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ABSTRACT 
 

 

The retrosplenial cortex is essential for spatial memory and navigation. We 

aimed to learn about how the retrosplenial cortex encodes information through 

oscillations. Our results reveal an oscillation pattern we call “splines”, resembling the 

similarly-named interlocking teeth on mechanical gears. Splines are 110-160 Hz, 

precisely coupled to the peaks of local theta rhythms, and observed during both REM 

sleep and active awake behaviors. We found that splines are distinct from gamma 

rhythms: while gamma rhythms are in-phase across the two retrosplenial hemispheres, 

splines are anti-phase across the hemispheres. By sorting theta cycles by either spline 

or gamma power, we show that retrosplenial splines and gamma oscillations occur 

independently of each other within any given theta cycle. Splines are also distinct from 

sharp wave ripples and alternate with sharp wave ripples across REM and NREM sleep, 

respectively. At higher running speeds, splines become more powerful, more strongly 

phase-amplitude coupled to theta, and have greater cross-hemispheric coherence. The 

retrosplenial cortex’s ability to rapidly switch between splines and gamma as distinct 

modes of rapid interhemispheric communication may allow this region to more 

effectively integrate information using two mechanistically distinct rhythms. 
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CHAPTER 1: Introduction 

 

1.1 Abstract 

 

Where are we? How do we know it? Where are we going? 

To answer any of these questions, the brain must construct internal maps of the 

outer world. Here, we review cell types and brain regions involved in creating these 

internal representations. We then explore the circuitry of the retrosplenial cortex, a 

region essential for successful spatial navigation. The retrosplenial cortex has reciprocal 

connections to many different brain regions involved in sensory processing and 

memory. This interconnectedness allows the retrosplenial cortex to integrate the 

allocentric and egocentric perspectives of space. Lastly, we highlight oscillations 

involved in transmitting navigationally-relevant information and discuss how these 

oscillations may be generated. 

 

1.2 Navigation in the mammalian brain 

 

Diversity across mammals results in an array of navigational strategies employed 

by each species, but all require the capacity to orient in space. Charles Darwin 

suggested that animals orient themselves by tracking their current position relative to a 
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starting point through combining internal and external motion cues to continuously 

estimate speed and direction (Darwin, 1873; Barlow, 1964). This “dead reckoning,” as 

Darwin called it, is also known as path integration, as it requires the integration of 

various types of cues along the navigated path. Landmark-related navigation, in 

contrast, involves relating the body’s location with respect to landmark cues rather than 

the motion cues used in path integration (Taube and Burton, 1995). Being able to 

perform both path integration and orient to landmarks may allow for more accurate 

navigation. 

Navigation involves motion, which means that the navigating agent must keep 

track of motion signals and relate them to other streams of incoming information during 

navigation. Mammalian navigation is thought to involve sequence encoding that 

combines information from changing sensory scenes with internal memory processes 

(Pastalkova et al., 2008; Spiers et al., 2001). Different senses may be given different 

weights in processing spaces depending on the navigational strategy used: where 

visual information is limited, unreliable, unavailable, or unattended to, more processing 

power may be dedicated to other senses, such as balance and proprioception, for 

successful navigation (Townsend et al., 2019; Angelaki et al., 2009; Butler et al., 2010; 

de Winkel et al., 2017). This chapter will discuss the neural circuitry and brain rhythms 

involved in navigation, demonstrating why further studies of the retrosplenial cortex 

(RSC) will contribute to our knowledge of the science underpinning navigation. 

 

1.2.1 Neural circuits of navigation  
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Many regions are involved in spatial navigation, including the hippocampus. Cells 

that encode specific locations were first identified in CA1 of the hippocampus in 1971 

(O’Keefe and Dostrovsky, 1971).  Further experiments of rats navigating in mazes 

demonstrated that a subset of hippocampal neurons fired in response to specific places 

(O’Keefe, 1976; O’Keefe and Conway, 1978). These cells that prefer to fire in particular 

places are called “place cells” (O’Keefe, 1979). Place cells are found in CA1 (O’Keefe 

and Conway, 1978; O’Keefe and Dostrovsky, 1971), CA3 (Hwaun and Colgin, 2019; 

Leutgeb et al., 2007), and dentate gyrus (Leutgeb et al., 2007) of the hippocampus.  

The medial (Fyhn et al., 2004) and lateral entorhinal cortices are strongly 

interconnected with the hippocampus (Dolorfo and Amaral, 1998; Ahmed and Mehta, 

2009; Amaral and Witter, 1989). The lateral entorhinal cortex has weak spatial 

specificity (Hargreaves et al., 2005) and likely carries episodic temporal information 

(Tsao et al., 2018). Border cells, which preferentially respond to borders in an 

environment, are found in the medial entorhinal cortex (MEC) (van Wijngaarden et al., 

2020; Solstad et al., 2008), the parasubiculum (Solstad et al., 2008), the subiculum 

(Stewart et al. 2013), and the RSC (van Wijngaarden et al., 2020). Boundary vector 

cells are found in the subiculum (Stewart et al. 2013) and are tuned to reflect both 

proximity and orientation to the borders of an arena (Barry et al., 2006).  

About 15% of the cells across all layers of the medial entorhinal cortex are speed 

cells, which positively respond to running speed with low levels of spatial and directional 

information (Kropff et al., 2015). The medial entorhinal cortex also contains cells with 

multipeaked spatial firing fields that respond during movement around an environment 

(Fyhn et al., 2004; Hafting et al., 2005). Further characterization revealed that these 
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neurons fired with a repeating tessellating hexagonal grid pattern during navigation, and 

that the grid structure of firing fields is expressed instantly in a novel room (Hafting et 

al., 2005). Since this pattern tiles spatial environments with a grid, the neurons with this 

property are called “grid cells.” 

Some computational models of grid cells require head direction signals to 

accurately reproduce the spatial grid (Giocomo et al., 2011; O’Keefe and Burgess, 

2005; McNaughton et al., 2006; Fuhs and Touretzkey, 2006). Head-direction cells signal 

an animal’s head direction in its environment (Taube et al., 1990a, 1990b). Head-

direction cells are found in many brain regions. The anterodorsal thalamic nucleus 

(ADN) is the region containing the highest proportion of head-direction cells, where 50-

60% of its neurons encode head direction (Taube, 1995). The ADN projects to layers 1 

and 3 (Brennan et al., 2021) of RSC (van Groen and Wyss, 1990; van Groen and Wyss, 

1995; van Groen and Wyss, 1990; Yamawaki et al., 2019a), where 10% of RSC 

neurons have been shown to encode head direction (Cho and Sharp, 2001). Upon 

electrolytically lesioning the RSC, the ADN’s head-direction cells were less stable in 

their preferred firing orientations, even in the presence of visual landmark information 

(Clark et al., 2010). This suggests a critical role for the RSC in the head direction 

system, despite a relatively low proportion of RSC cells encoding head direction.  

The head direction signal is produced first by angular head velocity information 

being sent from the vestibular afferents the vestibular nuclei (Highstein and Holstein, 

2006), which send information through a long chain of different brain regions for 

processing (Cullen and Taube, 2017; Valerio and Taube, 2016; Schuerger and Balaban, 

1993 (Figure 1-2)). This information eventually reaches the anterodorsal thalamic 
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nucleus and the RSC, which contain head direction cells. The head direction signal 

cannot rely solely on visual cues, but needs information from the vestibular system to 

adequately encode head direction. The vestibular inner ear has semicircular canals, 

which encode rotational motion of the head (Corradi et al., 2014). Valerio and Taube’s 

single-unit recordings in the anterodorsal thalamus of transgenic epistatic circler mice 

without functional horizontal semicircular canals demonstrated that head direction cell 

activity is unstable in these mice (Valerio and Taube, 2016). Along with the semicircular 

canals, the vestibular inner ear has otoliths to sense translational head motion (Corradi 

et al., 2014). Otoliths contain crystals of calcium carbonate, called otoconia (Johnson et 

al., 1982), which are critical for detecting linear acceleration (Athanasiadou et al., 2020). 

Experiments with tilted mice, which have otoconia deficiencies, show that these mice 

have reduced spatial coherence with place fields forming closer to environmental 

boundaries (Harvey et al., 2018). The place cells of tilted mice do not lose their firing 

coherence in the absence of visual information.  

How do directional signals become integrated with environmental landmarks? 

Two types of cells that seem suited to this task have been identified in retrosplenial 

cortex in-vivo. One of these cell types is egocentric boundary vector cells (EBCs), a 

type of boundary vector cell which encodes both distance from and orientation to 

borders in the environment (Alexander et al., 2020a). This vector-based location signal 

is more prominent in retrosplenial dysgranular cortex (RSD), where 38.7% of neurons 

recorded were classified as EBCs. Along with EBCs, axis cells integrate position with 

motion. Axis cells are found in the dorsal subiculum and map the current axis of the 

animal during navigation, regardless of the direction the animal moves along the cells’ 
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preferred axis (Olson et al., 2017). Axis cells in the dorsal subiculum have firing peaks 

bimodally at head orientations 180 degrees apart.  

Multiple cell types are involved in encoding navigationally-relevant spatial 

relationships (Figure 1-1). Some neurons are conjunctive, encoding more than one 

dimension. For example, a subpopulation of neurons in the entorhinal cortex encodes 

both head direction and the regularly-occurring intervals of grid fields (Kubie and 

Fenton, 2012; Gerlei et al., 2020) while some neurons in the medial entorhinal cortex 

encode both grid fields and angular velocity (Finkelstein et al., 2018). The existence of 

conjunctive cells is unsurprising, given that most cortical microcircuits receive at least 

two functionally distinct afferent inputs from different brain regions (Bittner et al., 2015).  

In addition to real-world paradigms, virtual reality environments provide another 

means to studying spatial navigation in controlled settings. Aronov and Tank had rats 

perform random foraging and target pursuit tasks during two-dimensional spatial 

navigation in a virtual environment, in which the rats were not head-fixed (Aronov and 

Tank, 2014). They found that place cells, grid cells, head direction cells, and border 

cells are not limited to physical cues, but also able to follow virtual cues. Similarly, fMRI 

experiments with human subjects demonstrated that the thalamus codes facing 

direction and that the anatomically-defined RSC codes for head direction in virtual 

environments (Shine et al., 2016). In addition to the RSC, the vestibular stimulation is 

known to activate the hippocampal formation in humans (Vitte et al., 1996) and rats 

(Horii et al., 1994, 2004). While humans with acquired bilateral vestibular loss do not 

have general memory deficits, they develop significant atrophy of the hippocampus and 
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have significant deficits in navigating a virtual Morris water maze (Brandt et al., 2005; 

Kremmyda et al., 2016).  

 

1.2.2 Retrosplenial cortex cell types  

 

Like other regions of the cortex, the retrosplenial cortex has fast-spiking (FS) 

PV+ neurons (Brennan et al., 2020; Yousuf et al., 2020; Sempere-Ferrández et al., 

2018). FS neurons fire rapidly without attenuation in response to stimuli (Connors and 

Gutnick, 1990). They evoke inhibitory currents with narrow potentials in their spikes and 

postsynaptic potentials and quick, sharp afterhyperpolarizations, (Connors and Gutnick, 

1990; Sempere-Ferrández et al., 2018). Along with FS neurons, there are at least three 

distinctive firing types of excitatory neurons in the RSG: intrinsically-bursting (IB), 

regular-spiking (RS), and low-rheobase (LR) (Yousuf et al., 2020; Brennan et al., 2020).  

IB neuron spiking happens in clusters called bursts (Connors and Gutnick, 1990). 

They are only found in layer 5 of RSG, comprising 5% of neurons in the layer 

(Sempere-Ferrández et al., 2018; Yousuf et al., 2020).  

In the RSC, RS neurons comprise 40% of layers 2/3 neurons and 82% of layer 5 

(Yousuf et al., 2020), making them the most commonly-observed firing type in the 

region. RS neurons are excitatory and adapt strongly to maintained stimuli (Connors 

and Gutnick, 1990; Brennan et al., 2020). They have relatively broad spike widths. 

LR neurons are small hyperexcitable pyramidal cells. To our knowledge, low-

rheobase neurons are not found anywhere besides the RSG. These cells fire 

persistently for the entire duration of a stimulus without spike frequency adaptation. LR 
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neurons comprise 60% of neurons in layers 2/3 of the RSG and are the dominant 

excitatory neurons of the superficial retrosplenial cortex (Brennan et al., 2020). These 

neurons are localized to layers 2 and 3, which are the superficial layers of the RSG, and 

they receive inputs from the anterior thalamic nuclei and the dorsal subiculum (Brennan 

et al., 2021). This anatomical and spatial layout makes most LR neurons likely to 

encode spatial information conjunctively, integrating head position and head velocity 

from the anterior thalamic nucleus inputs with the dorsal subiculum’s information on the 

axis of travel. While these cells have previously been described as “late-spiking” 

neurons, their defining property is not spiking with greater latency, but a low-rheobase: 

a low input to evoke a spike (Brennan et al., 2020).  
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Figure 1-1. Examples of spatial encoding cell types.  

A. Orange: illustration of directional tuning in axis cells, found in the subiculum (Olson et 

al., 2017). Axis cells’ two orientation peaks are not necessarily equal in their tuning. 

B. Head direction cells are tuned to head direction relative to the surroundings. They 

are found in the retrosplenial cortex, the anterior thalamic nuclei, postsubiculum, and 

medial prestriate cortex, among others (Taube, 1998).  

C. Grid cells have a repeating tessellating hexagonal pattern. They are found in the 

medial entorhinal cortex (Hafting et al., 2005).  

