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ABSTRACT

In the field of production system engineering, machine parameters, such as Mean

Time Between Failures (MTBF ), Mean Time To Repair (MTTR), machine quality

parameter (q), and machine cycle time (τ), are widely used in quantitative methods

for production system performance analysis, continuous improvement, and design.

Unfortunately, the literature offers no methods for evaluating the smallest number

of measurements necessary and sufficient to calculate reliable estimates of these pa-

rameters and the induced estimates of system performance metrics, such as machine

efficiency (e), throughput (TP ), quality parts throughput (TPq), production lead

time (LT ), and work-in-process (WIP ). This dissertation is intended to provide

such a method. The approach is based on introducing the notation of pα, βq-precise

estimates, where α characterizes the estimate’s accuracy and β its probability.

Using this notion, the smallest number, n˚T pα, βq, of up- and downtime mea-

surements necessary and sufficient to ensure pα, βq-precise estimates of MTBF and

MTTR is calculated, and a probabilistic upper bound of the observation time re-

quired to collect n˚T pα, βq measurements is derived.

The MTBF and MTTR are used to calculate production systems performance

metrics e, TP , LT , WIP , which are necessary for managing production systems

and for evaluating effectiveness of potential continuous improvement projects. This

xii



dissertation evaluates the induced precision of these performance metrics estimates,

based on pα, βq-precise estimates of MTBF and MTTR. An inverse problem, i.e.,

calculating the smallest number of machines’ up- and downtime measurements to

ensure these performance metrics estimates with a desired precision, is also solved.

Along with MTBF and MTTR, the machine quality parameter q, which repre-

sents the probability that a part produced is non-defective and 1´ q the probability

that it is defective, is used to evaluate quality parts throughput TPq. This dis-

sertation calculates the smallest number of parts quality measurements to ensure

pαq, βqq-precise estimate of q, evaluates the induced precision of TPq estimates, and

presents solution to the inverse problem concerning q and TPq, i.e., calculating the

smallest number of parts quality measurements to ensure estimates of TPq with a

desired precision.

The pα, βq-Precision Theory is also compared with other probabilistic method,

which can be used for evaluating the critical numbers. Specifically, we consider the

Markov inequality, Chebyshev inequality and the simulation approach. It is shown

in this work that these classical probability inequalities can only give estimates of

the critical numbers that are much larger than their real values, which are too con-

servative and unrealistic to be implemented in practice. The simulation method also

has several disadvantages compared with the theory, for example, large computation

time complexity and the necessity to repeat these calculations if the parameters of

the systems are changed.

In addition, this dissertation applies the pα, βq-Precision Theory to the study of

production systems with cycle overrun. The cycle overrun takes place, for instance,

xiii



in automated machines with a constant part processing time, τ , and manual load-

ing/unloading operations, which may have a random overrun in their duration. In

this dissertation, the methods to obtain reliable estimates of cycle overrun, and the

modeling, analysis, improvability and bottleneck identification of such systems are

presented as well. Finally, the dissertation presents a case study motivated by an

automotive transmission machining line.
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CHAPTER 1

Introduction

1.1 Goal and Approach of the Dissertation

In the field of production system engineering, machine parameters, such as Mean

Time Between Failures (MTBF ), Mean Time To Repair (MTTR), machine quality

parameter (q), and machine cycle time (τ), are widely used in quantitative methods

for production system performance analysis, continuous improvement, and design

(Law and Kelton (1991); Viswanadham and Narahari (1992); Askin and Standridge

(1993); Buzacott and Shanthikumar (1993); Papadopolous et al. (1993); Gershwin

(1994); Perros (1994); Altiok (1997); Jerry (2005); Li and Meerkov (2009); Pa-

padopoulos et al. (2009); Curry and Feldman (2010); Altiok and Melamed (2010)).

Unfortunately, the literature offers no methods for evaluating the smallest number

of measurements necessary and sufficient to calculate reliable estimates of these pa-

rameters and the induced estimates of system performance metrics, such as machine

efficiency (e), throughput (TP ), quality parts throughput (TPq), production lead

time (LT ), and work-in-process (WIP ). The law of large numbers guarantees that

1



a sufficiently large number of measurements leads to a sufficiently precise estimate.

However, collecting a large number of measurements requires a long observation time.

This is acceptable for off-line evaluation of machine parameters and system perfor-

mance metrics, where historical data could be used. For on-line applications (e.g.,

those in the framework of Industry 4.0 and Smart Manufacturing, see Kagermann

et al. (2013); Liao et al. (2017)), the observation period must be as short as possible

in order to capture the data necessary for real-time utilization.

The goal of this dissertation is to provide methods for evaluating the smallest

number of measurements for calculating reliable estimates of machine parameters

and system performance metrics.

The approach for evaluating the smallest number of measurements is based on

the notion of pα, βq-precise estimates, where α characterizes the estimate’s accuracy

and β its probability. Using this notion, we evaluate the smallest number of machine

measurements to ensure pα, βq-precise estimates of machine parameters and induced

system performance metrics.

In addition, the topic of production systems with unreliable machines and cycle

overrun is studied in this dissertation. The cycle overrun may takes place, for in-

stance, in automated operations with a constant part processing time, τ , which may

have a random component in their duration. Another scenario is typical in assembly

operations, where a fixed cycle time is imposed by operational conveyors, and the

overrun is enabled by push-buttons, offering the operator a possibility to occasionally

stop the conveyor in order to complete the job with the desired quality. Given that

the current literature offers no analytical methods for analysis and improvement of

2



production systems with cycle overrun and taking into account that these systems

are encountered in practice, developing such methods is of importance. Specifically,

in this dissertation, we intend to provide the modeling, analysis, improvability and

bottleneck identification of production systems with cycle overrun, as well as apply

the pα, βq-Precision Theory to the cycle overrun parameter estimation.

1.2 Main Results of the Dissertation

The the main results obtained in this dissertation are as follows:

• The smallest number of machine up- and downtime measurements, denoted as

n˚T pα, βq, which is necessary and sufficient to ensure pα, βq-precise estimates

of MTBF and MTTR, is calculated, and a probabilistic upper bound of the

observation time required to collect n˚T pα, βq measurements is derived.

• Based on the pα, βq-precise estimates of MTBF and MTTR, we evaluated

the induced precision of performance metrics estimates pe, yTP , xLT , and {WIP ,

which is quantified by a pair of two numbers, pαX , βXq, where X is in the set

te, TP, LT,WIP u. Specifically, the values of pαX , βXq for each performance

metrics are calculated as functions of pα, βq.

• In addition to the induced precision problem, an inverse problem, i.e., calcu-

lating the smallest numbers of machines’ up- and downtime measurements to

ensure estimates pe, yTP , xLT , and {WIP with a desired precision pγ, δq, is solved.

• The machine quality parameter q, which represents the probability that a part

produced is non-defective and 1´q the probability that it is defective, is used to

3



evaluate quality parts throughput TPq. The smallest number of parts quality

measurements, denoted as n˚q pαq, βqq, to ensure pαq, βqq-precise estimate of q, is

calculated, the induced precision of TPq estimate, quantified by pαTPq , βTPqq, is

evaluated, and solution to the inverse problem concerning TPq, i.e., calculating

the smallest number of parts quality measurements to ensure estimates of TPq

with a desired precision pγ, δq, is presented.

• Based on the solutions to the inverse problems, we provided qualitative analysis

of the variability property for e, TP , LT , WIP and TPq.

• Since the estimates of machine parameters are random variables, their sta-

tistical characterization can also be obtained using the classical probabilistic

inequalities, namely, Markov and Chebyshev inequalities, as well as numeri-

cal simulations. We compared the smallest numbers of measurements evalu-

ated using these tools with n˚T pα, βq and n˚q pαq, βqq calculated using the pα, βq-

Precision Theory, and illustrated that the Markov and Chebyshev inequalities

can only give approximations of the smallest numbers of measurements, which

are significantly larger compared with those obtained using our method. In

terms of the simulation method, we showed that it has several disadvantages,

for instance, large computation time complexity, and the necessity to repeat

these calculations if the parameters of the systems are changed.

• The methods for modeling, analysis, improvability, bottleneck identification,

and parameter estimation of the production systems with cycle overrun are

developed.

4



• A case study, which applies the methods developed to the throughput im-

provement of a production system motivated by an automotive transmission

case machining line, is carried out.

1.3 Literature Review

Although no analytical results, addressing the smallest number of measurements

required for calculating the estimates of machine parameters MTBF , MTTR, q,

τ , and the estimtes of system performance metrics e, TP , TPq, LT , WIP , with

the desired precision, are available in the literature, similar problems, concerning

other parameters and performance metrics, have been discussed in recent years.

Specifically, Muchiri et al. (2014) used simulations to analyze the probabilistic be-

havior of manufacturing equipment under corrective and preventative maintenance

activities. Zhou et al. (2014) proposed a data-driven framework utilizing case-based

reasoning to achieve online product quality estimate in industrial plants. Yu and

Matta (2016) proposed a statistical framework to increase the accuracy of perfor-

mance metrics measurements, leading to improved bottleneck identification. Hao

et al. (2017) modeled the interaction of tool wear and product quality degradation

by a continuous-time stochastic system, and proposed a Bayesian framework, which

incorporates real-time quality measurements, to estimate residual life of manufactur-

ing systems and product quality. Hwang et al. (2017) proposed a production system

performance measurement process applicable in the Internet of Things environment.

Kontar et al. (2017) studied the estimation of key performance indicators of manu-

facturing systems, using a multi-output Gaussian process model. Saez et al. (2018)
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designed a real-time system efficiency assessment framework using Internet of Things

solutions, and applied it to a fully automated manufacturing system with robots and

CNC machines. Chehade and Shi (2019) proposed sensor fusion method for statistical

hypothesis testing to achieve online machine performance evaluation. Chhetri et al.

(2019) proposed a digital twin solution, which incorporates side-channel sensor in-

formation, such as acoustic and magnetic signals, to localize manufacturing systems’

anomalous faults and infer the product quality in real-time. Khatab et al. (2019)

developed a method to determine an optimal inspection cycle for a deteriorating

single-machine production system. Gopalswamy and Uzsoy (2019) proposed a data-

driven refinement approach to improve production system performance estimates

under model uncertainties. Lin et al. (2019) developed an approach to evaluate man-

ufacturing systems performance metrics based on synergetic between analytical and

simulation techniques. Chen and Wang (2019) presented a method for approximating

the marginal probability distribution of work-in-process within multi-product-type,

multi-stage, multi-parallel-machine manufacturing systems. Fang et al. (2020) pro-

posed a novel deep neural network structure to estimate the jobs remaining time

and achieved higher estimate accuracy than the existing machine learning models.

Müller et al. (2020) proposed methods to quantify and measure the sequence stability

in production system and evaluated different performance indicators. Schneckenrei-

ther et al. (2020) used a neural network to dynamically estimate the production lead

time and thus determine the system release policy.

As far as the study of production system with cycle overrun is concerned, it should

be pointed out that, although the literature offers no analytical methods for analysis
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and improvement of such systems, some of the related issues have been discussed

in manufacturing and automation engineering literature. Specifically, Morrison and

Martin (2007) developed practical methods for approximating random cycle time of

manufacturing systems modeled by a G/G/M-queue. Nadarajah and Kotz (2008)

provided the cycle time distribution formula to characterize the cycle underrun and

overrun, where the cycle time was modeled as a sum of production busy time and

idle time of Pareto and gamma distributions. Kuo et al. (2011) proposed to use

neural networks to exploit the production data and tool data of the semiconductor

production systems, in order to predict and reduce the production cycle time. Mill-

stein and Martinich (2014) developed Takt Time Grouping method to implement

kanban-flow manufacturing in a production process with cycle underrun and over-

run, where the variations of cycle time were due to manual operation and set-up

time randomness. Kacar et al. (2016) et al. presented methods in non-integer linear

programming to model the cycle time variation in production planning problems.

Larco et al. (2017) provided methods to estimate the warehouse workers’ discomfort

and optimize the job assignment, in order to prevent long cycle overrun. Casalino

et al. (2019) proposed a scheduling method for human-robot collaborative assembly

based on the cycle time duration data collected at runtime, adapting to the cycle

time underrun and overrun of manufacturing processes. Ben-Ammar et al. (2020)

studied the integrated production planning and quality control strategies for serial

production systems with machines having variable probability distributions of the

cycle time. Roshani et al. (2020) proposed a hybrid adaptive neighborhood search

approach to minimize cycle time variability in multi-sided assembly lines. Touzani
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et al. (2021) proposed methods for multi-robot task sequencing and automatic path

planning to reduce cycle times of automotive production lines.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 presents the pα, βq

precision theory for the estimates of MTBF and MTTR, along with a probabilis-

tic upper bound of the observation time. Chapter 3 develops the evaluation of the

pαX , βXq-precise estimate of machine efficiency, throughput, lead time, and work-

in-process. The theory concerning the pαq, βqq- and pαTPq , βTPqq-precise estimate

of machine quality parameter q and quality parts throughput TPq is presented in

Chapter 4. Chapter 5 presents the comparison of the pα, βq-Precision Thoery with

Markov inequality, Chebyshev inequality and simulations. The modeling, analysis,

improvement, and bottleneck identification of production systems with cycle overrun

are included in Chapter 6, along with a case study based on an automotive transmis-

sion machining line. Conclusion and future works are included in Chapter 7. Proofs,

justifications, and relevant simulation results are included in Appendices A-E.

Results presented in Chapter 2 to Chapter 4 of this dissertation have been pub-

lished as technical report, conference proceeding, and peer-reviewed journal papers,

including Alavian et al. (2018, 2019); Alavian et al. (2021); Alavian et al. (2021)1.

Results of Chapter 6 are reported in Eun et al. (2021)1.

1Following a long-standing tradition of Prof. Meerkov’s research group, the authors are ordered
alphabetically. Kang Liu is identified as the leading author of these publications.
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CHAPTER 2

The pα, βq-Precise Estimate of MTBF and

MTTR: Definition, Calculation, and Observation

Time

2.1 Problem Motivation

The Mean Time Between Failures (MTBF ) and the Mean Time To Repair

(MTTR) of manufacturing equipment are used in every quantitative method for

production systems performance analysis, continuous improvement, and design. To

evaluate MTBF and MTTR on the factory floor, random realizations of machine

up- and downtime must be measured and then averaged to obtain the estimates,

{MTBF and {MTTR. The law of large numbers guarantees that a sufficiently large

number of measurements leads to sufficiently precise estimates. However, collecting

a large number of measurements requires a long observation time. This is acceptable

for off-line evaluation of MTBF and MTTR, where historical data could be used.

For on-line applications (e.g., those in the framework of Industry 4.0 and Smart
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Manufacturing (Kagermann et al. 2013; Liao et al. 2017)), the observation period

must be as short as possible in order to capture the data necessary for real-time

utilization. Remarkably, the question of determining the smallest number of random

variable realizations necessary and sufficient for evaluating its average value with the

desired accuracy has not been addressed in the literature. In fact, we were able to

identify only two papers mentioning this issue. The first one, reporting on Ford’s

experience (see Williams (1994)), lists questions to be asked before MTTR can

be evaluated. The second, based on GM’s research (see Inman (1999)), mentions

the number of up- and downtime occurrences, which has been used to estimate up-

and downtime probability distributions, without going into specifics of why one or

another number has been selected.

This chapter is interned to provide guidance for selecting the smallest number of

measurements necessary and sufficient for calculating reliable estimates of MTBF

and MTTR. The term “reliable” is used to indicate an estimate, which has the

desired accuracy with the desired probability. Denoting the accuracy by α and the

probability by β (see Section 2.2 for precise formalization), the goal of this chapter

is two-fold:

• For a given pair (α, β), calculate how many realizations of machine up- and

downtimes are necessary and sufficient to obtain (α, β)-precise estimates of

MTBF and MTTR.

• Provide a characterization of the observation time required to collect the num-

ber of measurements defined by (α, β). This characterization will define tem-

poral properties of MTBF and MTTR evaluation in real-time.
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Accordingly, the outline of this chapter is as follows: Section 2.2 presents the

definition of pα, βq-precise estimates of MTBF and MTTR, along with rigorous

formulation of the two problems mentioned above. In Section 2.3, a method for

calculating the smallest number of up- and downtime measurements necessary and

sufficient for the desired precision of MTBF and MTTR estimates is developed.

The issue of observation time is discussed in Section 2.4. Finally, summary of the

results obtained is given in Section 2.5. The proofs and justifications are included in

Appendices A.

2.2 Definitions and Problems Formulation

Consider an unreliable machine with up- and downtime being random variables

with expected values Tup and Tdown, respectively. Obviously, Tup and Tdown are the

exact values of MTBF and MTTR; we use these two types of notations interchange-

ably ´ depending on the issue at hand.

Let tup,i and tdown,i be the durations of the i-th occurrence (realization) of up- and

downtime, i “ 1, 2, . . . , respectively. Then, the estimates of MTBF and MTTR,

based on n observations, are the following random variables:

pTuppnq :“

řn
i“1 tup,i
n

, pTdownpnq :“

řn
i“1 tdown,i
n

. (2.1)

Definition 2.1. The estimates pTuppnq and pTdownpnq are referred to as pα, βq-precise
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if

P
!

|Tup´ pTuppnq|

Tup
ď α

)

ě β,

P
!

|Tdown´ pTdownpnq|
Tdown

ď α
)

ě β,

(2.2)

or, equivalently,

P
!

p1´ αqTup ď pTuppnq ď p1` αqTup

)

ě β,

P
!

p1´ αqTdown ď pTdownpnq ď p1` αqTdown

)

ě β.

(2.3)

Clearly, this definition implies that the accuracy of the estimates is quantified by

α and their likelihood by β. For instance, if α “ 0.05 and β “ 0.9, the appropriately

selected value of n guarantees that pTuppnq and pTdownpnq are within ˘5% of Tup and

Tdown, respectively, and this event takes place with probability at least 0.9.

Definition 2.2. The smallest n˚T pα, βq, which guarantees (2.2), is referred to as the

critical number of measurements.

The first problem addressed in this chapter consists of two parts:

Problem 1a: For a given pair pα, βq, calculate n˚T pα, βq for machines with expo-

nential reliability model (i.e., with up- and downtime distributed exponentially with

parameters λ and µ, respectively).

Problem 1b: Generalize the results of Problem 1a to machines with non-exponential

reliability models, having the coefficient of variation, CV , less than 1. Note that,

as it is shown in Li and Meerkov (2009), if the machine breakdown rate (respec-

tively, repair rate) is an increasing function of time, the resulting distribution of
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uptime (respectively, downtime) has CV ă 1. Empirical evidence that manufactur-

ing equipment on the factory floor pratically always has CV ă 1 can be found in

Inman (1999).

The second problem consists of evaluating the observation time (OT ) necessary

to collect n˚T pα, βq realizations of tup,i and tdown,i. If Tup and Tdown were known, the

mean observation time (MOT ) would be

MOT “ n˚T pα, βqpTup ` Tdownq. (2.4)

Since Tup and Tdown are unknown, the approach employed here is based on us-

ing nT,0 ă n˚T pα, βq initial measurements to calculate the estimates pTuppnT,0q and

pTdownpnT,0q and then defining an estimate of the remaining observation time (zROT )

as the following random variable:

zROT pnT,0q “ pn
˚
T pα, βq ´ nT,0q

´

pTuppnT,0q ` pTdownpnT,0q
¯

. (2.5)

In reality, however, the remaining observation time is a random variable given by

ROT pnT,0q “

n˚T pα,βq
ÿ

i“nT,0`1

ptup,i ` tdown,iq. (2.6)

The relationship between these two random variables can be characterized by the

following inequality:

P
!

ROT pnT,0q ă azROT pnT,0q
)

ě b, (2.7)
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where a is referred to as a safety factor and b is the desired probability.

Definition 2.3. The smallest integer n˚T,0pa, bq ă n˚T pα, βq, which guarantees (2.7),

is referred to as the critical number of initial measurements.

Problem 2: For a given pair pa, bq, calculate n˚0pa, bq for machines with exponential

reliability model.

These two problems are solved in Sections 2.3 and 2.4, respectively.

2.3 Evaluating Critical Number of Measurements

2.3.1 Exponential Machines

2.3.1.1 Exact value of n˚T pα, βq

Theorem 2.1. The critical number, n˚T pα, βq, for the case of machines with exponen-

tial reliability model is the smallest integer n, which satisfies the following inequality:

β ď
n´1
ÿ

i“0

1

i!
e´p1´αqn pp1´ αqnqi ´

n´1
ÿ

i“0

1

i!
e´p1`αqn pp1` αqnqi . (2.8)

Proof. See Appendix A.

Corollary 2.2. The critical number n˚T pα, βq is the same for both MTBF and

MTTR.

Proof. Follows immediately from the fact that the right-hand side of (2.8) is inde-

pendent of the parameter of the exponential distribution involved.
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Clearly, this corollary is of substantial practical importance. It implies that

the smallest number of measurements necessary and sufficient to identify reliability

characteristics of a single machine or multiple machines in a production system are

the same.

The value of n˚T pα, βq can be obtained by monotonically increasing n in (2.8)

until the inequality is satisfied. Based on this calculation, the behavior of n˚T pα, βq

is illustrated in Fig. 2.1. As expected, this function is monotonically increasing in β

and monotonically decreasing in α.

0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

Figure 2.1. Critical number n˚T as a function of β and α

2.3.1.2 Gaussian approximation of n˚T pα, βq

Along with (2.8), it is desirable to have an analytical expression for n˚T pα, βq. Such

an expression can be derived using the fact that, while pTuppn
˚
T q and pTdownpn

˚
T q are Er-

lang random variables, for sufficiently large n˚T and under appropriate normalization,

they are close to Gaussian random variable N p0, 1q. Based on this approximation,
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the following is obtained:

Proposition 2.3. The Gaussian approximation of the critical number, n˚T,Gpα, βq,

is given by:

n˚T,Gpα, βq “

S

2

ˆ

erf´1pβq

α

˙2
W

, (2.9)

where the ceiling operator rxs denotes the smallest integer larger than x and erf´1pyq

is the inverse of the error function, erfpyq “ 1?
π

şy

´y
e´t

2
dt.

Justification. See Appendix A.

The accuracy of Gaussian approximation is illustrated by comparison of n˚T pα, βq

and n˚T,Gpα, βq given in Tables 2.1 and 2.2. As one can see, for all values of α and β

of practical importance analyzed, n˚T pα, βq and n˚T,Gpα, βq are almost the same.

Table 2.1. Critical number n˚T pα, βq

α
β

0.7 0.8 0.85 0.9 0.95

0.02 2686 4106 5181 6764 9604
0.04 672 1026 1295 1691 2401
0.06 299 456 576 751 1067
0.08 168 257 324 423 600
0.10 108 164 207 270 384
0.20 27 41 52 67 96

The calculation of n˚T,Gpα, βq is orders of magnitude faster than that of n˚T pα, βq,

which allows for more detailed investigation of the critical number n˚. For instance,

Fig. 2.2 presents the contour plot of critical number n˚T,Gpα, βq, calculated using

(2.9). This plot offers guidance for selecting n˚T,G for the desired α and β. Indeed,

if α “ 0.05 and β “ 0.9, from Fig. 2.2 we obtain n˚T,Gpα, βq « 1000. On the other
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Table 2.2. Critical number n˚T,Gpα, βq

α
β

0.7 0.8 0.85 0.9 0.95

0.02 2686 4106 5181 6764 9604
0.04 672 1027 1296 1691 2401
0.06 299 457 576 752 1068
0.08 168 257 324 423 601
0.10 108 165 208 271 385
0.20 27 42 52 68 97

hand, if α “ 0.15 and β “ 0.75, n˚T,Gpα, βq « 60. In some cases, the number of mea-

surements that one can collect on the factory floor during two weeks of observation

period is between 50 and 100. Thus, in these situations only relatively inaccurate

estimates pTuppn
˚
T q and pTdownpn

˚
T q could be obtained.
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Figure 2.2. Contour plot of n˚T,Gpα, βq
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2.3.2 Non-exponential Machines

To investigate the critical number of measurements in the non-exponential case,

we consider machines obeying Weibull, gamma, and log-normal reliability models

with MTBF “ 10 and CV P t0.1, 0.25, 0.5, 0.75u and evaluate by simulations

n˚T,non´exppα, β;CV q for α “ 0.05 and β P t0.65, 0.70, . . . , 0.95u. The results are

summarized in Fig. 2.3, where n˚T pα, βq for exponential distribution is shown for

comparison. From this figure, we conclude:

Observation 2.1. For all non-exponential machines analyzed:

• n˚T,non´exppα, β;CV q ă n˚T pα, βq;

• n˚T,non´exppα, β;CV q approaches n˚T pα, βq when CV Ñ 1;

• n˚T,non´exppα, β;CV q is practically independent of the machine up- and down-

time distribution as long as CV is the same.

Thus, the number of measurements, selected under the exponential assumption,

can be used as an upper bound for non-exponential machines, provided CV ă 1.

We hypothesize that Observation 2.1 holds not only for the distributions analyzed,

but for any unimodal distribution of up- and downtime with CV ă 1.

