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ABSTRACT

This dissertation studies the implications of technological innovation in the financial

markets to asset prices, market quality, and the delegated portfolio management sector.

Three such developments are considered: index funds (Chapter 1), quantitative mutual

funds (Chapter 2), and exchange traded products (Chapter 3). For index funds, I

study the drivers of the growth in passive investing and its effect on market efficiency.

For quantitative mutual funds and exchange traded products, I explore their impact

on various measures of market quality such as price discovery, market efficiency, and

liquidity.

Chapter 1 investigates the impact of fundamental information acquisition costs on

price informativeness and passive investing. Within a noisy rational expectations equi-

librium (REE) model of multiple risky assets and a redundant market index, I define

passive investing as the optimal decision to: 1) free-ride on the information acquisition

efforts of active traders in the index asset, and 2) forgo all stock picking strategies.

Falling information costs have the dual effect of lowering the cost of market timing, de-

creasing passive share, and lowering the cost of stock picking, increasing passive share.

If the stock picking effect dominates the market timing effect, passive share increases

in tandem with greater price informativeness. I exploit the Security and Exchange

Commission’s eXtensible Business Reporting Language mandate as a negative shock

to information costs to provide suggestive evidence that falling information costs may

be contributing to the rise in passive investing.
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Chapter 2, joint with Paolo Pasquariello, studies the effects of quantitative equity

investing, an increasingly popular investment style, on financial market quality. Within

a noisy REE model of strategic speculation with two informed market participants, we

define discretionary investing as fully strategic trading and quantitative investing as

partially or fully myopic via its reliance on a backtested trading strategy. Growth in

quantitative investing is modeled as both the introduction of and the greater backtest

adherence by an informed speculator. The introduction of an additional speculator

generally benefits financial market quality. The effect of greater backtest adherence

depends on whether it leads to more or less aggressive trading than discretion, the

former improving, while the latter worsening market quality. If it is more aggressive,

market quality broadly benefits with greater quantitative investing; if it is less aggres-

sive, market quality deteriorates.

Chapter 3 explores the implications of the growth in exchange traded funds (ETFs)

and the associated arbitrage trading on price discovery and market liquidity. The

introduction of arbitrage trading to segmented markets with otherwise diverging prices

averages noise trading across markets, as the arbitrageur buys (sells) in the market

with excess noise supply (demand). This smoothing results in less informed trading

due to lower camouflage for the speculators, and lower liquidity due to greater adverse

selection concerns for the market makers. The introduction of an ETF that attracts

a threshold level of incremental noise trading leads to unambiguous improvements in

the market quality of the underlying security, as the arbitrageur connects the synthetic

and underlying markets by averaging noise trading across markets. I highlight the

differential effects on market quality of stand-alone arbitrageurs and market makers

jointly serving as arbitrageurs, with the former leading to greater informed trading

intensity for the speculators and greater adverse selection for the market makers, and

the latter having the opposite effect.
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CHAPTER I

Information, Participation, and Passive Investing

1.1 Introduction

The dramatic growth in the share of passive versus active equity investment man-

agement has sparked a vibrant debate about both its causes and its effects on price

discovery and market efficiency.1,2

A natural and popular explanation for the rise in passive investing, one consistent

with standard models of price formation in the literature, is the relative decline in

the cost of passive versus active asset management. For instance, within Grossman

and Stiglitz (1980, “GS80”), greater relative costs of active investing would lead to

more passive investing in equilibrium. However, in such models this growth would be

accompanied by less informative prices, which is at odds with empirically documented

trends of increasing price informativeness (Bai et al. (2016)) especially for the larger

firms in the economy most affected by indexing strategies (Farboodi et al. (2018)).3

1According to Investment Company Institute (2020), as of 2019, US index and exchange traded
funds (ETFs) accounted for 49% of assets under management by the US open-end equity fund industry,
up from 6% in 1996.

2See, for example, O’Hara (2003) and Boehmer and Kelley (2009) for some evidence on the impor-
tance of asset management in price discovery and Bond et al. (2012) for a review of the literature on
the real effects of financial markets.

3By price informativeness I refer to the extent to which prices reflect fundamentals. In my setting
this will be the inverse of payoff variances conditional on prices. An example of an empirical coun-
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The observed joint growth in passive share and price informativeness poses a challenge

for simple cost-based explanations.

My first contribution is theoretical: I highlight conditions under which a decline in

active versus passive investment costs leads to both a growing passive share and more in-

formative prices. The result is driven by two realistic extensions to the traditional GS80

framework. First, I incorporate multiple risky assets to separately consider market tim-

ing and stock picking investment strategies for active investing. Second, I differentiate

between participation and information costs for stock picking strategies. Within this

setup, falling fundamental information costs have the dual effect of increasing the frac-

tion of investors pursuing market timing strategies – thereby decreasing passive share

– and decreasing the fraction of investors participating in stock picking strategies –

thereby increasing passive share. To the extent that the stock picking effect on passive

share dominates the market timing effect, falling fundamental information costs lead

to both an endogenously rising passive share and greater price informativeness.

My second contribution is empirical: I provide supportive evidence that the falling

information cost channel is at least partially responsible for the rise in passive investing.

I utilize the eXtensible Business Reporting Language (XBRL) mandate implemented by

the Securities and Exchange Commission (SEC) as a regulatory shock to information

costs. In the literature (e.g. Dong et al. (2016), Jaskowski and Rettl (2018)), this

event is interpreted as a negative exogenous shock to the cost of acquiring fundamental

information. Exploiting the advantageous phase-in design of the regulation, I find

that lower information costs cause a deterioration in the stock-picking performance

of active strategies, consistent with the main testable implication of my model. This

decline in performance coincides with flows out of active and into passive strategies

with comparable investment objectives. To my knowledge, my study is the first to

terpart would be the slope from a regression of future realized fundamentals on current market prices
(e.g. Bai et al. (2016)).
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attempt to empirically link the rise in passive investing with falling information costs.

To describe the theoretical effect of falling information costs on passive investing, I

first identify what it means to be optimally passive. In this paper, I focus on the purest

and most prominent form of passive investing: the sole allocation to a broad market

aggregate without information acquisition. In this setting, a passive investor partici-

pates in the stock market via an index fund and avoids all active management. Since

active management is a combination of market timing and stock picking strategies, a

passive investor: 1) allocates to a broad market index, 2) forgoes market timing, and 3)

forgoes stock picking. Taken together, the first and second conditions imply that pas-

sive investors optimally free-ride on the information acquisition efforts of active traders

in a market aggregate. The third condition states that passive investors optimally do

not participate in stock selection strategies. These determinants of passive investing

inform the structure of my stylized model for the asset management sector in which

passive investing arises endogenously as an optimal portfolio allocation.

My framework builds on GS80 to allow for both passive investing and the different

types of active management. To distinguish between market timing and stock picking

strategies, I introduce N risky securities and a redundant index asset, whose expected

payoff mimics the aggregate expected payoff to the market. As in GS80, each of the

N + 1 securities has a fundamental payoff, which can be learned for a corresponding

information acquisition cost. I employ an asset rotation inspired by Bond and Garcia

(2020) to decompose the investment set into the index asset and N − 1 orthogonal

long-short portfolios, labeled as stock picking strategies. The stock picking strategies

are costly to participate in, which is meant to resemble the costly nature of active

management over-and-above information acquisition costs (e.g. trading and market

impact costs, excessive fees, overhead, moral hazard, etc.).4 The rotation allows me

4My model generalizes to costly participation for the index asset as well without affecting its main
takeaways. In this case, stock market non-participation will also emerge, which is not the focus of

3



to directly map the investors’ equilibrium portfolio allocations in each of the synthetic

securities to either the passive strategy or various types of active investment strategies.

Within this setup, market timing is defined as investing in the index security with

information acquisition. Stock picking is reflected as participation in at least one of

the stock picking strategies, either with or without information acquisition.5

In equilibrium, the fractions of investors pursuing the passive and various active

strategies are determined by two key forces: 1) strategic substitutability in information

acquisition and 2) strategic substitutability in stock picking participation. The former

is the key outcome of GS80 and directly applies to the index asset: as more investors

acquire information, the value of information acquisition declines, uniquely identifying

the equilibrium fraction of market timers in the economy. The latter, to my knowledge,

is novel and is essential to exploring passive investing. If participating stock pickers op-

timally select their information acquisition strategies, more stock picking participation

results in lower gains to participation for all. Taken together, the two forces ensure

the uniqueness and existence of a linear equilibrium for participation and information

acquisition in stock picking. I then explore the effects of changing information costs

on passive share through their effect on the optimal investment in the index and stock

picking strategies.

The effect of lower information costs for the index asset is standard (i.e. as in

GS80): lower costs lead to a greater fraction of investors acquiring information and

more informative prices. This has the immediate implication of a lower passive share

as more investors pursue a market timing strategy. Thus, as noted earlier, this channel

cannot explain the observed improvement in price informativeness accompanying a

this paper. Therefore, for exposition, I assume that all investors participate in the index asset.
5Uninformed stock picking allows investors to deviate from the passive index without information

acquisition. As originally pointed out by Admati (1985) and more recently emphasized by Biais
et al. (2010) and Garleanu and Pedersen (2020), within models of noisy rational expectations the
unconditional expected market portfolio need not be the optimal portfolio for an uninformed investor
due to the uncertainty associated with the supply of securities.

4



greater passive share in the US. The effect of lower information costs on stock picking

is twofold. On the one hand, lower costs incentivize information acquisition, which

motivates a greater fraction of participating investors to become informed. On the other

hand, because a greater fraction of investors are informed, prices become more reflective

of fundamentals, which, in turn, reduces the gains to participation. As expected profits

for stock pickers turn negative, some choose to forgo stock picking altogether, resulting

in a greater passive share. In this scenario, passive share and price informativeness

increase in tandem. The question of which of these forces dominates is ultimately an

empirical one and motivates me to take the prediction to the data.

As a basis for my tests, I propose the following institutional mechanism for the ef-

fect of lower information costs on passive investing. As information costs fall, the first

and most immediate effect is that more active investors acquire information, leading

to more informative prices, and ultimately resulting in deteriorating performance for

active funds. Consequently, investors allocating to active funds internalize the perfor-

mance decline and take money out leading to capital outflows from active investing.

Finally, some of the investors pulling money out of active strategies, reallocate to pas-

sive strategies resulting in capital inflows to passive funds. I attempt to identify each

of the three effects (i.e. lower active performance, active outflow, and passive inflow)

in the data.

Empirically identifying the effect of lower information costs on passive investing

is nontrivial since fundamental information costs are endogenously determined and

typically not easily observable. I address these concerns by exploiting SEC’s “Interac-

tive Data to Improve Financial Reporting” rule as an exogenous and negative shock

to information costs. This regulation, originally introduced in 2009, required firms to

provide their financial statements in an interactive format utilizing XBRL, which made

financial information easier to export into spreadsheets, to machine read with off-the-
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shelf software, and to compare it across firms (via a standard list of tags developed

by XBRL US and reviewed by the Financial Accounting Standards Board [FASB]). To

the extent that investors were previously paying third-party data providers for data

manipulation or were spending their own time on it, they can now reduce these costs

by automating the data collection process.6, 7

To establish the effect of information costs on the performance of active manage-

ment, I rely on the staggered phase-in design of the regulation. The first phase applied

to companies with a public equity float of over $5bn: these companies were required

to adopt XBRL reporting for financial statements for fiscal periods ending on or after

June 15, 2009. The second phase applied to companies with public equity float between

$700mm and $5bn: these firms had to utilize XBRL for filings for fiscal periods ending

on or after June 15, 2010. Finally, all remaining filers had to comply for fiscal periods

ending on or after June 15, 2011.

I exploit cross-sectional variation in active mutual funds’ exposure to the informa-

tion cost shock as measured by the fraction of their assets invested in securities exposed

to each phase of the regulation. I argue that greater exposure to the shock will lead

to weaker future fund performance as measured by a fund’s Carhart alpha (Carhart

(1997)). To establish causality, I group funds based on their exposures to either phase

1 or their joint exposure to phases 2 and 3. I take a subset of funds that are either

exposed predominantly to phase 1 (group 1, ≥ 75% of total net assets) or predomi-

nantly to phases 2 and 3 (group 2, ≥ 75% of total net assets) and track their relative

performance through time utilizing an event study approach.

6See e.g. Kim et al. (2012), Blankespoor et al. (2014), Dong et al. (2016), Jaskowski and Rettl
(2018), Bhattacharya et al. (2018) for evidence that the XBRL mandate results in greater information
acquisition by market participants.

7Implicit to my analysis is also the assumption that lower information costs leads to greater price
informativeness in the affected securities. Several theories have been proposed demonstrating that
greater transparency or lower information costs need not imply more informative prices (Banerjee
et al. (2018) and Dugast and Foucault (2018)).
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I find that the performance of the two groups of funds is comparable both during the

pre-treatment period and during phases 1 and 2 of the treatment. However, as phase 3

is implemented, group 1 funds begin to significantly underperform group 2 funds. The

underperformance steadily declines for approximately two years, after which the gap

starts to shrink, ultimately converging in another two years. The trend suggests that

the information cost shock affects fund performance with a lag of approximately two

years, which is consistent with the notion that changes to information costs need time

to be internalized by investors and ultimately be reflected in more informative prices

and declining fund performance.

Both group 1 and group 2 funds exhibit fund outflows, which are especially pro-

nounced in the periods after the respective implementation of phase 1 and phases 2 and

3 of the XBRL mandate. While I’m unable to tease out a causal interpretation for the

active fund outflows, a closer look at the flows to passive funds suggests that perhaps

investors are rotating out of active and into passive funds. More specifically, I apply a

similar grouping based on exposure for passive funds and focus on those passive funds

that are most comparable to the affected active funds as dictated by their investment

objective. I find that group 1 passive funds see significant inflows right around the

time of deteriorating performance for group 1 active funds.

Overall, my paper highlights a novel theoretical link between falling information

costs and the rise in passive investing and provides supportive empirical evidence for

this relationship in US equity markets. Thus, my contribution to the literature is

twofold. On the theoretical side, I contribute to the literature on endogenous informa-

tion acquisition, the aggregation of information and its incorporation into prices, and

the effects of both on portfolio allocation and investor behavior.8 On the empirical side,

I add to the growing literature that explores the effects of developments in information

8E.g. GS80,Verrecchia (1982),Kacperczyk et al. (2016),Garleanu and Pedersen (2017)
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technology and financial innovation on asset prices and market efficiency.9

I proceed as follows. Section 1.2 discusses the relevant literature. Section 1.3

introduces the model. Section 1.4 explains the solution. Section 1.5 discusses the

comparative statics. Section 1.6 presents the empirical analysis. Section 1.7 concludes.

1.2 Literature Review

Reconciling falling information costs with growth in passive investing is challeng-

ing within canonical noisy rational expectations models since lower costs imply more

information acquisition and therefore more active investing (GS80, Verrecchia (1982)).

Hence, the more recent theories, which explain the rise in passive investing by relying

on the lower relative costs to indexing strategies as the primary driver, yield lower equi-

librium price informativeness (Peress (2005), Bond and Garcia (2020), Garleanu and

Pedersen (2020)).10 Multiple asset models with information choice yield similar im-

plications (Nieuwerburgh and Veldkamp (2009), Nieuwerburgh and Veldkamp (2010),

Veldkamp (2011), Kacperczyk et al. (2016), Abis (2020), Kacperczyk et al. (2018)). In

these studies, lower information costs can be viewed as greater information process-

ing capacity; however, this would have a similar effect of more information acquisition

implying more active management. More broadly my work contributes to the class of

models exploring the aggregation of information in markets with asymmetric informa-

tion (Hellwig (1980), Diamond and Verrecchia (1981)) and investing across multiple

securities (Admati (1985)).

Several papers – including Subrahmanyam (1991), Bhattacharya and O’Hara (2018)

Gorton and Pennacchi (1993), and Cong and Xu (2016) – consider passive investing

9E.g. Dong et al. (2016), Jaskowski and Rettl (2018), Zhu (2019), Katona et al. (2019)
10Bond and Garcia (2020) do find that while price efficiency declines for the index asset, the relative

price efficiency of individual stocks rises. Within my framework, since I am specifically altering
information acquisition costs with endogenous information acquisition, lower information costs lead
to greater aggregate and relative price efficiency.
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within a Kyle (1985) framework in which sophisticated market participants are strategic

and internalize the impact of their trades. These papers generally point to greater factor

information in prices due to the introduction of an index and the potential mitigation of

adverse selection by uninformed traders. The latter two also emphasize the decreasing

price efficiency in individual security prices as a result of composite security trading.

Unlike these studies, I focus specifically on information costs, and how they may impact

passive share.

Over the last few decades, fundamental data have become more abundant, more

easily accessible, and less expensive, especially thanks to regulatory overhauls. For ex-

ample, the SEC has implemented such mandates as EDGAR and XBRL to make data

more easily accessible and machine readable for investors. These reforms have spurred

much research on the effects of declining information costs on investment management

with some pointing towards greater price informativeness for the affected securities

(Kim et al. (2012), Dong et al. (2016), Jaskowski and Rettl (2018)) while others find

greater information asymmetry (Blankespoor et al. (2014)). Advancements in infor-

mation technology have also yielded alternative fundamental data ranging from retail

parking lot satellite imagery (Zhu (2019)) to cell phone ping data (Froot et al. (2017)).

Recent studies argue that such data may increase the information advantage of the

more sophisticated traders who have access to it (Katona et al. (2019)) leading to

greater income inequality (Mihet (2020)). However, other studies have documented

broad improvements to price informativeness (Bai et al. (2016), Brogaard et al. (2019),

Davila and Parlatore (2019), Martineau (2020)), especially to the larger firms in the

economy most affected by passive investing (Farboodi et al. (2018)). To the extent that

passive investing is at least partially driven by falling information costs, the presented

theoretical framework would imply more informative prices for the affected securities,

consistent with many of the studies mentioned here.
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A growing literature has focused on the direct effects of passive investing on price

informativeness with mixed results. On the one hand, Glosten et al. (2017) find that

greater ETF ownership leads to more accurate incorporation of accounting information

suggesting that price efficiency is improving with greater passive share. On the other

hand, when investigating Russell index reconstitutions, Coles et al. (2018) find that

weak-form price efficiency deteriorates due to passive investing. Similarly, Israeli et al.

(2017) report that ETF ownership results in decreasing price efficiency, while Cremers

et al. (2016) find that more indexing usually leads to more active investing with greater

alpha. Sammon (2020) further contributes to the debate by demonstrating that prices

are becoming less informative around earnings announcements due to greater passive

ownership. While I do not measure price informativeness explicitly, my model suggests

that the portion of the rise in passive investing that is driven by falling information

costs should be accompanied by greater market efficiency.

More broadly, my paper contributes to the literature on flows and performance

for active mutual funds (e.g. Jensen (1968), Carhart (1997), Sirri and Tufano (1998),

French (2008), Fama and French (2010), Berk and van Binsbergen (2015)). Further-

more, various studies have attempted to identify the sources of skill and alpha for active

mutual funds (e.g. Coval and Moskowitz (2001), Kacperczyk et al. (2005), Baker et al.

(2010)). While the literature has provided a variety of explanations for differences

in performance across funds, I focus on a very specific driver of performance, namely

information costs, and provide suggestive evidence to demonstrate that this force is in

effect.

Lastly, my theory sidesteps some realistic aspects of the mutual fund industry and

the effects of changing information costs. In particular, I do not model the asset

management sector in detail and capture all relevant frictions in reduced form (i.e.

through participation costs). Thus, my results on the growth of passive investing due
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to falling information costs likely form a lower-bound relative to a model with a more

realistic asset management sector. In the presence of moral hazard (Brown and Davies

(2017)) or search frictions (Garleanu and Pedersen (2017)), the index asset would

likely become even more attractive leading to even greater passive growth. Similarly,

introducing economies of scale and differential skill for active management (Berk and

Green (2004)) may also lead to greater passive share.

1.3 The Model

The goal of the model is to explore the effect of changes to the relative costs of active

and passive investing and the ensuing implications to the prevalence of indexing strate-

gies and price informativeness. To this end, the model will feature utility-maximizing

traders who allocate between a risk-free asset and a set of risky securities, among which

is an aggregate market index. Two types of costs to active investing will be introduced:

1) the cost of acquiring fundamental information (i.e. receiving a more precise signal

about the future payoff) and 2) any other costs associated with implementing the ac-

tive strategy (i.e. a cost to participate in the strategy). The main purpose of the

exercise is to investigate how changes to information and participation costs affect the

optimal portfolio allocations of traders in the economy, and, in particular, the fraction

of traders pursuing a pure indexing strategy.

1.3.1 Model Setup

The setting is a two-period endowment economy with multiple risky assets and a

continuum of traders indexed by the interval j ∈ [0, 1]. Endowments are assumed to be

W0 of cash for all traders and traders have CARA preferences with risk aversion of 1/τ .

Assets are priced and exchanged in the first period based on the demands of the traders

and the total supply of securities. Liquidation values are realized and consumed in the
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second period. Markets are assumed to be competitive in that an individual agent’s

demand cannot impact the price. The agents have rational expectations in that the

structure of the model is common knowledge.

1.3.2 Assets

The market contains a risk-free asset with price and gross return normalized to

1 and i = 1, . . . , N risky assets with prices P = [P1, . . . , PN ]′ and liquidation values

v = [v1, . . . , vN ]′. Liquidation values are governed by a fundamental payoff θ and noise

payoff u:

v = θ + u

where θ = [θ1, . . . , θN ]′, and u = [u1, . . . , uN ]′. Payoffs are independent with funda-

mentals governed by θ ∼ N(µθ,Σθ) with Σθ = diag[σ2
θ1
, . . . , σ2

θN
], noise governed by

u ∼ N(0,Σu) with Σu = diag[σ2
u1
, . . . , σ2

uN
], and σθiuj = 0 for any assets i, j. Expected

supply for each asset is given by the vector X = [X1, X2, . . . , XN ]′ and noise in the

supply will be introduced for synthetic assets defined below. I assume independent

fundamental and noise payoffs for exposition. Lemma A.2, highlighted in Appendix

A.9, demonstrates that in the case of correlated fundamentals, the payoff space can

be re-spanned with portfolios of underlying securities whose noise and fundamental

payoffs are orthogonal.

In addition to the individual assets, a redundant, value-weighted index, is offered

in the market with payoff governed by:

X ′v = X1θ1 +X2θ2 + · · ·+XNθN +X1u1 +X2u2 + · · ·+XNuN

The security-specific weights of the index asset correspond to the expected supply of
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each security, which ensures that this is a value-weighted index.11,12

1.3.3 Passive Investing and Information Acquisition

Traders are ex-ante identical and optimally choose to become passive. Passive

traders are defined as those who avoid all active management and restrict their invest-

ment only to the index asset, which is free to trade, without acquiring information on

its fundamental payoff. All other traders are referred to as “active.” Active traders, by

definition, participate in at least one active strategy, which will be introduced below.

For any risky asset i, the fundamental θi can be learned for an information acquisition

cost ci.
13 Without information acquisition, traders attempt to learn the fundamental

payoffs from prices. For tractability, for all assets I assume constant information qual-

ity,
σ2
θi

σ2
ui

= n, and a constant inverse relationship between fundamental uncertainty and

expected supply, X2
i σ

2
θi

= q.14

1.3.4 Introducing Synthetic Assets

The index asset is redundant. Since I am after portfolio choice in its presence, it is

useful to construct non-redundant synthetic assets that span the original payoff space

11A value-weighted index will hold a fixed percentage of shares outstanding in all of the securities
within the index. The prices will then ensure that percent of capital allocations are based on market
capitalization. Thus, absent rebalancing considerations, relative share allocations are determined by
shares outstanding for each firm in the index.

12The index is meant to resemble a broad market aggregate resembling the entire economy. The
portfolio weights of the index asset have to be proportional to the expected supply of each security for
the proofs that follow. See Garleanu and Pedersen (2020) for a further discussion on the optimality
of an index based on expected supply, as well as Pedersen (2018) for a discussion on the importance
of the uncertainty in asset supply.

13The structure of the model is slightly different from models based on Admati (1985) in which
traders receive heterogenous signals of the form sji = vi + εji where the signal noise σεji varies by
trader j. In such models individual signals aggregate and are reflected through the realization of the
fundamental vi entering the price function. In my setting, agents choose whether to acquire a fixed
signal of the form θi = vi−ui. See Veldkamp (2011) for more discussion of the difference between the
various types of information acquisition models.

14Taken together, these two assumptions imply that assets with lower payoff uncertainty have greater
expected supply, which is consistent with security issuers catering to the risk aversion of the traders.
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such that the index asset is included. Note that there are infinitely many ways of

constructing such assets; I choose a specific approach that allows me to both include

the index asset and orthogonalize the noise and fundamental payoffs of the synthetic

assets. This greatly simplifies the theoretical results to follow, as I am able to analyze

the assets on an asset-by-asset basis, since their payoffs and prices will not be correlated

by construction. In particular, I follow an approach similar to that of Bond and Garcia

(2020) and introduce synthetic assets with payoffs ṽ1, . . . , ṽN as portfolios of the original

assets as defined by the following mapping:



ṽ1

ṽ2

ṽ3

ṽ4

...

ṽN


=



X1 X2 X3 X4 . . . XN−1 XN

N−1
X1σ2

θ1

− 1
X2σ2

θ2

− 1
X3σ2

θ3

− 1
X4σ2

θ4

. . . − 1
XN−1σ

2
θN−1

− 1
XNσ

2
θN

0 N−2
X2σ2

θ2

− 1
X3σ2

θ3

− 1
X4σ2

θ4

. . . − 1
XN−1σ

2
θN−1

− 1
XNσ

2
θN

0 0 N−3
X3σ2

θ3

− 1
X4σ2

θ4

. . . − 1
XN−1σ

2
θN−1

− 1
XNσ

2
θN

...
. . .

...

0 0 0 0 . . . 1
XN−1σ

2
θN−1

− 1
XNσ

2
θN





v1

v2

v3

v4

...

vN



Synthetic asset i = 1 is the index asset while synthetic assets i = 2, . . . , N are

long-short portfolios.15 I refer to the long-short portfolios as stock picking strate-

gies, since their payoffs reveal the relative values of securities. Synthetic assets have

prices P̃ = [P̃1, . . . , P̃N ]′, fundamentals θ̃ = [θ̃1, . . . , θ̃N ], and noise ũ = [ũ1, . . . , ũN ]. For

any synthetic asset i, the fundamentals refer to the linear combination of θi’s in the

payoff and the noise refers to the linear combination of ui’s in the payoff. Note that

fundamental and noise payoffs of the synthetic assets are uncorrelated by construc-

tion due to the assumptions of constant information quality and constant fundamental

uncertainty to supply ratios. I label the distributional assumptions of the synthetic

15I will continue to index the assets by i not ĩ in the subscripts of variable names, however a tilde
above a variable implies that it is synthetic.
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payoffs by θ̃ ∼ N(µθ̃,Σθ̃) and ũ ∼ N(µũ,Σũ). To be able to analyze the synthetic

assets independently, noise supply is assumed to be independent across the synthetic

assets and is governed by x̃ ∼ N(0,Σx̃) with Σx̃ = diag[σ2
x̃1
, . . . , σ2

x̃N
]. The synthetic

asset expected supply vector is determined by: X̃ = Z−1X where each column of the

matrix Z corresponds to the portfolio weights of each synthetic asset (e.g. the first

column is the vector [X1, X2, . . . , XN ]′). The solution for the synthetic asset expected

supply vector is X̃ = [1, 0, 0, . . . , 0]′ (i.e. the index asset has expected supply of 1 while

all other assets have expected supply of 0).

All traders invest in the index asset for free.16 Participation in stock picking strate-

gies is costly over-and-above information acquisition costs, reflected by participation

costs k̃i for synthetic assets i = 1, . . . , N , aggregated into vector k̃ (note that the first

element k̃1 = 0 since the index asset is free to trade).17. Costly participation refers

to the incremental costs incurred by active funds such as trading commissions, market

impact costs, overhead expenditures, tax filings, etc. The fundamental component of

each synthetic asset i can be learned for cost c̃i for i = 1, . . . , N aggregated into vector

c̃. For consistency, it must be the case that
∑N

i=1 ci =
∑N

i=1 c̃i. I do not take a stand on

the exact mapping from the original to the synthetic information costs. For my results

to go through, I need falling information costs to the original assets to translate into

falling information costs for the index asset and at least one stock picking strategy.

Passive traders only invest in the index asset without information acquisition, i.e.

they optimally free-ride on the information acquisition efforts of active traders in the

index asset. Active traders pursue at least one active strategy, i.e. they either acquire

information about the index asset (market timing), participate in at least one stock

16This assumption is without loss of generality for the main theoretical conclusions. With costly
participation, aggregate stock market non-participation would emerge, which is not the focus of this
paper. See Peress (2005) for more details on the relationship between information and participation
costs in a market index.

17Subscripts refer to the elements of the specified vector. E.g., Iji refers to the ith element of vector
Ij
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picking strategy (stock picking) or do both.

1.4 Model Solution

The model is solved in four steps. First, I hold fixed the fraction of traders par-

ticipating and informed by asset (exogenous “participation” and “information”) to

identify the equilibrium price function at which all traders optimize given their type.

Next, I endogenize the information acquisition of active traders (i.e. the “information”

decision), to determine what fraction of traders optimally acquires information. Third,

I endogenize the participation decision (i.e. the “participation” decision), to determine

what fraction of traders optimally participates in the stock picking strategies. Finally,

I map the fractions of traders acquiring information across all assets and participating

in the stock picking strategies to my definition of passive share.

1.4.1 Optimal Portfolio Choice

Trader j forms a portfolio Dj to maximize the expected utility of period two wealth

(W2j) conditional on their fundamental information set Fj and participation set Rj:

Dj = arg max
D̃j

E[− exp(−W2j

τ
)|Fj, Rj] (1.1)

The participation set indicates the prices of the synthetic assets in which trader j is

investing. For example, if trader j is active in assets 1,2, and N − 1, the participation

vector would be Rj = [P̃1, P̃2, P̃N−1]. I denote the indices of the securities in which

trader j is investing by rj (in the example, rj = [1, 2, N − 1]). Note that for all traders

P̃1 ∈ Rj since it is free to participate in the trading of the index asset. Even though

the trader observes all prices, due to the orthogonality of assets, the prices of assets in

which the trader does not participate do not inform the investment decision once the
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participation set has been determined. Therefore the prices of the other assets can be

excluded from the conditioning variables.

The fundamental information set is composed of a subset of the fundamental vector

θ̃ for which information is acquired. The vector Fj indicates the realizations of the

fundamentals the trader will learn after incurring the associated information costs. For

example, if trader j pays c̃2 and c̃N to learn the realizations of θ̃2 and θ̃N respectively,

the information set vector Fj would be [θ̃2, θ̃N ]. Note that for any passive trader,

Fj = ∅, since passive traders, by definition, do not acquire information. I aggregate

the total information of trader j in the information-participation set Ij, where each

element Iji represents the information relevant for security i: for an informed trader

Iji = {P̃i, θ̃i}, for an uninformed trader Iji = {P̃i}, and for a non-participating trader

Iji = {∅}.

