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ABSTRACT

In the field of production system engineering, machine parameters, such as Mean
Time Between Failures (MTBF'), Mean Time To Repair (MTT R), machine quality
parameter (¢q), and machine cycle time (7), are widely used in quantitative methods
for production system performance analysis, continuous improvement, and design.
Unfortunately, the literature offers no methods for evaluating the smallest number
of measurements necessary and sufficient to calculate reliable estimates of these pa-
rameters and the induced estimates of system performance metrics, such as machine
efficiency (e), throughput (7°P), quality parts throughput (T'F,), production lead
time (LT'), and work-in-process (WIP). This dissertation is intended to provide
such a method. The approach is based on introducing the notation of («a, #)-precise
estimates, where o characterizes the estimate’s accuracy and [ its probability.

Using this notion, the smallest number, n¥(«, ), of up- and downtime mea-
surements necessary and sufficient to ensure («, §)-precise estimates of MTBF and
MTTR is calculated, and a probabilistic upper bound of the observation time re-
quired to collect n.(c, 5) measurements is derived.

The MTBFE and MTTR are used to calculate production systems performance
metrics e, T'P, LT, WIP, which are necessary for managing production systems

and for evaluating effectiveness of potential continuous improvement projects. This

xii



dissertation evaluates the induced precision of these performance metrics estimates,
based on («, 3)-precise estimates of MTBF and MTTR. An inverse problem, i.e.,
calculating the smallest number of machines” up- and downtime measurements to
ensure these performance metrics estimates with a desired precision, is also solved.

Along with MTBF and MTTR, the machine quality parameter ¢, which repre-
sents the probability that a part produced is non-defective and 1 — ¢ the probability
that it is defective, is used to evaluate quality parts throughput 7'F,. This dis-
sertation calculates the smallest number of parts quality measurements to ensure
(o, By)-precise estimate of ¢, evaluates the induced precision of T'P, estimates, and
presents solution to the inverse problem concerning ¢ and T'F,, i.e., calculating the
smallest number of parts quality measurements to ensure estimates of T'F, with a
desired precision.

The («, 8)-Precision Theory is also compared with other probabilistic method,
which can be used for evaluating the critical numbers. Specifically, we consider the
Markov inequality, Chebyshev inequality and the simulation approach. It is shown
in this work that these classical probability inequalities can only give estimates of
the critical numbers that are much larger than their real values, which are too con-
servative and unrealistic to be implemented in practice. The simulation method also
has several disadvantages compared with the theory, for example, large computation
time complexity and the necessity to repeat these calculations if the parameters of
the systems are changed.

In addition, this dissertation applies the («, §)-Precision Theory to the study of

production systems with cycle overrun. The cycle overrun takes place, for instance,

xiil



in automated machines with a constant part processing time, 7, and manual load-
ing/unloading operations, which may have a random overrun in their duration. In
this dissertation, the methods to obtain reliable estimates of cycle overrun, and the
modeling, analysis, improvability and bottleneck identification of such systems are
presented as well. Finally, the dissertation presents a case study motivated by an

automotive transmission machining line.
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CHAPTER 1

Introduction

1.1 Goal and Approach of the Dissertation

In the field of production system engineering, machine parameters, such as Mean
Time Between Failures (MT BF'), Mean Time To Repair (MT7T R), machine quality
parameter (¢q), and machine cycle time (7), are widely used in quantitative methods
for production system performance analysis, continuous improvement, and design
(Law and Kelton (1991); Viswanadham and Narahari (1992); Askin and Standridge
(1993); Buzacott and Shanthikumar (1993); Papadopolous et al. (1993); Gershwin
(1994); Perros (1994); Altiok (1997); Jerry (2005); Li and Meerkov (2009); Pa-
padopoulos et al. (2009); Curry and Feldman (2010); Altiok and Melamed (2010)).
Unfortunately, the literature offers no methods for evaluating the smallest number
of measurements necessary and sufficient to calculate reliable estimates of these pa-
rameters and the induced estimates of system performance metrics, such as machine
efficiency (e), throughput (7°P), quality parts throughput (T'F,), production lead

time (LT'), and work-in-process (WIP). The law of large numbers guarantees that



a sufficiently large number of measurements leads to a sufficiently precise estimate.
However, collecting a large number of measurements requires a long observation time.
This is acceptable for off-line evaluation of machine parameters and system perfor-
mance metrics, where historical data could be used. For on-line applications (e.g.,
those in the framework of Industry 4.0 and Smart Manufacturing, see Kagermann
et al. (2013); Liao et al. (2017)), the observation period must be as short as possible
in order to capture the data necessary for real-time utilization.

The goal of this dissertation is to provide methods for evaluating the smallest
number of measurements for calculating reliable estimates of machine parameters
and system performance metrics.

The approach for evaluating the smallest number of measurements is based on
the notion of («, §)-precise estimates, where « characterizes the estimate’s accuracy
and [ its probability. Using this notion, we evaluate the smallest number of machine
measurements to ensure (c, 5)-precise estimates of machine parameters and induced
system performance metrics.

In addition, the topic of production systems with unreliable machines and cycle
overrun is studied in this dissertation. The cycle overrun may takes place, for in-
stance, in automated operations with a constant part processing time, 7, which may
have a random component in their duration. Another scenario is typical in assembly
operations, where a fixed cycle time is imposed by operational conveyors, and the
overrun is enabled by push-buttons, offering the operator a possibility to occasionally
stop the conveyor in order to complete the job with the desired quality. Given that

the current literature offers no analytical methods for analysis and improvement of



production systems with cycle overrun and taking into account that these systems
are encountered in practice, developing such methods is of importance. Specifically,
in this dissertation, we intend to provide the modeling, analysis, improvability and
bottleneck identification of production systems with cycle overrun, as well as apply

the («, 5)-Precision Theory to the cycle overrun parameter estimation.

1.2 Main Results of the Dissertation

The the main results obtained in this dissertation are as follows:

e The smallest number of machine up- and downtime measurements, denoted as
nk(a, 8), which is necessary and sufficient to ensure («, )-precise estimates
of MTBF and MTTR, is calculated, and a probabilistic upper bound of the

observation time required to collect ni.(c, f) measurements is derived.

e Based on the (o, §)-precise estimates of MTBF and MTTR, we evaluated
the induced precision of performance metrics estimates €, TP , LT , and W,
which is quantified by a pair of two numbers, (ax, fx), where X is in the set
{e, TP,LT,WIP}. Specifically, the values of (ax,Sx) for each performance

metrics are calculated as functions of («, ).

e In addition to the induced precision problem, an inverse problem, i.e., calcu-

lating the smallest numbers of machines’ up- and downtime measurements to

ensure estimates e, f]\D, T , and WP with a desired precision (7, d), is solved.

e The machine quality parameter ¢, which represents the probability that a part

produced is non-defective and 1—q the probability that it is defective, is used to



evaluate quality parts throughput T'F,. The smallest number of parts quality
measurements, denoted as n’(y, 8,), to ensure (ay, 3,)-precise estimate of g, is
calculated, the induced precision of T'P, estimate, quantified by (arp,, Brp,), is
evaluated, and solution to the inverse problem concerning T'F,, i.e., calculating
the smallest number of parts quality measurements to ensure estimates of T'P,

with a desired precision (v, d), is presented.

Based on the solutions to the inverse problems, we provided qualitative analysis

of the variability property for e, TP, LT, WIP and TF,.

Since the estimates of machine parameters are random variables, their sta-
tistical characterization can also be obtained using the classical probabilistic
inequalities, namely, Markov and Chebyshev inequalities, as well as numeri-
cal simulations. We compared the smallest numbers of measurements evalu-
ated using these tools with n7.(a, 8) and n}(ay, 5,) calculated using the («, 3)-
Precision Theory, and illustrated that the Markov and Chebyshev inequalities
can only give approximations of the smallest numbers of measurements, which
are significantly larger compared with those obtained using our method. In
terms of the simulation method, we showed that it has several disadvantages,
for instance, large computation time complexity, and the necessity to repeat

these calculations if the parameters of the systems are changed.

The methods for modeling, analysis, improvability, bottleneck identification,
and parameter estimation of the production systems with cycle overrun are

developed.



e A case study, which applies the methods developed to the throughput im-
provement of a production system motivated by an automotive transmission

case machining line, is carried out.

1.3 Literature Review

Although no analytical results, addressing the smallest number of measurements
required for calculating the estimates of machine parameters MTBF, MTTR, q,
7, and the estimtes of system performance metrics e, TP, TFP,, LT, WIP, with
the desired precision, are available in the literature, similar problems, concerning
other parameters and performance metrics, have been discussed in recent years.
Specifically, Muchiri et al. (2014) used simulations to analyze the probabilistic be-
havior of manufacturing equipment under corrective and preventative maintenance
activities. Zhou et al. (2014) proposed a data-driven framework utilizing case-based
reasoning to achieve online product quality estimate in industrial plants. Yu and
Matta (2016) proposed a statistical framework to increase the accuracy of perfor-
mance metrics measurements, leading to improved bottleneck identification. Hao
et al. (2017) modeled the interaction of tool wear and product quality degradation
by a continuous-time stochastic system, and proposed a Bayesian framework, which
incorporates real-time quality measurements, to estimate residual life of manufactur-
ing systems and product quality. Hwang et al. (2017) proposed a production system
performance measurement process applicable in the Internet of Things environment.
Kontar et al. (2017) studied the estimation of key performance indicators of manu-

facturing systems, using a multi-output Gaussian process model. Saez et al. (2018)



designed a real-time system efficiency assessment framework using Internet of Things
solutions, and applied it to a fully automated manufacturing system with robots and
CNC machines. Chehade and Shi (2019) proposed sensor fusion method for statistical
hypothesis testing to achieve online machine performance evaluation. Chhetri et al.
(2019) proposed a digital twin solution, which incorporates side-channel sensor in-
formation, such as acoustic and magnetic signals, to localize manufacturing systems’
anomalous faults and infer the product quality in real-time. Khatab et al. (2019)
developed a method to determine an optimal inspection cycle for a deteriorating
single-machine production system. Gopalswamy and Uzsoy (2019) proposed a data-
driven refinement approach to improve production system performance estimates
under model uncertainties. Lin et al. (2019) developed an approach to evaluate man-
ufacturing systems performance metrics based on synergetic between analytical and
simulation techniques. Chen and Wang (2019) presented a method for approximating
the marginal probability distribution of work-in-process within multi-product-type,
multi-stage, multi-parallel-machine manufacturing systems. Fang et al. (2020) pro-
posed a novel deep neural network structure to estimate the jobs remaining time
and achieved higher estimate accuracy than the existing machine learning models.
Miiller et al. (2020) proposed methods to quantify and measure the sequence stability
in production system and evaluated different performance indicators. Schneckenrei-
ther et al. (2020) used a neural network to dynamically estimate the production lead
time and thus determine the system release policy.

As far as the study of production system with cycle overrun is concerned, it should

be pointed out that, although the literature offers no analytical methods for analysis



and improvement of such systems, some of the related issues have been discussed
in manufacturing and automation engineering literature. Specifically, Morrison and
Martin (2007) developed practical methods for approximating random cycle time of
manufacturing systems modeled by a G/G/M-queue. Nadarajah and Kotz (2008)
provided the cycle time distribution formula to characterize the cycle underrun and
overrun, where the cycle time was modeled as a sum of production busy time and
idle time of Pareto and gamma distributions. Kuo et al. (2011) proposed to use
neural networks to exploit the production data and tool data of the semiconductor
production systems, in order to predict and reduce the production cycle time. Mill-
stein and Martinich (2014) developed Takt Time Grouping method to implement
kanban-flow manufacturing in a production process with cycle underrun and over-
run, where the variations of cycle time were due to manual operation and set-up
time randomness. Kacar et al. (2016) et al. presented methods in non-integer linear
programming to model the cycle time variation in production planning problems.
Larco et al. (2017) provided methods to estimate the warehouse workers’ discomfort
and optimize the job assignment, in order to prevent long cycle overrun. Casalino
et al. (2019) proposed a scheduling method for human-robot collaborative assembly
based on the cycle time duration data collected at runtime, adapting to the cycle
time underrun and overrun of manufacturing processes. Ben-Ammar et al. (2020)
studied the integrated production planning and quality control strategies for serial
production systems with machines having variable probability distributions of the
cycle time. Roshani et al. (2020) proposed a hybrid adaptive neighborhood search

approach to minimize cycle time variability in multi-sided assembly lines. Touzan:



et al. (2021) proposed methods for multi-robot task sequencing and automatic path

planning to reduce cycle times of automotive production lines.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 presents the (a;, 3)
precision theory for the estimates of MTBF and MTTR, along with a probabilis-
tic upper bound of the observation time. Chapter 3 develops the evaluation of the
(ax, Bx)-precise estimate of machine efficiency, throughput, lead time, and work-
in-process. The theory concerning the (ag, 3,)- and (arp,, Brp,)-precise estimate
of machine quality parameter ¢ and quality parts throughput 7T'F, is presented in
Chapter 4. Chapter 5 presents the comparison of the (a, 8)-Precision Thoery with
Markov inequality, Chebyshev inequality and simulations. The modeling, analysis,
improvement, and bottleneck identification of production systems with cycle overrun
are included in Chapter 6, along with a case study based on an automotive transmis-
sion machining line. Conclusion and future works are included in Chapter 7. Proofs,

justifications, and relevant simulation results are included in Appendices A-E.

Results presented in Chapter 2 to Chapter 4 of this dissertation have been pub-
lished as technical report, conference proceeding, and peer-reviewed journal papers,
including Alavian et al. (2018, 2019); Alavian et al. (2021); Alavian et al. (2021).

Results of Chapter 6 are reported in Eun et al. (2021).

Following a long-standing tradition of Prof. Meerkov’s research group, the authors are ordered
alphabetically. Kang Liu is identified as the leading author of these publications.



CHAPTER 2

The (o, 8)-Precise Estimate of MTBF and
MTTR: Definition, Calculation, and Observation

Time

2.1 Problem Motivation

The Mean Time Between Failures (MTBF') and the Mean Time To Repair
(MTTR) of manufacturing equipment are used in every quantitative method for
production systems performance analysis, continuous improvement, and design. To
evaluate MTBF and MTTR on the factory floor, random realizations of machine
up- and downtime must be measured and then averaged to obtain the estimates,
MTBF and MTTR. The law of large numbers guarantees that a sufficiently large
number of measurements leads to sufficiently precise estimates. However, collecting
a large number of measurements requires a long observation time. This is acceptable
for off-line evaluation of M T BF and MTTR, where historical data could be used.

For on-line applications (e.g., those in the framework of Industry 4.0 and Smart



Manufacturing (Kagermann et al. 2013; Liao et al. 2017)), the observation period
must be as short as possible in order to capture the data necessary for real-time
utilization. Remarkably, the question of determining the smallest number of random
variable realizations necessary and sufficient for evaluating its average value with the
desired accuracy has not been addressed in the literature. In fact, we were able to
identify only two papers mentioning this issue. The first one, reporting on Ford’s
experience (see Williams (1994)), lists questions to be asked before MTTR can
be evaluated. The second, based on GM’s research (see Inman (1999)), mentions
the number of up- and downtime occurrences, which has been used to estimate up-
and downtime probability distributions, without going into specifics of why one or
another number has been selected.

This chapter is interned to provide guidance for selecting the smallest number of
measurements necessary and sufficient for calculating reliable estimates of MT BF
and MTTR. The term “reliable” is used to indicate an estimate, which has the
desired accuracy with the desired probability. Denoting the accuracy by « and the
probability by 8 (see Section 2.2 for precise formalization), the goal of this chapter

is two-fold:

e For a given pair (o, 3), calculate how many realizations of machine up- and
downtimes are necessary and sufficient to obtain («a, §)-precise estimates of

MTBF and MTTR.

e Provide a characterization of the observation time required to collect the num-
ber of measurements defined by («, ). This characterization will define tem-

poral properties of MTBF and MTTR evaluation in real-time.
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Accordingly, the outline of this chapter is as follows: Section 2.2 presents the
definition of (a, f)-precise estimates of MTBF and MTTR, along with rigorous
formulation of the two problems mentioned above. In Section 2.3, a method for
calculating the smallest number of up- and downtime measurements necessary and
sufficient for the desired precision of MTBF and MTTR estimates is developed.
The issue of observation time is discussed in Section 2.4. Finally, summary of the
results obtained is given in Section 2.5. The proofs and justifications are included in

Appendices A.

2.2 Definitions and Problems Formulation

Consider an unreliable machine with up- and downtime being random variables
with expected values T, and T, respectively. Obviously, T3, and T, are the
exact values of MT BF and MTT R; we use these two types of notations interchange-
ably — depending on the issue at hand.

Let typ; and tgoun,: be the durations of the i-th occurrence (realization) of up- and
downtime, ¢ = 1,2,..., respectively. Then, the estimates of MTBF and MTTR,
based on n observations, are the following random variables:

2 Z:L: by ) = Z?: tdoum,i
Tup(n) = %7 Tdown(”) = IT (2].)

Definition 2.1. The estimates fup(n) and Tyoun(n) are referred to as (o, B)-precise

11



if

(2.2)
P { |Tdownjiz—ziwn(n)| < a} 2 /8’
or, equivalently,
P {(1 —a)Ty < fup(n) <1+ a)Tup} > b,
(2.3)

P {(1 - CV)T‘down < j—\‘down(n) < (1 + a)Tdown} = 6

Clearly, this definition implies that the accuracy of the estimates is quantified by
« and their likelihood by . For instance, if & = 0.05 and 8 = 0.9, the appropriately
selected value of n guarantees that T up(n) and fdown(n) are within +5% of T, and

Taown, respectively, and this event takes place with probability at least 0.9.

Definition 2.2. The smallest n’(«a, #), which guarantees (2.2), is referred to as the

critical number of measurements.

The first problem addressed in this chapter consists of two parts:

Problem 1la: For a given pair («, ), calculate nk.(«, 3) for machines with expo-
nential reliability model (i.e., with up- and downtime distributed exponentially with

parameters A and pu, respectively).

Problem 1b: Generalize the results of Problem 1a to machines with non-exponential
reliability models, having the coefficient of variation, C'V, less than 1. Note that,
as it is shown in Li and Meerkov (2009), if the machine breakdown rate (respec-

tively, repair rate) is an increasing function of time, the resulting distribution of

12



uptime (respectively, downtime) has C'V < 1. Empirical evidence that manufactur-
ing equipment on the factory floor pratically always has C'V < 1 can be found in
Inman (1999).

The second problem consists of evaluating the observation time (OT') necessary
to collect nk(a, ) realizations of t,,,; and tiouwni- If Ty and Tyoy, were known, the

mean observation time (MOT') would be
MOT = nj(a, B)(Tup + Taown)- (2.4)

Since T, and Tys,, are unknown, the approach employed here is based on us-
ing nro < nj(a, ) initial measurements to calculate the estimates T, up(nrp) and
fdown(n;p,o) and then defining an estimate of the remaining observation time (R/O\T)

as the following random variable:
ROT (nr) = (n(, B) = nr0) (Tup(nr0) + Taoun (n0) ) (2.5)

In reality, however, the remaining observation time is a random variable given by

(o)

ROT(TLT@) = Z (tup,i + Zfdoum,i)' (26)

i=nro+1
The relationship between these two random variables can be characterized by the

following inequality:

P {ROT(WO) < a}?o\T(nT,o)} > b, (2.7)

13



where a is referred to as a safety factor and b is the desired probability.

Definition 2.3. The smallest integer n7 (a,b) < ni(a, 3), which guarantees (2.7),

is referred to as the critical number of initial measurements.

Problem 2: For a given pair (a,b), calculate n§(a,b) for machines with exponential

reliability model.

These two problems are solved in Sections 2.3 and 2.4, respectively.

2.3 Evaluating Critical Number of Measurements

2.3.1 Exponential Machines
2.3.1.1 Exact value of n}(a, 3)

Theorem 2.1. The critical number, n’(a, B), for the case of machines with exponen-

tial reliability model is the smallest integer n, which satisfies the following inequality:

n—1 n—1
1 _ —a)n i I _ a)n i
B< ) e A= (1= a)n)’ = ) e (+a)n (1 + a)n)’. (2.8)
i=0 " i=0 "
Proof. See Appendix A. ]

Corollary 2.2. The critical number nk(«, 3) is the same for both MTBF and
MTTR.

Proof. Follows immediately from the fact that the right-hand side of (2.8) is inde-

pendent of the parameter of the exponential distribution involved. ]
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Clearly, this corollary is of substantial practical importance. It implies that
the smallest number of measurements necessary and sufficient to identify reliability
characteristics of a single machine or multiple machines in a production system are
the same.

The value of ni.(«, 8) can be obtained by monotonically increasing n in (2.8)
until the inequality is satisfied. Based on this calculation, the behavior of n¥(a, f)
is illustrated in Fig. 2.1. As expected, this function is monotonically increasing in

and monotonically decreasing in «.

1500 f

—-—a = 0.05

e =007
—a—a = 0.10
< 1000
d" D
S 500 ]
A
% ‘ ‘ ‘ ‘
05 06 07 08 09

g

Figure 2.1. Critical number n}. as a function of 5 and «a

2.3.1.2 Gaussian approximation of n}.(a, 8)

Along with (2.8), it is desirable to have an analytical expression for n¥.(a, 8). Such
an expression can be derived using the fact that, while fup(n;) and dewn(n;) are Er-
lang random variables, for sufficiently large n’. and under appropriate normalization,

they are close to Gaussian random variable N(0,1). Based on this approximation,
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the following is obtained:

Proposition 2.3. The Gaussian approzvimation of the critical number, nj (o, 3),

nh ol B) = {2 (f—@” , (2.9)

1S given by:

(67

where the ceiling operator [x] denotes the smallest integer larger than x and erf™ (y)

is the inverse of the error function, erf(y) = = Sg_’y et dt.

s

Justification. See Appendix A. O]

The accuracy of Gaussian approximation is illustrated by comparison of n¥.(a, f)
and nf o(a, B) given in Tables 2.1 and 2.2. As one can see, for all values of a and j
of practical importance analyzed, n}(a, 3) and nf o (a, ) are almost the same.

Table 2.1. Critical number n}(«, )

8

N 0.7 | 0.8 |0.85| 0.9 | 0.95

0.02 | 2686 | 4106 | 5181 | 6764 | 9604
0.04 | 672 | 1026 | 1295 | 1691 | 2401
0.06 | 299 | 456 | 576 | 751 | 1067
0.08 | 168 | 257 | 324 | 423 | 600
0.10 | 108 | 164 | 207 | 270 | 384
0.20 | 27 41 92 67 96

The calculation of n}, ;(a, 3) is orders of magnitude faster than that of ni(«, ),
which allows for more detailed investigation of the critical number n*. For instance,
Fig. 2.2 presents the contour plot of critical number n;G(a, B), calculated using
(2.9). This plot offers guidance for selecting n} o for the desired o and 3. Indeed,

if « =0.05 and 8 = 0.9, from Fig. 2.2 we obtain n},;(a, 3) ~ 1000. On the other
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Table 2.2. Critical number n7, 5 (o, 3)

o & 0.7 | 0.8 10.85| 0.9 | 0.95

0.02 | 2686 | 4106 | 5181 | 6764 | 9604
0.04 | 672 | 1027 | 1296 | 1691 | 2401
0.06 | 299 | 457 | 576 | 752 | 1068
0.08 | 168 | 257 | 324 | 423 | 601
0.10 | 108 | 165 | 208 | 271 | 385
0.20 | 27 42 92 68 97

hand, if o = 0.15 and 3 = 0.75, n} («a, 8) ~ 60. In some cases, the number of mea-
surements that one can collect on the factory floor during two weeks of observation
period is between 50 and 100. Thus, in these situations only relatively inaccurate

estimates T up(ni) and fdown(n;) could be obtained.

