9,28.98)

>500 109 27.57 26.76 (24.89,28.63) 27.73 (25.79,29.67) 27.73 (25.79,29.67)
Vehicle age

≤5 948 22.16 25.61 (24.88,26.33) 24.94 (23.85,26.03) 24.94 (23.85,26.03)
(5-10] 750 20.02 23.53 (22.5,24.57) 22.49 (20.93,24.04) 22.49 (20.93,24.04)
>10 326 16.31 19.03 (17.86,20.2) 17.95 (16.62,19.28) 17.95 (16.62,19.28)

Vehicle type
Car 1,171 19.47 22.63 (21.76,23.51) 21.62 (20.65,22.6) 21.63 (20.65,22.6)

Pickup 50 19.82 24.19 (21.25,27.13) 21.88 (18.52,25.24) 21.88 (18.52,25.24)
SUV 583 22 25.83 (24.71,26.95) 24.38 (22.9,25.86) 24.38 (22.9,25.86)
Van 220 21.49 24.2 (22.85,25.54) 23.55 (21.92,25.18) 23.55 (21.92,25.18)

Vehicle make
American 959 21.99 26.93 (26.09,27.76) 27.59 (24.29,30.9) 27.59 (24.29,30.9)

Asian 919 19.04 21.21 (20.39,22.04) 20.67 (19.65,21.69) 20.67 (19.65,21.69)
European 146 18.88 22.16 (20.09,24.24) 20.89 (18.45,23.33) 20.89 (18.45,23.33)

Total 2,024 20.43 23.89 (23.26,24.52) 22.94 (22.04,23.84) 22.94 (22.04,23.85)

NOTE 1: Weights are trimmed using the IQR method.
NOTE 2: Variance estimates for 95% CIs are based on the conditional variance
method.
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CHAPTER III

Doubly Robust Two-step Bayesian Inference for

Non-probability Samples

3.1 Introduction

Chapter II developed a robust quasi-random (QR) approach for finite population

inference based on a non-probability sample. Assuming a random selection mechanism

for the sample units, my goal was to estimate the missing selection probabilities non-

parametrically using Bayesian Additive Regression Trees (BART). In the presence

of a “reference survey” with a set of common auxiliary variables, I observed that

adjusted estimates are consistent under a strongly ignorable condition (C1-C2). This

assumption, however, may not hold necessarily for the propensity model. It is always

likely that some of the key variables governing the selection mechanism in the non-

probability sample are unobserved. Although the strong flexibility of BART, as a

predictive tool, reduces the risk of model misspecification, I realized that BART

performs poorly when the two samples lack common support for the joint distribution

of auxiliary variables (Rafei et al., 2020; Hill and Su, 2013).

An alternative model-assisted approach involves prediction modeling (PM) where

the outcome variable(s) is predicted for units of the reference survey (Rivers, 2007;

Kim and Rao, 2012; Wang et al., 2015; Kim et al., 2021a). Therefore, unlike the QR
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where the response indicator is modeled, it is the outcome variable that has to be

modeled in PM. Note that this method requires one to fit a model separately for any

given outcome variable, whereas the estimated set of pseudo-weights by QR could be

applied to any outcome variable. For non-normal outcomes, attention should be paid

to an appropriate choice of the link function as well. Once the outcome is imputed

for all units of the reference survey, design-based approaches can be then utilized to

compute point and interval estimates. In PM, however, model misspecification is an

even bigger concern than in QR as the PM-based estimates rely on extrapolation.

To further protect against model misspecification, a third method can be applied

by combining the QR approach with the PM method, in a way that the adjusted

estimate of a population quantity, such as the population mean, is consistent if either

model does hold. In this sense, adjustments by such a method are called doubly ro-

bust (DR). Proposed by Robins et al. (1994), augmented inverse propensity weighting

(AIPW) is the earliest class of DR methods, which borrows the idea of a generalized

difference estimator from Cassel et al. (1976). This prominence led the AIPW estima-

tor to gain popularity quickly in the causal inference setting (Scharfstein et al., 1999;

Bang and Robins, 2005; Tan, 2006; Kang et al., 2007; Tan et al., 2019). It was later

expanded to adjust for non-response bias in the survey sampling context (Kott, 1994;

Kim and Park, 2006; Kott, 2006; Haziza and Rao, 2006; Kott and Chang, 2010).

A further extension to multiple robustness has been developed by Han and Wang

(2013), where multiple models are specified and consistency is obtained as long as at

least one of the models are correctly specified. However, simulation results show that

a DR estimator is always less efficient than either a correctly-specified QR or PM

solely. In situations where both QR and PM are misspecified, even moderately, Kang

et al. (2007) show that the AIPW method may not work that well. Cao et al. (2009)

conclude that the performance of the QR model in the AIPW estimator depends on

how close the inverse PS weighted (IPSW) mean of the selection indicator variable
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is to the sample size. As a result, they recommended estimating the parameters of

the QR model under the restriction that the sum of the quotients of the selection

indicators by PS equals the sample size approximately.

Chen et al. (2019) offer further adjustments to adapt the AIPW estimator to a

non-probability sampling setting where an external benchmark survey is available.

While their method employs a modified pseudo-likelihood approach to estimate the

selection probabilities for the non-probability sample, a parametric model is used to

impute the outcome for units of the reference survey. Inspired by Kim and Haz-

iza (2014), the authors propose to estimate the model parameters by simultaneously

solving the estimating equations to maintain the DR property for the variance esti-

mator. Wu and Sitter (2001) point out that the AIPW estimator resembles inverse

propensity weighting followed by a GREG calibration based on the estimated auxil-

iary totals from the reference survey. This two-step method has been frequently used

elsewhere (Lee and Valliant, 2009; Brick, 2015; Dutwin and Buskirk, 2017; Valliant,

2020). Combining a model-assisted method with pseudo-weighting, Valliant (2020)

also proposes an equivalent DR weighting approach for inference in non-probability

samples. An extension of AIPW to high-dimensional data using LASSO has also been

suggested by Yang et al. (2019).

In reality, however, the functional structure of neither propensity nor prediction

models is known to the analyst, and undoubtedly, a DR estimator is no longer consis-

tent if both underlying models are incorrectly specified. To further weaken or relax the

modeling assumptions, the current article aims to propose alternative model-assisted

DR methods by incorporating more flexible prediction methods, such as supervised

machine learning algorithms, into the AIPW estimator. A notable advantage of such

predictive tools is automatic variable selection, which features the ability to capture

complex non-linear relationships and high-order interactions. As a result, these al-

gorithmic methods, e.g. tree ensembles, kernels, and neural networks, have been
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widely used in the contexts of causal inference and incomplete data analysis (Mayer

et al., 2020; McConnell and Lindner, 2019; Wendling et al., 2018). However, a major

challenge with the use of them in a non-probability sample is how to handle the se-

lection probabilities of the reference survey when fitting the propensity model. Under

a Bayesian framework, incorporating the sampling weights into the regression mod-

els is an even bigger hurdle (Gelman et al., 2007). The method provided by Chen

et al. (2019) relies on the pseudo-likelihood approach, which is generally limited to

the parametric models from the exponential family.

To augment the PM estimator while avoiding the creation of synthetic popula-

tions, I propose to incorporate the pseudo-weighting approach in Chapter II into the

AIPW estimator Elliott and Valliant (2017). As demonstrated, this two-step method

computationally separates the propensity model from the sampling weights, allowing

for a broader range of models such as algorithmic methods to be utilized for imput-

ing the missing inclusion probabilities. Because of this feature, one can also perform

Bayesian PS modeling or Bayesian AIPW under a non-probability sample setting

through the well-known two-step method (Kaplan and Chen, 2012; Saarela et al.,

2016). A well-calibrated Bayesian method can appropriately capture the uncertainty

in the imputed PS or the outcome variable via Monte Carlo Markov Chain (MCMC)

algorithms, meeting the desirable frequentist repeated sampling properties (Dawid,

1982).

As in Chapter II, in addition to the parametric Bayes, I apply BART to impute

both the PS and outcome in the AIPW estimator (Chipman et al., 2007). Using

BART, Mercer (2018) compared the AIPW estimator with a prediction model that

uses the estimated PS as a predictor in the model and found that the AIPW estimator

performed best in terms of both bias and efficiency. His method, however, simulated a

synthetic population to cope with the unequal selection probabilities of the reference

survey. In an item non-response setting, Tan et al. (2019) exploited BART to compare
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the AIPW method with its competitor, the penalized spline of propensity prediction

(PSPP) method, where the latter uses BART only for the PS model. According

to their simulation study, BART outperformed the GLM when the true models are

unknown, but with a slight loss of efficiency. However, PSPP proved to give a smaller

root mean square error than AIPW, which contradicted the main finding in Mercer

(2018).

To assess the performance of my proposed method under BART, I apply it to

the sensor-based Big Data from the second phase of the Strategic Highway Research

Program (SHRP2), which is the largest NDS conducted to date. The aim is to adjust

for the potential selection bias in the sample mean of some trip-related variables

(Antin et al., 2015). To this end, I employ the 2017 National Household Travel

Survey (NHTS) as the reference survey, which can serve as a probability sample

representing the population of American drivers (Santos et al., 2011). While daily

trip measures in SHRP2 are recorded via sensors, NHTS asks respondents to self-

report their trip measures through an online travel log. By analyzing the aggregated

data at the day level, I compare the DR adjusted sensor-based estimates in SHRP2

with the self-reported weighted estimates in NHTS to assess the performance of my

proposed methods in terms of bias and efficiency.

The rest of the article is organized as follows. In Section 3.2, I develop the theo-

retical background behind the proposed methods and associated variance estimators.

A simulation study is designed in Section 3.3 to assess the repeated sampling prop-

erties of the proposed estimator, i.e. bias and efficiency. Section 3.4 describes the

datasets and auxiliary variables I use in the current study and discusses the results of

adjusted estimates based on the combined samples of SHRP2 and NHTS at the day

level. Finally, Section 3.5 reviews the strengths and weaknesses of the study in more

detail and suggests some future research directions.
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3.2 Methods

3.2.1 Prediction modeling approach

Consider the notation and conditions C1-C4 defined in Section 1.2 of Chapter I,

and let x∗i = [xi, di]. As demonstrated in Chapter II, a quasi-random (QA) approach

involved modeling f(δA|x). An alternative approach to deal with selectivity in Big

Data is modeling f(y|x∗) (Smith, 1983). In a fully model-based fashion, this essen-

tially involves mass imputing y for the population non-sampled units, U −SA. When

x∗ is unobserved for non-sampled units, it is recommended that a synthetic popula-

tion is generated by undoing the selection mechanism of SR through a non-parametric

Bayesian bootstrap method using the design variables in SR (Dong et al., 2014; Zan-

geneh and Little, 2015). In the non-probability sample context, Elliott and Valliant

(2017) propose an extension of the General Regression Estimator (GREG) when only

summary information about x∗, such as totals, is known regarding U . In situations

where an external probability sample is available with x∗ measured, an alternative is

to limit the outcome prediction to the units in SR, and then, use design-based ap-

proaches to estimate the population quantity (Rivers, 2007; Kim et al., 2021a; Yang

and Kim, 2018).

However, to the best of my knowledge, none of the prior literature distinguish the

role of D from X in the conditional mean structure of the outcome, while looking

back at Chapter I, the likelihood factorization in Eq. 1.1 indicated that predicting

y requires conditioning not only on x but also on d. Suppose U is a realization of

a repeated random sampling process from a super-population under the following

model:

E(yi|x∗i ; θ) = m(x∗i ; θ) ∀i ∈ U (3.1)

where m(x∗i ; θ) can be either a parametric model with m being a continuous differen-

tiable function or an unspecified non-parametric form. Under the ignorable condition
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C1, one can show that

f(yi|x∗i , zi = 1; θ) = f(yi|x∗i , δAi = 1; θ) = f(yi|xi, di; θ) (3.2)

Using Bayes’ rule, I have

f(yi|x∗i , δAi = 1) =
f(δAi = 1|yi, x∗i )
f(δAi = 1|x∗i )

f(yi|x∗i )

= f(yi|x∗i )
(3.3)

which implies that a consistent estimate of the population parameter θ can be ob-

tained by regressing Y on X∗ given SA.

Under a linear regression model, where m(x∗i ; θ̂) = θ̂0 + θ̂T1 x
∗
i , the maximum like-

lihood estimation (MLE) of θ is given by

θ̂ = X∗(X∗TX∗)−1X∗Ty (3.4)

where X∗ = [1, X,D] is an (nA × (p + q + 1))-dimensional design matrix. Note that

for y being non-normal, one has to use a generalized linear model (GLM) with an

appropriate link function, where an MLE of θ is obtained by solving a set of estimating

equations. The predictions for units in SR are then given by

ŷi = E(yi|x∗i , zi = 0; θ̂) = m(x∗i ; θ̂) ∀i ∈ SR (3.5)

Once y is imputed for all units in the reference survey, the population mean can be

estimated through the Hájek formula as below:

ˆ̄yPM =
1

N̂R

nR∑
i=1

ŷi
πRi

(3.6)

where ŷi = m(x∗i ; θ̂) for i ∈ SR, N̂R =
∑nR

i=1w
R
i and πRi is the selection probability for
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subject i ∈ S. One can replace N̂R with N , if known, which yields a HT -estimator.

The asymptotic properties of the estimator in 3.6, including consistency and un-

biasedness, have been investigated by Kim et al. (2021a). Note that in situations

where πRi is available for i ∈ SA, one can use wRi instead of the high-dimensional di as

a predictor in m(.). This method is known as linear-in-the-weight prediction (LWP)

(Scharfstein et al., 1999; Bang and Robins, 2005; Zhang and Little, 2011). However,

since outcome imputation relies fully on extrapolation, even minor misspecification

of the underlying model can be seriously detrimental to bias correction.

3.2.2 Doubly robust adjustment approach

To reduce the sensitivity to model misspecification, Chen et al. (2019) reconcile the

two aforementioned approaches, i.e. QR and PM, in a way that estimates remain

consistent even if one of the two models is incorrectly specified. Their method involves

an extension of the augmented inverse propensity weighting (AIPW) proposed by

Robins et al. (1994). When N is known, the expanded AIPW estimator takes the

following form:

ȳDR =
1

N

nA∑
i=1

{yi −m(x∗i ; θ)}
πA(x∗i ; β)

+
1

N

nR∑
j=1

m(x∗i ; θ)

πRj
(3.7)

where given x∗, θ and β are estimated using the MLE method mentioned in the

previous section and the modified pseudo-MLE method described in Section 2.1 of

Chapter II, respectively. The theoretical proof of the asymptotic unbiasedness of ȳDR

under the correct modeling of πA(x∗i ; β) or m(x∗i ; θ) is reviewed in Appendix 3.6.1.

To avoid using πR in modeling δAi because of the PMLE restrictions I discussed in

Section 2.1 of Chapter II, in this study, I suggest estimating πAi for i ∈ SA in Eq. 3.39

based on the PAPW/PAPP method depending on whether πRi is available for i ∈ SA

or not. As a result, in situations where πRi is known for i ∈ SA, my proposed DR
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estimator is given by

ˆ̄yDR =
1

N

nA∑
i=1

1

πRi

[
1− pi(β)

pi(β)

]
{yi −m(x∗i ; θ)}+

1

N

nR∑
j=1

m(x∗i ; θ)

πRj
(3.8)

where pi(β) = p(Zi = 1|x∗i ; β). I demonstrate that this form of the AIPW estimator

is identical to that defined by Kim and Haziza (2014) in the non-response adjustment

context under probability surveys. Assuming that yi is fully observed for i ∈ SR, let

us define the following HT -estimator for the population mean:

ˆ̄yU =
1

N

nR∑
i=1

yi
πRi

(3.9)

Now, one can easily conclude that

ˆ̄yDR =
1

N

n∑
i=1

1

πRi

[
Zi

(
1− pi(β)

pi(β)

)
{yi −m(x∗i ; θ)}+ (1− Zi)m(x∗i ; θ)

]
= ˆ̄yU +

1

N

n∑
i=1

1

πRi

[
Zi
pi(β)

− 1

]{
yi −m(x∗i ; θ)

} (3.10)

where pi(β) = p(Zi = 1|x∗i ; β). The formula in 2.18 is similar to what is derived by

Kim and Haziza (2014). Therefore, the rest of the theoretical proof of asymptotic

unbiasedness, i.e. ˆ̄yDR − ¯̂yU = Op(n
−1/2
A ), in Kim and Haziza (2014) should hold for

the modified AIPW estimator in 3.40 as well.

To preserve the DR property for both the point and variance estimator of ȳDR, as

suggested by Kim and Haziza (2014), one can solve the following estimating equations

simultaneously given SC to obtain the estimate of (β, θ). The aim is to cancel the

first-order derivative terms in the Taylor-series expansion of ˆ̄yDR− ˆ̄yU under QR and
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PM. These estimating equations are given by

∂

∂β

[
ˆ̄yDR − ˆ̄yU

]
=

1

N

n∑
i=1

Zi
πRi

[
1

pi(β)
− 1

]
{yi −m(x∗i ; θ)}x∗i = 0

∂

∂θ

[
ˆ̄yDR − ˆ̄yU

]
=

1

N

n∑
i=1

1

πRi

[
Zi
pi(β)

− 1

]
ṁ(x∗i ; θ) = 0

(3.11)

where ṁ is the derivative of m with respect to β. Under a linear regression model,

ṁ(x∗i ) = x∗i . Therefore, given the same regularity conditions, ignorability in SA, the

logistic regression model as well as the additional imposed assumption of SA ∩ SR =

∅, one can show that the proposed DR estimator is consistent and approximately

unbiased given that either the QR or PM model holds.

It is important to note that the system of equations in 3.11 may not have unique

solutions unless the dimension of covariates in QR and PM is identical. Therefore,

the AIPW estimator by Chen et al. (2019) may not be applicable here, as my likeli-

hood factorization suggests that conditioning on di is necessary at least for the PM.

Furthermore, when πRi is known for i ∈ SA, one can replace the q-dimensional di with

the 1-dimensional wRi in modeling both QR and PM. Bang and Robins (2005) show

that estimators based on a linear-in-weight prediction model remains consistent.

3.2.3 Extensions to a two-step Bayesian framework

A fully Bayesian approach specifies a model for the joint distribution of selection

indicator, δAi , and the outcome variable, yi, for i ∈ U (McCandless et al., 2009;

An, 2010). This requires multiply generating synthetic populations and fitting the

QR and PM models on each of them repeatedly (Little and Zheng, 2007; Zangeneh

and Little, 2015), which can be computationally expensive under a Big Data setting.

While joint modeling may result in good frequentist properties (Little, 2004), feedback

occurs between the two models (Zigler et al., 2013). This can be controversial in the

sense that PS estimates should not be informed by the outcome model (Rubin, 2007).
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Here, I am interested in modeling the PS and the outcome separately through the

two-step framework proposed by Kaplan and Chen (2012). The first step involves

fitting Bayesian models to multiply impute the PS and the outcome by randomly

subsampling the posterior predictive draws, and Rubin’s combining rules are utilized

as the second step to obtain the final point and interval estimates. This method

not only is computationally efficient as it suffices to fit the models once and on the

combined sample but also cuts the undesirable feedback between the models as they

are fitted separately. Bayesian modeling can be performed either parametrically or

non-parametrically.

3.2.3.1 Parametric Bayes

As the first step, I employ Bayesian Generalized Linear Models to handle multiple

imputations of πAi and yi for i ∈ S, and πRi if it is unknown for i ∈ SR. Under a

standard Bayesian framework, a set of independent prior distributions are assigned

to the model parameters, and conditional on the observed data, the associated poste-

rior distributions are simulated through an appropriate MCMC method, such as the

Metropolis-Hastings algorithm. I propose the following steps:

Step1 : (γT , φ, βT , θT , σ) ∼ p(γ)p(φ)p(β)p(θ)p(σ)

Step2 : πRi |xi, γ, φ ∼ Beta(φ[logit−1(γTxi)], φ[1− logit−1(γTxi)])

Step3 : Zi|xi, β ∼ Bernoulli(logit−1{βTxi})

Step4 : Yi|xi, θ, σ ∼ Normal(θTxi, σ
2)

where (γT , φ), βT and (θT , σ) are the parameters associated with modeling πRi in a

Beta regression (Step2), Zi in a binary logistic regression (Step3) and Yi is a linear

regression (Step4), respectively, and p(.) denotes a prior density function. Note that

in situations where πRi is calculable for i ∈ SA, Step2 should be skipped, and xi

should be replaced by x∗i . It is understood that setting non-informative priors to
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the model parameters can avoid overestimating the variance in a two-step Bayesian

method (Kaplan and Chen, 2012). I also note that Step2, which will be required for

the estimation of πRi when not provided directly or through the availability of di in

SB, relies on a reasonably strong association between the available xi and πRi in order

to accurately estimate πRi . I explore the effect of differing degrees of this association

via simulation in Sections 3.3.2 and 3.3.3.

Suppose Θ̂(m)T =
[
(γ̂(m)T , φ̂(m), β̂(m)T , θ̂T (m), σ̂(m)

]
is the m-th unit of an M -sized

random sample from the MCMC draws associated with the posterior distribution of

the models parameters. Then, given that πRi is known for i ∈ SA, one can obtain the

m-th draw of the proposed AIPW estimator as below:

ˆ̄y
(m)
DR =

1

N̂A

nA∑
i=1

yi − θ̂(m)Tx∗i

πRi exp[β̂
(m)Tx∗i ]

+
1

N̂R

nR∑
j=1

θ̂(m)Tx∗i
πRj

(3.12)

In situations where πRi is unknown for i ∈ SA, the m-th draw of the AIPW estimator

is given by

ˆ̄y
(m)
DR =

1

N̂A

nA∑
i=1

{
1 + exp[γ̂(m)Txi]

exp[γ̂(m)Txi]

}{
yi − θ̂(m)Tx∗i

exp[β̂(m)Txi]

}
+

1

N̂R

nR∑
j=1

θ̂(m)Tx∗i
πRj

(3.13)

Having ˆ̄y
(m)
DR for allm = 1, 2, ...,M , then, Rubin’s combining rule for the point estimate

(Rubin, 2004) can be employed to obtain the final AIPW estimator as below:

ˆ̄yDR =
1

M

M∑
m=1

ˆ̄y
(m)
DR (3.14)

If at least one of the underlying models is correctly specified, I would expect that this

estimator is approximately unbiased. The variance estimation under the two-step

Bayesian method is discussed in Section 2.5.
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3.2.3.2 Non-parametric Bayes

Despite the prominent feature of double robustness, for a given non-probability sam-

ple, neither QR nor PM has a known modeling structure in practice. When both

working models are invalid, the AIPW estimator will be biased and a non-robust

estimator based on PM may produce a more efficient estimate than the AIPW (Kang

et al., 2007). To show the advantage of my modified estimator in Eq. 3.40 over that

proposed by Chen et al. (2019), I employ Bayesian Additive Regression Trees (BART)

as a predictive tool for multiply imputing the πAi ’s as well as the yi’s in S. A brief

introduction to BART was provided in Section 2.2.2 of Chapter II.

Suppose BART approximates a continuous outcome variable through an implicit

function f as below:

yi = f(x∗i ) + εi ∀i ∈ SA (3.15)

where εi ∼ N(0, σ2). Accordingly, one can train BART in SA and multiply impute

yi for i ∈ SR using the simulated posterior predictive distribution. Regarding QR,

I consider two situations; first, πRi is known for i ∈ SA. Under this circumstance,

it suffices to model zi on x∗i in S to estimate πAi for i ∈ SA. For a binary outcome

variable, BART utilizes a data augmentation technique with respect to a given link

function, to map {0, 1} values to R via a probit link. Suppose

Φ−1[p(Zi = 1|x∗i )] = h(x∗i ) ∀i ∈ S (3.16)

where Φ−1 is the inverse CDF of the standard normal distribution. Hence, using

the posterior predictive draws generated by BART in Eq. 3.16, p(Zi = 1|x∗i ) and

consequently πAi can be imputed multiply for i ∈ SA. For a given imputation m
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(m = 1, 2, ...,M), one can expand the DR estimator in 2.16 as below:

ˆ̄y
(m)
DR =

1

N̂A

nA∑
i=1

1

πRi

{
1− Φ[ĥ(m)(x∗i )]

Φ[ĥ(m)(x∗i )]

}{
yi − f̂ (m)(x∗i )

}
+

1

N̂R

nR∑
j=1

f̂ (m)(x∗j)

πRj
(3.17)

where f̂ (m)(.) and ĥ(m)(.) are the constructed sum-of-trees associated with the m-

th MCMC draw in Eq. 3.15 and Eq. 3.16, respectively, after training BART on the

combined sample.

Secondly, in situations where πRi is not available for i ∈ SA, I suggest applying

BART to multiply impute the missing πRi ’s in SA. Since the outcome is continuous

bounded within (0, 1), a logit transformation of the πRi ’s can be used as the outcome

variable in BART to map the values to R. Such a model is presented by

log

(
πRi

1− πRi

)
= k(xi) + εi ∀i ∈ SR (3.18)

where k is a sum-of-trees function approximated by BART. Under this circumstance,

ˆ̄yDR based on the m-th draw from the posterior distribution is given by

ˆ̄y
(m)
DR =

1

N̂A

nA∑
i=1

{
1 + exp[k̂(m)(xi)]

exp[k̂(m)(xi)]

}{
1− Φ[ĥ(m)(xi)]

Φ[ĥ(m)(xi)]

}{
yi − f̂ (m)(x∗i )

}
+

1

N̂R

nR∑
j=1

f̂ (m)(x∗j)

πRj

(3.19)

Having ˆ̄y
(m)
DR estimated for m = 1, 2, ...,M , one can eventually use Rubin’s combining

rule (Rubin, 2004) to obtain the ultimate point estimate as in 3.14.

3.2.4 Variance estimation

To obtain an unbiased variance estimate for the proposed DR estimator, one needs

to account for three sources of uncertainty: (i) the uncertainty due to estimated

pseudo-weights in SA, (ii) the uncertainty due to the predicted outcome in both SA
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and SR, and (iii) the uncertainty due to sampling itself. In the following, I consider

two scenarios:

3.2.4.1 Scenario I: πRi is known for i ∈ SA

In this scenario, the derivation of the asymptotic variance estimator for ˆ̄yDR is then

straightforward and follows Chen et al. (2019). It is given by

V̂ ar(ˆ̄yDR) = V̂1 + V̂2 − B̂(V̂2) (3.20)

where V1 = V ar(ˆ̄yPM) under the sampling design of SR. V2 is the variance of ˆ̄yDR− ˆ̄yU

under the joint sampling design of SR and the PS model. This quantity can be

estimated from SR as below:

V̂2 =
1

N2

nA∑
i=1

[
1− π̂Ai
(π̂Ai )2

]
{yi −m(x∗i ; θ̂)}2 (3.21)

Finally, B(V̂2) corrects for the bias in V2 under the PM, and is given by

B̂(V̂2) =
1

N2

nC∑
i=1

[
Zi
π̂Ai
− 1− Zi

πRi

]
σ̂2
i (3.22)

where σ̂2
i = V̂ ar(yi|xi). Since the quantity in 3.22 tends to be zero asymptotically

under the QR model, the derived variance estimator in 3.20 is DR. Note that such

an asymptotic estimator needs N to be known.

3.2.4.2 Scenario II: πRi is unknown for i ∈ SA

To estimate the variance of ˆ̄yDR in 3.40 under the GLM, I employ the bootstrap

repeated replication method proposed by Rao and Wu (1988). For a given replication

b (b = 1, 2, ..., B), I draw replicated bootstrap subsamples, S(b)
R and S(b)

A , of sizes nR−1

and nA − 1 from SR and SA, respectively. The sampling weights in S(b)
R are updated
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as below:

w
(b)
i = wi

nR
nR − 1

hi ∀i ∈ S(b)
R (3.23)

where hi is the number of times the i-th unit has been repeated in S(b)
A . Let’s assume

ˆ̄y
(b)
DR is the DR estimate based on the b-th combined bootstrap sample, S(b), using

Eq. 3.40. The variance estimator is given by

V̂ ar(ˆ̄yDR) =
1

B

A∑
b=1

[
ˆ̄y

(b)
DR − ¯̄yDR

]2

(3.24)

where ¯̄yDR =
∑A

b=1
ˆ̄y

(b)
DR/B. Note that when SR and SA are clustered, which is the

case in my application, bootstrap subsamples are selected from the primary sampling

units (PSU), and nR and nA are replaced by their respective PSU sizes.

To estimate the variance of ˆ̄yDR under a Bayesian framework, whether parametric

or non-parametric, I treat yi for i ∈ SR, and πRi and ei for i ∈ SA, as missing values in

Eq. 3.40 and multiply impute these quantities using the Monte Carlo Markov Chain

(MCMC) sequence of the posterior predictive distribution generated by BART. For

M randomly selected MCMC draws, one can estimate ˆ̄y
(m)
DR for m = 1, 2, ...,M based

on Eq. 3.40. Following Rubin’s combining rule for variance estimation under multiple

imputation, the final variance estimate of ˆ̄yDR is given as below:

V̂ ar(ˆ̄yDR) = V̄W +

(
1 +

1

M

)
VB (3.25)

where V̄W =
∑M

m=1 V̂ ar(ˆ̄y
(m)
DR )/M , VB =

∑M
m=1(ˆ̄y

(m)
DR − ¯̄yDR)2/(M − 1) and ¯̄yDR =∑M

m=1
ˆ̄y

(m)
DR/M . I have shown in the Appendix 3.6.2 that the within-imputation com-

ponent can be approximated by

V̂ ar(ˆ̄y
(m)
DR ) ≈ 1

N̂2
A

nA∑
i=1

var(yi)

(π̂Ai )
2 +

1

N̂2
R

var

(
1

πRi

){ nR∑
i=1

(
ŷ

(m)
i

)2

+nR

(
t̂R

N̂R

)2

−2

nR∑
i=1

ŷ
(m)
i

}
(3.26)
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where tR =
∑nR

i=1 ŷ
(m)
i /πRi . Note that when SR or SA is clustered, under a Bayesian

framework, it is important to fit multilevel models to obtain unbiased variance (Zhou

et al., 2020). In addition, one needs to account for the intraclass correlation across the

sample units in V̂ ar(ˆ̄y
(m)
DR ) for m = 1, 2, ...,M . Further, one may use the extension of

BART with random intercept to properly specify the working models under a cluster

sampling design (Tan et al., 2016).

3.3 Simulation study

Three simulations are studied in this section to assess the performance of my proposed

methods and associated variance estimators in terms of bias magnitude and other

repeated sampling properties. To this end, I consider various situations depending on

whether πRi is available for i ∈ SA or not, and whether units of SA are independent

or not.

3.3.1 Simulation I

The design of my first simulation is inspired by the one implemented in Chen et al.

(2019). For all three studies, the non-probability samples are given a random selection

mechanism with unequal probabilities, but it is later assumed that these selection

probabilities are unknown at the stage of analysis, and the goal is to adjust for the

selection bias using a parallel probability sample whose sampling mechanism is known.