To map information and participation decisions to absolute costs, I define 1Rj =

[1{P̃1∈Rj}, . . . ,1{P̃N∈Rj}]
′ and 1Fj = [1{θ̃1∈Fj}, . . . ,1{θ̃N∈Fj}]

′. Conditional on participa-

tion and information decisions, period two wealth for trader j is given by:18

W2j = W0 − 1
′
Fj
c̃− 1

′
Rj
k̃ +D′j

(
(ṽ − p̃)� 1Rj

)
(1.2)

The synthetic assets are orthogonal across all dimensions relevant to prices and pay-

offs: noise supply, fundamental payoffs, and noise payoffs. Therefore, due to fixed

endowments and CARA preferences, optimal portfolio choice can be considered on an

asset-by-asset basis.

For any asset i in trader j’s participation set (i.e. {P̃i} ∈ Iji), optimal demands

18The symbol � signifies element-by-element vector multiplication. In this context it is necessary
to limit investments to assets in the participation set Rj .
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conditional on the information set Iji are given by the standard demand function:

Dji =
τ(E[ṽi|Iji ]− P̃i)

σ2
ṽi|Iji

(1.3)

where in the case of a trader j uninformed in asset i ({θ̃i} /∈ Iji)

Dji =
τ(E[ṽi|P̃i]− P̃i)

σ2
ṽi|P̃i

(1.4)

and in the case of a trader j informed in asset i ({θ̃i} ∈ Iji)

Dji =
τ(θ̃i − P̃i)

σ2
ũi

(1.5)

For any asset i not in trader j’s participation set (i.e. {P̃i} /∈ Iji), demands of trader

j are zero:

Dji = 0 (1.6)

All else equal, demands are greater when the conditional expected payoffs are greater

or the conditional payoff variance is lower.

1.4.2 Exogenous Information and Participation

Given the optimal demand functions specified above, I can impose market clearing

for each asset. For each synthetic asset i, I label the fraction of non-participating

traders as γ̃i (aggregated in vector γ) and the fraction of informed traders among

the participating traders as λ̃i (aggregated in vector λ). Note that since all traders

participate in the trading of the index asset, γ̃1 = 0. Given expected supply vectors

for the synthetic assets, noise supplies, and optimal demand functions provided by Eq.
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(1.4), (1.5), and (1.6), market clearing implies:

(1− γ̃i)λ̃i
τ(θ̃i − P̃i)

σ2
ũi

+ (1− γ̃i)(1− λ̃i)
τ(E[ṽi|P̃i]− P̃i)

σ2
ṽi|P̃i

= X̃i + x̃i (1.7)

It is immediate that an equilibrium does not exist in the full non-participation case

(γ̃i = 1), since there is no demand to clear the supply of the risky asset i. Therefore, I

assume that γ̃i < 1 for all i going forward. I can rewrite the market clearing condition

by moving all of the variables known to the uninformed traders to the right-hand side

to arrive at:

θ̃i −
σ2
ũi

τ(1− γ̃i)λ̃i
x̃i = P̃i +

σ2
ũi

τ(1− γ̃i)λ̃i
X̃i −

( 1

λ̃i
− 1
)(E[ṽi|P̃i]− P̃i)

σ2
ṽi|P̃i

≡ Si(P̃i) if γ̃i < 1 and λ̃i > 0

(1.8)

and define

Si(P̃i) = x̃i if λ̃i = 0 (1.9)

Si(P̃i) is a sufficient statistic for prices and greatly simplifies the derivation of the

equilibrium price function because E[ṽi|P̃i] = E[ṽi|Si(P̃i)] and Var[ṽi|P̃i] = Var[ṽi|Si(P̃i)].

In Appendix A.1, I derive the following:

Lemma I.1 (Equilibrium: Exogenous Information and Participation Strategy). For

any synthetic asset i, fixed λ̃i and fixed γ̃i < 1 there exists a price function of the form

P̃i(γ̃i, λ̃i, θ̃i, x̃i) = q1(γ̃i, λ̃i)+q2(γ̃i, λ̃i)θ̃i+q3(γ̃i, λ̃i)x̃i, where q1, q2 and q3 are constants,

such that for all realizations of θ̃i and x̃i, Eq. (1.7) is satisfied.

Si(P̃i) demonstrates that prices provide a noisy signal for the fundamental θ̃i. As
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in GS80, it is useful to think of Si(P̃i) as a mean preserving spread of θ̃i:

E[Si(P̃i)|θ̃i] = θ̃i (1.10)

and

Var[Si(P̃i)|θ̃i] =
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

if λ̃i > 0 (1.11)

Greater volatility of the noise payoff, lower fraction of informed traders, higher risk-

aversion, higher volatility of noise trader supply, all lead to a less precise price system.

In addition, lower participation (i.e., greater γ̃i) also leads to lower precision under the

assumption of exogenous information and participation.

I have demonstrated that an equilibrium exists in which traders are exogenously

assigned information and participation decisions. Next, I allow traders to optimally

choose whether to become informed about asset fundamentals.

1.4.3 Endogenous Information, Exogenous Participation

I now consider endogenous information acquisition, i.e. traders optimally make

information acquisition decisions, with preassigned participation across multiple assets.

When making the information acquisition decision, traders do not know the specific

realization of the fundamental θ̃i or the specific realization of price P̃i. Therefore, in

making the decision of whether to acquire information, traders need to evaluate the

unconditional expected utility of acquiring information (i.e. for all potential realizations

of θ̃i and P̃i) relative to the unconditional expected utility of inferring the information

from prices (i.e. for all potential realizations of P̃i).

For the results that follow, I will rely on an identity derived in Admati and Pfleiderer

(1987), which allows me to evaluate the unconditional expected utility of a trader with
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a specific information set. In particular, the unconditional expected utility (EU) of

trader j with information-participation set Ij is:

EUIj = −
|Σṽ|Ij |1/2

|Σṽ−P̃ ,Rj |1/2
exp

(
− W0

τ
+
1
′
Fj
c̃

τ
+
1
′
Rj
k̃

τ
− 1

2
µ′
ṽ−P̃ ,Rj

Σ−1

ṽ−P̃ ,Rj
µṽ−P̃ ,Rj

)
(1.12)

where µṽ−P̃ ,Rj is the unconditional expected return of the assets in trader j’s participa-

tion set, Σṽ−P̃ ,Rj is the unconditional variance-covariance matrix of returns of the assets

in trader j’s participation set, and Σṽ−P̃ |Ij = Σṽ|Ij is the conditional variance-covariance

matrix of returns of the assets in trader j’s participation set. The unconditional ex-

pected utility is composed of the expected utility of investing without conditioning

on prices or fundamentals (the term in the exponent) and the uncertainty reduction

associated with conditioning on any information acquired by the trader (the ratio of de-

terminants). Recall that utilities are negative; therefore a reduction in variance implies

a greater expected utility.

Due to orthogonality of the synthetic assets, I can rewrite the unconditional ex-

pected utility as:

EUIj = −

(∏
i∈rj

√√√√ σ2
ṽi|Iji

σ2
ṽi−P̃i

)
exp

(
− W0

τ
+
1
′
Fj
c̃

τ
+
1
′
Rj
k̃

τ
−
∑
i∈rj

E[ṽi − P̃i]2

2σ2
ṽi−P̃i

)
(1.13)

An immediate consequence of Eq. (1.13) is that for a given participation set Rj, the

ratio of the unconditional expected utility of becoming informed in asset i (information-

participation set I∗j ) to being uninformed in asset i (information-participation set Ij)

is

EUI∗j
EUIj

=

√
σ2
ũi

σ2
ṽi|P̃i

exp

(
c̃i
τ

)
(1.14)
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The lower uncertainty associated with the acquisition of fundamental information

(σũi/σṽi|P̃i) is offset by the utility lost due to the cost spent on information (exp (c̃i/τ)).

Assuming optimal demands by traders given information and participation sets and

market clearing, I can derive a closed form solution for the ratio of expected utilities

provided by Eq. (1.14). This result is summarized in the following Lemma.

Lemma I.2 (Utility Change due to Information Acquisition). Given the equilibrium

price function and conditions specified in Lemma I.1, for trader j participating in

synthetic asset i (i ∈ rj), the ratio of the expected utility of being informed about i

(I∗ji = {P̃i, θ̃i}) to being uninformed (Iji = {P̃i}) is monotone and increasing in λ̃i for

a fixed γ̃i.

The ratio referred to in Lemma I.2 is given by the following formula:

EUI∗j
EUIj

= exp

(
c̃i
τ

)√
σ2
ũi

σ2
ṽi|P̃i

= exp

(
c̃i
τ

)√√√√ τ 2(1− γ̃i)2λ̃2
iσ

2
θ̃i

+ σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
iσ

2
θ̃i

+ σ2
θ̃i
σ2
ũi
σ2
x̃i

+ σ4
ũi
σ2
x̃i

≡ fi(γ̃i, λ̃i)

(1.15)

The result immediately follows from properties of conditional normal distributions (see

Eq. (A.2)) and is consistent with GS80.19 The orthogonality of assets allows me to

consider the utility ratio on an asset-by-asset basis, which implies that Eq. (1.15) holds

for all synthetic assets i.

Lemma I.2 highlights the strategic substitutability in information acquisition. The

more traders acquire information in a particular asset, the lower are the relative gains

to information acquisition. I can therefore classify the equilibrium in information ac-

19Although, as noted by Veldkamp (2011), GS80 do not explicitly derive the closed form solution
for the ratio of utilities.
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quisition. If there are no informed traders, when gains to information are greatest, and

it is still not beneficial to acquire information, no one becomes informed. If everyone is

informed, and it is still worthwhile to acquire information, everyone remains informed.

Finally, if information acquisition is attractive but not for all participating traders, then

the fraction of informed traders grows exactly to the point at which the expected utility

to becoming informed is equal to the expected utility of remaining uninformed. I call

an equilibrium with endogenous information acquisition an information equilibrium.

The information equilibrium will be characterized by the fraction of traders optimally

acquiring information in every asset, the exogenously determined participants in every

asset, and a price function that clears the market at traders’ optimal demands.

Proposition I.1 (Equilibrium: Endogenous Information, Exogenous Strategy). For

a fixed level of participation given by vector γ, there exists an information equilibrium

in synthetic assets in which traders optimally make information acquisition decisions

across all assets in which they participate and all conditions of Lemma I.1 are satisfied.

The equilibrium is unique due to the monotonicity of fi(γ̃i, λ̃i) in λ̃i.

The equilibrium highlighted in Proposition I.1 will be characterized by the following

conditions. For each synthetic asset i, the following pairs (γ̃i, λ̃i) and price functions

P̃i define the information equilibrium:


If fi(γ̃i, 0) ≥ 1 then P̃i(γ̃i, 0, θ̃i, x̃i) and (γ̃i, 0) is an information equilibrium

If fi(γ̃i, λ̃
∗
i ) = 1 then P̃i(γ̃i, λ̃

∗
i , θ̃i, x̃i) and (γ̃i, λ̃

∗
i ) is an information equilibrium

If fi(γ̃i, 1) ≤ 1 then P̃i(γ̃i, 1, θ̃i, x̃i) and (γ̃i, 1) is an information equilibrium

I refer to the first equilibrium as “fully-uninformed”, the second as the “interior,” and

the third as the “fully-informed” information equilibrium. Proposition I.1 directly fol-

lows from Lemma I.2. To understand the forces present in the information equilibrium,
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it is helpful to proceed as in GS80 by defining the following measures for each synthetic

asset i:

m̃i =

(
σ2
ũi

τ(1− γ̃i)λ̃i

)2σ2
x̃i

σ2
θ̃i

(1.16)

ñi =
σ2
θ̃i

σ2
ũi

(1.17)

It is simple to demonstrate that the squared correlation between the function of price

Si(P̃i) that contains all information about θ̃i and θ̃i is

ρ2
Si(P̃i),θ̃i

=
1

1 + m̃i

(1.18)

Therefore, price informativeness is inversely related to m̃i. Specifically, holding all

model parameters fixed, the total number of informed traders in asset i given by (1−

γ̃i)λ̃i determines the informativeness of the price system. Furthermore, ñi determines

the quality of the informed trader’s information because:

ρ2
θ̃i,ṽi

=
ñi

1 + ñi
(1.19)

As in GS80, utilizing Lemma I.2 for an interior equilibrium, I arrive at

m̃i =
exp

(
2c̃i
τ

)
− 1

1 + ñi − exp
(

2c̃i
τ

) (1.20)

Applying Eq. (1.18)

1− ρ2
Si(P̃i),θ̃i

=
exp

(
2c̃i
τ

)
− 1

ñi
(1.21)

Eq. (1.20) and (1.21) highlight the properties of the interior information equilibrium.
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Falling information acquisition costs, higher information quality, and lower risk aver-

sion (higher τ) all lead to a more informative price system. Any change in parameters

while keeping information acquisition cost, risk aversion, and information quality con-

stant does not change the price informativeness of the price system. In an information

equilibrium, for a fixed level of participation 1− γ̃i, changes in these parameters would

lead to a change in fraction informed λ̃i to exactly offset their effect on price informa-

tiveness.

Proposition I.1 also allows me to determine the relationship between levels of par-

ticipation and information acquisition by the participating traders. For each synthetic

asset i, given an exogenous participation level 1 − γ̃i, the following conditions specify

the amount of information acquisition that takes place among the participating traders:


If c̃i ≥ τ

2
log(1 + ñi) then λ̃∗i = 0

If τ
2

log(1 +
σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) < c̃i <
τ
2

log(1 + ñi) then λ̃∗i =
σũi

σx̃i
(1−γ̃i)τ

√
1

exp(2c̃i/τ)−1
− 1
ñi

If c̃i ≤ τ
2

log(1 +
σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) then λ̃∗i = 1

(1.22)

For sufficiently high information acquisition costs (relative to levels of risk aversion

and information quality) no trader is incentivized to acquire information regardless of

participation levels, resulting in a fully-uninformed equilibrium. In this equilibrium

price informativeness does not change in response to changing participation levels. For

a sufficiently low level of participation 1− γ̃i, even with all participating traders acquir-

ing information, it is still worthwhile to do so, resulting in a fully-informed equilibrium.

In this equilibrium, by Eq. (1.18), greater levels of participation result in more infor-

mative prices (lower mi). Finally, with a sufficiently high level of participation and

sufficiently low information costs, the expected utility of being informed is exactly
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equal to the expected utility of being uninformed, resulting in an interior equilibrium.

In this equilibrium, greater participation levels lead to less information acquisition by

participating traders, leading to a fixed number of informed traders and a constant

price informativeness.

1.4.4 Endogenous Information and Participation

By Proposition I.1, for every level of participation there is an information equilib-

rium. We now have to solve for the optimal participation decision, which in tandem

with an information equilibrium will be referred to as the “overall equilibrium.” A

trader’s decision to participate in a particular asset is driven by the tradeoff between

the expected utility gains to adding another risky asset i to their portfolio and the util-

ity losses associated with the participation cost. Since the asset is in an information

equilibrium, a trader will also take into consideration optimal information acquisition:

to the extent that it is beneficial to acquire information (i.e. in a fully-informed equi-

librium), the trader will do so. I utilize Eq. (1.13) to evaluate the ratio of the uncondi-

tional expected utility of a trader participating in asset i (information-participation set

I∗j , fundamental information set F ∗j ) to the expected utility of a trader not participating

in asset i (information-participation set Ij):

EUI∗j
EUIj

=

√√√√ σ2
ṽi|I∗ji

σ2
ṽi−P̃i

exp

(
1F ∗ji

c̃i

τ
+
k̃i
τ
− E[ṽi − P̃i]2

2σ2
ṽi−P̃i

)
(1.23)

Since all traders participate in the index asset for free, the participation decision

only affects the stock picking strategies (i > 1). Optimal information acquisition is

provided by conditions specified in Eq. (1.22). Furthermore, because the stock picking

strategies are in zero expected supply, the unconditional risk-premium for each stock

26



picking strategy is zero (see Appendix A.2). Taken together, I can rewrite the ratio of

expected utilities of participating and not-participating in stock picking strategy i > 1

as:

If c̃i ≥ τ
2

log(1 + ñi) then
EUI∗

j

EUIj
=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

)
If τ

2
log(1 +

σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) < c̃i <
τ
2

log(1 + ñi) then
EUI∗

j

EUIj
=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

)
If c̃i ≤ τ

2
log(1 +

σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) then
EUI∗

j

EUIj
=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

+
c̃i
τ

)
(1.24)

I summarize Eq. (1.24) in the following Lemma.

Lemma I.3 (Utility Change Due to Participation). Suppose participation 1 − γ̃i is

fixed for each synthetic asset i and consider the resulting information equilibrium as

specified by Proposition I.1. In this equilibrium the ratio of the unconditional expected

utility of a trader j participating in asset i (information-participation set I∗j ) to not

participating in asset i (information-participation set Ij) is as follows:

1. In a fully-uninformed or interior information equilibrium:

EUI∗j
EUIj

=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

)
≡ gi(γ̃i, λ̃i)

2. In a fully-informed equilibrium

EUI∗j
EUIj

=

√
σ2
ũi

σ2
ṽi−P̃i

exp

(
c̃i
τ

+
k̃i
τ

)
≡ gi(γ̃i, λ̃i)

The utility lost due to participation and, potentially, information costs (exponential

term) is offset by the diversification benefits of adding another asset to the portfolio
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(ratio of conditional and unconditional standard deviations). I can now formulate the

equilibrium in information and participation.

Proposition I.2 (Equilibrium: Endogenous Information and Participation). There

exists an overall equilibrium in synthetic assets in which for every asset i traders opti-

mally make information and participation decisions resulting in 1−γ̃∗i traders optimally

participating and, conditional on levels of participation, λ̃∗i of the participating traders

optimally acquiring information as specified by the conditions of Eq. (1.22). The ratio

of the utility change due to participation is monotone and decreasing in γ̃i ensuring the

uniqueness of an overall equilibrium within the class of linear price functions.

Proposition I.2 highlights the strategic substitutability in participation. In an infor-

mation equilibrium, the value of participating in stock picking decreases with partici-

pation. The more traders choose to participate in the stock picking strategies, the less

valuable it is to participate. Conversely, the fewer traders invest in the stock picking

strategies, the more valuable it is to be active in them. If even with all traders par-

ticipating in synthetic asset i the gains to participation outweigh the costs, all traders

will participate in equilibrium: γ̃∗i = 0. These results stems from the intuition that

optimally informed and uninformed traders benefit at the expense of noise traders. The

amount of trading by the noise traders is exogenous and results in a fixed profit pool

for the participating active traders. To the extent that there are more informed and

uninformed traders in a particular asset, the profit pool on a per-trader basis shrinks

resulting in the diminishing attractiveness of participating in the asset to begin with.

An immediate consequence of the proof of Proposition I.2, are closed-form solutions

for equilibrium participation levels as outlined in Corollary I.3.

Corollary I.3 (Closed-Form Solutions for Equilibrium Participation Levels). The

closed-form solution for the equilibrium participation level in any synthetic asset i > 1,
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in which all conditions of Proposition I.2 are satisfied, is as follows:



If 1
exp (2c̃i/τ)−1 ≤

1
ñi

then γ̃i = max

{
0, 1− σx̃iσũi

τ

√
ñi+1

exp(2k̃i/τ)−1

}
If 1

exp (2c̃i/τ)−1 −
1

exp (2(k̃i+c̃i)/τ)−1
< 1

ñi
< 1

exp (2c̃i/τ)−1 then γ̃i =

max

{
0, 1− σx̃iσũi

τ

√
exp(2c̃i/τ)−1

ñi

(
exp (c̃i/τ)√

exp (2k̃i/τ)−1
−
√
ñi + 1− exp(2c̃i/τ)

)}
If 1

exp (2c̃i/τ)−1 −
1

exp (2(k̃i+c̃i)/τ)−1
≥ 1

ñi
then γ̃i = max

{
0, 1− σx̃iσũi

τ

√
1

exp(2(k̃i+c̃i)/τ)−1

}
(1.25)

For a fixed level of risk aversion and information quality, participation levels are

determined by the relative magnitude of information and participation costs for the

stock picking strategies. All else equal, falling information acquisition costs move the

information equilibrium from fully-uninformed (first case), to an interior (second case),

to a fully-informed (third case) equilibrium. Similarly, a rising participation cost moves

the equilibrium from interior to a fully-informed equilibrium. When the equilibrium

participation value is in the interior, I can utilize Eq. (1.21) and (A.18) to rewrite γ̃∗i

as

γ̃∗i = 1−
σx̃i
√

1− ρ2
Si(P̃i),θ̃i

τ
√

exp (2k̃i/τ)− 1

(
σṽi|P̃i −

√
σ2
ṽi
− σ2

ṽi|P̃i

√
exp (2k̃i/τ)− 1

)
(1.26)

Since, ρSi(P̃i),θ̃i and σṽi|P̃i both determine price informativeness, in an interior equi-

librium participation is jointly determined with price informativeness, risk aversion,

participation costs, and noise trading variability. All else equal, in an interior equilib-

rium, higher price informativeness correlates with lower participation and vice-versa.

Note that in the case of no informed traders, ρ2
Si(P̃i),θ̃i

= 0, σ2
ṽi

= σ2
ṽi|P̃i

, and Eq. (1.26)

simplifies to the solution for the fully-uninformed equilibrium.

The emergence of uninformed stock picking in the uninformed and interior infor-
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mation equilibria with endogenous participation occurs due to the mean-variance in-

efficiency of the index asset for an uninformed investor. In models of noisy rational

expectations, the expected market portfolio may not be the optimal portfolio for an

uninformed investor due to the noise in security-level supply (e.g. Admati (1985), Bi-

ais et al. (2010), Garleanu and Pedersen (2020)). There is value in deviating from the

passive index as such deviation gives investors access to the noise trading demands

in the underlying securities, even if the deviation is based only on market prices.20

Uninformed stock pickers are able to more accurately infer the supply of individual

securities and benefit from providing liquidity to the security-level noise traders.

1.4.5 Participation Levels and Passive Share

In defining passive share, I take the view that passive investors:

1. Optimally free-ride on the information acquisition efforts of active investors in

the market index, i.e. invest in the index asset without information acquisition.

2. Forgo stock picking, i.e. do not participate in the stock picking strategies.

The conditions above map naturally to the framework at hand. Within my model

there are up to 2×3N−1 possible participation and information strategies corresponding

to information acquisition in the index asset (2 possibilities total) and participation

and information acquisition in the stock picking strategies (3 possibilities per asset

across N − 1 assets). Portfolio allocations are defined probabilistically and map to

the fractions (equivalently, numbers) of traders allocating to each portfolio. Since the

allocations across synthetic assets are independent by construction, the fraction of

traders pursuing both conditions 1 and 2 is the fraction of traders pursuing condition 1

20Pedersen (2018) provides various examples for why a passive fund may be at a disadvantage
relative to an active fund when maintaining a value-weighted index. Examples include share buybacks,
secondary offerings, index additions and deletions during which passive investors will trade at less
favorable prices than active investors.
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times the fraction of traders pursuing condition 2. Passive share Γ within the structure

of the model equals to the number of traders uninformed in the market index and not

participating in any stock picking strategy:

Γ(c̃, k̃) =
(
1− λ̃1(c̃1)

)︸ ︷︷ ︸
Fraction uninformed in the index asset

×
N∏
i=2

γ̃i(k̃i, c̃i)︸ ︷︷ ︸
Fraction not participating in stock picking strategies

(1.27)

The former term specifies the fraction (i.e. number) of uninformed traders in the

market index (in which all traders participate) and is defined by Eq. (1.22), which can

be rewritten as:
If c̃1 ≥ τ

2
log(1 + n1) then λ̃1 = 0

If f1(0, λ̃1) = 1 then λ̃1 =
σũ1σx̃1

τ

√
1

exp(2c̃1/τ)−1
− 1

n1

If c̃1 ≤ τ
2

log(1 +
σ2
ũ1
σ2
x̃1

τ2n1+σ2
ũ1
σ2
x̃1

n1) then λ̃1 = 1

(1.28)

The latter term specifies the fraction (i.e. number) of traders not participating in the

stock picking strategies as provided by Eq. (1.25):



If 1
exp (2c̃i/τ)−1 ≤

1
ñi

then γ̃i = max

{
0, 1− σx̃iσũi

τ

√
ñi+1

exp(2k̃i/τ)−1

}
If 1

exp (2c̃i/τ)−1 −
1

exp (2(k̃i+c̃i)/τ)−1
< 1

ñi
< 1

exp (2c̃i/τ)−1 then γ̃i =

max

{
0, 1− σx̃iσũi

τ

√
exp(2c̃i/τ)−1

ñi

(
exp (c̃i/τ)√

exp (2k̃i/τ)−1
−
√
ñi + 1− exp(2c̃i/τ)

)}
If 1

exp (2c̃i/τ)−1 −
1

exp (2(k̃i+c̃i)/τ)−1
≥ 1

ñi
then γ̃i = max

{
0, 1− σx̃iσũi

τ

√
1

exp(2(k̃i+c̃i)/τ)−1

}
(1.29)

I can now identify the effects of information and participation costs on passive share.
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1.5 Comparative Statics

I investigate the effects of information acquisition costs and participation costs on

the equilibrium level of passive investing as given by Eq. (1.27), (1.28), and (1.29) and

price informativeness. Price informativeness is defined as the inverse payoff variance

conditional on prices. As demonstrated in Appendix A.3, conditional variances are

provided by:



Fully-uninformed equilibrium: σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi

Interior equilibrium: σ2
ṽi|P̃i

= exp

(
2c̃i
τ

)
σ2
ũi

Fully-informed equilibrium: σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1+
σ4
ũi
σ2
x̃i

τ2σ2
θ̃i

(1−γ̃i)2

(1.30)

1.5.1 Information Acquisition Costs and Passive Share

The primary goal of this paper is to identify the relationship between the costs of

acquiring fundamental information and passive investing. According to my definition,

a passive trader must: 1) free-ride on the information acquisition of others in the index

asset and 2) not participate in stock picking. The traditional setting of GS80, sheds

light on the first requirement. To the extent that passive investors are information

free-riders in the index, greater information acquisition costs lead to more uninformed

traders, which leads to a greater passive share and lower price informativeness.

However, GS80 are silent on the effects of information costs on participation in the

trading of a risky asset. What differentiates my work from GS80 is the incorporation

of a participation cost into the costly information framework.21 In GS80 participation

is free, therefore all traders invest in the asset. However, in reality, participating in

21Peress (2005) also does this, however, his model contains a single risky asset and is designed to
explore aggregate stock market participation. As in GS80, within his framework, greater information
costs would also lead to more passive investing due to the single-asset nature of the model.
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stock picking is a costly endeavor relative to indexing. Stock-picking funds usually

have higher turnover, incur greater trading commissions, and participate in stocks

which may have a greater market impact relative to an index asset. Therefore, it

seems reasonable to assume that in addition to potentially incurring a cost to acquire

fundamental information, traders must incur non-zero participation costs to invest in

the stock picking strategies.

I apply this reasoning to the stock picking strategies and assume that stock picking

requires some trading cost over-and-above a simple indexing strategy. In this setting,

falling information costs for stock picking affect the attractiveness of participating in

stock picking unconditionally due to two forces. On one hand, as information becomes

cheaper, more participating traders become informed and prices become more informa-

tive. On the other hand, precisely due to the fact that more participating traders be-

come informed and prices are more informative, participating in stock picking becomes

less attractive for all participating traders. Lemma I.4, demonstrated in Appendix A.5,

highlights the relationship between gains to participation and information costs under

the assumption of fixed participation.

Lemma I.4 (Effect of Information Costs on Unconditional Expected Utility). For any

stock picking strategy i (i > 1) and a fixed level of non-participation γ̃i < 1, changes

to information cost c̃i have the following effect on the unconditional expected utility of

a participating trader j (information-participation set I∗j ) across the three information

equilibria:

1. Fully-uninformed:
EUI∗

j

∂c̃i
= 0

2. Interior:
EUI∗

j

∂c̃i
> 0

3. Fully-informed:
EUI∗

j

∂c̃i
< 0
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As information costs fall, some previously uninformed active traders become in-

formed (as in GS80), while others optimally choose to not participate in the trading of

the asset. The net effect of these two forces is to equate the expected utility gains to

participation in stock picking and the utility losses to participation costs. Price infor-

mativeness continues to improve since the total number of informed traders continues

to grow with lower information costs.

Below a certain level of information acquisition costs for the stock picking strategies,

all participating traders become informed as specified by the final condition of Eq.

(1.25). Beyond this point, a further decline in information costs accrues directly to

the participating traders without affecting price informativeness, since the number

of informed traders remains the same. At this point, participating in stock picking

becomes attractive yet again, and some of the traders on the sidelines rotate back

into the stock picking strategy by paying both the participation and the information

acquisition cost. The number of investors switching back is exactly such that the

expected utility gain to participation is offset by the utility losses due to the costs spent.

Price informativeness continues to improve with lower costs until full participation in

the stock picking strategy is achieved.

The discussion above assumes an interior or fully-informed equilibrium in which

information costs affect trading decisions. In the corner solutions, with full partici-

pation, falling information costs have no impact on price informativeness because the

total number of informed traders does not change in these regions. Proposition I.4 sum-

marizes the effects of information acquisition costs on passive share and the resulting

price informativeness.

Proposition I.4 (Effect of Information Costs on Passive Share and Price Informa-

tiveness). Equilibrium passive share Γ(c̃, k̃) defined by Eq. (1.27) has the following

relationship with information costs across the three information equilibria for the index
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and stock picking strategies (i > 1) respectively:

1. Fully-uninformed: ∂Γ(c̃,k̃)
∂c̃1

= 0,∂Γ(c̃,k̃)
∂c̃i

= 0

2. Interior: ∂Γ(c̃,k̃)
∂c̃1

> 0,∂Γ(c̃,k̃)
∂c̃i

≤ 0

3. Fully-informed: ∂Γ(c̃,k̃)
∂c̃1

= 0,∂Γ(c̃,k̃)
∂c̃i

≥ 0

Concurrently, price informativeness changes as follows:

1. Fully-uninformed:
∂σ−2

ṽ1|P̃1
∂c̃1

= 0,
σ−2

ṽi|P̃i
∂c̃i

= 0

2. Interior:
∂σ−2

ṽ1|P̃1
∂c̃1

< 0,
∂σ−2

ṽi|P̃i
∂c̃i

≤ 0

3. Fully-informed:
∂σ−2

ṽ1|P̃1
∂c̃1

= 0,
∂σ−2

ṽi|P̃i
∂c̃i

≤ 0

The results of Proposition I.4 with regards to passive share follow directly from the

definition of passive share (Eq. (1.27)), the closed form solution for the uninformed

fraction in the index asset (Eq. (1.28)), and the closed form solution for the stock

picking participation levels (Eq. (1.29)). The results relating to price informativeness

follow from the equilibrium passive share and Eq. (1.30).

1.5.2 Participation Costs and Passive Share

Participation costs for stock picking have no effect on the market index, which is

free to trade. Therefore, their effect on passive share only comes through participation

levels in the stock picking strategies. The higher the cost to participate in stock

picking (equivalently the lower the cost to index), the fewer traders participate in

the stock picking strategies. This, in turn, increases passive share as more traders

optimally forgo participation in the stock picking strategies. Price informativeness is

only impacted for sufficiently high participation costs, as dictated by the third condition

of Eq. (1.27), for which the stock picking strategy is in a fully-informed equilibrium.
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Beyond this cost level, greater participation costs lead to lower participation and fewer

informed traders, resulting in deteriorating price informativeness by Eq. (1.30). I

summarize the relationship between participation costs and passive investing in the

following Proposition.