1 ‘ ‘ ‘ ‘ ‘
/ §/§/ g/,bQQ/q,QQ/\‘o“/ \QQ/ 1Q/
095/ 8 '/ / 5]
09r1- Vs
. s #® S
L - - Y.
Q0.85 FELE r:
08 |/
0.75—/ [-f-de/ s
|0§§ r <Ib
kil
oes LT

(07

Figure 2.2. Contour plot of n}. ;(a, 3)
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2.3.2 Non-exponential Machines

To investigate the critical number of measurements in the non-exponential case,
we consider machines obeying Weibull, gamma, and log-normal reliability models
with MTBF = 10 and CV € {0.1,0.25,0.5,0.75} and evaluate by simulations
N7 non—exp (@ 33 CV) for a = 0.05 and g € {0.65,0.70,...,0.95}. The results are

summarized in Fig. 2.3, where n¥(a, ) for exponential distribution is shown for

comparison. From this figure, we conclude:

Observation 2.1. For all non-exponential machines analyzed:
® N non—exp(@: 55 CV) < nip(a, B);
® N hon_exp(@s 33 CV') approaches nj (o, 3) when CV — 1;

® N on_exp (@ 33 CV) is practically independent of the machine up- and down-

time distribution as long as C'V is the same.

Thus, the number of measurements, selected under the exponential assumption,
can be used as an upper bound for non-exponential machines, provided C'V < 1.
We hypothesize that Observation 2.1 holds not only for the distributions analyzed,

but for any unimodal distribution of up- and downtime with C'V < 1.

2.4 Evaluating Critical Number of Initial Measurements

The total observation time (T'OT) to collect n*(«, ) measurements of up- and

downtime can be represented as a sum of two random variables — one representing
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(a) Weibull reliability model
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(b) gamma reliability model
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(c) log-normal reliability model
Figure 2.3. Critical numbers nj .. and n} for a = 0.05 as functions of 3 and C'V/
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the initial observation time (IOT), i.e., the time before initial nro < n¥(a, §) mea-
surements have been collected, and the other representing the remaining observation

time (ROT), i.e., the time to collect the remaining [n}(«, 5) — ny] measurements:

TOT = IOT + ROT (2.10)
nro nk(a,B)

= Z (tup,i + tdown,i) + Z (tup,i + tdown,i)- (211)
=1 i:nTyo-‘rl

After the initial ny o measurements have been collected, the first term in this sum
becomes a realization of IOT, i.e., a constant denoted as IOT(ng). The second
term, as discussed in Section 2.2, can be approximated by the following random

variable:

ROT (nrp) = (n(a, B) — nr) (:f’u,,(nT,O) + :Fdownmm)) , (2.12)

where fup(nT,o) and fdown(nT,O) are the estimates of MTBF and MTTR based
on nro initial measurements. This implies that TOT' can be characterized by the

following stochastic upper bound:
P {JOT(nm) + ROT(n10) < IOT (nr) + aR/o\T(nT,O)} >0 (2.13)
or, equivalently (as in (13)),

P {ROT(nm) < aR/O\T(nTvo)} > b, (2.14)
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where a is a safety factor and b the desired probability. In Section II, the smallest
nro satisfying this inequality has been referred to as the critical number of initial
measurements, nf ,(a,b). When nf,(a,b) is determined, ROT (nro) can be calcu-
lated using (2.12) and then the upper bound of TOT evaluated using (2.13). A

method for calculating n% y(a,b) is provided by

Proposition 2.4. Under Gaussian assumption, for any (a,b) with a > 1, 0.5 < b <

1, and n}, (o, B) satisfying

(a+1)?

(a —1)

npqla, B) = [ 2lerf (20 — 1)ﬂ , (2.15)

the critical number of initial measurements, ni., o(a,b), is:

Bnj g + a?—1-— \/(Bn;G +a2—1)2— 4Bn;Ga2

o b;nk o) = 2.16
nO,G(a’7 ) nT,G) 2B ) ( )
where n} o = ni (o, B) and
—1)2
B = (6_”1 L (2.17)
2[erf ™ (2b — 1)]
Justification. See Appendix A. ]

The contour plots of n} s as a function of a and b are shown in Fig. 2.4 for
npgla=0.1,8=0.9) =270 and n} ;(a = 0.05, 8 = 0.9) = 1027. The greyed parts
in Fig. 2.4 indicate the areas, where inequality (2.15) does not hold. These contour

plots indicate the following:
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e For a < 1.1, n}c(a,b;n} o) depends significantly on n7 . For instance, if
ni. g = 270, no ni  o(a,0.9) satisfying (2.15) exists, whereas if n} o = 1027, it
does: n}go(1.1,0.9) ~ 250 guarantees that (2.13) provides a relatively tight
bound of TOT (having a = 1.1) and, this bound takes place with a relatively

large probability (having b = 0.9).

e For a > 1.3, né‘p’O’G(a, b; n;G) is practically independent of n} . For instance,
if @ =13 and b = 0.9, n}, is approximately 33 for both ny, = 270 and
nr g = 1027. Thus, if in a particular application a = 1.3 is viewed an acceptable
safety factor, IOT (n}q) + 1.3R/O\T(n;’oyc), where n}, o = 33, provides an
estimate of TOT taking place with probability 0.9 for both (a, 8) = (0.1,0,9)
and for (o, 8) = (0.05,0,9).

2.5 Summary

This chapter presents the following results:

e A method for calculating the smallest number, n¥(a, 3), of up- and downtime
measurements, necessary and sufficient to obtain («, 3)-precise estimates of
MTBF and MTTR for machines with exponential reliability model, where «

represents the estimate’s accuracy and  its probability.

o Since this method is combinatorial in nature and the resulting calcula-
tions are based on iterations, this chapter derives an analytical, Gaus-

sian approximation for calculating nk(«, §) and shows that the resulting
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ni g(a, ) is almost the same as n3(a, ) and the calculation of the former

is orders of magnitude faster than the latter.

o For non-exponential machines, it is shown, by simulations, that n;G(a, B)
is the upper bound of the number of measurements required for evaluating
(o, B)-precise estimates of MT BF and MTTR in machines with Weibull,

gamma, and log-normal reliability models with C'V < 1.

e A method for calculating an upper bound of the observation time required to
collect nk (v, ) measurements of machine up- and downtime. The approach
is based on calculating the smallest number of initial measurements, n7 ,(a, b)
(where a > 1 represents the safety factor and b the desired probability that the
upper bound indeed takes place) and using the resulting estimates of MT BF

and MTTR to evaluate the remaining observation time.

From these results follows a number of quantitative and qualitative conclusions.
The quantitative conclusion is: For practically important o and 3, the value of n¥. is
quite large. For example, if @ = 0.05 and 5 = 0.9, then nf.(«, 5) ~ 1000. This implies
that if, for instance, a machine has about 100 of up and down events per week, the
observation period would be about ten weeks, which is hardly acceptable in practice
due to the natural machine efficiency degradation and due to “low frequency” of
MTBF and MTTR estimates to be used for a “higher frequency” decision-making.

The main qualitative conclusion is: The smallest number of up- and downtime
measurements necessary and sufficient for evaluating MTBF and MTTR in ex-

ponential machines is independent of the exponential distribution parameter. This
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implies that the same number of measurements is required for identifying parameters

of all machines comprising a production system (under the exponential assumption).
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CHAPTER 3

The (ax,8x)-Precise Estimate of Machine
Efficiency, Throughput, Lead Time, and

Work-In-Process

3.1 Problem Motivation

Estimates of production system performance metrics, such as machine efficiency
(e), system throughput (7'P), production lead time (LT"), and work-in-process (W1 P)
are necessary for managing production systems and for evaluating effectiveness of po-
tential system modifications leading to the desired productivity improvement. The
calculation of these estimates requires machine reliability characteristics, primarily
Mean Time Between Failures (MT BF') and Mean Time To Repair (MTTR), which
can be obtained using factory floor measurements of machines’ up- and downtime
realizations. In this regard a question arises: What is the smallest number of mea-
surements required to ensure desired accuracy of the induced estimates €, f]\?, LT ,

and W‘I\P?
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A similar question, concerning MT BF and MTT R, has been posed and answered
in Chapter 2. Since these estimates are random variables, the estimate of machine
efficiency, e, calculated according to

~ T,
6:/\

— (3.1)
Tup + Tdown

is also random. Similarly, the estimates ﬁ, LT , and WIP are random variables
too. Based on fup and fdm,m, they can be calculated using a number of produc-
tion systems performance analysis techniques developed in Viswanadham and Nara-
hari (1992), Askin and Standridge (1993), Buzacott and Shanthikumar (1993), Pa-
padopolous et al. (1993), Gershwin (1994), Altiok (1997), Li and Meerkov (2009),
Papadopoulos et al. (2009) and Curry and Feldman (2010). In the current chapter,
we use the aggregation technique of Li and Meerkov (2009), primarily because it
provides proofs of convergence of the recursive iteration procedures arising in analy-
sis of systems with more than two machines and addresses, in a unified framework,
all the performance metrics mentioned above.

Quantifying the induced precision of e, ﬁ, LT and WIP by (ax,Bx), where
X e {e, TP, LT, WIP}, this chapter provides an answer to the question posed above
in terms of serial production lines with machines obeying the exponential reliability
model. This is accomplished by calculating («x, Sx), induced by («, 8), and solving
the inverse problem, i.e., calculating («, 8) for fup and fdm,m leading to the desired
(ax,Bx), X €{e, TP, LT, WIP}.

The issues, addressed in this chapter, are of importance for three reasons. The
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first one is fairly straightforward: Since all methods of performance analysis, design,
and continuous improvement of production systems assume that M TBF and MTTR
are known exactly, it is important to know what, in fact, is the accuracy of the
calculated performance metrics, taking into account that merely estimates of M T BF
and MTTR are available.

The second reason is of practical importance and consists of the following: It
has been shown in Chapter 2 that to obtain relatively precise estimates of MT BF
and MTTR, the smallest number of up- and downtime measurements may be quite
large. For instance, if (a, ) = (0.05,0.9), this number, denoted as ni(«, 5), is
1083. Collecting these measurements may require a long observation period, which
might be unacceptable in real-time applications, e.g., in the framework of Smart
Manufacturing as a part of Industry 4.0 Kagermann et al. (2013); Liao et al. (2017).
If, however, it turns out that the induced ay < « and/or Sx > 3, a sufficiently
precise estimates of X would require a smaller number of measurements than equally
precise estimates of MTBF and MTTR.

Finally, the third reason, also of industrial significance, is as follows: In most
analysis and continuous improvement projects, it is obvious what precision of X e
{@,ﬁ,ﬁ, WFD} is required for the problem at hand (e.g., ax = 0.05 and Bx =
0.9). However, it is difficult to predict which precision of MTBF and MTTR would
be necessary to guarantee the required precision of X. Therefore, evaluating (a, ),
based on the required (ax, fx), would guide the production managers and engineer-
ing /reserach personnel in the problem of selecting the smallest number of measure-

ments for evaluating X with the desired precision.
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The novel quantitative results obtained in this chapter are:

e Analytical expressions for (ax,fx), X € {e,TP,LT,WIP}, as functions of

(o, B)-precise estimates of T, and Tjpun.

e Analytical expressions for the number of machines’ up- and downtime mea-
surements, required to obtain the desired (ay,[x)-precise estimates of X €

{e,TP,LT,WIP}.

In addition to quantitative results, the chapter provides qualitative insights into
variability properties of production system performance metrics. To describe them,
let n%.(v,0) denote the smallest number of up- and downtime measurements required
to obtain (v, d)-precise estimates of T}, and Tioyn, while n¥¥ (7, ) denotes the small-
est number of up- and downtime measurements required to obtain an equally precise

estimate of X € {e, TP, LT, WIP}.

Definition 3.1. Performance metric X € {e, TP, LT, WIP} is:
o wariability contracting if n¥*(y,0) < nk(y,0);
o wariability expanding if n3F(vy,d) > ni(7,d).

In practical terms, this definition implies that X is variability contracting, if its
sufficiently precise estimate X can be obtained using less precise estimates of its
arguments. In contrast, variability expanding X implies that the precision of X is

lower than that of its arguments under the same number of measurements.

In terms of these concepts, this chapter shows that under some practice-inspired

conditions,
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e ¢ and TP are variability contacting;

o LT and WIP are variability expanding.

The methods developed in this chapter are intended, primarily, for production sys-
tems managerial /engineering and research personnel involved in either daily decision-
making or evaluating efficacy of potential improvement projects. In practice, man-
agers and industrial engineers often use a rule-of-thumb, which assumes that about
two-week worth of data on machines’ up- and downtime measurements are sufficient
to evaluate efficacy of potential improvement projects. The current chapter shows
that this may or may not be the case — either more or less measurements might be
necessary, depending on the performance metrics addressed and the precision sought.

The outline of this chapter is as follows: Section 3.2 provides formulation of
the problems addressed. Sections 3.3-3.6 analyze induced (ax, Sx)-precise estimates
of X € {e,TP,LT,WIP} and solve the corresponding inverse problems. Section
3.7 offers a summary of analytical expressions derived in this work and provides
a comparative illustration of the number of measurements required for evaluating
e, ﬁ, LT , and WIP with a given precision. Finally, Section 3.8 formulates the
conclusions and topics for future research. The list of abbreviations and notations is

given after the conclusions. All justifications are provided in Appendices B.

3.2 Problems Formulation

Consider a serial production line with M exponential machines and its perfor-

mance metrics X € {e, TP, LT, WIP}. When the exact values of up- and downtime,
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Tupi and Tyoyni, ¢ = 1,..., M, are available, these performance metrics can be cal-
culated either by a closed formula (for e) or by recursive aggregation procedures
developed in Li and Meerkov (2009) and its improved version Bai et al. (2021) (for
TP), and Meerkov and Yan (2016) (for LT and WIP). When T,,; and Ty, are
not available, their («, §)-precise estimates, fup,i (nk(a, B)) and T down,i (ni(ar, B)) can
be used instead, leading to the estimates e, ﬁ, LT , and Wﬁ’, which are random
variables with the precision induced by fup,i (nk(a, 8)) and fdowm (ni(c, B)). Similar

to (2.2), we quantify the (ax, Sx)-precision of Xe {e, ﬁ, LT, W} by:

X — X(n%(a, B))]
p{ X

gOéx} ZﬂX (32)

Based on (3.2), we introduce the following problems:

Induced precision problem for X: Given («a, 3)-precise estimates fup,i (nk(a, B))
and Tyouni (n%(a, B)), i = 1,..., M, calculate the induced precision (a2, gind) of
X e{e,TP,LT,WIP}.

Inverse problem for X: Given a desired pair (v, d), calculate the smallest number

of machines’ up- and downtime measurements, n%*(y,d), required to obtain (v, d)-

precise estimate Xe {e, ﬁ, Ei ’W[\P}

The induced precision and inverse problems for e, TP, LT, and WIP are con-

sidered in Sections 3.3-3.6, respectively.
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3.3 Induced Precision and Inverse Problem for Machine Ef-

ficiency

3.3.1 Solution of Induced Precision Problem for e

The value of o™ is given by:

L - T _j—\‘ x ) Tmun_j; own x )
Proposition 3.1. Given [TupTup(z (@A)l o g L2 ;d (nz (@A) a, the
up own

smallest ., which satisfies %e(aﬁ))l < a, with accuracy up to O(a?), is given by

i = 20(1 — (nk(a, B))). (3.3)

€

Justification. See Appendix B. ]

Expression (3.3) implies the following:

ind

'@ is random as well. However, when

e Since € (nk(a, f)) is a random variable, «

the realization of € (nf.(«, §)) is calculated according to

(e B)) — Ty(nf (0, 5)) .
( T< ’6)) Tuzi(n;(a7ﬁ ) "_Tdown(n;(oﬁﬁ))7 ( )

D

ind

the deterministic number o

quantifies the accuracy of € in the sense of (3.2).

ind

o4 < a,i.e., the accuracy

e For all € (n.(«, 8)) > 0.5 (which is a practical case), «
of € (n¥(a, B)) is higher than the accuracy of the underlying fup(nﬂa, B)) and
fdown(n;(&,ﬁ)). For instance, when € (n%(a,8)) = 0.75, o™ = 0.5a; when

e (nk(a, B)) = 0.95, o™ = 0.1a.
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As far as the induced probability, 3¢, is concerned, its value is given by:

Theorem 3.2. If the machine obeys the exponential reliability model and oi"® is

selected as (3.3), the resulting B¢ is given by

i n*— n*—2—4)! n —2n* +i
Bt = YLy mEermey (L + 20)™ (2 + 2a) 2

| (3.5)
—(1 = 2a)"" (2 — 2a) 72 HiH1]

where n* denotes n*(«, f3).
Proof. See Appendix B. O]

Thus, 8¢ depends explicitly on a, implicitly on 3 (through n*(a, 3)), and does
not depend on 7, and Ty, and, therefore, on e.

The values of 7 for various pairs (a, 8) are illustrated in Table 3.1. As one can
see, for all (a, 3) investigated, 8¢ > 3. Thus, o™ is smaller than « (if € > 0.5)
and " is larger than 3 . In other words, the induced (a., 3.)-precise estimate of e

is better than (o, 3)-precise estimates of T, and Tyoun.

Table 3.1. Values of 8¢ as a function of « and 3

B

0.7 0.8 0.85 0.9 0.95

o}
0.02 | 0.8573 | 0.9300 | 0.9582 | 0.9799 | 0.9944
0.04 | 0.8575 | 0.9299 | 0.9580 | 0.9797 | 0.9942
0.06 | 0.8578 | 0.9298 | 0.9576 | 0.9794 | 0.9940
0.08 | 0.8576 | 0.9294 | 0.9571 | 0.9788 | 0.9937
0.10 | 0.8585 | 0.9294 | 0.9568 | 0.9782 | 0.9933

As a numerical example, assume a = 0.1, § = 0.9, and e(n*(«, §)) = 0.8. Then,
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according to (3.3) and (3.5), o™ = 0.044 and S84 = 0.9782. Thus, the structure of
(3.1) induces a significantly more precise estimate of e than that of T, and Tyun.

The Gaussian approximation of 3¢ is given by:

Proposition 3.3. The Gaussian approzimation of B is given by

B = et (am) , (3.6)

where ni.(«, B) is defined by (2.9).

Justification. See Appendix B. ]

A comparison of 3" and ¢ is given in Tables 3.1 and 3.2. As one can see,

these values are almost always the same.
Table 3.2. Values of 3¢ as a function of v and 3

B

0.7 0.8 0.85 0.9 0.95

0.02 | 0.8573 | 0.9301 | 0.9582 | 0.9800 | 0.9944
0.04 | 0.8575 | 0.9300 | 0.9582 | 0.9800 | 0.9944
0.06 | 0.8577 | 0.9300 | 0.9583 | 0.9799 | 0.9944
0.08 | 0.8575 | 0.9303 | 0.9583 | 0.9800 | 0.9944
0.10 | 0.8584 | 0.9299 | 0.9581 | 0.9799 | 0.9944

Omitting the ceiling operator in (2.9) and substituting it in (3.6), we obtain:

gind — erf ([mf*(ﬁ)) . (3.7)

ind

This expression shows that 3¢ is independent of o

and, in addition, quantifies
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to which extent 3? is larger than 3. For instance, if 3 = 0.5, the value of 3" is

larger than 0.65; if 8 = 0.75, 8 is about 0.9.

Thus, under the assumption that e(ni(«,5)) > 0.5, it follows from (3.3) and
(3.7) that the induced precision of € is higher than the precision of the underlining

Ty and Tyoum.-

3.3.2 Solution of Inverse Problem for e

Proposition 3.4. For a given (v,0), the critical number of up- and downtime mea-

surements to ensure (7y,0)-precise estimate of e is given by:

ni*(y,0) = [ (2(1 — g)jrfl(é))Q w (3.8)

where € = e(ni*(,9)).
Justification. See Appendix B. ]

As one can see, n*(~y, §) turns out to be dependent on € and, thus, can be denoted

A

as n¥*(v,d;¢e). The contour plots of n**(v,d;€) are shown in Figure 3.1 for € = 0.7
and € = 0.9. These plots and the plot of Figure 2.2 allow one to compare n¥(v, d)

with n**(v, 0; €) for various values of €. Indeed, for v = 0.05 and 6 = 0.9,
o n}(7,0) ~ 1000;
o n¥*(vy,0;€) ~ 200 if e = 0.7 and n¥*(v,0;e) ~ 20 if e = 0.9.

This leads to:
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Observation 3.1. Comparing n%.(7,0), defined by (2.9), with n¥*(v,0), defined by

(3.8), we conclude that for € > 0.5 performance metric e is variability contracting.

Note that € > 0.5 is a sufficient condition. The necessary and sufficient condition

is € > 0.2929. We use, however, ¢ > 0.5 in order to maintain that o/ > « (see

(3.3)).
§/ S & 3 \QQ/

095+ 7 [ 1 0.95¢

09r- '/ - %/ /| 0.9
i &

085 | lieg i § 0.85
S ger ! o
0.8 - 0.8
0.75} ; & ] 0.75}
07| §§,§/§/”/ / — 0.7
0.65] I’ : 0.65
0 0.05 0.1
vy
(a) €= 0.7

Figure 3.1. Contour plots of n¥*(v, d;e)

Concluding this subsection, an issue of practical importance must be addressed:
The right-hand side of (3.8) includes the machine efficiency estimate e calculated
based on n**(v,0), which is unknown. To alleviate this problem, e(n**(v,d)) is
approximated and subsequently used in the right-hand side of (3.8). Since a similar

approximation is necessary for other performance metric, namely, T P, we define this

procedure as follows:

Approximation Procedure 1 (for n%, X € {e, TP})
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e Select a small number of initial measurements, n;,;, and evaluate X (n;,;).

e Keeping in mind that X (ns,;) may be larger than X (n%*(v,d)), select a small

safety factor € > 0 and calculate Xe . = (1-— e))? (M )-

mni

e Use X¢, instead of X in the right-hand side of the expression for ni(v,9) (e.g.

m

(3.8) in the case of X = e) to evaluate an approximation of ni*(~, d), denoted

as n¥ (7,8 X

1ni>'

e Finally, denote the total number of measurements, thus obtained, as n%* (7, 0; )A(fm) =

max{n}* (77 5; Xfm)a nmz}

For the case of €, the effectiveness of this procedure has been investigated using
Monte Carlo simulations. Specifically, to verify if n¥*(y,0;eS,;) indeed results in

) Ying

(7, )-precise estimate of e, the set of (v, d) pairs has been selected as

(v,9) € {(0.1,0.9),(0.1,0.95), (0.05,0.9), (0.05,0.95)}.
The parameters of the machines have been selected equiprobably from the sets
Taown € [3,5] and e € [0.6,0.95],

and 25 machines have been created. As an example, five of them are shown in Table
3.3. After numerical experimentations, the values of n;,; and € have been chosen as

30 and 0.05, respectively. Then, the performance of each machine has been simulated

o€

to obtain 10,000 realizations of €, and corresponding realizations of n¥*(v,d;ef,;)

) Ying

for each pair of (7,d). Based on the simulation results, the frequency of the event
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that the required (7, d) is observed has been calculated according to

5 number of times ‘e_g(ﬁf*(e’m%%i))
B 10000

|<7

(3.9)

Table 3.3. Parameters of randomly created machines.