D. Place cells in the hippocampus preferentially fire in response to places (O’Keefe, 

1976).  
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Figure 1-2. Head direction pathway. Vestibular information is transmitted from the 

vestibular afferents in the inner ear to the vestibular nuclei. The vestibular nuclei have 

connections with other regions and the information is processed by various regions as it 

is transmitted through the pathway. These different brain regions contain different cell 

types (Cullen and Taube, 2017; Schuerger and Balaban, 1993; van Groen and Wyss, 

1990). 
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1.2.3 Retrosplenial cortex gross anatomy 

 

The retrosplenial cortex (RSC) is a midline structure essential for navigation and 

thought to serve as the bridge between egocentric and allocentric spatial processing 

(Vann et al., 2009; Maguire, 2001; Epstein, 2008; Burgess et al., 2001; Byrne et al., 

2007; Alexander et al., 2020b). In humans, the RSC is located behind the splenium, 

hence the name “retrosplenial” (Vann et al., 2009). In the rodent brain, the RSC is one 

of the largest regions, spanning more than half of the length of the cerebrum (Paxinos et 

al., 2001; Paxinos and Watson, 2007). The RSC is interconnected with many regions 

involved in sensory integration, fear processing, and navigation, including the 

hippocampus (Yamawaki et al., 2019a, 2019b), dorsal subiculum, primary visual cortex 

(Vogt and Miller, 1983), anterior thalamic nucleus (van Groen and Wyss, 1990; Wyss et 

al., 1990; van Groen and Wyss, 1995; van Groen and Wyss 2003; Odagiri et al., 2011; 

Yamawaki et al., 2019b; Brennan et al., 2021), basal forebrain (Murakami et al., 2013; 

Robertson et al., 2009), dorsal subiculum (Yamawaki et al., 2019a; Kinnavane et al., 

2018; Brennan et al., 2021), locus coeruleus (van Groen and Wyss, 1990), and 

entorhinal cortex (van Wijngaarden et al., 2020). The RSC also sends monosynaptic 

excitatory projections to the secondary motor cortex (Yamawaki, et al., 2016). 

 

1.2.4 Granular and dysgranular retrosplenial cortex 

 

The retrosplenial cortex can be divided into the granular retrosplenial cortex 

(RSG), also known as area 29, and the dysgranular retrosplenial cortex (RSD), also 
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known as area 30 (Vann et al., 2009). The RSG and RSD are reciprocally connected 

(van Groen and Wyss, 1992, 2003) but distinct in their cytoarchitecture (van Groen and 

Wyss, 2003) and connectivity with other regions (van Groen and Wyss, 1992, 2003). 

Unlike the sparse cellular density in the superficial layers of RSD (van Groen and Wyss, 

2003), 60% of the neurons in the densely-packed layers 2 and 3 of RSG 

(Sripanidkulchai and Wyss, 1987) are low-rheobase (LR) neurons (Brennan et al., 

2020). 

 

1.3 Oscillations in navigation and sleep  

 

Synchronous synaptic transmission across populations of neurons generates 

oscillations (Buzsáki and Watson, 2012; Sohal, 2012). The precise timing of when 

different neurons fire in relation to population activity sheds light on how the oscillation 

is generated by populations of neurons (Sohal, 2012; Headley and Weinberger, 2013). 

Different kinds of oscillations can co-occur within the same region. Cross-frequency 

coupling between different types of oscillations can demonstrate the temporal 

organization of the larger network’s activity (Buzsáki and Watson, 2012; Mathalon and 

Sohal, 2015). Brain and behavioral states have neural oscillatory correlates. Oscillations 

are also useful to study for better understandings of disease mechanisms, with potential 

for use in clinical applications as disease biomarkers (Neustadter et al., 2016; Winer et 

al., 2019; Fitzgerald and Watson, 2018).  

 

1.3.1 Gamma rhythms 
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Gamma rhythms are 30-80 Hz oscillations that are important for information 

processing during navigation. They occur during a range of behavioral states: active 

focused attention (Murthy and Fetz, 1992; Jensen et al., 2007), learning and memory 

(Osipova et al., 2006; Headley and Weinberger, 2011, 2013; Jensen et al., 2007), 

sensory perception (Engel et al., 2001), decision-making during wakefulness (Amemiya 

and Redish, 2018), and spontaneously during REM sleep (Steriade, 2009). Defects in 

gamma rhythms have been linked to cognitive inflexibility in a Dlx5/6+/- mouse model, 

which has reduced numbers of PV+ interneurons (Cho et al., 2015), and entraining 

gamma rhythms via multisensory gamma stimulation has been found to improve 

cognition and reduce amyloid pathology present in the 5xFAD Alzheimer’s mouse 

model (Martorell et al., 2019).  

The pyramidal interneuron gamma (PING) model suggests that external input to 

excitatory and inhibitory neurons drives synchronous rhythmic spiking (Börgers and 

Kopell, 2003, 2005; Tiesinga and Sejnowski, 2009). Excitatory pyramidal neurons and 

inhibitory GABAergic interneurons are synaptically interconnected in a loop (Whittington 

et al., 2000; Börgers and Kopell, 2005, Lee and Jones, 2013, Tiesinga and Sejnowski, 

2009). While the excitatory neurons fire just before the trough of gamma, the inhibitory 

neurons fire preferentially at the trough (Hasenstaub et al., 2005). The PING 

mechanism allows for the generation of multiple frequencies, where the oscillation’s 

frequency largely depends on the strength and duration of the inhibitory synaptic 

currents and on the external drive (Börgers, 2017).  
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Hippocampal gamma comes from at least two sources: self-generated within the 

hippocampus (Bragin et al., 1995; Csicsvari et al., 2003; Colgin et al., 2009) and 

through the medial entorhinal cortex (Bragin et al., 1995; Colgin et al., 2009). Fast 

gamma oscillations in CA1 are synchronized with fast gamma in the medial entorhinal 

cortex, while slow gamma in CA1 is coherent with slow gamma in CA3. Hippocampal 

gamma increases in frequency with faster running speed (Ahmed and Mehta, 2012). 

Gamma power increases in hippocampal areas during stimulus encoding improves 

spike timing accuracy and predicts memory recall (Jutras et al., 2009). Gamma 

oscillations can dynamically coordinate hippocampal networks according to behavioral 

demands (Montgomery and Buzsáki, 2007).  

Gamma has also been found in other regions, including the sensorimotor cortices 

(Murthy and Fetz, 1992, 1996), the visual cortex (Zhigalov et al., 2021), anterior 

cingulate cortex (Koike et al., 2017), and the RSC (Alexander et al., 2018; Koike et al., 

2017). Since cortical neurons can synchronize across distances to process stimulus 

features (Gray et al., 1989), they are thought to be involved in attention and binding 

features of the sensory scene. Two frequency bands have been described in the 

retrosplenial cortex: gamma at 40-100 Hz and fast gamma at 100-160 Hz (Alexander et 

al., 2018; Koike et al. 2017). Fast gamma has been observed in paradoxical sleep 

(Koike et al., 2017) and during awake running behaviors (Alexander et al., 2018), and 

high-frequency oscillations have been described in the parietal and prefrontal cortices 

(Sirota et al., 2008), parietal neocortex (Scheffzük et al., 2011), and primary 

somatosensory cortex (González et al., 2020). Further research is needed to determine 

the precise mechanisms of these fast cortical rhythms. 
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1.3.2 Theta rhythms 

 

Theta rhythms are 4-12 Hz oscillations in rodents. Projections from the basal 

forebrain’s medial septum and diagonal band of Broca activate inhibitory interneurons 

and control hippocampal rhythmogenesis (Dannenberg et al., 2015). Lesioning or 

inactivating the MS disrupts theta rhythms in structures that receive MS projections, 

including the medial entorhinal cortex (Mitchell et al., 1982; Koenig et al., 2011; Brandon 

et al., 2011) and the hippocampus (Mizumori et al., 1990; Koenig et al., 2011). 

Hippocampal theta rhythms are prominent during both running and REM sleep, and 

they are thought to support both navigation and memory (Buzsáki, 2011; Buzsáki and 

Moser, 2013). Theta rhythms are important for sequence information processing at 

different timescales, such as during running behavior at variable speeds (Buzsáki and 

Moser, 2013; Dragoi and Buzsáki, 2006; Maurer et al., 2012; Wang et al., 2015). 

Neurons in the some cortical regions fire in sync with theta rhythms during REM sleep 

and awake running (Sirota et al., 2008). 

Theta rhythms are also present in the RSC (Alexander et al., 2018, Alexander et 

al., 2020a), a target of basal forebrain cholinergic projections (Robertson et al., 2009; 

Bigl et al., 1982). As a subpopulation of egocentric boundary cells are synchronized with 

hippocampal theta oscillations (Alexander et al., 2020a), this suggests the 

subpopulation of egocentric boundary vector cells that does not synchronize with 

hippocampal theta may respond to and integrate other types of inputs. RSC’s theta 

rhythmicity in relation to neuronal firing needs further exploration as a potential 
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mechanism for mediating functions that seem unique to the RSC, such as integrating 

landmark cues from the environment with self-motion cues. 

 

1.3.3 Sharp wave ripples 

 

Generating gamma and theta rhythms supports sensory and sequence 

information encoding, and memories of this information are mediated by sharp wave 

ripples (SWRs; Buzsáki, 1989, 2015). SWRs are brief high frequency oscillations of 

100-250 Hz that occur during both non-rapid eye movement (NREM) sleep and awake 

immobility (Buzsáki, 2011). SWRs represent a highly-synchronous population pattern in 

the mammalian brain (Buzsáki, 2015), allowing for replay of fragments of waking 

neuronal sequences in a compressed format (Skaggs and McNaughton, 1996; Louie 

and Wilson, 2001). This compressed hippocampal representation is then transferred to 

other portions of the sensory and memory circuit, including and several subcortical 

nuclei (Todorova and Zugaro, 2020) and RSC (Nitzan et al., 2020). Sharp wave ripples 

are generated by the fast inhibitory neuronal oscillation (FINO) mechanism (Schlingloff 

et al., 2014). 

 

1.4  Retrosplenial cortex dysfunctions 

 

Retrosplenial cortex hemorrhage creates challenges in recalling recent events. A 

person with retrosplenial hemorrhage could not remember the birth of his four-year-old 

child, believing that he only had one child (Valenstein et al., 1987). The patient’s 
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anterograde amnesia was so profound that he could not remember what he had done 

that morning.  

There are multiple hints that RSC dysfunctions underlie Alzheimer’s disease 

symptoms. 93% of people with Alzheimer’s experience spatial disorientation (Monacelli, 

2003), and these are similar disorientations to patients with damage to their 

retrosplenial cortex via hemorrhage (Osawa et al., 2008) and stroke (Ferguson et al., 

2019). Early-onset metabolic dysfunction of retrosplenial cortex precedes overt amyloid 

plaque formation (Poirier et al., 2011).  

Studying retrosplenial cortex microcircuitry may allow for earlier detection of 

Alzheimer’s disease. This may be done through biomarkers, such as measuring 

retrosplenial cortex oscillations as a diagnostic tool. Learning about the mechanisms of 

brain rhythms has the potential to pave the path to high-precision Alzheimer’s 

treatments that may circumvent the unpalatable side effects of current drugs. People 

with Alzheimer’s disease have altered communication across the hemispheres 

(Lakmache et al., 1998) and their retrosplenial cortices have metabolic dysfunction 

(Nestor et al., 2003). Thus, it is also possible that retrosplenial oscillation disruptions 

serve as neurophysiological biomarker of Alzheimer’s. Perhaps restoring retrosplenial 

oscillations could prevent disorientation, improving the quality of life for people with 

Alzheimer’s disease. 

 

1.5 Questions addressed in this dissertation 
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 Researching how retrosplenial cortex oscillations function in sleep and in 

movement allows us to advance our understanding of mechanisms for spatial memory 

encoding and consolidation. This dissertation explores the oscillations across layers of 

the retrosplenial cortex during different brain states. In the second chapter, we 

characterize oscillations during sleep. We have found that during REM sleep, 110-160 

Hz oscillations coupled to the peaks of theta rhythms are strongest in the superficial 

layers of the RSG, and that these fast oscillations are anti-phase across the RSG’s 

hemispheres. Since these antiphase oscillations resemble the interlocking teeth of 

mechanical gears, we call them “splines”. We find that splines and gamma occur at 

different phases of theta rhythms. Gamma rhythms are in-phase across the 

hemispheres.  

In the third chapter, we characterize splines at different running speeds. Splines 

become more coherent and more precisely anti-phase across the hemispheres at faster 

running speeds. The retrosplenial cortex’s ability to switch between gamma and splines 

for rapid cross-hemispheric communication may be a mechanism of information transfer 

which allows the brain to encode information more efficiently. In the future, splines may 

also be explored as a physiological biomarker for brain health and perhaps serve as a 

target to restore memory functions in disorders such as Alzheimer’s disease. 
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CHAPTER 2: Oscillations of the Retrosplenial Cortex During Sleep 

 
A modified version of this chapter was submitted as: Ghosh M*, Yang F*, Rice SP*, 
Hetrick V, Lorenzo Gonzalez A, Siu D, Brennan EKW, John TT, Ahrens AM, Ahmed OJ. 
2021. Running speed controls two distinct modes of rapid interhemispheric 
communication. 

 

2.1 Abstract 

 

The retrosplenial cortex is essential for successful spatial navigation and 

memory, including sleep-dependent memory consolidation. To better understand the 

spectral signatures associated with sleep, here we monitored retrosplenial oscillatory 

dynamics during different stages of sleep. In rats, we implanted tetrodes into the 

retrosplenial cortex, as well as CA1, the posterior parietal cortex, and the visual cortex. 

In mice, we implanted silicon probes across both hemispheres of the retrosplenial 

cortex and into CA1 of the hippocampus. A unique high-frequency (110-160 Hz) 

oscillation is precisely coupled to the peak of theta rhythms in the retrosplenial cortex 

during REM sleep. Our experiments in mice revealed that these high-frequency 

oscillations are surprisingly anti-phase across the retrosplenial cortex’s hemispheres 

and have the highest power in the superficial layers (layers 2 and 3) of the retrosplenial 

cortex. This high-frequency oscillation is a mode of cross-hemispheric coordination 

distinct from gamma rhythms, which is in-phase across the hemispheres. The ability of 
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the retrosplenial cortex to switch between these two modes of rapid interhemispheric 

coordination may play a role in information processing and memory consolidation. 