Proposition I.5 (Effect of Participation Costs on Passive Share and Price Infor-

mativeness). Equilibrium passive share Γ(c̃, k̃) defined by Eq. (1.27) has the following

relationship with participation costs across the three information equilibria for the stock

picking strategies (i > 1) respectively:

1. Fully-uninformed: ∂Γ(c̃,k̃)

∂k̃i
≥ 0

2. Interior: ∂Γ(c̃,k̃)

∂k̃i
≥ 0

3. Fully-informed: ∂Γ(c̃,k̃)

∂k̃i
≥ 0

Concurrently, price informativeness changes as follows:

1. Fully-uninformed:
∂σ−2

ṽ1|P̃1
∂k̃i

= 0

2. Interior:
∂σ−2

ṽ1|P̃1
∂k̃i

= 0

3. Fully-informed:
∂σ−2

ṽ1|P̃1
∂k̃i

≤ 0

Proposition I.5 follows directly from Eq. (1.27), (1.29), and (1.30).

1.5.3 Asset Pricing Implications of Information and Participation Costs

So far I have discussed the effect that information and participation costs have on

equilibrium portfolio allocations and price informativeness. I now explore the effects

of changes to these costs on observable return characteristics: market risk and risk

premium and individual security expected returns, variances, and covariances.
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1.5.3.1 Asset Pricing Implications to the Synthetic Assets

As demonstrated in Appendix A.2, the unconditional expected returns for the syn-

thetic assets are given by

E[ṽi − P̃i] = X̃i

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)−1

(1.31)

Expected returns are determined by the aggregate expected supply of the risky asset

(X̃i) and the inverse of the weighted average precision of the informed and uninformed

participating traders. An immediate consequence is that all stock picking strategies

have a risk premium of zero since they are in net zero expected supply. For the market

index, index information acquisition costs will affect the risk premium as follows:

Lemma I.5 (Effect of Information Costs on Expected Returns). Changes to infor-

mation costs across the three information equilibria for the index and stock picking

strategies (i > 1) respectively have the following effect on expected returns:

1. Fully-uninformed: ∂E[ṽ1−P̃1]
∂c̃1

= 0, ∂E[ṽi−P̃i]
∂c̃i

= 0

2. Interior: ∂E[ṽ1−P̃1]
∂c̃1

> 0, ∂E[ṽi−P̃i]
∂c̃i

= 0

3. Fully-informed: ∂E[ṽ1−P̃1]
∂c̃1

= 0, ∂E[ṽi−P̃i]
∂c̃i

= 0

Lemma I.5 is demonstrated in Appendix A.6. In an interior equilibrium, greater

information costs lead to a noisier price system resulting in higher expected returns.

Lemma I.6, demonstrates the effect of information and participation costs on uncondi-

tional return variances:

Lemma I.6 (Effect of Information and Participation Costs on Return Variances).

Changes to information costs and participation costs across the three information equi-

libria for the index and stock picking strategies (i > 1) respectively have the following

effect on return volatility:
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1. Fully-uninformed: ∂Var(ṽ1−P̃1)
∂c̃1

= 0, ∂Var(ṽi−P̃i)
∂c̃i

= 0, ∂Var(ṽi−P̃i)
∂k̃i

≥ 0

2. Interior: ∂Var(ṽ1−P̃1)
∂c̃1

> 0, ∂Var(ṽi−P̃i)
∂c̃i

> 0, ∂Var(ṽi−P̃i)
∂k̃i

> 0

3. Fully-informed: ∂Var(ṽ1−P̃1)
∂c̃1

= 0, ∂Var(ṽi−P̃i)
∂c̃i

> 0, ∂Var(ṽi−P̃i)
∂k̃i

≥ 0

Lemma I.6 is demonstrated in Appendix A.6. Greater information and participa-

tion costs generally lead to a noisier price system, resulting in greater unconditional

variances of returns. Armed with the properties of the expected returns and variances

of the synthetic assets, I can analyze the asset pricing implications to the broad market

and the underlying securities.

1.5.3.2 Asset Pricing Implications to the Original Assets

It is important to explore the implications of changing information and participation

costs on the return properties of the original assets. I reconstruct the original assets

using portfolios of the synthetic assets and derive the comparative statics in Appendix

A.8.

1.5.4 An Illustration

I now illustrate the equilibrium properties of my model through a simple numerical

example. There are two risky assets in the market, resulting in two synthetic assets:

the market index and a stock picking strategy. There are up to two possible investment

strategies in the index (participating informed or participating uninformed) and three

possible investment strategies in the stock picking strategy (not participating, partic-

ipating informed, participating uninformed), resulting in a maximum of 2 × 31 = 6

potential information and participation strategies, one of which is purely passive and

the others are active. The five active strategies can be categorized based on their

participation and information acquisition in stock picking. Figure 2.1 demonstrates
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the equilibrium fraction of traders pursuing the various investment strategies and the

implications to price informativeness for changing information and participation costs,

while Figure 1.2 highlights the implications to cross-sectional and aggregate returns.

Passive share is in blue and is defined as the fraction of traders optimally allocating to

the index portfolio without acquiring information and optimally not participating in

the stock picking strategy.

Figure 2.1a demonstrates the effect of a falling stock picking information acquisition

cost on equilibrium strategy participation. For sufficiently high information costs, no

information acquisition takes place. However, because the benefit of participation in

stock picking outweighs its cost, all traders participate in stock picking resulting in no

passive share and active portfolios that include uninformed stock picking, highlighted

by the orange. As mentioned earlier, this is due to the benefits to deviating from the

passive index, even if the deviation is based solely on market prices: there are gains

to providing liquidity to the noise traders in the stock-picking assets. As information

costs continue to fall they reach a certain threshold at which information acquisition

begins to take place for some stock picking participants: at first we see the emergence

of active portfolios that contain informed stock picking in yellow. In the initial stage

the participation constraint is slack; therefore all traders continue to participate in

stock picking, some informed, some not. At a certain level of information costs (just

below 2.5 on the graph), prices have gotten so informative that it no longer makes

sense for all traders to participate, leading some to exit stock picking just to the point

where the participation constraint binds for the rest. This leads to the emergence of

both a pure market timing portfolio (in purple) and a passive portfolio (in blue). As

information costs fall further, the share of both continues to grow. At a certain point,

information costs have fallen so low, that the entire stock picking sector is informed.

At this point further decreases to information costs directly accrue to the participating
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traders since they no longer alter the informativeness of the price system. Here, some

traders are once again incentivized to switch back from both pure market timing and

passive to stock picking leading to the inverted U-shaped curve for passive share.

Figure 2.1b demonstrates the price informativeness of the stock picking strategy

with falling information costs. Initially, price informativeness stays constant since

there is no information acquisition in the asset. Once information acquisition begins,

price informativeness begins to grow. As the peak passive share is reached and all

stock pickers are informed, price informativeness grows at a lower pace because the

non-participating traders are the ones switching to participation and acquiring in-

formation. Since they have to overcome both the participation cost hurdle and the

information acquisition cost hurdle, they do not switch to information acquisition as

quickly as originally participating uninformed traders. Price informativeness for the

original assets follows a similar path.

As shown in Figure 1.2a, the index risk and return dynamics are not affected by

stock picking information costs. However, greater stock picking information costs lead

to a noisier price system in the relative values of securities, which results in increasing

variances for the returns of the underlying assets and more negative covariances, as

demonstrated in Figure 1.2b.

Figures 2.1c and 2.1d show the equilibrium strategy participation and price informa-

tiveness in the presence of rising information costs for the index asset. As information

costs increase, more and more traders switch from acquiring information to free-riding

on the acquisition efforts of others resulting in deteriorating price informativeness and

a growing passive share. For sufficiently high levels of index information costs, no one

is informed about the market aggregate and changes to costs have no further impact

on passive share and price informativeness.

Lower information acquisition in the market index leads to a noisier price system,
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which directly impacts the market risk premium and variance, shown in Figure 1.2c.

This, in turn, directly affects the underlying assets, which are all implicitly long the

overall market, resulting in both greater expected returns, greater volatility, and greater

covariance.

Figures 2.1e and 2.1f show the equilibrium strategy participation in the presence

of a rising stock picking participation cost. For sufficiently low participation costs, the

relative benefit of participation outweighs its cost resulting in no passive share since ev-

eryone participates in stock picking. In this region price informativeness for neither the

stock picking strategy nor the index asset is affected. Beyond a certain participation

cost threshold, some traders begin to optimally forgo participation in stock picking,

leading to fewer participating traders, resulting in greater benefits to information ac-

quisition for those who remain. As some uninformed participants acquire information,

price informativeness remains constant despite the growing share of passive capital.

Beyond a certain point, all participants become informed, and further increases to par-

ticipation costs lead to deteriorating price informativeness as the aggregate share of

informed capital starts to shrink.

Participation constraints only affect the stock picking strategy, and thereby have no

impact on market risk and return dynamics as demonstrated in Figure 1.2e. Decreasing

participation increases the noise in the price system for the stock picking strategy,

thereby increasing its return variance. This, in turn, has the effect of (in this example,

very slightly) increasing the return variance of both underlying securities and lowering

their covariance, shown in Figure 1.2f.

1.6 Empirical Analysis

The primary insight from the theory presented is that falling fundamental infor-

mation costs have a dual effect on passive share. On one hand, they increase the
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prevalence of market timing strategies, which reduces passive share. On the other

hand, they decrease stock picking participation, which increases passive share. If the

stock picking force dominates the market timing force, passive share increases and price

informativeness rises due to falling information costs. I provide suggestive evidence for

the existence of this channel in the data.

Although the model is static in nature and does not explicitly incorporate the ac-

tive vs. passive investment management sectors, its underlying logic would suggest the

following institutional mechanism. As information costs fall for individual firms, more

active investors acquire information about their fundamentals. This greater informa-

tion acquisition results in prices that are more reflective of future fundamentals, which

in turn leads to lower gains to being an active investor. As investors internalize the

lower expected performance, some choose to take money out of active funds, result-

ing in capital outflows from active investment strategies. Finally, some investors will

choose to reallocate their funds to passive investment strategies.

Guided by this logic, I identify a quasi-exogenous negative information cost shock

and conduct the following tests. First, I explore the performance of active funds around

the time of the shock, and exploit its staggered design for causal inference of the effect

of information costs on active performance. Second, I analyze the flows out of active

funds around the time of the regulation. Third, I examine the flows into passive funds

around the same time frame.

1.6.1 The Setting and Test Design

One of the primary goals of the SEC is to “promote efficient and transparent capital

markets” while embracing technological advancement (SEC (2009)). Historically, the

Commission has pursued this through various regulations, most notably through the

implementation of EDGAR in 1993, which required public firms to submit their public
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filings electronically. The focus of this paper is a more recent regulation aimed at

making financial information more useful to investors.

In January of 2009 the SEC announced the adoption of Rule S7-11-08: “Interactive

Data to Improve Financial Reporting.” The mandate requires firms to supplement

their regular financial filings made through EDGAR with financial statements provided

in an interactive format utilizing the eXtensible Business Reporting Language. The

benefits of this regulation are twofold. First, investors can now directly download

financial information into spreadsheets or analyze it with a variety of commercial off-

the-shelf software. Second, XBRL relies on a standard taxonomy (i.e. a set of tags

for different financial items) developed in accordance with U.S. generally accepted

accounting principles (US GAAP) and reviewed by the Financial Accounting Standards

Board (FASB) and the Commission. This facilitates the interpretation of financial

information, makes it more comparable across firms, and simplifies the automation of

financial analysis. To the extent that investors were previously paying third-party data

providers for the services of information extraction and aggregation or were devoting

meaningful amounts of time to performing these tasks themselves, the regulation at

least partially alleviates these burdens. Therefore, I interpret the XBRL mandate as a

negative shock to information costs.

To identify the causal effect of lower information costs on passive investing, I rely

on the phase-in design of the XBRL mandate. Companies had to comply with the

regulation according to the following timeline:

• Phase 1: Filers with public equity float > $5bn: for 10-Q/K with financial state-

ments for fiscal periods ending on or after June 15, 2009

• Phase 2: Filers with public equity float between $700mm and $5bn: for 10-Q/K

with financial statements for fiscal periods ending on or after June 15, 2010
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• Phase 3: All remaining filers: for 10-Q/K with financial statements for fiscal

periods ending on or after June 15, 2011

In my primary tests, I exploit cross-sectional heterogeneity in passive and active fund-

level exposure to the XBRL mandate. Specifically, I take the universe of active and

passive domestic equity funds and estimate the fraction of their total net assets allo-

cated to companies affected by phase 1, 2, and 3 of the regulation as of the second

calendar quarter of 2009. I limit my analysis to funds that were either predominantly

invested in phase 1 securities (group 1) or those that were primarily invested in phase

2 and 3 securities (group 2). To test the active fund performance effect of lower in-

formation costs, I conduct an event study in which I track the relative performance of

group 1 and group 2 active funds. Similarly, I perform event studies on the flows out

of group 1 and group 2 active funds, and flows into group 1 and group 2 passive funds.

1.6.2 Data

I rely on EDGAR index files to come up with a sample of XBRL adopters through

time. In particular, I utilize the “full index” data, which contain the list of all companies

submitting XBRL filings by quarter, including company CIK, filing type, and filing

date.22 This allows me to track companies’ adoption of XBRL through time and I

classify adopting companies into phase 1, phase 2, or phase 3 based on the dates

of their initial XBRL filings and the number of XBRL filings made subsequently. I

exclude companies that participated in the voluntary program prior to the ruling. My

final sample contains 448 phase 1 firms, 996 phase 2 firms, and 3,353 phase 3 firms

with the public equity data required for the analysis presented here.23,24

22See https://www.sec.gov/edgar/searchedgar/accessing-edgar-data.htm for more informa-
tion.

23The SEC estimated approximately 500 filers to fall into the phase 1 group, however, this number
also includes foreign issuers and voluntary adopters.

24I thank Ekaterina Volkova (University of Melbourne) for sharing her CIK-CUSIP mapping based
on 13D and 13G filings. The mapping served as a helpful complement to the CIK-CUSIP mapping

44

https://www.sec.gov/edgar/searchedgar/accessing-edgar-data.htm


I utilize the Center for Research in Security Prices Mutual Fund Database (CRSP

MFDB) to construct my active and passive mutual fund samples.25 I limit the analysis

to broad market domestic equity funds and include both index and exchange traded

funds as passive funds in the main specifications.26 I only include those active and

passive funds whose data fully overlaps with the three year phase-in of the XBRL

mandate. I include summary statistics for both the fund-level and fund share-class

level samples for active funds (Tables 1.1-1.4 and 1.5-1.7 respectively) and the fund

share-class level sample for passive funds (Tables 1.8-1.9).

I utilize the CRSP MFDB fund-level holdings data to estimate XBRL exposure.27

Specifically, I use a fund’s holdings data closest to the beginning of phase 1 in June of

2009, which is typically the holdings disclosure for calendar 2Q2009. I then estimate

the exposure of fund i to phase j of XBRL as

exposurei,j =

∑N
k=1 1{security k ∈ phase j} × $holdingsi,≈6/2009,k

TNAi,≈6/2009

(1.32)

where j = 1, 2, 3 specifies the phase of XBRL to which a security k may potentially

belong, security k = 1, . . . , N indexes the securities in which fund i is invested and

TNAi,≈6/2009 are the total net assets for fund i in the month closest to June of 2009. I

classify funds into groups (specified by the variable “TRT”) based on their estimated

exposures to the various phases of XBRL:

provided by Compustat through WRDS.
25I gratefully acknowledge Doshi et al. (2015) for making their code publicly available, which was

extremely helpful in getting up to speed on using the CRSP MFDB and TR S12 databases.
26I include active funds with the following CRSP objective codes: EDCL, EDCM, EDCS, EDCI,

EDYG, EDYB, EDYI. Passive funds are those with the same objective codes that were also identified
as index funds (INDEX FUND FLAG = D) or exchange traded funds (ET FLAG = F ). I go
through the passive funds by hand and take out misclassified active funds.

27I also run the analysis using the Thomson Reuters (TR) s12 database with similar results, however
I rely on CRSP as my main source since, as pointed out by Zhu (2020), between 2008-2015 58% of
new US equity mutual fund classes from CRSP cannot be matched to the TR s12 database and index
funds are more likely to be missing in TR.
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- Group 1 (TRTi = 1): exposurei,1 ≥ 0.75

- Group 2 (TRTi = 0): exposurei,2 + exposurei,3 ≥ 0.75

- Group 3 (TRTi = 2): all other funds with exposurei,1+exposurei,2+exposurei,3 ≥

0.75

Group 1 (or phase 1) funds are those with oversized exposure to phase 1 of the XBRL

mandate. Group 2 (or phase 2-3) funds have oversized exposure to phases 2 and 3

of XBRL. Finally, group 3 (or phase 1-2-3) funds have exposure spread out over the

three phases. By construction, I limit the analysis to funds with at least 75% of

TNA allocated to XBRL-exposed securities. Tables 1.3,1.7, and 1.10 demonstrate the

exposure of active funds on a share-level and fund-level, and passive funds on a share-

level to the three phases of the XBRL mandate by group. As can be seen, group 1

and group 2 funds have minimal overlap by phase exposure, with approximately 5-8%

TNA exposure overlap between the two groups. By relying on a categorical grouping

as opposed to variation in phase exposure through time, I avoid well-documented issues

associated with security-level holdings data.

I further rely on CRSP MFDB to extract data on fund total net assets, returns,

and expenses. Fund flow for fund i in month t is estimated as common in the literature

(e.g. Sirri and Tufano (1998), Lou (2012)):

flowi,t =
TNAi,t − TNAi,t−1(1 + ri,t)−MRGi,t

TNAi,t−1

(1.33)

where TNAi,t are the total net assets of fund i in month t, ri,t are the returns of fund

i in month t, and MRGi,t are the total net assets of any funds acquired by fund i

in month t. Following Lou (2012), I use a smoothing procedure to identify merger

dates. Consistent with prior studies, fund-month level observations are required to be

a minimum of $15mm TNA, both current month and past month data must exist for
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flows to be imputable, and flows are winsorized at the 1% level from both tails. Flows

analysis is conducted on a fund share-class level basis since flows to and from different

share classes (e.g. institutional vs. retail) may vary.

Fund performance is evaluated on a 36-month rolling basis utilizing fund-level re-

turns against the Carhart (1997) four-factor model:

rei,t = αi,t + βmi,tr
m
t + βHML

i,t rHML
t + βSMB

i,t rSMB
t + βUMD

i,t rUMD
t + εi,t (1.34)

where rei,t is the net return of fund i in month t in excess of the one-month Treasury

bill rate, rmt , rHML
t , rSMB

t , rUMD
t are the market, value, size, and momentum factors

respectively.28 I require 36 months of historical data to evaluate the alphas for any given

month. Performance analysis is conducted on a fund-level basis to avoid duplicated

performance measures for different share classes.

1.6.3 Results

Guided by the proposed mechanism, I ask three questions through the lens of the

mutual fund data. First, do lower information costs lead to lower alphas for active

funds? Two, if so, are funds flowing out of the affected active strategies? Three,

are passive strategies seeing inflows as a result? As such, I conduct tests along three

dimensions: 1) active mutual fund performance, 2) active mutual fund flows, and 3)

passive fund flows. As a starting point, I examine the viability of the following event

study specification to track the difference in these measures through time by month,

before, during, and after the XBRL mandate:

yi,t = γ0 +
T∑
t=2

βt(1t × TRTi) + γ1xi,t−1 + ηt + νi (1.35)

28The data are obtained from the Fama-French Monthly Research Factors dataset available through
WRDS and sourced from Ken French’s website.
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where yi,t ∈ {αi,t, f lowi,t} is defined in Eq. (1.33) and (1.34), xi,t−1 ≡ log(TNAi,t−1)

is a measure of fund size, 1t is an indicator function for each month t, and ηt and νi

are month and fund fixed effects. The performance specification would be conducted

just for active funds, while the flow specification would be conducted for active and

passive funds separately. In all specifications I would track the difference, measured

by βt, in the outcome variable between funds primarily affected by the first phase of

the XBRL mandate (TRTi = 1) to those primarily exposed to the second and third

phases of the regulation (TRTi = 0). First, I highlight the econometric complications

that would arise within the specification above. Second, I propose a solution to these

complications.

Fund performance and fund flows may be explained by various factors such as

portfolio manager skill, fund size, fund objective, and market conditions. To isolate

the effect of information costs on performance and flows, one needs to control for these

various observable and unobservable fund-level and time characteristics. The latter

is resolved via time fixed effects ηt. One may be inclined to resolve the former via

fund fixed effects νi and lagged fund size xi,t−1. However, as pointed out by Pástor

et al. (2015), this results in a finite sample bias due to a contemporaneous correlation

between innovations in αi,t or flowi,t and innovations in assets under management.

Intuitively, greater performance or greater flows also imply growth in total net assets,

which in turn leads to a negative bias in the coefficient capturing the effect of fund size

on performance or flows.

To address the finite sample bias I apply a recursive demeaning procedure based

on Moon and Phillips (2000), applied to the fund performance vs. size relationship by

Pástor et al. (2015), and further updated by Zhu (2018). Borrowing notation from Zhu

(2018), I first construct forward-demeaned variables for performance, flows, and fund
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size:

ȳi,t = yi,t −
1

Ti − t+ 1

Ti∑
s=t

yi,s

x̄i,t−1 = xi,t−1 −
1

Ti − t+ 1

Ti∑
s=t

xi,s−1

where t spans 1 to Ti − 1 with Ti being the month of the final observation for fund

i. The forward demeaning procedure absorbs fund fixed effects, however introduces a

correlation between the lagged forward-demeaned size and the demeaned innovation in

flows or performance. To resolve the latter, I conduct a two-stage least squares analysis

whereby in the first stage I regress the forward-demeaned measure of fund size on its

current realization

x̄i,t−1 = ψ + ρxi,t−1 (1.36)

and in the second stage I conduct the event study initially introduced in Eq. (1.35)

using the fitted values from above

ȳi,t =
T∑
t=1

βt(1t × TRTi) + γx̄∗i,t−1 + ηt (1.37)

where x̄∗i,t−1 is the fitted value from the first stage regression. As pointed out by Pástor

et al. (2015), the relevance and exclusion conditions of the instrument are likely met as

xi,t−1 is embedded in the dependent variable in the first stage and xi,t−1 is unlikely to

be correlated with innovations to the forward-demeaned performance and flows. The

month fixed effects will span t = 2, . . . , T thereby imposing the zero-intercept condition

of the specification above, which is appropriate given the forward-demeaned nature

of the variables. The interaction coefficients βt will capture the monthly differential
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performance and flows to group 1 versus group 2 funds after accounting for observable

and unobservable fund-specific characteristics and aggregate time trends.

The results are highlighted in Figures 1.3-1.5. Figures 1.3a and 1.3b document the

time trends and event study results for the performance of active mutual funds. In

the pre-treatment period and during phases 1 and 2, the two groups of active funds

exhibit broadly similar performance as can be seen both through the time series plot

as well as the event study analysis. However, starting in the second half of 2011, the

performance of the two groups diverges dramatically with the funds initially affected

by XBRL seeing deteriorating performance relative to funds affected in the later stages

of the regulation. The result would suggest that lower information costs for phase 1

firms have propagated through the market, leading to greater information acquisition,

greater price informativeness, and, ultimately, declining performance by group 1 funds.

The process took about two years after the initial implementation of the regulation.

In another two years, group 1 performance begins to rebound relative to group 2

performance, suggesting that the lower information costs are now affecting group 2

firms. Finally, as the lower information costs work through the system for group 2

funds, the relative performance of groups 1 and 2 converges.

To ensure that the identified trend in performance is not an artifact of omitted

variables or fund-level aggregation issues, I focus on a closely matched sample of group

1 and group 2 funds, paired both by total net assets (group 1 funds’ TNA has to

be within 10% of group 2 funds’ TNA) and CRSP investment objective code. This

set of funds is much smaller, as highlighted in table 1.4, however the sample is tightly

matched with roughly the same fund characteristics for group 1 and group 2 funds. The

inclusion of time fixed effects and the recursive demeaning procedure introduced above

further addresses concerns regarding the causal inference. Figure 1.6 demonstrates the

results of the analysis. The trends in performance are consistent with the patterns for
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the full sample and are even more convincing. Taken together, the two sets of results

provide suggestive evidence for the negative effects of lower information costs on active

fund performance.

The next step in the mechanism are flows out of active funds due to their perfor-

mance decline. Figures 1.4a and 1.4b display both the cumulative flows out of active

funds and the results of the event study as applied to monthly flows. Although the

event study does not highlight a clear pattern in differential flows between group 1 and

group 2 funds, a visual inspection of the cumulative flows suggests that there is a lead-

lag relationship comparable to the patterns in the relative performance of the funds.

Outflows are initially greater for group 1 funds, suggestive of investors allocating out

of these funds due to their weaker performance. This is followed by greater outflows

from group 2 funds, once again in-line with their performance decline.

The final step in the mechanism would suggest that investors allocating out of active

funds would shift their freely-available capital to passive funds. Without individual-

level transaction data this step is difficult to test since capital flows cannot be traced to

individual investors. However, operating under the assumption that investors allocating

out of active and into passive would prefer a passive fund with similar characteristics

to the active fund (e.g. similar investment objective), the analysis demonstrated in

figures 1.5a and 1.5b provides some supportive evidence. Specifically, passive funds in

group 1 see greater inflows around the time of under-performance by group 1 active

funds. Furthermore, this trend is reversed as group 2 active funds under-perform group

1 active funds. Although this evidence is at most suggestive, it aligns well with the

mechanism described.

In summary, the empirical results presented provide causal evidence on the effect

of information costs on active performance. When coupled with an investigation of

flows out of active and into passive funds a picture emerges that is consistent with the
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proposed effect of falling information costs on passive investing.

1.7 Conclusion

Many critics of passive investing view capital flows to index products as uninformed

capital and worry about the implications to price efficiency and the functionality of

financial markets. To assuage these concerns, I document a novel theoretical link be-

tween two strong trends in the data, not easily reconcilable within standard models:

1) increasing passive share and 2) decreasing information costs and greater price infor-

mativeness.

In my model, traders optimize across two dimensions: information acquisition and

stock picking participation. The dual forces of strategic substitutability in information

acquisition and participation dictate the equilibrium levels of information acquisition

and passive investing. An equilibrium outcome of my framework is that for interior

information equilibria, falling fundamental information costs have the joint effect of

decreasing passive share via a greater prevalence of market timing strategies and in-

creasing passive share via greater non-participation in stock picking strategies. If the

stock picking channel dominates the market timing channel, passive share rises endoge-

nously in tandem with more informative prices. I provide suggestive empirical evidence

on the existence of this channel, utilizing the XBRL mandate as a negative shock to

information costs.

Alternative drivers for a rising passive share include falling costs to indexing and

greater costs to market timing strategies, both of which lead to decreasing price infor-

mativeness. Given the differential outcomes to market efficiency, further empirically

detangling the drivers of passive investing presents an exciting avenue for future re-

search.
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1.8 Tables and Figures

Table 1.1: Active, Fund Level: TNA by Phase Exposure ($mm)

Phase Exposure count mean p5 p25 p50 p75 p95
Phase 1 782 1,814 20 78 287 1,091 6,622
Phase 1-2-3 574 1,058 18 57 172 607 4,060
Phase 2-3 470 564 18 56 184 555 2,056
Total 1826 1,255 18 63 215 789 4,586

Analysis performed for active funds on the fund-level basis. Funds are grouped based on
XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.

Table 1.2: Active, Fund Level: Objective by Phase (count)

CRSP Objective Codes Ph. 1 Ph. 2-3 Ph. 1-2-3 Total
Domestic Equity Growth 468 25 211 704
Domestic Equity Growth Income 236 11 72 319
Domestic Equity Income 69 2 25 96
Domestic Equity Micro Cap 0 17 3 20
Domestic Equity Mid Cap 8 34 239 281
Domestic Equity Small Cap 1 381 24 406
Total 782 470 574 1826

Analysis performed for active funds on the fund-level basis. Funds are grouped based on
XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.
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Table 1.3: Active, Fund Level: Exposure by Phase (%)

Phase Exposure Ph. 1 Ph. 2 Ph. 3 Ph. 2-3 Ph. 1-2-3
Phase 1 85.5 7.3 0.3 7.6 93.1
Phase 1-2-3 51.5 36.8 4.3 41.1 92.6
Phase 2-3 4.8 60.3 27.3 87.5 92.3
Total 54.2 30.1 8.5 38.6 92.8

Analysis performed for active funds on the fund-level basis for the paired sample. Funds are
grouped based on XBRL Phase exposure estimated using available holdings data closest to
June 30, 2009.

Table 1.4: Active, Fund Level, Paired: TNA by Phase Exposure ($mm)

Phase Exposure count mean p5 p25 p50 p75 p95
Phase 1 21 713 57 106 240 865 2,943
Phase 2-3 21 696 58 106 244 902 2,744
Total 42 704 57 106 242 902 2,943

Analysis performed for active funds on the fund-level basis for the paired sample. Funds are
grouped based on XBRL Phase exposure estimated using available holdings data closest to
June 30, 2009.

Table 1.5: Active, Class Level: TNA by Phase Exposure ($mm)

Phase Exposure count mean p5 p25 p50 p75 p95
Phase 1 1616 912 17 40 137 549 3,157
Phase 1-2-3 1099 578 17 30 88 302 2,167
Phase 2-3 843 313 16 28 94 303 1,105
Total 3558 667 17 34 109 381 2,329

Analysis performed for active funds on the share class-level basis. Funds are grouped based
on XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.
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Table 1.6: Active, Class Level: Objective by Phase (count)

CRSP Objective Codes Ph. 1 Ph. 2-3 Ph. 1-2-3 Total
Domestic Equity Growth 905 40 397 1342
Domestic Equity Growth Income 530 20 126 676
Domestic Equity Income 164 3 49 216
Domestic Equity Micro Cap 0 25 3 28
Domestic Equity Mid Cap 16 65 477 558
Domestic Equity Small Cap 1 690 47 738
Total 1616 843 1099 3558

Analysis performed for active funds on the share class-level basis. Funds are grouped based
on XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.

Table 1.7: Active, Class Level: Exposure by Phase (%)

Phase Exposure Ph. 1 Ph. 2 Ph. 3 Ph. 2-3 Ph. 1-2-3
Phase 1 85.3 7.2 0.3 7.5 92.8
Phase 1-2-3 52.3 36.4 3.9 40.3 92.6
Phase 2-3 5.0 61.4 25.6 87.0 92.0
Total 56.1 29.0 7.4 36.4 92.5

Analysis performed for active funds on the share class-level basis. Funds are grouped based
on XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.

Table 1.8: Passive, Class Level: TNA by Phase Exposure ($mm)

Phase Exposure count mean p5 p25 p50 p75 p95
Phase 1 282 1,739 18 47 176 655 5,277
Phase 1-2-3 46 618 16 29 67 498 2,304
Phase 2-3 154 571 16 26 98 330 3,018
Total 482 1,258 17 37 127 587 4,154

Analysis performed for passive funds on the share class-level basis. Funds are grouped based
on XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.
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Table 1.9: Passive, Class Level: Objective by Phase (count)

CRSP Objective Codes Ph. 1 Ph. 2-3 Ph. 1-2-3 Total
Domestic Equity Growth 101 4 14 119
Domestic Equity Growth Income 18 0 1 19
Domestic Equity Income 10 0 4 14
Domestic Equity Large Cap 153 0 0 153
Domestic Equity Micro Cap 0 3 0 3
Domestic Equity Mid Cap 0 59 27 86
Domestic Equity Small Cap 0 88 0 88
Total 282 154 46 482

Analysis performed for passive funds on the share class-level basis. Funds are grouped based
on XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.