Machine
mq mo ms my ms
Parameters
Tup 17.99 | 7.73 | 18.89 | 34.37 | 6.69
Taown 3.90 | 3.10 | 3.48 3.82 | 3.74
e 0.82 | 0.71| 0.84 0.90 | 0.64

The results obtained for the five machines of Table 3.3 are shown in Table 3.4. As

one can see, all pairs of (v, ) have been satisfied.

Table 3.4. Values of 4 as a function of (v, 4).

Machine
() ma ma m3 my ms
(0.1, 0.9) 0.9894 | 0.9164 | 0.9958 | 0.9980 | 0.9082
(0.1, 0.95) 0.9935 | 0.9568 | 0.9976 | 0.9995 | 0.9511
(0.05, 0.9) 0.9426 | 0.9211 | 0.9521 | 0.9889 | 0.9159
(0.05, 0.95) 0.9771 | 0.9617 | 0.9797 | 0.9922 | 0.9580

The values of n**(v,d;ef,;), calculated using Approximation Procedure 1, were
compared with n**(v, ), calculated using (3.8) with € = e. The results are shown
in Table 3.5 for the five machines in Table 3.3. As one can see, the difference is in
the range of 20% to 60%, except for the cases where n*(7, d) is relatively small.

The results similar to those reported in Tables 3.4 and 3.5 have been obtained

for the other 20 machines analyzed (see Appendix B).
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Table 3.5. Values of n¥*(v,d) and n**(v, 0;€5,;) as functions of (7, 9).

Machine ma mo ms My mesg
(v, 6) e [t |z [ | e [ | ne [ | ne* [
(0.1, 0.9) 18 |1 33 | 45 | 59 | 14 | 31 6 30 | 70 | 86
(0.1, 0.95) 25 | 41 | 63 | 83 | 19 | 35 8 30 | 99 | 122
(0.05, 0.9) 69 [ 110 | 177|233 | 53 | 90 | 22 | 49 | 279 | 340
(0.05, 0.95) 98 | 156 | 252 | 332 | 75 | 127 | 31 | 69 | 396 | 485

3.4 Induced Precision and Inverse Problem for System Through-

put

3.4.1 Solution of Induced Precision Problem for TP

As indicated in Section 3.2, serial production lines with M exponential machines
can be reduced to a single machine using the recursive aggregation procedure of Li
and Meerkov (2009). When T,,; and Ty, ¢ = 1,..., M, are known precisely, the
throughput of this aggregated machine is deterministic and denoted as T'P. When
only («, B)-precise estimates fum and fdawn’i are available, T'P is also random, and
its estimate, TP, is quantified by (arp, Srp) as indicated in (3.2) with X = T'P. In
this section, we characterize (g, 3ind) as functions of («, 3) and provide a solution
of the inverse problem.

Recall that in the case of a single machine, o™ has been characterized by (3.3).
To extend this formula to aggregated machines, the notion of production system

efficiency, erp, must be introduced. This can be accomplished by defining erp as
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follows:

TP
erp = —, (310)

CM
where c); is the capacity of the last machine in the system. Then its estimate can

be evaluated as
_ TP(nj(a, 8))

erp(ni(a, ) (3.11)
Cm
This expression allows us to extend formula (3.3) to ¢ as follows:
ol = 20(1 - rp(ny(a, B)). (3.12)

As far as 8¢ is concerned, recall that for a single machine, 5 is given by (3.6).

This result also can be extended to the aggregated machine (in the form of a lower

bound):

Proposition 3.5. The Gaussian approzimation of B¢ is given by

T > erf(a\/ML (3.13)

where nk(«a, ) is defined by (2.9).
Justification. See Appendix B. [

It follows from (3.12) and (3.13) that if erp > 0.5, the precision of ﬁ(n;(a, B))

is higher than that of € and underlining fup,i and fdown,i.
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3.4.2 Solution of Inverse Problem for TP

As for the inverse problem, it also remains similar to that of Section 3.3, but in

the sense of an upper bound:

Proposition 3.6. For a given (v,0), the upper bound of the critical number of up-

and downtime measurements to ensure (7,0 )-precise estimate of TP is given by

— 2
5 2 (1 — L2 erf1(6)
TP e
nrp (%5; a) < < 7> , (3.14)

where TP = ﬁ(n;}(’y, J)).
Justification. See Appendix B. ]

Note that due to the strict inequality in (3.14), for e = % the number of machine
up- and downtime measurements required to obtain (7, §)-precise estimate of TP is

smaller than that for (v, d)-precise estimate of e (see (3.8)).

Observation 3.2. Comparing nj.(v,d), defined by (2.9), with nk%(v,d), defined
by (3.14), we conclude that for % > 0.5 performance metric TP is variability

contracting.

Since the right-hand side of (3.14) depends on ﬁ(ni}’}(% J)), we use the Approx-

imation Procedure 1 to evaluate T.J\Djn and use it subsequently in (22) to evaluate

7’@‘1”;3(’)/,(5;7/”1\3f ). In addition to the simulation parameters introduced in Subsec-

ing

tion 4.2, we consider 5-machine asynchronous serial lines with buffer and machine
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capacities selected randomly and equiprobably from the following sets
Ni = [TimaX{Cdeown,h Ci+1Tdown,i+1}]7 T, € [1a 3]a 1= ]-7 s 747 Ci € [1a Q]a 1= ]-7 CII) 5.

To verify the validity of this approach, five asynchronous serial lines, denoted
as si1, ..., S5, have been formed and used in the simulation procedure described in

Subsection 4.2. As a result, we obtain that 0 (defined by (3.9) with TP substituted
for €) is always larger than §. The resulting 14% (v, d; TP, ), calculated using Ap-

ini

proximation Procedure 1, is compared with n¥% (7, d), calculated using (3.14) with

TP = TP, in Table 3.6. As one can see, the difference is in the range of 8% to 35%.

Table 3.6. Values of n¥%(v,9) and 75 (v, d; TP,

;) as functions of (v, 9).

System s1 S2 S3 S4 Sy
(1:9) nf | T | 0 | T | 0 |05 | 0t | e | 0 |
(0.1, 0.9) 198 | 214 | 175 | 196 | 44 59 | 172 | 192 | 137 | 155

(0.1, 0.95) 281 | 303 | 249 | 278 | 62 | 83 | 244 | 272 | 194 | 220
(0.05, 0.9) 790 | 854 | 699 | 780 | 173 | 232 | 688 | 766 | 547 | 617
(0.05, 0.95) 1121 | 1210 | 993 | 1106 | 246 | 330 | 976 | 1085 | 776 | 876

3.5 Induced Precision and Inverse Problem for Production

Lead Time

3.5.1 Approach

Although production lead time, LT, can be evaluated using Little’s formula,

LT = %, due to complexity of the analytical expression for WIP in serial lines
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with exponential machines and finite buffers (see Li and Meerkov (2009), Chapter
11), analytical solutions of the induced precision and inverse problems for LT are
all but impossible to derive. Therefore, we consider here simpler systems, namely,
serial production lines with M identical exponential machines and infinite buffers.
The lead time in such systems has been investigated in Meerkov and Yan (2016) and

the following approximate expression has been obtained:

2T, own 1-
It=1+ 24 ( e) . (3.15)
T 1—p
In this expression, [t = ]\}im % is the relative lead time; e and 7 are, as usual,
—0

the machine efficiency and cycle time, respectively; and p = < is the relative raw
material release rate, where e is the probability of releasing a part in the system per
cycle time. To ensure that WIP < oo, it is assumed that ey < e. It has been shown
in Meerkov and Yan (2016) that (3.15) provides a high accuracy approximation of
lead time in systems with M > 5. In this section, analytical solutions of the induced

precision and inverse problems are obtained using (3.15).

3.5.2 Solution of Induced Precision Problem for LT

When T, and T}y, are not available, their (o, 3)-precise estimates fup(n;(oz, B))

and Tyown(ni (o, B)) can be used instead, leading to a random variable It defined by:

- W iown (1 — 2 . T, ~
i1y M ( i), poTw 5% (3.16)
T ]'_p Tup+Tdown €

Similar to the previous sections, the (ay, By )-precise estimate of It is defined by
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the following expression:

< alt) = B (3.17)

2 * _ T * _
Proposition 3.7. Given |T“p(nT(%’f)) vl < o and le””"(n#da’B)) Taown a, the

\z?(n;(c;mHﬂ <

smallest induced oy, which satisfies ay with accuracy O(a?) is given

by ~
: It—1 2(p—2pe+é€
ajpt = — (1 2= 28 6)) o, (3.18)
It L=p
where [t is calculated based on (3.16).
Justification. See Appendix B. ]
The relationship between i and « can be quantified as follows:
Proposition 3.8. The inequality oi"? > « takes place if and only if
-, /1= =" 1+, /1— ==
Tdown -~ Tdown
: 3.19
5 <e< 5 (3.19)
Justification. See Appendix B. ]

. aind . ~ . .
The behavior of —— as a function of p for various values of machine parameters

is illustrated in Figure 3.2. As one can see:
e Increasing p leads to lower induced accuracy of lAt;
e For ¢ > 0.5, increasing € leads to higher induced accuracy of lAt;

e The induced accuracy of It is relatively insensitive to @
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Proposition 3.9. The Gaussian approzimation of B is given by

ind = orf (am jrile.5) (;" 2 ) , (3.20)

Ao (1+p+2e—4pe)? (3.21)
(p+e—2pe)? + (1—2pe+¢e)* '

where

Justification. See Appendix B. ]

Since the numerator and denominator of A can be represented as (a + b)? and
a® + b?, respectively, with @ > 0 and b > 0, we conclude that A > 1. Therefore, it

follows from (3.20) that
> B (3.22)

3.5.3 Solution of Inverse Problem for LT

Proposition 3.10. For a given (v,9), the critical number of up- and downtime

measurements to ensure (vy,§)-precise estimate of LT is given by

e (7.6) = | 2R (ﬁil) (erf_l(‘s))z , (3.23)

It Y
where
(€4 p—2pe)* + (1 +e—2pe)?
R = L , (3.24)
and ﬁ(nz’}(%ﬁ)) is defined by (3.16).
Justification. See Appendix B. [
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Since for a > 0 and b > 0, the numerator and denominator of R can be represented

as a® + b* and (a — b)?, respectively, R > 1. Therefore, for It sufficiently large,

ik (y,9) > nk(y,0). This is illustrated by contour plots of Figure 3.3 for practical

Tdo“’" , where ni%.(7,d) is substantially larger than nf.(v, ).
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Figure 3.3. Contour plots of ni%(v,d) for € € {0.8,0.9}, p = 0.8 and @ =10

A question arises: Which value of It in (3.23) can be viewed as sufficiently large?

Comparing (2.9) and (3.23), we conclude that It is sufficient large if

~ 2
-1
R(“A ) 1. (3.25)

It

Substituting (3.16) into this inequality, leads to the following condition:

~

Tdown

<2(¢R—1)%:§. (3.26)

— P
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Since the right-hand side of this inequality is monotonically increasing with respect to
p, for every e there exist p*(€) such that (3.26) is satisfied. Thus, for any p > p*(€),

It is sufficiently large, leading to the following:

Observation 3.3. For raw material release rate sufficiently large, performance met-

ric LT is variability expanding.

To obtain an approximation of lAt(nj‘;i}(% 9)) to be used in the right-hand side of
(3.23), note that in the case of variability expanding performance metrics, ni*(vy, ) >

nk(v,9). Therefore, n;,; can be selected as nk.(v,d), leading to the following:
Approximation Procedure 2 (for n%, X € {LT, WIP})
e Select n,; = n¥(7,0) and evaluate e(n,;), P(Ning)-

o Use €(nin;) and p(ng,;) instead of e(n¥*(vy,9)) and p(n¥(v,0)) to evaluate an

approximation of n¥*(v,d), denoted as ni* (v, 9; €(Nini), P(Nini))-

e Select a safety factor € and calculate 75 (7, &; €(ning), p(Nini), €) =

(14 e)n¥ (7, 05 e(nini), P(Mini))-

To verify the validity of this approach, we use the Monte Carlo simulations with
the parameters indicated in Subsection 4.2, along with p € [0.5,0.8], and for five
serial lines. The results are shown in Table 3.7. As one can see, the difference is

quite small, in the range of 5% to 6%.
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Table 3.7. Values of n?;”(’y’ 5) and ﬁz*T(% 5a é\(nzm)> ﬁ(nmz)a 6) as functions of (’77 6)

System S1 So S3 S4 Sy

kk kk kk okck ke okk *kk TS kk okck
(v, 9) Npr | Npr | Npr | e | Ppre | Npr | "o | oy | Mo | o

(0.1, 0.9) 1506 | 1595 [ 1318 | 1389 [ 1696 | 1792 | 584 | 612 | 520 | 546
(0.1, 0.95) 2138|2260 | 1871 | 1970 | 2408 | 2544 | 829 | 870 | 738 | 775
(0.05, 0.9) 6022 | 6337 | 5271 | 5544 | 6782 | 7133 | 2334|2447 2079|2183
(0.05, 0.95) | 8550 | 8994 | 7484 | 7860 | 9629 | 10125 | 3313 | 3479 | 2951 | 3098

3.6 Induced Precision and Inverse Problem for Work-in-

Process

3.6.1 Approach

Since, as it is mentioned in Subsection 3.5.1, the complexity of analytical expres-
sion for WIP prevents closed-form solutions of the induced precision and inverse
problems for systems with finite buffers, we use in this section the same approach as
in Section 3.5, i.e., address these problems in the framework of serial lines with M
identical exponential machines and infinite buffers. For such systems, Meerkov and

Yan (2016) provide a closed formula for work-in-process in each buffer,

2 Town 1-
WIp, = 290°°d ( e), (3.27)

T € — €

and, therefore, the total WIP in the system is

T € — €

WIP = (M — 1)20 down ( — ) : (3.28)
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This expression is used to derive analytical solutions of the problems at hand.

3.6.2 Solution of Induced Precision Problem for WIP

Proposition 3.11. Given |f“”(n§(;:f))fhp| < a and ‘fdow”(n%jf:)fnow”‘ < «, the
smallest induced oy rp, which satisfies ‘ﬁ(n;v(;ji))_wml < awrp with accuracy
O(a?) is given by

aind  — Lt Qitﬁﬁ_ P, (3.29)
Justification. See Appendix B. ]

Subtracting denominator from numerator in (3.29), we obtain € + p — 2ep > 0,

implying that ain?, > a.

Proposition 3.12. The Gaussian approxvimation of B¢, is given by

Bind , = erf <aA\ / —n;(;%ﬁ)) : (3.30)

where A is given by (3.21).
Justification. See Appendix B. ]

Thus, similar to the analysis of expression (3.20), we conclude that 3id, > 3.
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3.6.3 Solution of Inverse Problem for WIP

Proposition 3.13. For a given (v, 0), the critical number of machine up- and down-

time measurements to ensure (v, d)-precise estimate of WIP is given by

n$WWﬁ%=2R<§;;Q>T, (3.31)

where R is given by (3.24).

Justification. See Appendix B. O

Clearly, since R > 1, njj;p(7,0) is larger than nk(v,d). This is illustrated by

contour plots of Figure 3.4.
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Figure 3.4. Contour plots of nj;p(7,9)

Observation 3.4. The performance metric W1IP is variability expanding.

o1



Using Approximation Procedure 2, we evaluated 75y, p(7, 0; €(Nini), p(ini), €) and
compared it with nj;5(7,0), calculated using (3.31) with € = e and p = p. The

results are shown in Table 3.8, where the difference is in the range of 5% to 7%.

Table 3.8. Values of njif;p(7, ) and nj5; p(7, 0; €(n4ini ), p(Nini), €) as functions of (v, §).

System s1 So S3 S4 Sy
ks skok kk kok ksk kok *kek skok Kk skok
(v, 9) Nwrp|Mwip|Mwrip | wip |Pwip|Mwip|Mwip|Mwip | Mwip|Mwip

(0.1, 0.9) 1647 | 1735 | 2425 | 2582 | 1622 | 1706 | 1742 | 1838 | 1542 | 1623
(0.1, 0.95) 2338|2460 | 3443 | 3654 | 2303 | 2422 | 2474 | 2607 | 2189 | 2303
(0.05, 0.9) [ 6586 | 6920 | 9699 [10220| 6488 | 6818 | 6968 | 7326 | 6167 | 6479
(0.05, 0.95) | 9351|9820 [13771|14492| 9212 | 9676 | 9893 {10396 | 8756 | 9198

3.7 Summary of Formulas and Numerical Illustration

This section summarizes the formulas derived in Sections 4-8 for the critical
number of measurements and provides a comparative illustration of these numbers
for all performance metrics addressed.

Table 3.9 presents the formulas. The first five rows represent the performance
metrics based on machines’ up- and downtime measurements, and the last two —
based on parts quality measurements.

Table 3.10 shows numerical values of the critical numbers, calculated using the
formulas of Table 3.9, for both independent variables, 1%, Thown, ¢, and for functions
of these variables, X € {e, TP, LT, WIP}. As one can see, for variability contracting
performance metrics, i.e., e and TP, n¥" is orders of magnitude smaller than nj.

Conversely, for variability expanding performance metrics, i.e., LT, and WIP, n¥*
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is much larger than n7.

Since the right-hand side of the formulas in Table 3.9 (except for the first one)

depends on the performance metrics estimates, for practical utilization of these for-

mulas, Approximation Procedures 1 and 2 (see Subsections 4.2 and 7.3) must be

used. The resulting critical numbers, n%* are shown in Table 3.11. Although these

numbers are larger than those of Table 3.10, for variability contracting performance

metrics they are at least an order of magnitude smaller than n%. Thus, the formulas

of Table 3.9, combined with Approximation Procedures 1 and 2, offer a practical

method for calculating the number of independent variables measurements to ensure

a desired precision of all performance metrics considered in this chapter.

Table 3.9. Formulas for critical number of measurements for various performance

metrics.
Metrics Critical Number of Measurements
Tup and Tgown ni(v,8) = _2 (erfvl((;)>2}
e ng*(1,0) = (Wﬂ
TP wip(n0) < | (et @) o, T2
LT nit(v,0) = _2R <flrl)2 (erf:/l(5)>2}7 - (é+ﬁ—2§€()12_—&-ﬁ()12+§_25g)2
wip nitp(7,0) = 2R (e‘"f,:(‘”)ﬂ, R = Grp-2pr(Lro20)
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Table 3.10. Critical number of measurements calculated using formulas of Table 3.9.

(v, 90)
(0.1,0.9) | (0.1,0.95) | (0.05,0.9) | (0.05,0.95)

Critical Numbers

ni (v, d) 271 385 1083 1537
nt*(v,8), & = 0.9 6 8 29 31
nyp(v,8), T2 = 0.9, M =5 5 6 9 12
ni5(v,0),8 = 0.9,p — 0.8, Teun _ 10| 1561 | 2216 | 6243 8864
nip(v,8), € = 0.9, 5 = 0.8 1880 | 2682 | 7754 | 10726

Table 3.11. Critical number of measurements calculated using Approximation Pro-

cedures 1 and 2.

(v, 9)

Approximation o (0.1,0.9) | (0.1,0.95) | (0.05,0.9) | (0.05,0.95)
Critical Numbers
ni (v, o) 271 385 1083 1537
724 (v, 8;85..), € = 0.9 30 30 49 69
Wy, 6 TP,,), T2 = 0.9, M =5 30 30 30 35
’;/l** 6é‘n "n‘. €

£r(Y> 8 &(ning), PMini); €), 1643 | 2333 | 6562 | 9320
€=0.9,p=0.8, Laoun — 10
n ,5;énini aAnini s €)y

wipl (Mins), Pmini); €) 1991 | 2825 | 7940 | 11274
€=10.9,p=0.8
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3.8 Summary

This chapter provides an analytical characterization of the number of measure-
ments required for evaluating various production systems performance metrics, which
are necessary for managerial decision-making and evaluating efficacy of potential con-
tinuous improvement projects. As far as the metrics are concerned, they are machine
efficiency, throughput (with and without taking into account parts quality), produc-
tion lead time, and work-in-process. As far as the measurements are concerned,
they are duration of machines’ up- and downtime. Both quantitative and qualita-
tive characterizations of these critical numbers are provided. The quantitative ones
are represented by closed formulas for the precision of the performance metrics as
functions of their arguments (i.e., measurements). The qualitative ones are formu-
lated in terms of variability of performance metrics as compared with variability of
their arguments. In this regard, it is shown that under practice-inspired conditions,
the variability contracting metrics are machine efficiency and throughput, while the
throughput of non-defective parts produced, lead time, and work-in-process are vari-

ability expanding.

Future work in this area includes extending the results obtained to:
e assembly systems;
e production systems with machines obeying non-exponential reliability models.

Additionally, utilization of the results obtained in practice is an important part

of future work.
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CHAPTER 4

The (a4, 8¢)- and (arp,, Brp,)-Precise Estimate of
Machine Quality Parameter g and Quality Parts

Throughput TP,

4.1 Problem Motivation

The machine quality parameter ¢ is used in quantitative method for performance
analysis, continuous improvement, and design of production systems with non-perfect
quality machines. Such machines produce a non-defective part (i.e., quality part)
with probability ¢, and defective with probability 1 — ¢q. To evaluate ¢ for non-
perfect machines, parts quality must be measured and then averaged to obtain the
estimate ¢. The law of large number guarantees that a sufficiently large number
of measurements leads to sufficiently precise estimate. However, collecting a large
number of measurements requires a long observation time. This chapter is intended
to provide guidance for selecting the smallest number of parts quality measurements

necessary and sufficient for calculating reliable estimate of q. The term “reliable”
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is used to indicate an estimate, which has the desired accuracy with the desired
probability.

In addition to ¢, this chapter addresses one performance metric, namely, quality
parts throughput (7'F,) in production systems with non-perfect quality machines
obeying the Bernoulli quality model. A method for performance analysis of systems
with non-perfect quality machines and inspection stations (intended to remove de-
fective parts or direct them for rework) is developed in Li and Meerkov (2009). On
this basis, this chapter calculates induced (arp,, Brp,)-precise estimate of TP, and
the smallest number of parts quality measurements required to ensure the desired
precision of ﬁq.

Along with quantitative results, this chapter provides qualitative insights into
variability properties of production system quality parts throughput. To describe it,
let n%(v,0) denote the smallest number of up- and downtime measurements required
to obtain (v,d)-precise estimates of ¢, while n7%, (v, ) denotes the smallest number

of up- and downtime measurements required to obtain an equally precise estimate of
TPF,.
Definition 4.1. Performance metric T'F, is:

o wariability contracting if np, (v,6) < ng(v,9);

o wariability expanding if nip, (v,0) > ng (v, d).
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4.2 Problems Formulation

Consider a non-perfect quality exponential machine producing quality parts with
probability ¢ and defectives with probability 1 —¢. Assume the machine produced n
parts, of which n, were non-defective. Then, its quality parameter ¢ can be estimated

q(n) = nq(n) (4.1)

Definition 4.2.

o The estimate q(n) is referred to as (o, B,)-precise if

o The smallest integer n;‘(aq, B,), which guarantees the above relationship, is

referred to as the critical number of parts quality measurements.