I conduct the simulation under both asymptotic frequentist and two-step Bayesian

frameworks. Consider a finite population of size N = 106 with z = {z1, z2, z3, z4}

being a set of auxiliary variables generated as follows:

z1 ∼ Ber(p = 0.5) z2 ∼ U(0, 2) z3 ∼ Exp(µ = 1) z4 ∼ χ2
(4)

(3.27)
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and x = {x1, x2, x3, x4} is defined as a function of z as below:

x1 = z1 x2 = z2 +0.3z1 x3 = z3 +0.2(x1 +x2) x4 = z4 +0.1(x1 +x2 +x3)

(3.28)

Given x, a continuous outcome variable y is defined by

yi = 2 + x1i + x2i + x3i + x4i + σεi (3.29)

where εi ∼ N(0, 1), and σ is defined such that the correlation between yi and
∑4

k=1 xki

equals ρ, which takes one of the values {0.2, 0.5, 0.8}. Further, associated with the

design of SA, a set of selection probabilities are assigned to the population units

through the following logistic model:

log

(
πAi

1− πAi

)
= γ0 + 0.1x1i + 0.2x2i + 0.1x3i + 0.2x4i (3.30)

where γ0 is determined such that
∑N

i=1 π
A
i = nA. For SR, I assume πRi ∝ γ1 + z3i

where γ1 is obtained such that max{πRi }/min{πRi } = 50. Hence, πRi is assumed to

be known for i ∈ SA as long as z3 is observed in SA. Using these measures of size, I

repeatedly draw pairs of samples of sizes nR = 100 and nA = 1, 000 associated with

SR and SA from U through a Poisson sampling method. Note that units in both SR

and SA are independently selected, and nR << nA, which might be the case in a Big

Data setting. Extensions with nA = 100 and nA = 10, 000 for both frequentist and

Bayesian methods are provided in Appendix 3.6.2.

Once SA and SR are drawn from U , I assume that the πAi ’s for i ∈ SA and yi’s for

i ∈ SR are unobserved, and the aim is to adjust for the selection bias in SA based on

the combined sample, S. The simulation is then iterated K = 5, 000 times, where the

bias-adjusted mean, SE, and associated 95% confidence interval (CI) for the mean of

y are estimated in each iteration. Under the frequentist approach, the AIPW point
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estimates are obtained by simultaneously solving the estimating equations in 2.19. In

addition, the proposed two-step method is used to derive the AIPW point estimates

under the parametric Bayes. Also, to estimate the variance, I use the DR asymptotic

method proposed by Chen et al. (2019), and the conditional variance formula in

Eq. 3.25 under the frequentist and Bayesian approaches, respectively. For the latter,

I set flat priors to the model parameters, and simulate the posteriors using 1, 000

MCMC draws after omitting an additional 1, 000 draws as the burn-in period. I then

get a random sample of size M = 200 from the posterior draws to obtain the point

and variance estimates.

To evaluate the repeated sampling properties of the competing method, relative

bias (rBias), relative root mean square error (rMSE), the nominal coverage rate of

95% CIs (crCI) and SE ratio (rSE) are calculated as below:

rbias(ˆ̄yDR) = 100× 1

K

K∑
k=1

(
ˆ̄y

(k)
DR − ȳU

)
/ȳU (3.31)

rMSE(ˆ̄yDR) = 100×

√√√√ 1

K

K∑
k=1

(
ˆ̄y

(k)
DR − ȳU

)2

/ȳU (3.32)

crCI(ˆ̄yDR) = 100× 1

K

K∑
k=1

I

(∣∣ˆ̄y(k)
DR − ȳU

∣∣ < z0.975

√
var(ˆ̄y

(k)
DR)

)
(3.33)

rSE(ˆ̄yDR) =
1

K

K∑
k=1

√
var(ˆ̄y

(k)
DR)/

√√√√ 1

K − 1

K∑
k=1

(
ˆ̄y

(k)
DR − ¯̄yDR

)2

(3.34)

where ˆ̄y
(k)
DR denotes the DR adjusted sample mean from iteration k, ¯̄yDR =

∑K
k=1

ˆ̄y
(k)
DR/K,

ȳU is the finite population true mean, and var(.) represents the variance estimate of

the adjusted mean based on the sample. Finally, I investigate different scenarios of

whether models are correctly specified or not to test if my proposed method is DR. In

order to misspecify a model, I remove x4 from the predictors of the working model.

Table 3.1 summarizes the results of the first simulation study under the frequentist

approach. As illustrated, unweighted estimates of the population mean are biased in
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Table 3.1: Comparing the performance of the bias adjustment methods and associated
asymptotic variance estimator under the frequentist approach in the first simulation
study for ρ = {0.2, 0.5, 0.8}

ρ = 0.2 ρ = 0.5 ρ = 0.8
Method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Unweighted 8.528 19.248 92.580 1.009 8.647 11.065 77.400 1.018 8.682 9.719 50.880 1.020
Fully weighted -0.029 20.276 94.740 1.001 0.006 8.035 95.080 1.010 0.015 5.008 94.880 1.008
Non-probability sample (SA)
Unweighted 31.742 32.230 0.000 1.009 31.937 32.035 0.000 1.012 31.996 32.049 0.000 1.013
Fully weighted 0.127 6.587 95.440 1.013 0.078 2.583 95.660 1.014 0.061 1.554 95.440 1.012
Non-robust adjustment
Model specification: True
PAPW -1.780 8.088 96.960 1.107 -1.906 4.734 95.680 1.103 -1.947 4.186 94.040 1.100
IPSW -3.054 10.934 97.240 1.305 -3.134 8.145 95.220 1.173 -3.160 7.778 92.380 1.067
PM 0.490 7.577 95.160 1.007 0.190 4.668 94.620 0.991 0.095 4.204 94.560 0.985
Model specification: False
PAPW 26.338 27.089 3.140 1.112 26.434 26.618 0.000 1.123 26.461 26.580 0.000 1.128
IPSW 28.269 28.917 0.580 1.021 28.474 28.648 0.000 1.018 28.536 28.654 0.000 1.014
PM 28.093 28.750 0.640 1.022 28.315 28.494 0.000 1.022 28.382 28.505 0.000 1.021
Doubly robust adjustment
Model specification: QR–True, PM–True
AIPW–PAPW 0.238 8.070 95.160 1.017 0.100 4.787 95.020 0.996 0.056 4.235 94.640 0.987
AIPW–IPSW 0.105 7.861 95.100 1.019 0.053 4.737 94.760 0.996 0.036 4.222 94.600 0.987
Model specification: QR–True, PM–False
AIPW–PAPW 0.311 8.197 95.420 1.021 0.172 4.988 95.000 1.013 0.127 4.460 95.180 1.011
AIPW–IPSW 0.222 7.962 95.460 1.024 0.170 4.901 95.420 1.019 0.152 4.405 95.300 1.018
Model specification: QR–False, PM–True
AIPW–PAPW 0.877 13.362 96.900 1.028 0.327 6.089 95.820 1.027 0.154 4.523 95.240 1.006
AIPW–IPSW 0.609 12.532 96.580 1.025 0.232 5.842 95.500 1.022 0.113 4.464 95.340 1.003
Model specification: QR–False, PM–False
AIPW–PAPW 28.301 28.995 1.000 1.024 28.392 28.579 0.000 1.021 28.419 28.546 0.000 1.018
AIPW–IPSW 28.104 28.762 0.720 1.024 28.313 28.493 0.000 1.023 28.376 28.500 0.000 1.022

PAPW: propensity-adjusted probability weighting; IPSW: Inverse propensity score weighting;
QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse propensity weighting.
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Table 3.2: Comparing the performance of the bias adjustment methods and associ-
ated variance estimator under the two-step parametric Bayesian approach in the first
simulation study for ρ = {0.2, 0.5, 0.8}

ρ = 0.2 ρ = 0.5 ρ = 0.8
Method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Non-robust adjustment
Model specification: True
Unweighted 8.528 19.248 92.580 1.009 8.647 11.065 77.400 1.018 8.682 9.719 50.880 1.020
Fully weighted -0.029 20.276 94.740 1.001 0.006 8.035 95.080 1.010 0.015 5.008 94.880 1.008
Non-probability sample (SA)
Unweighted 31.620 32.106 0.000 1.014 31.906 32.003 0.000 1.015 31.993 32.045 0.000 1.017
Fully weighted 0.026 6.615 95.260 1.010 0.052 2.604 95.240 1.007 0.059 1.564 95.240 1.006
Non-robust adjustment
Model specification: True
PAPW -1.846 8.148 96.340 1.081 -1.890 4.749 96.860 1.163 -1.906 4.195 96.560 1.200
PAPP 0.113 7.566 96.500 1.076 0.117 4.302 97.700 1.140 0.117 3.759 97.900 1.164
PM 0.385 7.534 95.180 1.027 0.151 4.644 95.060 1.001 0.078 4.190 95.000 0.989
Model specification: False
PAPW 26.290 27.041 2.280 1.051 26.499 26.687 0.000 1.071 26.562 26.684 0.000 1.083
PAPP 28.151 28.784 0.500 1.038 28.446 28.612 0.000 1.025 28.535 28.647 0.000 1.015
PM 27.981 28.641 0.840 1.040 28.291 28.472 0.000 1.025 28.384 28.510 0.000 1.015
Doubly robust adjustment
Model specification: QR–True, PM–True
AIPW–PAPW 0.115 8.093 96.940 1.097 0.057 4.764 97.120 1.121 0.037 4.219 97.200 1.130
AIPW–PAPP 0.009 7.803 96.600 1.083 0.019 4.704 96.980 1.106 0.020 4.206 96.960 1.114
Model specification: QR–True, PM–False
AIPW–PAPW -0.016 7.930 97.180 1.108 -0.080 4.444 97.940 1.166 -0.098 3.842 98.140 1.193
AIPW–PAPP -0.079 7.648 96.820 1.095 -0.074 4.411 97.700 1.151 -0.069 3.867 97.900 1.175
Model specification: QR–False, PM–True
AIPW–PAPW 0.557 7.693 96.380 1.086 0.214 4.669 96.760 1.092 0.105 4.195 96.600 1.090
AIPW–PAPP 0.392 7.526 95.980 1.067 0.155 4.637 96.340 1.077 0.080 4.189 96.420 1.078
Model specification: QR–False, PM–False
AIPW–PAPW 28.167 28.864 1.360 1.096 28.359 28.549 0.000 1.082 28.416 28.548 0.000 1.068
AIPW–PAPP 27.990 28.647 0.980 1.069 28.289 28.471 0.000 1.059 28.379 28.506 0.000 1.049

PAPW: Propensity-adjusted probability weighting; PAPP: Propensity-adjusted probability pre-
diction; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse propensity
weighting.
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both SR and SA. For the non-robust estimators, when the working model is valid,

it seems that PM outperforms QR consistently in terms of bias correction across

different ρ values. While PAPW works slightly better than IPSW with respect to

bias, when the QR model is true, the latter tends to overestimate the variance slightly

according to the values of rSE. In addition, the smaller value of rMSE indicates that

PAPW is more efficient than IPSW. For the PM, both crCI and rSE reflect accurate

estimates of the variance for all values of ρ. When the working model is incorrect,

point estimates associated with both QR and PM are biased, but the variance remains

unbiased. These findings hold across all three values of ρ.

For the DR methods, it is evident that estimates based on both PAPW and IPSW

remain unbiased when at least one of the PM or QR models holds. Also, the values of

crCI and rSE reveal that the asymptotic variance estimator is DR for both methods.

Comparing the rMSE values, the AIPW estimate based on IPSW is slightly more

efficient than the one based on PAPW. While the variance estimates remain unbiased

under the false-false model specification status, point estimates are severely biased.

Finally, the performance of both AIPW estimators improves with respect to bias

reduction especially when the QR model is misspecified.

For the Bayesian approach, the simulation results are displayed in Table 3.2. Note

that I no longer am able to use the PMLE approach. Instead, I apply the PAPP

method assuming that πRi is unknown for i ∈ SA. As illustrated, PAPP outperforms

with respect to bias among all the non-robust methods. Surprisingly, the magnitude

of the bias is even smaller in the Bayesian PAPP than the QR methods examined

under the frequentist framework. In addition, it seems estimates under the Bayesian

approach are slightly more efficient than those obtained under the frequentist meth-

ods. While the variance is approximately unbiased for ρ = 0.2, there is evidence that

PM and QR increasingly underestimate and overestimate the true variance, respec-

tively, as the value of ρ increases. Regarding the DR methods, it is evident that AIPW
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estimates are even less biased and more efficient in the Bayesian approach compared

to the alternative frequentist method, especially when the PM is misspecified, but

the QR model holds. It is clear from the table that DR property holds for all values

of ρ when at least one of the working models is correctly specified.

3.3.2 Simulation II

In the previous simulation study, I violated the ignorable assumption in order to

misspecify the working model by dropping a key auxiliary variable. Now, I focus

on a situation where models are misspecified with respect to the functional form of

their conditional means. To this end, I consider non-linear associations and two-way

interactions in constructing the outcome variables as well as the selection probabilities.

This also allows us to examine the flexibility of BART as a non-parametric method

when the true functional form of the underlying models is unknown. In addition, to

simulate a more realistic situation, this time, two separate sets of auxiliary variables

are generated, D associated with the design of SA, andX associated with the design of

SR. However, I allow the two variables to be correlated through a bivariate Gaussian

distribution as below: d
x

 ∼MVN


0

0

 ,

1 ρ

ρ 1


 (3.35)

Note that ρ controls how strongly the sampling design of SR is associated with that

of SA. In addition, the values of di can be either observed or unobserved for i ∈ SA.

In this simulation, I set ρ = 0.2, but later I check other values ranging from 0 to 0.9

as well.

To generate the outcome variable in U , I consider the following non-linear model:

yi = 2fk(xi)− d2
i + 0.5xidi + σεi (3.36)
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where εi ∼ N(0, 1), and σ is determined such that the correlation between yi and

2fk(xi)− d2
i + 0.5xidi equals 0.5 for i ∈ U . The function fk(.) is assumed to take one

of the following forms:

SIN : f1(x) = sin(x) EXP : f2(x) = exp(x/2) SQR : f3(x) = x2/3

(3.37)

I then consider an informative sampling strategy with unequal probabilities of inclu-

sion, where the selection mechanism of SA and SR depends on x and d, respectively.

Thus, each i ∈ U is assigned two values corresponding to the probabilities of selection

in SR and SA through a logistic function as below:

πR(xi) = P (δRi = 1|di) =
exp{γ0 + 0.2d2

i }
1 + exp{γ0 + 0.2d2

i }

πAk (xi) = Pk(δ
A
i = 1|xi) =

exp{γ1 + fk(xi)}
1 + exp{γ1 + fk(xi)}

(3.38)

where δRi and δAi are the indicators of being selected in SR and SA, respectively.

Associated with SR and SA, independent samples of size nR = 100 and nA = 1, 000

were selected randomly from U with Poisson sampling at the first stage and simple

random sampling at the second stage. The sample size per cluster, nα, was 1 and 50

for SR and SA, respectively. The model intercepts, γ0 and γ1 in Eq. 3.38, are obtained

such that
∑N

i=1 π
R
i = nR and

∑N
i=1 π

A
i = nA. I restrict this simulation to Bayesian

analysis based on the proposed PAPW and PAPP methods but focus on how well

the non-parametric Bayes performs over the parametric Bayes in situations when the

true structure of both underlying models are supposed to be unknown. The rest of

the simulation design is similar to that defined in Simulation I, except for the way I

specify a working model. This is done by including only the main and linear effects

of X and D in the PM model, and the main and linear effect of X in the QR model.

BART’s performance is examined under the assumption that the true functional form
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of both QR and PM models is unknown, and thus, only main effects are included in

BART. Note that dropping a key auxiliary variable, which was the case in Simulation

I, leads to a violation from the ignorable assumption, which may not be compensated

by the use of more flexible approaches, such as BART.

The findings of this simulation for the two-step Bayesian approach with 1, 000

MCMC draws and M = 200, are exhibited numerically in Table 3.3. Regarding the

non-robust methods, both QR and PM estimators show unbiased results across the

three defined functions, i.e. SIN, EXP, and SQR, as long the working GLM is valid,

with the minimum value of rBias associated with the PAPP method. According to

the rSE values, there is evidence that PAPW and PAPP overestimate the variance,

and PM underestimates the variance to some degrees, especially under the EXP and

SQR scenarios. When the specified GLM is wrong, as seen, point estimates are biased

for both QR and PM methods across all three functions. However, BART produces

approximately unbiased results with smaller values of rMSE than GLM. In general,

the PM method outperforms the QR methods Under BART with respect to bias, but

results based on the PAPP method are more efficient. In addition, BART tends to

overestimate the variance under both QR and PM methods.

When it comes to the DR adjustment, Bayesian GLM produces unbiased results

across all the three defined functions if the working model of either QR or PM holds.

However, the variance is slightly underestimated for the SIN function when the PM

specified model is wrong, and it is overestimated for the EXP function under all

model-specification scenarios. As expected, point estimates are biased when the GLM

is misspecified for both QR and PM. However, BART tends to produce unbiased

estimates consistently across all three functions, and the magnitude of both rBias and

rMSE are smaller in the AIPW estimator based on PAPP compared to the AIPW

estimator based on PAPW. Finally, as in the non-robust method, variance under

BART is overestimated compared to the GLM. Extensions of the second simulation
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to situations with nR = 100 and nA = 100, and nR = 100 and nA = 10, 000 can be

found in Appendix 3.6.2.

Table 3.3: Comparing the performance of the bias adjustment methods and associated
variance estimator under the two-step parametric Bayesian approach in the second
simulation study for ρ = 0.2

SIN EXP SQR
Model-method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted -17.210 23.109 80.000 0.999 -8.406 11.126 78.300 1.000 -17.302 20.563 65.800 1.002
Fully weighted -0.623 17.027 94.440 0.987 -0.303 7.947 94.580 0.987 -0.675 13.219 94.000 0.975
Non-probability sample (SA)
Unweighted 33.063 33.379 0.000 1.003 40.307 40.409 0.000 1.079 49.356 49.570 0.000 1.016
Fully weighted 0.019 6.010 95.120 1.006 0.005 2.755 94.880 1.005 0.009 3.948 94.980 0.992
Non-robust adjustment
Model specification: True
GLM–PAPW -0.425 9.257 96.300 1.072 -0.185 4.262 98.700 1.257 -0.325 6.649 98.360 1.213
GLM–PAPP 0.018 8.460 95.680 1.018 0.040 3.870 98.560 1.238 -0.037 5.914 98.760 1.222
GLM–PM -0.411 9.899 94.680 0.982 -0.371 4.504 94.440 0.988 -0.762 8.115 92.520 0.947
Model specification: False
GLM–PAPW 7.180 11.635 86.360 1.027 2.511 5.299 97.220 1.316 52.170 52.559 0.000 1.102
GLM–PAPP 7.647 11.265 78.000 0.954 3.025 5.425 96.180 1.277 53.095 53.397 0.000 1.122
BART–PAPW 4.035 10.078 96.980 1.217 2.811 5.129 98.440 1.472 8.356 11.082 97.180 1.468
BART–PAPP 1.098 8.530 96.660 1.121 1.108 4.120 98.880 1.391 4.482 7.479 98.020 1.401
GLM–PM 5.870 10.542 87.920 0.972 -6.589 9.264 82.520 0.976 48.993 49.409 0.000 0.994
BART–PM 0.577 9.635 96.960 1.115 0.087 4.501 97.540 1.155 0.249 8.276 96.080 1.062
Doubly robust adjustment
Model specification: QR–True, PM–True
GLM–AIPW–PAPW -0.450 9.930 95.760 1.023 -0.165 4.593 98.180 1.200 -0.458 8.116 96.520 1.089
GLM–AIPW–PAPP -0.452 9.925 95.780 1.020 -0.162 4.592 98.140 1.193 -0.453 8.106 96.500 1.086
Model specification: QR–True, PM–False
GLM–AIPW–PAPW -0.279 9.996 93.160 0.926 0.310 5.697 98.780 1.303 -0.338 7.128 97.480 1.154
GLM–AIPW–PAPP -0.134 9.418 94.120 0.961 0.508 4.977 99.480 1.475 -0.275 7.376 97.580 1.152
Model specification: QR–False, PM–True
GLM–AIPW–PAPW -0.411 10.098 96.080 1.024 -0.176 4.715 98.460 1.234 -0.771 8.122 95.480 1.057
GLM–AIPW–PAPP -0.417 10.101 96.020 1.021 -0.173 4.705 98.400 1.229 -0.778 8.119 95.420 1.057
Model specification: QR–False, PM–False
GLM–AIPW–PAPW 9.015 13.176 84.140 1.000 6.735 8.693 94.100 1.456 50.835 51.288 0.000 1.019
GLM–AIPW–PAPP 9.191 12.717 84.860 1.082 6.787 8.181 96.660 1.761 51.667 52.131 0.000 1.047
BART–AIPW–PAPW 0.425 10.071 97.900 1.184 0.122 4.689 99.280 1.407 -0.259 8.349 97.960 1.231
BART–AIPW–PAPP -0.144 9.794 97.820 1.184 -0.100 4.541 99.280 1.405 -0.245 8.329 97.740 1.203

PAPW: propensity-adjusted probability weighting; PAPP: propensity-adjusted probability
prediction; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse
propensity weighting.

3.3.3 Simulation III

Since the non-probability sample in the application of this study is clustered, I per-

formed a third simulation study. To this end, the hypothetical population is assumed

to be clustered with A = 103 clusters, each of size nα = 103 (N = 106). Then, three

cluster-level covariates, {x1, x2, d}, are defined with the following distributions:


dα

x0α

x1α

 ∼MVN




0

0

1

 ,


1 −ρ/2 ρ

−ρ/2 1 −ρ/2

ρ −ρ/2 1


 x2α = I(x0α > 0) (3.39)
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where d denotes a design variable in SR, and {x1, x2} describes the selection mecha-

nism in SA. Primarily, I set ρ = 0.8, but later I check other values ranging from 0 to

0.9 as well. Note that ρ controls how strongly the sampling design of SR is associated

with that of SA. Furthermore, I assume that both d and x are observed for units of

S.

Again, to be able to assess BART’s performance, I consider non-linear associa-

tions with polynomial terms and two-way interactions in construction of the outcome

variables as well as the selection probabilities. Two outcome variables are studied,

one continuous (yc) and one binary (yb), which both depend on {x, d} as below:

ycαi|xα, dα ∼ N(µ = 1 + 0.5x2
1α + 0.4x3

1α − 0.3x2α − 0.2x1αx2α − 0.1dα + uα, σ
2 = 1)

(3.40)

yAαi|xα, dα ∼ Ber
(
p =

exp{−1 + 0.1x2
1α + 0.2x3

1α − 0.3x2α − 0.4x1αx2 − 0.5dα + uα}
1 + exp{−1 + 0.1x2

1α + 0.2x3
1α − 0.3x2α − 0.4x1αx2 − 0.5dα + uα}

)
(3.41)

where uα ∼ N(0, σ2
u), and σ2

u is determined such that the intraclass correlation equals

0.2 (Oman and Zucker, 2001; Hunsberger et al., 2008). For each i ∈ U , I then consider

the following set of selection probabilities associated with the design of the SR and

SA:

πR(xα) = P (δRα = 1|dα) =
exp{γ0 + 0.5dα}

1 + exp{γ0 + 0.5dα}

πA(xα) = P (δAα = 1|xα) =
exp{γ1 − 0.1x1α + 0.2x2

1α + 0.3x2α − 0.4x1αx2α}
1 + exp{γ1 − 0.1x1α + 0.2x2

1α + 0.3x2α − 0.4x1αx2α}
(3.42)

where δRi and δAi are the indicators of being selected in SR and SA, respectively.

Associated with SR and SA, two-stage cluster samples of size nR = 100 and nA =

10, 000 were selected randomly from U with Poisson sampling at the first stage and

simple random sampling at the second stage. The sample size per cluster, nα, was

1 and 50 for SR and SA, respectively. The model intercepts, γ0 and γ1 in 3.42, are
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obtained such that
∑N

i=1 π
R
i = nR and

∑N
i=1 π

R
i = nA/nα.

The rest of the simulation design is similar to that defined in Simulation II, except

for the methods I use for point and variance estimation. In addition to the situation

where πRi is known for i ∈ SA, I consider a situation where πR is unobserved for

i ∈ SA and draw the estimates based on PAPP. Furthermore, unlike Simulation I,

DR estimates are achieved by separately fitting the QR and PM models, and to get

the variance estimates, a bootstrap technique is applied with B = 200 based on

Rao and Wu (1988). Finally, under BART, Rubin’s combining rules are employed to

derive the point and variance estimates based on the random draws of the posterior

predictive distribution. As in Simulations II, I consider different scenarios of model

specification. To misspecify a model, I only include the main effects in the working

model. Also, under BART, no interaction or polynomial is included as input. Again, I

misspecify the functional form of the working models, while in Simulation I, I assumed

that auxiliary variables are partially observed when misspecifying a model.

The means of the synthesized U for the outcome variables were ȳcU = 3.39 and

ȳbU = 0.40. Figure 3.1 compares the bias magnitude and efficiency across the non-

robust methods. As illustrated, point estimates from both SR and SA are biased if the

true sampling weights are ignored. After adjusting, for both continuous and binary

outcomes, the bias is close to zero under both QR and PM methods when the working

model is correct. However, the lengths of the error bars reveal that the proposed

PAPW/PAPP method is more efficient than the IPSW. When only main effects are

included in the model, all adjusted estimates are biased except for those based on

BART. Note that BART cannot be applied under IPSW. Further details about the

simulation results for the non-robust methods are displayed in Appendix 3.6.2. I see

that IPSW tends to have slightly larger magnitudes of rBias and rMSE for both yc

and yb. Also, the values of rSE close to 1 indicate that Rao & Wu’s bootstrap method

of variance estimation performs well under both QR and PM approaches. However,
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95% coverage is achieved only when the working model is correct.

In Figure 3.2, I depict the findings of the simulation corresponding to the DR

estimators under different permutations of model specification. One can immediately

infer that for all the employed methods, AIPW produces unbiased results when either

the PM or QR model holds. However, in situations where the true underlying models

for both PM and QR are unknown, the point estimates based on BART remain

unbiased under both PAPW and PAPP approaches. Furthermore, under the GLM, it

is evident that AIPW estimates based on PAPW/PAPP are slightly less biased and

more efficient than those based on IPSW when the PM is incorrect (TF) according

to the lengths of the error bars. Details of the numerical results can be found in

Appendix 3.6.2. The latter compares BART with GLM under a situation where both

working models are wrong. Results showing the performance of the bootstrap variance

estimator are provided in Figure 3.3. The crCI values are all close to the correct

value unless both working models are incorrectly specified. While the same result

I observed for the continuous variable under BART, there is evidence that BART

widely underestimates the variance of the AIPW estimator for the binary outcome.

Note that the estimation of variance under BART is based on the MCMC draws of

the posterior prediction distribution using Rubin’s combining rule. To conclude, I

observe that when neither the PM nor QR model is known, BART based on PAPP

produces unbiased and efficient estimates with accurate variance.

As the final step, I replicate the simulation for different values of ρ ranging from 0

to 0.9 to show how stable the competing methods perform in terms of rbias and rMSE.

Figure 3.4 depicts changes in the values of rBias and rMSE for different adjustment

methods as the value of ρ increases. Generally, it seems that the value of rMSE

decreases for all competing methods as ρ increases, but for all values of ρ, PAPW

and PAPP are less biased than IPSW. It is only when ρ = 0 for the continuous

variable that IPSW outperforms the PPAW/PAPP in bias reduction. However, when
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d is highly correlated with x, there is also evidence of better performance by PAPP

than IPSW in terms of bias reduction. I believe this is mainly because the stronger

association between x and d implies that the additional ignorable assumption under

PAPP is better met, while this correlation causes a sort of collinearity in IPSW leading

to a loss of efficiency. The rest of the methods did not show significant changes as the

value of ρ increases. Numerical values associated with Figure 3.4 have been provided

in Appendix 3.6.2.
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Figure 3.1: Comparing the performance of the non-robust approaches for (a) the con-
tinuous outcome (Yc) and (b) the binary outcome (Yb) when the model is correctly
specified. Error bars represent the 2.5% and 97.5% percentiles of the empirical distri-
bution of bias over the simulation iterations. UW: unweighted; FW: fully weighted;
PM: prediction model; PAPP: propensity-adjusted probability prediction; IPSW: in-
verse propensity score weighting
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Figure 3.2: Comparing the performance of the doubly robust estimators under dif-
ferent model-specification scenarios for (a) the continuous outcome (Yc) and (b) the
binary outcome (Yb). 95% CIs have been generated based on the 2.5% and 97.5%
percentiles of the empirical distribution of bias over the simulation iterations. UW:
unweighted; FW: fully weighted; PAPP: propensity-adjusted probability prediction;
IPSW: inverse propensity score weighting
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Figure 3.3: Comparing the 95% CI coverage rates for the means of (a) continuous
outcome and (b) binary outcome and SE ratios for (c) continuous outcome and (d)
binary outcome across different DR methods under different model specification sce-
narios. UW: unweighted; FW: fully weighted; PAPP: propensity-adjusted probability
prediction; IPSW: inverse propensity score weighting
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Figure 3.4: Comparing the rBias for the means of (a) continuous outcome and (b)
binary outcome and rMSE for the means of (c) continuous outcome and (d) bi-
nary outcome across different adjustment methods and different values of ρ. UW:
unweighted; FW: fully weighted; PAPP: propensity-adjusted probability prediction;
IPSW: inverse propensity score weighting
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3.4 Application

I briefly describe SHRP2, the non-probability sample, and the NHTS, the probability

sample as well as the variables used for statistical adjustment.

3.4.1 Strategic Highway Research Program 2

SHRP2 is the largest naturalistic driving study conducted to date, with the primary

aim to assess how people interact with their vehicle and traffic conditions while driving

(SHRP2, 2013). About A = 3, 140 drivers aged 16− 95 years were recruited from six

geographically dispersed sites across the United States (Florida, Indiana, New York,

North Carolina, Pennsylvania, and Washington), and over five million trips and 50

million driven miles have been recorded. The average follow-up time per person was

n̄α = 440 days. A quasi-random approach was initially employed to select samples by

random cold calling from a pool of 17, 000 pre-registered volunteers. However, because

of the low success rate along with budgetary constraints, the investigators later chose

to pursue voluntary recruitment. Sites were assigned one of three pre-determined

sample sizes according to their population density (Campbell, 2012). The youngest

and oldest age groups were oversampled because of the higher crash risk among those

subgroups. Thus, one can conclude that the selection mechanism in SHRP2 is a

combination of convenience and quota sampling methods. Further description of the

study design and recruitment process can be found in Antin et al. (2015).

SHRP2 data are collected in multiple stages. Selected participants are initially

asked to complete multiple assessment tests, including executive function and cogni-

tion, visual perception, visual-cognitive, physical and psychomotor capabilities, per-

sonality factors, sleep-related factors, general medical condition, driving knowledge,

etc. In addition, demographic information such as age, gender, household income, ed-

ucation level, and marital status as well as vehicle characteristics such as vehicle type,

model year, manufacturer, and annual mileage are gathered at the screening stage.
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A trip in SHRP2 is defined as the time interval during which the vehicle is operating.

The in-vehicle sensors start recording kinematic information, the driver’s behaviors,

and traffic events continuously as soon as the vehicle is switched on. Encrypted data

are stored in a removable hard drive, and participants are asked to provide access

to the vehicle every four to six months, so that hard drives with accumulated data

are removed and replaced. Then, Trip-related information such as average speed,

duration, distance, and GPS trajectory coordinates are obtained by aggregating the

sensor records at the trip level (Antin et al., 2019; Campbell, 2012).

3.4.2 National Household Travel Survey data

In the present study, I use data from the eighth round of the NHTS conducted

from March 2016 through May 2017 as the reference survey. The NHTS is a na-

tionally representative survey, repeated cross-sectionally approximately every seven

years. It is aimed at characterizing personal travel behaviors among the civilian,

non-institutionalized population of the United States. The 2017 NHTS was a mixed-

mode survey, in which households were initially recruited by mailing through an

address-based sampling (ABS) technique. Within the selected households, all eligi-

ble individuals aged ≥ 5 years were requested to report the trips they made on a

randomly assigned weekday through a web-based travel log. Proxy interviews were

requested for younger household members who were ≤ 15 years old.