2.4 Evaluating Critical Number of Initial Measurements

The total observation time (TOT ) to collect n˚pα, βq measurements of up- and

downtime can be represented as a sum of two random variables – one representing
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Figure 2.3. Critical numbers n˚non´exp and n˚T for α “ 0.05 as functions of β and CV
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the initial observation time (IOT ), i.e., the time before initial nT,0 ă n˚T pα, βq mea-

surements have been collected, and the other representing the remaining observation

time (ROT ), i.e., the time to collect the remaining rn˚T pα, βq ´ nT,0s measurements:

TOT “ IOT `ROT (2.10)

“

nT,0
ÿ

i“1

ptup,i ` tdown,iq `

n˚T pα,βq
ÿ

i“nT,0`1

ptup,i ` tdown,iq. (2.11)

After the initial nT,0 measurements have been collected, the first term in this sum

becomes a realization of IOT , i.e., a constant denoted as IOT pnT,0q. The second

term, as discussed in Section 2.2, can be approximated by the following random

variable:

zROT pnT,0q “ pn
˚
T pα, βq ´ nT,0q

´

pTuppnT,0q ` pTdownpnT,0q
¯

, (2.12)

where pTuppnT,0q and pTdownpnT,0q are the estimates of MTBF and MTTR based

on nT,0 initial measurements. This implies that TOT can be characterized by the

following stochastic upper bound:

P
!

IOT pnT,0q `ROT pnT,0q ă IOT pnT,0q ` azROT pnT,0q
)

ě b (2.13)

or, equivalently (as in (13)),

P
!

ROT pnT,0q ă azROT pnT,0q
)

ě b, (2.14)
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where a is a safety factor and b the desired probability. In Section II, the smallest

nT,0 satisfying this inequality has been referred to as the critical number of initial

measurements, n˚T,0pa, bq. When n˚T,0pa, bq is determined, zROT pnT,0q can be calcu-

lated using (2.12) and then the upper bound of TOT evaluated using (2.13). A

method for calculating n˚T,0pa, bq is provided by

Proposition 2.4. Under Gaussian assumption, for any pa, bq with a ą 1, 0.5 ă b ă

1, and n˚T,Gpα, βq satisfying

n˚T,Gpα, βq ě

R

pa` 1q2

pa´ 1q2
¨ 2rerf´1p2b´ 1qs2

V

, (2.15)

the critical number of initial measurements, n˚T,0,Gpa, bq, is:

n˚0,Gpa, b;n
˚
T,Gq “

»

—

—

—

Bn˚T,G ` a
2 ´ 1´

b

pBn˚T,G ` a
2 ´ 1q2 ´ 4Bn˚T,Ga

2

2B

fi

ffi

ffi

ffi

, (2.16)

where n˚T,G “ n˚T,Gpα, βq and

B “
pa´ 1q2

2rerf´1p2b´ 1qs
. (2.17)

Justification. See Appendix A.

The contour plots of n˚T,0,G as a function of a and b are shown in Fig. 2.4 for

n˚T,Gpα “ 0.1, β “ 0.9q “ 270 and n˚T,Gpα “ 0.05, β “ 0.9q “ 1027. The greyed parts

in Fig. 2.4 indicate the areas, where inequality (2.15) does not hold. These contour

plots indicate the following:
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• For a ď 1.1, n˚T,0,Gpa, b;n
˚
T,Gq depends significantly on n˚T,G. For instance, if

n˚T,G “ 270, no n˚T,0,Gpa, 0.9q satisfying (2.15) exists, whereas if n˚T,G “ 1027, it

does: n˚T,0,Gp1.1, 0.9q « 250 guarantees that (2.13) provides a relatively tight

bound of TOT (having a “ 1.1) and, this bound takes place with a relatively

large probability (having b “ 0.9).

• For a ě 1.3, n˚T,0,Gpa, b;n
˚
T,Gq is practically independent of n˚T,G. For instance,

if a “ 1.3 and b “ 0.9, n˚T,0,G is approximately 33 for both n˚T,G “ 270 and

n˚T,G “ 1027. Thus, if in a particular application a “ 1.3 is viewed an acceptable

safety factor, IOT pn˚T,0,Gq ` 1.3zROT pn˚T,0,Gq, where n˚T,0,G “ 33, provides an

estimate of TOT taking place with probability 0.9 for both pα, βq “ p0.1, 0, 9q

and for pα, βq “ p0.05, 0, 9q.

2.5 Summary

This chapter presents the following results:

• A method for calculating the smallest number, n˚T pα, βq, of up- and downtime

measurements, necessary and sufficient to obtain pα, βq-precise estimates of

MTBF and MTTR for machines with exponential reliability model, where α

represents the estimate’s accuracy and β its probability.

˝ Since this method is combinatorial in nature and the resulting calcula-

tions are based on iterations, this chapter derives an analytical, Gaus-

sian approximation for calculating n˚T pα, βq and shows that the resulting
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(a) n˚T,Gpα, βq “ 270

(b) n˚T,Gpα, βq “ 1027

Figure 2.4. Contour plots of n˚T,0,Gpa, b;n
˚
T q
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n˚T,Gpα, βq is almost the same as n˚T pα, βq and the calculation of the former

is orders of magnitude faster than the latter.

˝ For non-exponential machines, it is shown, by simulations, that n˚T,Gpα, βq

is the upper bound of the number of measurements required for evaluating

pα, βq-precise estimates of MTBF and MTTR in machines with Weibull,

gamma, and log-normal reliability models with CV ă 1.

• A method for calculating an upper bound of the observation time required to

collect n˚T pα, βq measurements of machine up- and downtime. The approach

is based on calculating the smallest number of initial measurements, n˚T,0pa, bq

(where a ą 1 represents the safety factor and b the desired probability that the

upper bound indeed takes place) and using the resulting estimates of MTBF

and MTTR to evaluate the remaining observation time.

From these results follows a number of quantitative and qualitative conclusions.

The quantitative conclusion is: For practically important α and β, the value of n˚T is

quite large. For example, if α “ 0.05 and β “ 0.9, then n˚T pα, βq « 1000. This implies

that if, for instance, a machine has about 100 of up and down events per week, the

observation period would be about ten weeks, which is hardly acceptable in practice

due to the natural machine efficiency degradation and due to “low frequency” of

MTBF and MTTR estimates to be used for a “higher frequency” decision-making.

The main qualitative conclusion is: The smallest number of up- and downtime

measurements necessary and sufficient for evaluating MTBF and MTTR in ex-

ponential machines is independent of the exponential distribution parameter. This
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implies that the same number of measurements is required for identifying parameters

of all machines comprising a production system (under the exponential assumption).
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CHAPTER 3

The pαX, βXq-Precise Estimate of Machine

Efficiency, Throughput, Lead Time, and

Work-In-Process

3.1 Problem Motivation

Estimates of production system performance metrics, such as machine efficiency

(e), system throughput (TP ), production lead time (LT ), and work-in-process (WIP )

are necessary for managing production systems and for evaluating effectiveness of po-

tential system modifications leading to the desired productivity improvement. The

calculation of these estimates requires machine reliability characteristics, primarily

Mean Time Between Failures (MTBF ) and Mean Time To Repair (MTTR), which

can be obtained using factory floor measurements of machines’ up- and downtime

realizations. In this regard a question arises: What is the smallest number of mea-

surements required to ensure desired accuracy of the induced estimates pe, yTP , xLT ,

and {WIP?
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A similar question, concerning MTBF and MTTR, has been posed and answered

in Chapter 2. Since these estimates are random variables, the estimate of machine

efficiency, e, calculated according to

pe “
pTup

pTup ` pTdown
, (3.1)

is also random. Similarly, the estimates yTP , xLT , and {WIP are random variables

too. Based on pTup and pTdown, they can be calculated using a number of produc-

tion systems performance analysis techniques developed in Viswanadham and Nara-

hari (1992), Askin and Standridge (1993), Buzacott and Shanthikumar (1993), Pa-

padopolous et al. (1993), Gershwin (1994), Altiok (1997), Li and Meerkov (2009),

Papadopoulos et al. (2009) and Curry and Feldman (2010). In the current chapter,

we use the aggregation technique of Li and Meerkov (2009), primarily because it

provides proofs of convergence of the recursive iteration procedures arising in analy-

sis of systems with more than two machines and addresses, in a unified framework,

all the performance metrics mentioned above.

Quantifying the induced precision of pe, yTP , xLT and {WIP by pαX , βXq, where

X P te, TP, LT,WIP u, this chapter provides an answer to the question posed above

in terms of serial production lines with machines obeying the exponential reliability

model. This is accomplished by calculating pαX , βXq, induced by pα, βq, and solving

the inverse problem, i.e., calculating pα, βq for pTup and pTdown leading to the desired

pαX , βXq, X P te, TP, LT,WIP u.

The issues, addressed in this chapter, are of importance for three reasons. The
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first one is fairly straightforward: Since all methods of performance analysis, design,

and continuous improvement of production systems assume that MTBF and MTTR

are known exactly, it is important to know what, in fact, is the accuracy of the

calculated performance metrics, taking into account that merely estimates of MTBF

and MTTR are available.

The second reason is of practical importance and consists of the following: It

has been shown in Chapter 2 that to obtain relatively precise estimates of MTBF

and MTTR, the smallest number of up- and downtime measurements may be quite

large. For instance, if pα, βq “ p0.05, 0.9q, this number, denoted as n˚T pα, βq, is

1083. Collecting these measurements may require a long observation period, which

might be unacceptable in real-time applications, e.g., in the framework of Smart

Manufacturing as a part of Industry 4.0 Kagermann et al. (2013); Liao et al. (2017).

If, however, it turns out that the induced αX ă α and/or βX ą β, a sufficiently

precise estimates of X would require a smaller number of measurements than equally

precise estimates of MTBF and MTTR.

Finally, the third reason, also of industrial significance, is as follows: In most

analysis and continuous improvement projects, it is obvious what precision of pX P

tpe,yTP , xLT ,{WIP u is required for the problem at hand (e.g., αX “ 0.05 and βX “

0.9). However, it is difficult to predict which precision of MTBF and MTTR would

be necessary to guarantee the required precision of pX. Therefore, evaluating pα, βq,

based on the required pαX , βXq, would guide the production managers and engineer-

ing/reserach personnel in the problem of selecting the smallest number of measure-

ments for evaluating pX with the desired precision.
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The novel quantitative results obtained in this chapter are:

• Analytical expressions for pαX , βXq, X P te, TP, LT,WIP u, as functions of

pα, βq-precise estimates of Tup and Tdown.

• Analytical expressions for the number of machines’ up- and downtime mea-

surements, required to obtain the desired pαX , βXq-precise estimates of X P

te, TP, LT,WIP u.

In addition to quantitative results, the chapter provides qualitative insights into

variability properties of production system performance metrics. To describe them,

let n˚T pγ, δq denote the smallest number of up- and downtime measurements required

to obtain pγ, δq-precise estimates of Tup and Tdown, while n˚˚X pγ, δq denotes the small-

est number of up- and downtime measurements required to obtain an equally precise

estimate of X P te, TP, LT,WIP u.

Definition 3.1. Performance metric X P te, TP, LT,WIP u is:

˝ variability contracting if n˚˚X pγ, δq ă n˚T pγ, δq;

˝ variability expanding if n˚˚X pγ, δq ą n˚T pγ, δq.

In practical terms, this definition implies that X is variability contracting, if its

sufficiently precise estimate pX can be obtained using less precise estimates of its

arguments. In contrast, variability expanding X implies that the precision of pX is

lower than that of its arguments under the same number of measurements.

In terms of these concepts, this chapter shows that under some practice-inspired

conditions,
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• e and TP are variability contacting;

• LT, and WIP are variability expanding.

The methods developed in this chapter are intended, primarily, for production sys-

tems managerial/engineering and research personnel involved in either daily decision-

making or evaluating efficacy of potential improvement projects. In practice, man-

agers and industrial engineers often use a rule-of-thumb, which assumes that about

two-week worth of data on machines’ up- and downtime measurements are sufficient

to evaluate efficacy of potential improvement projects. The current chapter shows

that this may or may not be the case – either more or less measurements might be

necessary, depending on the performance metrics addressed and the precision sought.

The outline of this chapter is as follows: Section 3.2 provides formulation of

the problems addressed. Sections 3.3-3.6 analyze induced pαX , βXq-precise estimates

of X P te, TP, LT,WIP u and solve the corresponding inverse problems. Section

3.7 offers a summary of analytical expressions derived in this work and provides

a comparative illustration of the number of measurements required for evaluating

pe, yTP , xLT , and {WIP with a given precision. Finally, Section 3.8 formulates the

conclusions and topics for future research. The list of abbreviations and notations is

given after the conclusions. All justifications are provided in Appendices B.

3.2 Problems Formulation

Consider a serial production line with M exponential machines and its perfor-

mance metrics X P te, TP, LT,WIP u. When the exact values of up- and downtime,
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Tup,i and Tdown,i, i “ 1, . . . ,M , are available, these performance metrics can be cal-

culated either by a closed formula (for e) or by recursive aggregation procedures

developed in Li and Meerkov (2009) and its improved version Bai et al. (2021) (for

TP ), and Meerkov and Yan (2016) (for LT and WIP ). When Tup,i and Tdown,i are

not available, their pα, βq-precise estimates, pTup,i pn
˚
T pα, βqq and pTdown,i pn

˚
T pα, βqq can

be used instead, leading to the estimates pe, yTP , xLT , and {WIP , which are random

variables with the precision induced by pTup,i pn
˚
T pα, βqq and pTdown,i pn

˚
T pα, βqq. Similar

to (2.2), we quantify the pαX , βXq-precision of pX P tpe,yTP , xLT ,{WIP u by:

P

#

|X ´ pXpn˚T pα, βqq|

X
ď αX

+

ě βX . (3.2)

Based on (3.2), we introduce the following problems:

Induced precision problem for X: Given pα, βq-precise estimates pTup,i pn
˚
T pα, βqq

and pTdown,i pn
˚
T pα, βqq, i “ 1, . . . ,M , calculate the induced precision pαindX , βindX q of

pX P tpe,yTP , xLT ,{WIP u.

Inverse problem for X: Given a desired pair pγ, δq, calculate the smallest number

of machines’ up- and downtime measurements, n˚˚X pγ, δq, required to obtain pγ, δq-

precise estimate pX P tpe,yTP , xLT ,{WIP u.

The induced precision and inverse problems for e, TP , LT , and WIP are con-

sidered in Sections 3.3-3.6, respectively.
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3.3 Induced Precision and Inverse Problem for Machine Ef-

ficiency

3.3.1 Solution of Induced Precision Problem for e

The value of αinde is given by:

Proposition 3.1. Given
|Tup´ pTuppn

˚
T pα,βqq|

Tup
ď α and

|Tdown´ pTdownpn
˚
T pα,βqq|

Tdown
ď α, the

smallest αe, which satisfies
|e´pepn˚T pα,βqq|

e
ď αe with accuracy up to Opα2q, is given by

αinde “ 2αp1´ pepn˚T pα, βqqq. (3.3)

Justification. See Appendix B.

Expression (3.3) implies the following:

• Since pe pn˚T pα, βqq is a random variable, αinde is random as well. However, when

the realization of pe pn˚T pα, βqq is calculated according to

pepn˚T pα, βqq “
pTuppn

˚
T pα, βqq

pTuppn˚T pα, βqq `
pTdownpn˚T pα, βqq

, (3.4)

the deterministic number αinde quantifies the accuracy of pe in the sense of (3.2).

• For all pe pn˚T pα, βqq ą 0.5 (which is a practical case), αinde ă α, i.e., the accuracy

of pe pn˚T pα, βqq is higher than the accuracy of the underlying pTuppn
˚
T pα, βqq and

pTdownpn
˚
T pα, βqq. For instance, when pe pn˚T pα, βqq “ 0.75, αinde “ 0.5α; when

pe pn˚T pα, βqq “ 0.95, αinde “ 0.1α.
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As far as the induced probability, βinde , is concerned, its value is given by:

Theorem 3.2. If the machine obeys the exponential reliability model and αinde is

selected as (3.3), the resulting βinde is given by

βinde “
řn˚´1
i“0

p2n˚´2´iq!
pn˚´1´iq!pn˚´1q!

“

p1` 2αqn
˚

p2` 2αq´2n
˚`i`1

´p1´ 2αqn
˚

p2´ 2αq´2n
˚`i`1

‰

,
(3.5)

where n˚ denotes n˚pα, βq.

Proof. See Appendix B.

Thus, βinde depends explicitly on α, implicitly on β (through n˚pα, βq), and does

not depend on Tup and Tdown and, therefore, on e.

The values of βinde for various pairs (α, β) are illustrated in Table 3.1. As one can

see, for all (α, β) investigated, βinde ą β. Thus, αinde is smaller than α (if pe ą 0.5)

and βinde is larger than β . In other words, the induced pαe, βeq-precise estimate of e

is better than pα, βq-precise estimates of Tup and Tdown.

Table 3.1. Values of βinde as a function of α and β

α

β
0.7 0.8 0.85 0.9 0.95

0.02 0.8573 0.9300 0.9582 0.9799 0.9944

0.04 0.8575 0.9299 0.9580 0.9797 0.9942

0.06 0.8578 0.9298 0.9576 0.9794 0.9940

0.08 0.8576 0.9294 0.9571 0.9788 0.9937

0.10 0.8585 0.9294 0.9568 0.9782 0.9933

As a numerical example, assume α “ 0.1, β “ 0.9, and pepn˚pα, βqq “ 0.8. Then,
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according to (3.3) and (3.5), αinde “ 0.044 and βinde “ 0.9782. Thus, the structure of

(3.1) induces a significantly more precise estimate of e than that of Tup and Tdown.

The Gaussian approximation of βinde is given by:

Proposition 3.3. The Gaussian approximation of βinde is given by

βinde “ erf

ˆ

α
b

n˚T pα, βq

˙

, (3.6)

where n˚T pα, βq is defined by (2.9).

Justification. See Appendix B.

A comparison of βinde and βinde,G is given in Tables 3.1 and 3.2. As one can see,

these values are almost always the same.

Table 3.2. Values of βinde,G as a function of α and β

α

β
0.7 0.8 0.85 0.9 0.95

0.02 0.8573 0.9301 0.9582 0.9800 0.9944

0.04 0.8575 0.9300 0.9582 0.9800 0.9944

0.06 0.8577 0.9300 0.9583 0.9799 0.9944

0.08 0.8575 0.9303 0.9583 0.9800 0.9944

0.10 0.8584 0.9299 0.9581 0.9799 0.9944

Omitting the ceiling operator in (2.9) and substituting it in (3.6), we obtain:

βinde “ erf
´?

2erf´1pβq
¯

. (3.7)

This expression shows that βinde is independent of αinde and, in addition, quantifies
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to which extent βinde is larger than β. For instance, if β “ 0.5, the value of βinde is

larger than 0.65; if β “ 0.75, βinde is about 0.9.

Thus, under the assumption that pepn˚T pα, βqq ą 0.5, it follows from (3.3) and

(3.7) that the induced precision of pe is higher than the precision of the underlining

pTup and pTdown.

3.3.2 Solution of Inverse Problem for e

Proposition 3.4. For a given pγ, δq, the critical number of up- and downtime mea-

surements to ensure pγ, δq-precise estimate of e is given by:

n˚˚e pγ, δq “

S

ˆ

2p1´ peqerf´1pδq

γ

˙2
W

, (3.8)

where pe “ pepn˚˚e pγ, δqq.

Justification. See Appendix B.

As one can see, n˚˚e pγ, δq turns out to be dependent on pe and, thus, can be denoted

as n˚˚e pγ, δ; peq. The contour plots of n˚˚e pγ, δ; peq are shown in Figure 3.1 for pe “ 0.7

and pe “ 0.9. These plots and the plot of Figure 2.2 allow one to compare n˚T pγ, δq

with n˚˚e pγ, δ; peq for various values of pe. Indeed, for γ “ 0.05 and δ “ 0.9,

• n˚T pγ, δq « 1000;

• n˚˚e pγ, δ; peq « 200 if pe “ 0.7 and n˚˚e pγ, δ; peq « 20 if pe “ 0.9.

This leads to:
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Observation 3.1. Comparing n˚T pγ, δq, defined by (2.9), with n˚˚e pγ, δq, defined by

(3.8), we conclude that for pe ą 0.5 performance metric e is variability contracting.

Note that pe ą 0.5 is a sufficient condition. The necessary and sufficient condition

is pe ą 0.2929. We use, however, pe ą 0.5 in order to maintain that αinde ą α (see

(3.3)).
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Figure 3.1. Contour plots of n˚˚e pγ, δ; peq

Concluding this subsection, an issue of practical importance must be addressed:

The right-hand side of (3.8) includes the machine efficiency estimate pe calculated

based on n˚˚e pγ, δq, which is unknown. To alleviate this problem, pepn˚˚e pγ, δqq is

approximated and subsequently used in the right-hand side of (3.8). Since a similar

approximation is necessary for other performance metric, namely, TP , we define this

procedure as follows:

Approximation Procedure 1 (for n˚˚X , X P te, TP u)
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• Select a small number of initial measurements, nini, and evaluate pXpniniq.

• Keeping in mind that pXpniniq may be larger than pXpn˚˚X pγ, δqq, select a small

safety factor ε ą 0 and calculate pXε
ini “ p1´ εq pXpniniq.

• Use pXε
ini instead of pX in the right-hand side of the expression for n˚˚X pγ, δq (e.g.

(3.8) in the case of X “ e) to evaluate an approximation of n˚˚X pγ, δq, denoted

as n˚˚X pγ, δ;
pXε
iniq.

• Finally, denote the total number of measurements, thus obtained, as qn˚˚X pγ, δ;
pXε
iniq “

maxtn˚˚X pγ, δ;
pXε
iniq, niniu.

For the case of pe, the effectiveness of this procedure has been investigated using

Monte Carlo simulations. Specifically, to verify if qn˚˚e pγ, δ; pe
ε
iniq indeed results in

pγ, δq-precise estimate of e, the set of pγ, δq pairs has been selected as

pγ, δq P tp0.1, 0.9q, p0.1, 0.95q, p0.05, 0.9q, p0.05, 0.95qu.

The parameters of the machines have been selected equiprobably from the sets

Tdown P r3, 5s and e P r0.6, 0.95s,

and 25 machines have been created. As an example, five of them are shown in Table

3.3. After numerical experimentations, the values of nini and ε have been chosen as

30 and 0.05, respectively. Then, the performance of each machine has been simulated

to obtain 10,000 realizations of pe εini and corresponding realizations of qn˚˚e pγ, δ; pe
ε
iniq

for each pair of pγ, δq. Based on the simulation results, the frequency of the event
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that the required pγ, δq is observed has been calculated according to

pδ “
number of times

|e´pepqn˚˚e pγ,δ; pe εiniqq|

e
ď γ

10000
. (3.9)

Table 3.3. Parameters of randomly created machines.

Parameters

Machine
m1 m2 m3 m4 m5

Tup 17.99 7.73 18.89 34.37 6.69

Tdown 3.90 3.10 3.48 3.82 3.74

e 0.82 0.71 0.84 0.90 0.64

The results obtained for the five machines of Table 3.3 are shown in Table 3.4. As

one can see, all pairs of pγ, δq have been satisfied.

Table 3.4. Values of pδ as a function of pγ, δq.

pγ, δq

Machine
m1 m2 m3 m4 m5

(0.1, 0.9) 0.9894 0.9164 0.9958 0.9980 0.9082

(0.1, 0.95) 0.9935 0.9568 0.9976 0.9995 0.9511

(0.05, 0.9) 0.9426 0.9211 0.9521 0.9889 0.9159

(0.05, 0.95) 0.9771 0.9617 0.9797 0.9922 0.9580

The values of qn˚˚e pγ, δ; pe
ε
iniq, calculated using Approximation Procedure 1, were

compared with n˚˚e pγ, δq, calculated using (3.8) with pe “ e. The results are shown

in Table 3.5 for the five machines in Table 3.3. As one can see, the difference is in

the range of 20% to 60%, except for the cases where n˚˚e pγ, δq is relatively small.

The results similar to those reported in Tables 3.4 and 3.5 have been obtained

for the other 20 machines analyzed (see Appendix B).
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Table 3.5. Values of n˚˚e pγ, δq and qn˚˚e pγ, δ; pe
ε
iniq as functions of pγ, δq.

pγ, δq

Machine m1 m2 m3 m4 m5

n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e
(0.1, 0.9) 18 33 45 59 14 31 6 30 70 86

(0.1, 0.95) 25 41 63 83 19 35 8 30 99 122

(0.05, 0.9) 69 110 177 233 53 90 22 49 279 340

(0.05, 0.95) 98 156 252 332 75 127 31 69 396 485

3.4 Induced Precision and Inverse Problem for System Through-

put

3.4.1 Solution of Induced Precision Problem for TP

As indicated in Section 3.2, serial production lines with M exponential machines

can be reduced to a single machine using the recursive aggregation procedure of Li

and Meerkov (2009). When Tup,i and Tdown,i, i “ 1, . . . ,M , are known precisely, the

throughput of this aggregated machine is deterministic and denoted as TP . When

only pα, βq-precise estimates pTup,i and pTdown,i are available, TP is also random, and

its estimate, yTP , is quantified by (αTP , βTP ) as indicated in (3.2) with X “ TP . In

this section, we characterize (αindTP , β
ind
TP ) as functions of (α, β) and provide a solution

of the inverse problem.

Recall that in the case of a single machine, αinde has been characterized by (3.3).

To extend this formula to aggregated machines, the notion of production system

efficiency, eTP , must be introduced. This can be accomplished by defining eTP as
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follows:

eTP “
TP

cM
, (3.10)

where cM is the capacity of the last machine in the system. Then its estimate can

be evaluated as

peTP pn
˚
T pα, βqq “

yTP pn˚T pα, βqq

cM
. (3.11)

This expression allows us to extend formula (3.3) to αindTP as follows:

αindTP “ 2αp1´ peTP pn
˚
T pα, βqqq. (3.12)

As far as βindTP is concerned, recall that for a single machine, βinde is given by (3.6).