Table 1.10: Passive, Class Level: Exposure by Phase (%)

Phase Exposure Ph. 1 Ph. 2 Ph. 3 Ph. 2-3 Ph. 1-2-3
Phase 1 88.8 7.2 0.4 7.6 96.5
Phase 1-2-3 47.9 43.5 5.0 48.5 96.4
Phase 2-3 5.3 63.6 25.9 89.5 94.8
Total 58.2 28.7 9.0 37.7 95.9

Analysis performed for passive funds on the share class-level basis. Funds are grouped based
on XBRL Phase exposure estimated using available holdings data closest to June 30, 2009.

56



(a) Stock Picking Info. Cost: Participation by Strategy (b) Rising Stock Picking Info. Cost: Price Inf.

(c) Index Information Cost: Participation by Strategy (d) Rising Index Info. Cost: Price Inf.

(e) Participation Cost: Participation by Strategy (f) Rising Part. Cost: Price Inf.

Figure 1.1: Effect of Information and Participation Costs on Equilibrium Strategy
Participation and Price Informativeness.
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(a) Stock Picking Info. Cost: Market Return Effects (b) Rising Stock Picking Info. Cost: Returns

(c) Index Info. Cost: Market Return Effects (d) Rising Index Info. Cost: Returns

(e) Participation Cost: Market Return Effects (f) Rising Part. Cost: Returns

Figure 1.2: Effect of Information and Participation Costs on the Market Risk Premium
and the Cross-Section of Asset Returns.
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(a) Active fund alpha time series by group

(b) Relative performance of group 1 and 2 funds

Figure 1.3: Effect of the XBRL Mandate on Active Fund Performance.

The dotted lines signify the dates of the initial implementation of each phase of XBRL in
sequential order from left to right. Heteroskedasticity-robust standard errors are clustered
by month × investment objective.
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(a) Cumulative flows to active funds by group

(b) Monthly difference between group 1 and 2 fund flows

Figure 1.4: Effect of the XBRL Mandate on Active Fund Flows.

The dotted lines signify the dates of the initial implementation of each phase of XBRL in
sequential order from left to right. Heteroskedasticity-robust standard errors are clustered
by month × investment objective.
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(a) Cumulative flows to passive funds by group

(b) Monthly difference between group 1 and 2 fund flows

Figure 1.5: Effect of the XBRL Mandate on Passive Fund Flows.

The dotted lines signify the dates of the initial implementation of each phase of XBRL in
sequential order from left to right. Heteroskedasticity-robust standard errors are clustered
by month × investment objective.
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(a) Active fund alpha time series for paired sample

(b) Relative perf. of group 1 and 2 funds, paired sample

Figure 1.6: Active Fund Performance for a Closely-Matched Set of Funds.

The dotted lines signify the dates of the initial implementation of each phase of XBRL in
sequential order from left to right. Heteroskedasticity-robust standard errors are clustered
by month × investment objective.
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CHAPTER II

Quants, Strategic Speculation, and Financial

Market Quality

2.1 Introduction

Over the last few decades, quantitative investing has become increasingly popular

in the financial markets. More generally, quantitative investing takes many forms,

from high frequency algorithmic market-making to fundamentally-oriented quantitative

strategies. Of particular note is the rapid growth in the fundamental equity quantitative

investing trading sector. While such strategies were previously available primarily

through hedge funds to select clients, they are now gaining a wider prominence and

are being offered through traditional mutual funds and ETFs to ordinary investors

(see Abis (2020) and Beggs et al. (2019) for further evidence). Quantitative strategies

are generally based on quantitatively-disciplined trading rules, which results in both

benefits, via greater trading discipline, and pitfalls, via strategy-crowding and myopia.1

The goal of this study is to develop a theoretical framework for exploring the strategic

interaction between humans and machines in the financial markets and the implications

of greater fund automation for their quality.

1For an example of myopia, see Jason Zweig, “The Stock Got Crushed. Then the ETFs Had to
Sell.” The Wall Street Journal, 31 Jan. 2020.
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Many fundamentally-oriented quantitative investment strategies are based on back-

tests. A defining characteristic of backtested strategies is their reliance on historical

data to identify a signal which is predictive of future risk-adjusted returns. The in-

vestor then relies on the estimation to translate a real-time signal into a trading rule.

An attractive aspect of this approach is its inherent discipline: the trading rule is not

as susceptible to human emotion due to its automated nature. However, this greater

discipline comes at a cost. Precisely because the trading strategy relies on historical

data, it cannot take into account the effect that the implementation of the strategy

will have on other market participants. For example, if other fundamental investors

know that the machines will be receiving an inaccurate signal, they may trade against

them to take advantage of the expected mispricing. It is this inherent myopia of back-

tested strategies that we focus on as the primary differentiator between quantitative

and discretionary investing.

In principle, the effects of quantitative investing on financial market quality are

twofold. On the one hand, incremental informed speculators are entering the market.

On the other hand, those speculators adhere to quantitative strategies, which may be

myopic in nature. We build on the canonical strategic speculator framework of Kyle

(1985) to incorporate the two dimensions. First, we use Kyle’s economy with a single

imperfectly informed speculator, as the benchmark, i.e. before quantitative investing

(Economy 1). In this baseline setting, we label the single speculator as the discretionary

investor (“DI”), as his fully-strategic trading strategy is meant to resemble the trading

strategies of the more traditional fundamental equity investment funds. Economy 1 also

serves as the backtesting environment for the quantitative investor (“QI”). She uses

the data generating process from Economy 1 to build a profit-maximizing strategy,

“the backtest,” under the assumption that the other market participants are not aware

of her existence. This is the key assumption of the model, as it captures the notion
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of myopia inherent in quantitative strategies: by definition, the backtest ignores the

strategic response of the discretionary investor and the market maker to the trading

strategy of the quant.

Next, we introduce a second differentially informed speculator, the QI, to the mar-

ket. If QI is assumed to be fully strategic (as DI), the resulting economy (Economy 2)

captures the effects of incremental informed speculation on the market akin to Foster

and Viswanathan (1996). Finally, we introduce quantitative investing by allowing the

QI to trade based on either a convex combination of the profit-maximizing strategy of

a fully strategic quant in Economy 2 and the backtest (Economy 3) or full automation

(i.e. exclusively the backtest; Economy 4). The effect of incremental informed specula-

tion on market quality is identified as the change from Economy 1 to Economy 2, while

the implications of quantitative investing are identified via changes from Economy 2

to Economy 3 or Economy 4.

Our primary finding is that the direction of the effect of greater automation by

the quantitative investor on financial market quality is determined by the sign of the

wedge between the trading intensity of a fully-automated quant (Economy 4) and a

fully-discretionary quant (Economy 2). The sign of the wedge acts as a sufficient

statistic for the net effect of the three primary parameters in the model: information

precision of the DI, information precision of the QI, and the correlation of their signals.

A positive wedge, i.e. when the automated quant trades more than the discretionary

quant, generally results in positive effects on market quality. Greater automation leads

to greater expected trading volume by the quant, generally acts as a deterrent from

more trading by the discretionary investor (as he becomes concerned about excess in-

formation slippage), and results in a net increase in the expected trading volume for the

speculative sector as a whole. Since this net increase is driven by the trading behavior

of a QI who adheres less and less to a profit-maximizing strategy, profits for the specu-
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lator sector decrease, price informativeness and price volatility rise, market depth rises,

and return volatility falls. However, a negative wedge between the trading intensity

of a fully-automated and a fully-discretionary quant implies that the quant trades less

aggressively with greater automation. Less aggressive trading creates opportunity for

the discretionary investor to trade more aggressively at the expense of the quant. As

such, the DI trades more with greater automation by the QI, makes greater profits,

which more than offsets the declining profits for the quant, and ultimately results in a

lower trading volume and greater profits for the speculative sector as a whole. Market

quality suffers as market depth, price informativeness, and price volatility fall, while

return volatility rises.

We are able to theoretically characterize the determinants of the sign of the wedge,

which in turn directly maps to market quality outcomes. Greater (lower) relative signal

precision for the quant (DI) and a lower signal correlation generally result in a positive

wedge. However, the relationship ultimately depends on the initial level of signal

precision for the discretionary investor. If discretionary investors have relatively low

signal precision, e.g. as for fundamentally-oriented proprietary quant funds, greater

information quality for the quant or lower signal correlation will generally lead to

improvements in market quality. If instead the DI has a sufficiently precise signal, e.g.

as for smart-beta ETFs, improvements in the quant’s signal may lead to a deterioration

in market quality.

We further find that the introduction of the quant, whether fully-discretionary or

fully-automated, generally benefits market quality as price informativeness and price

volatility rise while return volatility falls. However, the effect on market depth and

the trading volume and profits of the speculative sector are more nuanced and are

again driven by the wedge with discretionary trading. As expected, the DI is almost

always worse off due to the introduction of the QI. However, with a positive wedge,
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the speculative sector as a whole trades more and makes greater profits, resulting in

a decline in market depth. With a negative wedge, the speculator sector trades more

and makes lower profits, resulting in increasing market depth.

These results contribute to an important theoretical literature on price formation

in the financial markets. Holden and Subrahmanyam (1992) show how aggressive

competition among perfectly informed speculators may lead to speedy incorporation of

information into prices (the “rat race”). Foster and Viswanathan (1996) demonstrate

that under imperfect information and signals with sufficiently low correlation, the “rat

race” may occur only initially, while less aggressive trading, i.e. a “waiting game,”

may emerge in later rounds of trading. While our framework is static in nature, we

capture both the “waiting game” and the “rat race” outcomes via the single-period

trading intensity of the speculators in our game. Importantly, we allow for differential

information quality, which interacts with signal correlation to dictate market quality

outcomes.

Most literature on quantitative investing has focused on the effects of high fre-

quency trading on market liquidity and price discovery. As pointed out by Kirilenko

and Lo (2013) a key trade-off exists in greater automation. On the one hand, algo-

rithmic trading lacks human emotion, potentially leading to greater market stability.

On the other hand, quantitative investing may be more highly correlated between

funds, resulting in greater market instability. To our knowledge, only Abis (2020)

develops a theoretical framework for exploring the trading behavior of quantitative

versus discretionary funds. The author builds on the mutual fund attention allocation

model of Kacperczyk et al. (2016) and introduces quantitative investors as those who

have unlimited learning capacity only in idiosyncratic shocks. However, investors are

competitive (rather than strategic) in their model. We complement this approach by

allowing for strategic trading, a realistic feature of most financial markets, while ab-
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stracting from idiosyncratic learning capacity. Several studies, including Khandani and

Lo (2007), Khandani and Lo (2011), and Beggs et al. (2019), have documented the fact

that quantitative funds, whether hedge funds or mutual funds, tend to not consider

the behavior of others, consistent with our model’s predictions, resulting in violent

reversals in periods of unwinding. Many have shown that algorithmic trading, in par-

ticular high frequency trading, leads to improving price efficiency and liquidity (e.g.

Hendershott et al. (2011), Hendershott and Riordan (2013), Brogaard et al. (2014),

Zhang (2017), and Chakrabarty et al. (2019)), although acquisition of new information

may deteriorate (Weller (2018)).

2.2 Model

We model a three-date financial market with a single risky asset. Participants

include informed speculators, noise traders, and a market maker. At time t = 0,

informed speculators observe their signals with regards to the payoff of the risky asset.

At time t = 1, speculators and noise traders submit their demands for the risky asset

and market markers set prices according to the aggregate order flow. At time t = 2, the

risky asset payoff is realized. Agents have rational expectations in that the informed

speculators and the market maker are aware of the model parameters and each others’

price setting and trading behavior respectively. We describe each feature of the model

below.

2.2.1 Model Setup

Economies

There will be four market environments, or economies, indexed by j ∈ {1, 2, 3, 4},

which will differ based on the presence and trading strategy of the quantitative investor.
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The economies will be introduced in greater detail below.

Risky asset

The risky asset has an endogenously determined price Pj set by the market maker

in the first period and an exogenous payoff v distributed according to v ∼ N(P0, σ
2
v),

realized in the second period.2 The equilibrium price function is indexed by Economy j

as it will depend on the presence and the trading strategy of the quantitative investor.

The payoff distribution remains the same across all four economies.

Informed speculators

There are two informed speculators indexed by i ∈ {d, q} with different trading

behavior: a discretionary investor (i = d, “DI”) and a quantitative investor (i = q,

“QI”). Each informed speculator i receives a signal about the final payoff of the risky

asset given by:

si = v + ei, (2.1)

where ei ∼ N(0, σ2
ei

), σvei = 0, ρ = σedeq/(σedσeq), and φi = σ2
v/σ

2
si

is a measure of

information quality.

Discretionary investor The discretionary investor is risk-neutral and behaves akin

to the Kyle (1985) insider, choosing a share amount xdj to maximize period two ex-

pected profit:

xdj = arg max
x̃dj

E[x̃dj(v − Pj)|sd]. (2.2)

2Henceforth σ2
x = τ−1x refers to the variance of x, τx refers to the precision of x, andσxy refers to

the covariance between x and y.
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The investor is strategic in that he accounts for the expected effect of his order on the

price set by the market maker as well as the information revealed by his signal about

the expected trading behavior of the quantitative investor. Within our framework,

discretionary behavior is modeled via an investor’s ability to take into account the

expected behavior of others in the market when developing a trading strategy. A

quant, in contrast, either fully or partially lacks this ability.

Quantitative investor The quantitative investor develops a profit-maximizing trad-

ing rule under the assumption that the discretionary investor and market maker are

not aware of her existence. This strategy originates from the notion that many quanti-

tative strategies are based on backtested signals, which by definition take as given the

behavior of market participants. In other words, when developing trading strategies

based on historical market data, quant traders are not able to incorporate the effect

that their presence may have had on the strategic trading behavior of other market

participants present at the time.3 The backtested strategy, labeled xb and introduced

in greater detail below, is derived from a world in which only the discretionary investor

is present.

We model the potentially myopic behavior of the quantitative investor in a reduced

form manner. Specifically, we assume that the quant’s optimal asset demand xqj is

given by the solution to the following optimization:

xqj = arg max
x̃qj

E[−γ(x̃qj − xb)2︸ ︷︷ ︸
backtest

+ (1− γ)x̃qj(v − Pj)︸ ︷︷ ︸
strategic speculation

|sq], (2.3)

where 0 ≤ γ ≤ 1.

Eq. (2.3) is based on the observation that a quant’s welfare is at least partially de-

3This concept is known within the macroeconomics literature as the “Lucas Critique” (Lucas
(1976))
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termined by her adherence to a backtested, potentially well-known, trading approach

(xb). The degree of adherence, or “automation,” is parametrized by γ. Such behavior

may be explained by marketing reasons, and the related greater investing discipline and

transparency. For example, quantitative fund strategies are less-likely to be affected by

human emotion, and the associated discipline may appeal to investors thereby generat-

ing greater fund flows. Furthermore, the adherence to a particular well-known strategy

may reduce the moral hazard issues associated with delegated portfolio management.

It is important to note that human judgement continues to play an important role

in quantitative strategies. From the choice of investment strategy to its real-world

implementation, human decisions are at the core of launching and maintaining the

operations of quant funds. Quants may very well be strategic in their trading via,

e.g., “feeler orders” to test market liquidity, scaling and turning strategies on and

off depending on market conditions, and attending industry conferences to interact

with other quant fund managers to understand the behavior of others. We model this

“discretionary” aspect of quantitative investing in a reduced form via the loading 1−γ

of the strategy on the traditional profit maximization objective of the Kyle insider.

An immediate consequence of Eq. (2.3) is that for γ > 0 the quant is not maximiz-

ing her profits. Implicit in this assumption are certain un-modeled gains that may arise

due to the pursuit of a quantitative versus a discretionary strategy. For example, the

lower reliance on human judgement may lower the risk of moral hazard, thereby reduc-

ing agency frictions. Furthermore, adherence to a very specific strategy may cater to a

particular set of investors, thereby attracting greater fund flows. In addition, quanti-

tative strategies may have a greater breadth due to their reliance on computing power,

thereby potentially allocating to a much higher number of securities. The resulting

benefits to diversification, although absent from the model, may also be captured by

the backtested trading strategy.
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Noise traders

Noise traders provide an exogenously given aggregate demand of the risky asset

of z ∼ N(0, σ2
z) such that σzed = σzeq = σzv = 0. Some examples of noise demand

include uninformed retail investors buying or selling shares for liquidity needs, informed

asset managers buying or selling securities purely for hedging purposes, or corporations

unexpectedly issuing or buying back stock. We will rely on η = σ2
z/σ

2
v as a normalized

measure of noise trading in the market.

Market makers

Following Kyle (1985), market makers (“MM”) are assumed to have risk-neutral

preferences and operate in a competitive environment. Therefore, given aggregate

order flow ωj = xdj + xqj + z, the market maker sets a price such that he breaks even

in expectation:

Pj(ωj) = E[v|ωj], (2.4)

i.e. such that the equilibrium asset price is semi-strong from efficient. An underlying

assumption in this framework is that the market maker has sufficient inventory (if

selling) or liquidity (if buying) to satisfy the net demands of the traders. The market

maker attempts to discern between the informed and uninformed order flow and to set

prices accordingly.

2.2.2 Model Solution

Our objective is to identify the effect of growth in quantitative investing on financial

market quality. Intuitively, this growth may be driven by new quant funds entering

the market, incumbent discretionary funds switching to quantitative strategies, or both

72



new entrants and incumbent strategy transitions. We focus primarily on the effects of

new quant funds in the financial markets as we believe this to be the primary driver

of the growth in quantitative investing. However, our framework can also speak to the

effects of automation by incumbent discretionary funds and can be extended to jointly

consider new quant funds and incumbent strategy transitions.

Growth in quantitative investing that is driven by new entrants in the financial

market has a dual effect on market quality. First, market quality changes due to the

incremental informed participants in the financial markets. Second, market quality is

impacted by the quantitative investing approach of the new entrants. To speak directly

to the effects of quantitative strategies we must untangle the two forces. We do so by

considering market quality across four economies:

- Economy 1: DI

- Economy 2: DI + QI (γ = 0)

- Economy 3: DI + QI (0 < γ < 1)

- Economy 4: DI + QI (γ = 1)

Economy 1 resembles a world before quantitative investing was introduced. This is

also the quant’s backtesting environment, which allows her to back out the DI’s trad-

ing rule and the MM’s pricing function. The backtest will be a regression of prices on

fundamentals, which coupled with observable order flow provides the quant with suf-

ficient information to form her profit-maximizing strategy. The quant will then build

her strategy such that profits are maximized under the assumption that the MM and

the DI are not aware of her existence.

Economies 2-4 introduce the quantitative investor, but do so in phases in order to

distinguish between the effects of an additional informed speculator and the speculator’s
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backtested trading rule. First, Economy 2 isolates the effect of introducing a second

informed speculator to the economy. Applying γ = 0 to Eq. (2.3), demonstrates that

the QI’s and DI’s objective functions are identical. Therefore, Economy 2 is simply an

extension of Kyle (1985) with two informed speculators, a static version of Foster and

Viswanathan (1996) but with differential signal precision. Second, Economy 3 “turns

on” the quant’s strategy. Increasing γ leads to greater adherence to the backtested

strategy implying greater “automation” by the quant. Finally, Economy 4 reflects a

full-automated quant. In our baseline theoretical results we only consider Economies

1,2, and 4, however we also conduct a simulation exercise for intermediate values of γ

in Economy 3.

We now proceed to sequentially solve for the DI’s and QI’s trading strategies and

the MM’s pricing rule in Economies 1-4. For each economy j we conjecture that the

optimal trading strategy of investor i is linear in his / her signal and is given by

xij(si) = αij + βijsi, (2.5)

and the optimal pricing rule of the market maker is linear in the aggregate order flow

such that

Pj(ωj) = µj + λjωj. (2.6)

We then derive the coefficients that satisfy the investors’ and market makers’ opti-

mization functions given by Eq. (2.2), (2.3), and (3.4). We refer to βij as the “trading

intensity” of speculator i as it reflects how aggressively the speculator reacts to an

incremental unit of signal. We identify 1/λj as “market depth,” our primary measure

of liquidity: the inverse of the market maker’s price sensitivity to an incremental share

of order flow.
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2.2.2.1 Economy 1

Economy 1 is a world with a single informed speculator (DI) who trades strategically

to minimize information slippage and maximize profits. This is the traditional Kyle

(1985) framework with the sole difference that the informed speculator observes a noisy

signal sd = v + ed instead of perfect information v about the risky asset payoff. The

DI solves Eq. (2.2) while the MM solves Eq. (3.4) with ω1 = xd1 + z. Lemma II.1

demonstrates the existence and uniqueness of a linear strategy equilibrium.

Lemma II.1 (Equilibrium in Economy 1). Within the class of linear equilibria, there

exists a unique linear trading rule for the DI and a unique linear pricing function for

the MM specified by Eq. (2.5) and (2.6) respectively such that Eq. (2.2) and (3.4) are

satisfied for all realizations of v, ed, and z.

Specifically, as derived in Appendix B.1, the equilibrium trading rule of the DI is

xd1(sd) =
√
φdη(sd − P0), (2.7)

and the pricing rule of the MM is

P1(ω1) = P0 +
1

2

√
φd
η
ω1. (2.8)

The DI is more aggressive in trading on his signal with more noise trading, a more

precise signal, and a greater expected payoff. The MM sets prices such that the ex-

pected profits from providing liquidity to the noise traders exactly offset the expected

losses from trading against the DI. Therefore, equilibrium liquidity, as measured by

1/λ1 = 2
√
η/
√
φd, is decreasing in signal quality and is increasing in the relative amount

of noise trading. Both are driven by the market maker’s reaction to adverse selection:

the more precise the DI’s information or the greater the likelihood of informed trading,

75



the more sensitive will the price be to order flow.

2.2.2.2 Quant’s Backtest

A defining characteristic of backtested strategies is their reliance on historical data

to identify a signal, which is predictive of future risk-adjusted returns. The quant relies

on the strategy to map a real-time signal to a trading rule, which is implemented in

the financial markets. By relying on historical data to generate a signal, the quant

cannot know how other market participants would have reacted to her presence in the

market. Even if similar strategies already exist in the market during the backtest, the

quant’s strategy will likely be incremental, implying that the backtest does not fully

capture the strategic behavior of other market participants. It is this lack of strategic

consideration that we focus on as the primary friction associated with quantitative

strategies.

We model this inherent myopia of backtested strategies, by endowing the quant

with a signal, but assuming that she builds the strategy under the assumption that the

other market participants are not aware of her existence. In other words, the quant

assumes that the behavior of other market participants does not change in response

to her presence. Prior to launching her strategy, the quant uses historical data from

Economy 1 to generate her optimal trading rule. One can think of this as years of

trading data that is based on the data generating process of Economy 1, used as the

backtest into the quant’s trading approach. She gathers an extended time series of this

data, and backs out the trading rule of the DI and the pricing strategy of the MM.

The DI’s trading strategy, Eq. (2.7), and a simple manipulation of the MM’s pricing

rule, Eq. (2.8), demonstrate that:
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P1 = P0 +
1

2

√
φd
η
ω1

P1 = P0 −
φdP0

2
+
φd
2
v +

φd
2
ed +

1

2

√
φd
η
z

Let’s assume that Economy 1 plays out over many periods, e.g days, t = 1, . . . , T and

in each day t the following data is recorded: {P1t, ω1t, vt}. In other words, the QI is

able to observe historical prices, trading volume, and fundamentals. The quant can

then take this data and run the following ordinary least squares regressions:

P1t = a+ bω1t + et

P1t = c+ dvt + εt

By construction, et = 0 ⊥ ω1 and εt = φd
2
ed + 1

2

√
φd
η
z ⊥ v implying that the QI will be

able to obtain unbiased estimates for a = P0, b = 1
2

√
φd
η

and d = φd
2

. Assuming the QI

has a sufficiently long data sample, she will deduce both the DI’s signal precision φd and

the normalized amount of noise trading η from the data. Together, these parameters

allow her to identify the MM’s pricing rule and the DI’s trading strategy: we assume

that the data sample is sufficiently long such that she obtains highly accurate estimates.

This, in turn, allows her to construct an optimal, profit-maximizing strategy under the

assumption that the DI and MM are not aware of her existence:

xb = arg max
x̃b

E
[
x̃b

(
v − P1

(
xd1 + z + x̃b

))
|sq
]

=
1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
(sq − P0),

(2.9)

derived in Appendix B.2. The notion of myopia is incorporated by the QI’s reliance
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on the MM’s pricing function P1(ω1) and the DI’s demand xd1(sd) from Economy 1.

In other words, the QI assumes that the MM will treat her order flow as noise trading

and the DI will not internalize the QI’s presence.

Similar to the DI’s Economy 1 trading strategy, the QI’s backtest trades more

aggressively with more noise trading and a greater expected payoff. For negative and

sufficiently low positive signal correlation, the quant will always buy more shares with

greater expected payoff as she’s less concerned about moving the price in the same

direction as the DI. However, with high signal correlation, the QI may trade against

the DI since she becomes concerned about excess information slippage. Ultimately, the

backtested strategy will depend not only on the quant’s signal precision and level of

noise trading, but also on the DI’s signal precision and the signal correlation.

2.2.2.3 Economies 2-4

Armed with the backtested strategy of the quantitative investor, we proceed to

derive the equilibrium trading and price setting behavior in Economies 2-4. Economy

2 will be the classic extension of Kyle (1985) to include two informed speculators with

potentially correlated signals (e.g. Foster and Viswanathan (1996)) and potentially

differential information quality. Economy 3 will incorporate the notion of quantitative

investing as the QI will at least partially rely on the backtested strategy (γ > 0), while

Economy 4 will include a full-automated quant (γ = 1). The trading behavior of the

DI and the QI are determined by the solutions to Eq. (2.2) and (2.3) respectively, while

the MM continues to set prices to break-even in expectation as specified in Eq. (3.4).

Lemma II.2 demonstrates the existence and uniqueness of a linear strategy equilibrium.

Lemma II.2 (Equilibrium in Economies 2-4). Within the class of linear equilibria,

there exist unique linear trading rules for the DI and QI and a unique linear pricing

function for the MM specified by Eq. (2.5) and (2.6) respectively such that Eq. (2.2),
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(2.3), and (3.4) are satisfied for all realizations of v, ed, eq, and z.

As demonstrated in Appendix B.3 multiple equilibria exist in this problem. In part

this is due to the two equilibria within the Kyle (1985) framework whereby a speculator

can buy less on a stronger signal, which in equilibrium leads to a downward sloping

supply curve for the MM. Within our framework, this interacts with the QI’s objective

function resulting in up to four equilibria. We focus on economically meaningful equi-

libria, which appear to be unique. Specifically, we restrict λj to be greater than zero:

supply curves are upward sloping.

To gain intuition behind the equilibrium it is helpful to analyze the functional forms

of the trading rules for the informed speculators and the pricing function of the market

maker. For the DI, demand is given by:

xdj =
E[v|sd]− µj − λjE[xqj|sd]

2λj

=
E[v|sd]− µj

2λj︸ ︷︷ ︸
Single strategic speculator demand

− E[xqj|sd]
2︸ ︷︷ ︸

Adjustment for second speculator

,
(2.10)

as derived in Eq. (B.10) and (B.11). The DI’s demand is the sum of his demand

function as if he were acting alone (conditional on the market maker’s pricing rule)

and an adjustment for the expected trading behavior of the QI conditional on his

information. The adjustment is equal to the expected price impact of the QI’s expected

trading activity (λjE[xqj|sd]) scaled by 2λj, which maps ex-ante expected profits to

share demand. The adjustment term is still dependent on λj because the expected share

demand of the QI is also (inversely) dependent on λj. Furthermore, the adjustment

will depend on the QI’s level of automation γ, known by both the MM and the DI,

since it will factor into both the equilibrium pricing function of the MM via λj and the

expectation of the demand of the QI via E[xqj|sd]. Decomposing the numerator of the
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adjustment even further yields:

E[xqj |sd] = αqj + βqjP0︸ ︷︷ ︸
Second speculator’s ex-ante expected trade

+βqj

(
φd + ρ

√
φd
φq

(1− φd)(1− φq)
)

(sd − P0)︸ ︷︷ ︸
Signal inference

,

(2.11)

such that the DI’s optimal trading strategy depends on both what he expects v to be

and what he expects the QI to know about v and use in her trading strategy. The

expected trading strategy of the quant based on the DI’s information is the sum of the

unconditional expectation of her trading strategy and an information adjustment based

on the DI’s signal. The signal inference will be jointly determined by the DI’s signal,

QI’s trading intensity, the absolute and relative precision of QI’s and DI’s signal, and

the signal correlation.

We can apply a similar decomposition, derived in Eq. (B.56), to understand the

trading behavior of the quantitative investor:

xqj =
γ

γ + (1− γ)λj
xb +

(1− γ)λj
γ + (1− γ)λj

E[v|sq]− µj − λjE[xdj|sq]
2λj

. (2.12)

The exogenously assigned automation parameter γ will determine whether the model

represents Economy 2 (γ = 0), Economy 3 (γ > 0), or Economy 4 (γ = 1).

2.2.2.4 Economy 2: γ = 0

With no automation the QI becomes a fully-strategic speculator akin to the dis-

cretionary investor. The forces driving the behavior of the DI specified above will be

symmetric for the QI. Of particular note is the relationship between the trading inten-

sity of the DI and the QI as derived in Eq. (B.21) since the aggregate trading intensity
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will determine various market quality measures introduced in the next section:

βd2 =
2φd − φdφq − ρ

√
φdφq(1− φd)(1− φq)

2φq − φdφq − ρ
√
φdφq(1− φd)(1− φq)

βq2

≡ kβq2

(2.13)

It is immediate that ∂k/∂ρ > (<)0 ⇔ φd > (<)φq, which implies that greater signal

correlation will cause the investor with an information advantage to trade more ag-

gressively. The importance of signal correlation to trading behavior is consistent with

the findings of Foster and Viswanathan (1996).

2.2.2.5 Economy 3: 0 < γ < 1

For a partially automated quant, i.e. intermediate values of γ, the trading rule

is an endogenously determined weighted average of the backtested strategy and the

fully-strategic trading approach. As evident from Eq. (2.12), the relative weights are

determined by λj, which, in turn, identifies the depth of the market. For a fixed level

of liquidity λj by the market maker, greater automation (higher γ) results in a greater

weight being placed on the back-tested strategy versus the strategic rule. For relatively

liquid markets (λj < 1), greater γ leads to a more than a one-to-one weight increase on

the backtested strategy (e.g. a 1% increase in γ leads to a more than 1% of incremental

weight being placed on the back-tested rule). For relatively illiquid markets (λj > 1),

greater γ leads to a less than one-to-one increase in the weight placed on the backtested

strategy. Finally, for λj = 1, a greater γ results in exactly a one-to-one increase in the

weight placed on xb. The quant is more aggressive in implementing her backtest in

more liquid environments.
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2.2.2.6 Economy 4: γ = 1

A fully-automated quant adheres solely to the back-tested strategy xb, which is

developed under the assumption that the DI and the MM are not aware of her existence.