The overall sample size was 129, 696, of which roughly 20% was used for national

representativity and the remaining 80% was regarded as add-ons for the state-level

analysis. The recruitment response rate was 30.4%, of which 51.4% reported their

trips via the travel logs (Santos et al., 2011). In NHTS, a travel day is defined from

4:00 AM of the assigned day to 3:59 AM of the following day on a typical weekday.

A trip is defined as that made by one person using any mode of transportation.

While trip distance was measured by online geocoding, the rest of the trip-related
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information was based on self-reporting. A total of 264,234 eligible individuals aged

≥5 took part in the study, for which 923, 572 trips were recorded (McGuckin and

Fucci, 2018).

3.4.3 Auxiliary variables and analysis plan

Because of the critical role of auxiliary variables in maintaining the ignorable as-

sumption for the selection mechanism of the SHRP2 sample, particular attention was

paid to identify and build as many common variables as possible in the combined

sample that are expected to govern both selection mechanism and outcome variables

in SHRP2. However, since the SHRP2 sample is gathered from a limited geographi-

cal area, in order to be able to generalize the findings to the American population of

drivers, I had to assume that no other auxiliary variable apart from those investigated

in this study will define the distribution of the outcome variables. This assumption is

in fact embedded in the ignorable condition in the SHRP2 given the common set of

observed covariates. Three distinct sets of variables were considered: (i) demographic

information of the drivers, (ii) vehicle characteristics, and (iii) day-level information.

These variables and associated levels/ranges are listed in Table 3.4.

My focus was on inference at the day level, so SHRP2 data were aggregated. I

constructed several trip-related outcome variables such as daily frequency of trips,

daily total trip duration, daily total distance driven, mean daily trip average speed,

and mean daily start time of trips that were available in both datasets as well as

daily maximum speed, daily frequency of brakes per mile, and daily percentage of

trips with a full stop, which was available in SHRP2 only. The final sample sizes of

the complete day-level datasets were nA = 837, 061 and nR = 133, 582 in SHRP2 and

NHTS, respectively.

In order to make the two datasets more comparable, I filtered out all the subjects

in NHTS who were not drivers or were younger than 16 years old or used public
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transportation or transportation modes other than cars, SUVs, vans, or light pickup

trucks. One major structural difference between NHTS and SHRP2 was that in the

NHTS, participants’ trips were recorded for only one randomly assigned weekday,

while in SHRP2, individuals were followed up for several months or years. Therefore,

to properly account for the potential intraclass correlation across sample units in

SHRP2, I treated SHRP2 participants as clusters for variance estimation. For BART,

I fitted random intercept BART (Tan et al., 2016). In addition, since the πRi were not

observed for units of SHRP2, I employed the PAPP and IPSW methods to estimate

pseudo-weights, so variance estimation under the GLM was based on the Rao & Wu

bootstrap method throughout the application section.

Table 3.4: List of auxiliary variables and associated levels/ranges that are used to
adjust for selection bias in SHRP2

Auxiliary variables (scale) Levels/range

Demographic information
gender (female, male)
age (yrs) (16-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75+)
race (White, Black, other)
ethnicity (Hispanic, non-Hispanic)
birth country (citizen, alien)
education level (≤HS, HS completed, associate, grad, post-grad)
household income (×$1,000) (0-49k, 50-99k, 100-149k, 150k+)
household size (1, 2, 3-5, 6-10, 10+)
job status (part-time, full time)
home ownership (owner, renter)
pop. size of resid. area (×1, 000) (0-49, 50-200, 200-500, 500+)
Vehicle characteristics
age (yrs) (0-4, 5-9, 10-14, 15-19, 20+)
type (passenger car, Van, SUV, truck)
make (American, European, Asian)
mileage (×1,000km) (0-4, 5-9, 10, 10-19, 20-49, 50+)
fuel type (gas, other)
Day-level information
weekend indicator of trip day {0,1}
season of trip day (winter, spring, summer, fall)
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3.4.4 Results

According to Figure 3.11 of Appendix 3.6.3, one can visually infer that the largest

discrepancies between the sample distribution of auxiliary variables in SHRP2 and

that in the population stem from participants’ age, race, and population size of resi-

dential areas as well as vehicles’ age and vehicles’ type. The youngest and eldest age

groups have been oversampled as are Whites and non-Hispanics. In addition, I found

that the proportion of urban dwellers is higher in SHRP2 than that in the NHTS.

In terms of vehicle characteristics, SHRP2 participants tend to own passenger cars

more than the population average, whereas individuals with other vehicle types were

underrepresented in SHRP2.

As the first step of QR, I checked if there is any evidence of a lack of common

distributional support between the two studies for the auxiliary variables. Figure 3.5a

compares the kernel density of the estimated PS using BART across the two samples.

As illustrated, a notable lack appears on the left tail of the PS distribution in SHRP2.

However, owing to the huge sample size in SHRP2, I believe this does not jeopardize

the positivity assumption seriously. The estimated population size of drivers was

N̂ = 133, 047, 744 based on the sampling weight in NHTS. The available auxiliary

variables are strong predictors of the NHTS selection probabilities for SRHP2: the

average pseudo-R2 was for BART 73% in a 10-fold cross validation.

In Figure 3.5b, I compare the distribution of estimated pseudo-weights across the

QR methods. It seems that PAPP based on BART is the only method that does not

produce influential weights. Also, the highest variability in the estimated pseudo-

weights belonged to the PAPP method under GLM. Figure 3.6 compares the predic-

tive power of BART with GLM and also classification and regression trees (BART)

in modeling Z and Y on X. As can be seen, the largest values of area under the

ROC curve (AUC) and the largest values of (pseudo)-R2 in the radar across different

trip-related outcome variables are associated with BART. Additionally, Figure 3.12 in
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Appendix 3.6.3 exhibits how pseudo-weighting based on PAPP-BART improves the

imbalance in the distribution ofX in SHRP2 with respect to the weighted distribution

of NHTS.
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Figure 3.5: Comparing the distribution of (a) estimated propensity scores between
SHRP2 and NHTS using BART and (b) estimated pseudo-weights in SHRP2 across
the applied quasi-randomization methods

Figure 3.8 depicts the adjusted sample means for some trip-related measures that

were available in both SHRP2 and NHTS. The methods I compare here encompass

PAPP, IPSW, and PM as the non-robust approaches, and AIPW with PAPP and

AIPW with IPSW as the DR approaches. Also, a comparison is made between GLM

and BART for all the methods except those involving IPSW. My results suggest that,

as expected, the oversampling of younger and older drivers leads to underestimating

miles driven and length of trips, and overestimating the time of the first trip of the

day; other factors may impact these variables, as well as the average speed of a given

drive. For three of these four variables (total trip duration, total distance driven,

and start hour of daily trip), there appeared to be improvements with respect to the

bias considering the NHTS weighted estimates as the benchmark, although only trip

duration appears to be fully corrected. In Figure 3.7, I display the posterior predictive

density of mean daily total distance driven under PAPP, PM, and AIPW-PAPP. Note
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(b)(a)

Figure 3.6: Comparing the performance of BART vs GLM in both estimating propen-
sity scores and predicting some trip-related outcomes. The radar plot on the right
side displays the values of (pseudo-)R2 between BART and GLM. AUC: area under
curve; CART: classification and regression trees

that the narrow variance associated with the PAPP approach is due to the fact that

the posterior predictive distribution under pseudo-weighting does not account for the

clustering effects in SHRP2. It is in fact V̄W in Eq. 3.25 that is capturing this source

of uncertainty in the variance estimation.

Among the QR methods, I observed that the PAPP based on BART gives the

most accurate estimate with respect to bias for this variable. However, the relatively

narrow 95% CI associated with BART may indicate that BART does not properly

propagate the uncertainty in pseudo-weighting. Regarding the PM, it seems BART

performs as well as GLM, but with wider uncertainty. As a consequence, the AIPW

estimator performs the same in terms of bias across different QR methods. The AIPW

estimator based on IPSW, on the other hand, seems to be is more efficient than the

ones based on PAPP. However, these findings are not consistent across the outcome

variables. For the daily total duration variable, which is displayed in plot (b) of

Figure 3.8, it is only the PAPP-based estimator whose 95% CI covers the population

mean. For the daily average speed depicted in (c) and the daily mean start time of

the trip depicted in (d), I observed no reliable correction for bias.
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Figure 3.7: The posterior predictive distributions of the adjusted sample mean of
daily total distance driven based on BART

Results related to the adjusted means for some SHRP2-specific outcome variables

are summarized in Figure 3.9. These variables consist of (a) daily maximum speed,

(b) frequency of brakes per mile, and (c) percentage of trip duration when the vehicle

is fully stopped. For the daily maximum speed, I take one further step and present

the DR adjusted mean based on the IPSW-GLM and PAPP-BART by some auxiliary

variables in Figure 3.10. As illustrated, higher levels of mean daily maximum speed

are associated with males, age group 35-44 years, Blacks, high school graduates,

Asian cars, and weekends. According to the lengths of 95% CIs, one can see that the

AIPW-PAPP-BART consistently produces more efficient estimates than the AIPW-

IPSW-GLM. Further numerical details of these findings by the auxiliary variables

have been provided in Tables 3.13-3.19 in Appendix 3.6.3.
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Figure 3.8: Evaluation of pseudo-weights by comparing weighted estimates of the daily
frequency of trips between NHTS and SHRP2: (a) Mean daily total trip duration,
(b) Mean daily total distance driven, (c) Mean trip average speed, and (d) Mean
daily start hour of trips. The dashed line and surrounding shadowed area represent
weighted estimates and 95% CIs in NHTS, respectively. UW: unweighted; PAPP:
propensity-adjusted probability prediction; IPSW: inverse propensity score weighting;
NA: not applicable
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Figure 3.9: Adjusted estimates of some SHRP2-specific outcomes: (a) Mean daily
maximum speed, (b) daily frequency of brakes per mile driven, and (c) daily percent-
age of stop time. UW: unweighted; PAPP: propensity-adjusted probability prediction;
IPSW: inverse propensity score weighting
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Figure 3.10: Bias-adjusted estimates of mean daily maximum speed (MPH) driven
by (a) gender, (b) age groups, (c) race, (d) education, (e) vehicle manufacturer,
and (f) weekend indicator. UW: unweighted; PAPP: propensity-adjusted probability
prediction; IPSW: inverse propensity score weighting; NA: not applicable
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3.5 Discussion

In this study, I proposed a doubly robust (DR) adjustment method for finite popula-

tion inference in non-probability samples when a well-designed probability sample is

available as a benchmark. Combining the ideas of pseudo-weighting with prediction

modeling, my method involved a modified version of AIPW, which is DR in the sense

that estimates are consistent if either underlying model holds. More importantly,

the proposed method permitted us to apply a wider class of predictive tools, espe-

cially supervised algorithmic methods. To better address model misspecification, the

present study employed BART to multiply impute both pseudo-inclusion probabili-

ties and the outcome variable. I also proposed a method to estimate the variance of

the DR estimator based on the posterior predictive draws simulated by BART. In a

simulation study, I then assessed the repeated sampling properties of the proposed

estimator. Finally, I apply it to real Big Data from naturalistic driving studies with

the aim to improve the potential selection bias in the estimates of finite population

mean.

Generally, the simulation findings revealed that the modified AIPW method pro-

duces less biased estimates than its competitors, especially when nR << nA. When

at least one of the models, i.e. QR or PM, is correctly specified, all the DR meth-

ods generated unbiased results, though my estimator was substantially more efficient

with narrower 95% CIs. However, when both working models are invalid, my findings

suggest that DR estimates based on the GLM can be severely biased. However, un-

der BART, it seems that estimates remain approximately unbiased if the true model

structure associated with both QR and PM is unknown to the researcher. In con-

trast to the conventional IPSW estimator, I found that the new proposed estimator

produces more stable results in terms of bias and efficiency across different sampling

fractions and various degrees of association between the sampling designs of SR and

SA.
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Overall, the results of the application suggest near total removal of bias for only

one of the four variables that can be estimated from the reference survey (daily

total distance driven). I believe this failure originates from several sources. First

and foremost, the bias observed in the final estimates is very likely to be mixed

with measurement error because I compared the results of sensor data with self-

reported data as a benchmark. Second, there was evidence of departure from the

positivity assumption in SHRP2. Studies show that even a slight lack of common

support in the distribution of auxiliary variables may lead to inflated variance and

aggravated bias (Hill and Su, 2013). Part of this can be due to the fact that I

attempted to generalize the results to the general population of American drivers,

while SHRP2 data was restricted to six states. Another reason might be a deviation

from the ignorable assumptions: The associations between the auxiliary variables and

the outcome variables were relatively weak and varying across the variables.

This study was not without weaknesses. First, my approach assumes the ideal sit-

uation where the di are available in the non-probability sample since that is demanded

by the general theory linking together the probability and non-probability samples. In

practice, it can be difficult to fully meet this requirement, and indeed in many practi-

cal settings, it might be that only the available subset of x∗i is required to fully model

selection into the non-probability sample and the outcome variable, or alternatively,

that the available components of x∗i will provide a much better approximation to the

true estimates than simply using the non-probability sample without correction. Sec-

ond, my adjustment method assumes that the two samples are mutually exclusive.

However, in many Big Data scenarios (though not the one I consider), the sampling

fraction may be non-trivial, so the two samples may overlap substantially. In such a

situation, it is important to check how sensitive my proposed pseudo-weighting ap-

proach is to this assumption. Extensions may be plausible to account for the duplicate

units of the population in the pooled sample. Third, the multiple imputation variance
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estimator (Eq. 3.25) ignores covariance between V W and VB induced by the weights

(Kim et al., 2006). This covariance is typically negative and leads to conservative

inference, as seen in the modest overestimation of variance in the BART estimations

in Simulations 2 and 3. Use of a bootstrap procedure such as that described in the

simulation study of Chen et al. (2019) may be an alternative, although impractical

in my setting given the computational demands of fitting the BART models to each

bootstrap sample.

Another drawback is that the combined dataset may be subject to differential

measurement error in the variables. This issue is particularly acute in the SHPR2

analysis, because the definition of a trip may not be identical between the two studies:

although trip measures in the SHRP2 are recorded by sensors, in the NHTS trip

measures are memory and human estimation based, as they are self-reported. Having

such error-prone information either as the outcome or as an auxiliary variable may

lead to biased results. Finally, I failed to use the two-step Bayesian method under

GLM for the application part, because SHRP2 data were clustered demanding for

Bayesian generalized linear mixed effect models to properly estimate the variance of

the DR estimators required computational resources beyond my reach. This prompted

us to apply resampling techniques to the actual data instead of a fully Bayesian

method.

There are a number of potential future directions for this research. First, I would

like to expand the asymptotic variance estimator under PAPP when πRi cannot be

computed for i ∈ SB. Alternatively, one may be interested in developing a fully

model-based approach, in which a synthetic population is created by undoing the

sampling stages via a Bayesian bootstrap method, and attempts are made to impute

the outcome for non-sampled units of the population (Dong et al., 2014; Zangeneh

and Little, 2015; An and Little, 2008). The synthetic population idea makes it easier

to incorporate the design features of the reference survey into adjustments, especially
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when Bayesian inference is of interest. While correcting for selection bias, one can ad-

just for the potential measurement error in the outcome variables as well if there exists

a validation dataset where both mismeasured and error-free values of the variables

are observed (Kim et al., 2021b). When combining data from multiple sources, it is

also likely that auxiliary variables are subject to differential measurement error. Hong

et al. (2017) propose a Bayesian approach to adjust for a different type of measure-

ment error in a causal inference context. Also, in a Big Data setting, fitting models

can be computationally demanding. To address this issue, it might be worth expand-

ing the divide-and-recombine techniques for the proposed DR methods. Finally, as

noted by a reviewer, the basic structure of our problem (see Figure 1.1) approximates

that tackled by “data fusion” methods, developed primarily in the computer science

literature (Castanedo, 2013). While this literature does not appear to have directly

addressed issues around sample design, it may be a useful vein of research to mine

for future connections to non-probability sampling research.

3.6 Appendix

3.6.1 Theoretical proofs

3.6.1.1 Proof of doubly robustness

As discussed in Section 3.2.2, a doubly robust estimator should be consistent even if

either model is misspecified. To prove the doubly robustness property of the AIPW

estimator proposed here, let initially assume that θ̂ p→ θ if the prediction model

(PM) is correctly specified, and φ̂ p→ φ and β̂ p→ β if the pseudo-weighting model is

correctly specified. Given the true probabilities of selection in SA, I know that the
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HT-estimator is design-unbiased for the population total, i.e.

E

(
nA∑
i=1

yi/π
A
i

)
= E
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δAi yi/π
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i
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E(δAi )yi/π
A
i

=
N∑
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i

=
N∑
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yi
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(3.43)

And the same result will be obtained for SR. Therefore

E

(
nA∑
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yi/π
A
i

)
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yi/π
R
i

)
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(3.44)

Now I have

ŷDR
p→ E(ŷDR) = E
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}
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ŷi
πAi

}
= E

{ nA∑
i=1

(yi − ŷi)
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ŷDR
p→ E(ŷDR) = yU + E

{ nA∑
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1
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πAi
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}
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Under the ignorable assumption in SA, I have Y |= πA|X, πR. Hence

ŷDR
p→ E(ŷDR) = yU + E

{ nA∑
i=1

(yi − ŷi)(
πAi
π̂Ai
− 1)

}
= yU + E

{
E

{ nA∑
i=1

(yi − ŷi)(
πAi
π̂Ai
− 1)|xi, πRi

}}
= yU + E

{ nA∑
i=1

E(yi − ŷi|xi, πRi )E(
πAi
π̂Ai
− 1|xi, πRi )

} (3.47)

If I assume the pseudo-weighting model is correctly specified, then I expect π̂Ai
p→ πAi

and

E

(
πAi
π̂Ai
− 1|xi, πRi

)
p→ πAi
πAi
− 1 = 0 (3.48)

which implies that ŷDR
p→ yU regardless of whether the PM is correctly specified or

not. In situations where the mean model is correctly specified, then I expect that

ŷi
p→ yi. Hence

E
(
yi − ŷi|xi, πRi

) p→ E
(
yi − yi|xi, πRi

)
= 0 (3.49)

which means that ŷDR
p→ yU even if the PW model is incorrectly specified.

3.6.1.2 Variance estimation under the Bayesian approach

As discussed in Section 3.2.4, in this study, I use Rubin’s combining rule to estimate

the variance of the AIPW estimator under the two-step Bayesian approach. The idea

stems from the conditional variance formula, which involves two parts: (1) within-

imputation variance and between-imputation variance. The latter is straightforward

and achieves by taking the variance of the ˆ̄y
(m)
DR across the M MCMC draws. The

within-imputation variance requires more attention as one needs to account for the

intraclass correlations due to clustering and use linearization techniques when dealing

with a ratio estimator.

It is clear that this component is calculated conditional on the observed ŷ(m)
i for
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i ∈ S, π̂A(m)
i for i ∈ SA and p̂iAi .
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For the first component, which equals var(y)
∑nA

i=1

(
π̂Ai
)−2

/N̂2
A, it suffices to estimate

the variance of y. The second component, however, deals with the variance of a ratio

estimator, which requires linearization techniques. Let’s define t̂R =
∑nR

i=1 ŷ
(m)
i /πRi ,

Taylor-series approximation of the variance is given by
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Since t̂R depends on ŷ(m)
i , I have
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Therefore, the variance of the ratio estimator is approximated by
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And the final within-imputation variance can be given by
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Note that in situations where either SR or SA is a clustered sample, the derivation of

the within-imputation variance would remain the same, but yi, πRi , π̂
A(m)
i , and ŷ(m)

i

will represent the total for cluster i, and nR and nA are the number of clusters in SR

and SA, respectively.
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3.6.2 Further extensions of the simulation study

3.6.2.1 Simulation study I

This subsection provides additional results associated with Simulation I. Table 3.5

and Table 3.6 summarize the findings of the simulation in 3.3.1 under the frequentist

approach when nA = 100, and nA = 10, 000. I report the corresponding results under

the two-step Bayesian approach in Table 3.7 and Table 3.8, respectively.

Table 3.5: Comparing the performance of the bias adjustment methods and associated
asymptotic variance estimator under the frequentist approach in the first simulation
study for nR = 100 and nA = 100

ρ = 0.3 ρ = 0.5 ρ = 0.8
Method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted 8.528 19.248 92.6 1.009 8.647 11.065 77.4 1.018 8.682 9.719 50.9 1.02
Fully weighted -0.029 20.276 94.7 1.001 0.006 8.035 95.1 1.010 0.015 5.008 94.9 1.008
Non-probability sample (SA)
Unweighted 31.895 36.418 57.0 1.014 32.213 33.2 1.740 1.008 32.310 32.853 0.0 0.995
Fully weighted 0.171 21.078 94.8 0.996 0.247 8.265 94.9 0.999 0.268 4.994 94.2 0.995
Non-robust adjustment
Model specification: True
PAPW -1.192 23.466 95.2 1.018 -1.205 9.452 95.3 1.015 -1.211 5.982 95.8 1.007
IPSW -2.917 26.505 97.3 1.386 -3.036 12.700 97.0 1.355 -3.075 9.470 97.0 1.308
PM 0.372 20.989 94.6 0.994 0.148 8.351 94.9 0.995 0.077 5.160 95.0 0.992
Model specification: False
PAPW 27.140 33.436 75.6 1.059 27.393 28.814 16.6 1.043 27.470 28.276 2.5 1.025
IPSW 28.372 33.972 67.9 1.012 28.711 29.951 8.3 1.002 28.815 29.515 0.5 0.99
PM 28.199 33.790 68.4 1.011 28.541 29.771 8.3 1.001 28.645 29.337 0.3 0.988
Doubly robust adjustment
Model specification: QR–True, PM–True
AIPW–PAPW -0.084 22.973 96.4 1.047 -0.014 8.996 96.2 1.038 0.007 5.368 95.5 1.017
AIPW–IPSW -0.184 22.449 96.3 1.046 -0.049 8.826 96.1 1.038 -0.009 5.314 95.9 1.016
Model specification: QR–True, PM–False
AIPW–PAPW -0.436 23.709 96.4 1.038 -0.286 9.866 96.6 1.062 -0.241 6.520 97.2 1.101
AIPW–IPSW -0.427 23.083 96.4 1.039 -0.227 9.570 96.6 1.070 -0.166 6.298 97.5 1.119
Model specification: QR–False, PM–True
AIPW–PAPW -0.045 29.068 97.3 1.107 0.011 11.113 96.9 1.097 0.026 6.073 96.2 1.068
AIPW–IPSW -0.194 28.208 97.5 1.104 -0.044 10.825 97.1 1.094 0.001 5.974 96.5 1.062
Model specification: QR–False, PM–False
AIPW–PAPW 28.301 34.194 71.3 1.037 28.570 29.868 10.9 1.028 28.652 29.379 0.7 1.016
AIPW–IPSW 28.178 33.806 70.4 1.035 28.525 29.764 9.4 1.025 28.631 29.326 0.5 1.013

PAPW: propensity-adjusted probability weighting; IPSW: Inverse propensity score weight-
ing; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse propensity
weighting. Fully weighted implies the weighted means if the true sampling weights are known.
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Table 3.6: Comparing the performance of the bias adjustment methods and associated
asymptotic variance estimator under the frequentist approach in the first simulation
study for nR = 100 and nA = 10, 000

ρ = 0.2 ρ = 0.5 ρ = 0.8
Method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted 8.528 19.248 92.6 1.009 8.647 11.065 77.4 1.018 8.682 9.719 50.9 1.02
Fully weighted -0.029 20.276 94.7 1.001 0.006 8.035 95.1 1.010 0.015 5.008 94.9 1.008
Non-probability sample (SA)
Unweighted 30.014 30.066 0.0 1.008 30.197 30.207 0.0 1.019 30.252 30.257 0.0 1.033
Fully weighted 0.032 2.083 95.3 1.005 0.018 0.816 95.1 1.007 0.012 0.490 95.1 1.007
Non-robust adjustment
Model specification: True
PAPW -2.067 4.582 94.9 1.108 -2.145 4.120 92.8 1.107 -2.170 4.072 92.2 1.107
PAPP -2.618 7.717 94.5 0.958 -2.673 7.334 91.1 0.923 -2.692 7.308 90.6 0.979
PM 0.296 4.515 95.2 0.994 0.121 4.134 94.8 0.986 0.065 4.095 94.6 0.985
Model specification: False
PAPW 24.493 24.616 0.0 1.126 24.592 24.651 0.0 1.153 24.621 24.673 0.0 1.161
PAPP 26.675 26.804 0.0 0.992 26.871 26.949 0.0 0.970 26.930 27.002 0.0 0.964
PM 26.509 26.645 0.0 1.003 26.717 26.800 0.0 0.989 26.779 26.856 0.0 0.986
Doubly robust adjustment
Model specification: QR–True, PM–True
AIPW–PAPW 0.180 4.633 95.1 0.994 0.080 4.162 94.8 0.986 0.047 4.104 94.7 0.985
AIPW–PAPP 0.052 4.582 95.2 0.995 0.035 4.152 94.6 0.987 0.028 4.101 94.5 0.985
Model specification: QR–True, PM–False
AIPW–PAPW 0.262 4.719 95.1 1.000 0.163 4.250 94.9 0.997 0.130 4.191 94.7 0.996
AIPW–PAPP 0.188 4.652 95.4 1.002 0.171 4.225 95.0 0.998 0.164 4.174 94.8 0.998
Model specification: QR–False, PM–True
AIPW–PAPW 1.376 8.569 94.5 0.953 0.503 4.829 95.1 0.995 0.231 4.215 95.2 0.992
AIPW–PAPP 0.864 7.648 94.7 0.948 0.322 4.643 95.3 0.990 0.152 4.182 95.0 0.989
Model specification: QR–False, PM–False
AIPW–PAPW 26.696 26.835 0.0 0.998 26.779 26.862 0.0 0.987 26.803 26.880 0.0 0.985
AIPW–PAPP 26.520 26.655 0.0 1.001 26.718 26.801 0.0 0.989 26.777 26.854 0.0 0.986

PAPW: propensity-adjusted probability weighting; PAPP: propensity-adjusted probabil-
ity prediction; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse
propensity weighting. Fully weighted implies the weighted means if the true sampling weights
are known.
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Table 3.7: Comparing the performance of the bias adjustment methods and associated
variance estimator under the two-step Bayesian approach in the first simulation study
for nR = 100 and nA = 100

ρ = 0.3 ρ = 0.5 ρ = 0.8
Method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted 8.528 19.248 92.6 1.009 8.647 11.065 77.4 1.018 8.682 9.719 50.9 1.020
Fully weighted -0.029 20.276 94.7 1.001 0.006 8.035 95.1 1.010 0.015 5.008 95.0 1.008
Non-probability sample (SA)
Unweighted 32.238 36.815 56.3 1.003 32.303 33.3 1.620 1.003 32.322 32.865 0.0 0.996
Fully weighted 0.494 21.398 94.3 0.981 0.329 8.400 94.0 0.981 0.276 5.057 93.6 0.979
Non-robust adjustment
Model specification: True
PAPW -0.589 24.195 97.4 1.117 -0.755 9.795 99.0 1.326 -0.801 6.178 99.8 1.653
PAPP 1.169 22.844 97.2 1.118 1.016 9.163 98.6 1.345 0.976 5.719 99.8 1.701
PM 0.709 21.489 95.280 1.029 0.272 8.545 95.580 1.020 0.140 5.245 94.640 1.000
Model specification: False
PAPW 28.008 34.396 76.3 1.091 28.027 29.477 19.6 1.116 28.022 28.840 3.4 1.141
PAPP 29.763 35.215 70.2 1.083 29.827 31.032 10.0 1.106 29.841 30.519 0.8 1.125
PM 28.588 34.226 70.9 1.055 28.658 29.895 10.6 1.050 28.691 29.380 0.7 1.042
Doubly robust adjustment
Model specification: QR–True, PM–True
AIPW–PAPW 0.320 23.802 97.8 1.154 0.125 9.306 99.1 1.357 0.067 5.493 99.9 1.731
AIPW–PAPP 0.249 22.778 97.4 1.142 0.099 8.976 99.1 1.339 0.056 5.387 99.9 1.688
Model specification: QR–True, PM–False
AIPW–PAPW 0.304 23.858 97.7 1.156 0.126 9.386 99.2 1.389 0.065 5.661 99.9 1.781
AIPW–PAPP 0.226 22.814 97.5 1.146 0.096 9.041 99.1 1.376 0.052 5.543 99.8 1.747
Model specification: QR–False, PM–True
AIPW–PAPW 0.881 22.077 96.8 1.126 0.333 8.742 98.6 1.281 0.153 5.303 99.8 1.558
AIPW–PAPP 0.762 21.483 96.6 1.103 0.290 8.554 98.4 1.251 0.135 5.246 99.7 1.509
Model specification: QR–False, PM–False
AIPW–PAPW 28.659 34.756 77.6 1.135 28.660 30.013 17.4 1.142 28.649 29.399 2.1 1.151
AIPW–PAPP 28.575 34.237 74.7 1.115 28.656 29.903 13.7 1.124 28.674 29.368 1.1 1.132

PAPW: propensity-adjusted probability weighting; PAPP: propensity-adjusted probability pre-
diction; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse propensity
weighting. Fully weighted implies the weighted means if the true sampling weights are known.
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Table 3.8: Comparing the performance of the bias adjustment methods and associated
variance estimator under the two-step Bayesian approach in the first simulation study
for nR = 100 and nA = 10, 000

ρ = 0.2 ρ = 0.5 ρ = 0.8
Method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted 8.528 19.248 92.6 1.009 8.647 11.065 77.4 1.018 8.682 9.719 50.9 1.020
Fully weighted -0.029 20.276 94.7 1.001 0.006 8.035 95.1 1.010 0.015 5.008 94.9 1.008
Non-probability sample (SA)
Unweighted 30.014 30.066 0.0 1.008 30.197 30.207 0.0 1.019 30.252 30.257 0.0 1.033
Fully weighted 0.032 2.083 95.3 1.005 0.018 0.816 95.1 1.007 0.012 0.490 95.1 1.007
Non-robust adjustment
Model specification: True
PAPW -2.032 4.578 93.0 1.031 -2.106 4.111 90.9 1.032 -2.138 4.062 90.2 1.035
PAPP -0.015 4.094 95.2 1.011 -0.036 3.605 95.1 1.004 -0.042 3.547 95.2 1.002
PM 0.297 4.517 81.6 0.679 0.120 4.136 75.3 0.579 0.065 4.094 73.1 0.563
Model specification: False
PAPW 24.524 24.647 0.0 1.042 24.618 24.678 0.0 1.062 24.650 24.702 0.0 1.069
PAPP 26.406 26.518 0.0 0.982 26.602 26.662 0.0 0.940 26.663 26.717 0.0 0.931
PM 26.512 26.648 0.0 0.851 26.715 26.798 0.0 0.728 26.779 26.856 0.0 0.700
Doubly robust adjustment
Model specification: QR–True, PM–True
AIPW–PAPW 0.178 4.635 84.7 0.721 0.079 4.160 77.3 0.607 0.047 4.103 75.7 0.588
AIPW–PAPP 0.058 4.574 83.6 0.705 0.036 4.149 77.0 0.601 0.028 4.100 75.5 0.585
Model specification: QR–True, PM–False
AIPW–PAPW 0.151 4.273 94.5 0.971 0.050 3.734 93.7 0.943 0.025 3.660 93.9 0.941
AIPW–PAPP 0.106 4.245 94.4 0.966 0.083 3.767 93.7 0.945 0.075 3.712 93.7 0.941
Model specification: QR–False, PM–True
AIPW–PAPW 0.496 4.566 83.7 0.709 0.193 4.142 76.8 0.599 0.096 4.096 75.2 0.581
AIPW–PAPP 0.312 4.514 82.7 0.695 0.127 4.133 76.7 0.595 0.068 4.094 74.9 0.579
Model specification: QR–False, PM–False
AIPW–PAPW 26.709 26.849 0.0 0.893 26.786 26.869 0.0 0.751 26.808 26.885 0.0 0.717
AIPW–PAPP 26.521 26.656 0.0 0.870 26.718 26.800 0.0 0.740 26.777 26.854 0.0 0.709

PAPW: propensity-adjusted probability weighting; PAPP: Inverse propensity score weight-
ing; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse propensity
weighting. Fully weighted implies the weighted means if the true sampling weights are known.
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3.6.2.2 Simulation study II

In Table 3.9 and Table 3.10, I provide extensions of Simulation II in Section 3.3.2

for the situations where nR = 100 and nA = 100, and nR = 100 and nA = 10, 000,

respectively.