The nj(cy, Bq) evaluation problem: Given a desired (g, ), calculate the crit-

ical number of parts quality measurements, n; (o, Bq)-

Consider now a serial production line consisting of M exponential machines with
the quality parameter ¢; < 1,7 = 1,..., M. Assume that this system is equipped
with an inspection station at the end of the line. In this case, if the values of T, ,,
Taown,i» and ¢; are available, the throughput of quality parts, T'F,, can be calculated
as (see Meerkov and Zhang (2010))

M
TP, =TP]| [ (4.3)

i=1
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where TP is the throughput of the line calculated under the assumption that all ma-
chines are of perfect quality (i.e., produce no defective parts). When T, ; and Tyoun i,
i=1,...,M, are known, but only (ay, §,)-precise estimates of ¢;, i = 1,..., M, are

available, the estimate of T'P,; can be evaluated as

M
TP, =TP] [ (4.4)

i=1
Finally, when neither T, ; and Tyoyn,; nor g;, ¢ = 1,..., M, are known precisely and

only their estimates are available, the estimate of TP, is

—_— M
TR=TP] [ (4.5)

=1

where TP is calculated assuming no defective parts are produced.
The induced accuracy of both ﬁ’q and /T\R] can be evaluated. Due to space
limitations, only the former is addressed in this chapter. Specifically, quantifying the

induced (arp,, frp,)-precision of ﬁq(n;‘(aq, By)) as

p TP, — qu(n:;(aqa By))]
TP,

< aTPq} = Pre,, (4.6)

we introduce the following problems:

Induced precision problem for T'P,: Given («y, 3,)-precise estimates g;(n; (g, f)),

i=1,..., M, calculate the induced precision (aff'g , B8 ) of TP,

Inverse problem for T'P,: Given a desired (7,0), calculate the smallest number

of parts quality measurements, nyp, (v, 9), required to obtain (v, d)-precise estimate
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TP,.

4.3 The (ag4,8,)-precise Estimate of Machine Quality Pa-

rameter

The (ay, B,)-precise estimate of the machine quality parameter ¢ is introduced
in Definition 4.2 by expression (4.2) along with the critical number of parts quality
measurements, n(ay, 4;), required for (4.2) to take place. The proposition below

provides an expression for this number.

Proposition 4.1. The Gaussian approximation of the critical number of parts quality

measurements to ensure (ozq, ﬁq)—preczse estimate of q is given by

oo PR (Y]

where ¢ = qA(n’q“(ozq,ﬁq)).

Justification. See Appendix C. ]

As it follows from (2.9) and (4.7), n¥(v,0) < nj(v,0) if § > 0.5. This is a result
of the fact that the coefficient of variation of a Bernoulli random variable (parts
quality) is smaller than the coefficient of variation of exponential random variable
(machines’ up- and downtime) if ¢ > 0.5. This phenomenon is illustrated in Figure
4.1, and the contour plots of n}(v,d; ) are shown in Figure 4.2.

As for all previously considered performance metrics, the dependence of the right-

hand side of (4.7) on g(n}(7,d)) can be eliminated using Approximation Procedure
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1. However, as it turns out, for the case of ¢, this procedure must be modified by
having safety factor € equal to 0.1, rather than 0.05. The reason is that for e = 0.05,
the number of measurements 727(v,d;G;,;) turns out to be too small to guarantee
that 5A, defined in (3.9) with ¢ substituted instead of e is smaller than ¢, while for
e = 0.1, 4 is indeed larger than 8. The values of 12 (7, 0; @iy ) calculated according to
Approximation Procedure 1 with ¢ = 0.1 and ¢ selected randomly and equiprobably
from the set [0.6,0.95], are shown in Table 4.1, along with n}(v,d). As one can see,

due to a larger safety factor, the difference is significant, ranging from 40% to 150%.

Table 4.1. Values of n?(v,0) and 7} (v, d; @,;) as functions of (v, d).

Machine mq mso ms My ms
g1 =0.86 | g2 =0.68 | g3 = 0.85 | g4 = 0.80 | g5 = 0.92
(v, 6) ng | ng | omy | ng | ong | g | ong | g | ong | 0y

(0.1, 0.9) 45 | 82 | 129 | 183 | 46 | 84 | 67 | 108 | 24 | 58
(0.1, 0.95) 64 | 116 | 184 | 257 | 66 | 119 | 95 | 154 | 34 | 82
(0.05, 0.9) 180 | 330 | 516 | 722 | 184 | 334 | 268 | 431 | 94 | 229
(0.05, 0.95) | 255 | 469 | 733 | 1031 | 261 | 474 | 380 | 614 | 133 | 323

4.4 Induced Precision and Inverse Problem for Throughput

of Non-defective Parts

4.4.1 Solution of Induced Precision Problem for TP,

As indicated in Section 4.2, the estimate of T'F, is defined by (4.4) and its

(arp,, Brp,) precision by (4.6). In terms of these definitions, we obtain:
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lgi—3i (n¥ (aq,8q))!

Proposition 4.2. Given .

< aq, ¢t = 1,..., M, the smallest arp,,

|TPy—TPy(n(aq,84))l
TPy

which satisfies < arp, with accuracy up to O(ag) s given by

ind

arp, = kog, (4.8)

where k is number of non-perfect quality machines in a serial line.

Justification. See Appendix C. ]

Thus, the induced accuracy of ﬁq decreases linearly with the number of non-

perfect quality machines.

Proposition 4.3. Assume H?ﬁﬁ]z‘ > 0.5. Then, the Gaussian approrimation of

5 is given by
. ka
i, >t (550 (g ) ). (19)
Justification. See Appendix C. ]

Thus, the induced probability of ﬁq is increasing with the number of non-perfect

quality machines, however, in a nonlinear manner.

4.4.2 Solution of Inverse Problem for TP,

Proposition 4.4. For a given (v,0), the critical number of parts quality measure-

ments to ensure (7y,0)-precise estimate of TP, is given by

k ~ —1 2
@%WJFZF(Zlé%)CﬁVQUW- (4.10)
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Justification. See Appendix C.

]

As it follows from (4.7) and (4.10), n7p, (v,9) > ng(v,96) for k = 2. The contour

plots of n7p, (v,6) are shown in Figure 4.3.
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Figure 4.3. Contour plots of ny}p, (v,9) for g; =09,i=1,....k

Observation 4.1. As it follows from the above, performance metric 7'F, for serial
lines with more than one non-perfect quality machines is variability expanding.

The values of n7p, (7,5;7/7?’;””) is compared with nf, (7v,9), calculated using

(4.10) with ¢; = ¢;, in Table 4.2 for five asynchronous serial lines with ¢; € [0.6,0.95],
1=1,...,5, and H?:l ¢; > 0.5. As one can see, the difference is in the range of 40%
to 50%.

64



€

Table 4.2. Values of nj}, (v,0) and 155 (7, 6; TP as functions of (v, d).

q,im)

System S1 So S3 S4 Sy

kok N kk koK kck K3k Kk K3k Tk k ok 5k k
(7, 9) Nrp, | "rp, | "rp, | "rp, | "rp, | "1P, | "rP, | "1P, | "TP, | "'TP,

(0.1, 0.9) 201 | 292 | 192 | 281 | 206 | 297 | 194 | 285 | 177 | 265
(0.1, 0.95) 285 | 413 | 272 | 398 | 293 | 421 | 276 | 404 | 251 | 376
(0.05, 0.9) 802 | 1169 | 765 | 1118 | 824 |1192| 776 | 1135 | 705 | 1053
(0.05, 0.95) 1138 11651 | 1086 | 1599 | 1169 | 1690 | 1102 | 1614 | 1001 | 1500

4.5 Summary of Formulas and Numerical Illustration

This section summarizes the formulas derived in Sections 4-8 for the critical
number of parts quality measurements and provides a comparative illustration of
these numbers.

Table 4.3 presents the formulas. Table 4.4 shows numerical values of the critical
numbers, calculated using the formulas of Table 4.3. As one can see, for variability
expanding performance metrics T'F;, n7p is much larger than ng.

Since the right-hand side of the formulas in Table 3.9 (except for the first one)
depends on the performance metrics estimates, for practical utilization of these for-
mulas, Approximation Procedures 1 in Chapter 3 must be used. The resulting critical

numbers are shown in Table 4.5.

4.6 Summary

This chapter provides both quantitative and qualitative characterizations of the

critical number of parts quality measurements. As far as the quantitative char-
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Table 4.3. Formulas for critical number of measurements for various performance

metrics.
Metrics Critical Number of Measurements
% 1-5\ [erf=1(8)\?
—§ £=1(5) ) 2
TP, | ni, (7,0) [2 (S, 155) (=@) }

Table 4.4. Critical number of measurements calculated using formulas of Table 4.3.

('77 5)
(0.1,0.9) | (0.1,0.95) | (0.05,0.9) | (0.05,0.95)
Critical Numbers
n:’;(% 4), ¢ =0.9 31 43 121 171
n;”‘Pq(’Y,(S), g;=09,1=1,..,.5M =5 151 214 602 854

Table 4.5. Critical number of measurements calculated using Approximation Proce-

dures 1 of Chapter 3.

Gi=09,i=1,...,5,M =5

(v, 9)
Approximation Of (0.1,0.9) (0.1,0.95) (0.05,0.9) (0.05,0.95)
Critical Numbers
ng(7,034;5,;), 4 = 0.9 65 92 258 367
P TP, . ),
7P, (7 wini) 236 337 942 1339
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acterization is concerned, this chapter calculates the critical number n;‘(ozq, B,) to
ensure (o, f,)-precise estimate of g, evaluates the induced precision of the quality
parts throughput estimate ﬁq(n* (o, By)), and presents the solution to the inverse
problem, i.e., the critical number nff, (7, d) to ensure (v, §)-precise estimate of ﬁ?q.
Formulas and values of both critical numbers are summarized in Table 4.3-4.5. As
far as the qualitative characterization is concerned, this chapter shows that T'F, is
a variability expanding performance metric, i.e, the for obtaining the same level of

precision, the critical number of parts quality measurement required for the estimate

of T'P, is larger than that for the estimate of g.
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CHAPTER 5

Comparison of the Critical Numbers Calculated
Using (a, 3)-Precision Theory with those
Evaluated Using Markov Inequality, Chebyshev

Inequality, and by Simulations

5.1 Problem Motivation

In Chapters 2 and 4, the critical number of measurements required to obtain
(o, B)-precise estimates of T ups T downs ¢ defined by Definitions 2.1 and 4.2 has been
calculated using the technique developed in this dissertation, i.e., («, 3)-Precision
Theory. Since fup and fdown are random variables, their statistical characterization
can also be obtained using the classical probabilistic inequalities, namely, Markov
and Chebyshev inequalities, as well as by numerical simulations. This leads to a
possibility of evaluating the critical numbers of measurements based on these tools.

The purpose of this chapter is to carry out such evaluations and compare the results
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with those derived in Chapters 2 and 4.

For the probabilistic inequalities, we use the Markov’s and Chebyshev’s inequal-
ities, which are often used in probability related calculations, see, for instance,
Boucheron et al. (2003); Gubner (2006); Resnick (2019).

As defined in Definition 2.1, the estimates fup and fdown are (v, B)-precise if they
satisfy the following inequalities:

p el =Tl Vs 5 p ) Laoonln) = Tl (L g
T Tdown

up

The critical number of measurements obtained using the («, 3)-Precision Theory has

been investigated in Chapter 2 and the following expression has been obtained:

(o, ) = [2 (f—(m” | (5.1)

(07

Denote the critical numbers of measurements evaluated based on Markov inequality,
Chebyshev inequality, and by simulations as n} ,,(a, 8), nf.o(a, 8), and nf g(a, 8),
respectively.

Similarly, the estimate q is (o, f,)-precise if it satisfy

q

Using the (a, 8)-Precision Theory, we obtain the critical number of parts quality
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measurement, given by:

o - [2 (155) (erfalqwq)ﬂ.

Similar to the ones for T, and T,,, we denote the critical numbers of parts quality

measurements evaluated based on Markov inequality, Chebyshev inequality, and by
simulations as n} ,/(a, 8), n} o(a, 8), and n? (o, 3), respectively.

The evaluations of those critical numbers are given in Sections 5.2-5.4.

5.2 Critical Numbers Evaluated Using Markov Inequality

Proposition 5.1. The Gaussian approzimation of critical number ni. \(«, B) is

given by

Justification. See Appendix D. O

Proposition 5.2. The Gaussian approzimation of the critical number n} y/(ay, By)

1S given by
2(1—q) 1
g a2(1— fy)? ’

Justification. See Appendix D. ]

1% vr(0, By) = [
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5.3 Critical Numbers Evaluated Using Chebyshev Inequal-
ity

Theorem 5.3. The critical number ni. o(«a, ) is given by

Proof. See Appendix D. ]

Theorem 5.4. The critical number n} ~(ay, B,) is given by

1— 1
n;c(amﬁfl) - [ q qozg(l - Bq)} .

Proof. See Appendix D. ]

5.4 Critical Numbers Evaluated Using Simulation

For any number of observation n and T;,,, we randomly generate n number of ex-
ponential random variable with mean 7;,,, and compute the mean of the realizations,
denoted as 7. up(n). This procedure is repeated for N = 10000 times. The probability

[ can be approximated by

. T -,
. number of times ‘“”(;—)“’" <«
B = &

N

Using the approximation B , the critical number n7, s(a, ) can be evaluated by a line

search.

71



For any number of observation n and ¢, we randomly generate n number of
Bernoulli random variable with parameter ¢, and compute the mean of the real-
izations, denoted as ¢(n). This procedure is repeated for N = 10000 times. The

probability 3, can be approximated by

~ number of times |q(n;_q| < oy

I N

Using the approximation Eq, the critical number n} ¢(ay, 5;) can be evaluated by a

line search.

5.5 Numerical Illustration

For T,, = 10 and the precision pair (a, ) € {(0.1,0.9),(0.1,0.95), (0.05,0.9),
(0.05,0.95)}, the corresponding critical numbers nj.(«, 8), n7 5/ (, 8),n} g(a, B) and

n}.c(a, B) are listed in Table 5.1.

Table 5.1. Critical numbers nt (o, 8),n7 (@, B),n} s(a, ) and ni(a, §) as func-
tions of (a, ).

o (. 8) (0.1,0.9) | (0.1,0.95) | (0.05,0.9) | (0.05,0.95)
Critical Number
n%M(a, B) 6366 25465 25465 101860
n;c(a, B) 1000 2000 4000 8000
n?s(a, 15} 271 386 1084 1543
ni(a, ) 271 385 1083 1537

Notice that, since ¢ is unknown, the expressions for ny (g, By) and ”;,(J(O‘w By)

are not closed and nj s(ay, B,) can not be evaluated. Thus, the same approximation
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procedure for n}(ay, ;) is needed for n} ,,(aq, By), i o(aq, By), and n} o(ay, B,). We
take the same n;,; = 30 and ¢ = 0.1 as we have for ﬁ;(aq, By)-

For ¢ = 0.9 and the precision pair (o, ;) € {(0.1,0.9), (0.1,0.95), (0.05,0.9),
(0.05,0.95)}, the critical numbers n(ay, 8,), nj v, ) and nf o(aq, ;) and the
corresponding approximated values 7, a (g, By)s Ng.c(Qqs By), Tigs (g, By), (g, By)
are listed in the following table. As we can see, the approximated critical numbers
are about twice the actual value.

The time complexity of the simulation method is O (Nnlog(n)), where n is the
upper bound of the critical number used in the simulations (e.g., n}i’C), while the
time complexity of the («a, 3)-Precision Theory is only O(1). For comparison, the
computation time for obtaining nt g, ny, nyg, and n; of Tables 5.1 and 5.2 are
reported in Table 5.3. As we can see, the simulation approach can take up to several
seconds to evaluate a critical number, which is much slower than computing the
value using closed-form formula. For reference, the simulations are conducted on a
Windows computer with 2-core Intel Core i7-6500U CPU @ 2.50GHz, 8GB 1866 MHz
DDR3 RAM using MATLAB 2020b. Other disadvantages of the simulation method
include it cannot provide analytical formulas of the critical numbers as a functions

of either a or , and simulations have to repeat anew for every value of machine

parameters.

5.6 Summary

For the evaluation of both the critical number of up- and downtime measure-

ments and critical number of parts quality measurements, the Markov inequality
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Table 5.2. Critical numbers n7 \/(y, 8q), ni o (g, By), 1 s(ag, By), ni (g, By) and the
corresponding approximated values as functions of (ay, 5,).

(g, B)] (0.1,0.9) [ (0.1,0.95) [ (0.05,0.9) | (0.05,0.95)

Critical Number ny | ny | ng | ny | ong | ngo|ong ny
ne (g, By) 708(1519]2830(6103|2830|6103|11318 |24364
n;k,c(ozq,ﬁq) 112] 239 | 223 | 480 | 445 | 959 | 889 | 1914

n? (g, By) 31| 65 | 43 | 91 | 117 | 254 | 173 | 362

n;‘(aq,ﬂq) 311 65 | 43 | 92 | 121 | 258 | 171 | 367

Table 5.3. Computation time for evaluating n7. ¢ and n; ¢ of Tables 5.1-5.2.

Computation Time (sec)|(0.1,0.9)|(0.1,0.95)|(0.05,0.9)|(0.05,0.95)
% s(a, B) 12020 | 1.6247 | 5.0171 | 7.4426
ni(a, ) 0.0002 | 0.0002 0.0002 0.0002
n;s(aq, By) 0.1131 0.1704 0.2548 0.3593
ny (o, By) 0.0002 | 0.0002 0.0002 0.0002
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and Chebyshev inequality give much larger critical numbers compared to the ones
obtained by the (a, 3)-Precision Theory. Specially, the above numerical illustra-
tion shows that the critical number evaluated using Markov inequality can be 20 to
70 times larger than the ones evaluated using our theory, while the ones obtained
using Chebyshev inequality can be 3 to 5 times larger. As one can see, our theory
gives the smallest critical numbers which guarantees the estimates precision, and can
be even orders of magnitude smaller compared to numbers that classic probability
inequalities can give.

As for the evaluation of critical number using simulation, the method has three

disadvantages:

e no analytical property of n7 4 can be investigated as a function of a and f;

e since no analytical expressions for ny. ¢ or n; ¢ are available, simulations have

to be repeated anew for every value of T, Tyouwn, and ¢;

e its computation time complexity is O (Nnlog(n)), while that of («, 8)-Precision

Theory is O(1);

e the results are subject to randomness in the up- and downtime realizations and

parts quality realizations.
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CHAPTER 6

Production Systems with Cycle Overrun:
Modeling, Analysis, Improvability, Bottlenecks,

and Parameter Estimation

6.1 Problem Motivation

Throughput losses in production systems are usually attributed to two reasons:
unreliable equipment and random part processing time (also referred to as machine
cycle time). The former is typically considered in system-theoretic literature devoted
to production systems, where the machine up- and downtime are assumed to be ran-
dom variables (often, exponentially distributed), while the cycle time is viewed as
a constant (see for instance, Viswanadham and Narahari (1992), Gershwin (1994),
and Li and Meerkov (2009)). The latter is typically used in queuing-theoretic lit-
erature, where the processing time is assumed to be a random variable (often, also
exponential), while up- and downtimes are not explicitly considered and may be

viewed as “embedded” in the random processing time (see, for instance, Askin and
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Standridge (1993), Buzacott and Shanthikumar (1993), Papadopolous et al. (1993),
Altiok (1997), Papadopoulos et al. (2009), and Curry and Feldman (2010)).

In practice, however, one more reason for throughput losses is observed: cycle
overrun. This term implies that the part processing time, 7, which is supposed to
be constant, may, in fact, require additional time (i.e., overrun), 7og, leading to the

total machine processing time given by

Total = T + TOR- (6.1)

Such situations occur, for instance, in automated operations with a constant
cycle time, 7, and manual loading/unloading operations, which may have a random
component in their duration. This scenario takes place in numerous machining and
welding operations. Another scenario is typical in assembly operations, where a fixed
cycle time, 7, is imposed by operational conveyors, and the overrun, 7og, is enabled
by push-buttons, offering the operator a possibility to occasionally stop the conveyor
in order to complete the job with the desired quality. This scenario takes place, for
example, in automotive paint shops and general assembly.

Two main features characterize the cycle overrun. The first one is that it may or
may not take place at every cycle time; this implies that overruns occur with a certain
probability. The second feature is that, given that the overrun occurs, the conditional
pdf of its duration is related to the part processing time, 7. Indeed, in most cases
the overrun duration is either a fraction or a small multiple of 7. These features,
exacerbated by the fact that the machines with cycle overrun may have equipment-

dependent up- and downtimes, make the queuing-theoretic approach inapplicable to
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systems with cycle overrun. The system-theoretic approach is not applicable as well:

while it does consider machine reliability models in terms of up- and downtime, the

cycle time is assumed to be constant.

Given that the current literature offers no analytical methods for analysis and

improvement of production systems with unreliable machines and cycle overrun and

taking into account that these systems are often encountered in practice, developing

such methods is of importance. This is carried out in the current paper.

Specific novel results reported here are:

A mathematical model of an unreliable machine with cycle overrun is intro-

duced.

A simplified version of this model is proposed, which enables analytical perfor-

mance investigation.

The relative effectiveness of a stand-alone machine throughput improvement

by reducing its average downtime vs. its average overrun is investigated.

The effect of cycle overrun on the performance of serial production line is

analyzed.

The bottleneck identification and throughput improvability in production sys-
tems with cycle overrun is investigated, and effectiveness of throughput im-

provement by downtime reduction vs. cycle overrun reduction is analyzed.

The above results, obtained under the exponential assumption, are extended

to non-exponential machines and non-exponential cycle overrun.
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e The theoretical results derived in this paper are illustrated by a case study

based on an automotive transmission case machining line.

The outline of this paper is as follows: Section 6.2 presents a mathematical model
of an unreliable machine with cycle overrun. Section 6.3 develops a method for reduc-
ing this model to the one considered in the system-theoretic literature on production
systems. In Section 6.4, efficacy of stand-alone machine throughput improvement
by decreasing either downtime or overrun is analyzed. In Section 6.5, a method for
performance analysis of serial lines with unreliable machines and cycle overrun is
investigated. In Section 6.6, a bottleneck identification technique for serial lines with
unreliable machines and overruns is examined, and the issues of system improvabil-
ity are discussed. Section 7 extends the results obtained in Sections 6.2-6.6 under
exponential assumption to production lines with non-exponential machines and non-
exponential overruns. A case study is described in Section 6.8. Finally, the summary

of this chapter is given in Section 6.10. The proofs are included in the Appendix E.

6.2 Mathematical Model of Unreliable Machines with Cycle

Overrun

This model is defined by the following three groups of parameters/assumptions:

(a) Nominal parameters:

e Machine cycle time (1) — the nominal time necessary to process a part by a
machine. The term “nominal” is used to imply that the machine operates in the

ideal regime, e.g., with no overruns. In large volume manufacturing, 7 is practically
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always constant. If manual loading and unloading operations are involved, their

nominal durations are included in 7.

e Machine capacity (¢) — the nominal number of parts a stand-alone machine pro-
duces per unit of time in the ideal regime, e.g., without breakdowns and cycle over-
runs. If the unit of time is an hour and the cycle time is in seconds, the machine
capacity is

3600
¢ = —— parts/hour. (6.2)
T

(b) Reliability assumption:

o Fxponential reliability model — machine breakdown and repair rates, A and pu, are
constant, implying that up- and downtime of the machine are distributed exponen-
tially with parameters A and pu, respectively. The inverses of A and p are average up-

and downtime, T}, and Tiou,.