 

2.2 Introduction 

 

Sleep is important for survival (Meddis, 1975; Everson, 1995) and memory 

consolidation in mammals (Rasch and Born, 2013). The stages of sleep are correlated 

with different brain rhythms. During slow wave sleep, the hippocampus generates large 

irregular activity (LIA) and sharp wave ripples (SWRs) (Jarosiewicz et al., 2002). SWRs 

are essential for hippocampal-dependent memory trace formation (Buzsáki, 1989), as 

with procedural and declarative memories (Plihal and Born, 1997). Optogenetically 

prolonging sharp wave ripples initiated by the brain improves spatial memory 

(Fernández-Ruiz et al., 2019). While non-rapid eye movement (NREM) sleep contains 

sharp wave ripples, rapid eye movement (REM) sleep does not (Opalka et al., 2020). 

During REM sleep, the eyes move rapidly and muscles are atonic (Rasch and 

Born, 2013). REM sleep is thought to play a role in consolidation of episodic memory 

(Rauchs et al. 2004). In mice and rats, REM sleep is accompanied by pronounced theta 

rhythms – 6-12 Hz oscillations seen in the local field potential (LFP) and EEG signals 

(Colgin, 2013). Traditionally, REM sleep has been associated with dreaming (Aserinsky 

and Kleitman, 1953), but dreaming can also occur in NREM (Siclari et al., 2017, 2018). 

The relations between NREM and REM sleep and why both of these sleep states are 

needed is still to be elucidated (Le Bon, 2020). As chronic sleep deprivation has been 

linked to increased amyloid beta and tau levels (Wang et al., 2020), and people with 
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Alzheimer’s disease frequently report disordered sleep (Hennawy et al., 2019; Most et 

al., 2012; Blytt et al., 2017; Moran et al., 2005), learning more about how sleep affects 

the memory circuit may be useful for creating effective interventions. 

The retrosplenial cortex (RSC) is a densely interconnected structure that is also 

critical for spatial navigation, with dysfunctions leading to impaired memory (Valenstein 

et al., 1987) and severe spatial disorientation in both humans and rodents (Osawa et 

al., 2008; Ferguson et al., 2019). Despite its critical importance, how the RSC 

coherently communicates with other brain regions to carry out its navigational functions 

remains poorly understood. Recent work has identified 110-160 Hz oscillations in the 

RSC during both awake running behaviors (Alexander et al., 2018) and REM sleep 

(Koike et al., 2017). Similar observations of ~110-160 Hz oscillations, though relatively 

rare, have been made in other brain regions (Scheffzük et al., 2011; Sirota et al., 2008). 

These rhythms have so far been referred to as either “high frequency oscillations” (Tort 

et al., 2013) or “fast gamma” (Scheffzük et al., 2011; Alexander et al., 2018; Koike et al., 

2017), reflecting their ambiguous nature and emphasizing the need to identify the 

regions with which these unique oscillations coherently communicate. 

 

2.3 Results 

 

2.3.1 Retrosplenial REM splines alternate with hippocampal non-REM ripples across 

sleep states 
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To compare fast oscillatory activity across hippocampal CA1, retrosplenial cortex 

(RSC), and related cortical regions (visual cortex [V1] and posterior parietal cortex 

[PPC]), we first used custom microdrives and silicon probes to record multi-site sleep-

wake signals (Figure 2-1). Figure 2-2 shows an example of simultaneously recorded 

spectrograms across CA1, RSC, PPC, and V1, together with the sleep-wake 

hypnogram (Figure 2-2A-E). While typical non-REM (NREM) ripples were found in 

hippocampal CA1, the most prominent fast oscillation observed in the cortex during 

sleep was a 110-160 Hz oscillation in the RSC during REM sleep (Figure 2-2C). Splines 

during REM sleep were localized in the RSC, and were rarely observed in either CA1, 

V1, or PPC (Figure 2-2A,D,E). Retrosplenial REM splines consistently alternated with 

hippocampal NREM ripples across sleep states (Figure 2-2F-H).  

Population-averaged power spectra revealed clearly elevated spline (110-160 

Hz) power during REM sleep, selectively in the RSC (Figure 2-2I-L; RSC: 9 rats, 62 

sessions, 257 channels; CA1: 6 rats, 58 sessions, 203 channels; PPC: 2 rats, 13 

sessions, 16 channels; V1: 3 rats, 40 sessions, 93 channels). To compare and quantify 

oscillatory power across brain regions, we computed the normalized spline power 

during REM sleep and found that this power was significantly higher in RSC than in any 

other brain region (N same as above; rank sum test, p <0.0001 in all cases; Figure 2-

2M). On the other hand, normalized ripple power during NREM sleep was significantly 

higher in CA1 (N same as above; rank sum test, p <0.05 in all cases; Figure 2-2N). 

Qualitatively similar results were obtained whether the data was normalized by 

broadband power (1-230 Hz; Figure 2-2M-N) or by theta power (5-11 Hz; data not 

shown). Thus, hippocampal ripples are the dominant fast oscillation during NREM 
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sleep, but retrosplenial splines are the dominant fast network rhythm across the 

sampled brain regions during REM sleep. 
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Figure 2-1. Anatomical location of tetrodes and silicon probes for 
electrophysiological recordings in retrosplenial cortex (RSC), hippocampus (HC), 
posterior parietal cortex (PPC), and visual cortex (V1).  
A. Atlas schematic with precise AP distribution of electrodes. 
B. Coronal sections of rat brains showing examples of tetrode track and electrolytic 
lesions used to identify the location of the recorded signals in RSC.  
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Figure 2-2. Splines are 110-160 Hz fast oscillations, strongest in the retrosplenial 
cortex during REM sleep. 
A. Hypnogram from a sleep session with multiple NREM-REM transitions.  
B-E. Corresponding spectrograms from hippocampal CA1, retrosplenial cortex (RSC), 
posterior parietal cortex (PPC), and primary visual cortex (V1), respectively. While CA1 
shows typical NREM ripples (B), another high frequency oscillation in the 110-160 Hz 
range, which we refer to as splines, is seen in the RSC (C) during REM sleep (REM is 
demarcated by dotted lines). Hippocampal NREM ripples thus appear to alternate with 
RSC REM splines. Weak ripple and spline power were observed in PPC and V1 during 
NREM and REM, respectively (D, E). 
F. Hypnogram from a sleep session in a separate rat.  
G-H. Corresponding whitened spectrograms from CA1 and RSC respectively showing 
ripples during NREM sleep in CA1 alternating with splines in RSC during REM sleep 
(dotted lines again highlight example REM epochs). 
I. Averaged spectra during REM sleep across CA1 (purple), RSC (green), PPC (blue), 
and V1 (orange). The low (0-30Hz) and high (30-200Hz) frequency bands have been 
separated for greater clarity. All 4 regions show high theta power during REM sleep. 
However only RSC shows significantly more spline power. Data shown in I – N is across 
9 rats, 62 sessions, 257 channels from RSC; 6 rats, 58 sessions, 203 channels from 
CA1; 2 rats, 13 sessions, 16 channels from PPC; and 3 rats, 40 sessions, 93 channels 
from V1.  
J. Averaged spectra during NREM across CA1 (purple), RSC (green), PPC (blue), and 
V1 (orange). CA1 shows high power in the ripple band (110-190 Hz) during NREM 
sleep. Note the very weak cortical ripples in PPC and RSC. 
K, L. Same as I, J, but now showing averaged whitened power spectra. 
M. Normalized spline power with pre- and post-whitened values. This ratio is 
significantly higher during REM sleep in RSC as compared to CA1, PPC, and V1 (rank 
sum test, p<0.0001 in all cases).  
N. Normalized ripple power with pre- and post-whitened values. This ratio is significantly 
higher in CA1 during NREM compared to all other regions (rank sum test, p <0.05 in all 
cases) 
 



 27 

 
Figure 2-3. Retrosplenial splines are precisely coupled to the peak of theta. 
A. Examples of simultaneously recorded raw and filtered LFP traces during REM sleep 
from CA1 (purple), RSC (green), PPC (blue), and V1 (orange) showing theta oscillations 
in all four brain regions but strong spline oscillations (110-160 Hz) at the peak of theta 
exclusively in RSC. Power in high (65-95 Hz) and low gamma (30-55 Hz) is much 
weaker than spline power in RSC and often phase-shifted compared to splines.  
B. Single retrosplenial theta cycle examples during REM sleep from three separate rats. 
Splines are consistently locked to the peak of retrosplenial theta in all animals. 
C. Population theta phase-amplitude coupling across the four brain regions during REM 
sleep. A phase of 180 degrees represents the peak of theta. Splines are precisely 
coupled to the peak of RSC theta. (9 rats, 62 sessions, 257 channels from RSC; 6 rats, 
58 sessions, 203 channels from CA1; 2 rats, 13 sessions, 16 channels from PPC; and 3 
rats, 40 sessions, 93 channels from V1.) 
D. Strength of theta phase-amplitude coupling quantified for each LFP using the 
modulation index (MI) metric.  Splines are more precisely coupled to theta in the RSC 
than in any other brain region (rank sum test, p<0.001). Inset shows kappa (measure of 
strength of phase-locking for circular variables) values for theta phase-amplitude 
coupling of each frequency. Kappa for splines was significantly higher (rank sum test, 
p< 0.0001) in RSC compared to CA1, PPC, and V1. 
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Figure 2-4. Coupling of splines to theta is strongest in the granular retrosplenial 
cortex.  
A. Schematic of simultaneous recording in RSC and PPC in 1 rat using silicon probes 
(32 contacts on each probe).  
B, C. Phase-amplitude coupling computed across 3 distinct depths on each probe, at 
the positions shown in A. The color axis is the same across all 6 plots. The strength of 
splines and their coupling to theta increases with depth in RSC, increasing sharply in 
the granular RSC compared to the dysgranular RSC. Phase-amplitude coupling of 
splines to theta is far weaker in superficial PPC and further decreases with depth.  
D. All 32 contacts on each probe were grouped into 3 sub-groups based on their depth 
from the most superficial contact. The modulation index increases significantly with 
depth (rank sum, 0 – 0.3mm vs 0.3 – 0.6 mm, p = 0.007, 0.3 – 0.6mm vs 0.6 – 0.8 mm, 
p = 0.0015, 0 – 0.3mm vs 0.6 – 0.8mm, p <0.001). MI across PPC was significantly 
lower than that in RSC (rank sum, p<0.001 in all cases). 
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2.3.2 Splines are precisely and surprisingly coupled to the peak of theta, most strongly 

in the granular retrosplenial cortex 

 

Since theta and spline power co-occurred in the RSC during REM sleep (Figure 

2-2), we next explored the temporal relationship between spline and theta rhythms to 

confirm and extend previous observations (Alexander et al., 2018; Koike et al., 2017). 

Simultaneously recorded raw LFP traces from CA1, RSC, PPC, and V1 showed that 

splines selectively occur at the peak of RSC theta (Figure 2-3A-C). Given the lack of 

splines in other regions, this phase-amplitude coupling of splines to the theta peak was 

restricted to the RSC. Figure 2-3B shows three representative theta cycles from three 

different rats with splines consistently at the peak of each theta cycle. To study the 

strength of this phase-amplitude coupling of splines to the peak of theta, we used 

wavelet-based spectrograms and computed the strength of each fast frequency across 

the phases of theta cycles. Phase – amplitude plots across rats during REM (Figure 2-

3C) confirmed that splines are strongest in RSC and precisely coupled to the peak of 

theta. To quantify the strength of coupling of splines to theta, we used the modulation 

index metric (Tort et al., 2010) and found it to be significantly higher in RSC compared 

to all other brain regions examined here (N same as for Figure 1; rank sum test, p 

<0.0001).  

Since the RSC is subdivided into dorsal dysgranular and ventral granular 

subdivisions (van Groen and Wyss, 1992, 2003; Domesick, 1969), we asked whether 

the coupling of splines to theta differed between these regions. We found that across 

these two subdivisions of the RSC, the strength of theta phase-amplitude coupling of 
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splines increased with depth and was thus stronger in the granular RSC than in the 

dysgranular RSC (Figure 2-4). Despite this strong modulation in spline amplitude by the 

phase of the theta cycle in which splines occur, splines were not strongly modulated by 

theta amplitude and occurred in both high and low amplitude theta cycles (Figure 2-5A). 

Overall, theta amplitude and spline power were only weakly correlated (Figure 2-

5B, median ρ = 0.2 across 9 rats, 54 sessions and 216 channels). Thus, the occurrence 

of prominent theta oscillations does not necessarily predict the occurrence of splines. 

However, when splines do occur, they are precisely coupled to the peak of the 

containing theta cycle. 