Table 3.9: Comparing the performance of the bias adjustment methods and associated
variance estimator under the two-step parametric Bayesian approach in the second
simulation study for ρ = 0.2 and nR = 100 and nA = 100

SIN EXP SQR
Model-method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted -17.210 23.109 80.000 0.999 -8.406 11.126 78.300 1.000 -17.302 20.563 65.800 1.002
Fully weighted -0.623 17.027 94.440 0.987 -0.303 7.947 94.580 0.987 -0.675 13.219 94.000 0.975
Non-probability sample (SA)
Unweighted 32.676 35.764 38.540 0.995 49.188 50.302 0.280 1.083 51.432 53.609 5.200 0.996
Fully weighted 0.100 19.087 93.880 0.982 0.157 8.874 94.220 0.992 0.019 12.338 94.940 1.003
Non-robust adjustment
Model specification: True
GLM–PAPW -1.694 19.888 97.880 1.146 -0.588 9.294 99.960 1.743 -0.905 13.213 99.540 1.517
GLM–PAPP -0.698 19.524 96.520 1.062 -0.244 9.312 99.780 1.642 -0.151 13.030 99.260 1.43
GLM–PM -0.705 18.942 95.960 1.022 -0.824 8.451 95.660 1.023 -0.945 13.184 95.480 1.016
Model specification: False
GLM–PAPW 5.536 22.321 95.960 1.071 -0.225 11.582 99.920 1.699 54.588 57.238 11.760 1.071
GLM–PAPP 6.341 22.406 93.940 0.993 0.550 11.746 99.800 1.590 55.726 58.248 6.820 1.029
BART–PAPW 5.530 20.412 99.420 1.503 4.335 10.413 99.980 2.151 12.487 18.382 99.520 1.864
BART–PAPP 1.435 20.258 98.920 1.362 1.975 9.974 99.980 1.945 6.427 14.735 99.500 1.663
GLM–PM 5.256 19.164 93.400 0.983 -10.991 16.579 88.140 0.994 49.821 52.251 10.980 1.017
BART–PM 4.325 18.758 95.340 1.054 0.848 9.443 97.980 1.175 4.957 14.879 97.140 1.169
Doubly robust adjustment
Model specification: QR–True, PM–True
GLM–AIPW–PAPW -0.773 19.230 97.800 1.144 -0.093 9.047 99.940 1.767 -0.594 13.545 99.480 1.461
GLM–AIPW–PAPP -0.754 19.197 97.560 1.120 -0.121 9.033 99.900 1.729 -0.582 13.458 99.360 1.435
Model specification: QR–True, PM–False
GLM–AIPW–PAPW -0.964 19.745 96.860 1.077 0.107 11.385 99.780 1.539 -0.350 13.394 99.560 1.494
GLM–AIPW–PAPP -0.590 19.262 96.660 1.067 0.886 11.038 99.780 1.538 0.033 13.420 99.420 1.456
Model specification: QR–False, PM–True
GLM–AIPW–PAPW -0.662 20.029 97.820 1.151 -0.044 10.447 99.880 1.831 -0.960 13.302 99.360 1.408
GLM–AIPW–PAPP -0.671 20.008 97.840 1.134 -0.077 10.340 99.900 1.796 -0.960 13.307 99.240 1.388
Model specification: QR–False, PM–False
GLM–AIPW–PAPW 7.461 23.271 95.720 1.018 11.977 19.012 99.480 1.432 54.692 57.230 11.000 1.094
GLM–AIPW–PAPP 7.761 22.970 95.260 1.014 11.915 18.421 99.520 1.461 55.257 57.780 9.840 1.084
BART–AIPW–PAPW 2.172 20.303 99.340 1.406 0.878 10.030 99.980 2.058 2.224 14.830 99.800 1.686
BART–AIPW–PAPP 0.965 19.919 99.220 1.389 0.263 9.830 99.980 2.003 1.632 14.527 99.760 1.618

PAPW: propensity-adjusted probability weighting; PAPP: propensity-adjusted probability
prediction; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse
propensity weighting.
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Table 3.10: Comparing the performance of the bias adjustment methods and asso-
ciated variance estimator under the two-step parametric Bayesian approach in the
second simulation study for ρ = 0.2 and nR = 100 and nA = 10, 000

SIN EXP SQR
Model-method rBias rMSE crCI rSE rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted -17.210 23.109 80.000 0.999 -8.406 11.126 78.300 1.000 -17.302 20.563 65.800 1.002
Fully weighted -0.623 17.027 94.440 0.987 -0.303 7.947 94.580 0.987 -0.675 13.219 94.000 0.975
Non-probability sample (SA)
Unweighted 32.730 32.763 0.000 0.989 31.063 31.074 0.000 1.070 41.318 41.339 0.000 1.071
Fully weighted 0.009 1.915 95.140 0.996 0.017 0.855 95.020 1.001 0.000 1.208 95.060 1.011
Non-robust adjustment
Model specification: True
GLM–PAPW -0.057 7.609 94.320 0.985 -0.026 3.427 95.340 1.010 -0.160 5.482 95.580 1.035
GLM–PAPP 0.148 6.467 94.420 0.977 0.151 2.873 94.540 0.982 -0.050 4.550 94.660 1.047
GLM–PM -0.326 8.558 94.400 0.968 -0.199 3.928 93.680 0.971 -0.631 7.286 90.780 0.937
Model specification: False
GLM–PAPW 8.030 10.415 74.860 0.994 2.785 4.470 90.560 1.104 43.528 43.741 0.000 1.108
GLM–PAPP 8.292 9.699 60.440 0.978 3.021 4.342 92.040 1.115 44.333 44.417 0.000 1.292
BART–PAPW 4.237 8.862 91.608 1.032 2.958 4.569 90.909 1.126 7.599 9.773 93.629 1.280
BART–PAPP 1.206 6.469 93.706 0.980 1.838 3.323 95.338 1.154 3.656 5.768 96.115 1.198
GLM–PM 5.863 9.223 86.020 0.973 -3.579 6.212 87.400 0.974 40.997 41.273 0.000 0.973
BART–PM -0.037 8.703 93.939 0.987 0.024 4.011 94.328 0.991 -0.082 7.543 92.385 0.945
Doubly robust adjustment
Model specification: QR–True, PM–True
GLM–AIPW–PAPW -0.354 8.557 94.320 0.974 -0.176 3.936 94.380 0.990 -0.478 7.264 91.920 0.954
GLM–AIPW–PAPP -0.354 8.556 94.340 0.973 -0.177 3.937 94.320 0.989 -0.476 7.258 91.960 0.954
Model specification: QR–True, PM–False
GLM–AIPW–PAPW -0.126 8.515 90.000 0.848 0.128 4.553 97.480 1.168 -0.344 6.164 94.360 1.000
GLM–AIPW–PAPP -0.070 7.894 91.660 0.895 0.194 3.880 98.760 1.350 -0.360 6.510 94.440 1.007
Model specification: QR–False, PM–True
GLM–AIPW–PAPW -0.303 8.572 94.480 0.973 -0.205 3.949 94.440 0.992 -0.635 7.292 91.280 0.948
GLM–AIPW–PAPP -0.305 8.571 94.460 0.973 -0.207 3.950 94.540 0.992 -0.636 7.288 91.240 0.949
Model specification: QR–False, PM–False
GLM–AIPW–PAPW 8.784 11.327 78.680 1.024 4.599 6.234 93.100 1.315 42.262 42.571 0.000 0.961
GLM–AIPW–PAPP 8.955 10.851 80.600 1.184 4.694 5.741 95.800 1.688 42.941 43.252 0.000 1.003
BART–AIPW–PAPW -0.042 8.880 93.862 0.985 0.039 4.099 94.639 1.004 -0.267 7.589 92.618 0.962
BART–AIPW–PAPP -0.287 8.758 94.017 0.992 -0.064 4.022 94.639 1.015 -0.274 7.571 92.230 0.959

PAPW: propensity-adjusted probability weighting; PAPP: propensity-adjusted probability
prediction; QR: quasi-randomization; PM: prediction model; AIPW: augmented inverse
propensity weighting.
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3.6.2.3 Simulation study III

Table 3.11 and Table 3.12 exhibits the numerical results associated with the plots of

Simulation III in Section 3.3.3.

Table 3.11: Comparing the performance of the bias adjustment methods in the third
simulation study for ρ = 0.8

Continuous outcome (Yc) Binary outcome (Yb)
Model-method rBias rMSE crCI rSE rBias rMSE crCI rSE

Probability sample (SR)
Unweighted 48.705 52.900 30.7 1.015 11.304 16.881 88.2 1.022
Fully weighted 0.080 15.400 96.2 1.025 0.131 13.858 95.3 1.026
Non-probability sample (SA)
Unweighted 68.309 70.415 0.0 0.156 21.763 22.794 0.5 0.181
Fully weighted 0.137 7.581 95.7 1.023 0.074 6.512 94.7 0.99
Non-robust adjustment
Model specification: True
GLM–PAPW 0.448 10.994 94.7 1.036 0.072 7.266 96.2 1.034
GLM–PAPP 0.204 11.192 93.9 1.037 0.080 7.188 96.2 1.031
GLM–IPSW 0.839 18.138 96.0 1.275 -0.838 9.458 97.3 1.116
GLM–PM 0.110 11.157 94.2 1.015 0.055 7.401 94.4 0.995
Model specification: False
GLM–PAPW 7.337 13.187 94.2 1.033 5.115 8.502 90.4 1.02
GLM–PAPP 6.762 13.546 94.2 1.032 5.046 8.471 88.5 1.035
GLM–IPSW 22.513 35.600 99.5 1.155 9.390 13.098 89.5 1.099
BART–PAPW 2.272 10.468 100.0 2.487 1.633 7.391 99.5 1.436
BART–PAPP 3.990 11.469 100.0 2.299 0.313 7.243 99.3 1.342
GLM–PM 37.071 42.523 53.0 1.006 12.600 14.932 63.6 1.003
BART–PM 0.286 11.581 92.7 0.996 0.594 9.102 81.2 0.688
Doubly robust adjustment
Model specification: QR–True, PM–True
GLM–AIPW–PAPW 0.307 11.186 95.0 1.019 0.083 7.459 94.2 1.001
GLM–AIPW–PAPP 0.295 11.187 94.5 1.019 0.089 7.439 94.0 0.998
GLM–AIPW–IPSW 0.372 11.193 95.8 1.037 0.120 7.478 94.4 1.003
Model specification: QR–True, PM–False
GLM–AIPW–PAPW 0.381 12.774 95.5 1.035 0.047 7.487 96.2 1.04
GLM–AIPW–PAPP 0.424 11.934 94.7 1.041 0.155 7.275 96.0 1.032
GLM–AIPW–IPSW -8.223 17.625 92.3 1.181 -2.842 9.086 95.2 1.047
Model specification: QR–False, PM–True
GLM–AIPW–PAPW 0.127 11.177 94.7 1.020 0.067 7.451 94.0 0.997
GLM–AIPW–PAPP 0.122 11.172 94.7 1.019 0.054 7.438 94.2 0.997
GLM–AIPW–IPSW 0.117 11.167 94.8 1.020 0.055 7.433 94.0 0.998
Model specification: QR–False, PM–False
GLM–AIPW–PAPW 50.327 53.922 21.9 1.002 15.651 17.552 50.3 1.007
GLM–AIPW–PAPP 50.793 54.215 20.9 1.002 15.834 17.605 47.8 1.003
GLM–AIPW–IPSW 47.867 51.106 27.9 1.163 15.112 16.884 53.8 1.051
BART–AIPW–PAPW 0.276 11.593 94.4 1.035 0.701 9.186 81.9 0.698
BART–AIPW–PAPP 0.261 11.591 94.2 1.031 0.682 9.155 81.7 0.697

PAPW: propensity-adjusted probability weighting; PAPP: propensity-
adjusted probability prediction; IPSW: Inverse propensity score weight-
ing; QR: quasi-randomization; PM: prediction model; AIPW: augmented
inverse propensity weighting.
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3.6.3 Supplemental results on SHRP2/NHTS data