While the above machine characteristics are widely used in system-theoretic lit-

erature, the ones below are novel.

(c) Cycle overrun parameters/assumptions:

e Querrun probability (por) — the probability that a cycle has an overrun. The
complementary probability, 1 — pog, is the probability that this cycle does not have

an overrun.

o Overrun distribution (f&g(t)) — the conditional pdf of the overrun duration, given
that the cycle has an overrun. This distribution is assumed to be exponential with

the expected value denoted as T55. To reflect the practical meaning of the overrun,
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it is assumed that T, is either a fraction or a small multiple of 7. Specifically, we

assume that T, = korT, where kog € (0,2].

Based on the above, the conditional and unconditional pdf’s of the overrun as

well as its unconditional expected value (Tpgr) are:

1 t

Co(t) = —— — t > .
fOR( ) kORTeXP( kOR7_>, 0, (6 3)
1
for(t) = por exp(— )| + (1 —=pogr)d(t), t=0, (6.4)
]CORT kORT
Tor = porkorT = PorTHR: (6.5)

where () is the Dirac delta function.

Thus, according to the above model, an exponential unreliable machine with cycle
overrun is defined by five independent parameters {7, Ty, Tiown, Por, Kor}-

Note that model (a)-(c) can be extended to non-exponential distributions of up-
time, downtime, and cycle overrun; some of the results in this direction are described
in Section 7. Note also that, according to the above formulation, 7og in expression

(6.1) is exactly Tog.
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6.3 Simplified Mathematical Model of Unreliable Machines

with Cycle Overrun

In the system-theoretic approach, a machine is characterized by three independent
parameters {7, Ty, Tyown}. They are used to evaluate machine’s efficiency, e, and

stand-alone throughput, SAT, according to

Toup
c = —mM8M

Tup + Tdown ’
3600 T,

T Tup + Tdown

(6.6)

SAT = parts/hour,

where, as in (6.2), the coefficient 3600 is used to account for 7 being in seconds and
SAT in parts/hour.

To simplify the description and performance analysis of a machine with cycle over-
run, it is desirable to reduce the five-parameter description {7, Tup, Tuown; Por; kor}
of a machine with cycle overrun, to a three-parameter case similar to {7, Ty, Tiown }-
This can be accomplished by embedding the unconditional duration of the overrun

into Ty, or Tyow, or 7. In this work, we use the latter due to the following fact:

Theorem 6.1. The stand-alone throughput of an unreliable machine with cycle over-

run defined by assumptions (a)-(c) is given by

3600 Top

SAT =
T+ TOR Tup + Tdown

parts/hour. (6.7)

Proof. See Appendix E. ]
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Comparing (6.6) and (6.7), one can see that (6.7) corresponds to an unreliable
machine with no cycle overrun, but with the cycle time 7 + Tor (instead of 7).
In other word, from the point of stand-alone throughput, an unreliable machine
with cycle overrun defined by {7, Typ, Tiown, Por, kor} is equivalent to the unreliable
machine with the overrun duration embedded into 7 and, thus, described by three
parameters {7 + Tor, Tup, Tiown }-

The triple {7 + Tor, Tup, Tiown} is referred to as the simplified parametric model
of unreliable machine with cycle overrun. Sections 6.5 and 6.6 below show that this
model is sufficiently precise to be used for performance analysis and improvement of

production systems with machines having cycle overrun.

6.4 Improvability of Stand-alone Unreliable Machine with

Cycle Overrun

Production losses of an unreliable machine with cycle overrun can be decreased
by either decreasing its downtime or cycle overrun. Which one of these options is
preferable?

To formalize this question, consider a simplified model of unreliable machine
with cycle overrun defined by {7 + Tog, Tup, Tiown}. Assume that its downtime
is reduced to become rTjyy,, Where the r € (0,1) is the reduction coefficient. In
this case, the machine is characterized by {7 + Tor, Tup, "Liown} and referred to as
downtime-reduced machine. Alternatively, assume that the unconditional mean of
the overrun is reduced by the same fraction. This results in a machine defined by

{7 +rTor, Tup, Tuown} and is referred to as overrun-reduced machine. The statement
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below specifies which one of these machines has a larger SAT.

Theorem 6.2. Consider a machine defined by assumptions (a)-(c). Then, for any
value of r € (0,1), if

T own
; < pORkORa (68)

up
the overrun-reduced machine has a larger SAT than the downtime-reduced machine.
If this inequality is reversed, the downtime-reduced machine is more productive than

the overrun-reduced one.

Proof. See Appendix E. ]
Theorem 6.2 leads to the following

SAT Improvability Indicator:

(a) If the machine parameters are such that (6.8) holds, to improve its SAT decrease

the unconditional expected values of the overrun, Tog.

(b) If the machine parameters are such that (6.8) does not hold, to improve its SAT

increase the machine efficiency, e.

6.5 Performance Analysis of Serial Lines with Unreliable
Machines and Cycle Overrun Based on Simplified Para-
metric Model

While the simplified parametric model of an unreliable machine with cycle overrun

precisely predicts its performance in terms of the stand-alone throughput, in a multi-

machine production system with finite buffers this may not be the case. Therefore, in
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this section we investigate the accuracy of serial lines performance evaluation using
the simplified parametric model of Section 6.3 viz-a-viz the exact stochastic model
defined by assumptions (a)-(c) in Section 6.2. In addition to the throughput (T'P),
we investigate the accuracy of work-in-process (W1 P) and probabilities of blockages
(BL) and starvations (ST'). First we consider the case of two-machine lines (where
closed formulas for all performance metrics are available in Li and Meerkov (2009))
and then address the general case of (M > 2)-machines (using the aggregation pro-
cedure of Bai et al. (2021)). In both cases, the accuracy of using the simplified model

is evaluated in terms of the errors defined by:

TPy — TP

€ErTp = TP : 100%,
1 ]WIR sim — WIP,|
= -1
€Ewip M—1 Z; N, 00%7
| Mo (6.9)
EBL:M_l Z |BLzszm*BLi|>
M
€sT = zszm - i‘a

where the symbols with subscript ‘sim’ refer to the performance metrics evaluated
by simulations, and the symbols without the subscript refer to the same performance
metrics calculated analytically (either by closed formulas or by aggregation). Note

that in the case of two-machine lines the summation signs in (6.9) are omitted.
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6.5.1 Two-machine Lines

In the two-machine case, we generate 100 lines, with machine and buffer param-

eters selected randomly and equiprobably from the following sets:

Tdown,i € [3, 10], €e; € [06, 095], C; € [1, 2],]901{71' € [O, 1], kOR,i € [02, 2],Z = 1, 2,

N = [h maX(Cleown,la CZTdoum,2)]7 h e [27 4]7
(6.10)

where h denotes the level of buffering, which protects a machine against job losses
during the adjacent machine’s downtime.

The analytical calculations for each of these lines have been carried out using
expressions (11.13)-(11.17) of Li and Meerkov (2009). The results obtained are sum-
marized in Tables 6.1. Based on these results, we conclude that the simplified para-

metric machine model is acceptable for two-machine systems evaluation.

Table 6.1. Accuracy of performance metrics evaluation using the simplified paramet-
ric model in two-machine lines.

(a) Accuracy of T'P evaluation (b) Accuracy of WIP evaluation
Mean value Mean value
TPy, 40.7941 WIP,,, 17.8947
TP 40.8795 WIP 17.8821
€rp 0.29% EWIP 1.72%
(¢) Accuracy of BL evaluation (d) Accuracy of ST evaluation
Mean value Mean value
BLi sim 0.1140 STy sim 0.1140
BL, 0.1120 ST, 0.1122
€BL 0.0021 €T 0.0021
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6.5.2 (M > 2)-machine Lines

In the (M > 2) case, we consider M € {3,5,10, 15,20}, and for each M generate
100 lines, with machine and buffer parameters selected randomly and equiprobably

from the following sets:

Tdown,i € [37 10], e; € [06, 095], C; € [1, 2]apOR,i € [O, 1], kJORﬂ‘ € [02, 2]72 = 1, . ,M,

Nj = [hj max(chdown,j, Cj+1Tdown,j+1)]7 hj € [2, 4],] = 1, . ,M — 1.
(6.11)

The results obtained are presented in Table 6.2. From these results, we observe
that the accuracy of performance metrics evaluation is decreasing as a function of M,
and for large M the errors become relatively large. This is because in the former case
the errors are not only due to the reduction of the exact model to a simplified one,
but also due to the errors inherent in the aggregation procedure of Bai et al. (2021).
Nevertheless, since in most practical cases the data of machine parameters is rarely
available with high precision, we conclude that the simplified machine reliability

model is still acceptable in most practical systems evaluation with M < 20.
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(a) Accuracy of T'P evaluation

Table 6.2. Accuracy of performance metrics evaluation using the simplified paramet-
ric model in (M > 2)-machine lines.

Mean value M=3|M=5|M=10| M=15 | M =20
T Psim 34.374 | 30.426 | 26.514 23.906 23.262
TP 34.414 | 30.484 | 26.797 | 24.588 | 24.119
€rp 0.39% | 0.53% | 1.44% 3.32% 4.26%
(b) Accuracy of WIP evaluation
Mean value M=3|M=5|M=10| M=15 | M =20
A S WIP, g | 19.209 | 18.609 | 16.856 | 17.315 | 17.970
ASMNWIR | 19.164 | 18.904 | 18.026 | 21.433 | 23.091
EWIp 2.08% | 2.13% | 4.80% | 11.68% | 14.37%
(¢) Accuracy of BL evaluation
Mean value M=3 M=5|M=10|M=15| M =20
A S BL g | 01620 | 0.1661 | 0.1630 | 0.1811 | 0.1869
S SMIUBL | 01627 | 01681 | 0.1765 | 0.2254 | 0.2436
€BL 0.0041 | 0.0058 | 0.0163 | 0.0452 | 0.0564
(d) Accuracy of ST evaluation
Mean value M=3|M=5|M=10| M=15| M =20
7T Zf\iz ST sim 0.1234 | 0.1509 | 0.1841 | 0.1973 | 0.1997
LS ST, 0.1231 | 0.1501 | 0.1697 | 0.1447 | 0.1319
€ST 0.0036 | 0.0050 | 0.0185 | 0.0546 | 0.0686
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6.6 Bottleneck Identification and Improvability of Serial Lines

with Unreliable Machines and Cycle Overrun

6.6.1 Bottleneck Identification

The notion of bottlenecks in serial lines is formulated in Li and Meerkov (2009)

as follows:

Definition 6.1. Machine m; is the bottleneck (BN) of a serial line with M unreliable

machines if
oTP - oT P
aCi 5(:]- ’

Vg # 1, (6.12)
where ¢, is the capacity of the k-th machine, k =1,..., M.

Since evaluating analytically the partial derivatives involved in (6.12) is all but

impossible, Li and Meerkov (2009) provide the following

BN Identification Procedure:

e Evaluate BL and ST of all machines in the system (either by calculation or by

measurements on the factory floor.)
e Assign arrows in each pair of consecutive machines according to the rule:

o if BL; > ST;,4, assign the arrow pointing from m; to m;.1;

o if BL; < ST;,4, assign the arrow pointing from m;,; to m;;

e Then,
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o if there is a single machine with no emanating arrows, it is the BN in the

sense of (6.12);

o if there are multiple machines with no emanating arrows, each of them is

referred to as a Local BN (L-BN), with its severity defined as

Sl = ’STQ - B[Jl|7 if L-BN = my,
SM = ‘STM - BLMfl‘, if L-BN = Mpyr,

Sy = |STis1 — BL;| + |ST; — BTy_1|, if L-BN = my,i = 2,..., M —1;
o L-BN with the largest severity is the Primary BN (P-BN).

It is shown in Li and Meerkov (2009) that this identification procedure determines
the BN in systems with machines having no overruns with high accuracy. In this
subsection, we verify by simulations whether this approach works for serial lines
with machines having overruns, modeled by the simplified parametric model. This

is carried out as follows:

We consider (M > 2)-machine serial lines with cycle overrun for M € {3, 5, 10, 15, 20}.
For each M, we generate 100 lines, with parameters selected randomly and equiprob-
ably from the sets defined in (6.11). For each of the 500 lines, we identify BN(s)
using BN Identification Procedure and assess its accuracy by comparing the results
with those identified using numerical evaluation of the derivatives involved in (6.12).
As it turns out, in all 500 lines considered, the BN identified numerically is one of
the L-BNs identified by BN Identification Procedure. Table 6.3 shows the number
of lines, where P-BN identified by this procedure is the same as the one identified

numerically.
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Based on the above, we conclude that the BN Identification Procedure has an
acceptable accuracy in serial lines with cycle overrun modeled by the simplified para-

metric model.

Table 6.3. The number of lines where P-BN identified by BN Identification Procedure

is the same as the one identified numerically.

M=3 | M=5|M=10|M=15| M =20
100 97 91 90 89

6.6.2 Throughput Improvability

Section 6.4 provides the SAT Improvability Indicator for a single machine with
overruns. Can this indicator be used for improving serial lines with unreliable ma-
chines and cycle overruns? We answer this question by simulations.

In the above-mentioned 500 lines, we identify BN or P-BN, using the BN Iden-
tification Procedure, and reduce its Ty, or Tog by 10%, using SAT Improvability
Indicator. Table 6.4 shows the number of lines for each M, where S AT Improvability
Indicator turns out to be optimal in the sense that improving the BN or P-BN in
accordance with SAT Improvability Indicator leads to the largest system throughput
improvement, as compared with all other ways of BN or P-BN modification. Based
on this fact, we conclude that SAT Improvability Indicator can be used for improve-
ment of serial lines with overruns described by the simplified parametric model of
the machines.

Using the results of Sections 6.4 and 6.5, as well as Subsection 6.6.1, we formulate

the following

Continuous Improvement Design Procedure:
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Table 6.4. The number of lines, where SAT Improvability Indicator leads to the

largest serial line improvement.

M=3| M=5|M=10| M=15| M =20
98 97 95 93 94

(a) Using the BN Identification Procedure, determine the BN or P-BN.

(b) Using the SAT Improvability Indicator, decrease either T, or Tor of this

machine.
(c¢) Calculate the throughput of the improved system, 7"P,,.

(d) If TPy, > T Pjs, where TPy, is the desired throughput, stop; else go to (a).

6.7 Improvability of Serial Lines with Non-exponential Ma-

chines and Non-exponential Cycle Overrun

6.7.1 Preliminaries

The results reported in Sections 6.3-6.6 are obtained under the exponential as-
sumption on machines’ reliability and overruns. In practice, however, this assump-
tion may not hold. So, can the obtained results be applied for designing continuous
improvement projects in practice? This section provides a positive answer to this
question.

As one can see, the proofs of Theorems 6.1 and 6.2 do not rely on the exponential
assumption and, thus, hold for non-exponential machines and overruns as well.

Unfortunately, this is not the case for the results of Sections 6.5 and 6.6, where

TP is evaluated assuming that the machines and overruns are exponential. Thus,
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an additional investigation is necessary.

The investigation described below is conceptually related to several facts concern-
ing serial lines with non-exponential machines, but with no overruns. These facts
take place assuming that the breakdown and repair rates of machines, A\(¢) and p(t),
are increasing functions of time. This implies that the probability of machine break-
down or repair in an infinitesimal time interval (¢,¢ + §t) is increasing in ¢ (which is

a practically plausible case). Under this assumption, the following facts take place:

e The distributions of up- and downtime, induced by these A(¢t) and u(t), have
coefficients of variation, C'V', less than 1. This is proved analytically in Barlow
and Proschan (1996) and Li and Meerkov (2009). An empirical study (Inman
(1999)) shows that in most cases manufacturing equipment on the factory floor

indeed has CV < 1.

e The throughput of serial lines with machines having CV,,, < 1 and CVyu,, <1
is a monotonically decreasing function of these C'V’s on the interval [0, 1]. This
is shown by simulations in Li and Meerkov (2009) for Weibull, gamma, and
log-normal distributions and hypothesized that it holds for any distribution of

up- and downtime with C'V < 1.

e Thus, the throughput of a serial line with exponential machines, (i.e., the ma-
chines having CV,,, = 1 and C'Vgyn = 1, is the lower bound of the throughput

of lines with non-exponential machines having C'V,,, <1 and C'Vppn < 1.

e Hence, if a continuous improvement project is designed to achieve the desired
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throughput under the exponential assumption, the throughput of the real sys-
tem with non-exponential machines, will be at least as high as that of the ex-
ponential one. Therefore, the goal of the improvement project will be achieved

(or, perhaps, “over-achieved”).

It is shown below by simulations that similar facts take place for serial lines with
machines having cycle overrun as well. First, we investigate the case of exponen-
tial machines and non-exponential overruns and then the general case, where both

machines and overruns are non-exponential.

6.7.2 Serial Lines with Exponential Machines and Non-exponential Over-

runs

We carry out the simulations for M € {5, 10} and generate 50 lines with exponen-
tial machines having non-exponential overruns, where machine and buffer parameters
are selected randomly and equiprobably from the sets defined in (6.11). The condi-
tional distribution of each machine’s overrun is selected randomly and equiprobably

from the set {Weibull, gamma, log-normal}, with pdf’s given by:

Weibull FoR(t) BN ey t>0
eibull: =—| - e \a >0,
OR a o y
c 1 e
gamima: fOR<t> = Wtﬁ 16 a, t = 0, (613)
1 (Int—21)2
log-normal: °n(t) = e 262 t>0,
g fOR( ) \/%Bt
where
00]
['(z) = f s te~*ds (6.14)
0



and a and 3 are the parameters to be selected so that their expected values are korT
(similar to (6.3) for the exponential distribution).

This can be accomplished using two equations — one based on the expected value
and the second on the coefficient of variation of distributions (6.13). For instance,

in the case of Weibull distribution these equations are:

1

TS = al(1 + 5), (6.15)
T(1+2)

where T, = korT and CV < 1. If these equations have a unique solution («, ),

the required conditional distribution of overruns is fully defined.

Theorem 6.3. For any T5r > 0 and C'V < 1, equations (6.15) and (6.16) have a

unique solution.
Proof. See Appendix E. ]

Thus, for a given CV < 1, a unique /3 can be found from (6.16) and then for a
given TG, a unique « from (6.15). For example, if 75, = 30sec and C'V = 0.75,
then o = 32.7053 and = 1.3476. Parameters o and (8 for gamma and log-normal
distributions can be calculated in a similar manner (using the formulas for their mean
and coeflicient of variation in the right-hand sides of (6.15) and (6.16)).

For each of the conditional distributions, thus obtained, and each C'V in the set
{0.1,0.25,0.5,0.75, 1}, we calculate 3 using (6.16) and, for selected 1§y, calculate

a using (6.15). With these parameters, we simulate the 50 lines mentioned above.
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The obtained results are compared with throughput of the lines having exponential
machines and exponential overruns with the same uptime, downtime, and uncon-
ditional mean of cycle overrun. The average value of the former over 50 lines is
denoted as T Pyrogr and the latter as T Pg. The difference between T Pygor and

T Pg is evaluated by
_ TPypor — TPg
TPg

¢ 100%. (6.17)

The behavior of ¢ as a function of C'V for M € {5,10} is shown in Table 6.5. As
one can see, the difference is practically negligible. Thus, the effect of non-exponential
overruns in the case of Weibull, gamma, and log-normal distributions is insignificant.
We hypothesize that the same effect takes place for any overrun distribution with
CV < 1.

Table 6.5. The behavior of ¢ as a function of C'V for M € {5, 10}.

cVv M=5 | M=10
0.1 0.4266% | 0.4366%
0.25 0.4151% | 0.4284%
0.5 0.3682% | 0.3877%
0.75 0.1427% | 0.1791%

1 0.0063% | 0.0054%

6.7.3 Serial Lines with Non-exponential Machines and Non-exponential

Overruns

In this subsection, we consider the lines discussed in Subsection 6.7.2, but with

non-exponential reliability models selected randomly and equiprobably from the set

{Weibull, gamma, log-normal}. For C'V € {0.1,0.25,0.5,0.75,1}, we evaluate the
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lines throughput using simulations. The average value of the throughput over the
50 lines is denoted as T Pyg. Figure 6.1 shows the behavior of T'Pyg as a function
of CV < 1 for M € {5,10}. As one can see, this behavior is similar to that of non-
exponential machines having no overruns: it is a monotonically decreasing function

with the minimum at CV = 1.
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Figure 6.1. The behavior of TPy as a function of C'V for M € {5,10}.

Thus, TP of serial lines with exponential machines and exponential overruns is
the lower bound of serial lines with non-exponential machines and non-exponential
overruns for the case of Weibull, gamma and log-normal distributions with C'V < 1.
Hence, the former can be used to design continuous improvement projects for the
latter: the improved system would exhibit the performance at least as good as that
predicted under the exponential assumption. We hypothesize that this conclusion
takes place for any machine reliability model and cycle overrun if C'V < 1.

The case study described in the next section is based on this hypothesis.
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6.8 Case Study

6.8.1 Preliminaries

In this case study, we consider a production system motivated by an automotive
transmission case machining line. For confidentiality reasons, all machine and buffer
parameters have been modified, preserving, however, qualitative features of the sys-
tem performance. Due to these modifications, the system throughput, which has
been measured on the factory floor, could not be used for validating the mathemat-
ical model of this system. Therefore, we have created a computer simulation model
of the system at hand, populated it by the modified data, and used it as the “real

system” for model “validation”.

6.8.2 Mathematical Modeling

The system at hand has been modeled as a serial line consisting of 12 operations
separated by finite buffers (see Figure 6.2, where the numbers in the rectangles
represent the modified buffers capacity). Based on the conclusion of the previous

section, we assume that the machines and cycle overruns, if any, are exponential.

OABFOALFOARO

my by my; by, my by my by ms bs mg bg m; b, mg by mg by myy by My by My,
OP10 OP20 OP30 OP40 OP50 OP60 OP70 OP80 OP90 OP100 OP110 OP120

Figure 6.2. Structural model of the modified production line.

The parametric model of this system has been constructed using eight weeks of

modified data. For each week, the data provide machines’ 7, Ty, Tyown, Por, and
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kor. Based on these data, e and Tpr are calculated and included in Table 6.6.

Using these data and the aggregation procedure of Bai et al. (2021), we calculated

the system throughput for all eight weeks (denoted as T'P) and compared it with

that evaluated by simulations using the digital twin populated by the respective

week data (denoted as T'Py;,). The results, shown in Table 6.7, indicate that the

mathematical model is “validated”.

Table 6.6. Weekly raw data.

(a) Week 1.