This result also can be extended to the aggregated machine (in the form of a lower

bound):

Proposition 3.5. The Gaussian approximation of βindTP is given by

βindTP ą erfpα
b

n˚T pα, βqq, (3.13)

where n˚T pα, βq is defined by (2.9).

Justification. See Appendix B.

It follows from (3.12) and (3.13) that if peTP ą 0.5, the precision of yTP pn˚T pα, βqq

is higher than that of pe and underlining pTup,i and pTdown,i.
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3.4.2 Solution of Inverse Problem for TP

As for the inverse problem, it also remains similar to that of Section 3.3, but in

the sense of an upper bound:

Proposition 3.6. For a given pγ, δq, the upper bound of the critical number of up-

and downtime measurements to ensure (γ, δ)-precise estimate of TP is given by

n˚˚TP

˜

γ, δ;
yTP

cM

¸

ă

»

—

—

—

—

¨

˝

2
´

1´
yTP
cM

¯

erf´1pδq

γ

˛

‚

2
fi

ffi

ffi

ffi

ffi

, (3.14)

where yTP “yTP pn˚˚TP pγ, δqq.

Justification. See Appendix B.

Note that due to the strict inequality in (3.14), for pe “
yTP
cM

the number of machine

up- and downtime measurements required to obtain pγ, δq-precise estimate of TP is

smaller than that for pγ, δq-precise estimate of e (see (3.8)).

Observation 3.2. Comparing n˚T pγ, δq, defined by (2.9), with n˚˚TP pγ, δq, defined

by (3.14), we conclude that for
yTP
cM

ą 0.5 performance metric TP is variability

contracting.

Since the right-hand side of (3.14) depends on yTP pn˚˚TP pγ, δqq, we use the Approx-

imation Procedure 1 to evaluate yTP
ε

ini and use it subsequently in (22) to evaluate

qn˚˚TP pγ, δ;
yTP

ε

iniq. In addition to the simulation parameters introduced in Subsec-

tion 4.2, we consider 5-machine asynchronous serial lines with buffer and machine

41



capacities selected randomly and equiprobably from the following sets

Ni“ rrimaxtciTdown,i, ci`1Tdown,i`1us, riPr1, 3s, i“1, . . . , 4; ciPr1, 2s, i“1, . . . , 5.

To verify the validity of this approach, five asynchronous serial lines, denoted

as s1, . . . , s5, have been formed and used in the simulation procedure described in

Subsection 4.2. As a result, we obtain that pδ (defined by (3.9) with yTP substituted

for pe) is always larger than δ. The resulting qn˚˚TP pγ, δ;
yTP

ε

iniq, calculated using Ap-

proximation Procedure 1, is compared with n˚˚TP pγ, δq, calculated using (3.14) with

yTP “ TP , in Table 3.6. As one can see, the difference is in the range of 8% to 35%.

Table 3.6. Values of n˚˚TP pγ, δq and qn˚˚TP pγ, δ;
yTP

ε

iniq as functions of pγ, δq.

pγ, δq

System s1 s2 s3 s4 s5

n˚˚TP qn˚˚TP n˚˚TP qn˚˚TP n˚˚TP qn˚˚TP n˚˚TP qn˚˚TP n˚˚TP qn˚˚TP
(0.1, 0.9) 198 214 175 196 44 59 172 192 137 155

(0.1, 0.95) 281 303 249 278 62 83 244 272 194 220

(0.05, 0.9) 790 854 699 780 173 232 688 766 547 617

(0.05, 0.95) 1121 1210 993 1106 246 330 976 1085 776 876

3.5 Induced Precision and Inverse Problem for Production

Lead Time

3.5.1 Approach

Although production lead time, LT , can be evaluated using Little’s formula,

LT “ WIP
TP

, due to complexity of the analytical expression for WIP in serial lines
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with exponential machines and finite buffers (see Li and Meerkov (2009), Chapter

11), analytical solutions of the induced precision and inverse problems for LT are

all but impossible to derive. Therefore, we consider here simpler systems, namely,

serial production lines with M identical exponential machines and infinite buffers.

The lead time in such systems has been investigated in Meerkov and Yan (2016) and

the following approximate expression has been obtained:

lt “ 1`
2Tdown
τ

ˆ

1´ e

1´ ρ

˙

. (3.15)

In this expression, lt “ lim
MÑ8

LT
M

is the relative lead time; e and τ are, as usual,

the machine efficiency and cycle time, respectively; and ρ “ e0
e

is the relative raw

material release rate, where e0 is the probability of releasing a part in the system per

cycle time. To ensure that WIP ă 8, it is assumed that e0 ă e. It has been shown

in Meerkov and Yan (2016) that (3.15) provides a high accuracy approximation of

lead time in systems with M ě 5. In this section, analytical solutions of the induced

precision and inverse problems are obtained using (3.15).

3.5.2 Solution of Induced Precision Problem for LT

When Tup and Tdown are not available, their pα, βq-precise estimates pTuppn
˚
T pα, βqq

and pTdownpn
˚
T pα, βqq can be used instead, leading to a random variable plt defined by:

plt “ 1`
2pTdown
τ

ˆ

1´ pe

1´ pρ

˙

, pe “
pTup

pTup ` pTdown
, pρ “

e0
pe
. (3.16)

Similar to the previous sections, the pαlt, βltq-precise estimate of lt is defined by
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the following expression:

P

˜

|lt´ pltpn˚T pα, βqq|

lt
ď αlt

¸

ě βlt. (3.17)

Proposition 3.7. Given
| pTuppn

˚
T pα,βqq´Tup|

Tup
ď α and

| pTdownpn
˚
T pα,βqq´Tdown|

Tdown
ď α, the

smallest induced αlt, which satisfies
|pltpn˚T pα,βqq´lt|

lt
ď αlt with accuracy Opα2q is given

by

αindlt “
plt´ 1

plt

ˆ

1`
2ppρ´ 2pρpe` peq

1´ pρ

˙

α, (3.18)

where plt is calculated based on (3.16).

Justification. See Appendix B.

The relationship between αindlt and α can be quantified as follows:

Proposition 3.8. The inequality αindlt ą α takes place if and only if

1´
b

1´ τ
pTdown

2
ă pe ă

1`
b

1´ τ
pTdown

2
. (3.19)

Justification. See Appendix B.

The behavior of
αindlt
α

as a function of pρ for various values of machine parameters

is illustrated in Figure 3.2. As one can see:

• Increasing pρ leads to lower induced accuracy of plt;

• For pe ą 0.5, increasing pe leads to higher induced accuracy of plt;

• The induced accuracy of plt is relatively insensitive to
pTdown
τ

.
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Figure 3.2. The ratio
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Proposition 3.9. The Gaussian approximation of βindlt is given by

βindlt “ erf

˜

αA

c

n˚T pα, βq

2

¸

, (3.20)

where

A “

d

p1` pρ` 2pe´ 4pρpeq2

ppρ` pe´ 2pρpeq2 ` p1´ 2pρpe` peq2
. (3.21)

Justification. See Appendix B.

Since the numerator and denominator of A can be represented as pa ` bq2 and

a2 ` b2, respectively, with a ą 0 and b ą 0, we conclude that A ą 1. Therefore, it

follows from (3.20) that

βindlt ą β. (3.22)

3.5.3 Solution of Inverse Problem for LT

Proposition 3.10. For a given pγ, δq, the critical number of up- and downtime

measurements to ensure pγ, δq-precise estimate of LT is given by

n˚˚LT pγ, δq “

»

—

—

—

2R

˜

plt´ 1

plt

¸2
ˆ

erf´1pδq

γ

˙2
fi

ffi

ffi

ffi

, (3.23)

where

R “
ppe` pρ´ 2pρpeq2 ` p1` pe´ 2pρpeq2

p1´ pρq2
, (3.24)

and pltpn˚˚LT pγ, δqq is defined by (3.16).

Justification. See Appendix B.
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Since for a ą 0 and b ą 0, the numerator and denominator ofR can be represented

as a2 ` b2 and pa ´ bq2, respectively, R ą 1. Therefore, for plt sufficiently large,

n˚˚LT pγ, δq ą n˚T pγ, δq. This is illustrated by contour plots of Figure 3.3 for practical

values of pe, pρ, and
pTdown
τ

, where n˚˚LT pγ, δq is substantially larger than n˚T pγ, δq.
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Figure 3.3. Contour plots of n˚˚LT pγ, δq for pe P t0.8, 0.9u, pρ “ 0.8 and
pTdown
τ

“ 10

A question arises: Which value of plt in (3.23) can be viewed as sufficiently large?

Comparing (2.9) and (3.23), we conclude that plt is sufficient large if

R

˜

plt´ 1

plt

¸2

ą 1. (3.25)

Substituting (3.16) into this inequality, leads to the following condition:

τ

pTdown
ă 2

´?
R ´ 1

¯ 1´ pe

1´ pρ
. (3.26)
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Since the right-hand side of this inequality is monotonically increasing with respect to

pρ, for every pe there exist pρ ˚ppeq such that (3.26) is satisfied. Thus, for any pρ ą pρ ˚ppeq,

plt is sufficiently large, leading to the following:

Observation 3.3. For raw material release rate sufficiently large, performance met-

ric LT is variability expanding.

To obtain an approximation of pltpn˚˚LT pγ, δqq to be used in the right-hand side of

(3.23), note that in the case of variability expanding performance metrics, n˚˚X pγ, δq ą

n˚T pγ, δq. Therefore, nini can be selected as n˚T pγ, δq, leading to the following:

Approximation Procedure 2 (for n˚˚X , X P tLT,WIP u)

• Select nini “ n˚T pγ, δq and evaluate pepniniq, pρpniniq.

• Use pepniniq and pρpniniq instead of pepn˚˚X pγ, δqq and pρpn˚˚X pγ, δqq to evaluate an

approximation of n˚˚X pγ, δq, denoted as n˚˚X pγ, δ; pepniniq, pρpniniqq.

• Select a safety factor ε and calculate qn˚˚X pγ, δ; pepniniq, pρpniniq, εq “

p1` εqn˚˚X pγ, δ; pepniniq, pρpniniqq.

To verify the validity of this approach, we use the Monte Carlo simulations with

the parameters indicated in Subsection 4.2, along with ρ P r0.5, 0.8s, and for five

serial lines. The results are shown in Table 3.7. As one can see, the difference is

quite small, in the range of 5% to 6%.
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Table 3.7. Values of n˚˚LT pγ, δq and qn˚˚LT pγ, δ; pepniniq, pρpniniq, εq as functions of pγ, δq.

pγ, δq

System s1 s2 s3 s4 s5

n˚˚LT qn˚˚LT n˚˚LT qn˚˚LT n˚˚LT qn˚˚LT n˚˚LT qn˚˚LT n˚˚LT qn˚˚LT
(0.1, 0.9) 1506 1595 1318 1389 1696 1792 584 612 520 546

(0.1, 0.95) 2138 2260 1871 1970 2408 2544 829 870 738 775

(0.05, 0.9) 6022 6337 5271 5544 6782 7133 2334 2447 2079 2183

(0.05, 0.95) 8550 8994 7484 7860 9629 10125 3313 3479 2951 3098

3.6 Induced Precision and Inverse Problem for Work-in-

Process

3.6.1 Approach

Since, as it is mentioned in Subsection 3.5.1, the complexity of analytical expres-

sion for WIP prevents closed-form solutions of the induced precision and inverse

problems for systems with finite buffers, we use in this section the same approach as

in Section 3.5, i.e., address these problems in the framework of serial lines with M

identical exponential machines and infinite buffers. For such systems, Meerkov and

Yan (2016) provide a closed formula for work-in-process in each buffer,

WIPi “
2e0eTdown

τ

ˆ

1´ e

e´ e0

˙

, (3.27)

and, therefore, the total WIP in the system is

WIP “ pM ´ 1q
2e0eTdown

τ

ˆ

1´ e

e´ e0

˙

. (3.28)
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This expression is used to derive analytical solutions of the problems at hand.

3.6.2 Solution of Induced Precision Problem for WIP

Proposition 3.11. Given
| pTuppn

˚
T pα,βqq´Tup|

Tup
ď α and

| pTdownpn
˚
T pα,βqq´Tdown|

Tdown
ď α, the

smallest induced αWIP , which satisfies
|{WIP pn˚T pα,βqq´WIP |

WIP
ď αWIP with accuracy

Opα2q is given by

αindWIP “
1` 2pe` pρ´ 4pepρ

1´ pρ
α. (3.29)

Justification. See Appendix B.

Subtracting denominator from numerator in (3.29), we obtain pe ` pρ ´ 2pepρ ą 0,

implying that αindWIP ą α.

Proposition 3.12. The Gaussian approximation of βindWIP is given by

βindWIP “ erf

˜

αA

c

n˚T pα, βq

2

¸

, (3.30)

where A is given by (3.21).

Justification. See Appendix B.

Thus, similar to the analysis of expression (3.20), we conclude that βindWIP ą β.
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3.6.3 Solution of Inverse Problem for WIP

Proposition 3.13. For a given pγ, δq, the critical number of machine up- and down-

time measurements to ensure pγ, δq-precise estimate of WIP is given by

n˚˚WIP pγ, δq “

S

2R

ˆ

erf´1pδq

γ

˙2
W

, (3.31)

where R is given by (3.24).

Justification. See Appendix B.

Clearly, since R ą 1, n˚˚WIP pγ, δq is larger than n˚T pγ, δq. This is illustrated by

contour plots of Figure 3.4.
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Figure 3.4. Contour plots of n˚˚WIP pγ, δq

Observation 3.4. The performance metric WIP is variability expanding.
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Using Approximation Procedure 2, we evaluated qn˚˚WIP pγ, δ; pepniniq, pρpniniq, εq and

compared it with n˚˚WIP pγ, δq, calculated using (3.31) with pe “ e and pρ “ ρ. The

results are shown in Table 3.8, where the difference is in the range of 5% to 7%.

Table 3.8. Values of n˚˚WIP pγ, δq and qn˚˚WIP pγ, δ; pepniniq, pρpniniq, εq as functions of pγ, δq.

pγ, δq

System s1 s2 s3 s4 s5

n˚˚WIP qn˚˚WIP n˚˚WIP qn˚˚WIP n˚˚WIP qn˚˚WIP n˚˚WIP qn˚˚WIP n˚˚WIP qn˚˚WIP

(0.1, 0.9) 1647 1735 2425 2582 1622 1706 1742 1838 1542 1623

(0.1, 0.95) 2338 2460 3443 3654 2303 2422 2474 2607 2189 2303

(0.05, 0.9) 6586 6920 9699 10220 6488 6818 6968 7326 6167 6479

(0.05, 0.95) 9351 9820 13771 14492 9212 9676 9893 10396 8756 9198

3.7 Summary of Formulas and Numerical Illustration

This section summarizes the formulas derived in Sections 4-8 for the critical

number of measurements and provides a comparative illustration of these numbers

for all performance metrics addressed.

Table 3.9 presents the formulas. The first five rows represent the performance

metrics based on machines’ up- and downtime measurements, and the last two –

based on parts quality measurements.

Table 3.10 shows numerical values of the critical numbers, calculated using the

formulas of Table 3.9, for both independent variables, Tup, Tdown, q, and for functions

of these variables, X P te, TP, LT,WIP u. As one can see, for variability contracting

performance metrics, i.e., e and TP , n˚˚X is orders of magnitude smaller than n˚T .

Conversely, for variability expanding performance metrics, i.e., LT , and WIP , n˚˚X
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is much larger than n˚T .

Since the right-hand side of the formulas in Table 3.9 (except for the first one)

depends on the performance metrics estimates, for practical utilization of these for-

mulas, Approximation Procedures 1 and 2 (see Subsections 4.2 and 7.3) must be

used. The resulting critical numbers, qn˚˚X are shown in Table 3.11. Although these

numbers are larger than those of Table 3.10, for variability contracting performance

metrics they are at least an order of magnitude smaller than n˚T . Thus, the formulas

of Table 3.9, combined with Approximation Procedures 1 and 2, offer a practical

method for calculating the number of independent variables measurements to ensure

a desired precision of all performance metrics considered in this chapter.

Table 3.9. Formulas for critical number of measurements for various performance
metrics.

Metrics Critical Number of Measurements

Tup and Tdown n˚T pγ, δq “

R

2
´

erf´1pδq
γ

¯2
V

e n˚˚e pγ, δq “

R

´

2p1´peqerf´1pδq
γ

¯2
V

TP n˚˚TP pγ, δq ă

R

´

2p1´peTP qerf
´1pδq

γ

¯2
V

, peTP “
yTP
cM

LT n˚˚LT pγ, δq “

R

2R
´

plt´1
plt

¯2 ´
erf´1pδq

γ

¯2
V

, R “ ppe`pρ´2pρpeq2`p1`pe´2pρpeq2

p1´pρq2

WIP n˚˚WIP pγ, δq “

R

2R
´

erf´1pδq
γ

¯2
V

, R “ ppe`pρ´2pρpeq2`p1`pe´2pρpeq2

p1´pρq2
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Table 3.10. Critical number of measurements calculated using formulas of Table 3.9.

Critical Numbers

pγ, δq
p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

n˚T pγ, δq 271 385 1083 1537

n˚˚e pγ, δq, pe “ 0.9 6 8 22 31

n˚˚TP pγ, δq,
yTP
cM

“ 0.9, M “ 5 5 6 9 12

n˚˚LT pγ, δq, pe “ 0.9, pρ “ 0.8,
pTdown

τ
“ 10 1561 2216 6243 8864

n˚˚WIP pγ, δq, pe “ 0.9, pρ “ 0.8 1889 2682 7754 10726

Table 3.11. Critical number of measurements calculated using Approximation Pro-
cedures 1 and 2.

Approximation of

Critical Numbers

pγ, δq

p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

n˚T pγ, δq 271 385 1083 1537

qn˚˚e pγ, δ; pe
ε
iniq, pe “ 0.9 30 30 49 69

qn˚˚TP pγ, δ;
yTP

ε

iniq,
yTP
cM

“ 0.9, M “ 5 30 30 30 35

qn˚˚LT pγ, δ; pepniniq, pρpniniq, εq,

pe “ 0.9, pρ “ 0.8,
pTdown

τ
“ 10

1643 2333 6562 9320

qn˚˚WIP pγ, δ; pepniniq, pρpniniq, εq,

pe “ 0.9, pρ “ 0.8
1991 2825 7940 11274

54



3.8 Summary

This chapter provides an analytical characterization of the number of measure-

ments required for evaluating various production systems performance metrics, which

are necessary for managerial decision-making and evaluating efficacy of potential con-

tinuous improvement projects. As far as the metrics are concerned, they are machine

efficiency, throughput (with and without taking into account parts quality), produc-

tion lead time, and work-in-process. As far as the measurements are concerned,

they are duration of machines’ up- and downtime. Both quantitative and qualita-

tive characterizations of these critical numbers are provided. The quantitative ones

are represented by closed formulas for the precision of the performance metrics as

functions of their arguments (i.e., measurements). The qualitative ones are formu-

lated in terms of variability of performance metrics as compared with variability of

their arguments. In this regard, it is shown that under practice-inspired conditions,

the variability contracting metrics are machine efficiency and throughput, while the

throughput of non-defective parts produced, lead time, and work-in-process are vari-

ability expanding.

Future work in this area includes extending the results obtained to:

• assembly systems;

• production systems with machines obeying non-exponential reliability models.

Additionally, utilization of the results obtained in practice is an important part

of future work.
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CHAPTER 4

The pαq, βqq- and pαTPq, βTPqq-Precise Estimate of

Machine Quality Parameter q and Quality Parts

Throughput TPq

4.1 Problem Motivation

The machine quality parameter q is used in quantitative method for performance

analysis, continuous improvement, and design of production systems with non-perfect

quality machines. Such machines produce a non-defective part (i.e., quality part)

with probability q, and defective with probability 1 ´ q. To evaluate q for non-

perfect machines, parts quality must be measured and then averaged to obtain the

estimate pq. The law of large number guarantees that a sufficiently large number

of measurements leads to sufficiently precise estimate. However, collecting a large

number of measurements requires a long observation time. This chapter is intended

to provide guidance for selecting the smallest number of parts quality measurements

necessary and sufficient for calculating reliable estimate of q. The term “reliable”
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is used to indicate an estimate, which has the desired accuracy with the desired

probability.

In addition to q, this chapter addresses one performance metric, namely, quality

parts throughput (TPq) in production systems with non-perfect quality machines

obeying the Bernoulli quality model. A method for performance analysis of systems

with non-perfect quality machines and inspection stations (intended to remove de-

fective parts or direct them for rework) is developed in Li and Meerkov (2009). On

this basis, this chapter calculates induced pαTPq , βTPqq-precise estimate of TPq and

the smallest number of parts quality measurements required to ensure the desired

precision of yTP q.

Along with quantitative results, this chapter provides qualitative insights into

variability properties of production system quality parts throughput. To describe it,

let n˚q pγ, δq denote the smallest number of up- and downtime measurements required

to obtain pγ, δq-precise estimates of q, while n˚˚TPqpγ, δq denotes the smallest number

of up- and downtime measurements required to obtain an equally precise estimate of

TPq.

Definition 4.1. Performance metric TPq is:

˝ variability contracting if n˚˚TPqpγ, δq ă n˚q pγ, δq;

˝ variability expanding if n˚˚TPqpγ, δq ą n˚q pγ, δq.
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4.2 Problems Formulation

Consider a non-perfect quality exponential machine producing quality parts with

probability q and defectives with probability 1´ q. Assume the machine produced n

parts, of which nq were non-defective. Then, its quality parameter q can be estimated

as

pqpnq “
nqpnq

n
. (4.1)

Definition 4.2.

˝ The estimate pqpnq is referred to as pαq, βqq-precise if

P

"

|q ´ pqpnq|

q
ď αq

*

ě βq. (4.2)

˝ The smallest integer n˚q pαq, βqq, which guarantees the above relationship, is

referred to as the critical number of parts quality measurements.

The n˚qpαq, βqq evaluation problem: Given a desired pαq, βqq, calculate the crit-

ical number of parts quality measurements, n˚q pαq, βqq.

Consider now a serial production line consisting of M exponential machines with

the quality parameter qi ď 1, i “ 1, . . . ,M . Assume that this system is equipped

with an inspection station at the end of the line. In this case, if the values of Tup,i,

Tdown,i, and qi are available, the throughput of quality parts, TPq, can be calculated

as (see Meerkov and Zhang (2010))

TPq “ TP
M
ź

i“1

qi, (4.3)
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where TP is the throughput of the line calculated under the assumption that all ma-

chines are of perfect quality (i.e., produce no defective parts). When Tup,i and Tdown,i,

i “ 1, . . . ,M , are known, but only pαq, βqq-precise estimates of qi, i “ 1, . . . ,M , are

available, the estimate of TPq can be evaluated as

yTP q “ TP
M
ź

i“1

pqi. (4.4)

Finally, when neither Tup,i and Tdown,i nor qi, i “ 1, . . . ,M , are known precisely and

only their estimates are available, the estimate of TPq is

z

y

qTP “yTP
M
ź

i“1

pqi, (4.5)

where yTP is calculated assuming no defective parts are produced.

The induced accuracy of both yTP q and
z

y

qTP can be evaluated. Due to space

limitations, only the former is addressed in this chapter. Specifically, quantifying the

induced pαTPq , βTPqq-precision of yTP qpn
˚
q pαq, βqqq as

P

#

|TPq ´yTP qpn
˚
q pαq, βqqq|

TPq
ď αTPq

+

ě βTPq , (4.6)

we introduce the following problems:

Induced precision problem for TPq: Given pαq, βqq-precise estimates pqipn
˚
q pαq, βqqq,

i “ 1, . . . ,M , calculate the induced precision pαindTPq , β
ind
TPq
q of yTP q.

Inverse problem for TPq: Given a desired pγ, δq, calculate the smallest number

of parts quality measurements, n˚˚TPqpγ, δq, required to obtain pγ, δq-precise estimate
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yTP q.

4.3 The pαq, βqq-precise Estimate of Machine Quality Pa-

rameter

The pαq, βqq-precise estimate of the machine quality parameter q is introduced

in Definition 4.2 by expression (4.2) along with the critical number of parts quality

measurements, n˚q pαq, βqq, required for (4.2) to take place. The proposition below

provides an expression for this number.

Proposition 4.1. The Gaussian approximation of the critical number of parts quality

measurements to ensure pαq, βqq-precise estimate of q is given by

n˚q pαq, βqq “

S

2

ˆ

1´ pq

pq

˙ˆ

erf´1pβqq

αq

˙2
W

, (4.7)

where pq “ pqpn˚q pαq, βqqq.

Justification. See Appendix C.

As it follows from (2.9) and (4.7), n˚q pγ, δq ă n˚T pγ, δq if pq ą 0.5. This is a result

of the fact that the coefficient of variation of a Bernoulli random variable (parts

quality) is smaller than the coefficient of variation of exponential random variable

(machines’ up- and downtime) if pq ą 0.5. This phenomenon is illustrated in Figure

4.1, and the contour plots of n˚q pγ, δ; pqq are shown in Figure 4.2.