Table 3.13: Mean daily trip duration (min) and associated 95% CIS by different
covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 68.94 (67.955,69.925) 71.603 (66.565,76.641) 70.058 (67.902,72.214) 69.582 (66.117,73.047)
Gender
Male 407,312 70.289 (68.809,71.77) 72.411 (63.583,81.238) 70.97 (67.971,73.97) 70.61 (66.131,75.088)
Female 429,749 67.662 (66.355,68.968) 70.79 (67.353,74.226) 69.107 (66.683,71.531) 68.522 (64.432,72.611)
Age group
16-24 311,106 70 (68.514,71.485) 72.889 (69.435,76.342) 72.318 (69.636,74.999) 71.937 (66.79,77.085)
25-34 117,758 73.889 (71.099,76.679) 72.669 (67.713,77.625) 71.562 (67.688,75.435) 72.511 (66.132,78.889)
35-44 61,908 75.4 (71.304,79.496) 71.215 (64.668,77.762) 75.72 (69.882,81.559) 71.919 (63.874,79.964)
45-54 77,903 74.666 (71.734,77.599) 71.803 (61.432,82.175) 70.437 (66.525,74.349) 73.237 (67.727,78.747)
55-64 63,891 70.823 (67.027,74.62) 66.99 (60.85,73.13) 67.054 (62.252,71.855) 67.518 (60.885,74.152)
65-74 88,762 67.122 (64.13,70.113) 84.262 (52.155,116.369) 64.475 (59.374,69.576) 64.286 (59.779,68.794)
75+ 115,733 54.103 (51.965,56.241) 49.358 (46.14,52.576) 51.359 (47.896,54.822) 51.442 (46.894,55.99)
Race
White 745,596 67.845 (66.833,68.858) 71.687 (65.246,78.128) 68.183 (65.836,70.529) 67.861 (64.386,71.336)
Black 43,109 86.294 (80.759,91.83) 74.42 (66.374,82.466) 81.587 (75.046,88.127) 79.728 (68.019,91.437)
Asian 26,265 68.723 (63.684,73.761) 66.792 (58.089,75.495) 66.777 (60.785,72.769) 65.958 (53.748,78.169)
Other 22,091 72.284 (66.895,77.674) 79.723 (69.505,89.942) 75.924 (69.729,82.118) 75.314 (63.089,87.539)
Ethnicity
Non-Hisp 808,098 68.699 (67.697,69.701) 71.999 (66.066,77.933) 69.337 (67.166,71.507) 68.555 (64.866,72.244)
Hispanic 28,963 75.681 (70.488,80.873) 72.068 (63.599,80.536) 74.545 (69.145,79.944) 75.449 (66.582,84.316)
Education
<High school 50,943 61.108 (58.134,64.083) 67.647 (58.129,77.165) 67.32 (61.588,73.051) 68.246 (56.385,80.108)
HS completed 78,045 69.025 (65.979,72.071) 86.848 (58.569,115.128) 69.752 (64.868,74.637) 70.399 (61.472,79.325)
College 237,206 68.997 (67.153,70.841) 70.312 (64.184,76.44) 70.712 (66.638,74.785) 70.896 (65.722,76.069)
Graduate 326,860 70.859 (69.188,72.529) 71.314 (68.333,74.296) 71.313 (69.073,73.554) 69.984 (65.783,74.186)
Post-grad 144,007 67.218 (64.984,69.451) 64.26 (60.143,68.377) 68.713 (64.864,72.562) 66.496 (62.395,70.597)
HH income
0-49 332,586 68.105 (66.553,69.658) 75.441 (62.136,88.745) 69.441 (65.872,73.009) 69.049 (65.13,72.968)
50-99 309,387 69.755 (68.089,71.421) 70.608 (63.639,77.578) 70.359 (67.276,73.442) 69.836 (66.552,73.12)
100-149 132,757 69.487 (66.999,71.975) 68.685 (63.743,73.626) 70.276 (66.911,73.642) 69.55 (60.835,78.265)
150+ 62,331 68.187 (65.109,71.264) 69.772 (66.389,73.154) 69.9 (66.158,73.643) 70.352 (64.31,76.394)
HH size
1 177,140 66.779 (64.452,69.106) 80.258 (54.973,105.544) 66.501 (62.817,70.186) 67.607 (63.28,71.934)
2 286,106 67.608 (65.994,69.223) 65.532 (61.489,69.574) 66.781 (63.894,69.667) 67.282 (63.371,71.193)
3 152,684 71.233 (68.836,73.631) 72.398 (66.412,78.384) 74.177 (69.507,78.848) 71.127 (67.04,75.214)
4 143,442 70.161 (67.969,72.352) 69.794 (65.273,74.315) 69.944 (66.494,73.395) 70.839 (65.417,76.261)
5+ 77,689 72.012 (68.913,75.11) 74.664 (64.68,84.648) 76.567 (71.368,81.765) 73.321 (68.479,78.163)
Urban size
<50k 34,987 67.602 (62.771,72.432) 79.22 (59.18,99.26) 65.75 (59.749,71.751) 66.109 (57.069,75.149)
50-200k 119,970 62.608 (60.337,64.879) 65.759 (61.25,70.268) 65.151 (62.164,68.138) 67.211 (61.409,73.014)
200-500k 44,578 68.576 (63.52,73.632) 87.248 (73.018,101.477) 68.884 (63.664,74.104) 69.636 (61.746,77.526)
500-1000k 276,629 68.017 (66.289,69.745) 66.524 (61.364,71.685) 68.123 (65.323,70.923) 70.338 (64.971,75.704)
1000k+ 360,897 71.928 (70.451,73.404) 70.91 (67.926,73.894) 73.567 (71.441,75.693) 72.962 (68.493,77.43)
Vehicle make
American 290,228 66.507 (64.905,68.108) 71.826 (59.917,83.734) 68.256 (65.302,71.21) 69.04 (63.968,74.113)
Asian 528,810 70.265 (69,71.53) 72.7 (69.653,75.747) 71.602 (69.436,73.768) 70.211 (66.415,74.007)
European 18,023 69.261 (63.898,74.624) 66.191 (59.703,72.679) 71.403 (65.95,76.855) 69.836 (60.506,79.166)
Vehicle type
Car 610,245 68.686 (67.539,69.834) 73.853 (65.931,81.776) 69.706 (67.4,72.012) 70.236 (66.799,73.673)
Van 27,866 69.2 (64.432,73.968) 68.389 (61.064,75.714) 73.096 (66.388,79.804) 64.905 (54.298,75.512)
SUV 158,202 68.993 (66.851,71.134) 68.424 (62.145,74.704) 69.291 (66.318,72.263) 69.469 (64.351,74.587)
Pickup 40,748 72.361 (66.713,78.008) 69.934 (59.062,80.805) 74.495 (64.949,84.04) 70.256 (58.87,81.643)
Fuel type
Gas/D 761,292 68.637 (67.61,69.664) 71.334 (66.221,76.446) 69.895 (67.66,72.131) 69.443 (65.954,72.931)
Other 75,769 71.986 (68.598,75.373) 82.674 (72.987,92.361) 77.039 (72.37,81.708) 75.696 (67.822,83.571)
Weekend
Weekday 712,411 67.671 (66.701,68.64) 70.362 (65.734,74.991) 68.72 (66.616,70.824) 68.348 (64.806,71.89)
Weekend 124,650 76.196 (75.001,77.392) 78.646 (71.128,86.164) 77.649 (75.099,80.199) 76.577 (73.08,80.074)
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Table 3.14: Mean daily trip distance (mile) and associated 95% CIS by different
covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 32.418 (31.823,33.013) 33.76 (31.806,35.715) 33.39 (32.22,34.56) 32.926 (31.185,34.667)
Gender
Male 407,312 33.852 (32.963,34.741) 35.51 (32.247,38.773) 34.782 (33.146,36.418) 34.358 (32.254,36.461)
Female 429,749 31.06 (30.27,31.849) 31.901 (29.932,33.871) 31.947 (30.601,33.293) 31.428 (28.965,33.89)
Age group
16-24 311,106 32.828 (32,33.657) 34.904 (33.085,36.723) 34.864 (33.358,36.369) 34.491 (32.804,36.178)
25-34 117,758 36.246 (34.603,37.888) 36.546 (33.364,39.728) 34.841 (32.742,36.94) 35.324 (32.837,37.81)
35-44 61,908 35.958 (33.318,38.597) 31.774 (28.585,34.962) 35.067 (32.321,37.813) 33.9 (30.173,37.627)
45-54 77,903 36.103 (34.231,37.976) 35.721 (31.46,39.981) 34.301 (31.843,36.759) 34.578 (30.108,39.049)
55-64 63,891 35.037 (32.735,37.34) 33.159 (29.352,36.966) 33.138 (30.097,36.178) 32.135 (29.896,34.375)
65-74 88,762 31.548 (29.552,33.544) 33.875 (24.893,42.856) 29.948 (26.934,32.962) 29.028 (26.593,31.464)
75+ 115,733 22.269 (21.044,23.493) 20.184 (18.108,22.259) 21.037 (19.304,22.77) 21.421 (18.979,23.863)
Race
White 745,596 32.189 (31.554,32.824) 33.173 (30.862,35.484) 33.426 (32.11,34.743) 32.85 (31.118,34.582)
Black 43,109 37.275 (34.577,39.973) 35.696 (31.364,40.029) 34.187 (31.146,37.228) 34.131 (28.834,39.427)
Asian 26,265 30.638 (28.095,33.181) 29.601 (25.527,33.675) 28.311 (25.238,31.383) 28.289 (22.62,33.958)
Other 22,091 32.789 (29.699,35.879) 37.919 (30.975,44.862) 35.518 (30.553,40.484) 35.058 (27.876,42.239)
Ethnicity
Non-Hisp 808,098 32.328 (31.723,32.933) 32.852 (30.823,34.881) 33.217 (32.085,34.349) 32.362 (30.845,33.879)
Hispanic 28,963 34.935 (31.713,38.158) 36.882 (32.766,40.997) 35.126 (31.226,39.027) 36.344 (29.859,42.828)
Education
<High school 50,943 25.659 (23.905,27.412) 28.248 (24.014,32.482) 28.977 (25.986,31.967) 30.351 (22.902,37.8)
HS completed 78,045 32.04 (30.14,33.939) 36.853 (29.19,44.515) 33.596 (30.989,36.203) 33.497 (30.336,36.658)
College 237,206 31.848 (30.812,32.885) 33.666 (30.509,36.824) 33.038 (31.177,34.899) 32.956 (30.622,35.29)
Graduate 326,860 33.879 (32.85,34.908) 35.56 (32.73,38.389) 35.093 (33.48,36.706) 34.091 (31.938,36.244)
Post-grad 144,007 32.637 (31.235,34.039) 29.935 (27.6,32.269) 32.801 (30.877,34.725) 31.414 (29.555,33.273)
HH income
0-49 332,586 31.185 (30.273,32.097) 32.845 (28.788,36.901) 31.979 (30.333,33.626) 31.538 (28.932,34.144)
50-99 309,387 33.024 (32.004,34.043) 35.811 (32.755,38.866) 33.907 (32.201,35.613) 33.744 (32.011,35.476)
100-149 132,757 33.765 (32.235,35.295) 33.354 (30.228,36.479) 34.433 (32.472,36.394) 33.532 (30.736,36.329)
150+ 62,331 33.124 (31.231,35.017) 31.693 (29.605,33.781) 33.795 (31.147,36.442) 33.428 (29.886,36.97)
HH size
1 177,140 30.588 (29.231,31.945) 34.322 (27.864,40.779) 31.133 (28.899,33.366) 30.768 (28.385,33.152)
2 286,106 32.415 (31.372,33.458) 31.701 (29.362,34.039) 32.742 (30.989,34.494) 32.301 (30.95,33.651)
3 152,684 33.786 (32.452,35.12) 34.54 (30.838,38.242) 34.806 (32.647,36.966) 34.421 (31.549,37.293)
4 143,442 32.95 (31.524,34.376) 32.048 (29.257,34.84) 33.04 (31.09,34.99) 32.898 (30.012,35.784)
5+ 77,689 32.934 (31.314,34.554) 36.522 (32.397,40.647) 36.383 (33.774,38.993) 34.731 (32.103,37.359)
Urban size
<50k 34,987 36.147 (32.885,39.408) 34.93 (28.343,41.518) 34.077 (30.506,37.648) 32.945 (30.263,35.628)
50-200k 119,970 31.028 (29.388,32.668) 32.379 (29.47,35.288) 32.032 (29.692,34.372) 32.636 (30.058,35.215)
200-500k 44,578 36.416 (33.616,39.216) 44.143 (36.054,52.231) 35.585 (33.228,37.942) 36.461 (32.151,40.771)
500-1000k 276,629 31.973 (30.952,32.994) 32.453 (27.672,37.234) 31.005 (29.331,32.679) 32.781 (28.04,37.522)
1000k+ 360,897 32.366 (31.497,33.236) 32.475 (30.577,34.373) 32.371 (31.117,33.626) 32.302 (30.134,34.471)
Vehicle make
American 290,228 30.948 (29.995,31.9) 35.285 (31.317,39.254) 32.784 (31.234,34.335) 32.956 (30.909,35.004)
Asian 528,810 33.249 (32.476,34.022) 33.339 (31.554,35.124) 34.022 (32.623,35.42) 33.124 (31.156,35.092)
European 18,023 31.719 (28.896,34.542) 29.905 (26.439,33.37) 32.979 (30.006,35.951) 32.05 (27.154,36.946)
Vehicle type
Car 610,245 32.126 (31.428,32.823) 33.619 (31.253,35.985) 32.916 (31.691,34.141) 32.518 (30.426,34.611)
Van 27,866 31.212 (28.225,34.199) 29.109 (24.54,33.679) 32.682 (28.052,37.312) 31.109 (24.519,37.699)
SUV 158,202 32.848 (31.558,34.137) 33.857 (30.466,37.249) 33.15 (31.374,34.926) 32.559 (29.986,35.133)
Pickup 40,748 35.958 (32.813,39.103) 35.086 (30.375,39.798) 36.557 (32.917,40.197) 36.352 (31.036,41.668)
Fuel type
Gas/D 761,292 32.121 (31.502,32.739) 33.524 (31.522,35.526) 33.18 (32.006,34.354) 32.813 (31.021,34.605)
Other 75,769 35.409 (33.302,37.515) 43.864 (37.513,50.214) 39.259 (35.942,42.576) 37.388 (34.271,40.505)
Weekend
Weekday 712,411 31.895 (31.307,32.482) 33.181 (31.327,35.036) 32.817 (31.666,33.968) 32.41 (30.68,34.14)
Weekend 124,650 35.41 (34.689,36.132) 37.037 (34.351,39.724) 36.64 (35.09,38.19) 35.853 (33.806,37.899)
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Table 3.15: Mean daily average speed (MPH) of trips and associated 95% CIS by
different covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 25.03 (24.8,25.261) 25.775 (24.277,27.274) 25.562 (25.063,26.06) 25.39 (24.309,26.471)
Gender
Male 407,312 25.474 (25.137,25.811) 26.964 (24.667,29.261) 26.199 (25.578,26.82) 25.999 (24.877,27.12)
Female 429,749 24.61 (24.297,24.923) 24.463 (23.239,25.688) 24.906 (24.32,25.492) 24.76 (23.59,25.93)
Age group
16-24 311,106 25.239 (24.893,25.586) 25.876 (24.878,26.873) 25.921 (25.287,26.555) 25.831 (24.724,26.938)
25-34 117,758 26.951 (26.318,27.583) 27.242 (26.062,28.422) 26.571 (25.723,27.419) 27.07 (26.055,28.085)
35-44 61,908 26.065 (25.183,26.947) 25.045 (23.196,26.894) 25.696 (24.675,26.716) 25.516 (23.327,27.705)
45-54 77,903 26.527 (25.727,27.328) 27.731 (22.197,33.265) 26.412 (25.419,27.405) 25.665 (23.242,28.088)
55-64 63,891 26.22 (25.471,26.969) 26.075 (24.48,27.67) 26.275 (25.152,27.398) 25.525 (24.078,26.971)
65-74 88,762 23.956 (23.339,24.572) 22.601 (20.487,24.716) 23.618 (22.683,24.554) 23.216 (22.2,24.232)
75+ 115,733 21.12 (20.559,21.681) 20.545 (19.251,21.838) 21.317 (20.539,22.094) 20.728 (19.29,22.167)
Race
White 745,596 25.109 (24.863,25.354) 25.225 (24.255,26.196) 26.086 (25.565,26.608) 25.656 (24.95,26.363)
Black 43,109 24.227 (23.188,25.265) 27.223 (22.295,32.151) 23.198 (22.202,24.194) 23.433 (20.47,26.397)
Asian 26,265 24.35 (23.278,25.423) 25.203 (23.46,26.947) 23.038 (21.674,24.402) 24.508 (21.082,27.934)
Other 22,091 24.76 (23.473,26.046) 25.049 (23.008,27.091) 24.68 (23.128,26.232) 25.956 (22.168,29.744)
Ethnicity
Non-Hisp 808,098 25.039 (24.805,25.274) 25.023 (24.156,25.89) 25.674 (25.197,26.152) 25.246 (24.437,26.055)
Hispanic 28,963 24.777 (23.526,26.028) 27.808 (24.042,31.574) 25.233 (23.873,26.593) 26.284 (22.881,29.688)
Education
<High school 50,943 23.16 (22.31,24.01) 23.142 (21.364,24.919) 23.825 (22.322,25.328) 24.791 (21.638,27.943)
HS completed 78,045 25.192 (24.438,25.945) 24.851 (22.707,26.995) 26.025 (25.019,27.031) 25.165 (22.538,27.793)
College 237,206 24.506 (24.09,24.921) 25.888 (22.586,29.189) 24.988 (24.184,25.793) 24.7 (23.717,25.683)
Graduate 326,860 25.426 (25.043,25.81) 26.769 (25.764,27.775) 26.363 (25.795,26.93) 26.368 (25.077,27.659)
Post-grad 144,007 25.569 (25.027,26.11) 25.031 (23.955,26.107) 25.446 (24.775,26.117) 25.555 (24.399,26.711)
HH income
0-49 332,586 24.333 (23.956,24.709) 23.975 (22.766,25.183) 24.659 (23.851,25.467) 24.401 (22.918,25.884)
50-99 309,387 25.25 (24.878,25.623) 27.547 (24.479,30.615) 25.971 (25.316,26.627) 25.744 (24.828,26.66)
100-149 132,757 25.963 (25.411,26.515) 25.892 (24.611,27.174) 26.281 (25.569,26.994) 25.981 (24.275,27.687)
150+ 62,331 22.937 (22.564,23.31) 25.096 (21.747,28.444) 23.419 (22.632,24.206) 23.288 (22.044,24.533)
HH size
1 177,140 23.837 (23.337,24.337) 23.986 (22.176,25.797) 24.355 (23.538,25.173) 24.024 (22.597,25.452)
2 286,106 25.155 (24.746,25.563) 25.606 (24.679,26.532) 25.778 (25.128,26.428) 25.55 (24.735,26.365)
3 152,684 25.77 (25.223,26.316) 26.042 (24.785,27.3) 25.645 (24.886,26.403) 26.035 (24.807,27.262)
4 143,442 25.423 (24.895,25.952) 25.025 (23.669,26.381) 25.766 (25.015,26.517) 25.622 (24.254,26.991)
5+ 77,689 25.112 (24.48,25.745) 27.472 (22.365,32.58) 26.14 (24.981,27.3) 25.155 (23.23,27.08)
Urban size
<50k 34,987 28.437 (27.061,29.813) 25.595 (22.943,28.247) 27.951 (26.354,29.548) 27.097 (25.536,28.659)
50-200k 119,970 24.455 (23.814,25.096) 25.081 (23.851,26.31) 24.784 (23.965,25.603) 25.031 (24.155,25.907)
200-500k 44,578 27.64 (26.634,28.645) 27.073 (23.546,30.601) 27.024 (26.049,27.999) 26.931 (24.582,29.279)
500-1000k 276,629 25.758 (25.355,26.162) 26.189 (23.701,28.678) 25.05 (24.289,25.812) 25.513 (24.121,26.904)
1000k+ 360,897 20.451 (18.941,21.961) 23.557 (21.359,25.755) 21.9 (20.41,23.389) 23.488 (20.639,26.336)
Vehicle make
American 290,228 24.799 (24.402,25.195) 27.212 (24.331,30.094) 25.766 (25.047,26.485) 25.353 (24.079,26.627)
Asian 528,810 25.174 (24.884,25.464) 24.771 (23.69,25.853) 25.509 (25.004,26.015) 25.464 (24.358,26.569)
European 18,023 24.534 (23.553,25.514) 24.974 (23.083,26.866) 24.291 (22.942,25.64) 25.307 (23.285,27.329)
Vehicle type
Car 610,245 24.893 (24.622,25.164) 25.115 (24.327,25.904) 25.313 (24.794,25.832) 25.357 (24.467,26.247)
Van 27,866 23.562 (22.539,24.586) 23.064 (21.378,24.75) 23.484 (22.376,24.591) 23.527 (20.832,26.223)
SUV 158,202 25.398 (24.87,25.925) 26.495 (22.622,30.369) 25.635 (24.887,26.384) 25.008 (23.511,26.505)
Pickup 40,748 26.43 (25.484,27.375) 26.245 (23.43,29.059) 26.628 (25.453,27.804) 25.788 (23.842,27.733)
Fuel type
Gas/D 761,292 24.955 (24.711,25.199) 25.727 (24.205,27.249) 25.507 (25.005,26.01) 25.361 (24.277,26.446)
Other 75,769 25.784 (25.091,26.476) 27.804 (26.114,29.493) 27.052 (25.991,28.113) 26.676 (24.691,28.66)
Weekend
Weekday 712,411 25.077 (24.847,25.308) 25.744 (24.351,27.138) 25.598 (25.1,26.096) 25.425 (24.36,26.49)
Weekend 124,650 24.76 (24.518,25.003) 25.939 (23.843,28.034) 25.356 (24.811,25.901) 25.194 (23.987,26.401)
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Table 3.16: Mean start time of the first daytrips and associated 95% CIS by different
covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 13.811 (13.763,13.859) 13.564 (13.391,13.737) 13.553 (13.427,13.68) 13.5 (13.364,13.636)
Gender
Male 407,312 13.824 (13.751,13.898) 13.556 (13.304,13.807) 13.572 (13.418,13.725) 13.486 (13.304,13.667)
Female 429,749 13.799 (13.736,13.861) 13.578 (13.362,13.793) 13.533 (13.386,13.681) 13.515 (13.389,13.64)
Age group
16-24 311,106 14.411 (14.354,14.468) 14.396 (14.254,14.537) 14.351 (14.218,14.485) 14.266 (14.13,14.402)
25-34 117,758 13.999 (13.891,14.106) 13.864 (13.562,14.165) 13.923 (13.734,14.112) 13.843 (13.65,14.037)
35-44 61,908 13.57 (13.399,13.741) 13.694 (13.178,14.211) 13.467 (13.164,13.77) 13.448 (13.117,13.78)
45-54 77,903 13.489 (13.368,13.61) 13.414 (13.028,13.8) 13.389 (13.187,13.592) 13.335 (13.043,13.626)
55-64 63,891 13.344 (13.185,13.503) 13.59 (13.248,13.933) 13.279 (13.004,13.555) 13.27 (12.902,13.637)
65-74 88,762 13.244 (13.091,13.397) 12.529 (12.082,12.975) 13.131 (12.874,13.388) 13.026 (12.663,13.388)
75+ 115,733 13.047 (12.9,13.193) 13.412 (13.089,13.736) 13.051 (12.815,13.287) 13.216 (12.904,13.528)
Race
White 745,596 13.77 (13.719,13.821) 13.522 (13.331,13.712) 13.506 (13.372,13.64) 13.46 (13.318,13.602)
Black 43,109 14.065 (13.887,14.242) 13.632 (13.387,13.876) 13.695 (13.49,13.901) 13.662 (13.21,14.114)
Asian 26,265 14.351 (14.135,14.567) 14.281 (13.405,15.157) 14.051 (13.522,14.58) 13.841 (13.51,14.172)
Other 22,091 14.055 (13.786,14.324) 13.349 (12.959,13.739) 13.585 (13.254,13.917) 13.492 (12.695,14.289)
Ethnicity
Non-Hisp 808,098 13.803 (13.754,13.851) 13.563 (13.359,13.767) 13.547 (13.419,13.675) 13.49 (13.362,13.617)
Hispanic 28,963 14.049 (13.81,14.288) 13.602 (13.303,13.901) 13.544 (13.278,13.81) 13.558 (13.084,14.031)
Education
<High school 50,943 14.3 (14.177,14.424) 13.601 (13.416,13.786) 13.604 (13.394,13.814) 13.513 (13.106,13.921)
HS completed 78,045 13.895 (13.73,14.06) 13.425 (12.957,13.893) 13.509 (13.236,13.781) 13.478 (13.072,13.884)
College 237,206 14.003 (13.913,14.092) 13.641 (13.36,13.922) 13.611 (13.433,13.788) 13.532 (13.339,13.725)
Graduate 326,860 13.695 (13.617,13.774) 13.68 (13.378,13.982) 13.65 (13.5,13.799) 13.558 (13.42,13.696)
Post-grad 144,007 13.539 (13.431,13.648) 13.307 (12.878,13.737) 13.369 (13.197,13.542) 13.399 (13.122,13.677)
HH income
0-49 332,586 13.891 (13.809,13.973) 13.62 (13.357,13.882) 13.641 (13.465,13.817) 13.612 (13.339,13.886)
50-99 309,387 13.745 (13.669,13.822) 13.573 (13.341,13.805) 13.55 (13.395,13.705) 13.469 (13.323,13.615)
100-149 132,757 13.777 (13.671,13.882) 13.383 (13.062,13.704) 13.424 (13.243,13.605) 13.415 (13.247,13.584)
150+ 62,331 13.531 (13.437,13.625) 13.201 (12.949,13.454) 13.457 (13.277,13.636) 13.342 (13.14,13.544)
HH size
1 177,140 13.649 (13.533,13.765) 13.337 (12.98,13.694) 13.518 (13.349,13.688) 13.489 (13.276,13.703)
2 286,106 13.6 (13.513,13.687) 13.462 (13.164,13.761) 13.469 (13.275,13.663) 13.383 (13.215,13.551)
3 152,684 14.02 (13.918,14.122) 13.718 (13.351,14.085) 13.58 (13.395,13.765) 13.5 (13.336,13.664)
4 143,442 14.033 (13.941,14.125) 13.514 (13.189,13.838) 13.64 (13.491,13.788) 13.542 (13.362,13.723)
5+ 77,689 14.138 (14.017,14.259) 13.819 (13.433,14.206) 13.581 (13.321,13.841) 13.73 (13.474,13.985)
Urban size
<50k 34,987 13.52 (13.266,13.773) 13.383 (12.795,13.972) 13.337 (12.845,13.829) 13.328 (13.031,13.625)
50-200k 119,970 13.928 (13.794,14.062) 13.747 (13.489,14.005) 13.842 (13.672,14.011) 13.698 (13.522,13.873)
200-500k 44,578 13.918 (13.705,14.13) 13.518 (12.933,14.103) 13.817 (13.571,14.064) 13.66 (13.276,14.045)
500-1000k 276,629 13.759 (13.678,13.84) 13.395 (13.213,13.576) 13.564 (13.45,13.679) 13.503 (13.305,13.7)
1000k+ 360,897 14.286 (13.859,14.713) 13.451 (12.893,14.01) 13.654 (13.317,13.992) 13.385 (12.683,14.087)
Vehicle make
American 290,228 13.8 (13.714,13.886) 13.339 (13.067,13.61) 13.455 (13.258,13.651) 13.426 (13.221,13.631)
Asian 528,810 13.799 (13.741,13.858) 13.646 (13.485,13.808) 13.627 (13.517,13.736) 13.561 (13.43,13.692)
European 18,023 14.337 (14.094,14.58) 14.19 (13.492,14.888) 13.684 (13.334,14.034) 13.552 (13.171,13.933)
Vehicle type
Car 610,245 13.849 (13.792,13.906) 13.649 (13.445,13.854) 13.658 (13.53,13.787) 13.611 (13.476,13.747)
Van 27,866 13.588 (13.336,13.84) 13.414 (13.064,13.764) 13.472 (13.172,13.772) 13.514 (13.168,13.861)
SUV 158,202 13.773 (13.675,13.871) 13.623 (13.279,13.966) 13.497 (13.336,13.657) 13.528 (13.264,13.793)
Pickup 40,748 13.714 (13.536,13.893) 13.725 (13.41,14.04) 13.544 (13.305,13.783) 13.502 (13.079,13.925)
Fuel type
Gas/D 761,292 13.841 (13.791,13.891) 13.565 (13.389,13.741) 13.556 (13.428,13.685) 13.498 (13.36,13.636)
Other 75,769 13.51 (13.338,13.683) 13.525 (13.217,13.833) 13.463 (13.254,13.672) 13.56 (13.264,13.856)
Weekend
Weekday 712,411 13.824 (13.775,13.872) 13.576 (13.408,13.744) 13.558 (13.431,13.684) 13.502 (13.364,13.64)
Weekend 124,650 13.74 (13.685,13.794) 13.496 (13.22,13.773) 13.531 (13.397,13.664) 13.486 (13.334,13.637)
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Table 3.17: Mean daily maximum speed (MPH) and associated 95% CIS by different
covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 59.808 (59.467,60.149) 61.547 (59.717,63.377) 60.447 (59.833,61.062) 59.947 (58.623,61.27)
Gender
Male 407,312 60.187 (59.706,60.669) 62.687 (59.483,65.89) 60.847 (60.045,61.649) 60.677 (58.953,62.402)
Female 429,749 59.448 (58.969,59.928) 60.28 (59.195,61.366) 60.023 (59.205,60.84) 59.193 (58.034,60.353)
Age group
16-24 311,106 61.475 (60.97,61.98) 62.484 (61.235,63.733) 62.212 (61.442,62.981) 62.078 (60.788,63.368)
25-34 117,758 63.41 (62.567,64.253) 62.907 (61.082,64.733) 62.359 (61.171,63.546) 62.373 (60.598,64.148)
35-44 61,908 62.617 (61.358,63.878) 62.761 (60.791,64.731) 63.986 (62.235,65.737) 62.039 (59.911,64.166)
45-54 77,903 60.872 (59.853,61.89) 64.943 (58.295,71.591) 60.117 (58.688,61.545) 59.738 (57.435,62.041)
55-64 63,891 59.478 (58.406,60.55) 59.666 (57.225,62.107) 59.611 (57.872,61.35) 58.797 (56.332,61.262)
65-74 88,762 55.91 (55.068,56.753) 56.915 (55.026,58.805) 55.693 (54.645,56.742) 55.5 (53.256,57.744)
75+ 115,733 52.613 (51.8,53.426) 52.602 (50.493,54.71) 52.88 (51.871,53.889) 52.262 (50.92,53.604)
Race
White 745,596 59.449 (59.092,59.806) 60.312 (59.478,61.145) 60.254 (59.581,60.929) 59.586 (58.217,60.954)
Black 43,109 64.628 (62.991,66.264) 68.229 (60.656,75.802) 62.22 (60.3,64.14) 62.152 (58.85,65.453)
Asian 26,265 61.08 (59.323,62.836) 60.573 (58.414,62.733) 59.081 (56.873,61.288) 59.464 (55.818,63.11)
Other 22,091 61.008 (59.099,62.917) 60.986 (58.585,63.387) 59.968 (58.45,61.485) 60.988 (55.744,66.231)
Ethnicity
Non-Hisp 808,098 59.718 (59.37,60.066) 60.221 (59.395,61.048) 60.232 (59.595,60.869) 59.528 (58.485,60.571)
Hispanic 28,963 62.31 (60.707,63.914) 66.308 (60.971,71.645) 61.976 (60.418,63.533) 62.437 (58.69,66.184)
Education
<High school 50,943 58.103 (56.954,59.251) 59.199 (57.013,61.386) 58.949 (57.325,60.572) 60.162 (57.18,63.145)
HS completed 78,045 59.865 (58.83,60.901) 61.116 (59.657,62.576) 60.812 (59.457,62.166) 60.382 (57.673,63.092)
College 237,206 59.874 (59.25,60.497) 62.623 (58.482,66.764) 59.982 (58.9,61.065) 59.491 (57.762,61.219)
Graduate 326,860 60.185 (59.62,60.751) 61.474 (60.049,62.898) 61.405 (60.379,62.43) 60.718 (59.63,61.807)
Post-grad 144,007 59.414 (58.566,60.262) 59.809 (58.019,61.598) 60.113 (58.801,61.426) 59.221 (57.561,60.881)
HH income
0-49 332,586 59.127 (58.575,59.68) 59.271 (57.864,60.679) 59.263 (58.317,60.208) 58.757 (57.339,60.175)
50-99 309,387 60.031 (59.461,60.6) 64.22 (60.289,68.151) 60.94 (60.026,61.853) 60.508 (58.903,62.113)
100-149 132,757 60.663 (59.901,61.425) 60.409 (58.784,62.035) 61.507 (60.192,62.822) 60.611 (59.169,62.052)
150+ 62,331 60.513 (59.305,61.721) 61.386 (59.529,63.244) 60.484 (58.966,62.004) 60.549 (58.951,62.147)
HH size
1 177,140 57.902 (57.123,58.682) 58.973 (57.29,60.655) 58.243 (57.246,59.24) 57.958 (56.619,59.298)
2 286,106 59.02 (58.421,59.619) 60.033 (58.585,61.48) 59.371 (58.389,60.353) 59.371 (57.722,61.019)
3 152,684 61.35 (60.569,62.132) 60.399 (58.548,62.25) 61.373 (59.998,62.748) 60.541 (58.797,62.285)
4 143,442 61.214 (60.476,61.951) 61.592 (60.031,63.152) 61.488 (60.377,62.599) 61.068 (59.616,62.52)
5+ 77,689 61.428 (60.57,62.286) 66.669 (60.605,72.733) 62.759 (60.967,64.551) 60.989 (58.922,63.057)
Urban size
<50k 34,987 60.422 (58.928,61.917) 61.118 (58.986,63.251) 59.964 (58.006,61.921) 59.665 (57.238,62.093)
50-200k 119,970 56.12 (55.22,57.021) 57.621 (55.544,59.698) 57.162 (56.071,58.254) 57.313 (55.844,58.782)
200-500k 44,578 62.847 (61.27,64.423) 64.07 (60.75,67.39) 62.507 (60.978,64.037) 62.711 (60.338,65.086)
500-1000k 276,629 60.193 (59.62,60.766) 61.073 (57.067,65.078) 59.886 (58.928,60.846) 60.296 (58.82,61.773)
1000k+ 360,897 60.303 (59.8,60.807) 62.075 (59.415,64.736) 60.647 (59.977,61.317) 60.287 (59.099,61.475)
Vehicle make
American 290,228 59.36 (58.773,59.946) 63.24 (59.63,66.85) 60.218 (59.339,61.096) 59.877 (58.058,61.695)
Asian 528,810 60.013 (59.588,60.438) 60.796 (59.891,61.701) 60.751 (60.095,61.407) 60.203 (59.036,61.371)
European 18,023 61.016 (59.074,62.958) 58.842 (56.171,61.514) 58.984 (56.944,61.025) 59.049 (55.175,62.922)
Vehicle type
Car 610,245 59.744 (59.338,60.149) 60.92 (60.083,61.757) 60.44 (59.765,61.115) 60.119 (58.854,61.383)
Van 27,866 57.722 (56.154,59.289) 58.36 (55.812,60.907) 58.674 (56.088,61.26) 58.263 (55.586,60.94)
SUV 158,202 60.093 (59.36,60.825) 62.613 (57.431,67.795) 60.444 (59.297,61.59) 59.511 (57.678,61.345)
Pickup 40,748 61.092 (59.557,62.627) 62.97 (61.201,64.739) 61.359 (59.346,63.371) 60.707 (57.51,63.905)
Fuel type
Gas/D 761,292 59.878 (59.516,60.239) 61.537 (59.67,63.404) 60.473 (59.842,61.105) 59.937 (58.565,61.309)
Other 75,769 59.105 (58.131,60.079) 61.685 (58.505,64.865) 61.082 (59.975,62.189) 60.645 (58.056,63.234)
Weekend
Weekday 712,411 59.684 (59.344,60.023) 61.322 (59.663,62.982) 60.295 (59.687,60.902) 59.801 (58.483,61.119)
Weekend 124,650 60.517 (60.151,60.883) 62.809 (60.044,65.575) 61.312 (60.601,62.023) 60.768 (59.333,62.204)
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Table 3.18: Mean daily frequency of brakes per driven mile and associated 95% CIS
by different covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 4.499 (4.387,4.611) 4.356 (3.887,4.825) 4.644 (4.345,4.942) 4.426 (3.984,4.867)
Gender
Male 407,312 4.415 (4.247,4.583) 3.835 (3.139,4.531) 4.456 (4.129,4.784) 4.345 (3.789,4.902)
Female 429,749 4.579 (4.43,4.728) 4.957 (4.518,5.396) 4.825 (4.471,5.179) 4.508 (4.04,4.977)
Age group
16-24 311,106 4.283 (4.114,4.451) 4.368 (3.735,5.001) 4.417 (4.068,4.766) 4.173 (3.777,4.57)
25-34 117,758 4.085 (3.819,4.351) 4.201 (3.59,4.812) 4.609 (4.084,5.133) 3.984 (3.288,4.681)
35-44 61,908 4.422 (4.052,4.792) 4.575 (3.779,5.371) 4.643 (4.05,5.236) 4.574 (3.905,5.243)
45-54 77,903 4.14 (3.846,4.435) 3.764 (2.22,5.308) 4.174 (3.719,4.628) 3.997 (3.359,4.636)
55-64 63,891 4.565 (4.136,4.995) 5.003 (4.102,5.904) 4.589 (4.042,5.136) 4.62 (3.365,5.875)
65-74 88,762 4.801 (4.41,5.193) 3.522 (1.749,5.296) 4.799 (4.195,5.402) 4.596 (3.372,5.821)
75+ 115,733 5.518 (5.147,5.888) 6.902 (5.723,8.081) 5.857 (5.25,6.464) 6.44 (5.548,7.332)
Race
White 745,596 4.521 (4.401,4.641) 4.518 (4.018,5.018) 4.583 (4.272,4.895) 4.402 (4,4.805)
Black 43,109 4.366 (3.885,4.848) 3.807 (2.117,5.496) 5.074 (4.442,5.706) 5.053 (4.117,5.988)
Asian 26,265 4.256 (3.675,4.837) 4.349 (3.393,5.304) 5.222 (4.061,6.383) 4.483 (3.405,5.561)
Other 22,091 4.319 (3.732,4.907) 4.197 (3.011,5.382) 4.438 (3.574,5.302) 3.705 (2.167,5.243)
Ethnicity
Non-Hisp 808,098 4.488 (4.375,4.601) 4.56 (4.117,5.003) 4.597 (4.323,4.871) 4.442 (4.051,4.832)
Hispanic 28,963 4.813 (4.037,5.588) 3.842 (2.609,5.075) 4.84 (3.782,5.898) 4.3 (2.899,5.701)
Education
<High school 50,943 4.942 (4.522,5.362) 4.779 (3.58,5.979) 5.209 (4.526,5.893) 5.204 (3.91,6.498)
HS completed 78,045 4.163 (3.8,4.526) 3.495 (1.656,5.335) 4.241 (3.662,4.819) 4.179 (3.275,5.084)
College 237,206 4.561 (4.347,4.775) 4.466 (3.609,5.323) 4.713 (4.269,5.158) 4.604 (4.062,5.145)
Graduate 326,860 4.347 (4.165,4.528) 4.174 (3.765,4.583) 4.564 (4.201,4.927) 4.17 (3.59,4.749)
Post-grad 144,007 4.769 (4.509,5.029) 5.031 (4.514,5.548) 4.788 (4.387,5.19) 4.541 (3.857,5.224)
HH income
0-49 332,586 4.542 (4.353,4.731) 4.639 (3.669,5.608) 4.728 (4.325,5.131) 4.752 (4.157,5.347)
50-99 309,387 4.386 (4.207,4.566) 3.75 (2.847,4.653) 4.482 (4.098,4.866) 4.196 (3.682,4.71)
100-149 132,757 4.579 (4.32,4.838) 4.8 (4.301,5.3) 4.743 (4.228,5.258) 4.564 (3.933,5.194)
150+ 62,331 4.66 (4.265,5.056) 4.662 (3.942,5.383) 4.721 (4.213,5.229) 4 (3.02,4.98)
HH size
1 177,140 4.644 (4.38,4.908) 4.13 (2.528,5.733) 4.852 (4.438,5.265) 4.658 (4.058,5.258)
2 286,106 4.674 (4.46,4.888) 4.855 (4.259,5.451) 4.782 (4.302,5.262) 4.515 (3.92,5.111)
3 152,684 4.328 (4.097,4.558) 4.425 (3.937,4.913) 4.593 (4.123,5.064) 4.321 (3.785,4.857)
4 143,442 4.294 (4.064,4.524) 4.356 (3.762,4.95) 4.475 (4.051,4.9) 4.201 (3.71,4.692)
5+ 77,689 4.241 (3.949,4.533) 3.851 (2.313,5.388) 4.396 (3.893,4.899) 4.459 (4.017,4.901)
Urban size
<50k 34,987 4.051 (3.567,4.535) 4.313 (2.858,5.768) 4.293 (3.57,5.015) 4.24 (3.746,4.734)
50-200k 119,970 4.789 (4.49,5.089) 4.921 (4.454,5.389) 4.761 (4.265,5.257) 4.696 (4.02,5.372)
200-500k 44,578 4.241 (3.825,4.657) 4.177 (3.147,5.206) 4.567 (4.075,5.059) 4.231 (3.049,5.413)
500-1000k 276,629 3.969 (3.793,4.145) 3.977 (3.342,4.612) 4.21 (3.867,4.552) 4.171 (3.549,4.793)
1000k+ 360,897 4.884 (4.703,5.066) 4.539 (3.985,5.093) 4.948 (4.599,5.297) 4.626 (4.025,5.227)
Vehicle make
American 290,228 4.762 (4.548,4.975) 4.239 (3.381,5.097) 5.007 (4.549,5.466) 4.914 (4.347,5.482)
Asian 528,810 4.392 (4.261,4.524) 4.569 (4.244,4.894) 4.451 (4.181,4.721) 4.206 (3.78,4.632)
European 18,023 3.401 (2.946,3.856) 3.161 (2.359,3.963) 3.664 (3.006,4.322) 2.898 (0.958,4.837)
Vehicle type
Car 610,245 4.504 (4.368,4.641) 4.281 (3.65,4.913) 4.564 (4.225,4.903) 4.248 (3.785,4.711)
Van 27,866 4.435 (4.064,4.806) 5.298 (4.287,6.31) 4.855 (4.41,5.3) 4.569 (3.345,5.792)
SUV 158,202 4.351 (4.148,4.555) 4.222 (3.078,5.365) 4.56 (4.215,4.904) 4.381 (3.73,5.032)
Pickup 40,748 5.043 (4.391,5.696) 4.611 (3.881,5.34) 5.022 (4.255,5.789) 5.226 (4.061,6.391)
Fuel type
Gas/D 761,292 4.435 (4.319,4.551) 4.345 (3.865,4.825) 4.649 (4.34,4.959) 4.426 (3.992,4.859)
Other 75,769 5.145 (4.737,5.553) 4.718 (3.688,5.747) 4.934 (4.308,5.561) 4.388 (3.347,5.429)
Weekend
Weekday 712,411 4.492 (4.379,4.605) 4.365 (3.91,4.82) 4.639 (4.339,4.938) 4.413 (3.963,4.864)
Weekend 124,650 4.54 (4.427,4.654) 4.305 (3.738,4.871) 4.675 (4.374,4.975) 4.497 (4.073,4.921)
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Table 3.19: Mean daily percentage of stop time and associated 95% CIS by different
covariates across DR adjustment methods

Unweighted GLM-AIPW-PAPP GLM-AIPW-PMLE BART–AIPW-PAPP
Covariate n (95%CI) (95%CI) (95%CI) (95%CI)

Total 837,061 25.518 (25.202,25.834) 25.515 (24.043,26.987) 24.949 (24.217,25.681) 0.251 (0.242,0.26)
Gender
Male 407,312 24.618 (24.157,25.079) 24.048 (21.863,26.234) 24.06 (23.158,24.961) 0.242 (0.231,0.252)
Female 429,749 26.371 (25.945,26.797) 27.107 (25.226,28.988) 25.873 (24.968,26.779) 0.261 (0.25,0.271)
Age group
16-24 311,106 26.713 (26.221,27.204) 26.551 (25.177,27.925) 25.913 (25.109,26.716) 0.258 (0.245,0.271)
25-34 117,758 25.199 (24.385,26.014) 24.178 (22.653,25.704) 25.013 (23.946,26.08) 0.247 (0.232,0.262)
35-44 61,908 25.575 (24.528,26.621) 27.6 (23.466,31.735) 26.828 (25.017,28.639) 0.265 (0.247,0.284)
45-54 77,903 23.406 (22.257,24.555) 24.908 (20.144,29.672) 22.926 (21.57,24.281) 0.239 (0.22,0.258)
55-64 63,891 22.879 (21.906,23.852) 22.949 (21.035,24.862) 23.408 (21.72,25.095) 0.235 (0.211,0.259)
65-74 88,762 24.425 (23.448,25.402) 27.099 (23.644,30.554) 24.739 (23.395,26.084) 0.262 (0.246,0.279)
75+ 115,733 26.315 (25.367,27.264) 27.682 (25.755,29.609) 26.185 (25.039,27.332) 0.28 (0.264,0.296)
Race
White 745,596 25.216 (24.882,25.55) 25.693 (24.172,27.213) 24.071 (23.292,24.849) 0.245 (0.237,0.253)
Black 43,109 29.711 (28.421,31.001) 27.666 (25.29,30.042) 29.697 (28.071,31.324) 0.294 (0.267,0.32)
Asian 26,265 25.989 (24.582,27.396) 23.631 (20.325,26.937) 26.098 (24.013,28.184) 0.252 (0.216,0.289)
Other 22,091 26.955 (24.952,28.958) 26.442 (23.616,29.269) 26.484 (23.923,29.045) 0.252 (0.21,0.294)
Ethnicity
Non-Hisp 808,098 25.438 (25.118,25.758) 25.622 (24.061,27.183) 24.532 (23.79,25.274) 0.251 (0.242,0.26)
Hispanic 28,963 27.746 (25.946,29.546) 26.345 (24.033,28.657) 27.102 (25.369,28.836) 0.251 (0.224,0.277)
Education
<High school 50,943 27.86 (26.587,29.134) 28.96 (26.302,31.618) 27.223 (25.326,29.119) 0.262 (0.233,0.292)
HS completed 78,045 26.136 (25.022,27.249) 28.155 (25.07,31.241) 25.534 (24.179,26.889) 0.263 (0.24,0.287)
College 237,206 26.881 (26.288,27.474) 27.043 (24.085,30.001) 26.128 (24.88,27.377) 0.264 (0.253,0.276)
Graduate 326,860 24.96 (24.472,25.448) 22.543 (21.102,23.983) 23.625 (22.803,24.447) 0.236 (0.218,0.254)
Post-grad 144,007 23.375 (22.656,24.094) 24.105 (22.558,25.651) 23.845 (22.697,24.992) 0.237 (0.219,0.254)
HH income
0-49 332,586 26.578 (26.059,27.098) 27.376 (25.379,29.374) 26.485 (25.414,27.557) 0.265 (0.254,0.276)
50-99 309,387 25.205 (24.717,25.694) 24.47 (21.599,27.341) 24.537 (23.514,25.559) 0.246 (0.232,0.26)
100-149 132,757 24.218 (23.441,24.996) 24.214 (22.662,25.766) 23.707 (22.615,24.799) 0.241 (0.226,0.256)
150+ 62,331 24.176 (22.962,25.39) 25.297 (20.664,29.931) 23.96 (22.384,25.536) 0.243 (0.223,0.264)
HH size
1 177,140 26.133 (25.442,26.823) 26.166 (22.88,29.452) 25.409 (24.247,26.571) 0.257 (0.247,0.266)
2 286,106 24.412 (23.871,24.953) 24.289 (23.042,25.537) 23.693 (22.808,24.578) 0.244 (0.234,0.254)
3 152,684 25.507 (24.748,26.267) 24.228 (21.958,26.498) 25.177 (23.648,26.705) 0.243 (0.231,0.256)
4 143,442 26.236 (25.522,26.951) 26.843 (23.645,30.042) 25.755 (24.608,26.901) 0.259 (0.244,0.273)
5+ 77,689 26.882 (25.884,27.88) 27.356 (22.56,32.152) 25.719 (24.458,26.98) 0.263 (0.244,0.282)
Urban size
<50k 34,987 20.874 (19.097,22.651) 26.022 (21.85,30.194) 21.679 (19.496,23.862) 0.228 (0.21,0.247)
50-200k 119,970 23.798 (22.902,24.694) 23.87 (22.364,25.376) 24.287 (22.881,25.692) 0.239 (0.222,0.257)
200-500k 44,578 22.435 (21.355,23.515) 24.487 (18.513,30.461) 23.436 (22.035,24.837) 0.236 (0.209,0.263)
500-1000k 276,629 25.334 (24.785,25.882) 25.695 (24.531,26.86) 26.128 (25.326,26.93) 0.263 (0.249,0.278)
1000k+ 360,897 27.062 (26.615,27.508) 26.883 (25.813,27.953) 27.43 (26.73,28.131) 0.271 (0.26,0.283)
Vehicle make
American 290,228 26.28 (25.728,26.831) 24.962 (22.25,27.673) 24.957 (23.906,26.007) 0.255 (0.244,0.265)
Asian 528,810 25.075 (24.682,25.468) 26.283 (24.65,27.917) 24.94 (24.125,25.755) 0.249 (0.239,0.258)
European 18,023 26.233 (24.82,27.646) 23.294 (19.732,26.857) 25.298 (22.99,27.607) 0.243 (0.21,0.276)
Vehicle type
Car 610,245 25.632 (25.267,25.997) 25.738 (24.14,27.335) 25.054 (24.321,25.788) 0.25 (0.24,0.261)
Van 27,866 27.205 (25.523,28.887) 28.585 (24.943,32.227) 28.5 (25.898,31.103) 0.277 (0.237,0.316)
SUV 158,202 25.274 (24.518,26.031) 25.441 (22.085,28.796) 25.053 (23.917,26.189) 0.254 (0.241,0.267)
Pickup 40,748 23.596 (22.247,24.945) 23.906 (20.704,27.107) 23.839 (21.462,26.217) 0.239 (0.211,0.267)
Fuel type
Gas/D 761,292 25.777 (25.444,26.11) 25.638 (24.128,27.147) 25.059 (24.318,25.801) 0.252 (0.243,0.261)
Other 75,769 22.913 (21.982,23.844) 20.192 (18.427,21.956) 22.057 (20.348,23.765) 0.216 (0.195,0.237)
Weekend
Weekday 712,411 25.395 (25.079,25.712) 25.465 (24.053,26.876) 24.83 (24.105,25.554) 0.25 (0.241,0.259)
Weekend 124,650 26.218 (25.892,26.545) 25.812 (23.822,27.803) 25.623 (24.805,26.442) 0.258 (0.248,0.268)
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CHAPTER IV

Robust fully Bayesian Inference for Non-probability

Samples

4.1 Introduction

The previous chapters proposed alternative approaches for robust inference in non-

probability samples when there exists a reference probability survey with a com-

mon set of relevant auxiliary variables. For this setup, my literature review revealed

that two distinct approaches can be chosen under a strongly ignorable condition:

(1) quasi-randomization (QR)–estimating the probabilities of being included in the

non-probability sample, also known as propensity scores (PS), while treating the

non-probability sample as if randomly selected (Lee, 2006; Lee and Valliant, 2009;

Valliant and Dever, 2011), and (2) prediction modeling (PM)–fitting models on the

non-probability sample to predict the response variable for units in the reference

survey (Rivers, 2007; Kim and Rao, 2012; Wang et al., 2015; Kim et al., 2021a).