7 (sec) | Typ (min) | Tyown (min) e POR kor | Tor (sec)
OP10 120 8.3406 3.024 0.7339 | 0.3563 | 0.6215 | 26.5723
OP20 119 24.9552 4.5164 0.8468 0 0 0
OP30 120 49.9567 4.1475 0.9233 | 0.3592 | 0.1651 7.1172
OP40 120 19.9509 3.3174 0.8574 | 0.1644 | 0.0994 1.9621
OP50 106 50.0429 3.6922 0.9313 0 0 0
OP60 120 16.6674 3.5635 0.8239 | 0.3318 | 0.2778 | 11.0585
OP70 120 49.9549 3.4369 0.9356 | 0.2762 | 0.3389 | 11.2307
OPR&0 120 8.3601 2.57 0.7649 | 0.2529 | 0.0108 0.3268
OP90 120 24.9889 2.826 0.8984 0 0 0
OP100 113 14.286 3.0102 0.826 0 0 0
OP110 | 120 19.9701 2.4306 0.8915 | 0.3136 | 0.1366 | 5.1407
OP120 105 50.0198 4.1669 0.9231 0 0 0
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(b) Week 2.

7 (sec) | Typ (min) | Tyown (min) e POR kor | Tor (sec)
OP10 120 16.683 3.5742 0.8236 | 0.6169 | 0.6012 | 44.5056
OP20 119 33.3561 4.3471 0.8847 0 0 0
OP30 120 16.6831 3.5722 0.8236 | 0.3214 | 0.1227 | 4.7307
OP40 120 16.6979 3.3335 0.8336 | 0.1818 | 0.4583 9.9947
OP50 106 49.9756 2.3848 0.9545 0 0 0
OP60 120 33.3354 3.4229 0.9069 | 0.3356 | 0.4993 | 20.1068
OP70 120 100.0144 3.7587 0.9638 | 0.2784 | 0.37 12.3582
OP80 120 20.0006 2.1139 0.9044 | 0.2557 | 0.0135 | 0.4154
OP90 120 25.0173 2.8394 0.8981 0 0 0
OP100 113 25.0066 3.5459 0.8758 0 0 0
OP110 120 25.013 2.1959 0.9193 | 0.2976 | 0.4032 | 14.3994
OP120 105 50.0034 4.1134 0.924 0 0 0

(c) Week 3.

7 (sec) | Typ (min) | Tyow, (min) e POR kor | Tor (sec)
OP10 120 8.3052 3.109 0.7276 | 0.417 | 0.5691 | 28.4766
OP20 119 16.6606 3.6998 0.8183 0 0 0
OP30 120 19.995 3.3221 0.8575 | 0.3581 | 0.141 6.0611
OP40 120 20.0183 3.1142 0.8654 | 0.152 | 0.1147 2.0931
OP50 106 19.9967 4.3187 0.8224 0 0 0
OP60 120 25.0236 3.8374 0.867 | 0.4213 | 0.38 19.2123
OP70 120 20.0048 3.4488 0.853 | 0.266 | 0.4015 | 12.8192
OP80 120 20.0148 3.6823 0.8446 | 0.2989 | 0.1561 5.5977
OP90 120 33.3934 3.1262 0.9144 0 0 0
OP100 113 20.0199 3.3236 0.8576 0 0 0
OP110 120 24.9656 2.6729 0.9033 | 0.3389 | 0.1745 7.0953
OP120 105 33.397 6.6547 0.8338 0 0 0
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(d) Week 4.

7 (sec) | Typ (min) | Tyown (min) e POR kor | Tor (sec)
OP10 120 7.6206 3.1877 0.7051 | 0.3697 | 0.6626 | 29.3931
OP20 119 6.5843 2.8958 0.6945 0 0 0
OP30 120 19.999 2.8337 0.8759 | 0.3317 | 0.1905 | 7.5803
OP40 120 20.0329 2.6112 0.8847 | 0.1607 | 0.1539 2.9673
OP50 106 11.1021 2.9251 0.7915 0 0 0
OP60 120 19.9859 2.8353 0.8758 | 0.4195 | 0.2644 | 13.3123
OP70 120 50.0824 3.2984 0.9382 | 0.2298 | 0.5568 | 15.3532
OP80 120 20.0935 3.7012 0.8445 | 0.3224 | 0.4793 | 18.5469
OP90 120 33.3307 3.1948 0.9125 0 0 0
OP100 113 20.0855 3.321 0.8581 0 0 0
OP110 120 33.3265 2.6876 0.9254 | 0.3454 | 0.192 7.9598
OP120 105 99.9323 5.8691 0.9445 0 0 0

(e) Week 5.

7 (sec) | Typ (min) | Tyow, (min) e POR kor | Tor (sec)
OP10 120 14.2714 4.7327 0.751 | 0.4465 | 0.5577 | 29.8829
OP20 119 7.6328 3.6655 0.6756 0 0 0
OP30 120 8.3027 1.7795 0.8235 | 0.3367 | 0.1548 6.2526
OP40 120 14.2686 4.7353 0.7508 | 0.1717 | 0.1309 2.6987
OP50 106 16.6899 2.7667 0.8578 0 0 0
OP60 120 24.9749 3.9629 0.8631 | 0.4232 | 0.5553 28.197
OP70 120 49.9563 5.252 0.9049 | 0.2733 | 0.4473 | 14.6694
OP80 120 16.7332 4.001 0.807 | 0.259 | 0.0371 1.1517
OP90 120 33.3859 4.1533 0.8894 0 0 0
OP100 113 25.0217 3.8278 0.8673 0 0 0
OP110 120 25.0765 4.1712 0.8574 | 0.323 | 0.1853 7.183
OP120 105 99.9755 7.6868 0.9286 0 0 0
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(f) Week 6.

7 (sec) | Typ (min) | Tyown (min) e POR kor | Tor (sec)
OP10 120 10.0586 3.7924 0.7262 | 0.4133 | 0.4509 | 22.3628
OP20 119 14.3617 3.3406 0.8113 0 0 0
OP30 120 5.8879 3.6987 0.6142 | 0.3322 | 0.0682 | 2.7178
OP40 120 12.4703 3.3201 0.7897 | 0.1734 | 0.1725 3.5902
OP50 106 20.0145 2.8557 0.8751 0 0 0
OP60 120 25.0407 3.8424 0.867 | 0.3954 | 0.5403 | 25.6384
OP70 120 50.0236 3.5653 0.9335 | 0.2965 | 0.4262 | 15.1605
OP80 120 20.0894 3.0354 0.8687 | 0.3154 | 0.3272 | 12.3836
OP90 120 33.2873 4.9632 0.8702 0 0 0
OP100 113 12.4909 2.7645 0.8188 0 0 0
OP110 120 33.3266 2.9013 0.9199 | 0.3151 | 0.2117 8.0047
OP120 105 99.9662 7.6247 0.9291 0 0 0

(g) Week 7.

7 (sec) | Typ (min) | Tyow, (min) e POR kor | Tor (sec)
OP10 120 6.6949 2.2091 0.7519 | 0.5653 | 0.9904 | 67.1901
OP20 119 12.5163 3.5632 0.7784 0 0 0
OP30 120 5.8558 2.2167 0.7254 | 0.3218 | 0.1063 4.1054
OP40 120 16.6304 3.0973 0.843 | 0.1695 | 0.1131 2.2999
OP50 106 33.2742 3.4126 0.907 0 0 0
OP60 120 24.9705 3.8251 0.8672 | 0.3981 | 0.4726 | 22.5791
OP70 120 99.9469 3.1556 0.9694 | 0.3125 | 0.3861 | 14.4802
OP80 120 14.2309 2.9193 0.8298 | 0.2843 | 0.1452 4.9556
OP90 120 24.9441 3.1127 0.8891 0 0 0
OP100 113 24.9722 3.6785 0.8716 0 0 0
OP110 120 33.3025 3.8017 0.8975 0.3 0.1983 7.1391
OP120 105 100.0185 9.001 0.9174 0 0 0
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(h) Week 8.

7 (sec) | Typ (min) | Tyown (min) e POR kor | Tor (sec)
OP10 120 7.7444 2.7936 0.7349 | 0.3993 | 0.6681 | 32.0122
OP20 119 19.9792 7.6559 0.723 0 0 0
OP30 120 7.136 2.4903 0.7413 | 0.3354 | 0.0917 | 3.6886
OP40 120 33.3248 3.8121 0.8974 | 0.1654 | 0.1311 | 2.6033
OP50 106 33.2792 2.8491 0.9211 0 0 0

OP60 120 14.3036 2.2152 0.8659 | 0.5069 | 0.9835 | 59.8269
OP70 120 33.3474 6.6485 0.8338 | 0.2851 | 0.3096 | 10.5952
OP80 120 20.0423 3.4521 0.8531 | 0.2603 | 0.1068 | 3.3357

OP90 120 25.0204 4.3444 0.8521 0 0 0
OP100 113 50.0636 3.6599 0.9319 0 0 0
OP110 120 16.6557 3.1142 0.8425 | 0.2919 | 0.1568 | 5.4932
OP120 105 100.0047 8.3081 0.9233 0 0 0

Table 6.7. Model validation.

Throughput
(JPH)
TPsim 16.4970]16.9290 | 15.7003 | 15.2434 | 14.5075 | 14.4710 | 13.8117| 13.8078
TP 16.6910(17.0372|16.0725|15.3409 | 14.9029 | 14.6863 [ 13.7300 | 14.1172
€rp 1.18% | 0.64% | 2.37% | 0.64% | 2.73% | 1.49% | 0.59% | 2.24%

Week 1| Week 2 | Week 3| Week 4 | Week 5 | Week 6 | Week 7| Week 8

6.8.3 Weekly Performance Analysis

The performance analysis has been carried out based on the weekly data and
the aggregation procedure developed in Bai et al. (2021). The results are shown in

Figure 6.3 for Weeks 1-8.
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Figure 6.3. Performance analysis based on weekly data.

6.8.4 Data for Continuous Improvement Project

The weekly data exhibit substantial variability. This is obvious from Table 6.6
and is supported by the coefficients of variation of e and Ty calculated using all eight
weeks data and shown in the first columns of Table 6.8. This observation makes it
necessary to “pre-process’ the data in order to decrease its variability and use the less
variable data for the continuous improvement project design. This is accomplished
by averaging machine parameters based on two or four weeks’ data. The resulting

coeflicients of variation are shown in the second and third columns of Table 6.8.
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Clearly, averaging over four weeks results in a relatively low variability of machine
parameters, and this data (shown in Table 6.9) is used for continuous improvement
project design. (Note that averaging over all eight weeks, i.e., over two months,
might not be desirable, since machine parameters are typically non-stationary and

evolve in time.)

Table 6.8. Coefficients of variation the original and averaged data.

(a) Data for e

V. [ Vo | OV
OP10 0.0444 0.0300 0.0044
OP20 0.0900 0.0645 0.0411
OP30 0.1163 0.0905 0.0902
OP40 0.0545 0.0499 0.0238
OP50 0.0597 0.0584 0.0087
OP60 0.0243 0.0029 0.0015
OP70 0.0506 0.0230 0.0067
OP80 0.0462 0.0044 < 0.0001
OP90 0.0220 0.0186 0.0172
OP100 0.0375 0.0264 0.0104
OP110 0.0316 0.0189 0.0171
OP120 0.0347 0.0169 0.0100
(b) Data for Tor
OP10 0.3863 0.2588 0.0802
OP30 0.3068 0.2186 0.2065
OP40 0.7068 0.4087 0.2065
OP60 0.569 0.4155 0.3629
OP70 0.129 0.0924 0.0295
OP80 1.0368 0.729 0.0655
OP110 0.3431 0.1596 0.1085
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Table 6.9. Averaged data for Weeks 5-8.

7 (sec) | Typ (min) | Tyown (min) e POR kor | Tor (sec)
OP10 120 9.6923 3.382 0.7413 | 0.4561 | 0.6668 36.495
OP20 119 13.6225 4.5563 0.7494 0 0 0
OP30 120 6.7956 2.5463 0.7274 | 0.3315 | 0.1052 4.1861
OP40 120 19.1735 3.7412 0.8367 | 0.17 | 0.1369 2.7935
OP50 106 25.8145 2.971 0.8968 0 0 0

OP60 120 22.3224 3.4614 0.8658 | 0.4309 | 0.6379 | 32.9867
OP70 120 58.3186 4.6553 0.9261 | 0.2918 | 0.3923 | 13.7395

OP80 120 17.774 3.352 0.8413 | 0.2798 | 0.1541 | 5.1724
OP90 120 29.1594 4.1434 0.8756 0 0 0
OP100 113 28.1371 3.4827 0.8899 0 0 0
OP110 120 27.0904 3.4971 0.8857 | 0.3075 | 0.188 6.9386
OP120 105 99.9912 8.1551 0.9246 0 0 0

6.8.5 System Performance Analysis Using Four-weeks Averaged Data

and Project Goal

The performance of the system at hand has been evaluated using the averaged
data of Table 6.9 and the aggregation procedure of Bai et al. (2021). The result is
shown in Figure 6.4. As one can see the bottleneck is OP10 and TP = 14.66JPH.
Since the nominal throughput (defined by the longest cycle time, 7 = 120sec, under
the assumption that there are no machine breakdowns or cycle overruns) is 30JPH,
the throughput losses are over 50%.

It is of interest to evaluate what fraction of these losses are due to machine
downtime and due to cycle overrun. The former is calculated assuming that Ty,
of each machine is zero, and the latter that pog is zero. The throughput in the first

case turns out to be 23.00JPH and in the second 17.26JPH. Thus, the production
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Figure 6.4. Performance analysis based on the averaged data.

losses due to machine downtimes are 8.34JPH and due to cycle overrun 2.60JPH.
Recovering these losses is the goal of this case study. More precisely, the goal is to
design four options for a continuous improvement leading to a 5%, 10%, 20% and

30% of throughput increase.

6.8.6 Designing Continuous Improvement Projects

Applying the Continuous Improvement Design Procedure formulated in Section
6.6 to the production system at hand, we obtain incremental steps for continuous
improvement resulting in up to 30% T'P increase, i.e., TP, = 19.05JPH (see Table
6.10). Based on these incremental steps, we specify the activities to be carried out
for each machine, leading to the desired throughput improvement. This results in
the continuous improvement projects specified in Table 6.11. As one can see, for a
5% improvement, only one machine, OP10, must be improved; for 10% improvement,
parameters of three machines, OP10, OP20, and OP60, should be modified; for 20%
and 30% improvement, five machines, OP10, OP20, OP30, OP60, and OP80, should

be improved (to various degrees).
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This information is intended to allow the Operations Manager to decide which of

these continuous improvement projects should be implemented on the factory floor.

Table 6.10. Incremental improvement steps.

Percentage
Improvement steps TP ATP

mcrease

0 initial state 14.6557 0 0%

1 reduce OP10 downtime by 10% 14.9317 | 0.276 1.88%

2 reduce OP10 downtime by 10% | 15.1781 | 0.5224 3.56%

3 | reduce OP10 cycle overrun by 20% | 15.4996 | 0.8439 5.76%

4 reduce OP10 downtime by 10% 15.6961 | 1.0404 7.10%

5 | reduce OP60 cycle overrun by 20% | 15.796 | 1.1403 7.78%

6 reduce OP10 downtime by 10% | 15.9698 | 1.3141 8.97%

7 reduce OP20 downtime by 10% | 16.2481 | 1.5924 | 10.87%

8 | reduce OPG60 cycle overrun by 20% | 16.3311 | 1.6754 11.43%

9 | reduce OP10 cycle overrun by 20% | 16.5204 | 1.8647 | 12.72%

10 reduce OP30 downtime by 10% 16.7583 | 2.1026 14.35%

11 | reduce OP60 cycle overrun by 20% | 16.826 | 2.1703 14.81%

12 | reduce OP60 downtime by 10% 16.887 | 2.2313 | 15.22%

13 reduce OP20 downtime by 10% 17.1351 | 2.4794 16.92%

14 | reduce OP30 downtime by 10% | 17.3457 | 2.69 18.35%

15 | reduce OP60 cycle overrun by 20% | 17.3995 | 2.7438 18.72%

16 | reduce OP60 downtime by 10% | 17.4619 | 2.8062 | 19.15%
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17 reduce OP80 downtime by 10% 17.5078 | 2.8521 19.46%
18 | reduce OP10 downtime by 10% 17.6579 | 3.0022 | 20.49%
19 reduce OP30 downtime by 10% 17.8537 | 3.198 21.82%
20 reduce OP60 downtime by 10% 17.9111 | 3.2554 22.21%
21 reduce OP10 downtime by 10% 18.0441 | 3.3884 23.12%
22 | reduce OP80 downtime by 10% 18.0959 | 3.4402 23.47%
23 reduce OP20 downtime by 10% 18.3165 | 3.6608 24.98%
24 reduce OP30 downtime by 10% 18.4906 | 3.8349 26.17%
25 reduce OP80 downtime by 10% 18.5484 | 3.8927 26.56%
26 reduce OP60 downtime by 10% 18.6059 | 3.9502 26.95%
27 | reduce OP10 cycle overrun by 20% | 18.7783 | 4.1226 28.13%
28 | reduce OP30 downtime by 10% 18.9232 | 4.2675 29.12%
29 reduce OP80 downtime by 10% 18.9832 | 4.3275 29.53%
30 | reduce OP60 cycle overrun by 20% | 19.0356 | 4.3799 29.89%
31| reduce OP20 downtime by 10% | 19.2177 | 4.562 31.13%
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Table 6.11. Continuous improvement projects.

(a) For 5% throughput improvement (resulting, in fact, in 6%)

Machine

Machine improvement

OP10

Reduce downtime by 19%, reduce cycle overrun by 20%.

(b) For 10% throughput improvement, i.e., T'Pjy,, = 16.12JPH

Machine Machine improvement
OP10 Reduce downtime by 34%, reduce cycle overrun by 20%.
OP20 Reduce downtime by 10%.
OP60 Reduce cycle overrun by 20%.

(c) For 20% throughput improvement, i.e., TPy, = 17.59JPH

Machine Machine improvement
OP10 Reduce downtime by 41%, reduce cycle overrun by 36%.
OP20 Reduce downtime by 19%.
OP30 Reduce downtime by 19%.
OP60 Reduce downtime by 19%, reduce cycle overrun by 59%.
OPS80 Reduce downtime by 10%.

(d) For 30% throughput improvement, i.e., T Pj;,, = 19.05JPH

Machine Machine improvement
OP10 Reduce downtime by 47%, reduce cycle overrun by 49%.
OP20 Reduce downtime by 34%.
OP30 Reduce downtime by 41%.
OP60 Reduce downtime by 34%, reduce cycle overrun by 67%.
OP80 Reduce downtime by 34%.
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6.9 Estimates of Cycle Overrun Parameters

6.9.1 Definition and Problem Formulation

Let por(n) be the random variable representing the estimate of the overrun prob-

ability por based on n number of cycles measured:

~ mn
Por(n) = % (6.18)

where npgr denotes the number of cycles where overrun takes place. Let @o r(nor)
be the estimate of kor based on measuring durations of npr number of cycle overrun

(denoted as tor,):
2t tor,i

6.19
NoRrT ( )

EOR(”OR) =

Definition 6.2. We define the precision of the estimate por(n) and %OR(nOR) as

follows:

e The estimate pog(n) is referred to as («, B)-precise if

P{!ﬁOR(n) — por| _ a} > 8. (6.20)
Por

e The estimate ko r(nog) is referred to as (a, B)-precise if

p \kor(nor) — kogl <ay =B (6.21)
kor

*

Definition 6.3. The smallest integers n;_

(o, B) and nj_ (a, B), which guarantees
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(6.20) and (6.21), respectively, are referred to as the critical numbers of cycle overrun

measurements for por and kog, respectively.

Consider the unconditional cycle overrun, the estimate of its mean is calculated
as

Tor = PorkorT, (6.22)

and its precision is characterized as
Tor — T,
P {M < aOR} > Bor. (6.23)

We introduce the following problems:
Induced Precision Problem for Tpgr: Given («g,/3;)-precise estimate
DOR (n;OR(al, 61)) and (ag, f)-precise estimate %OR (nzOR(ag, BQ)), calculate the in-
duced precision (74, Bind) of Ty p.
Inverse Problem for Tpg: Given a desired (7,6), calculate the smallest number
of cycle overrun measurements, nfn(7,9), required to obtain (v, J)-precise estimate

of TOR~

6.9.2 Critical Number of Cycle Overrun Measurements

Proposition 6.4. The Gaussian approzimation of critical number ny_  («,f3) is

NG G

Justification. Similar to the justification of Proposition 4.1. ]

given by
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Proposition 6.5. The Gaussian approzimation of critical number ni_ («,f) is

Moo, B) = [2 <M>T : (6.25)

«

given by

Proof. See Appendix E. ]

6.9.3 Induced Precision and Inverse Problem for Tpg

The solution to the induced precision problem is given by Propositions 6.6 and

6.7:

[Por(n}, . )—poR| lkor(nf_)—kor|
YRV Por’ 7YY < al and kOR
POR OR

Proposition 6.6. Given < q, the smallest

|Tor—Tor| < oind

induced apr which satisfies < aly with accuracy O(aqan) s given by
Tor OR Y g

alt = oy + ay. (6.26)

Justification. See Appendix E. [

Proposition 6.7. The Gaussian approzimation of f2d is given by

) nk
nd — erf ((a1 + a)C %) : (6.27)
271501*(";;01%) ‘
Justification. See Appendix E. O

The solution to the inverse problem is given by Proposition 6.8:
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Proposition 6.8. For a given (v,0), the critical number of cycle overrun measure-

ments to ensure (7, 0)-precise estimate of Tor is given by

n&a(v,0) = {2 <2 :ﬁOR> (erf_l(é)ﬂ , (6.28)

PoRr v

where por = Por (Ngr(7,9)).

Justification. See Appendix E. ]
Comparing (6.28) with critical numbers given by (6.24) and (6.25), we conclude:

Observation 6.1. The performance metric Tpg is variability expanding.

As one can see, (6.28) is not in closed-form, thus, the Approximation Procedure
of Chapter 3 should be used. Here we consider using Approximation Procedure 1.
After experimentation, we find that the initial number of cycle overrun measurements
nor.n: and the safety factor e can be selected as 30 and 0.05. The following numerical
example shows the effectiveness of the Approximation Procedure:

We generate 25 machines with cycle overrun, with parameters randomly and

equiprobabily selected from the following sets:

7€ [1,2], por € [0.3,1], T5x = korT, where k = [0.2,2].

The desired precision pair (7, d) is selected as (0.1,0.9), (0.1,0.95), (0.05,0.9), and
(0.05,0.95). The parameters of the five randomly generated 25 machines are listed in
Table 6.12. For the five machines and precision pairs (7, d), the values of 5 are listed

in Table 6.13, the corresponding values of n¥% and 7% (v, 9; Por(nini), €) are listed
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in Table 6.14. As we can see, for the five randomly generated machines, the precision
of the estimate Tor (n&n (7,03 Por(Nini), €)) is always higher than the desired (v, d),
and the values of 15% (7, 0; Dor(nini), €) are only about 10% to 15% larger than its
true values. Similar results are obtained for the rest 20 machines as well.

Table 6.12. Parameters of five randomly generated machines.

Machine
mq mo ms my ms
Parameter
T 1.7636 | 1.0458 | 1.8439 | 1.8552 | 1.2197
PoOR 0.4609 | 0.7872 | 0.7535 | 0.9640 | 0.6839
Tor 2.3597 | 1.0199 | 3.6003 | 0.6100 | 0.9119

Table 6.13. Values of 4 as a function of (v, 4).