Since splines were not strongly correlated to theta amplitude, we wondered if 

there were other factors correlated to the probability of splines. Using an objective 

algorithm to identify theta cycles with and without splines (Figure 2-6), we found that 

spline-containing theta cycles tended to occur in clusters within each REM epoch 

(Figure 2-7). To confirm the presence of such spline-rich REM frames, we computed the 

probability of observing splines in a theta cycle, triggered off theta cycles with splines 

versus theta cycles without splines. The triggering cycle in this analysis is referred to as 

theta cycle 0. We found that when splines occurred in theta cycle 0, the probability of 

observing splines in adjacent theta cycles was significantly elevated for up to -32 to +36 

adjacent theta cycles (Figure 2-7B; two sample t-test, p<0.05). Thus, during REM sleep, 

splines occurred in clusters spanning multiple contiguous theta cycles. To understand 

the subtype-specific single unit correlates of spline-rich frames, we classified cells into 

fast-spiking putative inhibitory neurons (FS) and regular-spiking putative excitatory 

neurons (RS) using their characteristic waveform shapes. Figure 2-8 shows the clusters 
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and mean firing rate of each cell type during awake, NREM, and REM sleep states. The 

firing rate of both RSC and CA1 FS cells increased during spline-rich REM frames 

(Figure 2-8A-D). To quantify this observation, we computed the cycle-by-cycle firing rate 

of each cell during each REM theta cycle. We then compared this cycle-by-cycle firing 

rate triggered off theta cycles with splines versus theta cycles without splines (Figure 2-

8E). The triggering cycle in this analysis is again referred to as theta cycle 0. We found 

that when splines occurred in theta cycle 0, the firing rate of both RSC and CA1 FS cells 

was elevated for at least ± 24 cycles (two sample t-test, p<0.05). Thus, spline-rich REM 

frames are accompanied by increased FS cell activity. 
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Figure 2-5. During REM sleep, spline power is independent of theta cycle 
amplitude.  
Ai and Aii. Example of two lower amplitude theta cycles, one with (i) and the other 
without (ii) splines.  
Aiii and Aiv: Example of two higher amplitude theta cycles, one with (iii) and the other 
without (iv) splines. 
B. Theta cycles sorted by theta amplitude show that splines can occur during theta 
cycles of all amplitudes, and theta cycle amplitude is only weakly correlated to the 
corresponding cycle’s spline power (median ρ = 0.2, across 9 rats, 54 sessions and 216 
channels). 
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Figure 2-6. Objective algorithm to identify theta cycles with splines.  
Theta cycles sorted by spline power in the retrosplenial cortex during REM. Red vertical 
line indicates the threshold for detecting splines identified using change point analysis 
(see Methods).  
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Figure 2-7. Retrosplenial splines demarcate high activity REM sleep frames. 
A.  Raster plot of FS and RS cells from RSC and CA1 during a single REM epoch (top), 
with average firing rate of each cell type plotted below. Grey dashed lines represent 
peaks of RSC theta cycles with splines (see Methods). Firing rates of all cells increase 
during theta cycles with splines. Theta cycles with splines cluster together into frames, 
and firing rates of both retrosplenial and hippocampal FS cells increase during the 
spline-rich frames, suggesting that these frames represent high activity up-states. 
B. Probability of observing RSC theta cycles with splines triggered off theta cycles with 
(green) or without (black) splines across 3 rats from which single units were recorded 
during REM sleep. When theta cycle 0 contains splines, the probability of observing 
additional theta cycles with splines remains significantly elevated for -32 to +36 theta 
cycles before and after theta cycle 0 (two sample t-test, p<0.05).  
C. (Left) PSTH of representative RSC FS cell triggered at the peak of RSC theta cycles 
with (dark green bars) and without (light green line plot) splines. Spline-triggered 
averages show sustained increases in both the rate and theta modulation of FS firing. 
(Right) Similar plot, now shown for a CA1 FS cell firing, again triggered at the peak of 
RSC theta cycles with (purple bars) and without (grey line plot) splines. The CA1 cell 
also shows sustained increases in firing rate around splines. 
D. Correlation between firing rate and RSC spline power for the same FS cells shown in 
C. 
E. Normalized firing rate of FS cells across 3 rats for RSC (left, N = 41) and CA1 (right, 
N = 57) across ± 30 theta cycles centered on theta cycles with (green bars for RSC; 
purple for CA1) and without (grey bars) RSC splines. The number of cycles where the 
difference in firing rate is significant is shown as black bars on top (two sample t-test, 
p<0.05). FS cells in both RSC and CA1 thus show sustained increases in firing rates 
during the high-activity REM frames demarcated by retrosplenial splines.  
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Figure 2-8. Cell classification and brain state specific firing rates across regions.  
A. Features used to classify cells into putative fast-spiking (FS) and regular-spiking (RS) 
clusters using a gaussian mixture model. P25Width is the width of the waveform at 25% 
of the peak amplitude. The color bar shows the posterior probability of a cell being 
classified as an RS cell. Thus, red dots represent putative RS cells and blue dots 
represent putative FS cells. This classification identified 333 RS and 63 FS cells in CA1, 
295 RS and 48 FS cells in RSC and 38 RS and 5 FS cells in V1. 
B. Firing rates (normalized to awake firing rate) of FS and RS cells across CA1, RSC, 
and V1 during NREM sleep and REM sleep. 
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Figure 2-9. Splines are correlated across the long-axis of the retrosplenial cortex 
but independent of local gamma oscillations. 
A. All theta cycles during an example REM epoch sorted by either spline (110-160 Hz; 
left) or gamma (30-80 Hz; right) power showing the independence of splines and 
gamma.  
B. Population correlation coefficients of RSC splines with: (left) RSC splines at separate 
simultaneously recorded RSC locations (9 rats, 54 reference electrodes with 162 non-
local RSC electrodes); (middle)  RSC gamma on the same reference electrode (9 rats 
and 54 reference electrodes); (right) CA1 gamma (6 rats, 50 reference RSC electrodes 
with 175 CA1 electrodes) during REM. Spline power across distant  RSC electrodes is 
strongly correlated and is significantly higher than correlations with local RSC gamma 
(rank sum test, p<0.001) and CA1 gamma (rank sum test, p<0.001). Thus, splines occur 
independently of RSC gamma and CA1 gamma but are strongly correlated across the 
long-axis of the RSC. 
C. Same as B. but for freely moving behavior (speed>5cm/s). Spline power across 
distant RSC locations was strongly correlated and was significantly higher than 
correlations with local RSC gamma (rank sum test, p<0.001) and CA1 gamma (rank 
sum test, p<0.001) during awake active states. 
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2.3.3 Splines occur independently of gamma 

 

Elevated gamma and spline power seen in the retrosplenial spectrogram and 

theta phase-amplitude coupling plots raises two possibilities: 1) splines could simply be 

harmonics of gamma cycles and hence would only occur when gamma cycles occurred; 

or 2) splines could be distinct entities that could occur independently of gamma cycles. 

To understand the relationship between splines and gamma rhythms, we sorted each 

theta cycle during REM sleep first by spline power (Figure 2-9A, left) and then by 

gamma power (Figure 2-9A, right). Theta cycles without splines still had gamma 

oscillations, while theta cycles without gamma oscillations very often contained splines. 

We confirmed this observation across the population: during REM splines and gamma 

were very weakly correlated (ρ=0.22 across 9 rats and 54 local electrodes; Figure 2-9B, 

middle). Similarly, RSC splines were uncorrelated with gamma oscillations in CA1 

(ρ=0.07 across 6 rats, 50 reference electrodes with 175 CA1 channels; Figure 2-9B; 

right). Both of these correlation results during REM sleep are consistent with similar 

correlation calculations during wake states (Alexander et al., 2018). We next asked if 

splines were correlated across pairs of simultaneously recorded RSC signals and found 

that they were robustly correlated (ρ=0.7 across 9 rats, 54 reference electrodes with 

162 non-local RSC electrodes; Figure 2-9B, left). Across the population, the correlation 

of splines across distant pairs of electrodes within the RSC was significantly higher than 

the correlation of splines with local gamma rhythms (rank sum test, p<0.001) or with 

CA1 gamma rhythms (rank sum test, p<0.001) during both REM. Thus, splines are 
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distinct from gamma and most often occur independently of gamma. Instead, splines 

co-occur across the long-axis of the RSC. 

 

2.3.4 Splines are also seen in mice and are strongest in the superficial layers of the 

granular retrosplenial cortex 

 

While splines are highly correlated across the granular RSC (Figure 2-9B), is 

their strength uniform across layers or do they have a gradient in power?  To find the 

anatomical origin of splines, we implanted three mice with silicon probes spanning both 

retrosplenial hemispheres, simultaneously recording from all layers of the left and right 

RSG, as well as the left RSD and medial hippocampal formation (Figure 2-10A).  Figure 

2-10B shows raw traces from all 32 simultaneously recorded channels (100 µm 

spacing) during a REM sleep epoch. The tip of the probe in the hippocampus showed 

the expected strong hippocampal gamma rhythms. Channels in retrosplenial cortex in 

both left and right hemisphere showed splines. Splines were strongly coupled to the 

peak of theta as seen in rats (Figure 2-11). To compare the strength of splines, we 

analyzed the channels in the left hemisphere and found that splines were strongest in 

the superficial layers during REM (Figure 2-10C) and decreased in amplitude with 

increasing distance from the midline. Gamma oscillations were also found to be 

strongest in the superficial layers. To quantify and compare the strength of these 

oscillations across layers, we grouped channels based on their distance from the 

midline channel with each group spanning 300 microns. A repeated measures ANOVA 

was conducted to compare normalized (see Methods) spline and gamma power across 
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these 4 groups. There was a significant effect of distance on spline and gamma power 

during REM (spline power: (F(3,78) = 78, p<0.0001, gamma power: (F(3,78) = 26, 

p<0.0001). Post hoc Tukey HSD test indicated that the mean spline power during REM 

and awake states significantly decreased with distance from midline (p<0.0001 all 

comparisons). Similarly, gamma power for the group closest to midline was also 

significantly higher (p<0.0001 all comparisons).  
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Figure 2-10. Splines are strongest in the superficial layers of the retrosplenial 
cortex during REM states 
A. Histology showing laminar probe implanted bilaterally in the retrosplenial cortex. This 
allowed us to simultaneously record from multiple layers of the RSC across both 
hemispheres 
B. Raw LFP recorded from a 32-channel probe shows splines are strongest in the 
superficial layers of the retrosplenial cortex. Purple traces show channels in the 
hippocampus, red traces in the right RSG, grey traces in Layer1 (midline channels), 
green traces in left RSG, and black traces in left RSD. 
C. Example theta cycle across channels from the left hemisphere during REM sleep 
(grey trace is the midline channel closest to the first contact in left RSG). (right) Spline 
power (green bars) and gamma power (line plot) across channels during the entire REM 
session shows splines and gamma oscillations are strongest in the superficial layers  
D. Normalized spline power and gamma power across 3 mice (9 sessions from REM). 
To quantify and compare the strength of these oscillations across layers, we grouped 
channels based on their distance from the midline channel with each group spanning 
300 µm. A repeated measures ANOVA found a significant effect of distance from 
midline on spline and gamma power (p<0.0001 for all cases). Similarly, gamma power 
for the group closest to midline was also significantly higher (p<0.0001 all comparisons).  
 



 42 

Figure 2-11. Retrosplenial splines in mice show similar properties as in rats, 
strongest in the RSC and strongly coupled to the peak of theta.   
A. Hypnogram from a sleep session with multiple NREM-REM transitions.  
B-C. Corresponding spectrograms from hippocampal CA1 and retrosplenial cortex 
(RSC. CA1 shows typical NREM ripples (B). Hippocampal NREM ripples alternate with 
RSC REM splines as seen in Figure 2-2B-C 
D. Raw traces from CA1 and RSC show splines strongest in the RSC  
E. Phase-amplitude coupling from an example REM session show splines strongly 
coupled to the peak of theta in RSC with gamma oscillations in CA1. 
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Figure 2-12. Splines are anti-phase across hemispheres while gamma oscillations 
are in-phase during REM sleep. 
A. Example raw LFP trace during REM showing a theta cycle from the left hemisphere 
(green) overlaid with a simultaneously recorded LFP from the right hemisphere (red). 
Gamma oscillations (inset shows zoomed view) were in phase, but splines in the 
contralateral channel were 180 degree out of phase (inset shows zoomed view). 
B. Cross-correlation from a REM session shows that splines were antiphase across 
hemispheres while gamma oscillations were in-phase.  
C. Distribution of spline and gamma coherence magnitude and phase across 3 mice (9 
sessions) shows that splines were consistently anti-phase (mean phase = 163°, kappa 
= 0.7) across hemispheres while gamma oscillations were in-phase (mean phase = 2°, 
kappa  = 2.2) during REM. A Watson William test showed that there was a significant 
difference (p<0.0001) between mean spline phase and gamma phase across 
hemispheres. 
D. Distribution of coherence phase between the left and right hemisphere during REM 
sessions from 2 mice. A distinct 180 degree offset was seen for splines as compared to 
gamma  
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Figure 2-13. Retrosplenial splines are anti-phase across hemispheres. 
Example theta cycles from 3 mice showing splines in right hemisphere were 180º offset 
from splines in the left hemisphere.   
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Figure 2-14. Splines: the name for fast 110-160 Hz oscillations sitting at the peak 
of theta and anti-phase across hemispheres.   
Splines are the interlocking teeth or ridges on a mechanical gear (left) and resemble the 
fast oscillations phase-locked to the peak of individual theta cycles but with opposite 
phases across hemispheres (right). 
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2.3.5 Splines are anti-phase across hemispheres while gamma oscillations are in-phase 

during REM 

 

Our probe recordings reveal that splines and gamma are strongest in the 

superficial layers of RSG. We next examined the coherence between these oscillations 

across hemispheres. Simultaneously recorded raw LFP traces from superficial layers of 

the left and right hemisphere (Figure 2-12A, 2-13) showed that splines were robustly 

and surprisingly anti-phase (180 degree out of phase) across hemispheres. On the 

contrary, gamma oscillations in the left and right hemispheres were in-phase. To further 

understand the phase relationship of splines and gamma across hemispheres, we 

computed a cross correlations between superficial channels in the left and right 

hemispheres from 3 mice (Figure 2-12B). Splines were consistently anti-phase across 

hemispheres during REM sleep. To quantify this phase relationship, we computed 

wavelet based coherence between superficial channels from the left and right 

hemisphere during the entire REM session. We analyzed the distribution of coherence 

phase offset for splines and gamma during REM (Figure 2-12D).  Population coherence 

magnitude and phase distribution (Figure 2-12C) from 3 mice (9 REM sessions) showed 

that splines were selectively 180 out of phase across hemispheres. Gamma oscillations 

on the other hand were consistently in-phase. A Watson William test showed that there 

was a significant difference (p<0.0001) between mean spline phase and gamma phase 

across hemispheres.  It is this characteristic interhemispheric phase relationship of 

these theta-peak locked oscillations that led us to call them splines, the interlocking 

teeth on mechanical gears (Figure 2-14).  
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2.4 Discussion 

 

Here, using large-scale recordings in both rats and mice, we show that theta-

coupled 110-160 Hz oscillations are strongest in the superficial layers of the granular 

retrosplenial cortex (RSG) during REM sleep. Surprisingly, we find that these fast 

oscillations are the signature of anti-phase communication across hemispheres. These 

anti-phase 110-160 Hz oscillations are robustly anti-phase coupled across 

hemispheres, resembling splines, the interlocking teeth on mechanical gears. We 

therefore refer to them as “splines”. Our findings highlight two distinct channels of rapid 

interhemispheric communication in the RSG during REM sleep, with gamma being in-

phase and splines anti-phase.  