In either case, design-based approaches can then be utilized to compute point and

interval estimates.

Since both ideas rely on imputation, it was demonstrated that correct specification

of the underlying models is essential, especially when extrapolation is inevitable as

in PM (Lenis et al., 2018). Chen et al. (2019) reconciles the QR notion with that of
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PM using the idea of augmented inverse propensity weighting (AIPW) (Robins et al.,

1994). This method is doubly robust (DR) in the sense that the sample estimator

is consistent if either the QR or PM model holds (Scharfstein et al., 1999). Chap-

ter III further expanded this approach to eliminate the need for a pseudo-likelihood

structure when estimating the propensity scores (PS). This permitted us to exploit

Bayesian modeling for prediction. However, our proposed method followed a two-

step Bayesian idea which conceptually separates the design stage, i.e. estimating the

PS and outcome variable(s) from the analysis stage, i.e. estimating the population

quantity conditional on the imputed PS and outcome variable(s) (Kaplan and Chen,

2012; Zigler, 2016).

The proposed AIPW estimator in Chapter III, however, had a design-based struc-

ture as both QR- and PM-related terms contained a (pseudo-)weighted summation.

Although an HT -type estimator is known to be design-consistent, in the presence

of influential (pseudo-)weights, it becomes highly unstable with an inflated variance

(Zhang and Little, 2011; Zangeneh, 2012; Chen et al., 2017a). Especially when esti-

mating the PS, it is always likely that data suffer from a partial lack of the positivity

assumption, which leads to extremely large estimated pseudo-weights (Stuart, 2010).

Furthermore, design-based approaches lack a unified framework for quantifying the

uncertainty in the point estimates (Zangeneh, 2012). Frequentist methods for vari-

ance approximation come with sophisticated theories that often hold asymptotically,

especially when there are multiple sources of uncertainty (Chen et al., 2019; Kim

et al., 2021a). The two-step Bayesian approach also suffers from a failure to accu-

rately propagate the uncertainty of derived estimators (Zigler, 2016).

To minimize these limitations, Zheng and Little (2003) propose an alternative class

of inferential methods for probability surveys with a probability proportional-to-size

(PPS) design, which they term Penalized Spline of Propensity Prediction (PSPP).

Unlike the previously discussed methods, PSPP is a fully model-based approach,
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predicting the outcome variable for all non-sampled units of the population. This

method borrows the idea of Linear-in-weight Prediction (LWP), in which estimated

pseudo-weights are specified as a predictor in the outcome model (Zhang and Little,

2009). Scharfstein et al. (1999) and Bang and Robins (2005) demonstrate that an

LWP estimator behaves equivalent to an AIPW estimator in terms of double robust-

ness. In situations where auxiliary variables are missing for the non-sampled units,

Little and Zheng (2007) recommend synthesizing the population repeatedly via finite

population Bayesian bootstrapping (FPBB). An and Little (2008) extend this ap-

proach to an item-level missing data imputation context where measures of size are

replaced by the estimated PS of being observed, and demonstrate its DR property in

a simulation study.

PSPP is fully Bayesian allowing for direct estimation of the variance by simulating

the posterior predictive distribution of the population parameters. Zangeneh and

Little (2015) expand the Bayesian PSPP under a PPS design for situations where

the totals of the measures of size are known from external data and where there is

evidence of heteroscedasticity with respect to the estimated PS. Further extensions to

probability samples with unequal selection probabilities are proposed by Chen et al.

(2012). The PSPP is also suitable for situations where the design of the reference

sample is complex. Zhou et al. (2016) develop a synthetic population approach based

on a multi-stage cluster sample by undoing the sampling steps through a weighted

Pólya posterior distribution. Recently, Tan et al. (2019) and Mercer (2018) have

compared the PSPP with AIPW to make inference for incomplete data and non-

probability samples, respectively, where PS are predicted using Bayesian Additive

Regression Trees (BART). The authors found that the former outperforms in terms

of the mean square error of the adjusted estimator.

While the use of a more flexible non-parametric function of the estimated PS

may improve the efficiency of the adjusted estimator if the PM is misspecified, and
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reduce the risk of model misspecification when influential pseudo-weights are present

(Zhang and Little, 2011), the theoretical rationale for using a penalized spline model

among a wider class of smoothers is not quite clear. Saarela et al. (2016) argue that

the convergence of the posterior sampling to any well-defined joint distribution of the

outcome and PS may be hard to achieve. Alternatively, one can use Gaussian Process

(GP) priors to link the PS to the outcome conditional mean (Si et al., 2015). GP is

a powerful non-parametric Bayesian tool for functional regression that assigns prior

distributions over multidimensional non-linear functions. Because of its flexibility and

generalizability, GP is gaining popularity in statistics and machine learning (Neal,

1997; Oakley and O’Hagan, 2004; Williams and Rasmussen, 2006; Kaufman et al.,

2010; Yi et al., 2011; Shi and Choi, 2011; Wang and Xu, 2019).

While the correspondence between splines and GP has long been understood

(Kimeldorf and Wahba, 1970; Seeger, 2000), the latter can exploit a kernel with

infinite basis functions (Williams and Rasmussen, 2006). In this regard, GP may

outdo the spline in terms of flexibility while depending on no arbitrary tuning pa-

rameters. In a regular spline regression, one has to determine the polynomial order

as well as the frequency and location of the knots empirically. More importantly,

Huang et al. (2019) demonstrate that a stationary isotropic covariance matrix in GP

behaves as a non-parametric matching technique using the estimated PS as a measure

of similarity. In a more ad hoc manner, Rivers (2007) suggests matching units of a

web non-probability survey to those from a parallel reference survey. Very recently,

a kernel weighting approach has been proposed by Wang et al. (2020a,b), where the

weighted estimator is proved to be consistent under a weak exchangeability condi-

tion. To further weaken the modeling assumptions, Kern et al. (2020) propose to use

algorithmic tree-based methods, including random forests and gradient tree boosting,

for estimating the PS in kernel weighting.

Accounting for the sampling weights of the reference survey is a big hurdle in
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Bayesian modeling (Gelman et al., 2007). To circumvent this issue, one possible so-

lution is to multiply generate synthetic populations as the first step of adjustments

(Dong et al., 2014; Zangeneh and Little, 2015; An and Little, 2008). However, such

a method can be computationally demanding, if not impossible, when the finite pop-

ulation is very large (Savitsky et al., 2016; Mercer, 2018). In the present chapter, I

propose an alternative robust Bayesian approach for inference in non-probability sam-

ples that models the joint distribution of the PS and outcome using a partially linear

GP regression model. I call this approach a “Gaussian Process of Propensity Pre-

diction” (GPPP). While limiting the computations to the combined non-probability

and probability samples, our method links the estimated PS to the response surface

non-parametrically. Therefore, the ultimate GPPP estimator can be efficient not only

computationally but also with respect to variance.

As the motivating application, the present chapter aims at assessing the crash

rate per distance unit driven for a subpopulation of American drivers. The current

estimates are based on a ratio of the annual total police-reported crashes and annual

total miles driven obtained from the General Estimates System (GES) (Administra-

tion et al., 2014) and the American Driving Survey (ADS), respectively (Kim et al.,

2019; Tefft, 2017). The denominator, however, can be widely subject to measurement

error as it relies on respondents’ self-reported annual miles driven and often come with

high item-level missing rates. In contrast, naturalistic driving studies (NDS) offer a

powerful platform for capturing both of these quantities objectively by continuously

monitoring traffic incidents as well as kinematic measures in their participants via

a series of in-vehicle sensors and cameras (Guo et al., 2009), including miles driven.

However, as discussed in Chapter III, the high administrative and technical costs of

NDS force the investigators to select a volunteer sample from a limited geograph-

ical area. Therefore, inference based on such non-probabilistic samples may suffer

from selection bias (Antin et al., 2015; Rafei et al., 2021). I revisit the combined
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data from Strategic Highway Research Program 2 (SHPR2) and National Household

Travel Survey (NHTS) used in Chapter III to address this problem.

The rest of the chapter is organized as follows: I describe the proposed method

formally in Section 4.2. Section 4.3 assesses the repeated sampling properties of the

proposed method and compares its performance with the LWP, AIPW, and other

competing methods through two simulation studies. In Section 4.4 I describe the

datasets and variables utilized in the two empirical applications of this study as well

as the results after bias adjustment. Finally, Section 4.5 reviews the strengths and

weaknesses of the study in more detail and suggests some future research directions.

Supplemental information, including proofs, additional theory, and preliminary de-

scriptive results, is provided in Appendix 4.6.

4.2 Methods

4.2.1 Bayesian model-based inference

I adopt the notation and conditions C1-C4 in Section 1.2 of Chapter I. The outcome,

Y , is imputed for the non-sampled units of the population with respect to SA, i.e.

S̄A = U − SA. This yields a prediction estimator of the population mean,

ˆ̄yU =

∑
i∈SA

yi +
∑
i∈S̄A

ŷi

 /N

=

(∑
i∈SA

(yi − ŷi) + ŷU

)
/N

(4.1)

where ŷi is the prediction of yi for i ∈ U , and ŷU =
∑

i∈U ŷi. Eq. 4.1 is also known as

a “generalized difference estimator” (Wu and Sitter, 2001), and is more efficient than

ŷU/N when nA is large.

A fully Bayesian approach specifies a model for the joint distribution of (yi, δ
A
i )
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as

p(yi, δ
A
i |xi, di; θ, β) = p(yi|xi, di, δAi ; θ)p(δAi |xi; β), i ∈ U (4.2)

I denote te se of values of a variable, x, for units in U , SA, SR, or SC I denote them

by xU , xA, xR, or xC , respectively. Then, the likelihood of (θ, β) is

L(β, θ|yA, δAU , xU , dU) ∝ p(yA, δ
A
U |xU , dU , θ, β) (4.3)

Under a Bayesian approach, the model parameters are assigned prior distributions

p(θ, β|xU , dU), and analytical inference is drawn based on the posterior distribution

as below:

p(β, θ|yA, δAU , xU , dU) ∝ p(θ, β|xU , dU)L(β, θ|yA, δAU , xU , dU) (4.4)

Note that in a Bayesian setting, it is essential to specify independent priors, i.e.

p(θ, β|xU , dU) = p(θ|xU , dU)p(β|xU , dU) to preserve the ignorable assumption, i.e. C2,

in SA (Little and Zheng, 2007). Descriptive inference about ȳU requires deriving the

posterior predictive distribution conditional on the observed data, which is given by

p(ȳU |yA, δAU , xU , dU) =

∫ ∫
p(ȳU |yA, δAU , xU , dU , θ, β)p(θ, β|yA, δAU , xU , dU)dθdβ (4.5)

For a non-conjugate model, where the posterior predictive distribution of ȳU lacks a

closed-form formula, one can simulate it via an appropriate MCMC algorithm.

Estimating ŷU in Eq. 4.1 requires (X,D) to be observed for the entire population,

but the measurement of auxiliary information is often confined to the pooled sample,

SC . One way to tackle this issue is to generate a finite set of synthetic populations,

sayM , non-parametrically through finite population Bayesian bootstrapping (FPBB)

(Little and Zheng, 2007; Dong et al., 2014). The outcome variable is then imputed

for each synthetic population non-sampled units. However, when N is large, this is
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computationally expensive, if not infeasible.

The problem becomes even more serious when the joint estimation of the model pa-

rameters for QR and PM is of interest, and a custom posterior sampler, like Metropo-

lis–Hastings algorithm, is needed (Mercer, 2018; Savitsky et al., 2016). Furthermore,

the two-step algorithm proposed by Zangeneh and Little (2015) may not be fully im-

plementable on the existing Bayesian platforms such as Stan (Carpenter et al., 2017),

and therefore, Zangeneh and Little proposed to combine the estimates across synthetic

populations through Rubin’s combining rules (Rubin, 1976). This may not be ideal

when the posterior predictive distribution of the target population quantity tends to

be highly skewed, because a symmetric confidence interval will not approximate the

credible intervals of the posterior predictive distribution well.

4.2.2 Proposed computationally tractable method

As stated in Section 1.2 of Chapter I, the selection probabilities in SR can be thought

as the reciprocal of the sampling weights, i.e. πRi ∝ 1/wRi . Although probability

surveys typically come with a set of sampling weights in their public-use dataset, all

the information used for the construction of weights is not necessarily provided to

the analyst. In addition, public-use survey data may lack a detailed guideline on

how the sampling weights have been calculated. To simplify the problem in these

situations, Si et al. (2015) assume that weights with identical values represent a

unique post-stratum in the population. Therefore, one can define d as the indicator

of J unique post-strata in U , and consider wRj ∝ Nj/n
R
j (j = 1, 2, ..., J), where Nj and

nRj are the j-th post-stratum size in U and SR, respectively. For instance, in RDD

telephone surveys or mail surveys, whose design involves equiprobability sampling,

the inequality in weights may arise exclusively from non-response adjustment and

post-stratification.

In order to directly simulate the posterior predictive distribution of ȳU via a unified
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algorithm that is implementable in Stan, I limit the imputation of the outcome, yi,

to units of the combined sample, i.e. i ∈ SC . Note that it is only ŷU in Eq. 4.1 that

is defined across all units of U . I use the following estimator, as defined by Si et al.

(2015), to multiply impute this quantity, M times, as below:

ŷ
(m)
U =

J∑
j=1

N̂
(m)
j

ˆ̄y
(m)
j

=
J∑
j=1

N̂
(m)
j

nRj

nR
j∑

i=1

ŷ
(m)
j[i]

(4.6)

where
[
N̂

(m)
j , ˆ̄y

(m)
j

]
is them-th draw of the joint posterior predictive distribution of the

j-th post-stratum size and mean outcome. Therefore, the m-th posterior predictive

draw of ȳU is given by

ˆ̄y
(m)
U =

(
nA∑
i=1

(
yi − ŷ(m)

i

)
+ ŷ

(m)
U

)
/N (4.7)

To obtain the joint posterior predictive distribution of
[
N̂j, ˆ̄yj

]
while keeping the

computations confined to SC , I propose the following model:

p(yA, δ
A
C , w

R, nR|xC , dC , θ, β, ξ) = p(nR|wR, ξR)p(yA, δ
A
C , w

R
R|xC , dC , θ, β) (4.8)

where nR = [nR1 , n
R
2 , ..., n

R
J ]T and wR = [wR1 , w

R
2 , ..., w

R
J ]T are the sizes of post-strata

and associated weights in SR, respectively, and ξR is a J-dimensional vector of pa-

rameters associated with modeling of nR|wR. Note that, while the wRj are fixed by

design, I only observe them in the sampled data; hence I need to account for their

uncertainty in the development of the full posterior distribution. While I thoroughly
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discuss each component of Eq. 4.8 later, one can derive the final estimate of ȳU by

ˆ̄yU =
1

M

M∑
m=1

ˆ̄y
(m)
U (4.9)

and the associated 100(1 − α)% credible interval can be constructed by sorting

(ˆ̄y
(1)
U , ˆ̄y

(2)
U , ..., ˆ̄y

(M)
U ) ascendingly, and finding the α/2 and 1 − α/2 percentiles of this

ordered sequence that correspond to lower and upper limits of the credible interval,

respectively.

4.2.2.1 Finite population Bayesian bootstrapping for modeling p(nR|wR, ξR)

I begin by modeling p(nR|wR, ξR) non-parametrically via Bayesian bootstrapping

(BB), with the aim to simulate the posterior predictive distribution of the Nj’s. The

idea of BB operates quite similar to the regular bootstrap approach (Efron, 1981),

except for the fact that BB simulates the posterior predictive distribution of a given

population parameter instead of the sample distribution of the statistic estimating

that parameter (Rubin, 1981). In a finite population Bayesian bootstrap (FPBB)

setting, the goal is to derive the posterior predictive distribution of the post-strata

sizes for the non-sampled population units, i.e. S̄R. Although FPBB imposes no para-

metric assumptions, it is assumed that all the existing post-strata in U are limited to

those observed in the collected sample (exchangeability).

Under a simple random sample, Ghosh and Meeden (1983) propose to use a Polýa

Urn Scheme, in which a Dirichlet-multinomial conjugate model is considered to ex-

pand the sample to the population. Cohen (1997) generalizes this approach to a

weighted sample with independent draws, and the attributed Polýa posterior distribu-

tion for the non-sampled units of U given the observed sampling weights is formulated

by Dong et al. (2014). Little and Zheng (2007) propose a modified FPBB method

to generate synthetic populations based on the samples with a PPS design. Further
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extension based on a constrained BB is provided by Zangeneh and Little (2015) for

situations where totals are known for auxiliary variables at the population level.

In the present chapter, I modify the FPBB method proposed by Little and Zheng

(2007) by letting vR = {vR1 , vR2 , ..., vRJ } represent the set of J distinct values of the

sampling weights in SR, and ξR = {ξR1 , ξR2 , ..., ξRJ } denote the vector of conditional

probabilities that p(wR = vRj |δR = 1) = ξRj for j = 1, 2, ..., J , where
∑J

j=1 ξ
R
j = 1.

Now, suppose nRj and rRj are the frequencies of wR taking the value vRj in SR and

S̄R, respectively, for j = 1, 2, ..., J . It is clear that
∑K

j=1 n
R
j = nR, and

∑K
j=1 r

R
j =

N − nR. Considering a Dirichlet prior, i.e. ξR ∼ Dirichlet(αJ×1), α ∈ IRJ>0, with

a multinomial likelihood function of p(nR1 , nR2 , ..., nRJ |ξ) ∝
∏J

j=1(ξRj )n
R
j , the posterior

distribution of ξR is given by (ξR|nR1 , nR2 , ..., nRJ ) ∼ Dirichlet(nR1 + α1 − 1, nR2 + α2 −

1, ..., nRJ + αJ − 1). Using Bayes’ rule, Little and Zheng (2007) show that

ξR̄j = p(wRi = vRj |δRi = 0)

= p(δRi = 0|wRi = vRj )
p(wRi = vRj )

p(δRi = 0)

= p(δRi = 0|wRi = vRj )
p(wRi = vRj |δRi = 0)p(δRi = 0) + p(wRi = vRj |δRi = 1)p(δRi = 1)

p(δRi = 0)

= p(δRi = 0|wRi = vRj )

{
ξR̄ + ξR

p(δRi = 1)

p(δRi = 0)

}
(4.10)

Since p(δRi = 0|wRi = vRj ) = 1 − πRj , and p(δRi = 1)/p(δRi = 0) can be treated as a

normalizing constant,

ξR̄j ∝ ξRj
1− πRj
πRj

(4.11)

After normalizing ξR̄ such that
∑J

j=1 ξ
R̄
j = 1, the posterior predictive distribution of

rR is given by

p(rR1 , r
R
2 , ..., r

R
J |nR1 , nR2 , ..., nRJ , ξR) =

(
N − nR

r1, r2, ..., rJ

) J∏
j=1

[
cξRj (1− πRj )/πRj

]rRj (4.12)

145



where c is the normalizing constant. The m-th posterior predictive draw of the size

of post-stratum j in the population is N (m)
j = nRj + r

R(m)
j , (m = 1, 2, ...,M).

4.2.2.2 Modeling the joint distribution of (yi, δ
A
i ) given the combined sam-

ple

The goal of PM in this study is to model p(yi|xi; θ) in order to obtain the posterior pre-

dictive distribution of yi for i ∈ SR, i.e. p(yR|yA, xC) ∝
∫
p(yR|yA, xC ; θ)p(θ|yA, xC)dθ.

Although θ is a parameter defined in U , the ignorable assumption guarantees a con-

sistent estimate of θ by fitting p(y|x; θ) on SA, because

p(yA|xA; θ) = p(yU |δAU = 1, xU , dU ; θ)

=
p(δAU = 1|yU , xU ; θ)

p(δAU = 1|xU ; θ)
p(yU |xU , dU ; θ)

= p(yU |xU , dU ; θ)

(4.13)

If πAi was known for i ∈ SC , one could augment the PM by incorporating πAi as

a predictor into the PM, e.g. p(yi|xi, f(πAi ); θ). A robust estimator is achieved by

choosing a flexible f(.), as detailed later.

While a non-probability sample is characterized by its unknown selection mech-

anism, given the conditions C1-C4, πAi can be estimated by modeling p(δAU |xU ; β).

Assuming that SA is selected by a Poisson sampling, one can formulate the likelihood

of β given δAU as:

L(β|δAU , xU) =
N∏
i=1

p(δAi = 1|xi, β)δ
A
i
[
1− p(δAi = 1|xi, β)

]1−δAi (4.14)

Under a logistic regression model,

πAi = p(δAi = 1|xi; β) =
exp{xTi β}

1 + exp{xTi β}
(4.15)
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By assigning appropriate prior distributions to β, one can simulate the posterior

distribution of πAi for i ∈ U through an MCMC algorithm.

One major issue with Eq. 4.14 is that the observed (δAi , xi) is restricted to SC .

Although there exist several approaches restricting the estimation of β to SC (Val-

liant et al., 2018; Elliott and Valliant, 2017; Chen et al., 2019; Wang et al., 2020c),

the majority rely on a pseudo-maximum likelihood estimation (PMLE) idea to ac-

count for unequal wRi ’s, which necessitates solving a set of estimating equations. A

corresponding method in a Bayesian setting is called pseudo-Bayesian. While such a

method guarantees consistency in point estimates, the uncertainty tends to be under-

estimated in the posterior distribution of parameters (Savitsky et al., 2016; Gunawan

et al., 2020; Williams and Savitsky, 2021). To avoid this problem, I employ a two-step

pseudo-weighting approach proposed by Elliott and Valliant (2017). Assuming that

p(δAi + δRi = 2) ≈ 0, i.e. SA and SR have no overlap, one can show that

p(δAU = 1|xU ; β) = p(δRU = 1|xU ; γ)
p(δAC = 1|xC ;φ)

1− p(δAC = 1|xC ;φ)
(4.16)

where β = (γ, φ)T is the associated model parameters. Rafei et al. (2021) call this ap-

proach propensity-adjusted probability prediction (PAPP) and prove the asymptotic

properties of a pseudo-weighted estimate based on this method including consistency

and variance estimation. As can be seen, this approach reduces the modeling of

p(δAU = 1|xU) to the modeling of p(δAC = 1|xC) with an additional step, which is

modeling p(δRU |xU). Treating πRi as a random variable for i ∈ SA conditional on xi,

one can estimate this probability by regressing the πRi ’s on the xi’s in U (Pfeffermann
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and Sverchkov, 2009), because

p(δRU = 1|xU ; γ) =

∫ 1

0

p(δRU = 1|πRU , xU ; γ)p(πRU |xU ; γ)dπRU

=

∫ 1

0

πRUp(π
R
U |xU ; γ)dπRU

= E(πRU |xU ; γ)

(4.17)

Pfeffermann and Sverchkov (1999b) demonstrate that E(πRU |xU) = E−1(wR|xR) where

wR are the sampling weights in SR. Since πRi is only observed in SR, then, the sample

estimator of πRi is given by

p(δAC = 1|xC ; γ, φ) = E−1(wR|xC ; γ)
p(δAC = 1|xC ;φ)

1− p(δAC = 1|xC ;φ)
(4.18)

E(wR|x) is modeled using a GLM with a log link function, as the distribution of the

wRi ’s tends to be right-skewed in the actual survey data. In addition, I know that the

sampling weights are usually a multiplicative factor of selection probabilities×non-

response adjustment×post-stratification. Therefore, given the posterior distribution

of p(γ, β|xC , wR), one can obtain the posterior distribution of πAi for i ∈ SC by

p(δAC = 1|xC ; γ, φ) = exp
{
xTC(φ− γ)

}
(4.19)

The joint distribution of (yA, δ
A
C , wR) can be written as:

p(yA, δ
A
C , wR|xC) =

∫
p(yR, yA|f(πA[xC , δ

A
C , wR; γ, φ]), xC ; θ)p(δAC |xC ;φ)p(wR|xR; γ)dyR

(4.20)

where πA[xC , δ
A
C , wR; γ, φ] = exp

{
xTC(φ− γ)

}
according to Eq. 4.19. The correspond-
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ing posterior predictive distribution of yR is given by

p(yR|yA, δAC , wR, xC , δAC , πRR) =

∫ ∫ ∫
p(yR|yA, f(πA[xC , δ

A
C , π

R
R ; γ, φ]), xC ; θ)

× p(φ|δAC , xC)p(γ|wR, xR)dθdφdγ

(4.21)

Although Zigler (2016) argues that such a factorization of the joint distribution of

(yi, δ
A
i , w

R) does not correspond to a valid use of the Bayes’ theorem, for certain

reasons, it has been advocated by several studies. First, Little (2004) highlights the

fact that Bayesian joint modeling can result in better repeated sampling properties.

It has been well-understood that the performance of the alternative two-step Bayesian

methods with respect to frequentist properties depends on the choice of priors (Kaplan

and Chen, 2012). Furthermore, having both πAi and xi as predictors in the PM cuts

the notorious feedback between the QR and PM models, which leads to incorrect

estimation of the PS posterior distribution (Zigler et al., 2013).

However, what matters most in this study is the double robustness property that

the likelihood factorization in Eq. 4.20 offers. For instance, by choosing a parametric

form f(πAi ) = θ∗/πAi , where θ∗ is an unknown scalar parameter, this factorization

leads to a linear-in-weight Prediction (LWP) model. Scharfstein et al. (1999) and

Bang and Robins (2005) identified the correspondence between LWP and AIPW es-

timators. In the causal inference context, this has been termed a clever covariate by

Rose and van der Laan (2008) as it characterizes the correct relationship between the

propensity scores and the outcome model. In the context of item-missing data impu-

tation, Little and An (2004) suggest that the use of a more flexible non-parametric

function can improve the efficiency of the adjusted estimator, especially when there

are extreme values in the estimated PS. The authors propose to use a penalized spline

model, which is piecewise continuous polynomials of the estimated PS, paired with a

mathematical penalization to find the best fit of PM to the data (Ruppert et al., 2003;

Fahrmeir et al., 2011). Alternatively, McCandless et al. (2009) suggest categorizing
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propensity scores into quantiles and using them as dummy variables to augment the

PM.

In the current study, I extend the PSPP idea to a non-probability sample setting

while using Gaussian process (GP) regression instead of a penalized spline model.

As a flexible non-parametric Bayesian approach, GP can automatically capture non-

linear associations as well as multi-way interactions (Rusmassen and Williams, 2005;

Neal, 1997). Having πAi = p(δAi = 1|xi, wR; γ, φ) estimated for i ∈ SC , for a continuous

outcome variable, I fit a semiparametric model on SA as below:

yi|xi, di, π̂i, θ = θ0 +

p∑
j=1

θjxij +

p+q∑
j=p+1

θjdij + f
(
π̂Ai
)

+ εi (4.22)

where θ denotes a (p + q + 1)-dimensional vector of the PM parameters, and εi ∼

N(0, σ2) with σ2 being unknown. Eq. 4.22 involves two parts: a linear regression

parameterized by θ and a GP denoted by f(.).

A GP {f(x) : x ∈ RN} is a set of random variables, any finite number of which

jointly follow a multivariate Gaussian distribution. In a full-ranked GP, f(.) is a

priori defined by its mean and covariance functions as below:

f(x) ∼ GP (µ(x), K (x, x′)) (4.23)

where µ(x) is the mean vector and K(x, x′) is the covariance matrix. The latter

encompasses all our prior beliefs about the functional association between x and

y, including continuity, smoothness, periodicity and scale properties (Riutort-Mayol

et al., 2020). For notational simplicity, I set µ(x) = 0, though it is not necessary.

It is worth noting that the LWP model can be viewed as a specific type of GP with

a dot product covariance matrix as α2[1 + ((πAi )TπAj )−1] if the regression coefficient

is specified a prior of N(0, α2) (Rusmassen and Williams, 2005). While literature

suggests a variety of covariance functions for GP, the most common type is the squared
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exponential (SE) covariance matrix whose elements take the following form:

k(x, x′) = α2exp

{
− ||x− x

′||2

2ρ

}
(4.24)

where ρ is called a length-scale parameter, and α is known as the marginal standard

error. One can show that the SE covariance structure represents a kernel with an

infinite number of a basis functions (Rusmassen and Williams, 2005).

From a weight-space viewpoint, Huang et al. (2019) show that with a stationary

isotropic kernel, where K(πAi , π
A
j ) = f(||πAi − πAj ||), GP acts as a non-parametric

matching technique. Wang et al. (2020a) prove the consistency of a kernel-weighted

estimator under certain regularity conditions. Refer to Appendix 4.6.1 to see the

connection between GP and kernel weighting. In our non-probability sample setting,

one can view it as matching units of SA to units of SR based on the estimated

propensity scores, πAi ’s (Rivers, 2007). Further theoretical properties of kernel optimal

matching, such as consistency, can be found in Kallus et al. (2018). Although the SE

covariance has desirable properties, empirical results show that it is not a strong fit for

the real-world data as it is infinitely differentiable (Rusmassen and Williams, 2005).

Therefore, I propose to use a Matérn kernel added to an inhomogeneous standardized

polynomial kernel of order p as below:

K(xi, xj) = α2 21−ν

Γ(ν)

(√
2ν
||xi − xj||

ρ

)ν
Kν

(√
2ν
||xi − xj||

ρ

)

+

 τ 2 + xTi xj√
τ 2 + xTi xi

√
τ 2 + xTj xj

p (4.25)

where Γ(.) denotes the gamma function, and Kν(.) is a modified Bessel function of the

second kind. This combination of two kernels ensures capturing both local variations

and long-range discrepancies in the estimated propensity scores (Vegetabile, 2018).

Note that for ν →∞, Matérn covariance will converge to the SE covariance, and the
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sum of two valid kernels is still a valid kernel.

In this chapter, I set ν = 3/2 and p = 1 throughout the simulation and empirical

studies, which yields the following covariance function:

K(xi, xj) = α2

(
1 +

√
3||xi − xj||

ρ

)
exp

(
−
√

3||xi − xj||
ρ

)
+

τ 2 + xixj√
τ 2 + x2

i

√
τ 2 + x2

j

(4.26)

In addition, I propose to use a log transformation of the π̂Ai ’s in the GP part. This

is because the input of GP will become a linear combination, i.e. xTC(φ − γ), and

given normal priors assigned to β, this linear combination will follow a Gaussian

distribution (Si et al., 2015).