However, both the DI and MM internalize the QI’s expected behavior thereby rendering

QI’s strategy suboptimal from the perspective of profit-maximizing behavior.

2.2.2.7 Economy 2-4: Market Maker

For the market maker’s pricing rule, first note that the aggregate order flow ωj

provides a noisy signal for v:

ωj = αdj + αqj + (βdj + βqj)v︸ ︷︷ ︸
Signal

+ βdjed + βqjeq + z︸ ︷︷ ︸
Noise

, (2.14)

where the informativeness of the order flow can be expressed as:

Var(ωj|v) = β2
djσ

2
ed

+ β2
qjσ

2
eq + 2βdjβqjσedeq + σ2

z . (2.15)

A lower conditional variance implies a more informative order flow. Lower trading

intensity by either informed speculator, greater signal precision for either informed

speculator, lower noise trading variance, and a lower signal covariance all lead to a

more informative order flow. This in-turn translates into the following effects on market

liquidity as given by 1/λj:

λ−1
j =

Var(ωj)

Cov(v, ωj)

= βdj + βqj +
Var(ωj|v)

(βdj + βqj)σ2
v

= (βdj + βqj)︸ ︷︷ ︸
Aggregate trading intensity

×
(

1 +
Var(ωj|v)

Var(ωj|βdjed + βqjeq + z)︸ ︷︷ ︸
Noisiness of order flow

) (2.16)
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Holding aggregate trading intensity of the speculators constant, a noisier order flow

results in a more liquid price system. Market makers are less concerned about adverse

selection and are therefore less sensitive to greater order flow. Less precise signals,

greater signal covariance, and more noise trading all lead to a noisier system. Changes

to trading intensity for either speculator may either increase or decrease the liquidity

provision both through the noise-to-signal ratio and through the aggregate trading

intensity measure.

2.3 Comparative Statics

We explore the effects of the introduction of and the greater automation by the

quantitative investor on market quality. As customary in the literature (e.g. Vives

(2008)), we focus on the following measures of market quality as well as certain impor-

tant asset pricing measures for each Economy j:

1. Market depth: 1/λj

2. Price informativeness: Var(v|Pj)−1

3. Price volatility: Var(Pj)

4. Return volatility: Var(v − Pj)

5. Expected trading volume for each informed speculator: E[|xij|]

6. Expected trading volume for the speculator sector: E[|xdj + xqj|]

7. Expected profits for each informed speculator: E[πij] = E[xij(v − Pj)]

8. Expected profits for the speculator sector: E[πj] = E[πdj] + E[πqj]
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The closed-form solutions for each of the measures above utilizing the informed specu-

lators’ trading rules and the market maker’s pricing function as derived in Appendices

B.1 and B.3 are provided in Appendix B.4. Unfortunately, the theoretical framework

does not allow for analytically tractable solutions for the trading rules and pricing

functions. Therefore, we split the comparative statics analysis into two sections. The

first is a special case of the generalized model, which assumes that the DI has perfect

information, and only considers changes to market quality when the QI switches from

full discretion (γ = 0) to full automation (γ = 1), thereby only exploring changes to

market quality for Economies 1,2, and 4. Within this framework, we are able to theo-

retically demonstrate the effects of the introduction of and automation by the quant on

market quality. The second section conducts a quantitative exercise for the generalized

model, documenting changes in market quality due to the addition of and all levels of

automation by the QI (Economies 1-4) across a large number of parameter draws. We

first discuss the theoretical benchmark and conclude with the market quality outcomes

of the generalized model.

2.3.1 Theoretical Benchmark

The benchmark case assumes the DI has perfect information (φd = 1) and the

unconditional expected payoff is zero. The latter assumption is without loss of gen-

erality, but the former needs further justification. Inherent in this assumption is the

notion that traditional fundamental investors may have superior access to fundamental

information via corporate management meetings, industry and market expertise, and

deep-dive fundamental analysis. Quants, on the other hand, may look at rough proxies

for fundamental value, such as historical multiples or price trends, and hope that on

average, across a large sample of securities, such proxies will be indicative of future

payoffs. Examples of such quant funds would be smart beta exchange traded funds
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and statistical arbitrage strategies nested within hedge funds. However, this category

does not include fundamental investors who rely on big data as an input into their

investment process, since such fundamental investors may actually have superior in-

formation. Examples of the latter would be fundamental funds relying on credit card

transaction data to accurately estimate retailers’ revenues or utilizing airfare pricing

datasets to forecast airline revenues.

The introduction of quantitative investing has a dual effect on the financial markets.

First, an incremental informed speculator is introduced to the economy. Second, the

incremental speculator chooses to pursue an automated strategy. We attempt to dis-

tinguish between these two effects by first exploring the implication of adding a second

informed strategic speculator to the market (Economy 1 to Economy 2), and, second,

analyzing the impact of automation by the incremental strategic speculator (Economy

2 to Economy 4). Under the assumption that growth in quantitative investing is driven

by new entrants in the market, the net effect of quantitative investing will be inter-

preted as the change in market quality between Economy 1 and Economy 4. However,

if the growth is driven by strategy transitions of incumbent funds from discretionary

to quantitive, the effects could be viewed through the changes from Economy 2 to

Economy 4.

Proposition II.1 derived in Appendix B.6 highlights our main theoretical findings

regarding the effects of quantitative investing on financial market quality. Figure 2.1

demonstrates the comparative statics graphically.

Proposition II.1 (Quantitative investing and financial market quality). Market qual-

ity improves due to the introduction of the quantitative investor, but the improvement is

dampened by the quant’s pursuit of the backtested trading rule. The shift from Economy

1 to Economy 2 results in greater trading volume by the speculator sector, more infor-

mative prices, greater market depth, and lower profits for the speculator sector. The
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transition from Economy 2 to Economy 4 leads to less aggressive trading and lower

profits by the QI, more aggressive trading and greater profits by the DI, less informa-

tive prices, lower market depth, and greater profits for the speculator sector as a whole.

Overall, market quality improves from Economy 1 to Economy 4.

The introduction of a second strategic speculator to the economy, i.e. the transition

from Economy 1 to Economy 2, unequivocally improves financial market quality. The

result is consistent with the findings of Foster and Viswanathan (1996) for the case of

uncorrelated information for multiple informed speculators. As can be seen from Fig.

2.1a, the introduction of a fully-discretionary quant is internalized by the DI, causing

him to trade less aggressively relative to a market in which he’s the only informed

speculator due to concerns regarding incremental information slippage. However, the

decline in the DI’s trading, is more than offset by incremental trading by the QI,

resulting in a net growth in expected trading volume by the speculator sector. This

net growth is increasing in the QI’s signal precision, as she trades more aggressively on

her information. Fig. 2.1d highlights that the greater trading by the speculator sector

leads to more informative prices relative to a benchmark world of a single informed

speculator, which, in turn is translated into lower profits for the discretionary investor

and the speculator sector as a whole (Fig. 2.1b). In equilibrium, the greater trading

volume and more informative prices correspond to greater market depth (Fig. 2.1c),

greater price volatility (Fig. 2.1e), and lower return volatility (Fig. 2.1f). The latter

two outcomes are directly driven by prices that more accurately track fundamental

values.

The primary contribution of the present framework is an analysis of the effects of

automation by the QI on the behavior of the DI and the net effects to financial market

quality. The quant’s backtested rule is less aggressive (i.e. has lower trading intensity)

than her trading strategy with full discretion. In part this is due to the foundation
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of the backtest, which assumes that the DI and the MM are not aware of the QI’s

existence: they treat the incremental order flow as originating from the noise traders.

Once the presence of the quant is internalized by other market participants, the DI

trades more cautiously, allowing a discretionary quant to trade more aggressively in

response. On the other hand, an automated quant is, by definition, pursuing a strategy

that is not profit maximizing. This opens the door for the discretionary investor to

trade more aggressively on his information, but the net effect is less expected trading

volume by the speculator sector as a whole relative to Economy 2. The decline in

trading volume leads to less informative prices and greater profits for the DI and the

speculator sector as a whole. The QI earns less in expectation in Economy 4 due to

the sub-optimality of her strategy from a profit maximization perspective. Concurrent

with the lower price informativeness, liquidity dries up in the form of lower market

depth, price volatility declines, and return volatility increases. Overall, Economy 4

market quality decreases relative to Economy 2.

Despite the potentially detrimental effects of automation by the quant, as the shift

from Economy 2 to Economy 4 would suggest, we emphasize the overall improvement

to market quality from Economy 1 to Economy 4. The beneficial effects from the intro-

duction of an incremental informed speculator to the economy dominate the potential

inefficiency induced by the trading strategy they pursue. To the extent that quan-

titative investing growth is driven by new entrants in the market, our model would

suggest overall improvements in market quality. However, if existing funds are transi-

tioning from discretionary to quantitative strategies, market quality may be negatively

impacted.

The presented framework makes strong assumptions in exchange for theoretical

tractability. Next, we conduct a numerical exercise to describe the properties of a

more general version of the model.
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2.3.2 Generalized Model

In the generalized model, we do not restrict the DI to perfect information, allow

for signal correlation between the informed speculators, and allow for partial automa-

tion (i.e. intermediate values of γ). As such, we are able to not only consider the

relationships between the levels of market quality in Economies 1,2, and 4, but also to

explore the effects of intermediate automation through Economy 3. After all, quantita-

tive funds are ultimately deployed by humans, and inherent in this is a certain level of

discretion. Humans may choose to strategically scale, turn off, and alter their invest-

ment strategies, even if such strategies full rely on backtested analysis. Furthermore,

the framework allows for differential signal precision for the QI and the DI, thereby

allowing us to explore the effects of both superior and inferior information for the

quant. The latter feature of the model allows us to speak more generally to systematic

quantitative strategies, whereby quants may actually have superior information given

their ability to process large data to more accurately forecast future earnings.

As the simulation will highlight, the effects of quantitative investing on financial

market quality will be determined by whether a fully-automated quant (Economy 4)

trades more than a fully-discretionary quant (Economy 2). Since the quant’s strategy

is (loosely, i.e. Eq. (2.12)) a weighted average between the Economy 2 and the Econ-

omy 4 strategy, growth in automation (γ) will lead to more (less) aggressive trading

by the QI if βq4 > (<)βq2. The change in trading behavior due to greater automation

is internalized by the discretionary investor and ultimately determines the effects of

quantitative investing on financial market quality. Since the fully-automated quant is

by definition not maximizing profits, to the extent that this sub-optimality is accom-

panied by less aggressive trading, the DI has the opportunity to exploit the greater

resulting mis-pricing to his advantage by trading more aggressively without positive

implications to market quality. If, however, greater automation leads to greater trading
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intensity by the quant, the DI is mostly unable to exploit this to his advantage as he’s

concerned about excess information leakage. The net effect in the latter scenario is an

improvement in market quality. The simulation results, provided in Tables 2.1-2.3, are

summarized in Conclusions II.1 and II.2.

Conclusion II.1 (Effect of the introduction of a fully-discretionary quant). The intro-

duction of a fully-discretionary quantitative investor leads to improvements in market

quality via more informative prices, greater price volatility, and lower return volatil-

ity. The effects on market depth, trading volume, and profits for the speculator sector

depend on signal correlation and precision for the QI and DI. If the parameters are

such that the fully discretionary quant trades more than the fully automated quant

(βq2 > βq4), trading volume for the speculator sector increases, profits mostly decrease,

the DI trades less and makes less in profits, the QI makes positive profits, and market

depth mostly rises. Conversely, if βq2 ≤ βq4, trading volume for the speculator sector

mostly increases, profits always increase, the DI trades less and makes less in profits,

the QI makes positive profits, and market depth always decreases.

Conclusion II.2 (Effect of automation by the quantitative investor). The effect of

greater automation γ by the QI on financial market quality depends on whether the fully-

automated quant trades more than the fully-discretionary quant. If the fully-automated

quant trades more (βq4 > βq2), market quality broadly improves as market depth, price

informativeness, price volatility are mostly rising and return volatility is falling in γ.

Furthermore, the speculator sector as a whole trades more, profits are mostly lower,

the effects on the DI’s trading and profits can be either be increasing, decreasing, or U-

shaped in γ, while the QI always trades more and her profits are increasing, decreasing

or hump-shaped in γ. If the fully-automated quant trades less (βq4 < βq2), market qual-

ity deteriorates via lower market depth, less informative prices, lower price volatility,

and greater return volatility. The speculator sector as a whole trades less and makes
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greater profits as the DI trades more aggressively and makes greater profits, while the

QI trades less and makes lower profits.

To understand the intuition behind the main conclusions from the simulation, it is

helpful to first separately consider the effects of signal correlation and relative informa-

tion precision on market quality. Figures 2.2-2.3 demonstrate the effect of automation

on market quality for different correlation structures for the generalized model within

which the DI and QI have equal information precision (φd = φq) and other param-

eter values are held constant. The first notable pattern, highlighted in Fig. 2.2e, is

the growth in the QI’s trading intensity for lower correlation levels. This is a direct

outcome from the QI’s backtest, as described in Section 2.2.2.2, whereby the backtest

trades more aggressively with lower correlation. A lower correlation allows the quant

to trade more aggressively because she’s less concerned about excess information slip-

page. For sufficiently low correlation levels, greater automation leads to a greater

expected trading volume for the QI since the backtest has greater trading intensity

than the fully-discretionary strategy. Conversely, for sufficiently high levels of corre-

lation, greater automation leads to lower expected trading volume as more weight is

placed on the backtest, which has lower trading intensity than the fully-discretionary

approach. Formulaically, we have

∂

∂ρ

(∂E[|xq3|]
∂γ

)
< 0, (2.17)

for all γ ∈ (0, 1) such that for each γ̂ there exists ρ∗γ̂ > 0 whereby ∂E[|xq3|]
∂γ
|γ=γ̂ = 0.

Pictured in Fig. 2.2c, the discretionary investor’s reaction to the changes in signal

correlation is more nuanced. On the one hand, a sufficiently negative signal correlation

implies that he can trade more aggressively on his information since the QI is more
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likely to trade in the opposite direction thereby decreasing information slippage. On

the other hand, the QI is also trading more aggressively, and is acting less strategically,

thereby limiting the extent to which the DI can be more aggressive in his trading. The

net effect of the two forces can lead to either an increase or a decrease in the trading

volume of the DI. However, if the signals are sufficiently positively correlated, the QI

will always trade less aggressively with greater automation, which opens the door for

the DI to be more aggressive in his trading.

As demonstrated in Fig. 2.2a, the net effect of the trading behavior of the DI and

the QI on the aggregate speculator trading volume is lower aggregate trading volume

in response to lower correlation levels. This is intuitive, as the negative correlation

leads to offsetting orders, causing a decrease in aggregate order flow. However, a more

intricate outcome, is that the increase in total trading volume in response to greater

γ is greatest for lower correlation levels. That is the change in the trading intensity of

the QI in response to greater automation for varying correlation levels dominates the

change in the trading intensity of the DI. Directionally, an equivalent relationship to

Eq. (2.17) emerges:

∂

∂ρ

(∂E[|xd3 + xq3|]
∂γ

)
< 0, (2.18)

for all γ ∈ (0, 1) such that for each γ̂ there exists ρ∗γ̂ > 0 whereby ∂E[|xd3+xq3|]
∂γ

|γ=γ̂ = 0.

The trading patterns above always result in lower profits for the quant with greater

automation. This is to be expected as greater automation implies a lower adherence to

a profit-maximizing strategy, which, by definition, leads to lower profits. Furthermore,

a lower correlation level results in greater profits as price impact is lower. For the

discretionary investor, profits are rising with greater automation by the quant to the
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extent that he is able to trade more aggressively. However, the relationship with

correlation levels is nontrivial as highlighted above. The speculator sector as a whole

makes greater expected profits with more negatively correlated signals and aggregate

profits are rising in automation if the quant is less aggressive in her trading.

Greater aggregate trading volume generally results in more informative prices, and

price informativeness is falling in correlation. A lower correlation implies that the

aggregate order flow is more reflective of the fundamental value, while higher correlation

introduces more noise. Formulaically,

∂

∂ρ

(∂Var(v|P3)−1

∂γ

)
< 0, (2.19)

for all γ ∈ (0, 1) such that for each γ̂ there exists ρ∗γ̂ > 0 whereby ∂Var(v|P3)−1

∂γ
|γ=γ̂ =

0. Therefore, price volatility exhibits the same pattern, while return volatility is the

reverse. Ultimately, market depth is increasing with correlation, however the rate of

increase due to greater automation is decreasing with ρ:

∂

∂ρ

(∂λ−1
3

∂γ

)
< 0, (2.20)

for all γ ∈ (0, 1) such that for each γ̂ there exists ρ∗γ̂ > 0 whereby
∂λ−1

3

∂γ
|γ=γ̂ = 0.

The effect of differential signal quality, highlighted in Figures 2.4 and 2.5, is more

straightforward. Great relative signal precision for the quant leads to more trading

and more expected profits for the QI, less trading and less expected profits for the DI,

and more aggregate trading and aggregate profits for the speculator sector. Greater

automation generally dampens these effects, as the quant’s trading activity leads to
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excess information slippage. As such:

∂

∂φq

(∂E[|xd3 + xq3|]
∂γ

)
> 0

∂

∂φq

(∂E[|πd3 + πq3|]
∂γ

)
< 0

(2.21)

Greater signal precision for the quant leads to more informative prices, greater price

volatility, and lower return volatility. Greater automation strengthens these effects as

the quant becomes overly aggressive in her trading approach:

∂

∂φq

(∂Var(v|P3)−1

∂γ

)
> 0. (2.22)

Market depth is negatively impacted by the quant’s greater signal precision but the

effect is attenuated by greater automation levels:

∂

∂φd

(∂λ−1
3

∂γ

)
< 0. (2.23)

Given the differential effects of signal precision and information correlation on trad-

ing activity and market quality, at first sight it may seem complex to fully describe the

effects of the parameter space (φd, φq, ρ) on market quality. One may conjecture that

for sufficiently low correlation together with sufficiently high information advantage

for the quant, market quality would generally benefit from greater automation and

vice versa. However, understanding the implications when the parameter effects are

offsetting, e.g. high correlation and high information advantage for the quant, appears

inherently challenging.

Fortunately, as highlighted by the simulation results in Tables 2.1-2.3, a sufficient

statistic defined for each triplet (φd, φq, ρ) nearly unambiguously determines the ef-

fect of the introduction of and greater automation by the quantitative investor on
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financial market quality. The sign of the wedge between the trading intensity of a

fully-discretionary and a fully-automated quant, i.e. sign(βq4 − βq2), captures the net

effect of the signal precision for each speculator and the signal correlation. As derived

in Appendix B.7, the relationship between the trading intensity of a fully-automated

and a fully-discretionary quant is jointly determined by (φd, φq, ρ), which allows us to

fully characterize the parameter space and the effects of any triplet on the sign of the

wedge.

We provide a classification of the parameter space via a contour plot illustrated

in Fig. 2.6. Specifically, for each pair of signal precision parameters (φd, φq), we plot

the maximum correlation level for all values below which the fully automated quant

trades more than the fully-discretionary quant. It is immediate from the theoretical

exercise in Appendix B.7 and apparent from the graph, that for a sufficiently high

information advantage for the quant, specifically if φq > 3φd, the automated QI will

always trade more aggressively than the discretionary QI regardless of how strong the

signal correlation is. For a lower information advantage and a sufficiently imprecise

signal for the DI, the quant can still absorb a positive correlation, however as the

DI’s signal increases in precision, we soon reach a point where despite an information

advantage, the automated quant does not have a greater trading intensity than a

discretionary one.

With an inferior information quality, the quant requires significantly lower corre-

lation levels to have greater trading intensity with full automation. Greater signal

precision for the discretionary investor brings down this break-even correlation even

further, and, beyond a certain point, the fully automated quant never trades more ag-

gressively than a fully discretionary quant. Ultimately, increases in the signal precision

for the discretionary investor always lower the breakeven correlation level required for a

more aggressive fully-automated quant. However, the effect of greater signal precision
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for the quantitative investor is twofold. For a sufficiently low signal precision for the

DI (to the left of the ρ = 0 contour), greater φq leads to a higher breakeven correlation

level. For a sufficiently high signal precision for the DI (to the right of the ρ = 0

contour), greater φq implies a lower breakeven correlation level.

We now connect the sign of the trading intensity wedge to the results of the sim-

ulation highlighted in Tables 2.1-2.3. A greater trading intensity results in a mostly

increasing market depth, increasing price informativeness and volatility, and decreasing

return volatility in the level of automation γ by the quant. These overall improvements

in market quality are driven by greater expected trading volume for the quant, mostly

lower volume for the DI, and greater volume for the speculator sector as a whole. The

effects on the quant’s profits are ambiguous, while the DI and the speculator sector as

a whole mostly see declining profits. Greater automation by the quantitative investor

has a positive impact on financial market quality for parameters, which imply greater

trading intensity for a fully-automated quant.

In cases where the fully-automated quant trades less than the fully-discretionary

quant, market quality generally deteriorates as the lower trading intensity opens the

door for the DI to benefit at the expense of the QI. The simulation highlights that

market depth, price informativeness, and price volatility unambiguously decrease, while

return volatility increases with greater automation by the quant. This is driven by

lower trading volume for the quant, greater trading volume for the DI, and lower

trading volume for the speculator sector as a whole. Concurrently, profits for the

quant unambiguously fall for the quant and increase for the discretionary investor and

the speculator sector. In all, market quality suffers from the greater automation by the

quant with a negative trading intensity wedge.

Given the differential effects of the trading intensity wedge on market quality, we

consider the importance of Figure 2.6. The effects of quantitative investing on market
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quality will ultimately depend on where we believe we are in the graph. If we believe

discretionary funds to have subpar information (e.g. ρ < 0.5), improvements in the

quality of the information obtained by the quants should lead to greater market quality

as market quality will increase for a greater set of potential correlation levels. However,

if we believe that discretionary investors have strong information (e.g. ρ > 0.6), a

more precise signal for the quant makes it less likely that automation improves market

quality. More generally, if we believe that information quality is increasing for the

speculator sector as a whole, i.e. for both the QI and the DI, the implications to market

quality are not trivial since both the starting point and the relative improvement will

dictate the effect on market quality.

2.4 Conclusion

Quantitative investment strategies are playing an increasingly important role in

the financial markets. What was previously available primarily via hedge funds to a

select clientele is now widely accessible for household investments via mutual funds

and smart-beta ETFs. The effects of the growth in quantitative investing on the

quality of the financial market is not immediate. Quantitative trading is inherently

disciplined by backtesting. Precisely due to the reliance on backtesting, quantitative

investing may not fully incorporate the strategic trading behavior of other market

participants. We develop a model of strategic speculation that captures the potential

myopia of quantitative funds via their reliance on a backtested trading strategy – i.e.

one assuming by definition that other market participants are unaware of the quant’s

existence.

The introduction of the quantitative investor to our model broadly benefits mar-

ket quality. However, greater automation by the quant (i.e. a greater reliance on the

backtest) may have disparate effects on market quality. If greater adherence to back-
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testing results in greater trading intensity for the quant, market quality improves as

the strategic market participants are unable to take advantage of the quant’s myopia.

Conversely, if greater automation leads to less trading by the quant, the fully-strategic

speculators may take advantage of the quant’s myopia, leading to worse market quality.

Importantly, many of these effects depend on potentially observable fund characteris-

tics, such as the relative precision and correlation of the information of discretionary

and quant investors.

Our theoretical analysis yields numerous empirical implications. Given the im-

portance of relative signal precision and signal correlation for the discretionary and

quantitative investors in determining the effects of quantitative investing on market

quality, it is essential to categorize quant and discretionary funds by signal quality.

For example, smart-beta ETFs are generally deemed to be less informed than propri-

etary quant traders, and the correlation of their trading strategies may change over

time with potentially material implications for the quality of the affected markets.

Thus, our analysis provides a framework for empirically investigating the market

quality implications of the growth in quantitative investing with strategic interaction

among investors. Applying the model to the data will shed light on the empirical effects

of quantitative investing on the trading behavior of the financial markets.

97



2.5 Tables and Figures

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 43.9 44.6 0.0 11.5 27.1 24.6 46.8 25.5 48.9 45.2 100.0
βq4 > βq2 75.1 5.5 0.0 19.5 0.0 0.0 9.0 0.0 12.7 6.4 58.2
βq4 ≤ βq2 0.5 99.1 0.0 0.5 64.8 58.8 99.4 60.9 99.5 99.2 41.8

(a) Market depth

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 57.1 42.9 0.0 0.0 100.0 100.0 42.9 100.0 42.9 42.9 100.0
βq4 > βq2 98.0 2.0 0.0 0.0 100.0 100.0 2.0 100.0 2.0 2.0 58.2
βq4 ≤ βq2 0.1 99.9 0.0 0.0 100.0 100.0 99.9 100.0 99.9 99.9 41.8

(b) Price informativeness

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 57.1 42.9 0.0 0.0 100.0 100.0 42.9 100.0 42.9 42.9 100.0
βq4 > βq2 98.0 2.0 0.0 0.0 100.0 100.0 2.0 100.0 2.0 2.0 58.2
βq4 ≤ βq2 0.1 99.9 0.0 0.0 100.0 100.0 99.9 100.0 99.9 99.9 41.8

(c) Price volatility

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 42.9 57.1 0.0 0.0 0.0 0.0 57.1 0.0 57.1 57.1 100.0
βq4 > βq2 2.0 98.0 0.0 0.0 0.0 0.0 98.0 0.0 98.0 98.0 58.2
βq4 ≤ βq2 99.9 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 41.8

(d) Return volatility

Table 2.1: Simulation Results for Market Quality Measures
We use 100,000 parameter draws: ρ ∼ U(−1, 1), φd ∼ U(0, 1), φq ∼ U(0, 1), η ∼ U(0, 2), P0 =
0, σ2

v = 1. For Economy 3, we evaluate market quality for 99 values of γ from 1% to 99% at
1% increments. Numbers represent the percent of simulations such that the condition in the
header is satisfied (Col. 1-7) or the average fraction of γ’s across all simulations such that
the condition satisfied (Col. 8-10). “E” stands for Economy. First four columns document
the shape of the market quality measure in Economy 3 for increasing γ.
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Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 57.7 42.1 0.0 0.2 84.3 94.6 42.1 93.2 42.2 42.1 100.0
βq4 > βq2 99.2 0.4 0.0 0.4 73.1 90.9 0.6 88.4 0.7 0.5 58.2
βq4 ≤ βq2 0.0 100.0 0.0 0.0 99.9 99.9 100.0 99.9 100.0 100.0 41.8

(a) Trading volume: speculator sector

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 58.8 25.1 0.0 16.0 0.0 1.7 31.4 1.1 34.4 26.9 100.0
βq4 > βq2 29.4 43.1 0.0 27.5 0.0 2.9 53.9 1.9 59.1 46.1 58.2
βq4 ≤ βq2 99.8 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 41.8

(b) Trading volume: discretionary investor

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 57.1 42.9 0.0 0.0 100.0 100.0 42.9 100.0 42.9 42.9 100.0
βq4 > βq2 98.0 2.0 0.0 0.0 100.0 100.0 2.0 100.0 2.0 2.0 58.2
βq4 ≤ βq2 0.1 99.9 0.0 0.0 100.0 100.0 99.9 100.0 99.9 99.9 41.8

(c) Trading volume: quantitative investor

Table 2.2: Simulation Results for the Speculator Sector Trading Intensity
We use 100,000 parameter draws: ρ ∼ U(−1, 1), φd ∼ U(0, 1), φq ∼ U(0, 1), η ∼ U(0, 2), P0 =
0, σ2

v = 1. For Economy 3, we evaluate trading volume for 99 values of γ from 1% to 99% at
1% increments. Numbers represent the percent of simulations such that the condition in the
header is satisfied (Col. 1-7) or the average fraction of γ’s across all simulations such that
the condition is satisfied (Col. 8-10). “E” stands for Economy. First four columns document
the shape of the market quality measure in Economy 3 for increasing γ.
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Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 44.6 43.9 11.5 0.0 72.9 75.4 53.2 74.5 51.1 54.8 100.0
βq4 > βq2 5.5 75.1 19.5 0.0 100.0 100.0 91.0 100.0 87.3 93.6 58.2
βq4 ≤ βq2 99.1 0.5 0.5 0.0 35.2 41.2 0.6 39.1 0.5 0.8 41.8

(a) Expected profits: speculator sector

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 57.0 33.0 0.0 10.0 2.8 7.6 37.9 6.3 39.5 34.3 100.0
βq4 > βq2 26.2 56.6 0.0 17.2 4.7 12.9 65.1 10.7 67.8 58.9 58.2
βq4 ≤ βq2 100.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 41.8

(b) Expected profits: discretionary investor

Incr. Decr. Hump U E1<E2 E1<E4 E2>E4
E3>E1
(%γ)

E3<E2
(%γ)

E3>E4
(%γ)

% Sim.

All 13.1 62.4 24.5 0.0 100.0 98.3 80.9 98.9 76.1 85.2 100.0
βq4 > βq2 22.4 35.4 42.2 0.0 100.0 97.1 67.3 98.1 59.1 74.7 58.2
βq4 ≤ βq2 0.1 99.9 0.0 0.0 100.0 100.0 99.9 100.0 99.9 99.9 41.8

(c) Expected profits: quantitative investor

Table 2.3: Simulation Results for the Speculator Sector Profits
We use 100,000 parameter draws: ρ ∼ U(−1, 1), φd ∼ U(0, 1), φq ∼ U(0, 1), η ∼ U(0, 2), P0 =
0, σ2

v = 1. For Economy 3, we evaluate expected profits for 99 values of γ from 1% to 99% at
1% increments. Numbers represent the percent of simulations such that the condition in the
header is satisfied (Col. 1-7) or the average fraction of γ’s across all simulations such that
the condition is satisfied (Col. 8-10). “E” stands for Economy. First four columns document
the shape of the market quality measure in Economy 3 for increasing γ.
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(a) Expected trading volume for speculator sector (b) Expected trading profits for speculator sector

(c) Market depth in Economy j: 1/λj (d) Price informativeness in Economy j: Var(v|Pj)−1

(e) Price volatility in Economy j: Var(Pj) (f) Return volatility in Economy j: Var(v − Pj)

Figure 2.1: Effect of Quantitative Investing on Market Quality by Quant’s Information
Quality.
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(a) Expected trading volume for speculator sector (b) Expected trading profits for speculator sector

(c) Expected trading volume for DI (d) Expected trading profits for DI

(e) Expected trading volume for QI (f) Expected trading profits for QI

Figure 2.2: Effect of Signal Correlation on Speculator Sector Trading Volume and
Profits.
Figures are constructed for the generalized model and assume equal information quality for
both the discretionary investor and the quantitative investor: φd = φq = 0.5.
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(a) Market depth (b) Price informativeness

(c) Price volatility (d) Return volatility

Figure 2.3: Effect of Signal Correlation on Market Quality.
Figures are constructed for the generalized model and assume equal information quality for
both the discretionary investor and the quantitative investor: φd = φq = 0.5.
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(a) Expected trading volume for speculator sector (b) Expected trading profits for speculator sector

(c) Expected trading volume for DI (d) Expected trading profits for DI

(e) Expected trading volume for QI (f) Expected trading profits for QI

Figure 2.4: Effect of Relative Signal Precision on the Speculator Sector.
Figures are constructed for the generalized model, assume uncorrelated signals for the discre-
tionary and the quantitative investor, and allow for potentially inferior or superior information
for the discretionary investor: φd = 0.5, ρ = 0.
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(a) Market depth (b) Price informativeness

(c) Price volatility (d) Return volatility

Figure 2.5: Effect of Relative Signal Precision on Market Quality
Figures are constructed for the generalized model, assume uncorrelated signals for the discre-
tionary and the quantitative investor, and allow for potentially inferior or superior information
for the discretionary investor: φd = 0.5, ρ = 0.
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Figure 2.6: Breakeven Correlation for the Quant’s Trading Wedge
The contour plot demonstrates the maximum signal correlation levels such that the fully
discretionary quant (Economy 2) trades less than the fully automated quant (Economy 4) for
varying levels of signal precision for the DI and QI. The white dotted line highlights equal
signal precision for the DI and QI, with the region above signifying an informational advantage
for the quant, and the region below an informational advantage for the discretionary investor.
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CHAPTER III

Arbitrage as Camouflage

3.1 Introduction

The dramatic proliferation of exchange traded funds (ETFs) over the past few

decades has greatly increased the interconnectedness of the financial markets. By

design, ETFs track a basket of underlying securities, yet may deviate from their net

asset value (NAV) as dictated by the exposure of the basket via the forces of supply

and demand in the secondary markets. The associated law of one price violations

are continuously exploited by various market players including authorized participants

(APs) who are incentivized to ensure that ETF prices do not diverge from their NAV

drastically and various arbitrageurs such as high frequency traders at hedge funds and

other sophisticated investors. The resulting buying and selling in the synthetic security

and its constituents, which attempts to ensure that the ETF tracks its underlying

securities, may be viewed as a form of noise trading as it is ultimately agnostic to

fundamental value. In the present work, I theoretically explore the effects of arbitrage

trading due to law of one price violations on market quality in both the underlying and

synthetic securities.