Our study raises new questions: for REM-containing theta cycles, what 

mechanism drives the switch between gamma frequencies and spline frequencies? 

Given that splines specifically occur at the peaks of theta rhythms while gamma rhythms 

are coupled to the rising phase of theta, it is possible that the increased voltage of the 

local field during peaks of theta rhythms is one of several conditions influencing the 

RSC cell assemblies that generate splines. We have observed gamma in CA1, V1, and 

PPC, but none of these regions have high-frequency oscillations over 100 Hz coupled to 

the peaks of theta rhythms during REM sleep. While splines are robust in the RSG, they 

are not as strong in RSD. The RSG’s splines may have a small amount of volume 

conductance to the RSD, or be generated much less strongly in the RSD due to RSD’s 

lack of LR neurons, such that splines appear with relatively low power in RSD. The 
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properties unique to the RSG likely give rise to the mechanism that generates splines: 

perhaps a combination of RSG’s connections with many other brain regions and that 

RSG contains persistently-firing low-rheobase neurons in layers 2 and 3 (Brennan et al., 

2020, 2021). Furthermore, while we would expect most excitatory neuron firing to be 

phase-locked at or near the trough of theta (Jacobs et al., 2007), splines occur at the 

peaks of theta, suggesting that excitatory neurons are not the main force at play in the 

circuit generating splines. Since spline-rich REM frames have increased FS cell activity, 

FS neurons in layers 2 and 3 may be at play. A mechanism that involves signaling with 

retrosplenial cortex FS neurons may drive the transition from retrosplenial gamma to 

splines or vice versa. 

We found that splines occurred in clusters spanning multiple contiguous theta 

cycles, which suggests that the mechanism for generating splines continues beyond the 

timeframe of one series of splines. It is notable that RSG theta rhythms do occur without 

splines. Brain rhythms dynamically couple brain regions, and are thought to modulate, 

filter, and redirect information (Benchenane et al., 2010; Buzsáki, 2004; Fell et al., 2001; 

Varela et al., 2001, Womelsdorf et al., 2007), but what is the role of RSG’s cross-

hemispheric coordination in information processing? It is possible that splines augment 

information transfer in the larger circuit through their rapid signaling. If preventing 

splines from occurring in REM sleep causes deficits in attention or long-term memory 

tasks, perhaps treatments that focus on spline restoration could help people with 

attention or memory disorders. Elucidating the functions of splines in learning and 

memory, as well as how they may change with age in Alzheimer’s disease, may allow 

splines to serve as a biomarker. 
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An experiment that transects the brain only at the corpus callosum may elucidate 

more about spline mechanisms during REM. Low-rheobase neurons from layers 2 and 

3 project contralaterally to layer 1c, layer 2, and layer 5 (Brennan et al., 2021). Since 

layer 2 contains strong splines, these cortico-cortico projections across the hemispheres 

may be key players in the generation and/or precise temporal coordination of splines. If 

the transection prevents completely splines from occurring, then the communication 

between the hemispheres by these projections is important for spline generation. If 

splines still occur in the RSG after the transection, but their coherence between the 

hemispheres is disrupted, this would indicate that projections from the contralateral 

RSG’s layers 2 and 3 LR neurons play an important role in carrying information for 

cross-hemispheric coordination. 

 

2.5 Materials and methods 

 

2.5.1 Subjects 

 

2.5.1a Rats 

 

A total of 9 rats were used (seven male Long-Evans and two male Sprague 

Dawley rats (Charles Rivers Laboratories, Wilmington, MA)). Rats were socially housed 

in a temperature- and humidity-regulated colony maintained on a 12:12 h light:dark 

cycle. Experiments were carried out in the dark phase for the Long-Evans and during 

the light phase for the Sprague Dawley rats. All procedures followed the NIH guidelines 
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and were approved by the Institutional Animal Care and Use Committee of the 

University of Michigan.  

 

2.5.1b Mice 

 

Subjects were three male C57BL/6 mice. Mice were socially housed until implant 

then singly housed in a temperature- and humidity-regulated colony maintained on a 

12:12 h light:dark cycle. Experiments spanned both the light and dark phases. All 

procedures followed the NIH guidelines and were approved by the Institutional Animal 

Care and Use Committee of the University of Michigan. 

 

2.5.2 Surgery 

 

Animals were handled and habituated in the recording room for at least 3 days 

before surgery. Animals were prepared for surgery via isoflurane induction and atropine 

administration (subcutaneous, 0.05 mg/kg) and then maintained on a surgical 

anesthetic plane with 1-2.5% isoflurane for the duration of the procedure. Each of the 

mice was implanted with custom titanium ring headposts (MIC583; H.E. Parmer 

Company; Nashville TN) and silicon probes (made by NeuroNexus Technologies). Skull 

screws were implanted for references (cerebellum, posterior parietal cortex, or frontal 

cortex) and ground (posterior-lateral cerebellum). All implants and injections were 

performed using a stereotaxic apparatus (Stoelting Co, Wood Dale, IL) and Picospritzer 

III (Parker Hannifin; Hollis, NH) with a 1.0mm OD glass pipette.  
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2.5.3 Implant locations 

 

Mice with headposts and chronic probe implantations targeted bilateral 

retrosplenial cortex, and unilateral subiculum/CA1 hippocampus (AP -2.30; ML range -

1.6 to +1.2 on a 55 degree angle; with the driven axis spanning superficial to deep RSC, 

across the midline, through contralateral RSG, corpus callosum and into 

subiculum/CA1).  They were implanted with NeuroNexus Technologies A1x32-Edge-

5mm-100-177-H32 package probe.  Post-perfusion histology confirmed the expected 

recording location for 2 of the 3 probe placements, though one of these confirmed mice 

had the implant slightly anterior to the target (AP= -2.06). Tissue damage prevented 

precise histological electrode localization for the third animal; however, recorded data 

strongly matches results obtained in the other animals. This suggests that probe 

placement was at the targeted coordinates.  

 

2.5.4 Electrophysiological recordings 

 

2.5.4a Rat recordings 

 

Electrophysiological signals for all Long-Evans rats were acquired continuously 

and digitized at 32kHz on a 64-channel Digital Lynx SX acquisition system with Cheetah 

recording and acquisition software (Neuralynx, Inc, MT). Single-unit activity was 

bandpass filtered between 600Hz-6kHz, and local field potentials were bandpass 
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filtered between 0.1Hz-8kHz. The final signals were stored with timestamps and position 

information for subsequent analysis. Electrophysiological signals for the Sprague 

Dawley rats were amplified, filtered (0.1Hz – 8kHz), and digitized at 30 kHz on the head 

stage (RHD 2132, Intan Technologies Inc, CA) then passed to an Open Ephys 

acquisition system (http://open-ephys.org). Electrophysiological recordings started after 

three to five days of recovery from surgery. Nine rats were recorded during sleep-wake 

states. In each daily session, rats were placed in a 36 cm diameter octagon turntable 

and allowed to sleep or move freely for up to 6 hours.  

 

2.5.4b Mouse recordings 

 

Electrophysiological signals were amplified, filtered (0.1Hz – 8kHz), and digitized 

at 30 kHz on the head stage (RHD 2132, Intan Technologies Inc, CA) then passed to an 

Open Ephys acquisition system (http://open-ephys.org). Electrophysiological recordings 

started after three to five days of recovery from surgery. Three mice were recorded 

during sleep-wake states. They were placed in a 31.75 cm by 31.75 cm open box and 

allowed to sleep or move freely for up to 10 hours. 

 

2.5.5 Histology 

 

After the last recording session, mice and rats were deeply anesthetized with 

isoflurane and the final recording site was marked with an electrolytic lesion (~20 µA for 

10 seconds). Animals were then perfused with 1x PBS, followed by 4% 

http://open-ephys.org/
http://open-ephys.org/
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paraformaldehyde. The brains were post-fixed for 24 hours in 4% paraformaldehyde 

and then transferred to a 30% sucrose solution until the time for sectioning. The brains 

were sectioned at a thickness of 40 μm and stained for Nissl material.  

 

2.5.6 Single unit analysis 

 

Spikes associated with putative individual units were isolated offline based on 

waveform characteristics and using a variety of partially automated and manual 

techniques (Offline Sorter, Plexon, Inc.). In case of rats, spike waveforms of isolated 

units were then used for classifying the sorted units into FS and RS cells.  Absolute ratio 

of the trough to peak amplitude of the spike waveform and the width of the spike 

waveform at 25% of the amplitude from the peak (P25Width) - were used for an 

automated clustering using a Gaussian Mixture model (Figure 2-8). The posterior 

probability of the clusters identified boundary values of the amplitude ratio and 

P25Width, and we thereafter defined FS cells as those having a P25Width < 0.38 and 

absolute trough to peak amplitude < 1.5.   

 

2.5.7 Movement analysis 

 

Green and red LEDs on the headstages were used to track rats. Extracted position(x,y) 

was smoothed with a 1Hz low-pass filter before computing speed as ට  

 

2.5.8 LFP analysis 
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All electrophysiological data was analyzed using custom written MATLAB based 

programs, unless specifically stated otherwise. The raw LFP was down-sampled to 

1000 Hz for all subsequent analysis after verifying that the down-sampling did not affect 

the results obtained.  

 

2.5.9 Spectral analysis 

 

LFP power spectral analysis for classifying brain states and assessing brain-state 

specific oscillations (Figure 2-2) was performed using multi taper analysis with a window 

size of 5 seconds, time-bandwidth product of 1, and a taper of 1 using the chronux 

toolbox (https://chronux.org/). Spectral whitening was performed to equalize the 

variance across frequencies and adjust for the 1/f decrease in power with frequency that 

leads to overemphasis of lower frequencies. A second order autoregressive model (A) 

was used to model the raw LFP, and then a filter of [1;-A] was applied to normalize 

power across frequencies. To obtain the whitened spectrum, the same multi taper 

analysis as mentioned above was performed on this filtered LFP. While plotting spectra 

in Figure 2-2, 60Hz noise and its third harmonic was removed by setting power in a 1 

Hz range of 59.5 – 60.5 Hz and 179.5 – 180.5Hz as NaN and interpolating power in 

these 1 Hz ranges based on the power values in the nearest frequency bins.  

 

2.5.10 Brain state classification 
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Brain state was classified into awake, NREM, REM, and unclassified (UnCS) 

using a semi-automated algorithm (Montgomery et al., 2008). EMG was filtered in the 

0.5-100 Hz range. Thereafter, a root mean square value of the filtered EMG (rmsEMG) 

was computed using moving windows of 1 s with an overlap of 0.5 s. Movement speed 

was averaged using 1 s moving windows with an overlap of 0.5 s. High rmsEMG (> 

0.25) and high speed (> 1 cm/s) were used to identify awake epochs. High delta (0.5-4 

Hz) power (greater than the median z-scored power), low EMG, and lack of movement 

were used to identify NREM. Two NREM epochs separated by less than 3s were 

combined together as one. A NREM epoch of less than 4 seconds was discarded. 

Theta ratio was computed as the ratio of theta (5-11 Hz) power to a sum of delta and 

alpha (12-30 Hz) powers (theta / (delta+alpha)). An epoch with high theta ratio, detected 

by a threshold of 0.5+median z-scored theta ratio, accompanied with low EMG and 

speed, was classified as REM. NREM and REM epochs lasting less than 4s were not 

analyzed. Time epochs which did not meet any of the above criteria were labeled as 

unclassified. A custom-made graphical user interface (programmed in MATLAB) that 

displayed the computed classification, LFP, EMG, speed, and video recordings of each 

session was then used to verify every brain state manually. Ambiguous epochs were 

labeled as unclassified. The resulting final hypnogram had a resolution of 0.5 s. 

 

2.5.11 Normalized spline and ripple power 

 

To obtain a normalized value of power in the 110-160 Hz (spline) and ripple (110-

190Hz) frequency ranges during REM and NREM sleep, respectively, we used the ratio 
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of power in the respective high frequency band to broadband (1-230 Hz) power both 

prior to and after spectral whitening.  

 

2.5.12 Theta phase-amplitude coupling 

 

Morlet wavelet spectrogram for each channel was computed for the entire 

session and z-scored to normalize every frequency across the session. Morlet windows 

were defined as described previously (Tallon-Baudry et al., 1997). A wavelet family of 7 

was chosen. To get the Morlet spectrogram, the signal was convolved with the 

wavelets. To compute the theta phase coupling across frequencies, individual theta 

cycles were detected by filtering in the 6-12 Hz range. Thereafter, every time bin in the 

theta cycle was converted to phase by linear transformation such that the start (trough) 

of a theta cycle was 0 degrees and end (next trough) by 360 degrees. Power across 

frequencies in a theta cycle was obtained from the wavelet spectrogram values in the 

corresponding theta cycles over 20-degree bins. Phase-amplitude coupling for a 

session during REM was computed by averaging across theta cycles in the 

corresponding brain state. 