Fully Bayesian inference using GP comes with computational issues even for a

moderate nA as one has to invert the covariance matrix at each posterior sampling

step that needs O(n3
A) computations. The problem becomes even more severe when

the joint posterior distribution of (πAi , yi) has to be simulated. I propose to use a

low-ranked sparse GP based on the Laplace eigenvectors approximation (Solin and

Särkkä, 2020; Riutort-Mayol et al., 2020). Such a method reduces the computational

complexity up to O(nAl
2) where l << nA is the reduced rank of the covariance

matrix. Further details about the partially linear GP regression and the Laplace

approximation can be found in Appendix 4.6.3.

Under a standard Bayesian framework, a set of independent prior distributions

are assigned to the model parameters, and conditional on the observed data through

a joint likelihood function, the associated posterior distributions are obtained. To

this end, I use the “black box” solver Stan (Carpenter et al., 2017), which employs

a Hamiltonian Monte Carlo (HMC) technique to simulate the posterior predictive

distribution of the parameters. In the following, I show the structure of our proposed

method in Stan.
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STEP 1: Specifying priors

θ, γ, φ ∼ t-student(3, 0, 1)

λ, α, σ ∼ t-student+(3, 0, 1)

ρ ∼ GIG(0, 1, 2)

ξR ∼ Dirichlet(1, 1, ..., 1)

STEP 2: Setting joint likelihood

wR|xR, γ, λ ∼ N
(
exp
{
xTRγ

}
, λ2
)

δAC |xC , φ ∼ Bernoulli
(
logit−1{xTCφ}

)
yA|zA, θ, σ ∼ Normal

(
zTAθ + f

(
xTA(φ− γ), α, ρ, τ

)
, σ2
)

nR|ξR ∼Multinomial(nR, ξ)

STEP 3: Obtaining posterior

ŷR|yA, zR, θ, σ ∼ Normal
(
zTRθ + f

(
xTR(φ− γ), α, ρ, τ

)
, σ2
)

N̂ |πR, ξR ∼Multinomial
(
N − nR, cξR(1− πR)/πR

)
ˆ̄yU =

{ J∑
j=1

N̂j

nRj

nR
j∑

i=1

ŷj[i] +

nA∑
i=1

{yi − ŷi}
}
/N

where t-student+ denotes a half t-student and GIG stands for the Generalized Inverse

Gaussian distribution, which is recommended in Stan User’s Guide (Stan Develop-

ment Team, 2019) for the length-scale parameter of a partially linear GP regression.

Also, f(.) denotes a low-ranked GP approximation with l = 10 and a boundary condi-

tion factor of c = 1.25, where the covariance function is given by Eq. 4.26. I simulate

the posterior predictive distribution of ˆ̄yU in Stan using M = 500 HMC draws after

discarding the first 500 draws as the burn-in period.
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4.3 Simulation study

Two simulations are presented in this section, in which I compare the performance

of our proposed GPPP method with those of LWP, AIPW, and PAPP with respect

to the bias magnitude, efficiency, and accuracy of the variance estimator. All of the

competing methods are DR, except for the PAPP method, which is an inverse PS

weighted estimate of the observed yi for i ∈ SA with PS estimated from Eq. 4.16. The

GPPP and LWP methods are fully implemented under a Bayesian setting, whereas

AIPW and PAPP estimates are obtained under a frequentist method (Rafei et al.,

2021). Therefore, for the earlier class of methods, I am able to compute 95% credible

intervals (95% CIs) while for the latter, a bootstrap method with B = 100 replications

is employed to estimate the variance and 95% confidence intervals.

Various scenarios are considered with different assumptions about the functional

form of the relationship among variables. For both studies, SA and SR are given a

random selection mechanism with unequal inclusion probabilities. Note that units of

both samples are selected independently with no clustering or stratification. Once

SA and SR are drawn from U , I assume that πAi for i ∈ SC and yj for j ∈ SR are

unobserved, and the aim is to adjust for the selection bias in SA based on the combined

sample, SC . The simulation is then iterated K = 216 times (which is a multiple of

36, the number of cores I employed for parallel computing), where the bias-adjusted

point estimates, SE and associated 95% credible/confidence interval (CI) for ȳU are

estimated in each iteration.

To evaluate the repeated sampling properties of the competing method, relative

bias (rBias), relative root mean square error (rMSE), the nominal coverage rate of

95% CIs (crCI), relative length of 95% CIs (rlCI) and SE ratio (rSE) are calculated
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as below:

rbias
(
ˆ̄yU
)

= 100× 1

K

K∑
k=1

(
ˆ̄y

(k)
U − ȳU

)
/ȳU (4.27)

rMSE
(
ˆ̄yU
)

= 100×

√√√√ 1

K

K∑
k=1

(
ˆ̄y

(k)
U − ȳU

)2

/ȳU (4.28)

crCI
(
ˆ̄yU
)

= 100× 1

K

K∑
k=1

I

(∣∣ˆ̄y(k)
U − ȳU

∣∣ < z0.975

√
var

(
ˆ̄y

(k)
U

))
(4.29)

rlCI
(
ˆ̄yU
)

= 100× 2

K

K∑
k=1

z0.975

√
var

(
ˆ̄y

(k)
U

)
(4.30)

rSE
(
ˆ̄yU
)

=
1

K

K∑
k=1

√
var(ˆ̄y

(k)
U )/

√√√√ 1

K − 1

K∑
k=1

(
ˆ̄y

(k)
U − ¯̄yU

)2

(4.31)

where ˆ̄y
(k)
U denotes the adjusted sample mean from iteration k, ¯̄yU =

∑K
k=1

ˆ̄y
(k)
U /K, ȳU

is the finite population true mean, and var(.) represents the variance estimate of the

adjusted mean based on the sample. Finally, to test the DR property of the proposed

methods, I investigate different scenarios regarding whether models for QR and PM

are correctly specified or not.

4.3.1 Simulation I

4.3.1.1 Design

The design of our first study is based on the simulation implemented in Chen et al.

(2019). Consider a finite population of size N = 105 with z = {z1, z2, z3, z4} being a

set of auxiliary variables generated as follows:

z1 ∼ Ber(p = 0.5) z2 ∼ U(0, 2) z3 ∼ Exp(µ = 1) z4 ∼ χ2
(4)

(4.32)
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and x = {x1, x2, x3, x4} is subsequently defined as a linear function of z as below:

x1 = z1 x2 = z2 +0.3z1 x3 = z3 +0.2(x1 +x2) x4 = z4 +0.1(x1 +x2 +x3)

(4.33)

Given x, a continuous outcome variable y is constructed by

yi = 2 + x1i + x2i + x3i + x4i + σεi (4.34)

where εi ∼ N(0, 1), and σ is defined such that the correlation between yi and
∑4

k=1 xki

equals ρ = 0.8. Further, associated with the design of SA, a set of selection prob-

abilities are assigned to the population units through the following logistic model:

log

(
πAi

1− πAi

)
= γ0 + 0.1x1i + 0.2x2i + 0.1x3i + 0.2x4i (4.35)

where γ0 is determined such that
∑N

i=1 π
A
i = nA. For the selection probabilities in SR,

I assume that πRi ∝ γ1 +z3i, where γ1 is obtained such that max{πRi }/min{πRi } = 50.

It is important to note that in this simulation study πRi is assumed to be known for

i ∈ SA as z3 is observed in SA.

Using these measures of size, I repeatedly draw pairs of samples corresponding to

SA and SR from U through a Poisson sampling design. The simulation is then repeated

for different pairs of expected sample sizes, i.e. (nA, nR) = (500, 500), (nA, nR) =

(1, 000, 500) and also (nA, nR) = (500, 1, 000). (Note that the actual sample size is

a random variable under a Poisson sampling design.) Both Y and πA are associated

with a linear combination ofX in this simulation study. Finally, in order to misspecify

a model, I omit x4 from the predictors of the working model. In Appendix 4.6.4, I

provide extensions of the simulation for ρ = {0.3, 0.5}.
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4.3.1.2 Results

Table 4.1 summarizes the numerical results of the first simulation study across differ-

ent sample size scenarios for ρ = 0.8. As illustrated, naive estimates of the population

mean are biased in both SR and SA while weighting fully corrects for the bias in both

samples. For the non-robust method, PAPP, estimates are unbiased as long as the QR

model is correct. The DR methods produce unbiased estimates when either the QR

model or PM holds, though there is evidence of residual bias for the LWP method

when the QR model holds but the PM is misspecified. In terms of rMSE, all the

methods perform similarly, except for the LWP method with correct and incorrect

models specified the QR and PM, respectively, which shows higher degrees of rMSE

compared to the alternative methods.

AIPW and PAPP have slightly narrower CIs than the Bayesian methods, GPPP

and LWP. The LWP performs poorly with respect to efficiency when the PM is

incorrectly specified. Generally, the values of rSE suggest that variance estimation

is unbiased across different model specification scenarios with a slight overestimation

and underestimation in the Bayesian and bootstrap methods, respectively. Under the

situations where the working model for QR is correct while that for PM is incorrect,

LWP tends to underestimate the variance. The coverage rates of 95% CIs are also

close to the nominal value when at least one of the QR and PM models is correctly

specified. However, I observe that 95% CIs based on the frequentist methods tend

to undercover the true population mean to some degrees, and the poorest result of

crCI belongs to the LWP method when the PM is wrongly specified. These findings

are generalizable to all other sample size combinations, and to the other extensions

of the simulation for ρ = 0.3, 0.5, whose tables are displayed in Appendix 4.6.4.
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4.3.2 Simulation II

4.3.2.1 Design

In the previous simulation study, the ignorable assumption was violated to misspecify

the working model by dropping a key auxiliary variable. Now, I focus on a situation

where models misspecified with respect to the functional form of their conditional

means. To this end, I consider (non-)linear associations and two-way interactions in

construction of the outcome variables. In addition, to build a more realistic situation,

two separate sets of auxiliary variables are generated, D associated with the design

of SR, and X associated with the design of SA. However, I allow the two variables to

be correlated through a bivariate gaussian distribution as below:

d
x

 ∼MVN


0

0

 ,

 4 2ρ

2ρ 1


 (4.36)

Note that ρ controls how strongly the sampling design of SR is associated with that

of SA. Primarily, I set ρ = 0.5, but later I check other values ranging from 0 to 0.9

as well.

I then generate a continuous outcome variable (yci ) and the binary outcome vari-

able (ybi ) for i ∈ U as below:

yci = 3 + fk(xi) + di + 0.2xidi + σεi

p(ybi = 1|xi, di) =
exp{−1 + fk(xi) + di + 0.2xidi}

1 + exp{−1 + fk(xi) + di + 0.2xidi}

(4.37)

where εi ∼ N(0, 1), and σ is determined such that the correlation between yci and

fk(xi) + di + 0.2xidi equals 0.8 for i ∈ U . The function fk(.) is assumed to take one
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of the following forms:

LIN : f1(x) = x CUB : f2(x) = (x/3)3

EXP : f3(x) = exp(x/2)/5 SIN : f4(x) = 5sin(πx/3)

(4.38)

Figure 4.1 depicts the relationships between yc and πA, and between yc and wA =

1/πA.

Figure 4.1: The proposed relationships between the outcome variable Y and log(πA)
in U for (a) LIN , (b) CUB, (c) EXP and (d) SIN scenarios, and between the
outcome Y and sampling weights wA for (e) LIN , (f) CUB, (g) EXP and (h) SIN
scenarios.

I then consider an informative sampling strategy with unequal probabilities of

inclusion, where the selection mechanism of SA and SR depends on x and d, respec-

tively. Thus, each i ∈ U is assigned two values within (0, 1) corresponding to the

probabilities of selection in SR and SA through a logistic function as below:

πR(di) = p(δRi = 1|di) =
exp{γ0 − 0.4di}

1 + exp{γ0 − 0.4di}

πA(xi) = p(δAi = 1|xi) =
exp{γ1 + γ2xi}

1 + exp{γ1 + γ2xi}

(4.39)
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where δRi and δAi are the indicators of being selected in SR and SA, respectively, for

i ∈ U . I initially set γ2 = 0.3, which yields PS with a normal range. To assess how

the adjustments behave in presence of influential weights, later I set γ2 = 0.6, which

yields relatively extreme weights.

Associated with SR and SA, independent samples of expected sizes nR = 1, 000

and nA = 500 are selected randomly from U with a Poisson sampling design. I choose

nA < nR as is the case in the two applications of this study. The model intercepts, γ0

and γ1 in 4.39, are obtained such that
∑N

i=1 π
R
i = nR and

∑N
i=1 π

A
i = nA, respectively.

The rest of the simulation design is similar to that defined in Simulation I, except for

the way I specify a working model. A QR model is misspecified by replacing xi with

x2
i , and a PM model is misspecified by replacing fk(xi) with x2

i and di with d2
i , and

also by dropping the interaction term xidi.

4.3.2.2 Results

Figure 4.2 compares the relative bias (rBias) magnitude and efficiency of the com-

peting methods for the continuous outcome variable, yc, across different scenarios of

model specification while γ2 = 0.3. Note that the error bars reflect the relative length

of 95% CIs (rlCI). As illustrated, point estimates from both SR and SA are biased

if the sampling true weights are ignored. At the first glance, one can infer that for

all fk, k = 1, 2, 3, 4, the magnitude of rBias is close to zero as long as either QR or

PM model is valid. However, in situations where πA is non-linearly associated with

yc, i.e. plots (b), (c), and (d), the AIPW and PAPP estimators are biased when the

PM is misspecified, but the QR model is valid. In contrast, the LWP method yields

slightly biased estimates in all plots when the QR model is misspecified, but the PM

is correct. It turns out that the GPPP is the only method that leads to unbiased

estimates in all the scenarios with respect to model specification and functional form

of the PM. I did not observe consistent results across the adjustment methods with
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respect to efficiency. However, the GPPP method consistently shows high efficiency

compared to the other methods across all the studied scenarios.

I summarize the simulation results for the binary outcome, yb, with γ2 = 0.3 in

Figure 4.3. Again, adjusted estimates are unbiased if the working model for either

QR or PM holds. Exceptions are seen for the PAPP and AIPW methods with resid-

ual bias in the plots related to (c) EXP, and (d) SIN when the PM is incorrectly

specified. Unlike the simulation results for the continuous variable, the LWP consis-

tently produces unbiased estimates for the binary outcome when the working model

for QR fails. However, the magnitude of bias seems to be much larger in the LWP

method when both underlying models for QR and PM are misspecified. Again, as

for the continuous outcome, the proposed GPPP method consistently gives unbiased

and efficient estimates. The lowest efficiency is associated with the AIPW and PAPP

methods in the EXP scenario when the PM is misspecified.

Figure 4.4 displays the results of crCI and rSE for the continuous outcomes where

γ2 = 0.3. According to the rSE values, all methods perform well in variance estimation

except for the LWP method which consistently underestimates the variance. A similar

problem appears in the PAPP and AIPW methods for the EXP scenario when the

outcome model is invalid. Generally, the Bayesian methods, i.e. GPPP and LWP,

tend to slightly overestimate the variance. The values of crCI seem to be close to the

nominal level for all the methods across almost all the scenarios, as long as at least

one of the underlying models holds. For the non-linear associations, i.e. (b) CUB,

(c) EXP and (d) SIN, the 95% CIs associated with frequentist methods, i.e. AIPW

and PAPP, tend to undercover the population mean when the outcome model is false.

Figure 4.5 depicts similar results for the binary outcome when γ2 = 0.3. Overall, the

results look analogous to those obtained for the continuous outcome. However, the

degree of overestimation of variance by the Bayesian methods seems to be larger in

the binary outcome than the continuous outcome.
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Extensions of the simulation for other sample size combinations, i.e. (nA, nR) =

(500, 500) and (nA, nR) = (1, 000, 500) and also for γ2 = 0.6, which creates extreme

sampling weights in SA, are included in Appendix 4.6.4. While I observe no major

discrepancy in the simulation results for other sample size scenarios than (nA, nR) =

(500, 1, 000), having influential weights presented in SA leads to a larger magnitude of

bias and lower efficiency in the estimates of PAPP, AIPW when the PM is incorrectly

specified, but the QR model is valid. However, the GPPP method seems to be least

affected by the presence of extreme weights.
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Figure 4.2: Comparing the performance of the adjusted estimators under different
model-specification scenarios for the continuous outcome variable with γ2 = 0.3 under
(a) LIN , (b) CUB, (c) EXP , and (d) SIN scenarios. The error bars have been drawn
based on the 2.5% and 97.5% percentiles of the empirical distribution of bias over
the simulation iterations. UW: unweighted; FW: Fully weighted; PAPP: Propensity-
adjusted Probability Prediction; GPPP: Gaussian Processes of Propensity Prediction;
LWP: Linear-in-weight Prediction; AIPW: Augmented Inverse Propensity Weighting

In Figure 4.4 and 4.5, I depict the measures associated with the accuracy of the

variance methods for GPPP/AIPW estimators. One can immediately infer that for
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Figure 4.3: Comparing the performance of the adjusted estimators under different
model-specification scenarios for the binary outcome variable with γ2 = 0.3 under (a)
LIN , (b) CUB, (c) EXP , and (d) SIN scenarios. The error bars have been drawn
based on the 2.5% and 97.5% percentiles of the empirical distribution of bias over
the simulation iterations. UW: unweighted; FW: Fully weighted; PAPP: Propensity-
adjusted Probability Prediction; GPPP: Gaussian Processes of Propensity Prediction;
LWP: Linear-in-weight Prediction; AIPW: Augmented Inverse Propensity Weighting
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both employed methods, the variance estimator is approximately unbiased when at

least one of the underlying models holds. However, in situations where both models

are invalid, according to the rSE values, the AIPW estimator tends to underesti-

mate/overestimate the variance to a significant extent, while the variance estimator

under GPPP shows more robustness across the model specification scenarios as well

as outcome variables. Last but not least, the proximity of the crCI values to 95% for

the GPPP methods, especially when both underlying models are wrong, reflects the

accuracy of both point and variance estimates under the GPPP method.
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Figure 4.4: Comparing the 95% CI coverage rates (crCI) of the DR adjusted means
for the continuous outcome variable with γ2 = 0.3 under (a) LIN , (b) CUB, (c)
EXP , and (d) SIN scenarios, and SE ratios (rSE) under (e) LIN , (f) CUB, (g)
EXP , and (h) SIN scenarios, across different DR methods under different model
specification scenarios. UW: unweighted; FW: Fully weighted; PAPP: Propensity-
adjusted Probability Prediction; GPPP: Gaussian Processes of Propensity Prediction;
LWP: Linear-in-weight Prediction; AIPW: Augmented Inverse Propensity Weighting

So far, the results I discussed were limited to a case where ρ = 0.5. As the final

step, I replicate the simulation for different values of ρ ranging from 0 to 0.9 to show

how stable the competing methods perform in terms of rbias and rMSE. Figure 4.6

depicts changes in the values of rBias and rMSE in the continuous outcome, yc, for

different adjustment methods and across different model specification scenarios as the

165



80

85

90

95

100

cr
C

I (
%

)

(a) (b)

AIPW=53.24

(c)

AIPW=42.13PAPP=71.76

Method
PAPP
GPPP
LWP
AIPW

robust
non−robust
robust

(d)

0.0

0.5

1.0

True−True

False−True

True−False

rS
E

(e)

True−True

False−True

True−False

(f)

True−True

False−True

True−False

(g)

True−True

False−True

True−False

Method
PAPP
GPPP
LWP
AIPW

robust
non−robust
robust

(h)

Figure 4.5: Comparing the 95% CI coverage rates (crCI) of the DR adjusted means
for the binary outcome variable with γ2 = 0.3 under (a) LIN , (b) CUB, (c) EXP ,
and (d) SIN scenarios, and SE ratios (rSE) under (e) LIN , (f) CUB, (g) EXP ,
and (h) SIN scenarios, across different DR methods under different model specifi-
cation scenarios. UW: unweighted; FW: Fully weighted; PAPP: Propensity-adjusted
Probability Prediction; GPPP: Gaussian Processes of Propensity Prediction; LWP:
Linear-in-weight Prediction; AIPW: Augmented Inverse Propensity Weighting

value of ρ increases. Generally, it seems that the values of rBias and rMSE decline

for all competing methods with an increase in ρ. In addition, for all values of ρ,

it is evident that the GPPP method outperforms the PAPP, AIPW, LWP methods

when the outcome model is wrong. This strength in GPPP is more evident when

the association between the outcome and the PS is non-linear, i.e. in (b) CUB, (c)

EXP, and (d) SIN. In Figure 4.7, I display corresponding comparisons for the binary

outcome. The results are similar to those based on the continuous outcome, with

a difference in that the values of rMSE increase with an increase in the value of ρ.

Detailed numerical results of Simulation II is available in Appendix 4.6.4.

4.4 Application

I conduct an empirical study involving inference for a non-probability sample. The

goal is to estimate police-reportable crash rates per 100M miles driven using the
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Figure 4.6: Comparing the magnitude of rBias of the DR adjusted means for the
continuous outcome variable with γ2 = 0.3 under (a) LIN , (b) CUB, (c) EXP , and
(d) SIN , and rMSE under (e) LIN , (f) CUB, (g) EXP , and (h) SIN across dif-
ferent model specification scenarios and different values of ρ. UW: unweighted; FW:
Fully weighted; PAPP: Propensity-adjusted Probability Prediction; GPPP: Gaussian
Processes of Propensity Prediction; LWP: Linear-in-weight Prediction; AIPW: Aug-
mented Inverse Propensity Weighting
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Figure 4.7: Comparing the magnitude of rBias of the DR adjusted means for the
binary outcome variable with γ2 = 0.3 under (a) LIN , (b) CUB, (c) EXP , and
(d) SIN , and rMSE under (e) LIN , (f) CUB, (g) EXP , and (h) SIN across dif-
ferent model specification scenarios and different values of ρ. UW: unweighted; FW:
Fully weighted; PAPP: Propensity-adjusted Probability Prediction; GPPP: Gaussian
Processes of Propensity Prediction; LWP: Linear-in-weight Prediction; AIPW: Aug-
mented Inverse Propensity Weighting
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sensor-based data from the second phase of the Strategic Highway Research Program

(SHRP2). To this end, I consider the National Household Travel Survey 2017 as the

reference survey to adjust for the potential selection bias in crash rates. Chapter III

elucidated the design of these samples in detail. In this application, however, I analyze

the aggregated data at the individual level unlike Chapter III where inference was

made based on the day-level data.

4.4.1 Auxiliary variables and analysis plan

To address the expressed objective of the present study, I set the outcome variable to

be the frequency of police-reportable crashes by SHRP2 participants throughout their

follow-up time. In addition, I utilize the total miles driven by each SHRP2 participant

as the model offset to obtain the rates by a driven mile. Particular attention was paid

to identify as many relevant common auxiliary variables as possible in the combined

sample that are expected to govern both selection mechanism and response surface

in SHRP2. Two distinct sets of variables were considered: (i) demographic and

socio-economic information of the drivers including sex, age groups, race, ethnicity,

birth country, education level, household size, number of owned vehicles, and state of

residence, and (ii) vehicle characteristics including vehicle age, vehicle manufacturer,

vehicle type and fuel type.

In order to make the two datasets more comparable, I filtered out all the subjects

in NHTS who were not drivers or were younger than 16 years old or used public

transportation or transportation modes other than cars, SUVs, vans, or light pickup

trucks. The final sample sizes of the complete day-level datasets were nA = 2, 862 and

nR = 29, 572 in SHRP2 and NHTS, respectively. I chose to use a Bayesian negative

binomial (NB) regression for modeling the response surface because the outcome

variable was count data and effects of overdispersion were present. I also checked and

found no evidence of zero-inflation in the distribution of the outcome by comparing
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the observed zeros with the expected number of zeros under the proposed NB model.

4.4.2 Results

According to Figure 4.8, one can visually infer that the largest discrepancies between

the sample distribution of auxiliary variables in SHRP2 and that in the population

stem from participants’ age, race, and population size of the residential area as well

as vehicles’ age and vehicles’ type. The youngest and oldest age groups are overrep-

resented as are Whites and non-Hispanics. In addition, I found that the proportion

of urban dwellers is higher in SHRP2 than that in the NHTS. In terms of vehicle

characteristics, SHRP2 participants tend to own passenger cars more than the pop-

ulation average, whereas individuals with other vehicle types were underrepresented

in SHRP2.

Before any attempt for bias adjustment, I check the positivity assumption as well

as the existence of influential pseudo-weights. To this end, I estimate the pseudo-

selection probabilities for the units of the SHRP2 sample using the PAPP method

as well as the PMLE method by Wang et al. (2020c). Figure 4.9 (a) compares the

distribution of estimated PS in log scale between the SHRP2 and NHTS samples.

As illustrated, there is a slight lack of common support in the distribution of PS,

which may lead to extreme weights. The box-plot on the right side (Figure 4.9 (b))

confirms the presence of outlying pseudo-weights based on the PAPP method. How-

ever, it seems no outliers exist in the pseudo-weights based on the PMLE method.

Figure 4.10 compares the distribution of auxiliary variables between the two sam-

ples after (pseudo-)weighting. As illustrated, pseudo-weighting obviates most of the

previously seen discrepancies in the distribution of common covariates.

Figure 4.11 displays the adjusted estimates of police-reportable crash rates per

100M miles driven and associated 95% CIs using the LWP and GPPP methods by

age groups. The plot also compares the adjusted estimates in SHRP2/NHTS data
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with the naive estimate using SHRP2-only data and that based on the GES/ADS

data, which is here considered as the benchmark Tefft (2017). Note that the latter

represents the entire population of American drivers while our adjusted estimates

represent the SHRP2 target population. As illustrated, for most of the age groups,

adjustments shift the unweighted crash rates to the true population value, and the

associated 95% CIs overlap, except for the last age group, i.e 80+ years old. In

particular, the unweighted crash rate for the age group 50-59 years seems to be

severely biased while adjusted estimates are desirably close to the true population

value. While I observe no significant differences in the performance of the GPPP and

LWP methods, it is evident that GPPP offers more efficient estimates than the LWP

method, as the length of 95% CIs is consistently lower in GPPP than LWP. Finally,

one can infer from Figure 4.11 that the risk of traffic accidents is higher among young

and elder people.

In Figure 4.12, I assess the adjusted rates of police-reportable crashes across levels

of auxiliary variables. The major associations I observe are as follows: Whites, more

educated drivers, and those in middle-income families are at lower risk of traffic

accidents. In addition, there is a positive relationship between the crash risk and

household size. There is also evidence of higher crash rates among Vans, European,

and gas/diesel vehicles. Numerical values associated with this plot have been provided

in Table 4.15 of Appendix 4.6.5.

4.5 Discussion

The present chapter was an attempt to develop alternative Bayesian methods for

inference based on non-probability samples that are robust and efficient. By robust,

I mean a method that is less sensitive to misspecifying the functional form of the

underlying models. In practice, the true models are almost always unknown, and

double robustness does not offer a strong shield against model misspecification. By
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efficiency, I mean a method that is not only smaller in variance, but also cheaper with

respect to computational burden. More importantly, Bayesian approaches provide

a unified framework for deriving the variance of the point estimator by simulating

the posterior predictive distribution of the population’s unknown parameters. A

well-calibrated Bayesian method can appropriately capture all sources of uncertainty,

meeting the desirable frequentist repeated sampling properties (Dawid, 1982). It is

well-understood that joint modeling of the PS and the outcome, as was the case in

our proposed method, results in good repeated sampling properties (Little, 2004).

The alternative design-based approaches, such as the AIPW estimator, are sen-

sitive to the presence of influential pseudo-weights if the outcome model is invalid.

In addition, the variance estimator proposed by Chen et al. (2019) relies on multiple

asymptotic assumptions, and there is no guarantee that simultaneously solving the

estimating equations leads to a unique solution. As another major limitation, such

a method works only when the dimensions of the auxiliary variables are the same

for the QR and PM models. According to the likelihood I factorized in Eq. 4.2, the

dimension of the auxiliary variables may vary across the QR and PM methods in a

non-probability sample setting ({X,D} vs X), which can make it impossible to use

Chen’s AIPW method in practice. On the other hand, the existing fully model-based

approaches can be extremely expensive computationally, as one needs to multiply

impute the auxiliary variables for the non-sampled units of the population, and then

fitting the models on each synthesized population separately (Little and Zheng, 2007;

Mercer, 2018). However, the method I proposed requires fitting the model only once

and on the combined sample, which makes it computationally more parsimonious,

especially when dealing with Big Data.

The results of both simulation study and application reveal that our GPPP

method is more efficient and less sensitive to the misspecification of the working

models compared to the AIPW approach. As we observed in Simulation II, such a
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method can offer extra robustness even if both underlying models are misspecified.

While Bayesian joint modeling demonstrates good frequentist properties, feedback

occurs between the two models (Zigler et al., 2013). This can be controversial in

the sense that PS estimates should not be informed by the PM (Rubin, 2007). It

is worth noting that given the currently available computational resources, Bayesian

joint modeling based on the GPPP can still turn out computationally very expensive,

even with the use of rank reduction techniques and for small-sized samples. This

restriction made us rely on a Bayesian bootstrap approach instead of a real MCMC

method to run the simulation and actual data analyses of this paper. However, in-

creasing access and quality of high-performance computing resources may be able to

overcome the computational burden of the proposed GPPP joint modeling approach.
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4.6 Appendix

4.6.1 Gaussian Processes and kernel weighting

Suppose π̂Ai is the estimated PS for i ∈ SA based on a pseudo-weighting approach.

Consider the following Gaussian Process (GP) regression model:

yi = f(π̂Ai ) + εi (4.40)

where f ∼ Gp(0, K) with K(πAi , π
A
j ;α, ρ) = Cov

(
f(πAi ), f(πAj )

)
. From a weight-

space viewpoint, one can show that the model 4.42 predicts yi for i ∈ SR using a

weighted sum of observed yi in SA as below:

ŷi =

nA∑
j=1

w̃ijyj (4.41)

where

w̃ij =
kij∑nA

j=1 kij
and kij = kT (π̂Aj )Σ−1 (4.42)

with k(π̂Aj ) = k(π̂Aj , π̂
A
i )nA×1. According to Huang et al. (2019), ŷi can be regarded

as the Nadaraya-Watson estimator of the observed outcome and selection indicator

in the population.

Considering an isotropic covariance structure, which is a function of ||π̂Aj − π̂Ai ||,

kij quite resembles the kernel weights Wang et al. (2020a), with the bandwidth h

equivalent to the GP length-scale parameter ρ. Since the kernel weights obtained by

GP is used in the PM estimator, it is clear that the final weights will be multiplied

by wR, i.e.

ŵj =

nR∑
i=1

kijw
R
i (4.43)

One can show that the major kernel-related condition determined by Wang et al.

(2020a) to obtain consistency in the kernel-weighted estimates holds for a Matérn fam-
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ily covariance structure, i.e. K(x),
∫
K(x)dx = 1, Supx|K(x)| <∞, and lim|x|→∞|x||K(x)| =

0.

4.6.2 Partially linear Gaussian process regression

The main goal in the proposed GPPP method is to simulate the posterior predictive

distribution of the outcome variable for units of SC . Having πAi = p(δAi = 1|xi; β)

estimated for i ∈ SC based on Eq. 4.18, I propose to fit a partially linear GP regression

model on SA as below:

yi =

p+q+1∑
j=1

θjzij + f(π̂Ai ) + εi (4.44)

where θ denotes a (p+ q+ 1)-dimensional vector of unknown linear regression param-

eters, zi = (1, xi, di), f is an unknown function, and εi ∼ N(0, σ2). As illustrated,

Eq. 4.44 consists of two parts: a linear regression parametrized by θ and a non-

parametric regression denoted by f(.).