As for all previously considered performance metrics, the dependence of the right-

hand side of (4.7) on pqpn˚q pγ, δqq can be eliminated using Approximation Procedure
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(b) pq “ 0.9

Figure 4.1. Comparison of n˚q pγ, δq and n˚T pγ, δq
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(b) pq “ 0.9

Figure 4.2. Contour plots of n˚q pγ, δ; pqq
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1. However, as it turns out, for the case of q, this procedure must be modified by

having safety factor ε equal to 0.1, rather than 0.05. The reason is that for ε “ 0.05,

the number of measurements qn˚q pγ, δ; pq
ε
iniq turns out to be too small to guarantee

that pδ, defined in (3.9) with q substituted instead of e is smaller than δ, while for

ε “ 0.1, pδ is indeed larger than δ. The values of qn˚q pγ, δ; pq
ε
iniq, calculated according to

Approximation Procedure 1 with ε “ 0.1 and q selected randomly and equiprobably

from the set r0.6, 0.95s, are shown in Table 4.1, along with n˚q pγ, δq. As one can see,

due to a larger safety factor, the difference is significant, ranging from 40% to 150%.

Table 4.1. Values of n˚q pγ, δq and qn˚q pγ, δ; pq
ε
iniq as functions of pγ, δq.

pγ, δq

Machine m1 m2 m3 m4 m5

q1 “ 0.86 q2 “ 0.68 q3 “ 0.85 q4 “ 0.80 q5 “ 0.92

n˚q qn˚q n˚q qn˚q n˚q qn˚q n˚q qn˚q n˚q qn˚q
(0.1, 0.9) 45 82 129 183 46 84 67 108 24 58

(0.1, 0.95) 64 116 184 257 66 119 95 154 34 82

(0.05, 0.9) 180 330 516 722 184 334 268 431 94 229

(0.05, 0.95) 255 469 733 1031 261 474 380 614 133 323

4.4 Induced Precision and Inverse Problem for Throughput

of Non-defective Parts

4.4.1 Solution of Induced Precision Problem for TPq

As indicated in Section 4.2, the estimate of TPq is defined by (4.4) and its

pαTPq , βTPqq precision by (4.6). In terms of these definitions, we obtain:
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Proposition 4.2. Given
|qi´pqipn

˚
q pαq ,βqqq|

qi
ď αq, i “ 1, . . . ,M , the smallest αTPq ,

which satisfies
|TPq´yTP qpn

˚
T pαq ,βqqq|

TPq
ď αTPq with accuracy up to Opα2

qq is given by

αindTPq “ kαq, (4.8)

where k is number of non-perfect quality machines in a serial line.

Justification. See Appendix C.

Thus, the induced accuracy of yTP q decreases linearly with the number of non-

perfect quality machines.

Proposition 4.3. Assume
śM

i“1 qi ą 0.5. Then, the Gaussian approximation of

βindTPq
is given by

βindTPq ą erf

ˆ

kαq
?

2

b

n˚q pαq, βqq

˙

. (4.9)

Justification. See Appendix C.

Thus, the induced probability of yTP q is increasing with the number of non-perfect

quality machines, however, in a nonlinear manner.

4.4.2 Solution of Inverse Problem for TPq

Proposition 4.4. For a given pγ, δq, the critical number of parts quality measure-

ments to ensure pγ, δq-precise estimate of TPq is given by

n˚˚TPqpγ, δq “

S

2

˜

k
ÿ

i“1

1´ pqi
pqi

¸

ˆ

erf´1pδq

γ

˙2
W

. (4.10)
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Justification. See Appendix C.

As it follows from (4.7) and (4.10), n˚˚TPqpγ, δq ą n˚q pγ, δq for k ě 2. The contour

plots of n˚˚TPqpγ, δq are shown in Figure 4.3.
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Figure 4.3. Contour plots of n˚˚TPqpγ, δq for pqi “ 0.9, i “ 1, . . . , k

Observation 4.1. As it follows from the above, performance metric TPq for serial

lines with more than one non-perfect quality machines is variability expanding.

The values of qn˚˚TPqpγ, δ;
yTP

ε

q,iniq is compared with n˚˚TPqpγ, δq, calculated using

(4.10) with pqi “ qi, in Table 4.2 for five asynchronous serial lines with qi P r0.6, 0.95s,

i “ 1, . . . , 5, and
ś5

i“1 qi ą 0.5. As one can see, the difference is in the range of 40%

to 50%.
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Table 4.2. Values of n˚˚TPqpγ, δq and qn˚˚TPqpγ, δ;
yTP

ε

q,iniq as functions of pγ, δq.

pγ, δq

System s1 s2 s3 s4 s5

n˚˚TPq qn˚˚TPq n˚˚TPq qn˚˚TPq n˚˚TPq qn˚˚TPq n˚˚TPq qn˚˚TPq n˚˚TPq qn˚˚TPq
(0.1, 0.9) 201 292 192 281 206 297 194 285 177 265

(0.1, 0.95) 285 413 272 398 293 421 276 404 251 376

(0.05, 0.9) 802 1169 765 1118 824 1192 776 1135 705 1053

(0.05, 0.95) 1138 1651 1086 1599 1169 1690 1102 1614 1001 1500

4.5 Summary of Formulas and Numerical Illustration

This section summarizes the formulas derived in Sections 4-8 for the critical

number of parts quality measurements and provides a comparative illustration of

these numbers.

Table 4.3 presents the formulas. Table 4.4 shows numerical values of the critical

numbers, calculated using the formulas of Table 4.3. As one can see, for variability

expanding performance metrics TPq, n
˚˚
TPq

is much larger than n˚q .

Since the right-hand side of the formulas in Table 3.9 (except for the first one)

depends on the performance metrics estimates, for practical utilization of these for-

mulas, Approximation Procedures 1 in Chapter 3 must be used. The resulting critical

numbers are shown in Table 4.5.

4.6 Summary

This chapter provides both quantitative and qualitative characterizations of the

critical number of parts quality measurements. As far as the quantitative char-
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Table 4.3. Formulas for critical number of measurements for various performance
metrics.

Metrics Critical Number of Measurements

q n˚q pγ, δq “

R

2
´

1´pq
pq

¯´

erf´1pδq
γ

¯2
V

TPq n˚˚TPqpγ, δq “

R

2
´

řk
i“1

1´pqi
pqi

¯´

erf´1pδq
γ

¯2
V

Table 4.4. Critical number of measurements calculated using formulas of Table 4.3.

Critical Numbers

pγ, δq
p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

n˚qpγ, δq, pq “ 0.9 31 43 121 171

n˚˚TPq
pγ, δq, pqi “ 0.9, i “ 1, ..., 5,M “ 5 151 214 602 854

Table 4.5. Critical number of measurements calculated using Approximation Proce-
dures 1 of Chapter 3.

Approximation of

Critical Numbers

pγ, δq

p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

qn˚qpγ, δ; pq
ε
iniq, pq “ 0.9 65 92 258 367

qn˚˚TPq
pγ, δ; yTP

ε

q,iniq,

pqi “ 0.9, i “ 1, ..., 5,M “ 5
236 337 942 1339
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acterization is concerned, this chapter calculates the critical number n˚q pαq, βqq to

ensure pαq, βqq-precise estimate of pq, evaluates the induced precision of the quality

parts throughput estimate yTP qpn
˚pαq, βqqq, and presents the solution to the inverse

problem, i.e., the critical number n˚˚TPqpγ, δq to ensure pγ, δq-precise estimate of yTP q.

Formulas and values of both critical numbers are summarized in Table 4.3-4.5. As

far as the qualitative characterization is concerned, this chapter shows that TPq is

a variability expanding performance metric, i.e, the for obtaining the same level of

precision, the critical number of parts quality measurement required for the estimate

of TPq is larger than that for the estimate of q.
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CHAPTER 5

Comparison of the Critical Numbers Calculated

Using pα, βq-Precision Theory with those

Evaluated Using Markov Inequality, Chebyshev

Inequality, and by Simulations

5.1 Problem Motivation

In Chapters 2 and 4, the critical number of measurements required to obtain

pα, βq-precise estimates of pTup, pTdown, pq defined by Definitions 2.1 and 4.2 has been

calculated using the technique developed in this dissertation, i.e., pα, βq-Precision

Theory. Since pTup and pTdown are random variables, their statistical characterization

can also be obtained using the classical probabilistic inequalities, namely, Markov

and Chebyshev inequalities, as well as by numerical simulations. This leads to a

possibility of evaluating the critical numbers of measurements based on these tools.

The purpose of this chapter is to carry out such evaluations and compare the results
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with those derived in Chapters 2 and 4.

For the probabilistic inequalities, we use the Markov’s and Chebyshev’s inequal-

ities, which are often used in probability related calculations, see, for instance,

Boucheron et al. (2003); Gubner (2006); Resnick (2019).

As defined in Definition 2.1, the estimates pTup and pTdown are pα, βq-precise if they

satisfy the following inequalities:

P

#

|pTuppnq ´ Tup|

Tup
ď α

+

ě β, P

#

|pTdownpnq ´ Tdown|

Tdown
ď α

+

ě β.

The critical number of measurements obtained using the pα, βq-Precision Theory has

been investigated in Chapter 2 and the following expression has been obtained:

n˚T pα, βq “

S

2

ˆ

erf´1pβq

α

˙2
W

. (5.1)

Denote the critical numbers of measurements evaluated based on Markov inequality,

Chebyshev inequality, and by simulations as n˚T,Mpα, βq, n
˚
T,Cpα, βq, and n˚T,Spα, βq,

respectively.

Similarly, the estimate pq is pαq, βqq-precise if it satisfy

P

"

|pqpnq ´ q|

q
ď αq

*

ě βq.

Using the pα, βq-Precision Theory, we obtain the critical number of parts quality
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measurement, given by:

n˚q pαq, βqq “

S

2

ˆ

1´ pq

pq

˙ˆ

erf´1pβqq

αq

˙2
W

.

Similar to the ones for Tup and Tdown, we denote the critical numbers of parts quality

measurements evaluated based on Markov inequality, Chebyshev inequality, and by

simulations as n˚q,Mpα, βq, n
˚
q,Cpα, βq, and n˚q,Spα, βq, respectively.

The evaluations of those critical numbers are given in Sections 5.2-5.4.

5.2 Critical Numbers Evaluated Using Markov Inequality

Proposition 5.1. The Gaussian approximation of critical number n˚T,Mpα, βq is

given by

n˚T,Mpα, βq “

R

2

πα2p1´ βq2

V

.

Justification. See Appendix D.

Proposition 5.2. The Gaussian approximation of the critical number n˚q,Mpαq, βqq

is given by

n˚q,Mpαq, βqq “

R

2p1´ qq

πq

1

α2
qp1´ βqq

2

V

.

Justification. See Appendix D.
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5.3 Critical Numbers Evaluated Using Chebyshev Inequal-

ity

Theorem 5.3. The critical number n˚T,Cpα, βq is given by

n˚T,Cpα, βq “

R

1

α2p1´ βq

V

.

Proof. See Appendix D.

Theorem 5.4. The critical number n˚q,Cpαq, βqq is given by

n˚q,Cpαq, βqq “

R

1´ q

q

1

α2
qp1´ βqq

V

.

Proof. See Appendix D.

5.4 Critical Numbers Evaluated Using Simulation

For any number of observation n and Tup, we randomly generate n number of ex-

ponential random variable with mean Tup, and compute the mean of the realizations,

denoted as pTuppnq. This procedure is repeated for N “ 10000 times. The probability

β can be approximated by

pβ “
number of times | pTuppnq´Tup|

Tup
ď α

N
.

Using the approximation pβ, the critical number n˚T,Spα, βq can be evaluated by a line

search.
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For any number of observation n and q, we randomly generate n number of

Bernoulli random variable with parameter q, and compute the mean of the real-

izations, denoted as pqpnq. This procedure is repeated for N “ 10000 times. The

probability βq can be approximated by

pβq “
number of times |pqpnq´q|

q
ď αq

N
.

Using the approximation pβq, the critical number n˚q,Spαq, βqq can be evaluated by a

line search.

5.5 Numerical Illustration

For Tup “ 10 and the precision pair pα, βq P tp0.1, 0.9q, p0.1, 0.95q, p0.05, 0.9q,

p0.05, 0.95qu, the corresponding critical numbers n˚T pα, βq, n
˚
T,Mpα, βq, n

˚
T,Spα, βq and

n˚T,Cpα, βq are listed in Table 5.1.

Table 5.1. Critical numbers n˚T,Mpα, βq, n
˚
T,Cpα, βq, n

˚
T,Spα, βq and n˚T pα, βq as func-

tions of pα, βq.

Critical Number

pα, βq
p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

n˚T,Mpα, βq 6366 25465 25465 101860

n˚T,Cpα, βq 1000 2000 4000 8000

n˚T,Spα, βq 271 386 1084 1543

n˚T pα, βq 271 385 1083 1537

Notice that, since q is unknown, the expressions for n˚q,Mpαq, βqq and n˚q,Cpαq, βqq

are not closed and n˚q,Spαq, βqq can not be evaluated. Thus, the same approximation
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procedure for n˚q pαq, βqq is needed for n˚q,Mpαq, βqq, n
˚
q,Cpαq, βqq, and n˚q,Spαq, βqq. We

take the same nini “ 30 and ε “ 0.1 as we have for ň˚q pαq, βqq.

For q “ 0.9 and the precision pair pαq, βqq P tp0.1, 0.9q, p0.1, 0.95q, p0.05, 0.9q,

p0.05, 0.95qu, the critical numbers n˚q pαq, βqq, n
˚
q,Mpαq, βqq and n˚q,Cpαq, βqq and the

corresponding approximated values qnq,Mpαq, βqq, qnq,Cpαq, βqq, qnq,Spαq, βqq, qnqpαq, βqq

are listed in the following table. As we can see, the approximated critical numbers

are about twice the actual value.

The time complexity of the simulation method is O pNn logpnqq, where n is the

upper bound of the critical number used in the simulations (e.g., n˚T,C), while the

time complexity of the pα, βq-Precision Theory is only Op1q. For comparison, the

computation time for obtaining n˚T,S, n˚T , n˚q,S, and n˚q of Tables 5.1 and 5.2 are

reported in Table 5.3. As we can see, the simulation approach can take up to several

seconds to evaluate a critical number, which is much slower than computing the

value using closed-form formula. For reference, the simulations are conducted on a

Windows computer with 2-core Intel Core i7-6500U CPU @ 2.50GHz, 8GB 1866MHz

DDR3 RAM using MATLAB 2020b. Other disadvantages of the simulation method

include it cannot provide analytical formulas of the critical numbers as a functions

of either α or β, and simulations have to repeat anew for every value of machine

parameters.

5.6 Summary

For the evaluation of both the critical number of up- and downtime measure-

ments and critical number of parts quality measurements, the Markov inequality
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Table 5.2. Critical numbers n˚q,Mpαq, βqq, n
˚
q,Cpαq, βqq, n

˚
q,Spαq, βqq, n

˚
q pαq, βqq and the

corresponding approximated values as functions of pαq, βqq.

Critical Number

pαq, βqq p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

n˚q qn˚q n˚q qn˚q n˚q qn˚q n˚q qn˚q
n˚q,Mpαq, βqq 708 1519 2830 6103 2830 6103 11318 24364

n˚q,Cpαq, βqq 112 239 223 480 445 959 889 1914

n˚q,Spαq, βqq 31 65 43 91 117 254 173 362

n˚q pαq, βqq 31 65 43 92 121 258 171 367

Table 5.3. Computation time for evaluating n˚T,S and n˚q,S of Tables 5.1-5.2.

Computation Time (sec) p0.1, 0.9q p0.1, 0.95q p0.05, 0.9q p0.05, 0.95q

n˚T,Spα, βq 1.2020 1.6247 5.0171 7.4426

n˚T pα, βq 0.0002 0.0002 0.0002 0.0002

n˚q,Spαq, βqq 0.1131 0.1704 0.2548 0.3593

n˚q pαq, βqq 0.0002 0.0002 0.0002 0.0002
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and Chebyshev inequality give much larger critical numbers compared to the ones

obtained by the pα, βq-Precision Theory. Specially, the above numerical illustra-

tion shows that the critical number evaluated using Markov inequality can be 20 to

70 times larger than the ones evaluated using our theory, while the ones obtained

using Chebyshev inequality can be 3 to 5 times larger. As one can see, our theory

gives the smallest critical numbers which guarantees the estimates precision, and can

be even orders of magnitude smaller compared to numbers that classic probability

inequalities can give.

As for the evaluation of critical number using simulation, the method has three

disadvantages:

• no analytical property of n˚T,S can be investigated as a function of α and β;

• since no analytical expressions for n˚T,S or n˚q,S are available, simulations have

to be repeated anew for every value of Tup, Tdown, and q;

• its computation time complexity is O pNn logpnqq, while that of pα, βq-Precision

Theory is Op1q;

• the results are subject to randomness in the up- and downtime realizations and

parts quality realizations.
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CHAPTER 6

Production Systems with Cycle Overrun:

Modeling, Analysis, Improvability, Bottlenecks,

and Parameter Estimation

6.1 Problem Motivation

Throughput losses in production systems are usually attributed to two reasons:

unreliable equipment and random part processing time (also referred to as machine

cycle time). The former is typically considered in system-theoretic literature devoted

to production systems, where the machine up- and downtime are assumed to be ran-

dom variables (often, exponentially distributed), while the cycle time is viewed as

a constant (see for instance, Viswanadham and Narahari (1992), Gershwin (1994),

and Li and Meerkov (2009)). The latter is typically used in queuing-theoretic lit-

erature, where the processing time is assumed to be a random variable (often, also

exponential), while up- and downtimes are not explicitly considered and may be

viewed as “embedded” in the random processing time (see, for instance, Askin and
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Standridge (1993), Buzacott and Shanthikumar (1993), Papadopolous et al. (1993),

Altiok (1997), Papadopoulos et al. (2009), and Curry and Feldman (2010)).

In practice, however, one more reason for throughput losses is observed: cycle

overrun. This term implies that the part processing time, τ , which is supposed to

be constant, may, in fact, require additional time (i.e., overrun), τOR, leading to the

total machine processing time given by

τtotal “ τ ` τOR. (6.1)

Such situations occur, for instance, in automated operations with a constant

cycle time, τ , and manual loading/unloading operations, which may have a random

component in their duration. This scenario takes place in numerous machining and

welding operations. Another scenario is typical in assembly operations, where a fixed

cycle time, τ , is imposed by operational conveyors, and the overrun, τOR, is enabled

by push-buttons, offering the operator a possibility to occasionally stop the conveyor

in order to complete the job with the desired quality. This scenario takes place, for

example, in automotive paint shops and general assembly.

Two main features characterize the cycle overrun. The first one is that it may or

may not take place at every cycle time; this implies that overruns occur with a certain

probability. The second feature is that, given that the overrun occurs, the conditional

pdf of its duration is related to the part processing time, τ . Indeed, in most cases

the overrun duration is either a fraction or a small multiple of τ . These features,

exacerbated by the fact that the machines with cycle overrun may have equipment-

dependent up- and downtimes, make the queuing-theoretic approach inapplicable to
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systems with cycle overrun. The system-theoretic approach is not applicable as well:

while it does consider machine reliability models in terms of up- and downtime, the

cycle time is assumed to be constant.

Given that the current literature offers no analytical methods for analysis and

improvement of production systems with unreliable machines and cycle overrun and

taking into account that these systems are often encountered in practice, developing

such methods is of importance. This is carried out in the current paper.

Specific novel results reported here are:

• A mathematical model of an unreliable machine with cycle overrun is intro-

duced.

• A simplified version of this model is proposed, which enables analytical perfor-

mance investigation.

• The relative effectiveness of a stand-alone machine throughput improvement

by reducing its average downtime vs. its average overrun is investigated.

• The effect of cycle overrun on the performance of serial production line is

analyzed.

• The bottleneck identification and throughput improvability in production sys-

tems with cycle overrun is investigated, and effectiveness of throughput im-

provement by downtime reduction vs. cycle overrun reduction is analyzed.

• The above results, obtained under the exponential assumption, are extended

to non-exponential machines and non-exponential cycle overrun.
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• The theoretical results derived in this paper are illustrated by a case study

based on an automotive transmission case machining line.

The outline of this paper is as follows: Section 6.2 presents a mathematical model

of an unreliable machine with cycle overrun. Section 6.3 develops a method for reduc-

ing this model to the one considered in the system-theoretic literature on production

systems. In Section 6.4, efficacy of stand-alone machine throughput improvement

by decreasing either downtime or overrun is analyzed. In Section 6.5, a method for

performance analysis of serial lines with unreliable machines and cycle overrun is

investigated. In Section 6.6, a bottleneck identification technique for serial lines with

unreliable machines and overruns is examined, and the issues of system improvabil-

ity are discussed. Section 7 extends the results obtained in Sections 6.2-6.6 under

exponential assumption to production lines with non-exponential machines and non-

exponential overruns. A case study is described in Section 6.8. Finally, the summary

of this chapter is given in Section 6.10. The proofs are included in the Appendix E.

6.2 Mathematical Model of Unreliable Machines with Cycle

Overrun

This model is defined by the following three groups of parameters/assumptions:

(a) Nominal parameters:

• Machine cycle time (τ) – the nominal time necessary to process a part by a

machine. The term “nominal” is used to imply that the machine operates in the

ideal regime, e.g., with no overruns. In large volume manufacturing, τ is practically
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always constant. If manual loading and unloading operations are involved, their

nominal durations are included in τ .

• Machine capacity (c) – the nominal number of parts a stand-alone machine pro-

duces per unit of time in the ideal regime, e.g., without breakdowns and cycle over-

runs. If the unit of time is an hour and the cycle time is in seconds, the machine

capacity is

c “
3600

τ
parts/hour. (6.2)

(b) Reliability assumption:

• Exponential reliability model – machine breakdown and repair rates, λ and µ, are

constant, implying that up- and downtime of the machine are distributed exponen-

tially with parameters λ and µ, respectively. The inverses of λ and µ are average up-

and downtime, Tup and Tdown.

While the above machine characteristics are widely used in system-theoretic lit-

erature, the ones below are novel.

(c) Cycle overrun parameters/assumptions:

• Overrun probability (pOR) – the probability that a cycle has an overrun. The

complementary probability, 1´ pOR, is the probability that this cycle does not have

an overrun.

• Overrun distribution (f cORptq) – the conditional pdf of the overrun duration, given

that the cycle has an overrun. This distribution is assumed to be exponential with

the expected value denoted as T cOR. To reflect the practical meaning of the overrun,
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it is assumed that T cOR is either a fraction or a small multiple of τ . Specifically, we

assume that T cOR “ kORτ , where kOR P p0, 2s.

Based on the above, the conditional and unconditional pdf’s of the overrun as

well as its unconditional expected value (TOR) are:

f cORptq “
1

kORτ
expp´

t

kORτ
q, t ě 0, (6.3)

fORptq “ pOR

ˆ

1

kORτ
expp´

t

kORτ
q

˙

` p1´ pORqδptq, t ě 0, (6.4)

TOR “ pORkORτ “ pORT
c
OR, (6.5)

where δptq is the Dirac delta function.

Thus, according to the above model, an exponential unreliable machine with cycle

overrun is defined by five independent parameters tτ, Tup, Tdown, pOR, kORu.

Note that model (a)-(c) can be extended to non-exponential distributions of up-

time, downtime, and cycle overrun; some of the results in this direction are described

in Section 7. Note also that, according to the above formulation, τOR in expression

(6.1) is exactly TOR.
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6.3 Simplified Mathematical Model of Unreliable Machines

with Cycle Overrun

In the system-theoretic approach, a machine is characterized by three independent

parameters tτ, Tup, Tdownu. They are used to evaluate machine’s efficiency, e, and

stand-alone throughput, SAT , according to

e “
Tup

Tup ` Tdown
,

SAT “
3600

τ

Tup
Tup ` Tdown

parts/hour,

(6.6)

where, as in (6.2), the coefficient 3600 is used to account for τ being in seconds and

SAT in parts/hour.

To simplify the description and performance analysis of a machine with cycle over-

run, it is desirable to reduce the five-parameter description tτ, Tup, Tdown, pOR, kORu

of a machine with cycle overrun, to a three-parameter case similar to tτ, Tup, Tdownu.

This can be accomplished by embedding the unconditional duration of the overrun

into Tup or Tdown or τ . In this work, we use the latter due to the following fact:

Theorem 6.1. The stand-alone throughput of an unreliable machine with cycle over-

run defined by assumptions (a)-(c) is given by

SAT “
3600

τ ` TOR

Tup
Tup ` Tdown

parts/hour. (6.7)

Proof. See Appendix E.
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Comparing (6.6) and (6.7), one can see that (6.7) corresponds to an unreliable

machine with no cycle overrun, but with the cycle time τ ` TOR (instead of τ).

In other word, from the point of stand-alone throughput, an unreliable machine

with cycle overrun defined by tτ, Tup, Tdown, pOR, kORu is equivalent to the unreliable

machine with the overrun duration embedded into τ and, thus, described by three

parameters tτ ` TOR, Tup, Tdownu.

The triple tτ ` TOR, Tup, Tdownu is referred to as the simplified parametric model

of unreliable machine with cycle overrun. Sections 6.5 and 6.6 below show that this

model is sufficiently precise to be used for performance analysis and improvement of

production systems with machines having cycle overrun.

6.4 Improvability of Stand-alone Unreliable Machine with

Cycle Overrun

Production losses of an unreliable machine with cycle overrun can be decreased

by either decreasing its downtime or cycle overrun. Which one of these options is

preferable?

To formalize this question, consider a simplified model of unreliable machine

with cycle overrun defined by tτ ` TOR, Tup, Tdownu. Assume that its downtime

is reduced to become rTdown, where the r P p0, 1q is the reduction coefficient. In

this case, the machine is characterized by tτ ` TOR, Tup, rTdownu and referred to as

downtime-reduced machine. Alternatively, assume that the unconditional mean of

the overrun is reduced by the same fraction. This results in a machine defined by

tτ ` rTOR, Tup, Tdownu and is referred to as overrun-reduced machine. The statement
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below specifies which one of these machines has a larger SAT .