I first explore the implications of introducing arbitrage trading to a market that

will otherwise see different prices of assets with identical payoffs. The markets for
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the underlying and synthetic assets are assumed to be initially segmented via different

levels of noise trading, which in turn leads to price divergence. The introduction of an

arbitrageur who ensures that prices of assets with identical payoffs converge, leads to

an averaging of noise trading activity across the otherwise segmented markets. The ar-

bitrageur buys (sells) in the market with excess noise supply (demand), implying that

effective noise trading in each market is a weighted average (based on market depth) of

noise trading in both markets. This smoothing diminishes the level of available cam-

ouflage (i.e. Kyle (1985)) via a lower effective noise trading volatility for the informed

speculator and increases concerns of adverse selection for the market makers, result-

ing in a declining trading intensity for the informed speculator, lower market depth,

and unchanged price informativeness from a world with law of one price violations.

Further segmenting the markets by introducing asset-specific speculators attenuates

the negative effects above, as the arbitrageur links the markets, thereby inducing com-

petition among the informed speculators akin to Holden and Subrahmanyam (1992).

The increased competition leads to greater trading intensity by the speculators, greater

market depth set by the market makers, and more informative prices relative to a world

with a single speculator and arbitrageur.

The analysis above assumes the existence of a market for both the underlying and

the synthetic assets. The results are dramatically different if one were to study the

introduction of a synthetic security. The arbitrageur connects the synthetic and the

underlying markets and his activity results in an averaging of noise trading between the

two markets. To the extent that the synthetic asset attracts sufficient noise trading, the

trading intensity of the informed speculator will rise in the underlying market and the

market maker will be able to provide greater market depth while price informativeness

remains unchanged. The result is even more pronounced in the case of greater market

segmentation via asset-specific speculators.
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In the main analysis, I model arbitrage trading as an activity separate from market

making. However, much of the leading theoretical literature on ETFs (e.g. Bhat-

tacharya and O’Hara (2018)), models arbitrage activity via the price updating process

of the market makers at an intermediate stage. The market makers will take all in-

formation available from order flow across markets, and will set prices of assets with

identical payoffs equal conditional on the same information set. This assumption boils

down to having the market maker also perform the function of an authorized partic-

ipant, which need not always be the case institutionally. I directly compare the two

approaches to arbitrage activity, and document the following differential implications

to market quality.

A stand-alone arbitrageur is generally agnostic to fundamental payoffs as he cares

only about price convergence, and therefore trades based on the relative order flow in

both markets to ensure that prices equate. His presence allows the informed specula-

tors to be more aggressive in their trading. However, the market makers become more

concerned about adverse selection. Conversely, the price-updating market maker cares

about adverse selection, and is therefore able to more accurately impute the asset pay-

off via information contained in the order flow of segmented markets. This reduces his

fear of adverse selection, yet dampens the ability of the informed speculators to trade

aggressively. The net effect of the two offsetting forces are identically informative prices

for both the stand-alone arbitrageur and the price-updating market maker. However,

the implications to various measures of market quality such as informed trading inten-

sity and market depth are different, and are governed by the respective objective of

the arbitrageur and the market maker.

My model provides various testable empirical implications. An immediate outcome

is that the introduction of an ETF, which attracts significant noise trading volume,

should result in greater informed trading in the underlying assets and greater market
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depth, and should not distort price informativeness. Exploiting the introduction of

ETFs across various markets, one can rely on empirical measures of price informa-

tiveness (e.g. Bai et al. (2016)), probability of informed trading (e.g. Easley et al.

(1996), Duarte and Young (2009)), liquidity (e.g Amihud (2002), Holden and Jacob-

sen (2014)), and adverse selection (e.g. Hasbrouck (1988), Hasbrouck (1991), Glosten

and Harris (1988)) to identify whether empirically the implications of the model stand

up. Furthermore, the nuanced market quality effects of stand-alone arbitrageurs versus

market makers jointly acting as APs allow for a cross-sectional exploration of ETFs

based on their exposure to stand-alone authorized participants versus market makers

also performing AP functions. Greater exposure to the latter should result in more

liquid prices with lower informed trading intensity, while exposure to the former should

imply lower liquidity and greater informed trading intensity.

The present work contributes to the rapidly growing theoretical and empirical lit-

erature on ETFs. Surprisingly, research specifically tackling the question of strategic

speculation in the presence of arbitrage trading and its impact on market quality has

been limited. To my knowledge, the most closely related paper would be Shim (2020),

who argues that arbitrage trading distorts asset prices as it trades based on mechani-

cally assigned weights versus the true exposure of the underlying securities to factors.

My model is complementary to his work: I focus on the effects of strategic speculation

in the presence of arbitrage trading and abstract away from the inefficiencies associated

with the weighting schemes of multi-security ETFs. Bhattacharya and O’Hara (2018)

is another complementary paper analyzing the effects of ETFs on hard-to-access mar-

kets, whereby the no-arbitrage mechanism is embedded via market makers’ short-term

price adjustments. The distinguishing feature of the present framework is its explicit

focus on the implications of arbitrage trading on financial market quality.

On the empirical side, much work has attempted to discern whether ETFs improve
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or impede price discovery in the underlying securities with conflicting results. On the

one hand, Glosten et al. (2017) highlight that greater ETF ownership leads to more

accurate incorporation of accounting information suggesting that price efficiency may

be rising due to ETF ownership. On the other hand, in a study of Russell index

reconstitutions, Coles et al. (2018) find that weak-form price efficiency deteriorates

due to index funds and ETFs. Furthermore, Ben-David et al. (2018) find that greater

ETF ownership leads to greater return volatility also implying lower price efficiency.

Similarly, Israeli et al. (2017) report that ETF ownership results in decreasing price

efficiency. Several papers, including Easley et al. (2020) and Huang et al. (2021) point

out various advantages of ETFs via their ability to serve as hedging instruments and

their optimal “activeness.”

3.2 Model

I model a three-date financial market with two risky assets with identical payoffs.

Participants include up to two perfectly informed speculators, up to one arbitrageur,

noise traders, and up to two market makers. At time t = 0, informed speculators

observe the payoff of the risky assets. At time t = 1, speculators, noise traders, and

the arbitrageur (if present) submit their demands for the risky asset and market makers

set prices according to the aggregate order flow. At time t = 2, the risky asset payoffs

are realized. Agents have rational expectations in that the informed speculators, the

market makers, and the arbitrageur are aware of the model parameters and each others’

price setting and trading behavior respectively. I describe each feature of the model

below.
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3.2.1 Model Setup

Economies

There will be four market environments, or economies, indexed by j ∈ {b, a, s,m},

which will differ based on the number of informed speculators, the number of market

makers, and the presence of an arbitrageur who will ensure that prices of assets with

identical payoffs converge. Each economy will have two risky assets traded in separate

markets with identical payoffs but potentially different prices due to differential noise

trading. Economy b will be the benchmark economy and will feature a single informed

speculator allocating to the two risky assets. Prices may diverge in Economy b due

to differential levels of noise trading in the two markets. Economy a will attempt

to isolate the effect of arbitrage trading while holding all else equal by introducing

an arbitrageur to Economy b who will ensure that the prices of the two risky assets

converge. Economy b is introduced primarily for theoretical purposes, to highlight the

effects of a stand-alone arbitrageur. Economy s will identify the effect of arbitrage

trading in the presence of segmented markets, whereby each risky asset will have its

own informed speculator. Economy s will speak to the effects of arbitrage activity

in markets in which one can plausibly assume separate speculators for the underlying

and synthetic assets. Finally, Economy m will substitute the arbitrageur for a single

market maker, who sets prices to be the same based on order flow in both underlying

markets. Economy m will address institutionally-relevant markets in which the market

maker in the underlying and synthetic securities jointly acts as an AP.

Risky assets

Each economy will feature two risky assets i ∈ {1, 2} traded in different markets

with identical payoffs v distributed according to v ∼ N(0, σ2
v), realized in the second
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period. The identical payoffs are meant to resemble the relationship between an ETF

and the underlying securities, which, absent frictions, should yield identical payoffs.

The endogenously determined price Pij set by the market maker in the first period

is indexed by Economy j as it will depend on the presence of the arbitrageur and

the number and trading behavior of the informed speculators. I label asset 1 as the

“underlying” and asset 2 as the “synthetic” security without loss of generality.

Noise traders and segmented markets

To incorporate law of one price violations I assume segmented markets for the two

assets. Specifically, I require that each Asset i trades only in Market i, which has

an asset-specific level of noise trading zi distributed according to N(0, σ2
zi

), such that

the level of noise trading is orthogonal to the fundamental payoff (σvzi = 0).1 Some

examples of noise demand include uninformed retail investors buying or selling shares

for liquidity needs, informed asset managers buying or selling securities purely for

hedging purposes, or corporations unexpectedly issuing or buying back stock. One can

think of reasons why noise trading may differ between the synthetic and underlying

securities. For example, ETF purchases and sales may be driven by household wealth

shocks, or hedge fund hedging needs, while sales and purchases in the underlying

may be driven by corporate secondary equity offerings and buy-backs. I will rely on

ηi = σ2
zi
/σ2

v as a normalized measure of noise trading in Market i. The differential

levels of noise trading for the two markets will result in law of one price violations as

assets will be functions of asset-specific order flow implying that assets with identical

payoffs will have different prices.

1σxy refers to the covariance between x and y.
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Informed speculators

Each economy will feature up to two informed speculators who observe the payoff

v. Each Asset i in Economy j will have exactly one speculator investing in the asset to

maximize profits. As in Kyle (1985), in placing her order, the speculator will balance

her knowledge of the payoff with revealing her knowledge to the market maker via her

demand. For Economy j ∈ {b, a}, where a single strategic speculator invests in both

assets, her optimization is as follows:

[x1j, x2j] = arg max
x̃1j ,x̃2j

E[x̃1j(v − P1j) + x̃2j(v − P2j)|v]. (3.1)

For Economy j ∈ {s,m}, which includes asset-specific speculators, whereby Speculator

i is assigned to Asset i, Speculator i’s demand will be:

xij = arg max
x̃ij

E[x̃ij(v − Pij)|v]. (3.2)

Aribtrageur

The arbitrageur will be introduced in Economies a and s to eliminate law of one

price violations. I will assume that the arbitrageur buys εj shares in Market 1 of

Economy j and sells εj shares in Market 2 of Economy j. The quantity bought and

sold will be endogenously determined, and, ultimately, the arbitrageur makes exactly

zero in profits, which is consistent with a competitive arbitrage market. For Economy

j ∈ {a, s}, the arbitrageur will submit the following orders in Markets 1 and 2 to ensure

that prices converge:

P1j(x1j + z1 + εj) = P2j(x2j + z2 − εj) (3.3)
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My notion of arbitrageurs most closely resembles authorized participants (APs) in the

financial markets, who are responsible for ensuring that ETF prices do not deviate

drastically from the value of the underlying basket, and to accomplish this role are

granted the ability to issue and buy back ETF securities exactly at NAV.

Market makers

Each Market i in Economy j ∈ {b, a, s} will have two market makers, each dedicated

to Asset i such that he only observes order flow in his Market i, and is assumed to

have risk-neutral preferences and operate in a competitive environment. Economy m

will feature a single market maker who will observe order flow and set prices both in

Market 1 and Market 2. For Economy j ∈ {b, a, s}, given aggregate order flow ωij, the

market maker sets a price such that he breaks even in expectation:

Pij(ωij) = E[v|ωij], (3.4)

i.e. such that the equilibrium asset price is semi-strong from efficient. For Economy

m, the market maker will take advantage of all available information in both Market

1 and Market 2, to set the same price in both markets:

P1m(ω1m, ω2m) = P2m(ω1m, ω2m) ≡ Pm(ω1m, ω2m) = E[v|ω1m, ω2m]. (3.5)

An underlying assumption in this framework is that the market maker has sufficient

inventory (if selling) or liquidity (if buying) to satisfy the net demands of the traders.

The market maker attempts to discern between the informed and uninformed order

flow and to set prices accordingly.

The aggregate order flow will differ based on whether an arbitrageur is present or
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if there are two speculators. As such, order flow will be

ω1j = x1j + z1 + 1j∈{a,s}ε (3.6)

for the underlying asset, and

ω2j = x2j + z2 − 1j∈{a,s}ε (3.7)

for the synthetic asset. The arbitrageur’s buying and selling in Markets 1 and 2 re-

spectively will only take place in Economies a and s. For these Economies I assume

that the arbitrageur and the market makers operate independently, which is consistent

with some industry segmentation between market makers and authorized participants.

Implicit in this assumption is the arbitrageur’s ability to infer the pricing rule of the

market maker and the demand functions of the informed speculators. Economy m

relaxes this assumption, and allows the market maker to partake in both functions by

allowing him to update prices based on the order flow in each market.

3.2.2 Model Solution

I aim to identify the effect of arbitrage trading activity on various measures of

market quality such as trading intensity, liquidity, and price informativeness. As such,

I begin with the simplest possible benchmark (Economy b), within which law of one

price violations may occur and identify the relevant measures of market quality in this

setting. Next, I introduce the arbitrageur in Economy a, who ensures that the law of

one price holds and revisit the effects on market quality. In Economy s, I allow for

potential segmentation between the informed speculators, assigning a market-specific

informed speculator, and explore how the activity of the arbitrageur interacts with

this segmentation. Finally, Economy m replaces the arbitrageur by allowing a single
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market maker to set prices, thereby automatically setting prices equal to each other.

For each Economy j I assume that the demand function of the speculator in Asset

i is linear in her signal

xij = βijv, (3.8)

and the market maker’s pricing function is linear either in aggregate order flow for

Economy j ∈ {b, a, s}

Pij = λijωij, (3.9)

or a linear combination of the order flow from the two markets in Economy m

Pm = λ1mω1m + λ2mω2m. (3.10)

I then derive the coefficients that satisfy the speculators’, arbitrageur’s, and market

makers’ optimization functions given by Eq. (3.1)-(3.5). I refer to βij as the “trading

intensity” of the informed speculator in Asset i as it reflects how aggressively the

speculator reacts to an incremental unit of signal. I identify 1/λij as “market depth,”

my primary measure of liquidity: the inverse of the market maker’s price sensitivity to

an incremental share of order flow.

I solve the model for all Economies in Appendices C.1.1,C.1.2,C.1.3, and C.1.4, and

summarize the solutions in Proposition III.1 below.

Proposition III.1 (Existence and Lack of Uniqueness of Linear Equilibrium). There

exists a linear trading rule for the speculator(s), specified by Eq. (3.8), and a linear

pricing function for the market maker(s), specified by Eq. (3.9) or (3.10), with positive

coefficients, such that the speculator(s) maximize expected profits, specified by Eq. (3.1)
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or (3.2), the market maker(s) set prices to break even, specified by Eq. (3.4) and (3.5),

and P1j = P2j for j ∈ {a, s,m}, for all realizations of v, z1, and z2. Positive coefficients

are uniquely identified for Economies b and m, and symmetric equilibria with positive

coefficients are uniquely identified for Economies a and s, which have a continuum of

linear equilibria.

I now describe and summarize my findings for each Economy all of which are derived

in Appendices C.1.1-C.1.4.

Benchmark: Economy b This is a simple extension of Kyle (1985) to include a

second asset and partially segment the market for Asset 1 and Asset 2 via different

levels of noise trading and asset-specific market makers. The segmentation is partial

since there continues to be a single strategic speculator trading in both assets. The

trading intensity for the informed speculator and each market maker’s pricing slope for

each Asset i has the standard form:

βib =
√
ηi (3.11)

λib =
1

2
√
ηi

(3.12)

Both market depth (1/λib) and trading intensity are increasing in the amount of normal-

ized noise trading as the speculator has greater camouflage to trade more aggressively,

while the market makers are less concerned about adverse selection. The two forces

offset resulting in a constant (inverse) price informativeness:

Var(v|Pib) =
1

2
σ2
v . (3.13)

Introducing arbitrageur: Economy a I now introduce the arbitrageur who will

buy ε shares in Market 1 and sell ε shares in Market 2 so that the prices in the two
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markets are equal. The change in market depth and trading intensity from Economy b

will highlight the effect of arbitrage trading. As pointed out in Prop. III.1, there is a

continuum of equilibria in this setting. This is intuitive since the speculator is active in

both Markets 1 and 2, and prices will be equal in the two markets by design. Therefore,

she will be indifferent between investing in either market and what will matter is the

aggregate amount of informed trading and the aggregate market depth, both of which

are uniquely identified for upwards sloping supply curves:

β1a + β2a =
√
η1 + η2 (3.14)

1

λ1a

+
1

λ2a

= 2
√
η1 + η2 (3.15)

A similar pattern to Economy b holds, whereby aggregate market depth and aggregate

trading intensity are increasing in the amount of noise trading. It is important to

note that arbitrage trading links noise trading in the two markets via the activity

of the arbitrageur, resulting in aggregate measures of noise trading (i.e. η1 + η2) as

the defining equilibrium parameters. The market with greater (lower) market-depth

adjusted noise trading will see the arb sell (buy) ε shares. Therefore, the effective level

of noise trading in each market will be a weighted average of noise trading in both

markets, thereby reducing its volatility in each.2 Ultimately this prevents the informed

speculator from trading as aggressively as in the benchmark economy as

β1a + β2a < β1b + β2b,

2For further intuition consider the case where σ2
z1 = σ2

z2 = σ2
z and the realization of noise trading

is such that z1 > z2. Here the model is fully symmetric and the arb will sell ε = (z1− z2)/2 in Market
1 and buy ε = (z1 − z2)/2 in Market 2 resulting in equal effective noise trading of (z1 + z2)/2 in each
market. The “averaging” of noise trading leads to its lower volatility in each market of σ2

z/2.
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and the market makers react to the reduced effective amount of noise trading by low-

ering market depth

1

λ1a

+
1

λ2a

<
1

λ1b

+
1

λ2b

.

The net effect of lower camouflage and greater adverse selection on price informative-

ness is identical to Economy b as

Var(v|Pia) =
1

2
σ2
v . (3.16)

Overall, the introduction of arbitrage trading is fully internalized by all market par-

ticipants allowing for both lower trading intensity and less liquid markets, while main-

taining price informativeness.

Segmenting informed speculators: Economy s I now consider the realistic pos-

sibility that markets may not only be segmented for the market makers, but also for

the informed speculators. As such, I introduce a second speculator, with Specula-

tor 1 specializing in Asset 1 and Speculator 2 specializing in Asset 2, while keeping

all other parameters of the model constant. In this framework, both speculators and

market makers are segmented, with the only link between the two markets being the

arbitrageur. The trading intensity of each Speculator i is identified as

βis =

√
η1 + η2

2
, (3.17)

while the aggregate market depth is

1

λ1s

+
1

λ2s

= 3

√
η1 + η2

2
, (3.18)
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and if I assume a symmetric equilibrium, market depth for Asset i will be

1

λis
=

3

2

√
η1 + η2

2
. (3.19)

Segmenting the markets leads to greater aggregate trading intensity and greater market

depth versus both the benchmark case and Economy a. Despite segmented markets

each speculator no longer has a monopoly on her information as informed trading in one

market will be translated to the other market via the activity of the arbitrageur. For

example, more aggressive buying by one of the speculators will lead to more aggressive

buying by the arb in the other market, therefore affecting the trading behavior of

the other speculator. The introduction of competition among the speculators leads to

improved market quality, which translates into more informative prices:

Var(v|Pis) =
1

3
σ2
v . (3.20)

Single market maker: Economy m In the final step, I consider the implications

of shutting down the arbitrage trading channel, and, instead, allowing market makers

to observe order flow across the segmented markets (e.g. Bhattacharya and O’Hara

(2018)). Since order flow in each market will be an incremental source of information,

the market maker will condition on order flow across markets when setting prices in

each market, which will result in equal prices. The trading intensity of each speculator

reverts to the benchmark with law of one price violations

βim =
√
ηi, (3.21)
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however market depth increases to

1

λim
= 3
√
ηi, (3.22)

as the market maker becomes less concerned about adverse selection given the incre-

mental information via order flow. Although the aggregate trading intensity is lower

than the fully segmented setting, the greater aggregate market depth coupled with a

more precise signal for the market maker, results in an equal level of price informative-

ness to Economy s:

Var(v|Pim) =
1

3
σ2
v . (3.23)

3.3 Discussion

Table 3.1 summarizes my main findings for market quality across all economies. The

introduction of an arbitrageur to the benchmark economy has the effect of absorbing

noise trading in each of the markets, since the market with the higher prices will have

seen greater noise demand, while the market with the lower price will have seen lower

noise demand. The arbitrageur steps in to correct these discrepancies, which implies

that the effective level of noise trading in each market becomes a (market depth based)

weighted average of noise trading in both markets. The averaging of noise trading

leads to a decrease in camouflage, which is internalized by both the speculator and the

market makers, leading to both lower trading intensity and lower market depth, which,

ultimately, does not impact price informativeness relative to the benchmark.

It is important to note that the changes from Economy b to Economy a assume

that both the underlying and synthetic securities previously existed, and that the

level of noise trading has remained the same in both. However, if one is exploring
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the introduction of a synthetic security, which will bring incremental noise traders

to the market, then the implications are drastically different. The arbitrageur will

“transfer” the noise trading from the synthetic security to the underlying, implying

that the strategic speculator will be able to trade more aggressively in the underlying

as long as 3η1 < η2, i.e. the synthetic market is sufficiently noisy. Furthermore, the

market maker in the underlying will be able to provide greater liquidity due to lower

adverse selection concerns. The informed speculator will also be able to participate in

the synthetic security, resulting in unambiguously greater aggregate informed trading

intensity and higher aggregate liquidity.

Segmenting the asset markets by assigning asset-specific speculators in Economy s

improves market quality relative to the case of a single speculator in Economy a as the

trading intensity of the informed speculators is higher in each asset and, in aggregate,

market depth rises unequivocally, and prices become more informative as a result. The

strategic speculator of Economy a no longer has a monopoly on all of the noise traders

in both the underlying and synthetic securities. Due to the connectedness of the two

markets via the arbitrageur, this economy is akin to a multi-speculator version of Kyle

(1985) (e.g. Holden and Subrahmanyam (1992)), whereby the two speculators compete

more aggressively than one.

With asset-specific speculators in Economy s, the threshold for improvements in

market quality with the introduction of a synthetic security are lower than with a

single speculator in Economy a. As long as η2 > η1, i.e. if the synthetic market brings

more noise traders than already exist in the underlying, the informed speculator will

be able to trade more aggressively on her information. The threshold for the market

maker’s improvement in liquidity for the underlying will also be lower at 23
9
η1 < η2.3

Ultimately, regardless of parameter values, the introduction of a synthetic asset has

3Condition under which 1
λ1s

> 1
λ1b
⇔ 3

2

√
η1+η2

2 > 2
√
η1.
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the effect of increasing competition for the incumbent speculator, resulting in more

informative prices.

Finally, the substitution of a dedicated arbitrageur with a single market maker who

observes order flow in both markets and accordingly uses all available information to set

prices, has a subtle effect on market quality. On one hand, the trading intensity of the

informed speculator simplifies to that of the benchmark economy, and improves relative

to Economy s in Asset i if ηi > η−i, that is if she belongs to the market with greater

trading intensity. Aggregate trading intensity always decreases relative to Economy s.

On the other hand, the market maker now observes incremental information about the

asset payoff via access to the order flow in both markets, which unequivocally leads to

greater market depth both relative to Economy s and the benchmark Economy b. The

lower concerns of the market maker about adverse selection exactly offset the decline in

camouflage available to the speculators due to the absence of arbitrage trading resulting

in price informativeness identical to Economy s.

The differential outcomes to the informed speculators’ trading intensity and the

liquidity levels are driven by the differential objectives of the market maker and the

arbitrageur. The arbitrageur only cares about having the prices converge, and, there-

fore, is agnostic to asset fundamentals. His trading is a form of noise trading, which

acts as a link between the noise trading levels in the segmented markets and allows the

speculators to trade more aggressively. The more aggressive trading causes aggregate

liquidity to decline as market makers become more concerned about adverse selection.

On the other hand, the single market maker is concerned about adverse selection in

the underlying markets, and therefore uses both order flows to more accurately impute

the fundamental value. This, in turn, has the effect of decreasing his concerns about

adverse selection, which allows him to provide greater liquidity, but also decreases the

aggregate trading intensity of the speculator sector. The opposite effects of changes to
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liquidity and trading intensity as one moves from Economy s to Economy m, exactly

offset such that price informativeness does not change.

3.4 Conclusion

I present a stylized model to highlight the implications of arbitrage trading in

ETFs and their underlying securities on financial market quality. On one hand, the

introduction of arbitrage trading to segmented markets with otherwise diverging prices,

results in a “smoothing” of noise trading across the markets, reducing the levels of

camouflage available to the informed speculator and required for the market maker

to combat adverse selection risks. On the other hand, the introduction of an ETF

with a threshold level of noise trading leads to unambiguous improvements in the

market quality of the underlying security as some of the incremental noise trading is

transferred to the underlying market. Furthermore, I highlight the differential effects

on market quality of stand-alone arbitrageurs and market makers jointly serving as

authorized participants, with the former leading to greater informed trading intensity

for the speculators and greater adverse selection for the market makers, and vice versa

for the latter.

The present framework provides for ample testable empirical implications. The

focus on a single-asset model in the underlying security, thereby abstracting away from

the complexities associated with multi-asset ETFs, makes the model most applicable to

commodity ETFs. For example, one can explore the effects of the introduction of the

United States Oil Fund (USO) ETF on market quality measures in the futures and spot

markets. Furthermore, given the differential impacts to market quality of stand-alone

arbitrageurs and market makers also serving as authorized participants, one can exploit

cross-sectional variation in ETFs’ exposure to either category of arbitrageurs to analyze

whether the market quality measures for the underlying securities are consistent with
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the model presented. The prominence and the pace of proliferation of ETFs underscore

the importance of understanding their effects on the financial markets.
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3.5 Tables and Figures

Table 3.1: Market Quality by Economy

Economy βij 1/λij β1j + β2j 1/λ1j + 1/λ2j Var(v|Pij)

b
√
ηi 2

√
ηi

√
η1 +

√
η2 2(

√
η1 +

√
η2) 1

2
σ2
v

a 1
2

√
η1 + η2

√
η1 + η2

√
η1 + η2 2

√
η1 + η2

1
2
σ2
v

s
√

η1+η2
2

3
2

√
η1+η2

2

√
2(η1 + η2)

√
9
2
(η1 + η2) 1

3
σ2
v

m
√
ηi 3

√
ηi

√
η1 +

√
η2 3(

√
η1 +

√
η2) 1

3
σ2
v

Asset-specific trading intensity and market depth for Economy a and market
depth only for Economy s assume a symmetric equilibrium.
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APPENDIX A

Passive Investing: Derivations and Proofs

A.1 Proof of Lemma I.1

Case 1: γ̃i < 1 and λ̃i > 0 Recall that

Si(P̃i) = θ̃i −
σ2
ũi

τ(1− γ̃i)λ̃i
x̃i

which implies

E[Si(P̃i)] = µθ̃i

Var(Si(P̃i)] = σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

Cov(Si(P̃i), ṽ) = σ2
θ̃i

The sufficiency of Si(P̃i) implies that

E[ṽi|Si(P̃i)] = µθ̃i + σ2
θ̃i

(
σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

)−1(
θ̃i −

σ2
ũi

τ(1− γ̃i)λ̃i
x̃i − µθ̃i

)
(A.1)

Var[ṽi|Si(P̃i)] = σ2
θ̃i

+ σ2
ũi
− σ4

θ̃i

(
σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

)−1

= σ2
ṽi|P̃i

(A.2)
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Recall that the market clearing condition is given by

(1− γ̃i)λ̃i
τ(θ̃i − P̃i)

σ2
ũi

+ (1− γ̃i)(1− λ̃i)
τ(E[ṽi|P̃i]− P̃i)

σ2
ṽi|P̃i

= X̃i + x̃i

Label

m0 = σ2
θ̃i

(
σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

)−1

(A.3)

Label the average risk-adjusted precision measure as:

m1 =
τ(1− γ̃i)λ̃i

σ2
ũi

+
τ(1− γ̃i)(1− λ̃i)

σ2
ṽi|P̃i

= m2 +m3

The price function for asset i is:

P̃i(θ̃i, x̃i) =
m3(1−m0)µθ̃i

m1

+
m2 +m3m0

m1

θ̃i −
m2 +m3m0

m1m2

x̃i

= q1 + q2θ̃i + q3x̃i

Case 2: λ̃i = 0 Recall that

Si(P̃i) = x̃i

which implies

E[Si(P̃i)] = 0

Var(Si(P̃i)] = σ2
x̃i

Cov(Si(P̃i), ṽ) = 0
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The price equation greatly simplifies due to the lack of fundamentals in prices:

P̃i(x̃i) = µθ̃i −
σ2
θ̃i

+ σ2
ũi

τ(1− γ̃i)
−
σ2
θ̃i

+ σ2
ũi

τ(1− γ̃i)
x̃i

= q1 + q3x̃i

Case 3: γ̃i = 1 Assets do not clear because trader demand becomes zero and supply

is stochastic. Therefore no equilibrium exists.