 

2.5.13 Modulation index 

 

Strength of the phase-amplitude coupling was quantified using modulation index 

as defined previously (Tort et al., 2010). Power in the spline band (110-160 Hz) over 20 

degree bins across a theta cycle was obtained from the phase-amplitude matrix 
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computed above. This power was normalized by the sum of spline power across all 360 

degrees of the theta cycles, and its distance from a uniform distribution was computed 

using the following formula: 

σ ሺ ሻ ൬ ൰

ሺ ሻ
 

 

where A is normalized spine amplitude for the respective bins, U is the uniform 

distribution, and N is the total number of bins. The resulting measure, known as the 

modulation index (MI), quantifies the extent of phase-amplitude coupling between the 

two rhythms. 

 

2.5.14 Kappa 

 

We also computed the concentration parameter kappa of the von Mises 

distribution to quantify the strength of theta phase-amplitude coupling using the CircStat 

toolbox for MATLAB (Berens, 2009). 

 

2.5.15 Detecting splines within theta cycles 

 

Using the wavelet spectrogram, each theta cycle had an associated spectrum. 

Theta cycles were thereafter sorted by power in the 110-160 Hz range. Change point 

analysis was used to detect theta cycles with splines (Figure 2-6).  
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2.5.16 Spline correlations across brain regions 

 

To correlate power in various frequency bands across tetrodes in a given 

session, theta cycles with peaks closest to those of a reference tetrode in RSC were 

found. Thereafter, spline (110-160 Hz) power in those matched theta cycles was 

correlated across other simultaneously recorded RSC tetrodes, which we refer to as 

non-local RSC spline correlation (Figure 2-9). Spline-gamma correlations for RSC were 

computed by correlating spline power to gamma (30-80 Hz) power in theta cycles from 

the same reference tetrode (local gamma, Figure 2-9). Spline-gamma correlation with 

respect to CA1 was performed by correlating spline power in the RSC reference tetrode 

to gamma power in matched theta cycles from simultaneously recorded CA1 channels. 

To compute correlation between theta amplitude and spline power, we defined theta 

amplitude of a single-cycle as the difference between the z-scored amplitude values of 

the peak and starting trough. 

 

2.5.17 Spline-single unit firing rate correlation 

 

To assess firing rates in theta cycles, each spike was assigned to a theta cycle 

extracted as discussed above. Correlations between spline power and firing rate was 

computed over 25 ms bins.  

 

2.5.18 Coherence analysis 

 



 59 

Wavelet spectrogram as described above was used to compute coherence 

magnitude and phase for the entire REM session. 5 ms smoothing windows were used.  

Thereafter, mean spline and gamma coherence magnitude and phase were computed 

over individual theta cycles. For analyzing modulation of coherence by theta phase, 

mean coherence magnitude and phase offset were computed over 20 degree bins.  

 

2.5.19 Spike phase locking 

 

Spline cycles were extracted by filtering the LFP in 110-160Hz range and finding 

local troughs and peaks. Spikes were assigned a phase with the starting trough as 0, 

peak as 180, and end of the cycle as 360 degrees. For spike phase locking to gamma, 

the LFP was filtered in the 30-80 Hz range to identify local troughs and peaks and 

phase assignment of spikes was performed as for splines.  

 

2.5.20 Statistical tests 

 

For in vivo electrophysiology experiments, a Wilcoxon rank sum test was used to 

compare power in spline and ripple bands and the strength of phase amplitude coupling 

of splines across brain regions. A significant deviation from normality was confirmed 

using the Shapiro-Wilk test before using rank sum tests.  To compare the correlation of 

splines across pairs of simultaneously recorded RSC signals with those recorded from 

CA1, we used a rank sum test. Two-sample t-tests were used to compare firing rates 

between theta cycles with and without splines. Thereafter, post hoc comparisons using 
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the Tukey HSD test were conducted. The CircStat toolbox for MATLAB (Berens, 2009) 

was used for computing kappa and performing Watson William test for comparing mean 

spline coherence phase distributions of ipsilateral and contralateral channels. Rayleigh’s 

Z (CircStat toolbox) was used to test the significance of phase locking of units to splines 

from both local and contralateral channels. An alpha value of 0.05 was used throughout. 
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CHAPTER 3: Oscillations of the Retrosplenial Cortex in Awake Behavior and 

Running Speed 

 
A modified version of this chapter was submitted as: Ghosh M*, Yang F*, Rice SP*, 

Hetrick V, Lorenzo Gonzalez A, Siu D, Brennan EKW, John TT, Ahrens AM, Ahmed OJ. 

2021. Running speed controls two distinct modes of rapid interhemispheric 

communication.  

 

3.1 Abstract 

 

The ability to track the speed of movement is required for successful spatial 

navigation. To better understand the role of running speed in retrosplenial cortex (RSC) 

oscillations, we implanted mice with silicon probes across the hemispheres of the RSC 

bilaterally and had them run either head fixed on a spherical treadmill or in a T-maze 

where they could move around freely. We found that splines, a unique high-frequency 

oscillation we have previously identified during REM sleep, are also seen during active 

running. As during REM, both gamma and splines were strongest in superficial layers of 

the RSC, with gamma in-phase across the hemispheres and splines anti-phase. We 

also found that splines increased in power, gained more interhemispheric coherence, 

and became more strongly coupled to the peaks of theta rhythms at faster running 

speeds. This suggests that the retrosplenial cortex employs two modes of rapid 

interhemispheric coordination, splines and gamma, to encode speed information or to 

consolidate sensory information. 
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3.2 Introduction 

 

How the brain keeps track of position, speed, and direction in navigation involves 

the communication between many structures. The retrosplenial cortex receives inputs 

from the medial entorhinal cortex (van Wijngaarden et al., 2020) and the hippocampus 

(Yamawaki et al., 2019b), which are interconnected with each other (Ahmed and Mehta 

2009; Fyhn et al., 2004) and both encode speed (Moser et al., 2008; Ahmed and Mehta, 

2012). Speed signaling has been reported in a subset of all RSC neurons (Alexander et 

al., 2020a).  

The source of the neural speed signal comes from motor systems and sensory 

systems, both of which have connections to the retrosplenial cortex. The vestibular 

system also encodes directional and speed signals (Cullen and Taube, 2017; Valerio 

and Taube, 2016). We would therefore expect that experiments involving head fixation, 

which holds the head still, would take away the portion of the speed signal that may be 

modulated by encoding by the vestibular system, and that if the visual scene is also 

constant, the speed signal would largely be relayed through the self-generated motion 

of the limbs and the motor efference copy, an anticipatory signal of sensation and 

motion (Cullen, 2014). 

By using large-scale recordings in both rats and mice, we show that theta-

coupled 110-160 Hz oscillations are strongest in the superficial layers of the granular 

retrosplenial cortex (RSG) during head-fixed running. Although these high-frequency 

oscillations in RSG have previously been described during navigation as “high gamma” 
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(Alexander et al., 2018), we have determined that they are distinct from gamma. 

Surprisingly, we find that these fast oscillations are the signature of anti-phase 

communication across the hemispheres of RSG. These anti-phase 110-160 Hz 

oscillations across hemispheres resemble splines, the interlocking teeth on mechanical 

gears. We therefore refer to them as splines. This anti-phase coupling has previously 

been identified by our lab in mice and rats during REM sleep (Chapter 2). We found that 

anti-phase coupling of splines is robust during running, including head-fixed running, 

and becomes even more precise at faster running speeds.  

 

3.3 Results 

 

3.3.1 Splines are anti-phase across hemispheres while gamma oscillations are in-phase 

during awake active states 

 

Our probe recordings reveal that splines and gamma are strongest in the 

superficial layers of RSG during active awake states (Figure 3-2), similar to how they 

are strongest in the superficial layers of RSG during REM sleep (Figure 2-10), 

decreasing in power at sites more lateral to the midline. As rapid inter-hemispheric 

communications occurred in REM, we wanted to know how splines and gamma 

oscillations are modulated by this inter-hemispheric communication during active 

waking states. Simultaneously recorded raw LFP traces from superficial layers of the 

left and right hemisphere (Figure 3-3A) showed that splines were robustly and 

surprisingly anti-phase (180 degrees out of phase) across hemispheres during awake 
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behaving states. On the contrary, gamma oscillations in the left and right hemispheres 

were in-phase. Again, like with REM sleep, splines were consistently anti-phase across 

hemispheres during freely moving states. To quantify this phase relationship, we 

computed wavelet based coherence between superficial channels from the left and right 

hemisphere during the freely moving sessions. We analyzed the distribution of 

coherence phase offset for splines and gamma during freely moving (Figure 3-3B) 

behavior. Population coherence magnitude and phase distribution (Figure 3-3C) from 3 

mice (9 REM and 9 freely moving sessions) showed that splines had a mean phase of 

180 degrees, such that they were anti-phase across hemispheres. Gamma oscillations, 

on the other hand, were consistently in-phase. A Watson William test showed that there 

was a significant difference (p<0.0001) between mean spline phase and gamma phase 

across hemispheres.  
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Figure 3-1. Head-fixed spherical treadmill system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
66 

 
 
Figure 3-2. Splines are strongest in the superficial layers of retrosplenial cortex 
during awake active states.  
A. Example theta cycle across channels from the left hemisphere during a T-Maze 
session (speed >5cm/s) shows the decrease in spline power with increasing distance 
from the midline.  
B. Normalized spline power and gamma power across 3 mice (9 sessions). To quantify 
and compare the strength of these oscillations across layers, we grouped channels 
based on their distance from the midline channel with each group spanning 300 µm. A 
repeated measures ANOVA found a significant effect of distance from midline on spline 
and gamma power (p<0.0001). Post hoc Tukey HSD test indicated that the mean spline 
power during awake states significantly decrease with distance from midline (p<0.0001 
all comparisons). Gamma power for the group closest to midline was also significantly 
higher (p<0.0001 all comparisons).  
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Figure 3-3. Splines are anti-phase across hemispheres while gamma oscillations 
are in-phase during awake active states. 
A. Cross-correlation during a freely moving session shows that splines were antiphase 
across hemispheres while gamma oscillations were in-phase. All analysis was 
performed for linear speeds >5 cm/s.  
B. Distribution of coherence phase between the left and right hemisphere during freely 
moving sessions from 2 mice. A distinct 180 degree offset was seen for splines as 
compared to gamma. 
C.  Distribution of spline and gamma coherence magnitude and phase across 3 mice (9 
sessions) shows that splines were consistently anti-phase (mean phase  = 180°, kappa 
= 0.9) across hemispheres while gamma oscillations were in-phase (mean phase = 
2.2°, kappa  = 1.6) during freely moving sessions. A Watson William test showed that 
there was a significant difference (p<0.0001) between mean spline phase and gamma 
phase across hemispheres. 
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Figure 3-4. Spline and gamma coherence increase with increasing running speed. 
A. Example phase-amplitude coupling with increasing running speed. Similar to rats on 
a linear track, strength of coupling of splines to theta increased with increase in running 
speed when head-fixed mice run on a spherical treadmill.  
B. Spline and gamma coherence magnitude as a function of theta phase at increasing 
running speed from an example session. Note that spline coherence was maximum at 
the peak of theta corresponding to the maximum spline power within a theta cycle as 
seen in A above. Similarly, gamma coherence peaked during the rising phase of theta. 
The coherence magnitude is normalized by the value at theta phase 0 (starting trough 
of the theta cycle) 
C. Spline and gamma coherence phase as a function of theta phase with increasing 
running speed from the same session as B. Splines were anti-phase specifically at the 
peak of theta when their power and coherence was the highest. 
D.  Spline and gamma coherence phase-offset as a function of theta phase across the 
population (3 Mice, 9 sessions). Splines were consistently anti-phase at the peak of 
theta.  
E. Similar to rats, there was a significant effect of speed on the modulation index of 
splines (F(4,32)  = 43 ,p<0.001). Though there was a significant effect of speed on the 
modulation index of gamma as well (F(4,32) = 15), the effect size at 35-75 cm/s 
compared to 1-5cm/s was higher for splines(d=2.1) as compared to gamma (d=1.4).  
F. Spline and gamma coherence magnitude increased with running speed. There was a 
significant effect of speed on the magnitude of spline (F(4,32) = 30, p<0.001) and 
gamma coherence (F(4,32) = 27, p<0.001).  The effect size for the increase in 
coherence at 35-75 cm/s as compared to 1-5 cm/s was stronger for splines (d = 1.18) 
as compared to gamma (d = 0.58). Coherence values were normalized to the slowest 
speed (0-1 cm/s) bin.  
G. Splines were anti-phase and gamma oscillations were in-phase with increasing 
running speed. Note however that the variance in the phase-offset decreased with 
increasing running speed.  
H. The left-right phase offset precision (mean resultant vector (R)) increased with 
increasing running speed. The effect size at 35-75 cm/s to that at 1-5 cm/s was stronger 
for splines (d = 1.4) as compared to gamma (d = 0.4). All values were normalized to the 
slowest speed (0-1 cm/s) bin.  
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3.3.2 Running speed controls two distinct bands of interhemispheric communication 

 

We next investigated how both anti-phase spline coupling and in-phase gamma 

coupling change with running speed. We used head-fixed mice running on a spherical 

treadmill to precisely control and track running speed. Phase-amplitude coupling of 

splines to theta in the superficial layers of RSG in a given hemisphere increased with 

running speed, with similar relationships seen for theta-gamma coupling (Figure 3-4A, 

E). A repeated measure ANOVA revealed that there was a significant effect of speed on 

the modulation index of splines (F (4,32) = 43, p<0.001) and gamma (F(4,32) = 15 ; 

p<0.001). The effect size of increase in modulation index at the fastest speeds (35-75 

cm/s) to that at the slowest running speeds (1-5 cm/s), was higher for splines (d = 2.1) 

as compared to gamma (d = 1.4).  We next asked if interhemispheric coherence was 

also similarly modulated by running speed. To do so, we first aimed to understand how 

spline interhemispheric coherence changed within a theta cycle. Similar to theta phase 

amplitude coupling (seen in a single hemisphere), we found that the magnitude of 

spline-spline interhemispheric coherence within a theta cycle was highest at the peak of 

theta (Figure 3-4B). Gamma-gamma interhemispheric coherence was maximum at the 

rising phase of theta at all running speeds sampled. At this stage it is important to note 

that splines only happen near the peak of theta, and correspondingly spline-band 

interhemispheric coherence is strongest when splines occur. Thus, we predicted that 

splines should be anti-phase across hemispheres only near the peak of theta. We 

confirmed this by analyzing the phase of spline-band interhemispheric coherence as a 

function of theta phase: splines were strongly anti-phase near the peak of theta, but 
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coherence in this same 110-160 Hz frequency range was highly variable at other 

phases, where splines are rarely seen (Figure 3-4C,D). Next, to assess change in 

interhemispheric coherence with speed, we analyzed the coherence magnitude and the 

interhemispheric spline-spline or gamma-gamma phase offsets at various speeds.  