Theorem 6.2. Consider a machine defined by assumptions (a)-(c). Then, for any

value of r P p0, 1q, if
Tdown
Tup

ă pORkOR, (6.8)

the overrun-reduced machine has a larger SAT than the downtime-reduced machine.

If this inequality is reversed, the downtime-reduced machine is more productive than

the overrun-reduced one.

Proof. See Appendix E.

Theorem 6.2 leads to the following

SAT Improvability Indicator:

(a) If the machine parameters are such that (6.8) holds, to improve its SAT decrease

the unconditional expected values of the overrun, TOR.

(b) If the machine parameters are such that (6.8) does not hold, to improve its SAT

increase the machine efficiency, e.

6.5 Performance Analysis of Serial Lines with Unreliable

Machines and Cycle Overrun Based on Simplified Para-

metric Model

While the simplified parametric model of an unreliable machine with cycle overrun

precisely predicts its performance in terms of the stand-alone throughput, in a multi-

machine production system with finite buffers this may not be the case. Therefore, in
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this section we investigate the accuracy of serial lines performance evaluation using

the simplified parametric model of Section 6.3 viz-a-viz the exact stochastic model

defined by assumptions (a)-(c) in Section 6.2. In addition to the throughput (TP ),

we investigate the accuracy of work-in-process (WIP ) and probabilities of blockages

(BL) and starvations (ST ). First we consider the case of two-machine lines (where

closed formulas for all performance metrics are available in Li and Meerkov (2009))

and then address the general case of (M ą 2)-machines (using the aggregation pro-

cedure of Bai et al. (2021)). In both cases, the accuracy of using the simplified model

is evaluated in terms of the errors defined by:

εTP “
|TPsim ´ TP |

TPsim
¨ 100%,

εWIP “
1

M ´ 1

M´1
ÿ

i“1

|WIPi,sim ´WIPi|

Ni

¨ 100%,

εBL “
1

M ´ 1

M´1
ÿ

i“1

|BLi,sim ´BLi|,

εST “
1

M ´ 1

M
ÿ

i“2

|STi,sim ´ STi|,

(6.9)

where the symbols with subscript ‘sim’ refer to the performance metrics evaluated

by simulations, and the symbols without the subscript refer to the same performance

metrics calculated analytically (either by closed formulas or by aggregation). Note

that in the case of two-machine lines the summation signs in (6.9) are omitted.
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6.5.1 Two-machine Lines

In the two-machine case, we generate 100 lines, with machine and buffer param-

eters selected randomly and equiprobably from the following sets:

Tdown,i P r3, 10s, ei P r0.6, 0.95s, ci P r1, 2s, pOR,i P r0, 1s, kOR,i P r0.2, 2s, i “ 1, 2;

N “ rhmaxpc1Tdown,1, c2Tdown,2qs, h P r2, 4s,

(6.10)

where h denotes the level of buffering, which protects a machine against job losses

during the adjacent machine’s downtime.

The analytical calculations for each of these lines have been carried out using

expressions (11.13)-(11.17) of Li and Meerkov (2009). The results obtained are sum-

marized in Tables 6.1. Based on these results, we conclude that the simplified para-

metric machine model is acceptable for two-machine systems evaluation.

Table 6.1. Accuracy of performance metrics evaluation using the simplified paramet-
ric model in two-machine lines.

(a) Accuracy of TP evaluation

Mean value

TPsim 40.7941

TP 40.8795

εTP 0.29%

(b) Accuracy of WIP evaluation

Mean value

WIPsim 17.8947

WIP 17.8821

εWIP 1.72%

(c) Accuracy of BL evaluation

Mean value

BL1,sim 0.1140

BL1 0.1120

εBL 0.0021

(d) Accuracy of ST evaluation

Mean value

ST2,sim 0.1140

ST2 0.1122

εST 0.0021
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6.5.2 (M ą 2)-machine Lines

In the pM ą 2q case, we consider M P t3, 5, 10, 15, 20u, and for each M generate

100 lines, with machine and buffer parameters selected randomly and equiprobably

from the following sets:

Tdown,i P r3, 10s, ei P r0.6, 0.95s, ci P r1, 2s, pOR,i P r0, 1s, kOR,i P r0.2, 2s, i “ 1, . . . ,M ;

Nj “ rhj maxpcjTdown,j, cj`1Tdown,j`1qs, hj P r2, 4s, j “ 1, . . . ,M ´ 1.

(6.11)

The results obtained are presented in Table 6.2. From these results, we observe

that the accuracy of performance metrics evaluation is decreasing as a function of M ,

and for large M the errors become relatively large. This is because in the former case

the errors are not only due to the reduction of the exact model to a simplified one,

but also due to the errors inherent in the aggregation procedure of Bai et al. (2021).

Nevertheless, since in most practical cases the data of machine parameters is rarely

available with high precision, we conclude that the simplified machine reliability

model is still acceptable in most practical systems evaluation with M ď 20.
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Table 6.2. Accuracy of performance metrics evaluation using the simplified paramet-
ric model in pM ą 2q-machine lines.

(a) Accuracy of TP evaluation

Mean value M “ 3 M “ 5 M “ 10 M “ 15 M “ 20

TPsim 34.374 30.426 26.514 23.906 23.262

TP 34.414 30.484 26.797 24.588 24.119

εTP 0.39% 0.53% 1.44% 3.32% 4.26%

(b) Accuracy of WIP evaluation

Mean value M “ 3 M “ 5 M “ 10 M “ 15 M “ 20

1
M´1

řM´1
i“1 WIPi,sim 19.209 18.609 16.856 17.315 17.970

1
M´1

řM´1
i“1 WIPi 19.164 18.904 18.026 21.433 23.091

εWIP 2.08% 2.13% 4.80% 11.68% 14.37%

(c) Accuracy of BL evaluation

Mean value M “ 3 M “ 5 M “ 10 M “ 15 M “ 20

1
M´1

řM´1
i“1 BLi,sim 0.1620 0.1661 0.1630 0.1811 0.1869

1
M´1

řM´1
i“1 BLi 0.1627 0.1681 0.1765 0.2254 0.2436

εBL 0.0041 0.0058 0.0163 0.0452 0.0564

(d) Accuracy of ST evaluation

Mean value M “ 3 M “ 5 M “ 10 M “ 15 M “ 20

1
M´1

řM
i“2 STi,sim 0.1234 0.1509 0.1841 0.1973 0.1997

1
M´1

řM
i“2 STi 0.1231 0.1501 0.1697 0.1447 0.1319

εST 0.0036 0.0050 0.0185 0.0546 0.0686
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6.6 Bottleneck Identification and Improvability of Serial Lines

with Unreliable Machines and Cycle Overrun

6.6.1 Bottleneck Identification

The notion of bottlenecks in serial lines is formulated in Li and Meerkov (2009)

as follows:

Definition 6.1. Machine mi is the bottleneck (BN) of a serial line with M unreliable

machines if

BTP

Bci
ą
BTP

Bcj
, @j ‰ i, (6.12)

where ck is the capacity of the k-th machine, k “ 1, . . . ,M .

Since evaluating analytically the partial derivatives involved in (6.12) is all but

impossible, Li and Meerkov (2009) provide the following

BN Identification Procedure:

• Evaluate BL and ST of all machines in the system (either by calculation or by

measurements on the factory floor.)

• Assign arrows in each pair of consecutive machines according to the rule:

˝ if BLi ą STi`1, assign the arrow pointing from mi to mi`1;

˝ if BLi ă STi`1, assign the arrow pointing from mi`1 to mi;

• Then,
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˝ if there is a single machine with no emanating arrows, it is the BN in the

sense of (6.12);

˝ if there are multiple machines with no emanating arrows, each of them is

referred to as a Local BN (L-BN), with its severity defined as

S1 “ |ST2 ´BL1|, if L-BN “ m1,

SM “ |STM ´BLM´1|, if L-BN “ mM ,

Si “ |STi`1 ´BLi| ` |STi ´BTi´1|, if L-BN “ mi, i “ 2, . . . ,M ´ 1;

˝ L-BN with the largest severity is the Primary BN (P-BN).

It is shown in Li and Meerkov (2009) that this identification procedure determines

the BN in systems with machines having no overruns with high accuracy. In this

subsection, we verify by simulations whether this approach works for serial lines

with machines having overruns, modeled by the simplified parametric model. This

is carried out as follows:

We consider (Mą2)-machine serial lines with cycle overrun forM P t3, 5, 10, 15, 20u.

For each M , we generate 100 lines, with parameters selected randomly and equiprob-

ably from the sets defined in (6.11). For each of the 500 lines, we identify BN(s)

using BN Identification Procedure and assess its accuracy by comparing the results

with those identified using numerical evaluation of the derivatives involved in (6.12).

As it turns out, in all 500 lines considered, the BN identified numerically is one of

the L-BNs identified by BN Identification Procedure. Table 6.3 shows the number

of lines, where P-BN identified by this procedure is the same as the one identified

numerically.
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Based on the above, we conclude that the BN Identification Procedure has an

acceptable accuracy in serial lines with cycle overrun modeled by the simplified para-

metric model.

Table 6.3. The number of lines where P-BN identified by BN Identification Procedure
is the same as the one identified numerically.

M “ 3 M “ 5 M “ 10 M “ 15 M “ 20
100 97 91 90 89

6.6.2 Throughput Improvability

Section 6.4 provides the SAT Improvability Indicator for a single machine with

overruns. Can this indicator be used for improving serial lines with unreliable ma-

chines and cycle overruns? We answer this question by simulations.

In the above-mentioned 500 lines, we identify BN or P-BN, using the BN Iden-

tification Procedure, and reduce its Tdown or TOR by 10%, using SAT Improvability

Indicator. Table 6.4 shows the number of lines for each M , where SAT Improvability

Indicator turns out to be optimal in the sense that improving the BN or P-BN in

accordance with SAT Improvability Indicator leads to the largest system throughput

improvement, as compared with all other ways of BN or P-BN modification. Based

on this fact, we conclude that SAT Improvability Indicator can be used for improve-

ment of serial lines with overruns described by the simplified parametric model of

the machines.

Using the results of Sections 6.4 and 6.5, as well as Subsection 6.6.1, we formulate

the following

Continuous Improvement Design Procedure:

91



Table 6.4. The number of lines, where SAT Improvability Indicator leads to the
largest serial line improvement.

M “ 3 M “ 5 M “ 10 M “ 15 M “ 20
98 97 95 93 94

(a) Using the BN Identification Procedure, determine the BN or P-BN.

(b) Using the SAT Improvability Indicator, decrease either Tdown or TOR of this

machine.

(c) Calculate the throughput of the improved system, TPimp.

(d) If TPimp ą TPdes, where TPdes is the desired throughput, stop; else go to (a).

6.7 Improvability of Serial Lines with Non-exponential Ma-

chines and Non-exponential Cycle Overrun

6.7.1 Preliminaries

The results reported in Sections 6.3-6.6 are obtained under the exponential as-

sumption on machines’ reliability and overruns. In practice, however, this assump-

tion may not hold. So, can the obtained results be applied for designing continuous

improvement projects in practice? This section provides a positive answer to this

question.

As one can see, the proofs of Theorems 6.1 and 6.2 do not rely on the exponential

assumption and, thus, hold for non-exponential machines and overruns as well.

Unfortunately, this is not the case for the results of Sections 6.5 and 6.6, where

TP is evaluated assuming that the machines and overruns are exponential. Thus,
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an additional investigation is necessary.

The investigation described below is conceptually related to several facts concern-

ing serial lines with non-exponential machines, but with no overruns. These facts

take place assuming that the breakdown and repair rates of machines, λptq and µptq,

are increasing functions of time. This implies that the probability of machine break-

down or repair in an infinitesimal time interval pt, t` δtq is increasing in t (which is

a practically plausible case). Under this assumption, the following facts take place:

• The distributions of up- and downtime, induced by these λptq and µptq, have

coefficients of variation, CV , less than 1. This is proved analytically in Barlow

and Proschan (1996) and Li and Meerkov (2009). An empirical study (Inman

(1999)) shows that in most cases manufacturing equipment on the factory floor

indeed has CV ă 1.

• The throughput of serial lines with machines having CVup ă 1 and CVdown ă 1

is a monotonically decreasing function of these CV ’s on the interval r0, 1s. This

is shown by simulations in Li and Meerkov (2009) for Weibull, gamma, and

log-normal distributions and hypothesized that it holds for any distribution of

up- and downtime with CV ă 1.

• Thus, the throughput of a serial line with exponential machines, (i.e., the ma-

chines having CVup “ 1 and CVdown “ 1, is the lower bound of the throughput

of lines with non-exponential machines having CVup ă 1 and CVdown ă 1.

• Hence, if a continuous improvement project is designed to achieve the desired
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throughput under the exponential assumption, the throughput of the real sys-

tem with non-exponential machines, will be at least as high as that of the ex-

ponential one. Therefore, the goal of the improvement project will be achieved

(or, perhaps, “over-achieved”).

It is shown below by simulations that similar facts take place for serial lines with

machines having cycle overrun as well. First, we investigate the case of exponen-

tial machines and non-exponential overruns and then the general case, where both

machines and overruns are non-exponential.

6.7.2 Serial Lines with Exponential Machines and Non-exponential Over-

runs

We carry out the simulations for M P t5, 10u and generate 50 lines with exponen-

tial machines having non-exponential overruns, where machine and buffer parameters

are selected randomly and equiprobably from the sets defined in (6.11). The condi-

tional distribution of each machine’s overrun is selected randomly and equiprobably

from the set tWeibull, gamma, log-normalu, with pdf’s given by:

Weibull: f cORptq “
β

α

ˆ

t

α

˙β´1

e´p
t
α
qβ , t ě 0,

gamma: f cORptq “
1

Γpβqαβ
tβ´1e´

t
α , t ě 0,

log-normal: f cORptq “
1

?
2πβt

e
´
pln t´ 1

α q
2

2β2 , t ě 0,

(6.13)

where

Γpxq “

ż 8

0

sx´1e´sds (6.14)
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and α and β are the parameters to be selected so that their expected values are kORτ

(similar to (6.3) for the exponential distribution).

This can be accomplished using two equations – one based on the expected value

and the second on the coefficient of variation of distributions (6.13). For instance,

in the case of Weibull distribution these equations are:

T cOR “ αΓp1`
1

β
q, (6.15)

CV “

g

f

f

e

Γp1` 2
β
q

Γ2p1` 1
β
q
´ 1 , (6.16)

where T cOR “ kORτ and CV ă 1. If these equations have a unique solution pα, βq,

the required conditional distribution of overruns is fully defined.

Theorem 6.3. For any T cOR ą 0 and CV ă 1, equations (6.15) and (6.16) have a

unique solution.

Proof. See Appendix E.

Thus, for a given CV ă 1, a unique β can be found from (6.16) and then for a

given T cOR a unique α from (6.15). For example, if T cOR “ 30sec and CV “ 0.75,

then α “ 32.7053 and β “ 1.3476. Parameters α and β for gamma and log-normal

distributions can be calculated in a similar manner (using the formulas for their mean

and coefficient of variation in the right-hand sides of (6.15) and (6.16)).

For each of the conditional distributions, thus obtained, and each CV in the set

t0.1, 0.25, 0.5, 0.75, 1u, we calculate β using (6.16) and, for selected T cOR, calculate

α using (6.15). With these parameters, we simulate the 50 lines mentioned above.
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The obtained results are compared with throughput of the lines having exponential

machines and exponential overruns with the same uptime, downtime, and uncon-

ditional mean of cycle overrun. The average value of the former over 50 lines is

denoted as TPNEOR and the latter as TPE. The difference between TPNEOR and

TPE is evaluated by

ζ “
TPNEOR ´ TPE

TPE
100%. (6.17)

The behavior of ζ as a function of CV for M P t5, 10u is shown in Table 6.5. As

one can see, the difference is practically negligible. Thus, the effect of non-exponential

overruns in the case of Weibull, gamma, and log-normal distributions is insignificant.

We hypothesize that the same effect takes place for any overrun distribution with

CV ă 1.

Table 6.5. The behavior of ζ as a function of CV for M P t5, 10u.

CV M “ 5 M “ 10
0.1 0.4266% 0.4366%
0.25 0.4151% 0.4284%
0.5 0.3682% 0.3877%
0.75 0.1427% 0.1791%

1 0.0063% 0.0054%

6.7.3 Serial Lines with Non-exponential Machines and Non-exponential

Overruns

In this subsection, we consider the lines discussed in Subsection 6.7.2, but with

non-exponential reliability models selected randomly and equiprobably from the set

tWeibull, gamma, log-normalu. For CV P t0.1, 0.25, 0.5, 0.75, 1u, we evaluate the
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lines throughput using simulations. The average value of the throughput over the

50 lines is denoted as TPNE. Figure 6.1 shows the behavior of TPNE as a function

of CV ă 1 for M P t5, 10u. As one can see, this behavior is similar to that of non-

exponential machines having no overruns: it is a monotonically decreasing function

with the minimum at CV “ 1.
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Figure 6.1. The behavior of TPNE as a function of CV for M P t5, 10u.

Thus, TP of serial lines with exponential machines and exponential overruns is

the lower bound of serial lines with non-exponential machines and non-exponential

overruns for the case of Weibull, gamma and log-normal distributions with CV ă 1.

Hence, the former can be used to design continuous improvement projects for the

latter: the improved system would exhibit the performance at least as good as that

predicted under the exponential assumption. We hypothesize that this conclusion

takes place for any machine reliability model and cycle overrun if CV ă 1.

The case study described in the next section is based on this hypothesis.
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6.8 Case Study

6.8.1 Preliminaries

In this case study, we consider a production system motivated by an automotive

transmission case machining line. For confidentiality reasons, all machine and buffer

parameters have been modified, preserving, however, qualitative features of the sys-

tem performance. Due to these modifications, the system throughput, which has

been measured on the factory floor, could not be used for validating the mathemat-

ical model of this system. Therefore, we have created a computer simulation model

of the system at hand, populated it by the modified data, and used it as the “real

system” for model “validation”.

6.8.2 Mathematical Modeling

The system at hand has been modeled as a serial line consisting of 12 operations

separated by finite buffers (see Figure 6.2, where the numbers in the rectangles

represent the modified buffers capacity). Based on the conclusion of the previous

section, we assume that the machines and cycle overruns, if any, are exponential.

Figure 6.2. Structural model of the modified production line.

The parametric model of this system has been constructed using eight weeks of

modified data. For each week, the data provide machines’ τ , Tup, Tdown, pOR, and
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kOR. Based on these data, e and TOR are calculated and included in Table 6.6.

Using these data and the aggregation procedure of Bai et al. (2021), we calculated

the system throughput for all eight weeks (denoted as TP ) and compared it with

that evaluated by simulations using the digital twin populated by the respective

week data (denoted as TPsim). The results, shown in Table 6.7, indicate that the

mathematical model is “validated”.

Table 6.6. Weekly raw data.

(a) Week 1.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 8.3406 3.024 0.7339 0.3563 0.6215 26.5723

OP20 119 24.9552 4.5164 0.8468 0 0 0

OP30 120 49.9567 4.1475 0.9233 0.3592 0.1651 7.1172

OP40 120 19.9509 3.3174 0.8574 0.1644 0.0994 1.9621

OP50 106 50.0429 3.6922 0.9313 0 0 0

OP60 120 16.6674 3.5635 0.8239 0.3318 0.2778 11.0585

OP70 120 49.9549 3.4369 0.9356 0.2762 0.3389 11.2307

OP80 120 8.3601 2.57 0.7649 0.2529 0.0108 0.3268

OP90 120 24.9889 2.826 0.8984 0 0 0

OP100 113 14.286 3.0102 0.826 0 0 0

OP110 120 19.9701 2.4306 0.8915 0.3136 0.1366 5.1407

OP120 105 50.0198 4.1669 0.9231 0 0 0
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(b) Week 2.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 16.683 3.5742 0.8236 0.6169 0.6012 44.5056

OP20 119 33.3561 4.3471 0.8847 0 0 0

OP30 120 16.6831 3.5722 0.8236 0.3214 0.1227 4.7307

OP40 120 16.6979 3.3335 0.8336 0.1818 0.4583 9.9947

OP50 106 49.9756 2.3848 0.9545 0 0 0

OP60 120 33.3354 3.4229 0.9069 0.3356 0.4993 20.1068

OP70 120 100.0144 3.7587 0.9638 0.2784 0.37 12.3582

OP80 120 20.0006 2.1139 0.9044 0.2557 0.0135 0.4154

OP90 120 25.0173 2.8394 0.8981 0 0 0

OP100 113 25.0066 3.5459 0.8758 0 0 0

OP110 120 25.013 2.1959 0.9193 0.2976 0.4032 14.3994

OP120 105 50.0034 4.1134 0.924 0 0 0

(c) Week 3.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 8.3052 3.109 0.7276 0.417 0.5691 28.4766

OP20 119 16.6606 3.6998 0.8183 0 0 0

OP30 120 19.995 3.3221 0.8575 0.3581 0.141 6.0611

OP40 120 20.0183 3.1142 0.8654 0.152 0.1147 2.0931

OP50 106 19.9967 4.3187 0.8224 0 0 0

OP60 120 25.0236 3.8374 0.867 0.4213 0.38 19.2123

OP70 120 20.0048 3.4488 0.853 0.266 0.4015 12.8192

OP80 120 20.0148 3.6823 0.8446 0.2989 0.1561 5.5977

OP90 120 33.3934 3.1262 0.9144 0 0 0

OP100 113 20.0199 3.3236 0.8576 0 0 0

OP110 120 24.9656 2.6729 0.9033 0.3389 0.1745 7.0953

OP120 105 33.397 6.6547 0.8338 0 0 0
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(d) Week 4.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 7.6206 3.1877 0.7051 0.3697 0.6626 29.3931

OP20 119 6.5843 2.8958 0.6945 0 0 0

OP30 120 19.999 2.8337 0.8759 0.3317 0.1905 7.5803

OP40 120 20.0329 2.6112 0.8847 0.1607 0.1539 2.9673

OP50 106 11.1021 2.9251 0.7915 0 0 0

OP60 120 19.9859 2.8353 0.8758 0.4195 0.2644 13.3123

OP70 120 50.0824 3.2984 0.9382 0.2298 0.5568 15.3532

OP80 120 20.0935 3.7012 0.8445 0.3224 0.4793 18.5469

OP90 120 33.3307 3.1948 0.9125 0 0 0

OP100 113 20.0855 3.321 0.8581 0 0 0

OP110 120 33.3265 2.6876 0.9254 0.3454 0.192 7.9598

OP120 105 99.9323 5.8691 0.9445 0 0 0

(e) Week 5.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 14.2714 4.7327 0.751 0.4465 0.5577 29.8829

OP20 119 7.6328 3.6655 0.6756 0 0 0

OP30 120 8.3027 1.7795 0.8235 0.3367 0.1548 6.2526

OP40 120 14.2686 4.7353 0.7508 0.1717 0.1309 2.6987

OP50 106 16.6899 2.7667 0.8578 0 0 0

OP60 120 24.9749 3.9629 0.8631 0.4232 0.5553 28.197

OP70 120 49.9563 5.252 0.9049 0.2733 0.4473 14.6694

OP80 120 16.7332 4.001 0.807 0.259 0.0371 1.1517

OP90 120 33.3859 4.1533 0.8894 0 0 0

OP100 113 25.0217 3.8278 0.8673 0 0 0

OP110 120 25.0765 4.1712 0.8574 0.323 0.1853 7.183

OP120 105 99.9755 7.6868 0.9286 0 0 0
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(f) Week 6.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 10.0586 3.7924 0.7262 0.4133 0.4509 22.3628

OP20 119 14.3617 3.3406 0.8113 0 0 0

OP30 120 5.8879 3.6987 0.6142 0.3322 0.0682 2.7178

OP40 120 12.4703 3.3201 0.7897 0.1734 0.1725 3.5902

OP50 106 20.0145 2.8557 0.8751 0 0 0

OP60 120 25.0407 3.8424 0.867 0.3954 0.5403 25.6384

OP70 120 50.0236 3.5653 0.9335 0.2965 0.4262 15.1605

OP80 120 20.0894 3.0354 0.8687 0.3154 0.3272 12.3836

OP90 120 33.2873 4.9632 0.8702 0 0 0

OP100 113 12.4909 2.7645 0.8188 0 0 0

OP110 120 33.3266 2.9013 0.9199 0.3151 0.2117 8.0047

OP120 105 99.9662 7.6247 0.9291 0 0 0

(g) Week 7.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 6.6949 2.2091 0.7519 0.5653 0.9904 67.1901

OP20 119 12.5163 3.5632 0.7784 0 0 0

OP30 120 5.8558 2.2167 0.7254 0.3218 0.1063 4.1054

OP40 120 16.6304 3.0973 0.843 0.1695 0.1131 2.2999

OP50 106 33.2742 3.4126 0.907 0 0 0

OP60 120 24.9705 3.8251 0.8672 0.3981 0.4726 22.5791

OP70 120 99.9469 3.1556 0.9694 0.3125 0.3861 14.4802

OP80 120 14.2309 2.9193 0.8298 0.2843 0.1452 4.9556

OP90 120 24.9441 3.1127 0.8891 0 0 0

OP100 113 24.9722 3.6785 0.8716 0 0 0

OP110 120 33.3025 3.8017 0.8975 0.3 0.1983 7.1391

OP120 105 100.0185 9.001 0.9174 0 0 0
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(h) Week 8.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 7.7444 2.7936 0.7349 0.3993 0.6681 32.0122

OP20 119 19.9792 7.6559 0.723 0 0 0

OP30 120 7.136 2.4903 0.7413 0.3354 0.0917 3.6886

OP40 120 33.3248 3.8121 0.8974 0.1654 0.1311 2.6033

OP50 106 33.2792 2.8491 0.9211 0 0 0

OP60 120 14.3036 2.2152 0.8659 0.5069 0.9835 59.8269

OP70 120 33.3474 6.6485 0.8338 0.2851 0.3096 10.5952

OP80 120 20.0423 3.4521 0.8531 0.2603 0.1068 3.3357

OP90 120 25.0204 4.3444 0.8521 0 0 0

OP100 113 50.0636 3.6599 0.9319 0 0 0

OP110 120 16.6557 3.1142 0.8425 0.2919 0.1568 5.4932

OP120 105 100.0047 8.3081 0.9233 0 0 0

Table 6.7. Model validation.