Machine
(% 5) mi m2 m3 my ms
(0.1, 0.9) 0.9083 | 0.9104 | 0.9188 | 0.9138 | 0.9117
(0.1, 0.95) 0.9529 | 0.9566 | 0.9554 | 0.9605 | 0.9563
(0.05, 0.9) 0.9079 | 0.9164 | 0.9096 | 0.9147 | 0.9142
(0.05, 0.95) 0.9523 | 0.9600 | 0.9607 | 0.9568 | 0.9550

Table 6.14. Values of nj%(7v,0) and 15y (7, 6; Dor(nini), €) as functions of (v, d).

Machine my mo ms My ms
(7, 9) NSR | MOR | "OR | MOR | "OR | "OR | "OR | "OR | "OR | TOR
(0.1, 0.9) 904 |1021| 417 | 462 | 448 | 494 | 291 | 322 | 521 | 577

(0.1, 0.95) 128311446 | 592 | 654 | 636 | 702 | 413 | 457 | 740 | 818
(0.05, 0.9) 361440851668 | 1838|1791 1975|1164 | 1286 | 2083 | 2304
(0.05, 0.95) 513157702368 | 2618|2543 | 2803|1652 | 1825|2957 | 3277
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6.10 Summary

This chapter provides analytical methods for analysis and improvement of serial
lines with unreliable machines and cycle overrun. These methods offer the analytics
for modelling, analysis and improvement for a relatively large class of real-world
serial lines, which has not been thus far explored in production systems literature.

In addition, the (o, §)-precision theory is applied to obtain the critical numbers

*

of cycle overrun measurements (n
POR

and nj_ ) and the solutions to the induced
precision and inverse problems for Tpg.

Results reported here can be extended in at least two directions. The first one
is to develop similar methods for a wider class of systems, namely, serial lines with
rework, with carriers, and with quality issues, as well as for assembly systems. The
second is to further explore production systems with non-exponential machines and
non-exponential cycle overrun. Several results in this direction are included in Section
6.7, leading to the hypotheses formulated in Subsections 6.7.2 and 6.7.3. Proving
these hypotheses would substantially extend the “safety” of using the exponential
assumption in designing and improving production systems. In addition to these

two areas of future research, a very important one is the application of the methods

developed to production systems on the factory floor.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

The contributions of this dissertation include:

e A method for calculating the n%(a, #) of up- and downtime measurements, nec-
essary and sufficient to obtain (o, §)-precise estimates of MTBF and MTTR.

Extended the results to non-exponential case with C'V < 1.

e A method for evaluating the observation time required to collect n.(c, 5) mea-

surements of machine up- and downtime.

e Evaluation of the induced precision of machine efficiency (e), throughput (7'P),

production lead time (LT"), and work-in-process (WIP) estimates.

e Solution to the inverse problem for machine efficiency, throughput, production

lead time, and work-in-process.
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e A method for calculating the n7(ay, ;) of quality parts measurements, required

to obtain (ay, 8,)-precise estimate of machine quality parameter (q).

e Evaluation of the induced precision of quality parts throughput (T'P,) estimate,

solution to the inverse problem concerning T'F,.

e Analysis of variability contracting/expanding property for e, TP, LT, WIP,
and T'F,.

e Modeling, analysis, bottleneck identification and improvement of production

systems with cycle overrun.

7.2 Future Work
The work in this dissertation can be extended in the following directions:

e Extend the analysis and evaluation of the critical numbers to assembly system
performance metrics, and to performance metrics of production systems with

non-exponential machines.

e Extend the analysis, improvability and bottleneck identification to a wider
class of systems with cycle overrun, namely, serial lines with quality issues and

assembly systems.

e Apply the (o, 5)-Precision Theory results to practice and merge them into

automated production system monitoring and improvement software.
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APPENDIX A

Appendix of Chapter 2

A.1 Proof of Theorem 2.1

First, we prove the statement of this theorem for fup, and then address 7T, Hown.-
Note that ¢,,,’s are iid exponential random variables with parameter A = 1/T,,,,.
This implies that 7, up(n) is an Erlang random variable with shape parameter n and

rate parameter nA\. Its cdf is given by

n—1

Fp (@) = P{fup(n> <z}=1- Z} %e‘””(n/\x)i. (A1)

Then, from the first expression in (2.3), we obtain:
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P{(1=a)Tyy < Ty(n) < (1+ )T, }
=F7 () (14 a)Typ) — Fp o) (1 —a)Tiy)
_ (1 _ Z Zl'e—n/\(lw)Tup (nA(1 + Oé)T'u,p)i) (A.2)

n—1
1 —n ey i
o (1 o Z @le Mz Ty (nA(L — @) Top) )

=0
_ Z Z| —(1 a)n Z 1+an 1 +a>n)z > 6

Therefore, the critical number n*(a, 8) is the smallest integer n, which satisfies

the inequality:

n—1 n—1
1 - 1 )
- —(—a)n . i = —(14a)n i
B < i_go e (1 —a)n) Z-_EO ¢ (1 +a)n)". (A.3)

Since this expression is independent of )\, it holds also for u, i.e., for Tyoun.

A.2 Justification of Proposition 2.3

According to the central limit theorem, for large n*(«, 3), Erlang random variable

fup(ni}) can be approximated by the Gaussian distribution, with mean M = % = Tup
2
and variance V = ﬁ = % Therefore, the probability in (2.3) can be approxi-
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mated as:
P{(1=a)Tuy < Top(nd) < (1+ )Ts |

— P (1—a)Tup—Tup Tup(";i)*Tup (14+a)Tup—Tup
= T, < T <

up up Tup
V n* V n* V n*

~ P{|Z] < avin®},

where Z ~ N(0,1) denotes the standard normal distribution. Therefore, the Gaus-

sian approximation of n*(a, #) can be obtained from the following equation:

8= "V dr — et [ 2V A5
= _a\/@fz(z)z—er 7 , (A.5)

ie.,
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APPENDIX B

Appendix of Chapter 3

B.1 Justification of Proposition 3.1

Denote p = Tﬁ’—i" and p = %. Since (1 — )Ty, < fup < (1 + a)T,,, and

upy
up

0< (1 - Oé)izjcloum < fdawn < (1 + a)Tdowna we have:

(1—a)Tup < fup < (A+a)Tup
(1+a)Tdown = Taown = (1_a)Td01U7b

—
Q

s}
=

o el

< tal
1+

= l-ap

™=

¢
-

i
)

+

Q

l+a~
SPS TP

—
=

—2a~ ~ 2a ~
<j'>1-‘1-o¢p<’0_p< 1—o¢p'

Dividing (B.1) by (1+ p)(1 + p), and substituting #ﬂ with e, and #ﬁ with €, we

obtain:

—2a 2a
l—a) <e—
1+&e( e)<e—e

VAN

——e(1-2). (B.2)
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For small «, using Taylor expansion we have:

—2ae(l —€) + 0(a?) <€ —e < 2ae(l — &) + O(a?). (B.3)

Therefore, we obtain:

=8 ¢, = 21— Do+ O(a?). (B.4)

B.2 Proof of Theorem 3.2

As discussed in Appendix A, Y(n) = Y. | t,,; obeys Erlang distribution with
shape parameter n and scale parameter 7,,. Therefore, the pdf of Y'(n) is

T

1, a"le Tw
frm(x) = <T_up) CEEE
and the pdf of fup(n) = Y g
1., (n- x)”*le_%
Fran®) = G Ly
Similarly, '
1 (n - z)" e Taouwn
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Since fup(n) and fdown(n) are independent,

fTup Tdoum( )(I’ y) - fj;up(") (l’) ' ffdown(n) <y)

j\jtiown (TL)

Using the notations p = % and p = o
up up

, We can write:

(B.5)
_ b1 11 b1
= P{2a1+§1+p\ T+p 1+§<2a1+ﬁ1+p}
— 1 ~ 1
o P{1+2ap < P < 1_2ap} .
Denote p; = 155zp, and pa = 7=5-p, we derive:
P {M < ae}
+00 cp2x
= 0 pfm ffup(n* ( )de n*)( )dydl' (B6)
*2 *0 1 oo . i
(Tu;Tdown)n <(n*71)!)2 0 x" 16 Tuy Zfz n 16 Tdownydydaj
where
Zfzy"* Le™ % dy
* ]' Tdown \i *_1—4
R o
(B.7)

i
_ TppiemF =l (n* D Typn itl n*—1—i
= ¢ “‘down Zi:O T ( ;;un ) (0133) _

n* * *
T Tagen P2E N L _(0F D! Tyouy it n¥*—1—i
€ “down Zi:O (n*717i)1( yf:m) (pr) .
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Therefore,

*

*2 % +00 ¥_1 ——x

_ n n 1 2 n*—=1,"Typ
(TupTdown ) ( (n*fl)! ) 0 z €

n¥

(7" S0 g () (pr) ™1

ede’:";nmen*—l (n*—1)! (Tdown)¢+1(p2x)n**1*i)dx.

i=0  (nF—1—9)I\ p¥

Denote .
£
_(tO nEl o —p—pie onF -1 (¥ 1)
A_ 0 €x e up (e down Zi:[) (n*—l—i)!
Ty i+1 n¥*—1—i
(o) (py ) )dz,
and .
*
_ (PO kol e (gt par w1 (n*—1)!
B_ 0 €T e up (e down Z’L'ZO (n*—l—i)!x

(T ) (pp)™ =1 d,

we can write:

A

P{|e—€(n*)| O‘e}:(Tun*Q e 1 (A B).

e oL down (n* —1)!
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(B.11)



We obtain:

n¥*—1

400 s #*
n — 1 T ; # ; == - * A
.A Z 1 ( do:)n)z—‘rlp’il _1_Z e (Tup+Tdownpl)x:L‘2n _2_de
— 1 = z n 0
n*—1
_ Z ( down)z-i-lpn —1—3 e (Tup+Td0wnp1)xX
-1- z) n* '

- , al .
(~1y e
S v )

7= (a B j)' |:_<’ZT—I:T>: - Tdown

n*— % "
:n*—Qn* Zl (n — 1)'(2n —2- Z) Tn*Tn*

n* —2n* +it1
(n* — 1 = Z)' cloum(1 + 2@) (2 + 20() i

. (B.12)

Similarly,

B = n**Qn* Z?*O 1 (n*—=1)!(2n*—2—i)! T"*Tn*

(n*—1—1)! down

(1 _ 2()5)"* (2 o 2a)72n*+i+1' (Blg)
Substitute values of A and B in (B.11), we get:

e

p{\e—an*)\ < ae}
= M[(l +20)" (2 + 20) "2 HiHL (B.14)

(n*—1—4)!(n*—1)!

—(1 = 20)"" (2 — 20) 2 HIHL,
Thus, by (3.2), we have:

n¥— n*—2—1)! n —on* 4
B= Tl w1+ 20)™ (2 + 2a) 20+

(B.15)
—(1 = 2a)"" (2 — 2a) 72 HIHL,
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B.3 Justification of Proposition 3.3

Consider the estimate of €(n¥) given by:

f *
Bt = — Lw(n7) , (B.16)
Tup(n7) + Taown (1)

where fup and fdown are (a, f)-precise estimates of T, and Tyown, and n}. is the

critical number corresponding to («, ). From the pdfs of fup and fdown given by

n¥ .z

1\"" (nk - :U)”"?_le*#z’
A~ _— * . — .
fTup(n;i) (.’L’) - nT (Tup> (n; _ 1)‘ )

(B.17)

n¥ .

P O SN A R0
deow"(n;) (x) o nT ‘ Tdown ‘ (n; - 1)' ’

we can derive the pdf of e(n¥.):

(2np—1! 1 Tup (1 Tiown (1 —1\ T
fé(”;)(l‘) = (n; _ 1)!2 :L‘(l _ 37) <Tdozn (5 o 1) +2+ ai“up (5 B 1) ) T E (07 1)'

(B.18)

Being non-analytic, this expression is not convenient for analysis and calculations.

Therefore, we use two approximations of (B.16), leading to analytic pdf’s. The first

one is based on representing (B.16) as
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ewp(nt) = — D7) , (B.19)
TunG(n;) + Tdown,G(n;)

where fupﬁ(ni_"p) and fdowm(;(n;) are Gaussian random variables with the pdf’s
2 2

N(T,,, %ﬁ“) and N (Tyown, %), respectively, and NL stands for “nonlinear”, in-
T T

dicating that (B.19) is a nonlinear function of its arguments. Using the formula for

pdf of ratio of Gaussian random variables (Marsaglia 2006), we obtain:

T3p+Tc%own Tup Tup’Tdown
A _ _ . B.2
feNL(n;i) (.T) Tup'Tdoum w Taown T3p+T§own v ’ ( O)

fwlw) = SEE 1y oo
w - (w2+1)7r 2(1+w2) 2(1+w2)(T3p+Td20wn)

" 2
(Tup + Taown + (Tup — Tdown)w)> exp (nT((Tup+Tdown)+(TuP+Tdow")w) )

2(T"u,p“"q’down)(1+/w2)
. (\/ n;kﬂ(Tup"FTdown) + \ n;k“(Tup_Tdown) w) }

2 2 2 2
TuP+Tdown \/TuP+Tdown

(B.21)
While this pdf is indeed analytic, it is relatively complex. Therefore, we use
Taylor expansion of (B.19) in order to obtain its linear approximation. As a result,

with the accuracy up to O((fupjg(n;) — Tp)?) and O((fdown,g(ni}) — Tiown)?), We
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obtain:

- * _ Tdo’wn o * 7TuP T *
c(nr) =€+ @ iy (Tu%G(nT) - T“?) t T Taoun)? (Tdow”vG(”T) - Tdow">’

(B.22)

where L stands for “linear”. Since Ty, ¢(n5) and Typwn,c(n5) are Gaussian, er(n})

is also Gaussian with mean and variance given by

Eleu(nt)] = e, Var[en(nt)] = %62(1 _eR. (B.23)

In the subsequent discussions, we denote ey (n%) as ég(ni.). Its pdf and cdf are given

by:

o) = 52k () .

Frputy () = % (1 +erf (%)) | (B.25)

To select which one of the two approximations, (B.20), (B.21) or (B.24), should
be used, we investigate the “distance” of both from the original one, (B.18). This
investigation is carried out using the Kullback-Leibler divergence (KLD) and its

symmetrized version Jensen-Shannon divergence (JSD) (Kullback 1997; Lin 1991)
defined by:

KLD(X||Y) := §°, fx(2)iog (5 dz. a6,

JSD(X||Y) := SKLD (x|1X) + $ KLD (v||X£¥)

=3 :

where X and Y are random variables with pdfs fx(z) and fy(z), respectively.
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To quantify the relationships within all pairs of random variables comprised of
enr(n%), eq(nk) and e(n%), we calculate KLD and JSD numerically for n} =
{50, 100, 200, 300, 400, 500} and e = {0.5,0.7,0.9}. The results are shown in Figure
B.1. As one can see:

e JSD(e(n¥)||enr(nk)) is smaller than JSD(e(nk)|leq(nk));
e JSD(e(n¥)||eq(n¥)) is approximately equal to JSD(enp(n¥)||eq(n¥));

e however, for all pairs (2(n}), 21 (n3)), (E(n3), 2a(nf) and (Eyp(n3), a(n)).
the values of JSD are quite small; indeed, while maximum of JSD = In 2, the

values of JSD for all three pairs are three orders of magnitude smaller.
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Figure B.1. KLD and JSD between €(n}.), exr(n%) and eq(n})

Thus, from the point of view of JSD, either eg(n%) or éxr(n¥) can be used.

However, since f;,

Specifically, to evaluate the right-hand side of the inequality (3.2) with X = e, we
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write:

P { e - i(ngm <2(1- e(n}))a}
e—2ea ., , e+ 2eq
:P{12ea < élnz) 1+26a}
:P{é(n) e+2e(l —e)a+ Oa } P{e 6—26(1_6)04"'0(0‘2)}'
(B.27)

To approximate (B.27), we replace eé(n}.) by ég(n}.). Thus, we obtain:

P{E:E@@l<20—€m%ﬁ%

e

~P{e(n}) <e+2e(l —e)a} — P{e(n}) <e—2e(l —e)a}

1 (erf<\/7T;(e+26(1 —e)oz—e))) 1 <erf <\/@(e—26(1 —e)a—e)))
2 2¢e(1 — e) 2 2¢e(1 — e)

= erf(an/n}) = Bec.

(B.28)

Note that in expression (3.6), the subscript G is omitted to simplify notations. [

B.4 Justification of Proposition 3.4

It follows from (3.3) and (3.6) that

= erf | aq/nk (o =er WAVACACHE)
po= et (i) f<2<1—a<n;<a,ﬂ>>>)' (52
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For a given (v, 0), this expression can be rewritten as

. Y/ (7, 9)
' f(?(l—@(n:*w))))’ (B30

where n¥*(v, ) is the critical number of measurements to obtain (7, d)-precise esti-

mate of e. Solving (B.30) for n**, we obtain:

w2 (9.5) = [<2<1 — (ny*(1,9))) erf” (6)) w | (B.31)

ry
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B.5 Additional Simulation Results of Approximation Pro-

cedure 1 for n.’

Table B.1. Parameters of randomly created machines.

Machine
meg mry msg mg mio
Parameters
Tup 880 | 11.70 | 16.15 | 46.56 | 10.55
Tdown 4.806 | 4.51 4.52 5.00 | 4.27
e 0.64 | 0.72 0.78 0.90 0.71
Machine
mi1 mi2 mi3 mig mis
Parameters
Tup 35.45 | 6.41 | 13.19 | 10.97 | 30.80
Tdown 3.01 3.58 | 4.19 3.50 | 4.39
e 0.92 0.64 | 0.76 0.76 0.88
Machine
mie miyr masg mig ma2o
Parameters
Tup 824 | 885 | 17.68 | 21.89 | 6.32
Taown 4.56 | 3.31 4.97 | 4.58 3.97
e 0.64 | 0.73 0.78 0.83 0.61
Machine
may ma2 ma3 ma2y mas
Parameters
Tup 5.98 | 10.27 | 9.71 | 10.88 | 19.79
Taown 3.952 3.91 3.12 3.14 | 4.51
e 0.63 | 0.72 0.76 0.78 0.81
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Table B.2. Values of § as a function of (7,9).

Machine
(v, 8) meg mry mg my mio
2g
(0.1, 0.9) 0.9120 | 0.9169 | 0.9681 | 0.9987 | 0.9164
(0.1, 0.95) 0.9539 | 0.9625 | 0.9748 | 0.9999 | 0.9601
(0.05, 0.9) 0.9154 | 0.9248 | 0.9331 | 0.9907 | 0.9240
(0.05, 0.95) 0.9539 | 0.9648 | 0.9676 | 0.9937 | 0.9613
Machine
( 6) mi1 mi2 mas mig mis
2e
(0.1, 0.9) 0.9996 | 0.9103 | 0.9529 | 0.9517 | 0.9969
(0.1, 0.95) 0.9999 | 0.9561 | 0.9591 | 0.9635 | 0.9997
(0.05, 0.9) 0.9973 | 0.9152 | 0.9295 | 0.9313 | 0.9646
(0.05, 0.95) 0.9997 | 0.9586 | 0.9665 | 0.9674 | 0.9858
Machine
(v, 8) mie mir mis mig mag
s
(0.1, 0.9) 0.9141 | 0.9185 | 0.9682 | 0.9924 | 0.9128
(0.1, 0.95) 0.9561 | 0.9609 | 0.9762 | 0.9958 | 0.9572
(0.05, 0.9) 0.9173 | 0.9288 | 0.9319 | 0.9480 | 0.9199
(0.05, 0.95) 0.9595 | 0.9640 | 0.9716 | 0.9781 | 0.9593
Machine
( 6) ma2; ma2 ma3 ma4 mas
2e
(0.1, 0.9) 0.9126 | 0.9204 | 0.9530 | 0.9702 | 0.9870
(0.1, 0.95) 0.9535 | 0.9572 | 0.9579 | 0.9733 | 0.9927
(0.05, 0.9) 0.9150 | 0.9230 | 0.9305 | 0.9336 | 0.9454
(0.05, 0.95) 0.9606 | 0.9631 | 0.9661 | 0.9671 | 0.9741
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Table B.3. Values of n¥*(v,d) and n**(v,d;e5,;) as functions of (7, ).

) Zing

Machine me mey mg Mg mig
(7, 6) et [ [z Lo [z [ [ [ [ e [
(0.1, 0.9) 69 | 8 | 42 | 56 | 26 | 40 6 30 | 45 | 60
(0.1, 0.95) 98 120 | 60 | 80 | 37 | 54 | 8 30 | 64 | &4
(0.05, 0.9) 275 | 337 | 168 | 223 | 104 | 151 | 21 | 47 | 180 | 237
(0.05, 0.95) 390 | 478 | 238 | 318 | 148 | 215 | 29 | 66 | 256 | 337
Machine miq mio mig mi4 mis
(7, 6) e [ [ [z [ e [nge [ [ [
(0.1, 0.9) 4 130 | 70 | 86 | 32 | 45 | 32 | 45 9 30
(0.1, 0.95) 5) 30 | 99 | 121 ] 45 | 63 | 45 | 63 | 12 | 31
(0.05, 0.9) 14 | 37 | 278 | 339 | 126 | 176 | 127 | 178 | 34 | 66
(0.05, 0.95) 19 | 51 [ 395 | 484 | 179 | 252 | 180 | 253 | 48 | 93
Machine Mg miy mis Mg M2
(7, 6) et [ [ [ [z [ [ [ [ e [
(0.1, 0.9) 69 | 8 | 41 | 55 | 27 | 40 | 17 | 32 | 81 | 97
(0.1, 0.95) 98 | 121 | B8 | 77 | 38 | 54 | 23 | 39 | 115 | 138
(0.05, 0.9) 275 | 338 | 161 | 216 | 105 | 153 | 65 | 105 | 323 | 387
(0.05, 0.95) 391 | 479 | 229 | 306 | 149 | 217 | 92 | 149 | 458 | 546
Machine maq M29o mMog Moy mas
(v, ) e [ e Lo [ [ [ [ e [
(0.1, 0.9) 75 90 | 42 | 56 | 33 | 46 | 28 | 41 | 19 | 34
(0.1, 0.95) 106 | 128 | 59 | 78 | 46 | 64 | 39 | 57 | 27 | 43
(0.05, 0.9) 298 | 361 | 165 | 220 | 129 | 179 | 109 | 158 | 75 | 118
(0.05, 0.95) 422 1 513 | 234 | 311 | 182 | 254 | 155 | 223 | 106 | 167
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B.6 Justification of Proposition 3.5

To justify this proposition, we use Monte Carlo simulations to numerically eval-
uate B for various randomly generated serial lines, and check whether inequality
(3.13) holds for each case. Specifically, we consider serial production lines with
M € {3,5,10, 15,20} machines. For each M, we generate 100 lines, with machine

and buffer parameters randomly and equiprobably selected from the following sets:

Tiowni € [3,10], &; € [0.6,0.95], Tops = Tdown,ili, cell,2i=1,...,M;

Buffer capacity N; = [r; max{¢;Tuown,i, Ci+1Twown,i+1}], 75 € [1,3],a =1,..., M —1.