There was a significant effect of speed on the magnitude of spline (F(4,32) = 30, 

p<0.001) and gamma coherence (F(4,32) = 27, p<0.001).  The effect size for the 

increase in coherence at the fastest speeds (35-75 cm/s) as compared to the slowest 

running speeds (1-5 cm/s) was stronger for splines (d = 1.18) as compared to gamma (d 

= 0.58) (Figure 3-4F). Spline interhemispheric communication remained consistently 

anti-phase at all running speeds examined, while gamma remained consistently in-

phase (Figure 3-4G). Importantly, the precision of the interhemispheric communication 

increased with increasing running speed. To quantify this, we analyzed the circular 

spread in the mean phase across a theta cycle using the mean resultant vector(R). 

There was a significant effect of speed on the mean resultant vector (R) for the phase 

offset for splines (F(4,32) = 6, p<0.001) and gamma (F(4,32) = 18, p<0.001). Similar to 

coherence magnitude, the effect size at faster speeds (35-75 cm/s) compared to slower 

speeds (1-5 cm/s) was stronger for splines (d = 1.4) as compared to gamma (d = 0.4). 

Thus, running speed increases spline-spline interhemispheric communication by making 

this coupling stronger and more precisely anti-phase. Gamma-gamma interhemispheric 

communication also becomes stronger and more precisely in-phase at faster running 

speeds. However, changes in spline-band interhemispheric communication are more 

pronounced than changes in gamma-band interhemispheric communication. These 

results show that the two distinct speed-controlled bands of anti-phase (splines) and in-
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phase (gamma) interhemispheric communication can co-exist, with the timing of each 

form of interhemispheric communication controlled by the phase of theta. 

We hypothesized that anti-phase communication in the spline frequency band 

should result in phase-locking of retrosplenial neurons to opposite phases of spline 

oscillations across hemispheres. Figure 3-5B shows example phase locking 

distributions of a single unit and a multi-unit recorded from superficial RSC during 

awake and REM respectively. These units show a clear preference to fire at the trough 

of local splines and the peak of contralateral splines. Of the 20 single units recorded 

during REM and active states from the superficial layers, 18 were significantly phase 

locked to local splines while 14 to contralateral splines (Figure 3-5C). All 19 multi-units 

recorded were significantly phase locked to both local and contralateral splines (Figure 

3-5D). The mean phase distribution of cells with significant phase locking showed that 

cells were consistently phase locked to the trough of local splines and the peak of 

contralateral splines (Figure 3-5E and F). Similar analysis for gamma showed significant 

phase locking of cells to the trough of both local and contralateral gamma (Figure 3-8). 
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Figure 3-5. Spikes phase-lock to the trough of splines in the ipsilateral LFP and to 
the peak of splines in the contralateral LFP. 
A. Example raw (black) and 3-500 Hz filtered (green) LFP showing spikes (dotted lines) at the trough of 
splines. A simultaneously recorded raw (orange) and 3-500 Hz filtered (red) LFP from a contralateral 
channel shows the same spikes locked to the peak of splines. 
B. Phase locking from a single-unit and multi-unit to local (green) and contralateral (red) splines showing 
significant phase locking to the trough of local splines (single unit: mean phase =  341° , ln(Rayleigh’s Z) 
= 5.13, p<0.001; multi-unit: mean phase = 60°, ln(Rayleigh’s Z) = 5.7, p<0.001 ) and the peak of 
contralateral splines (single unit: mean phase = 161  , ln(Rayleigh’s Z) = 2.8, p<0.001; multi-unit: mean 
phase = 232, ln(Rayleigh’s Z) = 4.5, p<0.001)  
C. Distribution of Rayleigh’s Z for all recorded cells during REM and active states. The blue dotted line at 
ln(3) = 1.098 indicates the threshold for significance (alpha = 0.05). Of the 20 cells, 18 were significantly 
phase locked to local splines while 14 were also phase-locked to contralateral splines. 
D. Same as C for multi-units recorded during REM and active states. All 19 units were significantly phase 
locked to local and contralateral splines. 
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Figure 3-6. Spikes phase-lock near the trough of both ipsilateral and contralateral 
gamma rhythms. 
A. Distribution of Rayleigh’s Z for all recorded cells during REM and active states. The 
blue dotted line at ln(3) = 1.098 indicates the threshold for significance (alpha = 0.05). 
Of the 20 cells, 17 were significantly phase locked to ipsilateral gamma while 14 were 
phase locked to contralateral gamma. 
B. Same as A. for multi-units recorded during REM and active states. Of the 19 units, 
18 were significantly phase-locked to local (ipsilateral) gamma and 18 to contralateral 
gamma. 
C. Mean gamma phase distribution of the significantly phase-locked cells. There was no 
significant difference between the preferred phase distributions for ipsilateral vs 
contralateral gamma rhythms (Watson Williams test, p = 0.16). 
D. Same as C. for multi-units. Once again, there was no significant difference between 
the ipsilateral and contralateral gamma preferred phase distributions (Watson Williams 
test, p = 0.25). 
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3.4 Discussion 

 

 In this study, we have analyzed retrosplenial cortex oscillatory dynamics during 

head-fixed running. The properties of hippocampal gamma rhythms are known to be 

controlled by running speed (Sheeran and Ahmed, 2020; Ahmed and Mehta, 2012; 

Chen et al., 2011; Kemere et al., 2013). Our results show that interhemispheric RSG 

coherence in both the gamma and spline bands increases with running speed in head-

fixed mice, with a much stronger effect on splines (Fig. 3-4). Gamma rhythms become 

more precisely in-phase across RSG hemispheres at faster speeds while splines 

become more precisely anti-phase, with the effect size again being larger for splines 

(Fig. 3-5). Our results on gamma rhythms agree with recent studies, which 

demonstrated that interhemispheric gamma coherence is more strongly in-phase during 

more demanding and more successfully-executed tasks (Bland et al., 2020; Cho et al., 

2020). In contrast, our finding of increased interhemispheric spline coherence at faster 

speeds shows that more strongly activated brain states, such as running faster (Ahmed 

and Mehta, 2012), can also improve and sharpen anti-phase communication between 

the two RSG hemispheres. Both in-phase gamma and anti-phase spline coherence can 

be altered by changes in running speed.   

 This sharper interhemispheric coherence for splines and gamma rhythms at 

faster running speeds likely contributes to the retrosplenial cortex’s ability to process 

sensorimotor information during higher speeds of navigation. The faster externally-

referenced and self-generated motion cues that come with increased running speed 

may drive higher spline power. The prevalence of local connectivity from fast-spiking 
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inhibitory neurons (Brennan et al., 2020) along with the drive from navigationally-

relevant projections such as the subiculum (Yamawaki et al., 2019a, Brennan et al., 

2021), the anterior thalamic nuclei (Brennan et al., 2021), and the medial septum 

(Robertson et al., 2009) would allow RSG neurons to generate greater feedforward 

inhibition as the mouse runs faster.  

 

3.5 Materials and methods 

 

Methods were identical to those in Chapter 2 with the following additions. 

 

3.5.1 Mouse recordings 

 

For controlled running speed, three of the mice were head-fixed on a 7 inch 

diameter spherical treadmill and were free to choose whether to run or not (Figure 3-1). 

These sessions lasted 30-60 minutes. For self-generated navigational behavior, two of 

the three C57BL/6 mice (both of whom were also recorded during sleep) were trained to 

run in a T-maze, which allowed mice to move freely for 30 minutes. The T-maze had a 

long arm of 76.2 cm divided by a central arm of 30.5 cm. Walls were 10 cm high. All 

arms and walls were uniform in color and pattern. 

 

3.5.2 Head-fixed speed analysis 
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To assess modulation of coherence by running speed, five speed categories 

were chosen: 0-1, 1-5, 5-15, 15-35, 35-75 cm/s. These speed bins were chosen to 

represent the full range of running speeds keeping the number of theta cycles in each 

bin nearly the same.  Each theta cycle was assigned a speed value by computing speed 

at the peak of a theta cycle. Thereafter, theta cycles corresponding to each speed 

category were chosen and phase-amplitude coupling, as mentioned above, was 

obtained for those theta cycles. Each theta cycle was assigned the peak coherence in 

that cycle. Coherence phase corresponding to the peak coherence magnitude was then 

assigned to each theta cycle. Thereafter, averaging over theta cycles for each speed 

bin was performed. The mean resultant vector (CircStat toolbox) of the distribution of 

mean coherence phase was computed for every speed bin.  

 

3.5.3 Statistical tests 

 

Two-sample t-tests were used to compare firing rates between theta cycles with 

and without splines. To understand the relationship of theta amplitude and phase-

amplitude coupling on splines and gamma with running speed, theta cycles were 

divided into 3 speed groups (slow [10-20 cm/s], medium [20-35 cm/s], and fast [35-55 

cm/s]). Since the same channels were used for each of the three groups, a repeated 

measures ANOVA was performed on theta amplitude and modulation index across 

these speed groups. Thereafter, post hoc comparisons using the Tukey HSD test were 

conducted. The CircStat toolbox for MATLAB (Berens, 2009) was used for computing 

kappa and performing Watson William test for comparing mean spline coherence phase 
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distributions of ipsilateral and contralateral channels. Rayleigh’s Z (CircStat toolbox) 

was used to test the significance of phase locking of units to splines from both local and 

contralateral channels. A repeated measures ANOVA was used to test the effect of 

speed on coherence magnitude and modulation index for head-fixed set-up. Cohen’s d 

was used to quantify effect size between the 35-75 cm/s speed and 1-5 cm/s speed bin. 

1-5 cm/s was chosen as the reference for comparing effect of running speed instead of 

0-1 cm/s since 0-1 cm/s included epochs of non-movement as well. An alpha value of 

0.05 was used throughout. 
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CHAPTER 4: Conclusions and Future Directions 

 

4.1 Results and implications 

 

Our results demonstrate that there are two distinct modes of rapid cross-

hemispheric coordination that occur in the retrosplenial cortex both during REM sleep 

and during awake movement. One of these modes is gamma rhythms, which are in-

phase across the hemispheres. The other mode is splines, which are antiphase across 

the hemispheres. The retrosplenial cortex can rapidly switch between these two 

mechanisms of interhemispheric communication. While gamma rhythms are coupled to 

the rising phase of theta, splines are precisely coupled to the peaks of theta rhythms. 

Spline power is independent of theta amplitude. Splines also become more precisely 

anti-phase with higher running speed. As splines are at their highest power during REM 

sleep, this also suggests splines could play a role in memory consolidation processes. 

Splines are distinct from sharp wave ripples. Sharp wave ripples occur during 

NREM sleep and awake inactivity. Splines occur during REM sleep and awake activity, 

suggesting that splines are distinct from sharp wave ripples and not volume conducted 

from the hippocampus. Since splines are strongest during REM sleep, this implies that 

their role in information transfer could be more critical during REM sleep than during 

active behavior. Splines may serve as a biomarker and a target for treatment of 
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cognitive dysfunction, as several conditions, including Alzheimer’s disease (Lakmache 

et al., 1998), post-traumatic stress disorder (Saar-Ashkenazy et al., 2016), and 

depression (Guo et al., 2013), involve interhemispheric communication impairments. 

 

4.2 Potential mechanisms of spline generation 

 

4.2.1 The role of cell type properties 

 

 Fast-spiking inhibitory neurons can be driven to fire at a wide range of 

frequencies (8-200 Hz), while excitatory pyramidal neurons only amplify lower frequency 

oscillations (Cardin et al., 2009). As light pulses increase in frequency, FS neurons 

(Connors and Gutnick, 1990) and LR neurons retain a high probability of firing while the 

regular-spiking excitatory neurons attenuate in their response (Brennan et al., 2020). 

These properties of cortical circuitry allows inhibitory neurons to generate gamma 

rhythms. Fast-spiking inhibitory neurons are also by far the most active cell type during 

sharp wave ripples, allowing these super fast oscillations to occur in hippocampus 

(Bähner et al., 2011; Klausberger et al., 2003; Schlingloff et al., 2014).  

 

4.2.2 The role of oscillation properties  

 

Through sorting theta cycles by spline power and sorting theta cycles by gamma 

power, we have found that theta cycles that contain strong spline power do not 

necessarily contain strong gamma power. This lack of correlation between power of 
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gamma and power of splines within theta cycles provides strong evidence that splines 

are distinct from gamma rhythms.  

What is happening with gamma rhythms, which are also a mode of cross-

hemispheric coordination? Other groups have explored mechanisms of gamma-theta 

coupling outside of the RSC. Segneri et al. performed analyses of theta-nested gamma 

rhythms, noting that theta-gamma locked states happen more often in ING than in PING 

(Segneri et al., 2020).  In the hippocampus’s theta-gamma code, different theta phases 

represent different spatial locations, while the gamma rhythm defines items in 

messages with multiple parts (Lisman and Jensen, 2013). Higher theta-gamma phase-

amplitude coupling has been associated with stronger memory performance in the 

hippocampus (Vivekananda et al., 2021) and in the frontal region of the brain (Goodman 

et al., 2018). It is possible that theta-gamma coupling strength in the RSG also serve as 

a biomarker for better memory. In the RSG, firing rates of all cells increase during theta 

cycles that contain splines, but more work is needed to determine which cell types are 

firing and when during gamma versus splines.  