Throughput
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

(JPH)

TPsim 16.4970 16.9290 15.7003 15.2434 14.5075 14.4710 13.8117 13.8078

TP 16.6910 17.0372 16.0725 15.3409 14.9029 14.6863 13.7300 14.1172

εTP 1.18% 0.64% 2.37% 0.64% 2.73% 1.49% 0.59% 2.24%

6.8.3 Weekly Performance Analysis

The performance analysis has been carried out based on the weekly data and

the aggregation procedure developed in Bai et al. (2021). The results are shown in

Figure 6.3 for Weeks 1-8.
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(a) Week 1.

(b) Week 2.

(c) Week 3.
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(d) Week 4.

(e) Week 5.

(f) Week 6.
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(g) Week 7.

(h) Week 8.

Figure 6.3. Performance analysis based on weekly data.

6.8.4 Data for Continuous Improvement Project

The weekly data exhibit substantial variability. This is obvious from Table 6.6

and is supported by the coefficients of variation of e and TOR calculated using all eight

weeks data and shown in the first columns of Table 6.8. This observation makes it

necessary to “pre-process” the data in order to decrease its variability and use the less

variable data for the continuous improvement project design. This is accomplished

by averaging machine parameters based on two or four weeks’ data. The resulting

coefficients of variation are shown in the second and third columns of Table 6.8.

106



Clearly, averaging over four weeks results in a relatively low variability of machine

parameters, and this data (shown in Table 6.9) is used for continuous improvement

project design. (Note that averaging over all eight weeks, i.e., over two months,

might not be desirable, since machine parameters are typically non-stationary and

evolve in time.)

Table 6.8. Coefficients of variation the original and averaged data.

(a) Data for e

CVe CVe,2 CVe,4
OP10 0.0444 0.0300 0.0044
OP20 0.0900 0.0645 0.0411
OP30 0.1163 0.0905 0.0902
OP40 0.0545 0.0499 0.0238
OP50 0.0597 0.0584 0.0087
OP60 0.0243 0.0029 0.0015
OP70 0.0506 0.0230 0.0067
OP80 0.0462 0.0044 ă 0.0001
OP90 0.0220 0.0186 0.0172
OP100 0.0375 0.0264 0.0104
OP110 0.0316 0.0189 0.0171
OP120 0.0347 0.0169 0.0100

(b) Data for TOR

CVTOR CVTOR,2 CVTOR,4
OP10 0.3863 0.2588 0.0802
OP30 0.3068 0.2186 0.2065
OP40 0.7068 0.4087 0.2065
OP60 0.569 0.4155 0.3629
OP70 0.129 0.0924 0.0295
OP80 1.0368 0.729 0.0655
OP110 0.3431 0.1596 0.1085
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Table 6.9. Averaged data for Weeks 5-8.

τ (sec) Tup (min) Tdown (min) e pOR kOR TOR (sec)

OP10 120 9.6923 3.382 0.7413 0.4561 0.6668 36.495

OP20 119 13.6225 4.5563 0.7494 0 0 0

OP30 120 6.7956 2.5463 0.7274 0.3315 0.1052 4.1861

OP40 120 19.1735 3.7412 0.8367 0.17 0.1369 2.7935

OP50 106 25.8145 2.971 0.8968 0 0 0

OP60 120 22.3224 3.4614 0.8658 0.4309 0.6379 32.9867

OP70 120 58.3186 4.6553 0.9261 0.2918 0.3923 13.7395

OP80 120 17.774 3.352 0.8413 0.2798 0.1541 5.1724

OP90 120 29.1594 4.1434 0.8756 0 0 0

OP100 113 28.1371 3.4827 0.8899 0 0 0

OP110 120 27.0904 3.4971 0.8857 0.3075 0.188 6.9386

OP120 105 99.9912 8.1551 0.9246 0 0 0

6.8.5 System Performance Analysis Using Four-weeks Averaged Data

and Project Goal

The performance of the system at hand has been evaluated using the averaged

data of Table 6.9 and the aggregation procedure of Bai et al. (2021). The result is

shown in Figure 6.4. As one can see the bottleneck is OP10 and TP “ 14.66JPH.

Since the nominal throughput (defined by the longest cycle time, τ “ 120sec, under

the assumption that there are no machine breakdowns or cycle overruns) is 30JPH,

the throughput losses are over 50%.

It is of interest to evaluate what fraction of these losses are due to machine

downtime and due to cycle overrun. The former is calculated assuming that Tdown

of each machine is zero, and the latter that pOR is zero. The throughput in the first

case turns out to be 23.00JPH and in the second 17.26JPH. Thus, the production
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Figure 6.4. Performance analysis based on the averaged data.

losses due to machine downtimes are 8.34JPH and due to cycle overrun 2.60JPH.

Recovering these losses is the goal of this case study. More precisely, the goal is to

design four options for a continuous improvement leading to a 5%, 10%, 20% and

30% of throughput increase.

6.8.6 Designing Continuous Improvement Projects

Applying the Continuous Improvement Design Procedure formulated in Section

6.6 to the production system at hand, we obtain incremental steps for continuous

improvement resulting in up to 30% TP increase, i.e., TPimp “ 19.05JPH (see Table

6.10). Based on these incremental steps, we specify the activities to be carried out

for each machine, leading to the desired throughput improvement. This results in

the continuous improvement projects specified in Table 6.11. As one can see, for a

5% improvement, only one machine, OP10, must be improved; for 10% improvement,

parameters of three machines, OP10, OP20, and OP60, should be modified; for 20%

and 30% improvement, five machines, OP10, OP20, OP30, OP60, and OP80, should

be improved (to various degrees).
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This information is intended to allow the Operations Manager to decide which of

these continuous improvement projects should be implemented on the factory floor.

Table 6.10. Incremental improvement steps.

Improvement steps TP ∆TP
Percentage

increase

0 initial state 14.6557 0 0%

1 reduce OP10 downtime by 10% 14.9317 0.276 1.88%

2 reduce OP10 downtime by 10% 15.1781 0.5224 3.56%

3 reduce OP10 cycle overrun by 20% 15.4996 0.8439 5.76%

4 reduce OP10 downtime by 10% 15.6961 1.0404 7.10%

5 reduce OP60 cycle overrun by 20% 15.796 1.1403 7.78%

6 reduce OP10 downtime by 10% 15.9698 1.3141 8.97%

7 reduce OP20 downtime by 10% 16.2481 1.5924 10.87%

8 reduce OP60 cycle overrun by 20% 16.3311 1.6754 11.43%

9 reduce OP10 cycle overrun by 20% 16.5204 1.8647 12.72%

10 reduce OP30 downtime by 10% 16.7583 2.1026 14.35%

11 reduce OP60 cycle overrun by 20% 16.826 2.1703 14.81%

12 reduce OP60 downtime by 10% 16.887 2.2313 15.22%

13 reduce OP20 downtime by 10% 17.1351 2.4794 16.92%

14 reduce OP30 downtime by 10% 17.3457 2.69 18.35%

15 reduce OP60 cycle overrun by 20% 17.3995 2.7438 18.72%

16 reduce OP60 downtime by 10% 17.4619 2.8062 19.15%
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17 reduce OP80 downtime by 10% 17.5078 2.8521 19.46%

18 reduce OP10 downtime by 10% 17.6579 3.0022 20.49%

19 reduce OP30 downtime by 10% 17.8537 3.198 21.82%

20 reduce OP60 downtime by 10% 17.9111 3.2554 22.21%

21 reduce OP10 downtime by 10% 18.0441 3.3884 23.12%

22 reduce OP80 downtime by 10% 18.0959 3.4402 23.47%

23 reduce OP20 downtime by 10% 18.3165 3.6608 24.98%

24 reduce OP30 downtime by 10% 18.4906 3.8349 26.17%

25 reduce OP80 downtime by 10% 18.5484 3.8927 26.56%

26 reduce OP60 downtime by 10% 18.6059 3.9502 26.95%

27 reduce OP10 cycle overrun by 20% 18.7783 4.1226 28.13%

28 reduce OP30 downtime by 10% 18.9232 4.2675 29.12%

29 reduce OP80 downtime by 10% 18.9832 4.3275 29.53%

30 reduce OP60 cycle overrun by 20% 19.0356 4.3799 29.89%

31 reduce OP20 downtime by 10% 19.2177 4.562 31.13%

111



Table 6.11. Continuous improvement projects.

(a) For 5% throughput improvement (resulting, in fact, in 6%)

Machine Machine improvement
OP10 Reduce downtime by 19%, reduce cycle overrun by 20%.

(b) For 10% throughput improvement, i.e., TPimp “ 16.12JPH

Machine Machine improvement
OP10 Reduce downtime by 34%, reduce cycle overrun by 20%.
OP20 Reduce downtime by 10%.
OP60 Reduce cycle overrun by 20%.

(c) For 20% throughput improvement, i.e., TPimp “ 17.59JPH

Machine Machine improvement
OP10 Reduce downtime by 41%, reduce cycle overrun by 36%.
OP20 Reduce downtime by 19%.
OP30 Reduce downtime by 19%.
OP60 Reduce downtime by 19%, reduce cycle overrun by 59%.
OP80 Reduce downtime by 10%.

(d) For 30% throughput improvement, i.e., TPimp “ 19.05JPH

Machine Machine improvement
OP10 Reduce downtime by 47%, reduce cycle overrun by 49%.
OP20 Reduce downtime by 34%.
OP30 Reduce downtime by 41%.
OP60 Reduce downtime by 34%, reduce cycle overrun by 67%.
OP80 Reduce downtime by 34%.
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6.9 Estimates of Cycle Overrun Parameters

6.9.1 Definition and Problem Formulation

Let ppORpnq be the random variable representing the estimate of the overrun prob-

ability pOR based on n number of cycles measured:

ppORpnq :“
nOR
n
, (6.18)

where nOR denotes the number of cycles where overrun takes place. Let pkORpnORq

be the estimate of kOR based on measuring durations of nOR number of cycle overrun

(denoted as tOR,i):

pkORpnORq :“

řnOR
i“1 tOR,i
nORτ

. (6.19)

Definition 6.2. We define the precision of the estimate ppORpnq and pkORpnORq as

follows:

• The estimate ppORpnq is referred to as pα, βq-precise if

P

"

|ppORpnq ´ pOR|

pOR
ď α

*

ě β. (6.20)

• The estimate pkORpnORq is referred to as pα, βq-precise if

P

#

|pkORpnORq ´ kOR|

kOR
ď α

+

ě β. (6.21)

Definition 6.3. The smallest integers n˚pORpα, βq and n˚kORpα, βq, which guarantees
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(6.20) and (6.21), respectively, are referred to as the critical numbers of cycle overrun

measurements for pOR and kOR, respectively.

Consider the unconditional cycle overrun, the estimate of its mean is calculated

as

pTOR “ ppORpkORτ, (6.22)

and its precision is characterized as

P

#

|pTOR ´ TOR|

TOR
ď αOR

+

ě βOR. (6.23)

We introduce the following problems:

Induced Precision Problem for TOR: Given pα1, β1q-precise estimate

ppOR
`

n˚pORpα1, β1q
˘

and pα2, β2q-precise estimate pkOR
`

n˚kORpα2, β2q
˘

, calculate the in-

duced precision pαindOR, β
ind
ORq of pTOR.

Inverse Problem for TOR: Given a desired pγ, δq, calculate the smallest number

of cycle overrun measurements, n˚˚ORpγ, δq, required to obtain pγ, δq-precise estimate

of TOR.

6.9.2 Critical Number of Cycle Overrun Measurements

Proposition 6.4. The Gaussian approximation of critical number n˚pORpα, βq is

given by

n˚pORpα, βq “

R

2

ˆ

1´ ppOR
ppOR

˙ˆ

erf´1pβq

α

˙V

. (6.24)

Justification. Similar to the justification of Proposition 4.1.
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Proposition 6.5. The Gaussian approximation of critical number n˚kORpα, βq is

given by

n˚kORpα, βq “

S

2

ˆ

erf´1pβq

α

˙2
W

. (6.25)

Proof. See Appendix E.

6.9.3 Induced Precision and Inverse Problem for TOR

The solution to the induced precision problem is given by Propositions 6.6 and

6.7:

Proposition 6.6. Given
|ppORpn

˚
pOR

q´pOR|

pOR
ď α1 and

|pkORpn
˚
kOR

q´kOR|

kOR
ď α2, the smallest

induced αOR which satisfies | pTOR´TOR|
TOR

ď αindOR with accuracy Opα1α2q is given by

αindOR “ α1 ` α2. (6.26)

Justification. See Appendix E.

Proposition 6.7. The Gaussian approximation of βindOR is given by

βindOR “ erf

˜

pα1 ` α2qC

c

n˚pOR
2

¸

, (6.27)

where C “

c

ppORpn˚pORq

2´ppORpn˚pORq
.

Justification. See Appendix E.

The solution to the inverse problem is given by Proposition 6.8:
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Proposition 6.8. For a given pγ, δq, the critical number of cycle overrun measure-

ments to ensure pγ, δq-precise estimate of TOR is given by

n˚˚ORpγ, δq “

R

2

ˆ

2´ ppOR
ppOR

˙ˆ

erf´1pδq

γ

˙V

, (6.28)

where ppOR “ ppOR pn
˚˚
ORpγ, δqq.

Justification. See Appendix E.

Comparing (6.28) with critical numbers given by (6.24) and (6.25), we conclude:

Observation 6.1. The performance metric TOR is variability expanding.

As one can see, (6.28) is not in closed-form, thus, the Approximation Procedure

of Chapter 3 should be used. Here we consider using Approximation Procedure 1.

After experimentation, we find that the initial number of cycle overrun measurements

nOR,ini and the safety factor ε can be selected as 30 and 0.05. The following numerical

example shows the effectiveness of the Approximation Procedure:

We generate 25 machines with cycle overrun, with parameters randomly and

equiprobabily selected from the following sets:

τ P r1, 2s, pOR P r0.3, 1s, T
c
OR “ kORτ, where k “ r0.2, 2s.

The desired precision pair pγ, δq is selected as p0.1, 0.9q, p0.1, 0.95q, p0.05, 0.9q, and

p0.05, 0.95q. The parameters of the five randomly generated 25 machines are listed in

Table 6.12. For the five machines and precision pairs pγ, δq, the values of pδ are listed

in Table 6.13, the corresponding values of n˚˚OR and qn˚˚OR pγ, δ; ppORpniniq, εq are listed
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in Table 6.14. As we can see, for the five randomly generated machines, the precision

of the estimate pTOR pqn
˚˚
OR pγ, δ; ppORpniniq, εqq is always higher than the desired pγ, δq,

and the values of qn˚˚OR pγ, δ; ppORpniniq, εq are only about 10% to 15% larger than its

true values. Similar results are obtained for the rest 20 machines as well.

Table 6.12. Parameters of five randomly generated machines.

Parameter

Machine
m1 m2 m3 m4 m5

τ 1.7636 1.0458 1.8439 1.8552 1.2197
pOR 0.4609 0.7872 0.7535 0.9640 0.6839
TOR 2.3597 1.0199 3.6003 0.6100 0.9119

Table 6.13. Values of pδ as a function of pγ, δq.

pγ, δq

Machine
m1 m2 m3 m4 m5

(0.1, 0.9) 0.9083 0.9104 0.9188 0.9138 0.9117
(0.1, 0.95) 0.9529 0.9566 0.9554 0.9605 0.9563
(0.05, 0.9) 0.9079 0.9164 0.9096 0.9147 0.9142
(0.05, 0.95) 0.9523 0.9600 0.9607 0.9568 0.9550

Table 6.14. Values of n˚˚ORpγ, δq and qn˚˚OR pγ, δ; ppORpniniq, εq as functions of pγ, δq.

pγ, δq

Machine m1 m2 m3 m4 m5

n˚˚OR qn˚˚OR n˚˚OR qn˚˚OR n˚˚OR qn˚˚OR n˚˚OR qn˚˚OR n˚˚OR qn˚˚OR
(0.1, 0.9) 904 1021 417 462 448 494 291 322 521 577
(0.1, 0.95) 1283 1446 592 654 636 702 413 457 740 818
(0.05, 0.9) 3614 4085 1668 1838 1791 1975 1164 1286 2083 2304
(0.05, 0.95) 5131 5770 2368 2618 2543 2803 1652 1825 2957 3277
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6.10 Summary

This chapter provides analytical methods for analysis and improvement of serial

lines with unreliable machines and cycle overrun. These methods offer the analytics

for modelling, analysis and improvement for a relatively large class of real-world

serial lines, which has not been thus far explored in production systems literature.

In addition, the pα, βq-precision theory is applied to obtain the critical numbers

of cycle overrun measurements (n˚pOR and n˚kOR) and the solutions to the induced

precision and inverse problems for TOR.

Results reported here can be extended in at least two directions. The first one

is to develop similar methods for a wider class of systems, namely, serial lines with

rework, with carriers, and with quality issues, as well as for assembly systems. The

second is to further explore production systems with non-exponential machines and

non-exponential cycle overrun. Several results in this direction are included in Section

6.7, leading to the hypotheses formulated in Subsections 6.7.2 and 6.7.3. Proving

these hypotheses would substantially extend the “safety” of using the exponential

assumption in designing and improving production systems. In addition to these

two areas of future research, a very important one is the application of the methods

developed to production systems on the factory floor.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

The contributions of this dissertation include:

• A method for calculating the n˚T pα, βq of up- and downtime measurements, nec-

essary and sufficient to obtain pα, βq-precise estimates of MTBF and MTTR.

Extended the results to non-exponential case with CV ă 1.

• A method for evaluating the observation time required to collect n˚T pα, βq mea-

surements of machine up- and downtime.

• Evaluation of the induced precision of machine efficiency (e), throughput (TP ),

production lead time (LT ), and work-in-process (WIP ) estimates.

• Solution to the inverse problem for machine efficiency, throughput, production

lead time, and work-in-process.
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• A method for calculating the n˚q pαq, βqq of quality parts measurements, required

to obtain pαq, βqq-precise estimate of machine quality parameter (q).

• Evaluation of the induced precision of quality parts throughput (TPq) estimate,

solution to the inverse problem concerning TPq.

• Analysis of variability contracting/expanding property for e, TP , LT , WIP ,

and TPq.

• Modeling, analysis, bottleneck identification and improvement of production

systems with cycle overrun.

7.2 Future Work

The work in this dissertation can be extended in the following directions:

• Extend the analysis and evaluation of the critical numbers to assembly system

performance metrics, and to performance metrics of production systems with

non-exponential machines.

• Extend the analysis, improvability and bottleneck identification to a wider

class of systems with cycle overrun, namely, serial lines with quality issues and

assembly systems.

• Apply the pα, βq-Precision Theory results to practice and merge them into

automated production system monitoring and improvement software.
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APPENDIX A

Appendix of Chapter 2

A.1 Proof of Theorem 2.1

First, we prove the statement of this theorem for pTup, and then address pTdown.

Note that tup,i’s are iid exponential random variables with parameter λ “ 1{Tup.

This implies that pTuppnq is an Erlang random variable with shape parameter n and

rate parameter nλ. Its cdf is given by

F
pTuppnq

pxq “ P tpTuppnq ď xu “ 1´
n´1
ÿ

i“0

1

i!
e´nλxpnλxqi. (A.1)

Then, from the first expression in (2.3), we obtain:

122



P
!

p1´ αqTup ď pTuppnq ď p1` αqTup

)

“F
pTuppnq

pp1` αqTupq ´ F pTuppnq
pp1´ αqTupq

“

˜

1´
n´1
ÿ

i“0

1

i!
e´nλp1`αqTup pnλp1` αqTupq

i

¸

´

˜

1´
n´1
ÿ

i“0

1

i!
e´nλp1´αqTup pnλp1´ αqTupq

i

¸

“

n´1
ÿ

i“0

1

i!
e´p1´αqnpp1´ αqnqi ´

n´1
ÿ

i“0

1

i!
e´p1`αqnpp1` αqnqi ě β.

(A.2)

Therefore, the critical number n˚pα, βq is the smallest integer n, which satisfies

the inequality:

β ď
n´1
ÿ

i“0

1

i!
e´p1´αqnpp1´ αqnqi ´

n´1
ÿ

i“0

1

i!
e´p1`αqnpp1` αqnqi. (A.3)

Since this expression is independent of λ, it holds also for µ, i.e., for Tdown.

A.2 Justification of Proposition 2.3

According to the central limit theorem, for large n˚pα, βq, Erlang random variable

pTuppn
˚
T q can be approximated by the Gaussian distribution, with mean M “ 1

λ
“ Tup

and variance V “ 1
λ2n˚

“
T 2
up

n˚
. Therefore, the probability in (2.3) can be approxi-
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mated as:

P
!

p1´ αqTup ď pTuppn
˚
T q ď p1` αqTup

)

“ P

$

&

%

p1´αqTup´Tup
Tup?
n˚

ď
pTuppn

˚
T
q´Tup

Tup?
n˚

ď
p1`αqTup´Tup

Tup?
n˚

,

.

-

« P
 

|Z| ď α
?
n˚
(

,

(A.4)

where Z „ N p0, 1q denotes the standard normal distribution. Therefore, the Gaus-

sian approximation of n˚pα, βq can be obtained from the following equation:

β “

ż α
?
n˚G

´α
?
n˚G

fZpzqdz “ erf

˜

α
a

n˚G
?

2

¸

, (A.5)

i.e.,

n˚Gpα, βq “

S

2

ˆ

erf´1pβq

α

˙2
W

. (A.6)
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APPENDIX B

Appendix of Chapter 3

B.1 Justification of Proposition 3.1

Denote ρ “ Tdown
Tup

and pρ “
pTdown
pTup

. Since p1 ´ αqTup ď pTup ď p1 ` αqTup, and

0 ă p1´ αqTdown ď pTdown ď p1` αqTdown, we have:

p1´αqTup
p1`αqTdown

ď
pTup

pTdown
ď

p1`αqTup
p1´αqTdown

ô 1´α
1`α

1
ρ
ď 1

pρ
ď 1`α

1´α
1
ρ

ô 1´α
1`α

pρ ď ρ ď 1`α
1´α

pρ

ô ´2α
1`α

pρ ď ρ´ pρ ď 2α
1´α

pρ.

(B.1)

Dividing (B.1) by p1` ρqp1` pρq, and substituting 1
1`ρ

with e, and 1
1`pρ

with pe, we

obtain:

´2α

1` α
ep1´ peq ď pe´ e ď

2α

1´ α
ep1´ peq. (B.2)
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For small α, using Taylor expansion we have:

´2αep1´ peq `Opα2
q ď pe´ e ď 2αep1´ peq `Opα2

q. (B.3)

Therefore, we obtain:

|e´ pe|

e
ď αe “ 2p1´ peqα `Opα2

q. (B.4)

B.2 Proof of Theorem 3.2

As discussed in Appendix A, Y pnq “
řn
i“1 tup,i obeys Erlang distribution with

shape parameter n and scale parameter Tup. Therefore, the pdf of Y pnq is

fY pnqpxq “ p
1

Tup
q
n
¨
xn´1e

´ x
Tup

pn´ 1q!
,

and the pdf of pTuppnq “
Y pnq
n

is

f
pTuppnq

pxq “ n ¨ p
1

Tup
q
n
¨
pn ¨ xqn´1e

´ n¨x
Tup

pn´ 1q!
.

Similarly,

f
pTdownpnq

pxq “ n ¨ p
1

Tdown
q
n
¨
pn ¨ xqn´1e

´ n¨x
Tdown

pn´ 1q!
.
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Since pTuppnq and pTdownpnq are independent,

f
pTuppnq, pTdownpnq

px, yq “ f
pTuppnq

pxq ¨ f
pTdownpnq

pyq.

Using the notations ρ “ Tdown
Tup

and pρ “
pTdownpnq
pTuppnq

, we can write:

P
!

|e´pepn˚q|
e

ď αe

)

“ P
 

´2α
`

1´ pepn˚q
˘

e ď e´ pepn˚q ď 2α
`

1´ pepn˚q
˘

e
(

“ P
!

2α pρ
1`pρ

1
1`ρ

ď 1
1`ρ

´ 1
1`pρ

ď 2α pρ
1`pρ

1
1`ρ

)

“ P
 

1
1`2α

ρ ď pρ ď 1
1´2α

ρ
(

.

(B.5)

Denote ρ1 “
1

1`2α
ρ, and ρ2 “

1
1´2α

ρ, we derive:

P
!

|e´pepn˚q|
e

ď αe

)

“
ş`8

0

şρ2x

ρ1x
f
pTuppn˚q

pxqf
pTdownpn˚q

pyqdydx

“ p n˚2

TupTdown
qn
˚

p 1
pn˚´1q!

q2
ş`8

0
xn

˚´1e
´ n˚

Tup
x şρ2x

ρ1x
yn

˚´1e
´ n˚

Tdown
y
dydx,

(B.6)

where
şρ2x

ρ1x
yn

˚´1e
´ n˚

Tdown
y
dy

“ e
´ n˚

Tdown
yřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

p
Tdown
n˚
qi`1yn

˚´1´i|ρ2xρ1x

“ e
´ n˚

Tdown
ρ1xřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

p
Tdown
n˚
qi`1pρ1xq

n˚´1´i´

e
´ n˚

Tdown
ρ2xřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

p
Tdown
n˚
qi`1pρ2xq

n˚´1´i.