For each line, we consider n¥(a, 8) € {108, 164,207,270, 384}, which correspond
to the critical number of measurements for fum and fdown’i, 1 =1,..., M, with
(o, 8) € {(0.1,0.7),(0.1,0.8),(0.1,0.85), (0.1,0.90), (0.1,0.95) }, respectively. There-
fore, we have 2500 combinations of system parameters and numbers of up- and
downtime measurements. For each of these combinations, we generate n¥(a, 3) of
up- and downtime measurements of each individual machine, and calculate the sys-
tem throughput using the aggregation procedure of Bai et al. (2021). This process
is repeated 10,000 times for each of the combinations, and 3 is evaluated as the

frequency of the event in the right-hand side of (B.32), i.e.,

| TP—TP(n¥ (o))l

e (B.32)

Nind number of times
e 10000

As a result, we obtain that for all cases analyzed, B{}?g exceeds erf(ay/nk(a, 5)). In
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other words, Proposition 3.5 is true for all 2500 combinations considered.

O]
B.7 Justification of Proposition 3.6
It follows from (3.12) and (3.13) that
ind *
ind . opp (- TPVIE(@F) ) B.33
e <2<1 ~Grel(n (. ) (B33

For a given (v, d), this expression can be rewritten as

1/ nip(7,9)
d > erf (2(1 Ty o 5)))> , (B.34)

where n’% (v, 9) is the critical number of measurements to obtain (v, §)-precise esti-

mate of T'P. Solving (B.34) for nk%,, we obtain:

nrp(7,0) < [(2(1 : éT:)erfl(é))T 11 <1 - %’Y) - . (B:35)
]

B.8 Justification of Proposition 3.7

To simplify the notations, in this section we denote fup(ni}(a, 3)) and Tyoun (ni(c, B))

as T, and Tjoun, respectively.
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. i |Tup—T T, T,
The inequalities [Tup —Tupl o and Lo ~Taoun| < « can be rewritten as

Tup Tdown
j;up fu 7Aﬂdown 7qdown
<T,, < P < Thown < B.36
1+« P~ 1-a 1+« d 1 -« ( )

For T,, and Ty, within the bounds (B.36), the bounds for /¢, calculated using

(3.15), are
lmin < It < ltma, (B.37)

where [t,,4, is evaluated by replacing T, and Tyoumn by o Tup z and Td"“’”' ; similarly, It

is evaluated by replacmg Ty and Ty by I“P and d"w", respectively. Thus, the

bounds for the ratio %, where /# is evaluated using (3.16), are given by

lt’

< - <. (B.38)

Since both [t,,;, and lt,,., are functions of a << 1, using Taylor expansion, with

accuracy up to O(a?), we obtain:

(B.39)

142



Combining both expressions in (B.39), we have:

It —1 2Ap+¢e—2pe it — it —1 2Ap+¢6—2pe
B ltA (1+ (p+e Ape))aélt lt< ltA <1+ (p+e Ape))a
It L—p It It IL—p

— \lt—lt!< lt:l 1+2(p+e—A2pe) o
It It lL—=p

(B.40)
Thus, o™ with accuracy up to O(a?) is given by:
. it—1 2(ﬁ+6—2ﬁ€))
ind
oy = | —— 1+ = o. B.41
" ( It ) ( 1—7 (B.41)
[
B.9 Justification of Proposition 3.8
The condition (3.19) can be rewritten as
(1-20)8> — (B.42)
—e)e —. :
4Tdown

aind
We prove by contradiction that this inequality implies =~ > 1. Assume (B.42)

holds and %% < 1. Then,

«

oty U=9pre-2p) v (B.43)
a (1 - ﬁ)2 4Tdown
Denote the expression % in (B.43) as K (€, p), and observe that
0K (1—8)(1+ﬁ—2€ﬁ)>0 (B.A4)

5 (1-p)
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Inequality (B.44) indicates that K is an increasing function of p. In addition, for
p=0, K= (1-¢é)e. Thus, for p =0, we have

K@p) = (1- 08 (B.45)

Combining the above with the assumption (B.42), we obtain:

KEp) =>(1—-0> ——, (B.46)

which contradicts with (B.43).

ind AN A A
On the other hand, if *— > 1, ie.,, K(¢,p) = (1_6%”_;?2_26”) > 4@21“”’ then

(1—e)e> as well.

down

B.10 Justification of Proposition 3.9

To simplify notations, in this section we denote n¥.(«, ) as n. Similar to the
approach adopted in Appendix B, we use Taylor expansion to obtain a linear ap-

proximation of lAt(n) with respect to its arguments fup(n) and Tijouwn(n), denoted as

lAtL(n):
. olt ~
aTuz)(n) Ifup( )_Tupvfdown(n):Tdown (B 47)
olt ~
( ) (Tdown(n> - Tdoum> .
aTdown ( ) T‘up (TL ,Tup aj—\‘down (TL) =T4gown

~ A~ 2
Since Ty, (n) and Tyoun(n) can be approximated by Gaussian distributions N (7, Tn )
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2 ~
and N (Tyown, Td‘;;”"), respectively, [ty (n) also can be approximated by a Gaussian

random variable, lAtg(n), with expected value equal to [t, and variance

var <lAtG (n)) =

2
) var(fup(n))
j:’up (n) :Tupj:’down (n) =Tdown

2
) var(fdomn(n)) (B.48)
( ) Tdoum

fup(n):Tupyfdown
p+e—2ep)+ (1+e—26p)
(1—p)?

= %(Zt—l)Q(

Therefore, the Gaussian approximation of 8" is given by

ltn) —1t] lta(n) —1t] .
ztd=P<T<0¢ztd ~ P T<%d

= P (lig(n) < (1+ affit) = P (lig(n) < (1 - affit)

1 1+ o)t — It 1 1 — o)t — It
=§ 1+ erf (+alt) ~3 1+ erf ( alt)

2var (lt(;(n)> 2vuar (lAt(;(n)>

n
~ erf | cAs /=
er (a \/g),

(1+p126—4
where A = \/ (Ltp+2¢—4cp)

(p+e—2ep)2+(1+e—2¢ep)? -

(B.49)

B.11 Justification of Proposition 3.10

As mentioned in Appendix B, lAt(ni}(a, B)) can be approximated by a Gaussian
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n¥(a,8) (1-p)?

for any given accuracy v, the Gaussian approximation of its probability § is given by

5_p <|l7?(n2"‘T(%5)) it _ 7) op <|ﬁc<nzﬂsp<w>> ] _ 7)

random variable ltg(nk(a, 8)) ~ N(lt, L (it — 1)2(p+6_26p)2+(1+6_26p)2>. Thus,

It It
:% ot (1+ )t — 1t
\/211@7’ (ltg(nz*T(’y, 6)))
(B.50)
—% 1 +erf (1=t -t
\/QUCLT (ltg(nj‘i*T(% 5)))
ko _ 72 7 —
rerf _ AnLT/(l, N1 ,0)/\ _ It - 1 5)
2((p+e—2ep)*+ (1+e—2ep)*) \ It
Solving for nj%(v,d), we obtain:
~ 2 B 9
It—1 erf 71 ()
n*%.(v,8) = | 2R | 22 ( ) : B.51
17(7,9) ( = ) 5 (B.51)
where A A a2 PN
-2 1 -2
R (€+p—2pe) +A(2+e pe) . (B.52)
(1-7)
O]

B.12 Justification of Proposition 3.11

Using the same arguments as in Appendix B and substituting WIP instead of
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lt, we obtain:
WIP - WIP - WIP
W]Pmax\W]P\W]szn

(B.53)

Similar to Appendix B, taking Taylor expansion, with accuracy up to O(a?) we have:

wir +1+2€+ﬁ—4€ﬁa
WP, 1-7 ’
WIP 14204 p 45
WP 1-7 '

Combining both expressions in (B.54), we obtain:

1+20+p—4ép  WIP—-WIP 1+26+p—4ep
— a < < o

1-p wip 1—p
WIP—WIP| 1+26+p—4ép
— < — Q.
WIpP 1—7

Thus, with accuracy up to O(a?), aid, is given by

ima 1 +2e+p—4dep

B.13 Justification of Proposition 3.12

(B.54)

(B.55)

(B.56)

(B.57)

Follows exactly the Justification of Proposition 3.9. The only difference is that in

the expressions (B.47)-(B.49), I, It, (it — 1)? should be substituted by WIP, WIP,

(WIP)2.
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B.14 Justification of Proposition 3.13

Follows Appendix B with ¢, l/;f, (It — 1)? substituted by WIP, WI\P, (WIP)?

and taking into the account that

WIPq(nk 1 +e—2ep)? + (1 + e — 2ep)>
UGT(WIPG(TLWIP(O(, 6))) — n*(a’ B) (WIP)2 (P € ep()l . ;)2 e ep) .
(B.58)
As a result, we obtain:
-1 2
nyrp(7,0) = | 2R (erfv (5)> } : (B.59)

where R is given by (B.52).
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APPENDIX C

Appendix of Chapter 4

C.1 Justification of Proposition 4.1

The Gaussian approximation of g(n) is N/ <q, %) (see Feller (2015)). There-

fore,

b= P (&W < aq) — P((1 - ag)q < §(n) < (1+ag)q)

Solving for n;‘(aq, B,), we obtain a Gaussian approximation of the critical number
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as follows:

oo P (] e

C.2 Justification of Proposition 4.2

For gi(n}(ag, By)), i =1,..., k, satisfying (1 —ag)q < () (g, B)) < (1+ag)q;,

we have:
k k k
(1—a) [[a<[]a<+a) []a
i=1 i=1 =1
) . i (C.3)
— (1 —Fkay+ O(ag)) qu < H/\i < (1+ koyg + O(az)) H(Iz
i=1 i=1 i=1
Thus,

k
(1= kog + O(@))TP] [ < TP [ G < (1 + koy + O(a2)TP] [

=1 =1 =1
— (1—kay +O0(a2)TP, < TP, < (1 + ka, + 0(a?))TP, (C.4)

TP, — TP,
— # < kag + O(al).

Therefore, with accuracy up to O(ag),
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C.3 Justification of Proposition 4.3

To simplify the notations, in this subsection we denote nZ(ozq,/Bq) as n, and

Eo~ A
Hizl Qz(n> = Q(n>
Since the Gaussian approximation of g;(n), i = 1,...,k, is N/ (qi, %), the

expected value and variance of Q(n) are:

EQm) =[]a =@ (C.6)

k k

:Hl (var(@(n)) + E@(n))?) - HE(@(n))Q (C.7)
b 1—aq)ag 2 : 2

TI(5 ) - 1T

1

%), this expression becomes:

If k > 2, with accuracy up to O(

k ko 2 k
@ = 2 S0 - =g (Do) e

iéf (l - 1) < }1 (C.9)

151



This leads to the following:

gind <|qu<> TP, amd>:P<\TPHflqz TPH”qz! )

TP, = T Pq TP,

_p ('Q%_ Ql _ Q%> |

(C.10)
Keeping in mind that @(n) can be approximated by a Gaussian distribution
N (Q, Ly Q? (ql — 1)) and using (C.9) in (C.10), we obtain:
ind |@(’I’L) _Q| < oind
= —_— X (8
BTPq ( Q TP,
) a+aho-\\ 1 (- o) - Q
~ 3 1+ erf ~3 1 + erf
22)(17’(@(77,)) 2var(Q(n))
44 -
> erf ‘ = erf ( anan> .
V2
(C.11)
For @ > 0.5, we have:
ind kOéq %
BTP > e W U (aqaﬂq) > (C12)

which coincides with the statement of Proposition 4.3.
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To prove (C.9), introduce the notation:

Sk(qiy - qe) = icﬁ <l_1),

The partial derivative aa*z’? is

l#1 h#l,h#1 1#1

Setting 3 ask = (, we obtain:

22112"( 1 qh) +] [ =2k (H%),

l#1 h#l,h#1 h#t

8Sk 2 qz< H >gll—gl (1_[ql>qZ —2¢;), fori=1,...,

(C.13)

k. (C.14)

(C.15)

where ¢f = arg(maxSy), ¢ = 1,...,k. Since the right-hand side of (C.15) remains

the same for Vj # i, we conclude that ¢ = ¢; =: ¢*. Therefore, (C.15) can be

rewritten as

2(k = 1)(¢*)* " + (¢*) " = 2k(¢")",

implying that
2k —1

*_

and, therefore,

1 /9% — 1\ %1
SszaXSkzg(ka >

Since S} is a decreasing function of k, we obtain:

. 27T 1
MAXSE =% = 8 < 1
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(C.18)

(C.19)



which proves (C.9).

C.4 Justification of Proposition 4.4

From Appendix C, Q( (g, Bq)) = ]_[f,l qi(n; (ay, B4)) can be approximated by a

Gaussian distribution A (Q, F oo ZZ L Q? (— — 1)), where ) = Hle gi- Thus,
q q

for any given accuracy -, the Gaussian approximation of its corresponding probability

0 is given by
5 p (TP, (:0) ~TH| 7) <|Q(nqu(% ) -al _ 7)

TP, Q
m% 1+ erf 1+7)@-Q
\/21)@7" (Q(n{‘;"}gq(vﬁ)))
(C.20)
—% 1+ erf (1=)@-¢
¢ 2var (Qnz, (1.9)))
Yo/ 7, (75 9) Yo/ 7, (7, 0)
= erf

Vay X ﬁ«/Zf:fg—f”

Solving for nrp, (7,9), we obtain the Gaussian approximation of the critical number

i (1,8) = {2 (Z 1 ;q> (=) } . (c.21)

as follows:
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APPENDIX D

Appendix of Chapter 5

D.1 Justification of Proposition 5.1

Similar to A, the estimate fup(n) can be approximated by a Gaussian random
A~ 2
variable T, ¢(n) ~ N (Typ, %) Thus, according to Tsagris et al. (2014), the mean

2
ZT;‘L”. By Markov’s inequality, we have

of the random variable |7A”up7g(n) — Toypl s

~ E( Tu - T,
P (’Tup,G _ up‘ a) ‘ PG ) P|>
— P (’Tup,G o up‘ a> | PG(a) PD
~ 1 /277
:>P(|T,,G T, < a> >1-24/=2,
Take a = oT,,, we have § =1 — a%up i{iﬁ’ =1- i #, where n* = nj. )/ (a, §).

Solving for n} 5,(c, 3), we obtain
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D.2 Justification of Proposition 5.2

Similar to the justification of 5.1.

D.3 Proof of Theorem 5.3

. . ~ 72
The mean and variance of the estimate 7,,(n) are T,, and —=

Therefore, by Chebyshev’s inequality, we have

A~ T, 1
P (‘Tup(n*) - Tup’ = k_p) S

) S
= P |Tw)(n )_TW| < K = 1—i7
Tup vn* k2

k 1

where n* = njo(a, ). Take a = TE ) we have f = 1 — .

ni.c(a, B), we obtain

thelad) = |

D.4 Proof of Theorem 5.4

Similar to the justification of 5.3.

156

, respectively.

Solving for



APPENDIX E

Appendix of Chapter 6

E.1 Proof of Theorem 6.1

Consider an unreliable machine with cycle overrun, defined by {7, Ty, Tiown, Por, kor},
at the end of its N-th up- and downtime realization. Denote the number of parts pro-
duced during this time period as K. This time period equals to Zi]\il(tum + tdown.i),
and the machine’s total uptime is ZZN:1 tupi- Denote the duration of the process-
ing time of k-th part as Ty = T + Tork, Where Togry is the realization of the
k-th overrun, the mean value of which is Tpg. Since there are K parts produced,
SN g = D Tiotatk- Let S0 tupi = Sp ) Trotalk + T, Where F < Tyoralre41-

Assume that N — oo, then, obviously, K — oo as well. Hence, the stand-alone
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throughput of the machine with cycle overrun can be evaluated as follows:

K
SAT = lim N
N—o0,K—w0 Zi:l(tui"ri + tdown,i)

N
lim K Zi:1 tup,i
N—00,K—a0 Zszl Ttotal,k +7 le'vzl(tup,i + tdown,i)

lim — - lim — izt tur, .
K=o Zk;l Ttotal,k + 7 N—w© Zi:l(tup,i + tdown,i)

The first term in the last row of (E.1) can be bounded as follows:

K

K+1 = K .o K :
K—0 Zk=1 7_total,k K=o Zk:l Ttotal k +7 K=o Zk:l Ttotal k

The first term in (E.2) can be represented as

) K K+1
lim

—— = 11In
K+1 K+1
Ko Zk:l Ttotal k K- K +1 Zkzl Ttotal k

: K : K+1
= lim lim T
Koo K +1 K=o Zkzl Ttotal k

. K+1
= lim

K+1 '
K=o Zkzl Ttotal,k

(E.2)

(E.3)

Thus, using the last expression in (E.3) and the strong law of large numbers applied

to the first and third terms of (E.2), we obtained:

i K+1 5 K 1

11 —— = 1111 = .
K+1 K

K=o Zk:l Ttotal k K=o Zk:l Ttotal k T+ TOR
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Therefore, the middle term of (E.2) is also given by

K 1
lim — - = . (E.5)
K=o Zk:l Ttotal k + 7 T+ TOR

As far as the second term in (E.1) is concerned, by the strong law of large numbers

we have:
N
N hm Zi:l Lup,i
. Zi:l tup,i N—-wo N Tup
lim — = v v R (E.6)
N=© i1 (tupi + taown)  lim Zi=tlwd 4 iy Zldowns T+ Taoun
N—w N—ow

Thus, combining (E.5) and (E.6), and assuming 7T, and Ty, are in seconds, we

obtain:
1 T
SAT = P arts/second
T+ TOR Tup + Tdown P /
(E.7)
3600 Tup arts/ho
= r ur.
T+ TOR Tup + Tdown P
O
E.2 Proof of Theorem 6.2
In the following, we prove that Tf_"p‘;“;" < porkor is a necessary and sufficient

condition for the overrun-reduced machine having a larger SAT than that of the
downtime-reduced one.

To show necessity, assume that the overrun-reduced machine has a larger SAT
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than that of the downtime-reduced one. In this case, we have:

3600 Tup 3600 Toup
T+ rpORkORT Tup + Tdown T+ pORkORT Tup + erown

= (T + rpORkORT) (Tup + Tdown) < (T + pORkORT) (Tup + TTdoum)

(E.8)
had (1 - 7a)TTcloum < (1 - 7a>pORkOR7—Tup
Tdown
< <porkor-
up

Note that the chain of inequalities in (E.8) is bi-directional, thus, T%’::" < porkor

is both necessary and sufficient.

Similarly, it can be shown that the downtime-reduced machine has a larger SAT

3600 Tup 3600 Tup
’ T+TpORkORT Tup+Tdown T+pORkOR7— Tup+erown

than that of the overrun-reduced one, i.e.

if and only if TT—w > porkor holds. O

E.3 Proof of Theorem 6.3

Consider the equations:

1
Tor = o' (1 + B),
L1+ 32) (E-9)
cV = 5 =1
I2(1+ 3)
Introduce function
G —F(l i %) E.10
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and consider its derivative with respect to 3:

°(1+ HI'(L+ ) — 200+ HT'A + )
FTS(1+ 1) -

G'(B) - (E11)

As one can see, the denominator of (E.11) is positive. To prove that the numerator
is negative (i.e., that G(f) is monotonically decreasing) consider what is referred to
as the digamma function, 1(z), and its derivative, ¢’(x), given by (see Abramowitz

and Stegun (1948)):

(E.12)

Thus, for > 0, ¥(z) is monotonically increasing, i.e., (1 + %) > (1 + %) In other

words,

C$ru+%wu+—ydu+—wm+%) (B.13)

2 / Y - / z
— F(1+B)F(1+ﬂ) F(1+5)F(1+/@)<0.

Therefore, G(f) and, hence, CV (f3) are decreasing functions of 5 > 0. In particular,
CV =1 for =1 and tends to 0 when 8 — c0. Due to monotonicity of CV (), we
conclude that for CV < 1, 8 is unique in the range of g € (1, +00).

Since f is unique, using (E.9), we conclude that « is unique as well in the range

of a € (0, +x). O
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E.4 Justification of Proposition 6.5

Denote the estimate of mean conditional cycle overrun based on n¥p(«, 5) cycle

overrun observations as T§g(ngg), i.e.,

anR t .
i=1 YOR,

* (E.14)
noRr

Tor(MoR) = )

where tog, is the i-th cycle overrun duration. Thus, by (6.19), we have T5,(nk ) =

203(71*03)7, and

b { [For(nir) — k| _ a} b { [For(nip)r — kr| _ a}

k kT
. (E.15)
_p T6r(nHR) — Tor <ab =4
Ton

Since the conditional cycle overrun is assumed to follow the exponential distri-

bution, similar to the justification of Proposition 2.3, we approximate fg r(nER) by

. . TS 2
a Gaussian random variable A/ <T5 Ry T ) Therefore, we have:
OR

p |T53(n’53) _T53| <a
5k
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Solve for the Gaussian approximation of nf,(«a, ), we obtain:

nor(a, B) = [2 (M)j . (E.17)

(07

]
E.5 Justification of Proposition 6.6
~ ™ . . |Por(*. Y—porl lkor(n¥ )—kog
FOTPOR(H;OR) and kOR(n;OR) Satle}’lngW < a; and OR 1;%1; OR <

«ip, respectively, we have:

(1 —a1)por < por(ny,,) < (1+ a1)por,

(1 — as)kor < kor(nf,,) < (1 + as)kor
< (1 — al)(l — a2)pORkORT < ]/?\OR(TL;OR)/I{\?OR<TLZOR)T < (1 + 041)<1 -+ Oég)pORkORT
— (1 — Q] — Qg + O(oqozg))TOR < fOR < (1 + a1 + Qg + O(a1a2))TOR

Torn —T,
— M <o +ag+ O(agae).

Tor
(E.18)
Therefore, with accuracy up to O(ajas),
alt = ay + ay. (E.19)
O]

E.6 Justification of Proposition 6.7

Consider the distribution fog(t), its mean is porkorT, and its variance is given
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by pork3r7?(2—por). Thus, the mean of N, Duber of unconditional cycle overrun

pork} T (2—por)
- )

durations, i.e., T R(n;OR), has the expectation porkorT and variance i
POR

Based on these values, we consider approximate Tor(n;, ) by a Gaussian random

. k2 .72 (2—
variable N/ (pORkORT, LoRSon, ( pOR)>. Therefore, we have:

POR

ind _ p |TOR(TL;OR) B TOR| < azong
Tor

—Pp {fOR(n;OR) <(1+ agg)TOR} ~P {fOR(n;OR) <(1- agg)TOR}

~ Lo agiporkorT L —agiporkorT (E-20)
2 \/pORkQOI.:;Z(Q*pOR)\/E 2 \/PORICQOT;:*@*POR)\/ﬁ
OR OR
n*
~ erf | (a1 + a)C % :
where C' = M. O

2-por(nfor)

E.7 Justification of Proposition 6.8

Similar to the justification of Proposition 6.7, we approximate fo r(n) by a Gaus-
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k% pr2(2—
PoR%or n( pOR)). Therefore, we have:

sian random variable A (po rKORT,

5= p i Tor(ngr) — Tor| <n
Tor

=P {fOR(n’S‘}%) <(1+ V)TOR} - P {fOR(ngﬂ}%) <(1- V)TOR}

~ erf YPorkoRT L —YporkorT (E.21)
2 \/pORk%Ij;Q*(Z_POR)\/? 2 \/pORk%}ZTg*(Q—poR)\/E
OR T

POR

= erf “n’("j‘}% 7
2 /2 1)

Solve for the Gaussian approximation of n§%, we obtain

s P2 (40)] e
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