A.2 Properties of Expected Returns

I first exploit market clearing conditions to derive closed form solutions for uncon-

ditional expectations. By market clearing:

(1− γ̃i)λ̃iτ
θ̃i − P̃i
σ2
ũi

+ (1− γ̃i)(1− λ̃i)τ
E[ṽi|P̃i]− P̃i

σ2
ṽi|P̃i

= X̃i + x̃i

⇓

(1− γ̃i)λ̃iτ
θ̃i − E[ṽi|P̃i] + E[ṽi|P̃i]− P̃i

σ2
ũi

+ (1− γ̃i)(1− λ̃i)τ
E[ṽi|P̃i]− P̃i

σ2
ṽi|P̃i

= X̃i + x̃i

⇓

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i]) +

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)
(E[ṽi|P̃i]− P̃i) = X̃i + x̃i

The conditional return for any asset i:

E[ṽi|P̃i]− P̃i =

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)−1(
X̃i + x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

(A.4)

By the law of iterated expectations the unconditional return for any asset i is given

by:

E[ṽi − P̃i] = X̃i

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)−1

(A.5)
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Given aggregate supplies and participation levels for the index and stock picking strate-

gies, the unconditional risk-premium for the index and stock picking strategies are as

follows.

Risk Premium: Index Asset (i = 1)

E[ṽ1 − P̃1] =

(
(1− γ̃1)λ̃1τ

σ2
ũ1

+
(1− γ̃1)(1− λ̃1)τ

σ2
ṽ1|P̃1

)−1

(A.6)

Risk Premia: Stock Picking Strategies (i > 1)

E[ṽi − P̃i] = 0 (A.7)

Return Variance: All Assets I utilize the law of total variance and equation (A.4)

to estimate the variance of the unconditional return:

Var(ṽi − P̃i) = Var(ṽi − P̃i|P̃i) + Var(E[ṽi|P̃i]− P̃i)

= σ2
ṽi|P̃i

+

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

(A.8)

A.3 Proof of Proposition I.2

I am after changes in the ratio of unconditional expected utilities of participating
and non-participating traders with respect to γ̃i in an information equilibrium. The
ratios are defined by equation (1.24):

If c̃i ≥ τ
2 log(1 + ñi) then

EUI∗
j
R∗

j

EUIjRj
=

√
σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

)
If τ

2 log(1 +
σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) ≤ c̃i < τ
2 log(1 + ñi) then

EUI∗
j
R∗

j

EUIjRj
=

√
σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

)
If c̃i ≤ τ

2 log(1 +
σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) then
EUI∗

j
R∗

j

EUIjRj
=

√
σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ + c̃i

τ

)
(A.9)
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The cases above specify the three levels of information equilibrium as outlined in equa-

tion (1.22):
Fully-uninformed equilibrium: if c̃i ≥ τ

2
log(1 + ñi) then λ̃i = 0

Interior equilibrium: if fi(γ̃i, λ̃i) = 1 then λ̃i =
σũiσx̃i
(1−γ̃i)τ

√
1

exp(2c̃i/τ)−1
− 1

ñi

Fully-informed equilibrium: if 1− γ̃i <
σũiσx̃i
τ

√
1

exp(2c̃i/τ)−1
− 1

ñi
then λ̃i = 1

(A.10)

I proceed to derive closed form solutions of the ratios of expected utilities to participa-
tion (the function gi(γ̃i, λ̃i)) for the three cases specified in equation (A.10) and evaluate
their derivatives with respect to γ̃i. Since the ratio is always positive, I can equiva-
lently evaluate the derivative for the function gi(γ̃i, λ̃i)

2. For the fully-uninformed and
interior equilibrium:

gi(γ̃i, λ̃i)
2 =

σ2
ṽi|P̃i

σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+ (1−γ̃i)(1−λ̃i)τ
σ2
ṽi|P̃i

)−2
Var

(
x̃i − (1−γ̃i)λ̃iτ

σ2
ũi

(θ̃i − E[ṽi|P̃i])
) exp

(
2k̃i
τ

)

=
1

1 + σ−2
ṽi|P̃i

(
(1−γ̃i)λ̃iτ

σ2
ũi

+ (1−γ̃i)(1−λ̃i)τ
σ2
ṽi|P̃i

)−2
Var

(
x̃i − (1−γ̃i)λ̃iτ

σ2
ũi

(θ̃i − E[ṽi|P̃i])
) exp

(
2k̃i
τ

)

(A.11)

For the fully-informed equilibrium:

gi(γ̃i,λ̃i)
2=

σ2ũi

σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

) exp

(
2c̃i
τ

+
2k̃i
τ

)
(A.12)

A.3.1 Fully-Uninformed Equilibrium

In this equilibrium traders do not acquire information (λ̃i = 0) implying that prices

contain no information:

σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi

(A.13)
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Substituting the above into equation (A.11)

gi(γ̃i, λ̃i)
2 = 1

1+σ−2

ṽi|P̃i

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

) exp

(
2k̃i
τ

)

=
1

1 +
σ2
ṽi|P̃i

σ2
x̃i

(1−γ̃i)2τ2

exp

(
2k̃i
τ

)

=
1

1 +
(σ2
θ̃i

+σ2
ũi

)σ2
x̃i

(1−γ̃i)2τ2

exp

(
2k̃i
τ

)
⇓

∂gi(γ̃i, λ̃i)
2

∂γ̃i
< 0⇔ ∂gi(γ̃i, λ̃i)

∂γ̃i
< 0 (since gi(γ̃i, λ̃i) > 0)

(A.14)

A.3.2 Interior Equilibrium

In an interior equilibrium, from equations (1.16),(1.17),(1.18),(A.1),(A.2),(1.15)

conditional expectations are

E[ṽi|Si(P̃i)] = µθ̃i + σ2
θ̃i

(
σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

)−1(
θ̃i −

σ2
ũi

τ(1− γ̃i)λ̃i
x̃i − µθ̃i

)
(A.15)

= µθ̃i + ρ2
S(P̃i),θ̃i

(
θ̃i −

σ2
ũi

τ(1− γ̃i)λ̃i
x̃i − µθ̃i

)
(A.16)

(A.17)

and conditional variances are

σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi
− σ4

θ̃i

(
σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

)−1

= σ2
θ̃i

+ σ2
ũi
− σ2

θ̃i
ρ2
S(P̃i),θ̃i

= σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1 + m̃i

= exp

(
2c̃i
τ

)
σ2
ũi

(A.18)
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Utilizing equation (1.20) I also have (note that these identities only hold for the interior

equilibrium):

m̃i

1 + m̃i

=
exp(2c̃i/τ)− 1

ñi
1

1 + m̃i

=
1 + ñi − exp(2c̃i/τ)

ñi

(A.19)

Utilizing the above it can be shown that:

Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

=

= Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(
θ̃i − µθ̃i − ρ

2
S(P̃i),θ̃i

(
θ̃i −

σ2
ũi

τ(1− γ̃i)λ̃i
x̃i − µθ̃i

)))

= Var

(
(1− ρ2

S(P̃i),θ̃i
)x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(1− ρ2
S(P̃i),θ̃i

)θ̃i

)

= (1− ρ2
S(P̃i),θ̃i

)2Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

θ̃i

)

= (1− ρ2
S(P̃i),θ̃i

)2

(
σ2
x̃i

+
(1− γ̃i)2λ̃2

i τ
2σ2

θ̃i

σ4
ũi

)
= (1− ρ2

S(P̃i),θ̃i
)2σ2

x̃i

(
1

m̃i

+ 1

)
= σ2

x̃i

(
1− 1

1 + m̃i

)2(
1

m̃i

+ 1

)
= σ2

x̃i

(
m̃i

1 + m̃i

)
= σ2

x̃i

exp(2c̃i/τ)− 1

ñi

(A.20)
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I can substitute equations (A.20),(A.18) and (1.22) into equation (A.11)

gi(γ̃i, λ̃i)
2

= 1

1+σ−2

ṽi|P̃i

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

) exp

(
2k̃i
τ

)

= 1

1+

(
(1−γ̃i)λ̃iτ

σ2
ũi

σ
ṽi|P̃i

+
(1−γ̃i)(1−λ̃i)τ

σ
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

) exp

(
2k̃i
τ

)

= 1

1+

(
(1−γ̃i)λ̃iτ

σ2
ũi

exp

(
c̃i
τ

)
σũi

+
(1−γ̃i)(1−λ̃i)τ

exp

(
c̃i
τ

)
σũi

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

) exp

(
2k̃i
τ

)

= 1

1+

(
(1−γ̃i)λ̃iτ

σũi

(
exp (

c̃i
τ )−exp (-

c̃i
τ )

)
+τ exp (-

c̃i
τ )σ−1

ũi
−γ̃iτ exp (-

c̃i
τ )σ−1

ũi

)−2

σ2
x̃i

exp(2c̃i/τ)−1
ñi

×exp

(
2k̃i
τ

)
= 1

1+

(
σx̃i

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
exp (

c̃i
τ )−exp (-

c̃i
τ )

)
+τ exp (-

c̃i
τ )σ−1

ũi
−γ̃iτ exp (-

c̃i
τ )σ−1

ũi

)−2

σ2x̃i

exp(2c̃i/τ)−1
ñi

×exp

(
2k̃i
τ

)
⇓

∂gi(γ̃i, λ̃i)
2

∂γ̃i
< 0⇔ ∂gi(γ̃i, λ̃i)

∂γ̃i
< 0 (since gi(γ̃i, λ̃i) > 0)

(A.21)

A.3.3 Fully-Informed Equilibrium

For the fully-informed equilibrium the following for conditional variance continues

to hold:

σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi
− σ4

θ̃i

(
σ2
θ̃i

+
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2λ̃2
i

)−1

= σ2
θ̃i

+ σ2
ũi
− σ2

θ̃i
ρ2
S(P̃i),θ̃i

= σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1 + m̃i

(A.22)
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Furthermore, equation (A.20) holds except for the final equality:

Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

=

= Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(
θ̃i − µθ̃i − ρ

2
S(P̃i),θ̃i

(
θ̃i −

σ2
ũi

τ(1− γ̃i)λ̃i
x̃i − µθ̃i

)))

= Var

(
(1− ρ2

S(P̃i),θ̃i
)x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(1− ρ2
S(P̃i),θ̃i

)θ̃i

)

= (1− ρ2
S(P̃i),θ̃i

)2Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

θ̃i

)

= (1− ρ2
S(P̃i),θ̃i

)2

(
σ2
x̃i

+
(1− γ̃i)2λ̃2

i τ
2σ2

θ̃i

σ4
ũi

)
= (1− ρ2

S(P̃i),θ̃i
)2σ2

x̃i

(
1

m̃i

+ 1

)
= σ2

x̃i

(
1− 1

1 + m̃i

)2(
1

m̃i

+ 1

)
= σ2

x̃i

(
m̃i

1 + m̃i

)

(A.23)

By equations (A.22), (A.23) and (A.12), I have the following

gi(γ̃i, λ̃i)=
σ2ũi

σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

) exp

(
c̃i
τ

+
k̃i
τ

)

=
σ2ũi

σ2
θ̃i

+σ2
ũi
−

σ2
θ̃i

1+m̃i
+

(
(1−γ̃i)τ
σ2
ũi

)−2

σ2
x̃i

(
m̃i

1+m̃i

) exp

(
c̃i
τ

+
k̃i
τ

) (A.24)

By equation (1.16)

mi =

(
σ2
ũi

τ(1− γ̃i)λ̃i

)2σ2
x̃i

σ2
θ̃i

=
σ4
ũi
σ2
x̃i

τ 2(1− γ̃i)2σ2
θ̃i
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Therefore, I have

gi(γ̃i, λ̃i)
2 =

σ2
ũi

σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1+m̃i
+

m̃2
i σ

2
θ̃i

1+m̃i

exp

(
2c̃i
τ

+
2k̃i
τ

)

=
σ2
ũi

σ2
ũi

+ σ2
θ̃i
m̃i

exp

(
2c̃i
τ

+
2k̃i
τ

)
=

1

1 + ñim̃i

exp

(
2c̃i
τ

+
2k̃i
τ

)
⇓

∂gi(γ̃i, λ̃i)
2

∂γ̃i
< 0⇔ ∂gi(γ̃i, λ̃i)

∂γ̃i
< 0 (since gi(γ̃i, λ̃i) > 0)

(A.25)

For all three cases of information equilibria, I have demonstrated that the ratio of

unconditional expected utility to participating vs. not-participating in asset i, given

by equations (A.14), (A.33), and (A.25), is decreasing in γ̃i, equivalently increasing in

participation (1 − γ̃i). Since utilities are negative, this demonstrates strategic substi-

tutability in participation: the more traders participate in the trading of an asset, the

lower are the expected gains to participation. An immediate consequence are closed

form solutions for equilibrium participation levels, demonstrated in Appendix A.4.

A.4 Closed-Form Solutions for Passive Share

A.4.1 Fully-Uninformed Equilibrium

By equation (A.14), after some algebra,

1

1 +
(σ2
θ̃i

+σ2
ũi

)σ2
x̃i

(1−γ̃i)2τ2

exp

(
2k̃i
τ

)
= 1

⇓

γ̃i = 1− σx̃iσũi
τ

√
n+ 1

exp(2k̃i/τ)− 1

(A.26)

138



A.4.2 Interior Equilibrium

By equation (A.33), after some algebra,

1

1+

(
σx̃i

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
exp (

c̃i
τ )−exp (-

c̃i
τ )

)
+τ exp (-

c̃i
τ )σ−1

ũi
−γ̃iτ exp (-

c̃i
τ )σ−1

ũi

)−2

σ2
x̃i

exp(2c̃i/τ)−1
ñi

exp

(
2k̃i
τ

)
=1

⇓

γ̃i=1− 1√
exp (2ki/τ)−1

σx̃i
σũi
τ

exp (c̃i/τ)

√
exp(2c̃i/τ)−1

ñi
+
σx̃i

σũi
τ

√
exp(2c̃i/τ)−1

ñi

√
n+1−exp(2c̃i/τ)

=1−
σx̃i

σũi
τ

√
exp(2c̃i/τ)−1

ñi

(
exp (c̃i/τ)√

exp (2ki/τ)−1
−
√
n+1−exp(2c̃i/τ)

)
(A.27)

A.4.3 Fully-Informed Equilibrium

By equation (A.25), after some algebra,

1

1 + ñim̃i

exp

(
2c̃i
τ

+
2k̃i
τ

)
= 1

⇓

γ̃i = 1− σx̃iσũi
τ

√
1

exp(2(ki + c̃i)/τ)− 1

(A.28)

A.4.4 Passive Share Closed-Form Solutions: Summary

The following summarizes the closed-form solutions for passive share (note that it’s

possible to have parameter values such that γ̃i falls below zero, therefore I take the

maximum):

Case 1: if c̃i≥ τ2 log(1+
σ2
θ̃i
σ2
ũi

) then γ̃i=max

{
0,1−

σx̃i
σũi
τ

√
n+1

exp(2ki/τ)−1

}
Case 2: if fi(γ̃i,λ̃i)=1 then γ̃i=max

{
0,1−

σx̃i
σũi
τ

√
exp(2c̃i/τ)−1

ñi

(
exp (c̃i/τ)√

exp (2ki/τ)−1
−
√
n+1−exp(2c̃i/τ)

)}
Case 3: if γ̃i>1−

σũi
σx̃i
τ

√√√√ 1
exp(2c̃i/τ)−1

−
σ2
ũi
σ2
θ̃i

then γ̃i=max

{
0,1−

σx̃i
σũi
τ

√
1

exp(2(ki+c̃Ii
)/τ)−1

}
(A.29)

Equivalently:
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

Case 1: if 1
exp (2c̃i/τ)−1

≤ 1
ñi

then γ̃i=max

{
0,1−

σx̃i
σũi
τ

√
n+1

exp(2ki/τ)−1

}
Case 2: if 1

exp (2c̃i/τ)−1
− 1

exp (2(ki+c̃i)/τ)−1
< 1
ñi
< 1

exp (2c̃i/τ)−1
then

γ̃i=max

{
0,1−

σx̃i
σũi
τ

√
exp(2c̃i/τ)−1

ñi

(
exp (c̃i/τ)√

exp (2ki/τ)−1
−
√
n+1−exp(2c̃i/τ)

)}
Case 3: if 1

exp (2c̃i/τ)−1
− 1

exp (2(ki+c̃i)/τ)−1
≥ 1
n

then γ̃i=max

{
0,1−

σx̃i
σũi
τ

√
1

exp(2(ki+c̃i)/τ)−1

}
(A.30)

A.5 Proof of Lemma I.4

I am after the changes to the unconditional expected utility of trader j participating

in stock-picking strategy i for a fixed γ̃i across the three information equilibria. I rely

on the derivations in Appendix A.3 in the following.

Fully-Uninformed Equilibrium From equation (A.14)

EU2
I∗j

=
1

1 +
(σ2
θ̃i

+σ2
ũi

)σ2
x̃i

(1−γ̃i)2τ2

exp

(
− 2W0

τ
+

2k̃i
τ

)
⇓

∂EU2
I∗j

∂c̃i
= 0⇔

∂EUI∗j
∂c̃i

= 0

(A.31)

Fully-Informed Equilibrium From equation (A.25)

EU2
I∗j

=
1

1 + ñim̃i

exp

(
− 2W0

τ
+

2c̃i
τ

+
2k̃i
τ

)
⇓

∂EU2
I∗j

∂c̃i
> 0⇔

∂EU2
I∗j

∂c̃i
< 0

(A.32)
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Interior Equilibrium From equation (A.33)

EU2
I∗j

= 1

1+

(
σx̃i

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
exp (

c̃i
τ )−exp (-

c̃i
τ )

)
+τ exp (-

c̃i
τ )σ−1

ũi
−γ̃iτ exp (-

c̃i
τ )σ−1

ũi

)−2

σ2
x̃i

exp(2c̃i/τ)−1
ñi

×exp

(
− 2W0

τ +
2k̃i
τ

)
⇓

= 1

1+
σ2
x̃i
ñi

(
σx̃i

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
exp (

c̃i
τ )−exp (-

c̃i
τ )

)
+τ exp (-

c̃i
τ )σ−1

ũi
−γ̃iτ exp (-

c̃i
τ )σ−1

ũi

)−2(
1√

exp(2c̃i/τ)−1

)−2

×exp

(
− 2W0

τ +
2k̃i
τ

)
⇓

= 1

1+
σ2
x̃i
ñi

(
σx̃i

√
exp(−2c̃i/τ)

(
1+ 1

ñi

)
− 1
ñi

+(1−γ̃i)τ exp (-
c̃i
τ )σ−1

ũi

)−2

×exp

(
− 2W0

τ +
2k̃i
τ

)
⇓
∂EU2

I∗j

∂c̃i
< 0⇔

∂EU2
I∗j

∂c̃i
> 0

(A.33)

A.6 Asset Pricing Implications of Changing Information and

Participation Costs

A.6.1 Unconditional Expected Returns

The unconditional expected return for the any stock picking strategy is given by

equation (A.7)

E[ṽi − P̃i] = 0 (A.34)

The unconditional expected return for the market index is given by equation (A.6)

E[ṽ1 − P̃1] =

(
λ̃1τ

σ2
ũ1

+
(1− λ̃1)τ

σ2
ṽ1|P̃1

)−1

(A.35)
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I apply the three cases of information equilibria, as specified by the conditions of

equation (1.22) for i = 1 (γ̃i = 0):
If c̃i ≥ τ

2
log(1 + ñi) then λ̃i = 0

If fi(γ̃i, λ̃i) = 1 then λ̃i =
σũiσx̃i
(1−γ̃i)τ

√
1

exp(2c̃i/τ)−1
− 1

ñi

If c̃i ≤ τ
2

log(1 +
σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) then λ̃i = 1

(A.36)

and equation (1.30)

Fully-Uninformed Equilibrium: σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi

Interior Equilibrium: σ2
ṽi|P̃i

= exp

(
2c̃i
τ

)
σ2
ũi

Fully-Informed Equilibrium: σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1+m̃i
= σ2

θ̃i
+ σ2

ũi
−

σ2
θ̃i

1+
σ4
ũi
σ2
x̃i

τ2σ2
θ̃i

(1−γ̃i)2

(A.37)

It’s immediate that for the first and third cases, changes to information costs have no

effect on passive share. For the interior equilibrium (second case):

∂E[ṽ1 − P̃1]

∂c̃1

= −
(
λ̃1τ

σ2
ũ1

+
(1− λ̃1)τ

σ2
ṽ1|P̃1

)−2
∂

∂c̃1

(
λ̃1τ

σ2
ũ1

+
(1− λ̃1)τ

σ2
ṽ1|P̃1

)
=−

(
λ̃1τ

σ2
ũ1

+
(1−λ̃1)τ
σ2
ṽ1|P̃1

)−2(
τ
∂λ1
∂c̃1

(
1

σ2
ũ1

− 1

σ2
ṽ1|P̃1

)
− 2
τ

(1−λ̃1) exp

(
− 2c̃i

τ

)
σ−2
ũi
τ

)
> 0

(A.38)

Where the inequality follows from the fact that in an interior equilibrium 1
σ2
ũ1

> 1
σ2
ṽ1|P̃1

and ∂λ1
∂c̃1

< 0

A.6.2 Unconditional Return Variances

The unconditional variance of returns is given by equation (A.8):

Var(ṽi − P̃i) = Var(ṽi − P̃i|P̃i) + Var(E[ṽi|P̃i]− P̃i)

= σ2
ṽi|P̃i

+

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

(A.39)
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I rely on equations (1.30),(A.20),and (A.23) to derive the unconditional variance for

both the index and stock picking strategies across three levels of equilibrium.

A.6.2.1 Unconditional Variance of Index Asset

Fully-Uninformed Equilibrium

Var(ṽ1 − P̃1) =σ2
ṽ1|P̃1

+

(
(1−γ1)λ̃1τ

σ2
ũ1

+
(1−γ1)(1−λ̃1)τ

σ2
ṽ1|P̃1

)−2

Var

(
x̃1− (1−γ1)λ̃1τ

σ2
ũ1

(θ̃1−E[ṽ1|P̃1])

)
= σ2

θ̃1
+ σ2

ũ1
+

(
τ

σ2
θ̃1

+ σ2
ũ1

)−2

σ2
x̃1

⇓
∂Var(ṽ1 − P̃1)

∂c̃1

= 0

(A.40)

Interior Equilibrium By equations (A.6) and (A.38):

Var(ṽ1 − P̃1) = σ2
ṽ1|P̃1

+

(
λ̃1τ

σ2
ũ1

+
(1− λ̃1)τ

σ2
ṽ1|P̃1

)−2

Var

(
x̃1 −

λ̃1τ

σ2
ũ1

(θ̃i − E[ṽ1|P̃1])

)
= exp

(
2c̃1

τ

)
σ2
ũi

+ E[ṽ1 − P̃1]2σ2
x̃1

exp(2c̃1/τ)− 1

n1

⇓
∂Var(ṽ1 − P̃1)

∂c̃1

> 0

(A.41)
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Fully-Informed Equilibrium

Var(ṽ1 − P̃1) =σ2
ṽ1|P̃1

+

(
(1−γ1)λ̃1τ

σ2
ũ1

+
(1−γ1)(1−λ̃1)τ

σ2
ṽ1|P̃1

)−2

Var

(
x̃1− (1−γ1)λ̃1τ

σ2
ũ1

(θ̃1−E[ṽ1|P̃1])

)
= σ2

θ̃i
+ σ2

ũi
−

σ2
θ̃i

1 + m̃i

+

(
τ

σ2
θ̃1

+ σ2
ũ1

)−2

σ2
x̃i

(
m̃i

1 + m̃i

)
= σ2

θ̃i
+ σ2

ũi
−

σ2
θ̃i

1 +
σ4
ũi
σ2
x̃i

τ2σ2
θ̃i

+

(
τ

σ2
θ̃1

+ σ2
ũ1

)−2

σ2
x̃i

(
1

1 +
τ2σ2

θ̃i

σ4
ũi
σ2
x̃i

)

⇓
∂Var(ṽ1 − P̃1)

∂c̃1

= 0

(A.42)

A.6.3 Unconditional Variance of Stock Picking Strategies

Fully-Uninformed Equilibrium

Var(ṽi − P̃i) =σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

)
= σ2

θ̃i
+ σ2

ũi
+

(
τ(1− γ̃i)
σ2
θ̃i

+ σ2
ũi

)−2

σ2
x̃i

⇓

∂Var(ṽi − P̃i)
∂c̃i

= 2

(
τ(1− γ̃i)
σ2
θ̃i

+ σ2
ũi

)−3

σ2
x̃i

∂γ̃i
∂c̃i

= 0

∂Var(ṽi − P̃i)
∂k̃i

= 2

(
τ(1− γ̃i)
σ2
θ̃i

+ σ2
ũi

)−3

σ2
x̃i

∂γ̃i

∂k̃i

≥ 0

(A.43)
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Interior Equilibrium

Var(ṽi−P̃i)=σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

)
=exp

(
2c̃i
τ

)
σ2
ũi

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

σ2
x̃i

exp(2c̃i/τ)−1

ñi

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

σ2
x̃i

exp(2c̃i/τ)−1

ñi

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
(1−γ̃i)λ̃iτ

(
1

σ2
ũi

− 1

σ2
ṽi|P̃i

)
+

(1−γ̃i)τ
σ2
ṽi|P̃i

)−2

σ2
x̃i

exp(2c̃i/τ)−1

ñi

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
σũiσx̃i

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
1

σ2
ũi

− 1

exp (2c̃i/τ)σ
2
ũi

)√
ñi

exp(2c̃i/τ)−1

+σx̃iσũi

√
exp(2c̃i/τ)−1

ñi

(
exp (c̃i/τ)√
exp (2k̃i/τ)−1

−
√
n+1−exp(2c̃i/τ)

)
× 1

exp (2c̃i/τ)σ
2
ũi

√
ñi

exp(2c̃i/τ)−1

)−2

σ2
x̃i

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
σx̃i
σũi

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
exp (2c̃i/τ)−1

exp (2c̃i/τ)

)√
ñi

exp(2c̃i/τ)−1

+
σx̃i
σũi

(
1

exp (c̃i/τ)

√
exp (2k̃i/τ)−1

−
√
n+1−exp(2c̃i/τ)

exp (2c̃i/τ)

))−2

σ2
x̃i

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
σx̃i
σũi

√
1− exp (2c̃i/τ)−1

ñi

(
1

exp (2c̃i/τ)

)
√
ñi

+
σx̃i
σũi

(
1

exp (c̃i/τ)

√
exp (2k̃i/τ)−1

−
√
n+1−exp(2c̃i/τ)

exp (2c̃i/τ)

))−2

σ2
x̃i

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
σx̃i
σũi

√
n+1−exp(2c̃i/τ)

exp (2c̃i/τ)
+
σx̃i
σũi

(
1

exp (c̃i/τ)

√
exp (2k̃i/τ)−1

−
√
n+1−exp(2c̃i/τ)

exp (2c̃i/τ)

))−2

σ2
x̃i

=exp

(
2c̃i
τ

)
σ2
ũi

+

(
σx̃i
σũi

1

exp (c̃i/τ)

√
exp (2k̃i/τ)−1

)−2

σ2
x̃i

=exp

(
2c̃i
τ

)
σ2
ũi

+σ2
ũi

exp

(
2c̃i
τ

)(
exp

(
2k̃i
τ

)
−1

)
=σ2

ũi
exp

(
2(c̃i+k̃i)

τ

)
⇓

∂Var(ṽi−P̃i)
∂c̃i

>0 and
∂Var(ṽi−P̃i)

∂k̃i
>0
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Fully-Informed Equilibrium

Var(ṽi − P̃i) =σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

)
= σ2

θ̃i
+ σ2

ũi
−

σ2
θ̃i

1 +
σ4
ũi
σ2
x̃i

τ2σ2
θ̃i

(1−γ̃i)2

+

(
(1− γ̃i)τ̃
σ2
ũi

)−2

σ2
x̃i

(
m̃i

1 + m̃i

)

= σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1 +
σ4
ũi
σ2
x̃i

τ2σ2
θ̃i

(1−γ̃i)2

+

(
(1− γ̃i)τ
σ2
ũi

)−2

σ2
x̃i

(
1 +

τ 2σ2
θ̃i

(1− γ̃i)2

σ4
ũi
σ2
x̃i

)−1

⇓
∂Var(ṽi − P̃i)

∂c̃i
> 0 and

∂Var(ṽi − P̃i)
∂k̃i

≥ 0

(A.44)

The derivative signs follow from the fact that all derivatives functions are positive,

therefore the direction of the derivation is entirely determined by the sign on ∂γ̃i
∂c̃i

and
∂γ̃i
∂k̃i
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A.7 Participation Levels with the Index Asset

I estimate the ratio of participating to not participating in asset i across three levels

of information equilibria. The utility ratio is provided by equation (1.23):

EUI∗jR∗j
EUIjRj

=

√√√√ σ2
ṽi|I∗ji

σ2
ṽi−P̃i

exp

(
1I∗ji

c̃i

τ
+
k̃i
τ
− E[ṽi − P̃i]2

2σ2
ṽi−P̃i

)
(A.45)

where for various equilibrium levels, the ratio is given by:

Fully-Uninformed Equilibrium:

√
σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ
− E[ṽi−P̃i]2

2σ2
ṽi−P̃i

)
Interior Equilibrium:

√
σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ
− E[ṽi−P̃i]2

2σ2
ṽi−P̃i

)
Fully-Informed Equilibrium:

√
σ2
ũi

σ2
ṽi−P̃i

exp

(
c̃i
τ

+ k̃i
τ
− E[ṽi−P̃i]2

2σ2
ṽi−P̃i

) (A.46)

By equation (A.5), the risk premium for each asset is given by:

E[ṽi − P̃i] = X̃i

(
(1− γ̃i)λ̃iτ

σ2
ũi

+
(1− γ̃i)(1− λ̃i)τ

σ2
ṽi|P̃i

)−1

(A.47)

By the law of total variance we have:

Var(ṽi − P̃i) =σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

)
(A.48)

which for assets with non-zero supply equals

Var(ṽi − P̃i) = σ2
ṽi|P̃i

+
E[ṽi − P̃i]2

X̃2
i

Var

(
x̃i −

(1− γ̃i)λ̃iτ
σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

(A.49)

I apply the three cases of information equilibria, as specified by the conditions of
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equation (1.22):

Fully-Uninformed Equilibrium: Var

(
x̃i − (1−γ̃i)λ̃iτ

σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

= σ2
x̃i

Interior Equilibrium: Var

(
x̃i − (1−γ̃i)λ̃iτ

σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

= σ2
x̃i

exp(2c̃i/τ)−1
ñi

Fully-Informed Equilibrium: Var

(
x̃i − (1−γ̃i)λ̃iτ

σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

= σ2
x̃i

(
m̃i

1+m̃i

)
(A.50)


Fully-Uninformed Equilibrium: c̃i ≥ τ

2
log(1 + ñi) and λ̃i = 0

Interior Equilibrium: (1− γ̃i)λ̃iτ = σũiσx̃i

√
1

exp(2c̃i/τ)−1
− 1

ñi

Fully-Informed Equilibrium: c̃i ≤ τ
2

log(1 +
σ2
ũi
σ2
x̃i

τ2(1−γ̃i)2ñi+σ2
ũi
σ2
x̃i

ñi) and λ̃i = 1

(A.51)

and equation (1.30)
Fully-Uninformed Equilibrium: σ2

ṽi|P̃i
= σ2

θ̃i
+ σ2

ũi

Interior Equilibrium: σ2
ṽi|P̃i

= exp

(
2c̃i
τ

)
σ2
ũi

Fully-Informed Equilibrium: σ2
ṽi|P̃i

= σ2
θ̃i

+ σ2
ũi
−

σ2
θ̃i

1+m̃i

(A.52)

where

mi =

(
σ2
ũi

τ(1− γ̃i)λ̃i

)2σ2
x̃i

σ2
θ̃i

(A.53)

ni =
σ2
θ̃i

σ2
ũi

(A.54)