It is questionable what sends the circuit dynamics past the tipping point of 

gamma rhythms to generate splines at the peaks of theta cycles that do contain splines. 

The FINO mechanism that generates sharp wave ripples would allow for an oscillation 

over 100 Hz. We think that splines are generated by a mechanism similar to the FINO 

mechanism.  

Not all theta cycles contain splines, and it is currently unknown precisely what 

determines whether theta cycles do versus do not contain splines. Notably, splines 

occur in temporal clusters have a high probability of happening in clusters for -32 to +36 
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adjacent cycles of theta, this means that the mechanism for splines may involve a 

behavioral timescale of about 5-10 seconds during REM.  

 

4.2.3 The role of connectivity 

 

 Locally, the fast-spiking inhibitory neurons of the RSG display 100% fast-spiking 

to fast-spiking connectivity (Brennan et al., 2020). While the inhibitory to excitatory 

connectivity is 53%, the excitatory to inhibitory connectivity is 16% in the RSG. The only 

local excitatory to inhibitory synapses have LR neurons as the presynaptic neurons. 

This means LR neurons likely have some influence on FS neuron firing rates.  

By its connectivity, RSG neurons are strongly controlled by inhibition (Brennan et 

al., 2020). Strong and fast connectivity between inhibitory neurons allow the FS-FS 

synapses to generate high-frequency oscillations via an interneuron gamma mechanism 

(Viriyopase et al., 2016), as both the strength and of inhibitory postsynaptic potentials 

generated by FS neurons would lead to strong fast synchrony. The RSG’s cell type 

connectivity gives rise to the prevalent inhibition that would make fast oscillations 

possible  

 

4.2.4 The role of the cholinergic system 

 

As theta rhythms are mediated by cholinergic inputs (Colgin, 2013) and splines 

occur specifically at the peaks of theta rhythms, this suggests that acetylcholine may 

shape some aspects of spline generation. The MSDB’s cholinergic neurons project to 
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both the retrosplenial cortex (Robertson et al., 2009) and the hippocampus (Colgin, 

2013). Acetylcholine allows for the generation of theta rhythms during movement and 

REM sleep (Colgin, 2013). Basal forebrain acetylcholine release is especially strong 

during REM sleep (Vazquez and Baghdoyan, 2001), which is also where we have 

observed the highest spline power. Since splines are strongest in brain states correlated 

with theta rhythms and higher levels of acetylcholine release, this indicates 

acetylcholine is not only involved in the mechanism of gamma-theta coupling, but also 

in shaping splines. 

Howe et al., 2017 measured LFPs in the prefrontal cortex, blocking either 

mAChRs or nAChRs (Howe et al., 2017). They found that missed cues were not 

associated with theta-gamma coupling and that mecamylamine (nicotinic AChR 

antagonist) and telenzepine (muscarinic AChR antagonist) disrupted theta-gamma 

coupling. Newman et al., 2013 measured LFPs from medial entorhinal cortex and found 

that scopolamine (muscarinic AChR antagonist) administration selectively decreases 

peak-locked high gamma power (Newman et al., 2013). Furthermore, administration of 

PNU-282987, an alpha-7 nAChR agonist, to the hippocampus did not significantly 

increase gamma power, but did significantly increase coupling between gamma and 

theta (Stoilijkovic et al., 2015). Given the effects of acetylcholine on the phase amplitude 

coupling between gamma and theta rhythms, we also think that acetylcholine plays a 

role in phase-amplitude coupling for splines by modulating some of the same neurons to 

fire specifically at the peaks of theta.  

 

4.6 Future directions and speculations 
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4.6.1 Low-rheobase neuron contributions 

 

To further understand LR neurons’ potential role in spline propagation or 

generation, it would be good to know the firing rates of LR neurons in vivo during 

different brain states. LR neurons are found across the RSC’s long axis, are 

anatomically positioned to send information from one RSG hemisphere to the other, and 

neurons only synapse to FS neurons locally (Brennan et al., 2020). It is not yet known 

which cell types LR neurons synapse to contralaterally, but determining this will also 

provide clues to LR neurons’ shaping of the RSG’s oscillations. While rostral anterior-

posterior planes of the RSC have the corpus callosum and the two RSC hemispheres 

anatomically close to each other while the more caudal anterior-posterior planes of RSC 

are farther apart without the corpus callosum in the same cross-section. This raises the 

question of how connectivity within the anterior-posterior plane of RSC may cause 

splines to differ. In our experiments, we kept consistent probe sites for in-vivo 

electrophysiology. Future experiments may explore what happens with splines in more 

caudal planes of RSG: whether the cross-hemispheric coherence is as strong when the 

two RSG hemispheres are physically farther apart, whether splines have the most 

power in the AP planes where the corpus callosum is thickest, and whether they may be 

a topographic organization to splines along the long axis of the brain.  

 

4.6.2 Retrosplenial oscillations in the broader circuit 



 

 
85 

 

Studying retrosplenial cortex oscillations and their correlates would ideally be in 

the context of the broader circuit. Since the RSC is an association cortex and one of the 

most heavily interconnected brain regions, there are many avenues for investigating its 

circuitry. CA1 neurons have long-range axonal projections to the retrosplenial cortex 

and have been found to be a distinct class of GABAergic neurons (Yamawaki et al., 

2019a). The border of the stratum radiatum and stratum lacunosum-moleculare are 

anatomically positioned to mediate direct inhibitory communication from dorsal 

hippocampus to RSG, and they have been shown to do so in channelrhodopsin-

assisted circuit mapping (CRACM) experiments in slices. Experiments chemogenetically 

inhibiting connections from CA1 to RSG increase freezing behavior during the retrieval 

test of contextual fear conditioning. In contrast, inhibiting connections from anterior 

thalamic nuclei (ATN) to RSG reduced freezing behavior in the same retrieval test.  

The Yamawaki et al. study did not investigate oscillatory dynamics during 

behavior. It is notable that the GABAergic neurons’ long-range axons synapse onto and 

potently inhibit apical dendrites of excitatory L5 pyramidal neurons in RSG. Performing 

similar experiments while measuring and manipulating the circuit will shed light on how 

splines may be altered when inhibiting CA1 versus ATN. Since the effect is strong 

enough to cause differences in freezing behavior and the CA1-RSG projections are 

inhibitory while the ATN-RSG projections are excitatory, I would expect the CA1 and the 

ATN inputs to affect retrosplenial oscillatory dynamics differently at the population level 

in vivo, as well.  
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Given that the ATN and CA1 synapse to layer 1 of the RSG and that both of 

these regions would be involved in navigation to escape to shelter, disrupting the 

coordination of ATN and CA1 inputs to layer 1 of RSG during escape behavior may 

impair navigation towards shelter. It is known that the RSC-superior colliculus circuit 

supports an egocentric representation of shelter direction and that chemogenetically 

disrupting the superior colliculus’s inputs to the RSC decreases the efficiency of shelter 

direction encoding (Vale et al., 2020), but given the ATN’s essential role in head 

direction encoding and synapses to layer 1a of the RSG where the apical dendrites of 

LR neurons are (Brennan et al., 2021), that the LR neurons are the most prevalent cell 

type in L2 and L3 of the RSG, and the relative strength of the splines in the superficial 

layers of the RSG which are the only known locations of LR neuron cell bodies 

(Brennan et al., 2020), I hypothesize that inhibiting ATN would change retrosplenial 

oscillations in the superficial layers. The ATN provides a strong external drive to the 

retrosplenial cortex (Brennan et al., 2021). As lesions in the rodent ATN cause severe 

spatial deficits (Aggleton and Nelson, 2015), I also hypothesize that there will be a 

corresponding behavioral correlate: if the anterodorsal nucleus’s neurons are inhibited, 

the animal would take a longer path in orienting and navigating towards a shelter for 

escape. 

 

4.6.3 In-vivo experiments with Alzheimer’s mouse model 

 

Another future direction is to perform more in-vivo behavioral experiments with 

5xFAD mice, which have five different mutations associated with Alzheimer’s disease: 
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APP KM670/671NL (Swedish), APP I716V (Florida), APP V717I (London), PSEN1 

M146L (A>C), and PSEN1 L286V (Oakley et al., 2006). 5xFAD mice are impaired in 

spontaneous alternation in the Y-maze at 4-5 months (Oakley et al., 2006; Devi and 

Ohno, 2010). These mice are also impaired in navigating the Morris water maze at 6 

months (Xiao et al., 2015), in social recognition learning at 9 months (Flanigan et al., 

2014), and in motor function at 12 months (O’Leary et al., 2018). 5xFAD mice have a 

10% decrease in hippocampal volume by 13 months of age (MacDonald et al., 2014). 

5xFAD mice also have impairments in place cell reactivation, with shorter and fewer 

sharp wave ripples (Prince et al., 2021). It may be insightful to investigate the dynamics 

of splines and ripples in the retrosplenial cortices of these mice, to compare which of 

these oscillations is most disrupted with the progression of Alzheimer’s disease. Given 

that both the retrosplenial cortex and the hippocampus are affected early in Alzheimer’s 

disease, I would expect that like how ripples are fewer and shorter in hippocampus, 

both ripples and splines are fewer and shorter in the RSC of these transgenic mice. 

Identifying oscillatory biomarkers for Alzheimer’s disease progression may help to 

develop interventions and assess their effectiveness.  

 

4.6.4 Eye movement 

 

Splines occur most strongly during REM sleep but also during awake movement, 

two states which involve eye movement. It is possible that splines may be modulated by 

eye movement. In awake behavior, the optic flow component could be isolated from eye 

movement with a virtual reality environment or using a projector. The eye movement 
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component may be assessed in the future if we add an eye tracking device to our setup. 

If splines could occur in RSG during awake head fixation in the absence of running 

while the visual scene is changing, if they increased in amplitude with faster and more 

dynamic changes to the visual scene, and if they were not significantly different from 

splines during passive motion at the same speeds, this would serve as a line of 

evidence that visual inputs contribute to the generation of splines. As high-frequency 

oscillations of 110-160 Hz have been found in various other cortical regions (González 

et al., 2020; Sirota et al., 2008; Scheffzük et al., 2011; Tort et al., 2013), characterizing 

the microcircuitry that underpins these regions’ ability to generate high-frequency 

oscillations may give greater insight into the functions of these high-frequency 

oscillations and how they may differ in regions with different cell types. 

 

4.6.5 Passive motion experiments 

 

There are several considerations to keep in mind while designing experiments to 

study passive motion in very controlled ways. Noise artifacts may occur during passive 

motion of the mouse on the spherical treadmill, and these noises change according to 

the speed that the mouse is passively pushed. This would likely lead to processing of 

sounds by the auditory cortex, something that may go unnoticed if video information is 

captured without measuring audio data during the recording. The visual environments 

for freely moving behavioral paradigms and for the head-fixed paradigms could be 

made more similarly: as uniform and featureless as possible via use of a black curtain, 

true darkness, an infrared camera, and better sensors to monitor head position and 
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movement. The technical challenge in using an infrared sensor is that it is challenging to 

monitor head tilts and movements. Future experiments will be designed to extract and 

triangulate motion via gyroscope and accelerometer with high precision, allowing us to 

perform well-controlled experiments manipulating vestibular inputs. Learning about 

spline dynamics in the switch from active modes of motion to passive, virtual modes of 

motion will be another direction for probing the oscillations that underpin navigation 

abilities. 

 

4.6.6 Exploration of microcircuitry in spline dynamics using genetic tools 

 

If splines have anti-phase cross-hemispheric coordination across the 

hemispheres, can splines can exist in a single hemisphere without existing in the 

contralateral hemisphere? If so, yet another question arises: exactly what about the 

contralateral hemisphere facilitates splines, and to what extent? This question can be 

answered in part by using genetic tools to manipulate different cells in the circuit. I 

would expect that exciting or silencing fast-spiking inhibitory neurons would change 

gamma rhythms and strongly affect splines, but it is also possible that low-rheobase 

neurons, which synapse to neurons in the contralateral hemisphere, are key to the 

cross-hemispheric coordination mechanism of this high-frequency oscillation. As both 

splines and gamma are modes of cross-hemispheric communications, I think both of 

these brain rhythms have some coordination via the low-rheobase neurons that may be 

communicating signals across the hemispheres. 
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Using optogenetics in a closed-loop system to activate or inhibit different types of 

neurons in the retrosplenial cortex upon detecting splines the first few spline-containing 

theta cycles may allow us to determine what happens with splines during REM sleep 

versus during awake active running would be helpful to see if they drive a behavioral 

correlate. 

Higher excitatory external input, as through the thalamus and the medial 

septum/diagonal band of Broca during high-activity REM states or when the animal runs 

faster, may synchronize inhibitory neurons, leading to higher spline frequency and 

power. LR neurons comprise 61% of the neurons in L2 and L3 of the RSG (Brennan et 

al., 2020), which are also the layers where splines (Ghosh et al., 2021), gamma, and 

ripples are the strongest (Nitzan et al., 2020). Further experiments are needed to create 

a more complete model of how splines are generated and elucidate what role, if any, LR 

neurons may play in spline generation. Currently, there is no known genetic or 

molecular signature that is specific only to LR neurons, and finding such signatures is 

another future direction for retrosplenial cortex research. We cannot yet precisely target 

LR neurons for optogenetics or chemogenetics in-vivo, but since we know they are 

excitatory (Brennan et al., 2020), we can target them along with RS neurons or along 

with all neurons. Selectively silencing different cell types or groups of cell types would 

shed light on their specific contributions to spline initiation, propagation, and function 

during both active behaviors and during sleep.  

What we have described here about splines is just the tip of the iceberg. There 

are still numerous questions on the tips of our tongues, and many future directions to 

navigate in further characterizing this high-frequency oscillation
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