(B.7)
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Therefore,

P
!

|e´pepn˚q|
e

ď αe

)

“ p n˚2

TupTdown
qn
˚

p 1
pn˚´1q!

q2
ş`8

0
xn

˚´1e
´ n˚

Tup
x

`

e
´ n˚

Tdown
ρ1xřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

p
Tdown
n˚
qi`1pρ1xq

n˚´1´i´

e
´ n˚

Tdown
ρ2xřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

p
Tdown
n˚
qi`1pρ2xq

n˚´1´i
˘

dx.

(B.8)

Denote

A “
ş`8

0
xn

˚´1e
´ n˚

Tup
x`
e
´ n˚

Tdown
ρ1xřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

ˆ

p
Tdown
n˚
qi`1pρ1xq

n˚´1´i
˘

dx,

(B.9)

and

B “
ş`8

0
xn

˚´1e
´ n˚

Tup
x`
e
´ n˚

Tdown
ρ2xřn˚´1

i“0
pn˚´1q!
pn˚´1´iq!

ˆ

p
Tdown
n˚
qi`1pρ2xq

n˚´1´i
˘

dx,

(B.10)

we can write:

P

"

|e´ pepn˚q|

e
ď αe

*

“ p
n˚2

TupTdown
q
n˚
p

1

pn˚ ´ 1q!
q
2
`

A´ B
˘

. (B.11)
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We obtain:

A “
n˚´1
ÿ

i“0

pn˚ ´ 1q!

pn˚ ´ 1´ iq!
p
Tdown
n˚

q
i`1ρn

˚´1´i
1

ż `8

0

e
´p n

˚

Tup
` n˚

Tdown
ρ1qxx2n

˚´2´idx

“

n˚´1
ÿ

i“0

pn˚ ´ 1q!

pn˚ ´ 1´ iq!
p
Tdown
n˚

q
i`1ρn

˚´1´i
1

ˆ

e
´p n

˚

Tup
` n˚

Tdown
ρ1qx
ˆ

a
ÿ

j“0

p´1qj
a!

pa´ jq!
”

´p n
˚

Tup
` n˚

Tdown
ρ1q

ıj`1x
a´j|`80

˙

“n˚´2n
˚
n˚´1
ÿ

i“0

pn˚ ´ 1q!p2n˚ ´ 2´ iq!

pn˚ ´ 1´ iq!
T n

˚

up T
n˚

downp1` 2αqn
˚

p2` 2αq´2n
˚`i`1.

(B.12)

Similarly,

B “ n˚´2n
˚ řn˚´1

i“0
pn˚´1q!p2n˚´2´iq!

pn˚´1´iq!
T n

˚

up T
n˚

downp1´ 2αqn
˚

p2´ 2αq´2n
˚`i`1. (B.13)

Substitute values of A and B in (B.11), we get:

P
!

|e´pepn˚q|
e

ď αe

)

“
řn˚´1
i“0

p2n˚´2´iq!
pn˚´1´iq!pn˚´1q!

“

p1` 2αqn
˚

p2` 2αq´2n
˚`i`1

´p1´ 2αqn
˚

p2´ 2αq´2n
˚`i`1

‰

.

(B.14)

Thus, by (3.2), we have:

β “
řn˚´1
i“0

p2n˚´2´iq!
pn˚´1´iq!pn˚´1q!

“

p1` 2αqn
˚

p2` 2αq´2n
˚`i`1

´p1´ 2αqn
˚

p2´ 2αq´2n
˚`i`1

‰

.

(B.15)
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B.3 Justification of Proposition 3.3

Consider the estimate of pepn˚T q given by:

pepn˚T q “
pTuppn

˚
T q

pTuppn˚T q `
pTdownpn˚T q

, (B.16)

where pTup and pTdown are pα, βq-precise estimates of Tup and Tdown, and n˚T is the

critical number corresponding to pα, βq. From the pdfs of pTup and pTdown given by

f
pTuppn

˚
T q
pxq “ n˚T ¨

ˆ

1

Tup

˙n˚T

¨
pn˚T ¨ xq

n˚T´1e
´
n˚
T
¨x

Tup

pn˚T ´ 1q!
,

f
pTdownpn

˚
T q
pxq “ n˚T ¨

ˆ

1

Tdown

˙n˚T

¨
pn˚T ¨ xq

n˚T´1e
´

n˚
T
¨x

Tdown

pn˚T ´ 1q!
,

(B.17)

we can derive the pdf of pepn˚T q:

f
pepn˚T q

pxq “
p2n˚T ´ 1q!

pn˚T ´ 1q!2
1

xp1´ xq

´

Tup
Tdown

`

1
x
´ 1

˘

` 2` Tdown
Tup

`

1
x
´ 1

˘´1
¯´n˚T

, x P p0, 1q.

(B.18)

Being non-analytic, this expression is not convenient for analysis and calculations.

Therefore, we use two approximations of (B.16), leading to analytic pdf’s. The first

one is based on representing (B.16) as
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peNLpn
˚
T q “

pTup,Gpn
˚
T q

pTup,Gpn˚T q `
pTdown,Gpn˚T q

, (B.19)

where pTup,Gpn
˚
T q and pTdown,Gpn

˚
T q are Gaussian random variables with the pdf’s

N pTup,
T 2
up

n˚T
q and N pTdown,

T 2
down

n˚T
q, respectively, and NL stands for “nonlinear”, in-

dicating that (B.19) is a nonlinear function of its arguments. Using the formula for

pdf of ratio of Gaussian random variables (Marsaglia 2006), we obtain:

f
peNLpn

˚
T q
pxq “

T 2
up`T

2
down

Tup¨Tdown
fW

´

Tup
Tdown

´
Tup¨Tdown
T 2
up`T

2
down

¨ x
¯

, (B.20)

where

fW pwq “
expp´n˚T q

pw2`1qπ

#

1`
b

π
2p1`w2q

erf

˜

c

n˚T
2p1`w2qpT 2

up`T
2
downq

¨
`

Tup ` Tdown ` pTup ´ Tdownqw
˘

¸

exp

˜

n˚T

`

pTup`Tdownq`pTup`Tdownqw
˘2

2pTup`Tdownqp1`w2q

¸

¨

ˆ?
n˚T pTup`Tdownq?
T 2
up`T

2
down

`

?
n˚T pTup´Tdownq?
T 2
up`T

2
down

w

˙

+

.

(B.21)

While this pdf is indeed analytic, it is relatively complex. Therefore, we use

Taylor expansion of (B.19) in order to obtain its linear approximation. As a result,

with the accuracy up to OpppTup,Gpn
˚
T q ´ Tupq

2q and OpppTdown,Gpn
˚
T q ´ Tdownq

2q, we
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obtain:

peLpn
˚
T q “e`

Tdown
pTup`Tdownq2

´

pTup,Gpn
˚
T q ´ Tup

¯

`
´Tup

pTup`Tdownq2

´

pTdown,Gpn
˚
T q ´ Tdown

¯

,

(B.22)

where L stands for “linear”. Since pTup,Gpn
˚
T q and pTdown,Gpn

˚
T q are Gaussian, peLpn

˚
T q

is also Gaussian with mean and variance given by

ErpeLpn
˚
T qs “ e, V arrpeLpn

˚
T qs “

2

n˚T
e2p1´ eq2. (B.23)

In the subsequent discussions, we denote peLpn
˚
T q as peGpn

˚
T q. Its pdf and cdf are given

by:

f
peGpn

˚
T q
pxq “

a

n˚T
2
?
πep1´ eq

exp

ˆ

´
n˚T px´ eq

2

4e2p1´ eq2

˙

, (B.24)

F
peGpn

˚
T q
pxq “

1

2

˜

1` erf

˜

a

n˚T px´ eq

2ep1´ eq

¸¸

. (B.25)

To select which one of the two approximations, (B.20), (B.21) or (B.24), should

be used, we investigate the “distance” of both from the original one, (B.18). This

investigation is carried out using the Kullback-Leibler divergence (KLD) and its

symmetrized version Jensen-Shannon divergence (JSD) (Kullback 1997; Lin 1991)

defined by:

KLDpX||Y q :“
ş8

´8
fXpzqlog

´

fXpzq
fY pzq

¯

dz,

JSDpX||Y q :“ 1
2
KLD pX||X`Y

2
q ` 1

2
KLD pY ||X`Y

2
q ,

(B.26)

where X and Y are random variables with pdfs fXpzq and fY pzq, respectively.
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To quantify the relationships within all pairs of random variables comprised of

peNLpn
˚
T q, peGpn

˚
T q and pepn˚T q, we calculate KLD and JSD numerically for n˚T “

t50, 100, 200, 300, 400, 500u and e “ t0.5, 0.7, 0.9u. The results are shown in Figure

B.1. As one can see:

• JSDppepn˚T q||peNLpn
˚
T qq is smaller than JSDppepn˚T q||peGpn

˚
T qq;

• JSDppepn˚T q||peGpn
˚
T qq is approximately equal to JSDppeNLpn

˚
T q||peGpn

˚
T qq;

• however, for all pairs ppepn˚T q, peNLpn
˚
T qq, ppepn

˚
T q, peGpn

˚
T qq and ppeNLpn

˚
T q, peGpn

˚
T qq,

the values of JSD are quite small; indeed, while maximum of JSD “ ln 2, the

values of JSD for all three pairs are three orders of magnitude smaller.
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Figure B.1. KLD and JSD between pepn˚T q, peNLpn
˚
T q and peGpn

˚
T q

Thus, from the point of view of JSD, either peGpn
˚
T q or peNLpn

˚
T q can be used.

However, since f
peGpn

˚
T q
pxq is much simpler than f

peNLpn
˚
T q
pxq, the former is used below.

Specifically, to evaluate the right-hand side of the inequality (3.2) with X “ e, we
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write:

P

"

|e´ pepn˚T q|

e
ď 2p1´ pepn˚T qqα

*

“P

"

e´ 2eα

1´ 2eα
ď pepn˚T q ď

e` 2eα

1` 2eα

*

“P
 

pepn˚T q ď e` 2ep1´ eqα `Opα2
q
(

´ P
 

pepn˚T q ď e´ 2ep1´ eqα `Opα2
q
(

.

(B.27)

To approximate (B.27), we replace pepn˚T q by peGpn
˚
T q. Thus, we obtain:

P

"

|e´ pepn˚T q|

e
ď 2p1´ pepn˚T qqα

*

«P tpepn˚T q ď e` 2ep1´ eqαu ´ P tpepn˚T q ď e´ 2ep1´ eqαu

“
1

2

˜

erf

˜

a

n˚T pe` 2ep1´ eqα ´ eq

2ep1´ eq

¸¸

´
1

2

˜

erf

˜

a

n˚T pe´ 2ep1´ eqα ´ eq

2ep1´ eq

¸¸

“ erfpα
a

n˚T q “ βe,G.

(B.28)

Note that in expression (3.6), the subscript G is omitted to simplify notations.

B.4 Justification of Proposition 3.4

It follows from (3.3) and (3.6) that

βe “ erf

ˆ

α
b

n˚T pα, βq

˙

“ erf

˜

αe
a

n˚T pα, βq

2p1´ pepn˚T pα, βqqq

¸

. (B.29)
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For a given pγ, δq, this expression can be rewritten as

δ “ erf

˜

γ
a

n˚˚e pγ, δq

2p1´ pepn˚˚e pγ, δqqq

¸

, (B.30)

where n˚˚e pγ, δq is the critical number of measurements to obtain pγ, δq-precise esti-

mate of e. Solving (B.30) for n˚˚e , we obtain:

n˚˚e pγ, δq “

S

ˆ

2p1´ pepn˚˚e pγ, δqqq erf´1pδq

γ

˙2
W

. (B.31)
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B.5 Additional Simulation Results of Approximation Pro-

cedure 1 for n˚˚e

Table B.1. Parameters of randomly created machines.

Parameters

Machine
m6 m7 m8 m9 m10

Tup 8.80 11.70 16.15 46.56 10.55

Tdown 4.86 4.51 4.52 5.00 4.27

e 0.64 0.72 0.78 0.90 0.71

Parameters

Machine
m11 m12 m13 m14 m15

Tup 35.45 6.41 13.19 10.97 30.80

Tdown 3.01 3.58 4.19 3.50 4.39

e 0.92 0.64 0.76 0.76 0.88

Parameters

Machine
m16 m17 m18 m19 m20

Tup 8.24 8.85 17.68 21.89 6.32

Tdown 4.56 3.31 4.97 4.58 3.97

e 0.64 0.73 0.78 0.83 0.61

Parameters

Machine
m21 m22 m23 m24 m25

Tup 5.98 10.27 9.71 10.88 19.79

Tdown 3.52 3.91 3.12 3.14 4.51

e 0.63 0.72 0.76 0.78 0.81

137



Table B.2. Values of pδ as a function of pγ, δq.

pγ, δq

Machine
m6 m7 m8 m9 m10

(0.1, 0.9) 0.9120 0.9169 0.9681 0.9987 0.9164

(0.1, 0.95) 0.9539 0.9625 0.9748 0.9999 0.9601

(0.05, 0.9) 0.9154 0.9248 0.9331 0.9907 0.9240

(0.05, 0.95) 0.9539 0.9648 0.9676 0.9937 0.9613

pγ, δq

Machine
m11 m12 m13 m14 m15

(0.1, 0.9) 0.9996 0.9103 0.9529 0.9517 0.9969

(0.1, 0.95) 0.9999 0.9561 0.9591 0.9635 0.9997

(0.05, 0.9) 0.9973 0.9152 0.9295 0.9313 0.9646

(0.05, 0.95) 0.9997 0.9586 0.9665 0.9674 0.9858

pγ, δq

Machine
m16 m17 m18 m19 m20

(0.1, 0.9) 0.9141 0.9185 0.9682 0.9924 0.9128

(0.1, 0.95) 0.9561 0.9609 0.9762 0.9958 0.9572

(0.05, 0.9) 0.9173 0.9288 0.9319 0.9480 0.9199

(0.05, 0.95) 0.9595 0.9640 0.9716 0.9781 0.9593

pγ, δq

Machine
m21 m22 m23 m24 m25

(0.1, 0.9) 0.9126 0.9204 0.9530 0.9702 0.9870

(0.1, 0.95) 0.9535 0.9572 0.9579 0.9733 0.9927

(0.05, 0.9) 0.9150 0.9230 0.9305 0.9336 0.9454

(0.05, 0.95) 0.9606 0.9631 0.9661 0.9671 0.9741
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Table B.3. Values of n˚˚e pγ, δq and qn˚˚e pγ, δ; pe
ε
iniq as functions of pγ, δq.

pγ, δq

Machine m6 m7 m8 m9 m10

n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e

(0.1, 0.9) 69 85 42 56 26 40 6 30 45 60

(0.1, 0.95) 98 120 60 80 37 54 8 30 64 84

(0.05, 0.9) 275 337 168 223 104 151 21 47 180 237

(0.05, 0.95) 390 478 238 318 148 215 29 66 256 337

pγ, δq

Machine m11 m12 m13 m14 m15

n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e

(0.1, 0.9) 4 30 70 86 32 45 32 45 9 30

(0.1, 0.95) 5 30 99 121 45 63 45 63 12 31

(0.05, 0.9) 14 37 278 339 126 176 127 178 34 66

(0.05, 0.95) 19 51 395 484 179 252 180 253 48 93

pγ, δq

Machine m16 m17 m18 m19 m20

n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e

(0.1, 0.9) 69 85 41 55 27 40 17 32 81 97

(0.1, 0.95) 98 121 58 77 38 54 23 39 115 138

(0.05, 0.9) 275 338 161 216 105 153 65 105 323 387

(0.05, 0.95) 391 479 229 306 149 217 92 149 458 546

pγ, δq

Machine m21 m22 m23 m24 m25

n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e n˚˚e qn˚˚e

(0.1, 0.9) 75 90 42 56 33 46 28 41 19 34

(0.1, 0.95) 106 128 59 78 46 64 39 57 27 43

(0.05, 0.9) 298 361 165 220 129 179 109 158 75 118

(0.05, 0.95) 422 513 234 311 182 254 155 223 106 167
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B.6 Justification of Proposition 3.5

To justify this proposition, we use Monte Carlo simulations to numerically eval-

uate βindTP for various randomly generated serial lines, and check whether inequality

(3.13) holds for each case. Specifically, we consider serial production lines with

M P t3, 5, 10, 15, 20u machines. For each M , we generate 100 lines, with machine

and buffer parameters randomly and equiprobably selected from the following sets:

Tdown,i P r3, 10s, ei P r0.6, 0.95s, Tup,i “ Tdown,i
ei

1´ ei
, ci P r1, 2s, i “ 1, . . . ,M ;

Buffer capacityNi “ rri maxtciTdown,i, ci`1Tdown,i`1us, ri P r1, 3s, i “ 1, . . . ,M´1.

For each line, we consider n˚T pα, βq P t108, 164, 207, 270, 384u, which correspond

to the critical number of measurements for pTup,i and pTdown,i, i “ 1, . . . ,M , with

pα, βq P tp0.1, 0.7q, p0.1, 0.8q, p0.1, 0.85q, p0.1, 0.90q, p0.1, 0.95qu, respectively. There-

fore, we have 2500 combinations of system parameters and numbers of up- and

downtime measurements. For each of these combinations, we generate n˚T pα, βq of

up- and downtime measurements of each individual machine, and calculate the sys-

tem throughput using the aggregation procedure of Bai et al. (2021). This process

is repeated 10,000 times for each of the combinations, and βindTP is evaluated as the

frequency of the event in the right-hand side of (B.32), i.e.,

pβindTP “
number of times

|TP´yTP pn˚T pα,βqq|

TP
ď αindTP

10000
. (B.32)

As a result, we obtain that for all cases analyzed, pβindTP exceeds erfpα
a

n˚T pα, βqq. In
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other words, Proposition 3.5 is true for all 2500 combinations considered.

B.7 Justification of Proposition 3.6

It follows from (3.12) and (3.13) that

βindTP ą erf

˜

αindTP
a

n˚T pα, βq

2p1´ peTP pn˚T pα, βqqq

¸

. (B.33)

For a given pγ, δq, this expression can be rewritten as

δ ą erf

˜

γ
a

n˚˚TP pγ, δq

2p1´ peTP pn˚˚TP pγ, δqqq

¸

, (B.34)

where n˚˚TP pγ, δq is the critical number of measurements to obtain pγ, δq-precise esti-

mate of TP . Solving (B.34) for n˚˚TP , we obtain:

n˚˚TP pγ, δq ă

S

ˆ

2p1´ peTP qerf´1pδq

γ

˙2
W

“

»

—

—

—

—

¨

˝

2
´

1´
yTP
cM

¯

erf´1pδq

γ

˛

‚

2
fi

ffi

ffi

ffi

ffi

. (B.35)

B.8 Justification of Proposition 3.7

To simplify the notations, in this section we denote pTuppn
˚
T pα, βqq and pTdownpn

˚
T pα, βqq

as pTup and pTdown, respectively.
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The inequalities | pTup´Tup|

Tup
ď α and | pTdown´Tdown|

Tdown
ď α can be rewritten as

pTup
1` α

ď Tup ď
pTup

1´ α
,

pTdown
1` α

ď Tdown ď
pTdown
1´ α

. (B.36)

For Tup and Tdown within the bounds (B.36), the bounds for lt, calculated using

(3.15), are

ltmin ď lt ď ltmax, (B.37)

where ltmax is evaluated by replacing Tup and Tdown by
pTup
1`α

and
pTdown
1´α

; similarly, ltmin

is evaluated by replacing Tup and Tdown by
pTup
1´α

and
pTdown
1`α

, respectively. Thus, the

bounds for the ratio
plt
lt

, where plt is evaluated using (3.16), are given by

plt

ltmax
ď

plt

lt
ď

plt

ltmin
. (B.38)

Since both ltmin and ltmax are functions of α ăă 1, using Taylor expansion, with

accuracy up to Opα2q, we obtain:

plt

ltmin
“ 1`

˜

plt´ 1

plt

¸

ˆ

1`
2ppρ` pe´ 2pρpeq

1´ pρ

˙

α,

plt

ltmax
“ 1´

˜

plt´ 1

plt

¸

ˆ

1`
2ppρ` pe´ 2pρpeq

1´ pρ

˙

α.

(B.39)
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Combining both expressions in (B.39), we have:

´

˜

plt´ 1

plt

¸

ˆ

1`
2ppρ` pe´ 2pρpeq

1´ pρ

˙

α ď
plt´ lt

lt
ď

˜

plt´ 1

plt

¸

ˆ

1`
2ppρ` pe´ 2pρpeq

1´ pρ

˙

α

ðñ
|plt´ lt|

lt
ď

˜

plt´ 1

plt

¸

ˆ

1`
2ppρ` pe´ 2pρpeq

1´ pρ

˙

α.

(B.40)

Thus, αindlt with accuracy up to Opα2q is given by:

αindlt “

˜

plt´ 1

plt

¸

ˆ

1`
2ppρ` pe´ 2pρpeq

1´ pρ

˙

α. (B.41)

B.9 Justification of Proposition 3.8

The condition (3.19) can be rewritten as

p1´ peqpe ą
τ

4pTdown
. (B.42)

We prove by contradiction that this inequality implies
αindlt
α
ą 1. Assume (B.42)

holds and
αindlt
α
ď 1. Then,

αindlt
α

ď 1 ðñ
p1´ peqppρ` pe´ 2pepρq

p1´ pρq2
ď

τ

4pTdown
. (B.43)

Denote the expression p1´peqppρ`pe´2pepρq
p1´pρq2

in (B.43) as Kppe, pρq, and observe that

BK

Bpρ
“
p1´ peqp1` pρ´ 2pepρq

p1´ pρq
ą 0. (B.44)
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Inequality (B.44) indicates that K is an increasing function of pρ. In addition, for

pρ “ 0, K “ p1´ peqpe. Thus, for pρ ě 0, we have

Kppe, pρq ě p1´ peqpe. (B.45)

Combining the above with the assumption (B.42), we obtain:

Kppe, pρq ě p1´ peqpe ą
τ

4pTdown
, (B.46)

which contradicts with (B.43).

On the other hand, if
αindlt
α

ą 1, i.e., Kppe, pρq “ p1´peqppρ`pe´2pepρq
p1´pρq2

ą τ

4 pTdown
, then

p1´ peqpe ą τ

4 pTdown
as well.

B.10 Justification of Proposition 3.9

To simplify notations, in this section we denote n˚T pα, βq as n. Similar to the

approach adopted in Appendix B, we use Taylor expansion to obtain a linear ap-

proximation of pltpnq with respect to its arguments pTuppnq and pTdownpnq, denoted as

pltLpnq:

pltLpnq “ lt`
Bpltpnq

B pTuppnq

∣∣∣∣
pTuppnq“Tup, pTdownpnq“Tdown

´

pTuppnq ´ Tup

¯

`
Bpltpnq

B pTdownpnq

∣∣∣∣
pTuppnq“Tup, pTdownpnq“Tdown

´

pTdownpnq ´ Tdown

¯

.

(B.47)

Since pTuppnq and pTdownpnq can be approximated by Gaussian distributions N pTup,
T 2
up

n
q
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and N pTdown,
T 2
down

n
q, respectively, pltLpnq also can be approximated by a Gaussian

random variable, pltGpnq, with expected value equal to lt, and variance

var
´

pltGpnq
¯

“

˜

Bpltpnq

B pTuppnq

∣∣∣∣
pTuppnq“Tup, pTdownpnq“Tdown

¸2

varppTuppnqq

˜

Bpltpnq

B pTdownpnq

∣∣∣∣
pTuppnq“Tup, pTdownpnq“Tdown

¸2

varppTdownpnqq

“
1

n
plt´ 1q2

pρ` e´ 2eρq2 ` p1` e´ 2eρq2

p1´ ρq2
.

(B.48)

Therefore, the Gaussian approximation of βindlt is given by

βindlt “ P

˜

|pltpnq ´ lt|

lt
ď αindlt

¸

« P

˜

|pltGpnq ´ lt|

lt
ď αindlt

¸

“ P
´

pltGpnq ď p1` α
ind
lt qlt

¯

´ P
´

pltGpnq ď p1´ α
ind
lt qlt

¯

“
1

2

¨

˚

˚

˝

1` erf

¨

˚

˚

˝

p1` αindlt qlt´ lt
c

2var
´

pltGpnq
¯

˛

‹

‹

‚

˛

‹

‹

‚

´
1

2

¨

˚

˚

˝

1` erf

¨

˚

˚

˝

p1´ αindlt qlt´ lt
c

2var
´

pltGpnq
¯

˛

‹

‹

‚

˛

‹

‹

‚

« erf

ˆ

αA

c

n

2

˙

,

(B.49)

where A “
b

p1`pρ`2pe´4pepρq
ppρ`pe´2pepρq2`p1`pe´2pepρq2

.