In a GP regression model, I treat f a priori to follow an nA-dimensional GP with

mean 0 and an appropriately chosen covariance matrix as below:

f ∼ Gp(0, K), K(πAi , π
A
j ;α, ρ) = Cov

(
f(πAi ), f(πAj )

)
(4.45)

where K is an nA × nA covariance matrix taking a non-linear form with parameters

(α, ρ). While there are a variety of recommended covariance structure for GP, in this

section, I utilize the most popular covariance function in the GP literature, called

squared exponential (SE), which is formulated as below:

K(πAi , π
A
j ; ρ) = α2exp

{
−
||πAi − πAj ||2

2ρ

}
(4.46)

where α and ρ are often called the marginal standard error and length-scale param-

eters of the SE function, respectively. Note that the SE covariance function is a
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special form of stationary isotropic functions as πAi and πAj depends only through

their Euclidean distance, i.e. ||πAi − πAj || (Rusmassen and Williams, 2005).

Now, I follow Choi and Woo (2015) to fit the model in Eq. 4.44 on sample SA.

Let fA = [f(πA1 ), f(πA2 ), ..., f(πAnA
)]T be a vector of covariance function values based

on Eq. 4.45, evaluated at the nA points of πAi . Then, the model can be re-written as:

YA|ZA, πA, fA, σ2, θ, α, ρ ∼ NnA
(ZAθ + fA, σ

2InA
) (4.47)

where

fA|σ2, θ, α, ρ ∼ NnA
(0nA

, KnA
) (4.48)

and subscript A points out that the observations are defined for i ∈ SA and NnA
de-

notes an nA-dimensional multivariate Gaussian distribution. Therefore, the posterior

distribution of fA is given by

p(fA|YA, ZA, πA, θ, α, ρ) ∝ p(YA|ZA, πA, fA, σ2, θ, α, ρ)p(fA|σ2, θ, α, ρ)

= NnA
(YA − ZAθ, σ2InA

)×NnA
(0nA

, KnA
)

(4.49)

Therefore, I have

fA|YA, ZA, πA, θ, α, ρ ∼ NnA
(µnA

,ΣnA
) (4.50)

where µnA
= KnA

(KnA
+ σ2InA

)−1(YA −XAθ) and ΣnA
= σ2KnA

(KnA
+ σ2InA

)−1.

Now, considering normal priors for θ, i.e. θ ∼ Np+q+1(0p+q+1,Θ0), the posterior

distribution of θ is given by

p(θ|YA, σ2, fA, α, ρ) ∝ p(YA − fA|θ, σ2, fA)p(θ)

YA − fA|θ, fA, σ2, ρ ∼ NnA
(ZAθ, σ

2InA
)

θ|YA, fA, σ2, ρ ∼ Np+q+1(Θ1t,Θ1)

(4.51)
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where

Θ−1
1 =

1

σ2
ZT
AZA + Θ−1

0 , t =
1

σ2
ZT
nA

(YA − fA) (4.52)

A conjugate prior for σ2 is inverse-gamma distribution which is proportional to

σ−2(γ+1)exp{−ν−1σ−2}, σ2 > 0 (4.53)

where γ > 0 and ν > 0 are two known hyperparameters. As a result, the full

conditional distribution of σ2 is given by

p(σ2|YA, ZA, πA, fA, θ, α, ρ) ∝ p(YA|ZA, πA, σ2, θ, α, ρ)p(σ2)

∝ 1

σnA
exp

{
− 1

2σ2

nA∑
i=1

[
yi − zTi θ − f(πAi )

]2}
× σ−2(γ+2)exp{−ν−1σ−2}

(4.54)

which is an inverse-gamma distribution with parameters γ+ nA

2
and ν−1 + 1

2

∑nA

i=1[yi−

zTi θ − f(πAi )]2. The posterior distribution of the unknown parameters (fA, θ, σ
2) can

be simulated through Monte Carlo Markov Chains (MCMC).

4.6.3 Hilbert space approximation of Gaussian Processes

To reduce the GP computational burden while maintaining its accuracy, the current

paper employs an approximation method proposed by Solin and Särkkä (2020), which

can be implemented in Stan. Using the Laplace eigenfunctions for stationary covari-

ance functions, this method approximates GP via a linear model by expanding the

basis functions. Riutort-Mayol et al. (2020) examine the performance of this approach

in several simulation and empirical studies with an attempt to identify optimal values

for its tuning parameters. In the following, I briefly describe this approach for GPs

with a Matérn covariance function through mathematical notations.

A stationary covariance function can be expressed uniquely with respect to a spec-
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tral density function. The latter is a frequency domain representation of a stationary

process, which constitutes a Fourier transform pair with the process autocovariance.

One can show that the spectral density function for the Matérn covariance function

is given by

Sν(x) = α2 2π1/2Γ(ν + 1/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2x2

)ν+1/2

(4.55)

where x ∈ IR denotes the frequency, and ρ and α are the lengthscale and marginal

standard error of the kernel, respectively. For ν = ∞ and ν = 3/2, this function is

reduced to
S∞(x) = α2

√
2πρexp

(
−ρ2x2/2

)
S3/2(x) = α2 2π1/233/2

√
πρ3/2

(
3

ρ2
+ x2

)2 (4.56)

Suppose the GP input space is given by Ω = [−L,L], where Riutort-Mayol et al.

(2020) refer to L ∈ IR>0 as the boundary condition. Within Ω, one can expand a

given stationary covariance function linearly as

k(x, x′) =
∞∑
j=1

S(
√
λj)φj(x)φj(x

′) (4.57)

where {x, x′} ∈ Ω, and {λj}∞j=1 and {φ(x)}∞j=1 denote the sets of eigenvalues and

eigenvectors of the Laplacian operator in the given domain, respectively. By applying

the Dirichlet boundary, this implies the following eigenvalue problem in Ω :

−∆2φj(x) = λφj(x), x ∈ Ω

φj(x) = 0, x /∈ Ω

(4.58)

Since the Laplacian is a positive definite Hermitian operator, the eigenvalues are real

and positive, i.e. λj > 0. In addition, the eigenfunctions φj take a sinusoidal form,
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and are given by

λj =

(
jπ

2L

)2

φj(x) =

√
1

L
sin

(√
λj(x+ L)

) (4.59)

Note that the solution to the eigenvalue problem is independent of the specific choice

of covariance function. Now, one can approximate the covariance function by trun-

cating the sum in Eq. 4.57 to the first m terms as below:

k(x, x′) ≈
m∑
j=1

S(
√
λj)φj(x)φj(x

′) = φ(x)T∆φ(x′) (4.60)

where φ(x) = {φj(x)}mj=1 ∈ IRm is the vector of basis functions, and ∆ ∈ IRm×m

denotes a diagonal matrix of the spectral density evaluated at the square root of the

eigenvalues, that is, S(
√
λj),

∆ =


S(
√
λ1)

. . .
√
λm)

 (4.61)

Thus, the Gram matrix K of the covariance function k for a set of observations

i = 1, ..., n and corresponding input values {xi}ni=1 ∈ Ωn can be represented as

K = Φ∆ΦT (4.62)

where Φ ∈ IRn×m is the matrix of eigenfunctions φj(xi)

Φ =


φ1(x1) . . . φm(x1)

... . . . ...

φ1(xn) . . . φm(xn)

 . (4.63)
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As a result, the model for f can be written as

f ∼ N(µ,Φ∆ΦT ) (4.64)

This equivalently leads to a linear representation of f via

f(x) ≈
m∑
j=1

S
1
2 (
√
λj)φj(x)βj (4.65)

where βj ∼ N(0, 1). Therefore, Riutort-Mayol et al. (2020) approximate the function

f with a finite basis function expansion, scaled by the square root of spectral density

values.

As a key feature of this approximation, the eigenfunctions φj are independent

of the parameters of the covariance function, i.e. (α, ρ). For a bounded covariance

function, S(.) goes rapidly to zero as j increases, because λj’s are monotonically

incremental with j. Note that this approximation yields a computational cost of

O(nm + m) for evaluating the log posterior density of a univariate GP (which is

the case in this study), where n is the number of observations and m the number

of basis functions (Riutort-Mayol et al., 2020). In the present study, I set m = 10

and L = C ×max{|min(x)|, |max(x)|} with C = 1.25, which shows relatively good

empirical results.
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4.6.4 Further extensions of the simulation study

4.6.4.1 Simulation study I

This subsection provides additional results associated with Simulation I. Table 4.2

and Table 4.3 summarize the findings of the simulation in 4.3.1 for ρ = 0.5 and

ρ = 0.3, respectively.
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4.6.5 Supplemental results on SHRP2/HNTS data

Table 4.16: Police-reportable crash rates per 100M driven miles and associated 95%
CIs by different covariates across DR adjustment methods

Covariate n Unweighted (95% CI) GPPP (95% CI) LWP (95% CI) AIPW (95% CI)

Total 2,862 1430.59 (1417.66,1443.52) 461.29 (296,718.88) 534.2 (270.47,1055.11) 464.58 (294.06,734)
Gender

Male 1,357 1778.61 (1740.38,1816.84) 457.56 (293.54,713.22) 543.75 (270.88,1091.48) 464.59 (293.9,734.42)
Female 1,505 1116.79 (1107.96,1125.62) 465.4 (298.14,726.49) 524.11 (268.95,1021.35) 464.45 (293.01,736.18)

Age group
16-19 453 2621.22 (2565.47,2676.97) 1532.82 (976.35,2406.45) 1468.28 (836.11,2578.44) 1535.73 (970.36,2430.52)
20-24 671 1357.97 (1334.13,1381.82) 860.25 (533.43,1387.32) 829.97 (383.85,1794.61) 879.91 (534.14,1449.52)
25-29 254 1058.64 (1017.15,1100.13) 788.27 (508.57,1221.8) 854.11 (488.08,1494.64) 794.45 (499.52,1263.49)
30-39 237 331.76 (313.61,349.9) 261.38 (168.1,406.41) 322.84 (160.73,648.47) 265 (168.61,416.48)
40-49 214 290.26 (273.98,306.54) 358.91 (225.32,571.7) 444.7 (222.7,887.98) 361.39 (220.82,591.43)
50-59 235 4324.69 (3815.74,4833.64) 399.07 (256.67,620.47) 509.73 (260.39,997.82) 402.83 (253.23,640.81)
60-69 276 529.89 (509.18,550.6) 561.92 (358.13,881.66) 626.86 (298.56,1316.14) 544.86 (343.45,864.39)
70-79 345 450.48 (433.74,467.23) 406.44 (264.44,624.69) 405.47 (210.49,781.06) 417.89 (272.45,640.96)
80+ 177 1514.88 (1430.84,1598.91) 1238.85 (750.24,2045.68) 1204.41 (645.22,2248.24) 1248.12 (736.97,2113.81)

Race
White 2,530 1461.22 (1445.75,1476.7) 440.54 (281.63,689.11) 502.06 (252.37,998.76) 446.8 (282.12,707.59)
Black 150 910.16 (860.84,959.49) 521.84 (334.41,814.31) 683.96 (342.54,1365.71) 511.11 (323.81,806.74)
Asian 96 2197.74 (2017.8,2377.68) 521.55 (330.77,822.36) 560.17 (311.8,1006.42) 513.48 (313.78,840.28)
Other 86 580.72 (517.11,644.34) 632.26 (420.17,951.43) 810.56 (443.05,1482.92) 634.01 (403.55,996.07)

Gender
Non-Hisp 2,754 1442.75 (1429.07,1456.44) 434.32 (277.78,679.07) 490.06 (247.28,971.23) 434.68 (274.25,688.97)
Hispanic 108 1120.45 (1053.82,1187.08) 684.24 (472.5,990.85) 1023.74 (563.45,1860.07) 716.38 (471.67,1088.05)

Ethnicity
0<HS 213 3659.76 (3497.14,3822.38) 1169.05 (730.81,1870.09) 1329.65 (646.48,2734.8) 1158.09 (703.44,1906.6)

HS comp 279 1606.27 (1554.61,1657.93) 478.5 (304.26,752.52) 692.02 (356.97,1341.54) 472.07 (295.39,754.42)
College 837 1248.89 (1231.23,1266.54) 473.56 (304.61,736.21) 561.22 (272.75,1154.81) 483.62 (303.5,770.65)
Graduate 1,068 603.63 (597.39,609.87) 370.9 (238.69,576.34) 385.55 (198.1,750.37) 374.99 (238.43,589.77)
Post-grad 465 2530.49 (2347.36,2713.63) 475.47 (302.42,747.56) 509.52 (261.3,993.53) 473.87 (299.47,749.84)

HH income
0-49 1,164 1179.27 (1167.12,1191.42) 499.59 (315.31,791.56) 594.45 (288.18,1226.2) 497.9 (308.84,802.71)
150-99 1,049 709.89 (702.91,716.88) 375.32 (243.18,579.25) 421.01 (215.49,822.54) 376.41 (242.88,583.35)
100-149 442 1658.96 (1605.49,1712.43) 442.6 (286.32,684.19) 506.46 (266.98,960.73) 455.88 (289.48,717.9)
150+ 207 6008.42 (5391.28,6625.55) 676.53 (425.78,1074.96) 824.7 (417.97,1627.23) 685.64 (410.65,1144.77)

HH size
1 598 1155.7 (1128.21,1183.18) 432.75 (273.84,683.87) 468.57 (231.47,948.5) 439.9 (272.26,710.74)
2 967 698.78 (690.22,707.34) 453.73 (293.66,701.06) 516.25 (259.7,1026.23) 442.13 (283.57,689.34)
3 510 1536.75 (1493.83,1579.67) 463.86 (295.02,729.33) 546.31 (281.53,1060.12) 470.79 (293.94,754.04)
4 512 3045.14 (2885.96,3204.33) 481.49 (301.8,768.17) 561.53 (291.39,1082.1) 486.84 (300.07,789.85)
5+ 275 1398.78 (1353.14,1444.42) 483.9 (314.29,745.04) 626.53 (314.87,1246.67) 512.19 (323.83,810.11)

Vehicle make
American 1,045 2058.42 (2003.06,2113.78) 407.92 (260.59,638.55) 496.88 (246.37,1002.13) 414.98 (260.96,659.91)
Asian 1,745 1034.41 (1025.7,1043.12) 475.22 (306.94,735.75) 521.23 (268.96,1010.09) 478.85 (305.11,751.51)
European 72 1920.11 (1707.15,2133.08) 726.7 (448.99,1176.18) 963.13 (476.84,1945.38) 690.15 (409.89,1162.04)

Vehicle type
Car 2,061 1736.09 (1715.31,1756.86) 611.19 (392.09,952.73) 667.49 (342.48,1300.92) 607.53 (381.97,966.28)
Van 109 629.14 (581.73,676.55) 682.49 (439.71,1059.32) 835.22 (446.81,1561.3) 754.96 (480.49,1186.19)
SUV 551 724.36 (696.5,752.21) 320.33 (203.8,503.48) 376.21 (182.91,773.77) 325.25 (208.23,508.02)
Pickup 141 344.53 (311.67,377.4) 233.9 (151.03,362.22) 336.55 (169.77,667.17) 238.51 (148.96,381.9)

Vehicle age
0-4 320 2821.77 (2738.31,2905.24) 511.45 (319.47,818.8) 631.43 (316.66,1259.1) 536.52 (324.72,886.47)
5-9 742 838.31 (826.17,850.46) 483.2 (313.51,744.74) 555.03 (293.54,1049.46) 478.57 (305.12,750.62)
10-14 905 977.22 (968.18,986.25) 438.34 (281.64,682.23) 489.77 (238.5,1005.77) 442.87 (279.4,701.98)
15-19 382 607.65 (592.55,622.76) 412.86 (264.47,644.5) 480.04 (248.96,925.61) 404.66 (256.76,637.75)
20-24 197 5119.19 (4543.74,5694.65) 433.61 (279.84,671.86) 478.1 (219.52,1041.29) 436.13 (281.22,676.37)
25-29 108 545.61 (515.12,576.09) 418.01 (257.83,677.71) 469.24 (214.37,1027.12) 429.71 (265.65,695.09)
30+ 178 2030.45 (1897.07,2163.84) 466.84 (277.69,784.84) 580.56 (283.85,1187.42) 486.75 (288.21,822.08)

Fuel type
Gas/D 2,641 1526.32 (1511.74,1540.9) 461.79 (296.55,719.13) 535.61 (270.59,1060.18) 465.34 (294.5,735.28)
Other 221 286.58 (273.29,299.87) 439.6 (267.26,723.09) 476.92 (262.85,865.33) 432.82 (262.46,713.76)
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CHAPTER V

Conclusion and Future Research Directions

5.1 Summary

With recent advances in automated measurement technologies, such as interactive

web portals, public cameras, Global Positioning System (GPS), pedometers, and

other types of tracking sensors, novel unconventional sources of data are becoming

increasingly accessible in various research fields. Since collecting design-based data

is often time-consuming and expensive, more and more researchers approach these

pre-existing sources of data to conduct their projects. Although many social and

clinical studies typically focus on the internal validity of the results for fair assess-

ments across different experimental groups, nowadays, growing attention is paid to

the generalizability of their findings to a larger population (Stuart et al., 2018, 2015,

2011; Susukida et al., 2017). When it comes to external validity for finite population

inference, one has to either rely on the randomization distribution and design-based

sampling under a total survey error (TSE) framework or trust merely on models and

assumptions. It is undoubtedly safest to choose the earlier route, but the use of the

latter is becoming increasingly inevitable.

Probability sampling suffers from declining response rates, which incur exces-

sive costs with reduced validity. Besides, there are many situations where this long-

standing touchstone for finite population inference may not be practical. Examples
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include but are not limited to rare population studies, small area estimation and

those studies requiring expensive and limited measurement equipment. The nature

of the data-generating process in alternative sources of data is non-probabilistic and

often appears as self-selection. Therefore, concepts like response and completion rates

may no longer be meaningful, but valid inference for such samples becomes highly

challenging as the selection mechanism seems like a “black box” to the analyst.

The extent to which one can correct for the potential selection bias in such data

depends on how strong the fundamental assumptions are met in reality, and how ac-

curately the external data represent the target population. That is perhaps the main

reason why empirical studies show relatively contradictory results concerning the qual-

ity of non-probability samples (Rivers and Bailey, 2009; Gittelman et al., 2015; Wang

et al., 2015; Dutwin and Buskirk, 2017; Mercer et al., 2018; Cornesse et al., 2020).

According to Mercer (2018), the most critical conditions involve exchangeability, pos-

itivity and composition. I referred to the first two as strong ignorability collectively,

which implies that all the auxiliary variables governing the selection mechanism of

the non-probability sample or the response surface structure in the population are

observed, and there are adequate sample units within each level of the auxiliary vari-

ables. By composition, the author means correctly specifying the underlying models

so that the target composition on the auxiliary variables can be properly replicated.

Mercer (2018) also proposes a unified framework for the evaluation of these assump-

tions, but this framework requires the key outcome variables to be observed for both

samples.

Assuming that a perfect benchmark survey is present with these auxiliary vari-

ables fully measured, this dissertation attempted to develop alternative Bayesian

approaches that weaken some of the other necessary assumptions for valid inference.

First, it is unknown to the analyst how the observed auxiliary variables are linked to

the selection propensity and the response surface in reality. Misspecifying the models
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explaining these relationships can result in biased inference. Second, a partial lack

of common support in the joint distribution of the auxiliary variables (partial lack of

positivity) may result in the prediction of extremely low propensity scores (PS). This

not only leads to biased point estimates but inflates the uncertainty of the estimates.

This dissertation addresses the first problem in two ways. The first is to em-

ploy flexible non-parametric Bayesian tools for modeling, which possess an embedded

variable selection procedure and detect non-linear associations and multi-way inter-

actions automatically. As the second approach, I reconcile the idea of propensity

modeling, also known as quasi-randomization (QR), with that of prediction modeling

(PM) to construct a doubly robust (DR) estimator, which maintains its consistency

even if one of the underlying models for QR or PM is incorrectly specified. Chapter II

proposes a two-step QR method using Bayesian Additive Regression Trees (BART).

The strong flexibility of BART as a predictive tool is believed to be protecting the

QR estimator against model misspecification. In addition, the posterior predictive

distribution simulated by BART permits me to directly quantify the uncertainty of

the adjusted estimator. Despite these advantages, it is well-understood that BART

performs poorly when there is evidence of a partial lack of common support in the

joint distribution of the auxiliary variables between the two samples. In addition,

there is no guarantee that the observed set of common auxiliary variables fully meet

the ignorable assumption.

To further protect against model misspecification, Chapter III combines the QR

estimator in Chapter II with a PM estimator through a modified augmented inverse

propensity weighting (AIPW) method, which is DR. Since I propose to use BART for

multiply imputing both propensity scores and the outcome, the ultimate estimator is

expected to be “robust squared” (Tan et al., 2019). This means that even if the true

functional form of both PS and the response surface is unknown to the analyst, the

proposed estimator may still remain consistent. There are, however, two other major
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concerns in addition to BART’s weakness against partial lack of positivity. First, the

proposed methods in both chapters II and III are two-step Bayesian approaches, in

the sense that imputed PS are treated as known quantities at the outcome stage.

A well-known problem with such two-step methods is that the uncertainty of the

ultimate estimator is misstated (Zigler et al., 2013). The simulation results in both

chapters indicated that variance estimation based on BART’s posterior predictive

distribution consistently overestimates the variance. The second problem is that the

ultimate form of the AIPW estimator is design-based. As a major drawback, design-

based estimates are sensitive to the presence of influential pseudo-weights, which can

potentially lead to biased estimates with inflated variance.

The second strategy of this thesis for weakening the modeling assumptions in-

volved fully model-based inference. The basic idea is to impute the outcome for

all non-sampled units of the population. Having the outcome known for the entire

population units eliminates the need for design-based estimators, such as inverse PS

weighting (IPSW). A DR estimator can be achieved under this setting by including

the estimated PS as a predictor in the PM. The main advantage of this alternative

class of DR methods is that it can be fully implemented in a Bayesian framework. By

jointly estimating the PS and response surface, one can integrate out the estimated PS

from the PM. Therefore, a fully model-based approach can propagate the uncertainty

of the final estimator accurately, which reduces the concern of overestimated vari-

ance in the two-step Bayesian methods proposed in chapters II and III. Furthermore,

Zhang and Little (2011) recognized that non-parametrically linking the estimated PS

to the outcome mean reduces the sensitivity to outlying pseudo-weights. While the

authors suggest fitting a penalized spline model, in Chapter IV, I proposed to use a

Gaussian process (GP) regression model as the PM and showed that GP behaves as

an optimal matching technique based on the estimated PS.

As another major advantage of the method I proposed in Chapter IV, one can
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directly simulate the posterior predictive distribution of the finite population quan-

tity, which allows for drawing credible intervals. This is unlike the two-step methods

proposed by Zangeneh and Little (2015); Little and Zheng (2007) where a synthetic

population is initially generated, and then models are fitted on the generated popula-

tions. Therefore, their method eventually requires Rubin’s combining rules to derive

the final point and interval estimates. My proposed method is especially advantageous

when the posterior predictive distribution is not symmetric, which is usually the case

for non-normal outcomes. Although the proposed method uses an embedded finite

population bootstrapping (FPBB) technique to undo the sampling mechanism of the

reference survey, it assumes that units of the reference survey are selected indepen-

dently albeit with unequal selection probabilities. While extensions of FPBB can be

suggested that handle more complex sampling designs, such a method would require

knowing selection probabilities at different stages of sampling. Such information is

not unusually included in the public-use datasets of probability surveys.

To recap, I list the estimators proposed across different chapters in the following:

Chapter II : ˆ̄yU =
1

N

nA∑
i=1

yi
π̂Ai

(5.1)

Chapter III : ˆ̄yU =
1

N

nA∑
i=1

(yi − ŷi)
π̂Ai

+
1

N

nR∑
j=1

ŷi
πRi

(5.2)

Chapter IV : ˆ̄yU =
1

N

nA∑
i=1

(yi − ŷi) +
1

N

nR∑
j=1

ŷi
πRi

(5.3)

As illustrated, the proposed estimator in Chapter III deals with two design-based

terms, whereas Chapter IV eliminates the need for the first design-based term. Note

that the omitted term π̂Ai in the last formula has appeared in the PM model as a

predictor. Modifying the second term, however, demands the generation of synthetic

populations based on SR. Since models have to be fitted on the full synthetic pop-

ulation, for a large N , there would be a trade- off between enhanced efficiency and
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computational intensity of the adjustments. In Chapter IV, because the goal was

developing a unified Bayesian framework with the joint estimation of (πAi , yi), the

second term was kept as a HT -estimator to be able to directly simulate the posterior

predictive distribution of the population mean.

5.2 Weaknesses and limitations

There were several limitations identified in this dissertation. First and foremost, the

methods I proposed throughout the thesis were built upon the ignorable condition

where it is assumed that all the auxiliary variables governing the selection mechanism

of the non-probability sample or response surface in the population are observed and

available for the analyst. In reality, this assumption may hold for neither the selection

mechanism nor the response surface. In such situations, the use of more flexible

modeling tools, such as BART, would no longer help remove the potential selection

bias in the estimates. However, for a given non-probability sample with a known

outcome variable and a fixed set of auxiliary variables, one can assess the extent of

departure from this assumption before any attempt for bias adjustment using the

measure proposed by Little et al. (2020). As a drawback, this measure depends on

an inestimable parameter, whose valid range can be identified through sensitivity

analysis.

The second most critical concern is about the construction of the PM. According

to the decomposition of the joint likelihood in Eq. 1.1, we observed that the outcome

may depend not only on the auxiliary variables associated with selection variables

of the non-probability sample but also on the design features of the reference survey

such that both samples are informative in design. Since the PM has to be fitted on

the non-probability sample, it is unlikely that all the design variables of the reference

survey, including sampling weights, strata, and clusters, are available for units of the

non-probability sample. This problem was the case in all actual data applications
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in this dissertation. All I could do was to assume that missing design variables play

no significant role in explaining the variation of the outcome variable. For the DR

methods, this was of less concern as the propensity model does not necessarily depend

on the design variables of the reference survey. Given the ignorable assumption, and

if the QR model is correctly specified, estimates are expected to be unbiased even if

none of the design features of the reference survey are known for units of the non-

probability sample.

As the third weakness, I assumed that auxiliary variables are error-free in mea-

surement. Although it is well-understood that the presence of classical measurement

error attenuates the estimate of model coefficients, this may not affect systematic bias

in prediction and therefore the population-adjusted estimates. The challenge arises

when the auxiliary variables have different measurement error structures across the

non-probability sample and reference survey. The presence of differential measure-

ment error can deteriorate the performance of the bias adjustment methods.

Last but not least, the computational intensity was a major obstacle through-

out the entire data analysis of this thesis, especially when dealing with large-scale

datasets. Despite the strong flexibility of BART as a predictive tool, fitting it on

an even moderately sized sample can be very demanding computationally. Although

different resources of high-performance computing were used for parallel processing

throughout the analysis, I had to keep the number of MCMC draws as low as possible

for simulating the posterior predictive distribution. This may have endangered the

convergence of the MCMC sequence to the true posterior predictive distribution. I

also came across computational obstacles when implementing a fully Bayesian ap-

proach for the joint estimation of PS and outcome as I had to use a custom HMC

algorithm for simulating the posterior predictive distributions. To reduce the com-

putational costs, however, I proposed a method limiting the computations to the

combined sample and employed approximation methods to train the GP on the data.
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For a fully model-based approach, the computational problem becomes more conspic-

uous because models have to be fitted repeatedly on synthetic populations. Note that

the standard Bayesian software precludes one from generating the synthetic popula-

tion and fitting the models under a unified framework because it is not possible to

use the posterior predictive draws simulated in one step as the input for the following

step.

5.3 Future research directions

This subsection strives to suggest a couple of distinct directions to enthusiastic re-

searchers for future developments. First and foremost, one may be interested in relax-

ing the strongly ignorable condition, which was the main fixed assumption through-

out this dissertation. One elegant solution is to use proxy pattern-mixture analysis,

which has been well-developed in both causal inference and incomplete data analysis

domains (Andridge and Little, 2011). However, such a method relies on an unknown

parameter controlling the degree of non-ignorability, whose true value can only be as-

sessed through sensitivity analysis. Yang and Little (2021) propose to use a penalized

spline extension to pattern mixture models to reduce the risk of model misspecifica-

tion. Alternatively, one may use GP instead.

Second, all the methods I proposed throughout this dissertation dealt with esti-

mating the finite population mean and associated 95% CI, which lies in the descriptive

inference domain. One may be interested in taking one further step and modifying

these methods to estimate some non-smoothed population quantities such as quan-

tiles or mode. It might also be of interest to estimate the coefficient of a regression

model for analytical inference. In such situations, the use of a fully model-based ap-

proach is expected to perform best, as one would no longer need to deal with sampling

weights and the stratification/clustering effects of the reference survey. Furthermore,

one may intend to use the proposed approaches for improving the external validity
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of multiple treatment comparisons in observational studies while the internal validity

of estimates, e.g the average treatment effect (ATE), is simultaneously taken into

account.

Third, future work could be to further expand the DR methods under a situation

where a subset of common auxiliary variables is subject to measurement error in ei-

ther the non-probability sample or reference survey. To address this issue, one has to

build a measurement error model, and training such a model may demand an external

validation dataset where both mismeasured and error-free covariates are observed for

each sample unit. In a recent study by Hong et al. (2017), a DR method with a

Bayesian framework was proposed for situations in which differential measurement

errors between treated and untreated groups are present in covariates. The authors

examined several scenarios including systematic, heteroscedastic, and mixed measure-

ment errors. In the absence of a validation sample, their method relies on sensitivity

analysis with respect to the parameters of the measurement error model. Antonelli

et al. (2017) proposed a guided Bayesian imputation to adjust for confounders where

a large portion of covariates suffer from missingness. Their approach combines the

idea of Bayesian model averaging, confounding selection, and missing data imputation

into a single framework.

When the non-probability sample is extremely large in size, implementing the pro-

posed adjustment methods is computationally demanding. In the Bayesian setting, we

saw that generating synthetic populations is inevitable, whose size should be, at best,

several times larger than the non-probability sample. In addition, there are situations

where Big Data are stored in distributed clusters of computers owing to either the

large volume or confidentiality protection of the data. There is a surge of research

exploring novel methods to reduce the computational burden of fitting statistical

models on Big Data. A state-of-the-art solution involves parallel processing through

the divide-and-recombine techniques, in which Big Data are initially partitioned into
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independent batches, models are fitted separately on each batch, and eventually, pa-

rameter estimates are recombined such that the pooled estimator remains consistent.

This method has been well-developed for generalized linear models, mixed effect mod-

els LASSO (Tang, 2018) and ridge regression (Zhang and Yang, 2017), splines (Xu

and Wang, 2018) and GP smoothing (Guhaniyogi et al., 2017).

Therefore, as the final suggestion, I propose to address this important gap in the

existing literature by extending the divide-and-recombine technique based on the idea

of confidence distribution to both classes of DR estimators, AIPW and GPPP, for

finite population quantities. The idea of confidence distribution provides a unified

framework for combining the estimators obtained from each subsample (Xie et al.,

2011). One can limit the study to a situation where the true underlying models lie

within the family of generalized additive models. Further extensions can be given

to a situation where data are naturally correlated, and under the high-dimensional

setting, where a LASSO regularization technique is used for variable selection.

Appendix: R/Stan codes

The following GitHub link provides annotated R/Stan codes developed for gen-

erating the results of simulation and empirical studies across the chapters II-IV:

https://github.com/arafei/Mythesis.
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