B.11 Justification of Proposition 3.10

As mentioned in Appendix B, pltpn˚T pα, βqq can be approximated by a Gaussian
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random variable pltGpn
˚
T pα, βqq „ N

´

lt, 1
n˚T pα,βq

plt´ 1q2 pρ`e´2eρq
2`p1`e´2eρq2

p1´ρq2

¯

. Thus,

for any given accuracy γ, the Gaussian approximation of its probability δ is given by

δ “P

˜

|pltpn˚˚LT pγ, δqq ´ lt|

lt
ď γ

¸

« P

˜

|pltGpn
˚˚
LT pγ, δqq ´ lt|

lt
ď γ

¸

“
1

2

¨

˚

˚

˝

1` erf

¨

˚

˚

˝

p1` γqlt´ lt
c

2var
´

pltGpn˚˚LT pγ, δqq
¯

˛

‹

‹

‚

˛

‹

‹

‚

´
1

2

¨

˚

˚

˝

1` erf

¨

˚

˚

˝

p1´ γqlt´ lt
c

2var
´

pltGpn˚˚LT pγ, δqq
¯

˛

‹

‹

‚

˛

‹

‹

‚

«erf

˜

d

n˚˚LT pγ, δqp1´ pρq2

2 pppρ` pe´ 2pepρq2 ` p1` pe´ 2peρq2q

˜

plt´ 1

plt

¸

δ

¸

.

(B.50)

Solving for n˚˚LT pγ, δq, we obtain:

n˚˚LT pγ, δq “

»

—

—

—

2R

˜

plt´ 1

plt

¸2
ˆ

erf´1pδq

γ

˙2
fi

ffi

ffi

ffi

, (B.51)

where
R “

ppe` pρ´ 2pρpeq2 ` p1` pe´ 2pρpeq2

p1´ pρq2
. (B.52)

B.12 Justification of Proposition 3.11

Using the same arguments as in Appendix B and substituting WIP instead of
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lt, we obtain:
{WIP

WIPmax
ď

{WIP

WIP
ď

{WIP

WIPmin
. (B.53)

Similar to Appendix B, taking Taylor expansion, with accuracy up to Opα2q we have:

{WIP

WIPmin
“ 1`

1` 2pe` pρ´ 4pepρ

1´ pρ
α,

{WIP

WIPmax
“ 1´

1` 2pe` pρ´ 4pepρ

1´ pρ
α.

(B.54)

Combining both expressions in (B.54), we obtain:

´
1` 2pe` pρ´ 4pepρ

1´ pρ
α ď

{WIP ´WIP

WIP
ď

1` 2pe` pρ´ 4pepρ

1´ pρ
α (B.55)

ðñ
|{WIP ´WIP |

WIP
ď

1` 2pe` pρ´ 4pepρ

1´ pρ
α. (B.56)

Thus, with accuracy up to Opα2q, αindWIP is given by

αindWIP “
1` 2pe` pρ´ 4pepρ

1´ pρ
α. (B.57)

B.13 Justification of Proposition 3.12

Follows exactly the Justification of Proposition 3.9. The only difference is that in

the expressions (B.47)-(B.49), lt, plt, plt´ 1q2 should be substituted by WIP , {WIP ,

pWIP q2.
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B.14 Justification of Proposition 3.13

Follows Appendix B with lt, plt, plt ´ 1q2 substituted by WIP , {WIP , pWIP q2

and taking into the account that

varp{WIPGpn
˚˚
WIP pα, βqqq “

1

n˚pα, βq
pWIP q2

pρ` e´ 2eρq2 ` p1` e´ 2eρq2

p1´ ρq2
.

(B.58)

As a result, we obtain:

n˚˚WIP pγ, δq “

S

2R

ˆ

erf´1pδq

γ

˙2
W

, (B.59)

where R is given by (B.52).
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APPENDIX C

Appendix of Chapter 4

C.1 Justification of Proposition 4.1

The Gaussian approximation of pqpnq is N
´

q, p1´qqq
n

¯

(see Feller (2015)). There-

fore,

βq “P

ˆ

|q ´ pqpnq|

q
ď αq

˙

“ P pp1´ αqqq ď pqpnq ď p1` αqqqq

«
1

2

¨

˝1` erf

¨

˝

p1` αqqq
?

2
b

p1´qqq
n

˛

‚

˛

‚´
1

2

¨

˝1` erf

¨

˝

p1´ αqqq
?

2
b

p1´qqq
n

˛

‚

˛

‚

“ erf

¨

˝

αq
?
n

?
2
b

1´q
q

˛

‚« erf

¨

˝

αq
b

n˚q pαq, βqq

?
2
b

1´pq
pq

˛

‚.

(C.1)

Solving for n˚q pαq, βqq, we obtain a Gaussian approximation of the critical number
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as follows:

n˚q pαq, βqq “

S

2

ˆ

1´ pq

pq

˙ˆ

erf´1pβqq

αq

˙2
W

. (C.2)

C.2 Justification of Proposition 4.2

For pqipn
˚
q pαq, βqqq, i “ 1, . . . , k, satisfying p1´αqqqi ď pqipn

˚
q pαq, βqqq ď p1`αqqqi,

we have:

p1´ αqq
k

k
ź

i“1

qi ď
k
ź

i“1

pqi ď p1` αqq
k

k
ź

i“1

qi

ðñ p1´ kαq `Opα
2
qqq

k
ź

i“1

qi ď
k
ź

i“1

pqi ď p1` kαq `Opα
2
qqq

k
ź

i“1

qi.

(C.3)

Thus,

p1´ kαq `Opα
2
qqqTP

k
ź

i“1

qi ď TP
k
ź

i“1

pqi ď p1` kαq `Opα
2
qqqTP

k
ź

i“1

qi

ðñ p1´ kαq `Opα
2
qqqTPq ď

yTP q ď p1` kαq `Opα
2
qqqTPq

ðñ
|yTP q ´ TPq|

TPq
ď kαq `Opα

2
qq.

(C.4)

Therefore, with accuracy up to Opα2
qq,

αindTPq “ kαq. (C.5)
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C.3 Justification of Proposition 4.3

To simplify the notations, in this subsection we denote n˚q pαq, βqq as n, and
śk

i“1 pqipnq “
pQpnq.

Since the Gaussian approximation of pqipnq, i “ 1, . . . , k, is N
´

qi,
p1´qiqqi

n

¯

, the

expected value and variance of pQpnq are:

Ep pQpnqq “
k
ź

i“1

qi “: Q, (C.6)

varp pQpnqq “Ep pQpnq2q ´ Ep pQpnqq2

“

k
ź

i“1

`

varppqipnqq ` Eppqipnqq
2
˘

´

k
ź

i“1

Eppqipnqq
2

“

k
ź

i“1

ˆ

p1´ qiqqi
n

` q2i

˙

´

k
ź

i“1

q2i .

(C.7)

If k ě 2, with accuracy up to Op 1
nk
q, this expression becomes:

varp pQpnqq “
1

n

k
ÿ

i“1

śk
j“1 q

2
j

q2i
qip1´ qiq “

1

n

k
ÿ

i“1

Q2

ˆ

1

qi
´ 1

˙

. (C.8)

The last term in (C.8) has the following upper bound (see the proof below):

k
ÿ

i“1

Q2

ˆ

1

qi
´ 1

˙

ă
1

4
. (C.9)
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This leads to the following:

βindTPq “ P

˜

|yTP qpnq ´ TPq|

TPq
ď αindTPq

¸

“ P

˜

|TP
śk

i“1 pqi ´ TP
śk

i“1 qi|

TP
śk

i“1 qi
ď αindTPq

¸

“ P

˜

| pQpnq ´Q|

Q
ď αindTPq

¸

.

(C.10)

Keeping in mind that pQpnq can be approximated by a Gaussian distribution

N
´

Q, 1
n

řk
i“1Q

2
´

1
qi
´ 1

¯¯

and using (C.9) in (C.10), we obtain:

βindTPq “ P

˜

| pQpnq ´Q|

Q
ď αindTPq

¸

«
1

2

¨

˝1` erf

¨

˝

p1` αindTPqqQ´Q
b

2varp pQpnqq

˛

‚

˛

‚´
1

2

¨

˝1` erf

¨

˝

p1´ αindTPqqQ´Q
b

2varp pQpnqq

˛

‚

˛

‚

ą erf

¨

˝

αindTPqQ
?

2
b

1
4n

˛

‚“ erf
´?

2nkαqQ
¯

.

(C.11)

For Q ą 0.5, we have:

βindTPq ą erf

ˆ

kαq
?

2

b

n˚q pαq, βqq

˙

, (C.12)

which coincides with the statement of Proposition 4.3.
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To prove (C.9), introduce the notation:

Skpq1, . . . , qkq “
k
ÿ

i“1

Q2

ˆ

1

qi
´ 1

˙

. (C.13)

The partial derivative BSk
Bqi

is

BSk
Bqi

“
ÿ

l‰i

2qi

˜

ź

h‰l,h‰i

g2h

¸

glp1´ glq `

˜

ź

l‰i

q2l

¸

qip1´ 2qiq, for i “ 1, . . . , k. (C.14)

Setting BSk
Bqi
“ 0, we obtain:

ÿ

l‰i

2q˚i

˜

ź

h‰l,h‰i

q˚h

¸

`
ź

h‰i

q˚h “ 2k

˜

k
ź

i“1

q˚i

¸

, (C.15)

where q˚i “ argpmaxSkq, i “ 1, . . . , k. Since the right-hand side of (C.15) remains

the same for @j ‰ i, we conclude that q˚i “ q˚j “: q˚. Therefore, (C.15) can be

rewritten as

2pk ´ 1qpq˚qk´1 ` pq˚qk´1 “ 2kpq˚qk, (C.16)

implying that

q˚ “
2k ´ 1

2k
, (C.17)

and, therefore,

S˚k “ maxSk “
1

2

ˆ

2k ´ 1

2k

˙2k´1

. (C.18)

Since S˚k is a decreasing function of k, we obtain:

max
kě2

S˚k “ S˚2 “
27

128
ă

1

4
, (C.19)
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which proves (C.9).

C.4 Justification of Proposition 4.4

From Appendix C, pQpn˚q pαq, βqqq “
śk

i“1 pqipn
˚
q pαq, βqqq can be approximated by a

Gaussian distribution N
´

Q, 1
n˚q pαq ,βqq

řk
i“1Q

2
´

1
qi
´ 1

¯¯

, where Q “
śk

i“1 qi. Thus,

for any given accuracy γ, the Gaussian approximation of its corresponding probability

δ is given by

δ “ P

˜

|yTP qpn
˚˚
TPq
pγ, δqq ´ TPq|

TPq
ď γ

¸

“ P

˜

| pQpn˚˚TPqpγ, δqq ´Q|

Q
ď γ

¸

«
1

2

¨

˚

˚

˝

1` erf

¨

˚

˚

˝

p1` γqQ´Q
c

2var
´

pQpn˚˚TPqpγ, δqq
¯

˛

‹

‹

‚

˛

‹

‹

‚

´
1

2

¨

˚

˚

˝

1` erf

¨

˚

˚

˝

p1´ γqQ´Q
c

2var
´

pQpn˚˚TPqpγ, δqq
¯

˛

‹

‹

‚

˛

‹

‹

‚

“ erf

¨

˝

γ
b

n˚˚TPqpγ, δq

?
2
b

řk
i“1

1´qi
qi

˛

‚« erf

¨

˝

γ
b

n˚˚TPqpγ, δq

?
2
b

řk
i“1

1´pqi
pqi

˛

‚.

(C.20)

Solving for n˚˚TPqpγ, δq, we obtain the Gaussian approximation of the critical number

as follows:

n˚˚TPqpγ, δq “

S

2

˜

k
ÿ

i“1

1´ pqi
pqi

¸

ˆ

erf´1pδq

γ

˙2
W

. (C.21)
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APPENDIX D

Appendix of Chapter 5

D.1 Justification of Proposition 5.1

Similar to A, the estimate pTuppnq can be approximated by a Gaussian random

variable pTup,Gpnq „ N pTup,
T 2
up

n
q. Thus, according to Tsagris et al. (2014), the mean

of the random variable |pTup,Gpnq ´ Tup| is

b

2T 2
up

πn
. By Markov’s inequality, we have

P
´

|pTup,Gpnq ´ Tup| ě a
¯

ď
Ep|pTup,Gpnq ´ Tup|q

a

ùñ P
´

|pTup,Gpnq ´ Tup| ď a
¯

ě 1´
Ep|pTup,Gpnq ´ Tup|q

a

ùñ P
´

|pTup,Gpnq ´ Tup| ď a
¯

ě 1´
1

a

c

2T 2
up

πn
,

Take a “ αTup, we have β “ 1 ´ 1
αTup

b

2T 2
up

πn˚
“ 1 ´ 1

α

b

2
πn˚

, where n˚ “ n˚T,Mpα, βq.

Solving for n˚T,Mpα, βq, we obtain
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n˚T,Mpα, βq “

R

2

πα2p1´ βq2

V

.

D.2 Justification of Proposition 5.2

Similar to the justification of 5.1.

D.3 Proof of Theorem 5.3

The mean and variance of the estimate pTuppnq are Tup and
T 2
up

n
, respectively.

Therefore, by Chebyshev’s inequality, we have

P

ˆ

|pTuppn
˚
q ´ Tup| ě k

Tup
?
n˚

˙

ď
1

k2

ùñ P

˜

|pTuppn
˚q ´ Tup|

Tup
ď

k
?
n˚

¸

ě 1´
1

k2
,

where n˚ “ n˚T,Cpα, βq. Take α “ k?
n˚T,Cpα,βq

, we have β “ 1 ´ 1
k2

. Solving for

n˚T,Cpα, βq, we obtain

n˚T,Cpα, βq “

R

1

α2p1´ βq

V

.

D.4 Proof of Theorem 5.4

Similar to the justification of 5.3.
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APPENDIX E

Appendix of Chapter 6

E.1 Proof of Theorem 6.1

Consider an unreliable machine with cycle overrun, defined by tτ, Tup, Tdown, pOR, kORu,

at the end of its N -th up- and downtime realization. Denote the number of parts pro-

duced during this time period as K. This time period equals to
řN
i“1ptup,i ` tdown,iq,

and the machine’s total uptime is
řN
i“1 tup,i. Denote the duration of the process-

ing time of k-th part as τtotal,k “ τ ` τOR,k, where τOR,k is the realization of the

k-th overrun, the mean value of which is TOR. Since there are K parts produced,
řN
i“1 tup,i ě

řK
k“1 τtotal,k. Let

řN
i“1 tup,i “

řK
k“1 τtotal,k ` τ̌ , where τ̌ ă τtotal,K`1.

Assume that N Ñ 8, then, obviously, K Ñ 8 as well. Hence, the stand-alone
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throughput of the machine with cycle overrun can be evaluated as follows:

SAT “ lim
NÑ8,KÑ8

K
řN
i“1ptup,i ` tdown,iq

“ lim
NÑ8,KÑ8

«˜

K
řK
k“1 τtotal,k ` τ̌

¸˜

řN
i“1 tup,i

řN
i“1ptup,i ` tdown,iq

¸ff

“

˜

lim
KÑ8

K
řK
k“1 τtotal,k ` τ̌

¸˜

lim
NÑ8

řN
i“1 tup,i

řN
i“1ptup,i ` tdown,iq

¸

.

(E.1)

The first term in the last row of (E.1) can be bounded as follows:

lim
KÑ8

K
řK`1
k“1 τtotal,k

ď lim
KÑ8

K
řK
k“1 τtotal,k ` τ̌

ď lim
KÑ8

K
řK
k“1 τtotal,k

. (E.2)

The first term in (E.2) can be represented as

lim
KÑ8

K
řK`1
k“1 τtotal,k

“ lim
KÑ8

K

K ` 1

K ` 1
řK`1
k“1 τtotal,k

“

ˆ

lim
KÑ8

K

K ` 1

˙

˜

lim
KÑ8

K ` 1
řK`1
k“1 τtotal,k

¸

“ lim
KÑ8

K ` 1
řK`1
k“1 τtotal,k

.

(E.3)

Thus, using the last expression in (E.3) and the strong law of large numbers applied

to the first and third terms of (E.2), we obtained:

lim
KÑ8

K ` 1
řK`1
k“1 τtotal,k

“ lim
KÑ8

K
řK
k“1 τtotal,k

“
1

τ ` TOR
. (E.4)
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Therefore, the middle term of (E.2) is also given by

lim
KÑ8

K
řK
k“1 τtotal,k ` τ̌

“
1

τ ` TOR
. (E.5)

As far as the second term in (E.1) is concerned, by the strong law of large numbers

we have:

lim
NÑ8

řN
i“1 tup,i

řN
i“1ptup,i ` tdown,iq

“

lim
NÑ8

řN
i“1 tup,i
N

lim
NÑ8

řN
i“1 tup,i
N

` lim
NÑ8

řN
i“1 tdown,i

N

“
Tup

Tup ` Tdown
. (E.6)

Thus, combining (E.5) and (E.6), and assuming Tup and Tdown are in seconds, we

obtain:

SAT “
1

τ ` TOR

Tup
Tup ` Tdown

parts/second

“
3600

τ ` TOR

Tup
Tup ` Tdown

parts/hour.

(E.7)

E.2 Proof of Theorem 6.2

In the following, we prove that Tdown
Tup

ă pORkOR is a necessary and sufficient

condition for the overrun-reduced machine having a larger SAT than that of the

downtime-reduced one.

To show necessity, assume that the overrun-reduced machine has a larger SAT
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than that of the downtime-reduced one. In this case, we have:

3600

τ ` rpORkORτ

Tup
Tup ` Tdown

ą
3600

τ ` pORkORτ

Tup
Tup ` rTdown

ô pτ ` rpORkORτqpTup ` Tdownq ă pτ ` pORkORτqpTup ` rTdownq

ô p1´ rqτTdown ăp1´ rqpORkORτTup

ô
Tdown
Tup

ă pORkOR.

(E.8)

Note that the chain of inequalities in (E.8) is bi-directional, thus, Tdown
Tup

ă pORkOR

is both necessary and sufficient.

Similarly, it can be shown that the downtime-reduced machine has a larger SAT

than that of the overrun-reduced one, i.e., 3600
τ`rpORkORτ

Tup
Tup`Tdown

ă 3600
τ`pORkORτ

Tup
Tup`rTdown

if and only if Tdown
Tup

ą pORkOR holds.

E.3 Proof of Theorem 6.3

Consider the equations:

T cOR “ αΓp1`
1

β
q,

CV “

g

f

f

e

Γp1` 2
β
q

Γ2p1` 1
β
q
´ 1 .

(E.9)

Introduce function

Gpβq “
Γp1` 2

β
q

Γ2p1` 1
β
q

(E.10)

160



and consider its derivative with respect to β:

G1pβq “
2Γp1` 2

β
qΓ1p1` 1

β
q ´ 2Γp1` 1

β
qΓ1p1` 2

β
q

β2Γ3p1` 1
β
q

. (E.11)

As one can see, the denominator of (E.11) is positive. To prove that the numerator

is negative (i.e., that Gpβq is monotonically decreasing) consider what is referred to

as the digamma function, ψpxq, and its derivative, ψ1pxq, given by (see Abramowitz

and Stegun (1948)):

ψpxq “
Γ1pxq

Γpxq
,

ψ1pxq “ ´

ż 1

0

tx´1

1´ t
ln tdt ą 0 for x ą 0.

(E.12)

Thus, for x ą 0, ψpxq is monotonically increasing, i.e., ψp1` 2
β
q ą ψp1` 1

β
q. In other

words,
Γ1p1` 1

β
q

Γp1` 1
β
q
ă

Γ1p1` 2
β
q

Γp1` 2
β
q

ðñ Γp1`
2

β
qΓ1p1`

1

β
q ă Γp1`

1

β
qΓ1p1`

2

β
q

ðñ Γp1`
2

β
qΓ1p1`

1

β
q ´ Γp1`

1

β
qΓ1p1`

2

β
q ă 0.

(E.13)

Therefore, Gpβq and, hence, CV pβq are decreasing functions of β ą 0. In particular,

CV “ 1 for β “ 1 and tends to 0 when β Ñ 8. Due to monotonicity of CV pβq, we

conclude that for CV ă 1, β is unique in the range of β P p1,`8q.

Since β is unique, using (E.9), we conclude that α is unique as well in the range

of α P p0,`8q.

161



E.4 Justification of Proposition 6.5

Denote the estimate of mean conditional cycle overrun based on n˚ORpα, βq cycle

overrun observations as pT cORpn
˚
ORq, i.e.,

pT cORpn
˚
ORq “

řn˚OR
i“1 tOR,i
n˚OR

, (E.14)

where tOR,i is the i-th cycle overrun duration. Thus, by (6.19), we have pT cORpn
˚
ORq “

pkORpn
˚
ORqτ , and

P

#

|pkORpn
˚
ORq ´ k|

k
ď α

+

“ P

#

|pkORpn
˚
ORqτ ´ kτ |

kτ
ď α

+

“ P

#

|pT cORpn
˚
ORq ´ T

c
OR|

T cOR
ď α

+

“ β.

(E.15)

Since the conditional cycle overrun is assumed to follow the exponential distri-

bution, similar to the justification of Proposition 2.3, we approximate pT cORpn
˚
ORq by

a Gaussian random variable N
´

T cOR,
T cOR

2

n˚OR

¯

. Therefore, we have:

P

#

|pT cORpn
˚
ORq ´ T

c
OR|

T cOR
ď α

+

“P
!

p1´ αqT cOR ď pT cORpn
˚
ORq ď p1` αqT

c
OR

)

“P
!

pT cORpn
˚
ORq ď p1` αqT

c
OR

)

´ P
!

pT cORpn
˚
ORq ď p1´ αqT

c
OR

)

«
1

2

¨

˝1` erf

¨

˝

αT cOR
?

2
b

T cOR
2

n˚OR

˛

‚

˛

‚´
1

2

¨

˝1` erf

¨

˝

´αT cOR
?

2
b

T cOR
2

n˚OR

˛

‚

˛

‚“ erf

˜

α
a

n˚OR
?

2

¸

.

(E.16)
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Solve for the Gaussian approximation of n˚ORpα, βq, we obtain:

n˚ORpα, βq “

S

2

ˆ

erf´1pβq

α

˙2
W

. (E.17)

E.5 Justification of Proposition 6.6

For ppORpn
˚
pOR
q and pkORpn

˚
pOR
q satisfying

|ppORpn
˚
pOR

q´pOR|

pOR
ď α1 and

|pkORpn
˚
kOR

q´kOR|

kOR
ď

α2, respectively, we have:

p1´ α1qpOR ď ppORpn
˚
pOR
q ď p1` α1qpOR,

p1´ α2qkOR ď pkORpn
˚
kOR
q ď p1` α2qkOR

ðñ p1´ α1qp1´ α2qpORkORτ ď ppORpn
˚
pOR
qpkORpn

˚
kOR
qτ ď p1` α1qp1` α2qpORkORτ

ðñ p1´ α1 ´ α2 `Opα1α2qqTOR ď pTOR ď p1` α1 ` α2 `Opα1α2qqTOR

ðñ
|pTOR ´ TOR|

TOR
ď α1 ` α2 `Opα1α2q.

(E.18)

Therefore, with accuracy up to Opα1α2q,

αindOR “ α1 ` α2. (E.19)

E.6 Justification of Proposition 6.7

Consider the distribution fORptq, its mean is pORkORτ , and its variance is given
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by pORk
2
ORτ

2p2´pORq. Thus, the mean of n˚pOR number of unconditional cycle overrun

durations, i.e., pTORpn
˚
pOR
q, has the expectation pORkORτ and variance

pORk
2
ORτ

2p2´pORq

n˚pOR
.

Based on these values, we consider approximate pTORpn
˚
pOR
q by a Gaussian random

variable N
´

pORkORτ,
pORk

2
ORτ

2p2´pORq

n˚pOR

¯

. Therefore, we have:

βindOR “ P

#

|pTORpn
˚
pOR
q ´ TOR|

TOR
ď αindOR

+

“ P
!

pTORpn
˚
pOR
q ď p1` αindORqTOR

)

´ P
!

pTORpn
˚
pOR
q ď p1´ αindORqTOR

)

«
1

2
erf

¨

˝

αindORpORkORτ
b

pORk
2
ORτ

2p2´pORq

n˚˚OR

?
2

˛

‚´
1

2
erf

¨

˝

´αindORpORkORτ
b

pORk
2
ORτ

2p2´pORq

n˚˚OR

?
2

˛

‚

« erf

˜

pα1 ` α2qC

c

n˚pOR
2

¸

,

(E.20)

where C “

c

ppORpn˚pORq

2´ppORpn˚pORq
.

E.7 Justification of Proposition 6.8

Similar to the justification of Proposition 6.7, we approximate pTORpnq by a Gaus-
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sian random variable N
´

pORkORτ,
pORk

2
ORτ

2p2´pORq

n

¯

. Therefore, we have:

δ “ P

#

|pTORpn
˚˚
ORq ´ TOR|

TOR
ď γ

+

“ P
!

pTORpn
˚˚
ORq ď p1` γqTOR

)

´ P
!

pTORpn
˚˚
ORq ď p1´ γqTOR

)

«
1

2
erf

¨

˝

γpORkORτ
b

pORk
2
ORτ

2p2´pORq

n˚˚OR

?
2

˛

‚´
1

2
erf

¨

˝

´γpORkORτ
b

pORk
2
ORτ

2p2´pORq

n˚˚OR

?
2

˛

‚

“ erf

¨

˝

c

n˚˚OR
2

γ
b

2
ppOR

´ 1

˛

‚.

(E.21)

Solve for the Gaussian approximation of n˚˚OR, we obtain

n˚˚ORpγ, δq “

S

2

ˆ

2´ ppOR
ppOR

˙ˆ

erfpδq

γ

˙2
W

. (E.22)
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