Therefore we have

Fully-Uninformed Equilibrium: (1−γ̃i)λ̃iτ
σ2
ũi

+ (1−γ̃i)(1−λ̃i)τ
σ2
ṽi|P̃i

= (1−γ̃i)τ
σ2
θ̃i

+σ2
ũi

Interior Equilibrium: (1−γ̃i)λ̃iτ
σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

=
σx̃i
σũi

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
1−exp(−2c̃i/τ)

)
+ (1−γ̃i)τ

exp(2c̃i/τ)σ2
ũi

Fully-Informed Equilibrium: (1−γ̃i)λ̃iτ
σ2
ũi

+ (1−γ̃i)(1−λ̃i)τ
σ2
ṽi|P̃i

= (1−γ̃i)τ
σ2
ũi
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Armed with the above, we can write the ratio for the utility change due to partici-

pation for any asset with non-zero supply as follows:

Fully-Uninformed Equilibrium:

EUI∗jR∗j
EUIjRj

=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ
− E[ṽi − P̃i]2

2σ2
ṽi−P̃i

)

=

√√√√√√
σ2
ṽi|P̃i

σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+ (1−γ̃i)(1−λ̃i)τ
σ2
ṽi|P̃i

)−2

Var

(
x̃i − (1−γ̃i)λ̃iτ

σ2
ũi

(θ̃i − E[ṽi|P̃i])
)

× exp

(
k̃i
τ
− E[ṽi − P̃i]2

2σ2
ṽi−P̃i

)

=

√√√√√ σ2
θ̃i

+ σ2
ũi

σ2
θ̃i

+ σ2
ũi

+
(σ2
θ̃i

+σ2
ũi

)2

(1−γ̃i)2τ2 σ
2
x̃i

exp

(
k̃i
τ
− E[ṽi − P̃i]2

2
(
σ2
ṽi|P̃i

+ E[ṽi−P̃i]2
X̃2
i

σ2
x̃i

))

=

√√√√√ σ2
θ̃i

+ σ2
ũi

σ2
θ̃i

+ σ2
ũi

+
(σ2
θ̃i

+σ2
ũi

)2

(1−γ̃i)2τ2 σ
2
x̃i

exp

(
k̃i
τ
− 1/2

σ2
ṽi|P̃i

E[ṽi−P̃i]2
+

σ2
x̃i

X̃2
i

)

=

√√√√√ σ2
θ̃i

+ σ2
ũi

σ2
θ̃i

+ σ2
ũi

+
(σ2
θ̃i

+σ2
ũi

)2

(1−γ̃i)2τ2 σ
2
x̃i

exp

(
k̃i
τ
− 1/2

(1−γ̃i)2τ2
X̃2
i (σ2

θ̃i
+σ2

ũi
)

+
σ2
x̃i

X̃2
i

)

By the chain rule both the square root term and the exponential term are decreasing

in γ̃i implying that the ratio of expected utilities is decreasing as well.
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Interior Equilibrium:

EUI∗jR∗j
EUIjRj

=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ
−E[ṽi−P̃i]

2

2σ2
ṽi−P̃i

)
=

√√√√√√√√
σ2
ṽi|P̃i

σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

)
×exp

(
k̃i
τ
−E[ṽi−P̃i]

2

2σ2
ṽi−P̃i

)
=
√√√√√√

1

1+σ2
x̃i

exp(2c̃i/τ)−1

ñi
exp(−2c̃i/τ)σ−2

ũi

(
σx̃i
σũi

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
1−exp(−2c̃i/τ)

)
+

(1−γ̃i)τ
exp(2c̃i/τ)σ

2
ũi

)−2

×exp

(
k̃i
τ
− E[ṽi−P̃i]

2

2

(
σ2
ṽi|P̃i

+
E[ṽi−P̃i]2

X̃2
i

σ2
x̃i

exp(2c̃i/τ)−1
ñi

))
=
√√√√√√

1

1+σ2
x̃i

exp(2c̃i/τ)−1

ñi
exp(−2c̃i/τ)σ−2

ũi

(
σx̃i
σũi

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
1−exp(−2c̃i/τ)

)
+

(1−γ̃i)τ
exp(2c̃i/τ)σ

2
ũi

)−2

×exp

(
k̃i
τ
− 1/2

σ2
ṽi|P̃i

E[ṽi−P̃i]−2+
σ2
x̃i
X̃2
i

exp(2c̃i/τ)−1
ñi

)
=
√√√√√√

1

1+σ2
x̃i

exp(2c̃i/τ)−1

ñi
exp(−2c̃i/τ)σ−2

ũi

(
σx̃i
σũi

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
1−exp(−2c̃i/τ)

)
+

(1−γ̃i)τ
exp(2c̃i/τ)σ

2
ũi

)−2

×exp

(
k̃i
τ
− 1/2

exp(2c̃i/τ)σ
2
ũi

X̃2
i

(
σx̃i
σũi

√
1

exp(2c̃i/τ)−1
− 1
ñi

(
1−exp(−2c̃i/τ)

)
+

(1−γ̃i)τ
exp(2c̃i/τ)σ

2
ũi

)2

+
σ2x̃i
X̃2
i

exp(2c̃i/τ)−1

ñi

)

By the chain rule both the square root term and the exponential term are decreasing

in γ̃i implying that the ratio of expected utilities is decreasing as well.
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Fully-Informed Equilibrium:

EUI∗
j
R∗
j

EUIjRj
=

√√√√ σ2
ṽi|P̃i

σ2
ṽi−P̃i

exp

(
k̃i
τ

+
c̃i
τ
−E[ṽi−P̃i]

2

2σ2
ṽi−P̃i

)
=

√√√√√√√√
σ2
ṽi|P̃i

σ2
ṽi|P̃i

+

(
(1−γ̃i)λ̃iτ

σ2
ũi

+
(1−γ̃i)(1−λ̃i)τ

σ2
ṽi|P̃i

)−2

Var

(
x̃i−

(1−γ̃i)λ̃iτ
σ2
ũi

(θ̃i−E[ṽi|P̃i])

)×exp

(
k̃i
τ

+
c̃i
τ
−E[ṽi−P̃i]

2

2σ2
ṽi−P̃i

)

=
√√√√√√

1

1+

(
σ2
θ̃i

+σ2
ũi
−

σ2
θ̃i

1+m̃i

)−1 σ4
ũi

(1−γ̃i)2τ2
σ2
x̃i

(
m̃i

1+m̃i

)×exp

(
k̃i
τ

+
c̃i
τ
− E[ṽi−P̃i]

2

2

(
σ2
ṽi|P̃i

+
E[ṽi−P̃i]2

X̃2
i

σ2
x̃i

(
m̃i

1+m̃i

)))

=
√√√√√ 1

1+
m̃2
i

m̃i(σ
4
θ̃i

+σ2
θ̃i
σ2
ũi

)+σ2
θ̃i
σ2
ũi

×exp

(
k̃i
τ

+
c̃i
τ
− 1/2

σ2
ṽi|P̃i

E[ṽi−P̃i]−2+
σ2
x̃i
X̃2
i

(
m̃i

1+m̃i

))

=
√√√√√ 1

1+
m̃2
i

m̃i(σ
4
θ̃i

+σ2
θ̃i
σ2
ũi

)+σ2
θ̃i
σ2
ũi

×exp

(
k̃i
τ

+
c̃i
τ
− 1/2(

σ2
θ̃i

+σ2
ũi
−

σ2
θ̃i

1+m̃i

)
(1−γ̃i)2τ2

X̃2
i
σ4
ũi

+
σ2
x̃i
X̃2
i

(
m̃i

1+m̃i

))

=
√√√√√ 1

1+
m̃2
i

m̃i(σ
4
θ̃i

+σ2
θ̃i
σ2
ũi

)+σ2
θ̃i
σ2
ũi

×exp

(
k̃i
τ

+
c̃i
τ
− 1/2(

σ2
θ̃i

+σ2
ũi
−

σ2
θ̃i

1+m̃i

)
1

σ2
θ̃i
m̃i

σ2
x̃i
X̃2
i

+
σ2
x̃i
X̃2
i

(
m̃i

1+m̃i

))

=
√√√√√ 1

1+
m̃2
i

m̃i(σ
4
θ̃i

+σ2
θ̃i
σ2
ũi

)+σ2
θ̃i
σ2
ũi

×exp

(
k̃i
τ

+
c̃i
τ
− 1/2

σ2
x̃i
X̃2
i

(
1
m̃i

+ 1
ñim̃i

− 1
m̃i(1+m̃i)

+
m̃i

1+m̃i

))

=
√√√√√ 1

1+
m̃2
i

m̃i(σ
4
θ̃i

+σ2
θ̃i
σ2
ũi

)+σ2
θ̃i
σ2
ũi

×exp

(
k̃i
τ

+
c̃i
τ
− 1/2

σ2
x̃i
X̃2
i

ñim̃
2
i
+(ñi+1)m̃i+1

ñim̃
2
i
+ñim̃i

)

By the chain rule and the fact that ∂m̃i
∂γ̃i

> 0 both the square root term and the

exponential term are decreasing in γ̃i implying that the ratio of expected utilities is

decreasing as well.

A.8 Effects of Changing Information and Participation Costs

on the Original Assets

The following portfolio weights, as given by the coefficients on the corresponding

synthetic asset payoffs, map the synthetic assets with payoffs ṽ1, . . . , ṽN back to the
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original assets with payoffs v1, . . . , vN
If i = 1 : v1 =

X1σ2
θ1

Nq
ṽ1 +

X1σ2
θ1

N
ṽ2

If 1 < i < N : vi =
Xiσ

2
θi

Nq
ṽ1 −

∑i
l=2

Xiσ
2
θi

(N−l+2)(N−l+1)
ṽl +

Xiσ
2
θi

N−i+1
ṽi+1

If i = N : vN =
XNσ

2
θN

Nq
ṽ1 −

∑N
l=2

XNσ
2
θN

(N−l+2)(N−l+1)
ṽl

(A.55)

The coefficients on the synthetic payoffs above correspond to the portfolio weights

placed on each of the synthetic assets in order to arrive at the original asset. For each

original asset i, I label the portfolio weights for the synthetic assets as wi1, wi2, . . . , wiN .

According to equation (A.55), the weight placed on the index portfolio for each original

asset i, i.e. its market beta, is:

wi1 =
Xiσ

2
θi

Nq
(A.56)

where q defines the relationship between expected supply and payoff uncertainty, and

is assumed to be constant across assets. Therefore the original assets’ market betas are

increasing in their supply and in fundamental uncertainty and are decreasing in the

number of risky assets. All original assets i < N are negatively exposed to synthetic

assets 1 < j < i+1 and are positively exposed to synthetic asset j = i+1. Original asset

i = N is negatively exposed to all synthetic assets j > 1. For directional derivations

of the effects of information and participation costs on variances and covariances only

the signs on the portfolio weights matter, not the magnitudes.

Utilizing the notation above and the law of one price I can define various measures

of expected returns, variances and covariances:

1. The variance of the return of the original asset i will be equal to:

Var(vi − Pi) =
N∑
j=1

w2
ijVar(ṽj − P̃j) (A.57)

2. The expected return of original asset i will be equal to:

E[vi − Pi] =
N∑
j=1

wijE[ṽj − P̃j]

= wi1E[ṽ1 − P̃1]

(A.58)
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3. The covariance of the return of original asset m with original asset n

Cov(vm − pm, vn − pn) =
N∑
j=1

wmjwnjVar(ṽj − P̃j) (A.59)

4. The covariance of the return of original asset i with the market

Cov(vi − pi, ṽ1 − p̃1) = wi1Var(ṽ1 − P̃1) (A.60)

From the definitions above, the mapping from the synthetic assets to the original assets

as given by equation (A.55), and the properties of expected returns and variances as

highlighted in Lemmas I.5 and I.6, the following return properties arise.

Lemma A.1 (Effects of Information and Participation Costs on Return Properties).

The effects of stock picking costs on the return properties of the original assets are as

follows:

1. Expected returns: not affected by changes to stock picking information costs.

2. Return variances: change in the variance of a synthetic asset as specified by

Lemma I.6, affects the variances of ALL original assets in the same direction.

3. Return covariances between original assets m and n, where m < n:

• If 1 < m < n ≤ N : changes in information costs for synthetic assets

1 < j < m + 1 will have the same effect directionally as the change in

variance as specified by Lemma I.6. Change in the information cost for

synthetic asset j = m + 1 will have the opposite effect directionally as the

change in variance specified by Lemma I.6. Change in information costs for

synthetic assets j > m+ 1 will have no effect on the covariance.

• If m = 1: change in the information cost for synthetic asset j = 2 will

have the opposite effect directionally as the change in variance specified by

Lemma I.6. Change in information costs for synthetic assets j > 2 will have

no effect on the covariance.

The effects of index information costs on the return properties of the original assets

are as follows:
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1. Expected returns: proportional to the change in the expected return for the index

asset as specified by Lemma I.5 for ALL original assets. Coefficient of propor-

tionality is given by the original asset’s weight in the market index as specified by

equation (A.56).

2. Return variances: change in the variance of the index asset as specified by Lemma

I.6, affects the variances of ALL original assets in the same direction.

3. Return covariances: change in the variance of the index asset as specified by

Lemma I.6, affects ALL of the pair-by-pair covariances of the original assets in

the same direction.

The effects of stock picking participation costs on the return properties of the original

assets are as follows:

1. Expected returns: not affected by changes to stock-picking participation costs.

2. Return variances: change in the variance of the synthetic asset as specified by

Lemma I.6, affects the variances of ALL original assets in the same direction.

3. Return covariances between original assets m and n, where m < n:

• If 1 < m < n ≤ N : changes in participation costs for synthetic assets

1 < j < m + 1 will have the same effect directionally as the change in

variance as specified by Lemma I.6. Change in the participation cost for

synthetic asset j = m + 1 will have the opposite effect directionally as the

change in variance specified by Lemma I.6. Change in participation costs

for synthetic assets j > m+ 1 will have no effect on the covariance.

• If m = 1: change in the participation cost for synthetic asset j = 2 will

have the opposite effect directionally as the change in variance specified by

Lemma I.6. Change in participation costs for synthetic assets j > 2 will

have no effect on the covariance.

A.9 Lemma A.2 with Proof

Lemma A.2 (Reducing Correlated Fundamentals to the Diagonal Case). Assume that

Σu = σ2
u×IN and Σθ is positive definite. Using the eigen-decomposition of Σθ, the payoff

space can be re-spanned with portfolios of the underlying securities whose fundamental

and noise payoffs are orthogonal.
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Consider the eigen-decomposition of the fundamental payoff matrix:

Σθ = QθΛθQ
′
θ (A.61)

Since Σθ is a covariance matrix and is thus symmetric, such a decomposition exists

where Λθ = diag(λ1, . . . , λN) contains the eigenvalues of the Σθ and Qθ = [q1, . . . ,qN]

contains the corresponding weights on the assets underlying the variance-covariance

matrix. The eigen-decomposition decomposes the N potentially correlated assets into

N orthogonal portfolios, which span the original asset space. Any portfolio wi of the

original assets can be replicated using portfolio wo of the orthogonal assets as follows:

wi = Qθwo ⇒ Q′θwi = wo (A.62)

since Q′θQθ = IN under the original decomposition. I can thus restate the original

problem in terms of the orthogonal assets. Returns are governed by:

Q′θv = Q′θθ +Q′θu (A.63)

Distributional assumptions are(
Q′θθ

Q′θu

)
∼ N

[(
Q′θµθ

0

)
,

(
Q′θΣθQθ 0

0 Q′θΣuQθ

)]
(A.64)

Renaming the original variables to have subscripts “o” for their orthogonal versions,

under the assumption that the noise matrix has the form Σu = σ2
uIN and by the

eigen-value decomposition, I have:(
θo

uo

)
∼ N

[(
µθo

0

)
,

(
Λθ 0

0 Σu

)]
(A.65)

where Λθ and Σu are diagonal with

vo = θo + uo (A.66)

The aggregate supply of the orthogonal portfolios, Xo is given by:

QθXo = X ⇒ Xo = Q′θX (A.67)
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Therefore, I can restate the problem with correlated fundamentals in terms of assets,

which have uncorrelated fundamentals and noise payoffs.
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APPENDIX B

Quants: Derivations and Proofs

B.1 Proof of Lemma II.1

We conjecture that the DI’s demand and MM’s price functions are governed by Eq.
(2.5) and (2.6). Given rational expectations, the DI’s problem simplifies to:

xd = arg max
x̃

E[x̃(v − P1)|sd]

= arg max
x̃

E[x̃(v − µ1 − λ1ω1)|sd]

= arg max
x̃

E[x̃(v − µ1 − λ1(x̃+ z))|sd]

= arg max
x̃

E[x̃(v − µ1 − λ1z)− λ1x̃
2|sd]

= arg max
x̃

{
x̃(E[v|sd]− µ1)− λ1x̃

2
}

=
E[v|sd]− µ1

2λ1

=
P0(1− φd) + sdφd − µ1

2λ1

=
P0(1− φd)− µ1

2λ1

+
φd
2λ1

sd

≡ αd1 + βd1sd

(B.1)
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Similarly, the market-maker’s problem becomes

P1(ω1) = E[v|ω1]

= E[v|xd + z]

= E[v|αd1 + βd1(v + ed) + z]

= P0 +
βd1σ

2
v

β2
d1(σ2

v + σ2
ed

) + σ2
z

(ω1 − αd1 − βd1P0)

= P0 −
βd1σ

2
v(αd1 + βd1P0)

β2
d1(σ2

v + σ2
ed

) + σ2
z

+
βd1σ

2
v

β2
d1(σ2

v + σ2
ed

) + σ2
z

ω1

≡ µ1 + λ1ω1

(B.2)

We first solve for λb utilizing Eq. (B.1) and (B.2). From Eq. (B.1):

βd1 =
φd
2λ1

⇓
1

λ1

=
2βd1

φd

(B.3)

From Eq. (B.2)

λ1 =
βd1σ

2
v

β2
d1(σ2

v + σ2
ed

) + σ2
z

⇓
1

λ1

=
βd1

φd
+

η

βd1

(B.4)

Setting Eq. (B.3) into (B.4) equal

βd1

φd
+

η

βd1

=
2βd1

φd
⇓

η

βd1

=
βd1

φd
⇓

βd1 = ±
√
ηφd

⇓

λ1 = ±1

2

√
φd
η
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We will focus on economically meaningful equilibria, i.e. strategies that buy more with
a stronger signal (βd1 > 0) and price functions that charge more with greater demand
(λ1 > 0). Therefore:

βd1 =
√
ηφd λ1 =

1

2

√
φd
η

Next we solve for αd1 and µ1. Utilizing Eq. (B.1)

αd1 =
P0(1− φd)− µ1

2λ1

⇓
µ1 = P0(1− φd)− 2λ1αd1

Substituting into Eq. (B.2)

P0(1− φd)− 2λ1αd1 = P0 −
βd1σ

2
v(αd1 + βd1P0)

β2
d1(σ2

v + σ2
ed

) + σ2
z

⇓

P0φd + 2λ1αd1 =
βd1σ

2
v(αd1 + βd1P0)

β2
d1(σ2

v + σ2
ed

) + σ2
z

⇓

P0φd + 2λ1αd1 =
βd1(αd1 + βd1P0)

β2
d1/φd + η

⇓

P0φd + 2λ1αd1 =
βd1(αd1 + βd1P0)

2η

⇓
2P0ηφd + 4λ1ηαd1 = βd1αd1 + β2

d1P0

⇓
P0ηφd = (βd1 − 4λ1η)αd1

⇓
P0ηφd = −

√
ηφdαd1

⇓
αd1 = −P0

√
ηφd

⇓
µ1 = P0
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The solution coefficients are:

µ1 = P0

λ1 =
1

2

√
φd
η

αd1 = −P0

√
ηφd

βd1 =
√
ηφd

(B.5)

B.2 Derivation of Backtest: Eq. (2.9)

The QI feeds the DI’s trading strategy and the MM’s pricing rule from Economy 1
given by Eq. (2.7) and (2.8) into her optimization problem:

xb = arg max
x̃b

E
[
x̃b

(
v − P1

(
xd1 + z + x̃b

))
|sq
]

= arg max
x̃b

E

[
x̃b

(
v − P0 −

1

2

√
φd
η

(
xd1 + z + x̃b

))
|sq

]

= arg max
x̃b

E

[
x̃b

(
v − P0 −

1

2

√
φd
η

(√
φdη(sd − P0) + z + x̃b

))
|sq

]

= arg max
x̃b

E

[
x̃b

(
v − P0 −

1

2

√
φd
η

(√
φdη(v + ed − P0) + z + x̃b

))
|sq

]

= arg max
x̃b

(
E[v|sq]− P0 −

φd
2

(
E[v|sq] + E[ed|sq]− P0

))
x̃b −

1

2

√
φd
η
x̃2
b

= arg max
x̃b

(
2− φd

2
E[v|sq]−

2− φd
2

P0 −
φd
2
E[ed|sq]

)
x̃b −

1

2

√
φd
η
x̃2
b

=

√
η

φd

(
2− φd

2
E[v|sq]−

2− φd
2

P0 −
φd
2
E[ed|sq]

)
(...note that E[v|sq ]=(1−φq)P0+φqsq and E[ed|sq ]=E[ed|v+eq ]=σedeq/σ

2
sq (sq−P0)

=ρσedσeq/σ
2
sq

(sq−P0)=ρ(σed/σsq )(σeq/σsq )(sq−P0)=ρ

√
φq(1−φd)(1−φq)

φd
(sq−P0)... )

=

√
η

φd

(
2− φd

2

(
− φqP0 + φqsq

)
− ρ

2

√
φdφq(1− φd)(1− φq)(sq − P0)

)

=
1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
(sd − P0)
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B.3 Proof of Lemma II.2

B.3.1 Economy 2. Fully-strategic Quant, γ = 0

This is the case of two strategic speculators i ∈ {d, q}. The problem is fully sym-
metric for both strategic speculators, therefore we solve it from the QI’s perspective
and reverse notation for the DI. In what follows, note that:

E[v|sq] = (1− φq)P0 + φqsq

E[v|sd] = (1− φd)P0 + φdsd

E[ed|sq] = ρ

√
φq(1− φd)(1− φq)

φd
(sq − P0)

≡ νq(sq − P0)

E[eq|sd] = ρ

√
φd(1− φd)(1− φq)

φq
(sd − P0)

≡ νd(sd − P0)

The QI chooses demand xq to maximize the following expectation:

xq2 = arg max
x̃q

E[x̃q(v − P2)|sq] (B.6)

For both speculators we conjecture a demand function linear in the signal:

xi2(si) = αi2 + βi2si (B.7)

Noise traders supply z shares and market-makers set prices according to the aggregate
order flow:

ω2 = xd2 + xq2 + z (B.8)

The market makers in the economy are competitive and risk-neutral resulting and are
assumed to have a pricing rule linear in the aggregate order flow:

P2(ω2) = E[v|ω2]

= µ2 + λ2ω2

(B.9)
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We first consider the QI’s problem:

xq2 = arg max
x̃q2

E[x̃q2(v − P2(ω2))|sq]

= arg max
x̃q2

E[x̃q2(v − µ2 − λ2ω2)|sq]

= arg max
x̃q2

E[x̃q2(v − µ2 − λ2(xd2 + x̃q2 + z))|sq]

= arg max
x̃q2

E[x̃q2(v − µ2 − λ2xd2 − λ2z)− λ2x̃
2
q2|sq]

= arg max
x̃q2

{x̃q2(E[v|sq]− µ2 − λ2E[xd2|sq])− λx̃2
q2}

=
E[v|sq]− µ2 − λ2E[xd2|sq]

2λ2

=
E[v|sq]− µ2 − λ2αd2 − λ2βd2E[sd|sq]

2λ2

=
E[v|sq]− µ2 − λ2αd2 − λ2βd2E[v + ed|sq]

2λ2

=
(1− λ2βd2)E[v|sq]− µ2 − λ2αd2 − λ2βd2E[ed|sq]

2λ2

=
(1− λ2βd2)

(
(1− φq)P0 + φqsq

)
− µ2 − λ2αd2 − λ2βd2

(
νqsq − νqP0)

)
2λ2

=
(1− λ2βd2)(1− φq)P0

2λ2

− µ2

2λ2

− αd2

2
+
βd2νqP0

2
+

(1− λ2βd2)φq − λ2βd2νq
2λ2

sq

=
(1− λ2βd2)(1− φq)P0

2λ2

− µ2

2λ2

− αd2

2
+
βd2νqP0

2
+

(
φq
2λ2

− φqβd2

2
− νqβd2

2

)
sq

≡ αq2 + βq2sq
(B.10)

Similarly, for the DI:

xd2 = arg max
x̃d2

E[x̃d2(v − P2(ω2))|sd]

=
(1− λ2βq2)(1− φd)P0

2λ2

− µ2

2λ2

− αq2
2

+
βq2νdP0

2
+

(
φd
2λ2

− φdβq2
2
− νdβq2

2

)
sd

≡ αd2 + βd2sd
(B.11)
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Finally, the competitive market maker sets prices according to:

P2(ω2) = E[v|ω2]

= E[v|xd2 + xq2 + z]

= E[v|αd2 + βd2(v + ed) + αq2 + βq2(v + eq) + z]

=P0+
(βd2+βq2)σ

2
v

(βd2+βq2)
2σ2v+β

2
d2
σ2ed

+β2q2σ
2
eq+2βd2βq2σedeq

+σ2z
(ω2−αd2−αq2−(βd2+βq2)P0)

=P0−
(βd2+βq2)σ

2
v(αd2+αq2+(βd2+βq2)P0)

(βd2+βq2)
2σ2v+β

2
d2
σ2ed

+β2q2σ
2
eq+2βd2βq2σedeq

+σ2z
+

(βd2+βq2)σ
2
v

(βd2+βq2)
2σ2v+β

2
d2
σ2ed

+β2q2σ
2
eq+2βd2βq2σedeq

+σ2z
ω2

≡ µ2 + λ2ω2

(B.12)

We have six equations and six unknowns:

µ2 = P0 −
(βd2 + βq2)σ2

v(αd2 + αq2 + (βd2 + βq2)P0)

(βd2 + βq2)2σ2
v + β2

d2σ
2
ed

+ β2
q2σ

2
eq + 2βd2βq2σedeq + σ2

z

(B.13)

λ2 =
(βd2 + βq2)σ2

v

(βd2 + βq2)2σ2
v + β2

d2σ
2
ed

+ β2
q2σ

2
eq + 2βd2βq2σedeq + σ2

z(
note that σedeq/σ

2
v = ρ(σed/σv)(σeq/σv) = ρ

√
(1− φd)(1− φq)

φdφq
= νq/φq = νd/φd

)
⇓

1

λ2

=βd2+βq2+
β2d2

βd2+βq2

1−φd
φd

+
β2q2

βd2+βq2

1−φq
φq

+
2βd2βq2
βd2+βq2

νq
φq

+ η
βd2+βq2

(B.14)

αd2 =
(1− λ2βq2)(1− φd)P0

2λ2

− µ2

2λ2

− αq2
2

+
βq2νdP0

2
(B.15)

βd2 =
φd
2λ2

− φdβq2
2
− νdβq2

2
(B.16)

αq2 =
(1− λ2βd2)(1− φq)P0

2λ2

− µ2

2λ2

− αd2

2
+
βd2νqP0

2
(B.17)

βq2 =
φq
2λ2

− φqβd2

2
− νqβd2

2
(B.18)

We first utilize the equations B.16 and B.18 to solve for 1/λ2 and set the results equal
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to each other. From equation B.16:

βd2 =
φd
2λ2

− φdβq2
2
− νdβq2

2

⇒ 1

λ2

=
2βd2

φd
+ βq2 +

νdβq2
φd

(B.19)

Similarly, from equation B.18:

βq2 =
φq
2λ2

− φqβd2

2
− νqβd2

2

⇒ 1

λ2

=
2βq2
φq

+ βd2 +
νqβd2

φq

(B.20)

Equating equations B.19 and B.20:

2βd2

φd
+ βq2 +

νdβq2
φd

=
2βq2
φq

+ βd2 +
νqβd2

φq

⇒ βd2 =
2φd − φdφq − νdφq
2φq − φdφq − νqφd

βq2

≡ kβq2

(B.21)

Substituting βd2 from equation B.21 into equation B.14 and into equation B.19 and
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setting the two equal to each other, we obtain:

βd2+βq2+
β2d2

βd2+βq2

1−φd
φd

+
β2q2

βd2+βq2

1−φq
φq

+
2βd2βq2
βd2+βq2

νq
φq

+ η
βd2+βq2

=
2βd2
φd

+βq2+
νdβq2
φd

⇓

η
k+1

1
βq2

= 2k
φd
βq2+

νd
φd
βq2−kβq2− k2

k+1

1−φd
φd

βq2− 1
k+1

1−φq
φq

βq2− 2k
k+1

νq
φq
βq2

⇓

η
βq2

=βq2

(
2k(k+1)
φd

+
(k+1)νd
φd

−k(k+1)− k
2(1−φd)
φd

− 1−φq
φq
− 2kνq

φq

)
⇓

η
βq2

=βq2
2k(k+1)φq+(k+1)νdφq−k(k+1)φdφq−k

2(1−φd)φq−(1−φq)φd−2kνqφd
φdφq

⇓

βq2=±
√

ηφdφq

2k(k+1)φq+(k+1)νdφq−k(k+1)φdφq−k2(1−φd)φq−(1−φq)φd−2kνqφd

⇓( note that νdφq=νqφd)

βq2 = ±

√
ηφdφq

φqk2 + (2φq − νdφq − φdφq)k + νdφq − φd + φdφq

⇓

βd2 = ±

√
ηφdφqk2

φqk2 + (2φq − νdφq − φdφq)k + νdφq − φd + φdφq

⇓
1

λ2

=
2βd2

φd
+ βq2 +

νdβq2
φd

= βq2

(
2k

φd
+ 1 +

νd
φd

)
=

2k + φd + νd
φd

βq2

⇓

λ2 = ± φd
2k + φd + νd

√
φqk2 + (2φq − νdφq − φdφq)k + νdφq − φd + φdφq

ηφdφq

(B.22)

We have solved for βq2, βd2, and λ2. We now proceed to solve for αq2,αd2, and µ2.
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Subtracting equations B.15 and B.17:

αd2 − αq2 =
(1− λ2βq2)(1− φd)P0

2λ2

− µ2

2λ2

− αq2
2

+
βq2νdP0

2

− (1− λ2βd2)(1− φq)P0

2λ2

+
µ2

2λ2

+
αd2

2
− βd2νqP0

2

=
(1− λ2βq2)(1− φd)P0

λ2

+ βq2νdP0 −
(1− λ2βd2)(1− φq)P0

λ2

− βd2νqP0

=
1

λ2

P0(φq − φd) + βq2P0(νd + φd − 1)− βd2P0(νq + φq − 1)

=
1

λ2

P0(φq − φd) + βq2P0(νd + φd − 1− kνq − kφq + k)

= βq2P0

(
(2k + φd + νd)(φq − φd)

φd
+ νd + φd − 1− kνq − kφq + k

)
⇒ αd2 = αq2 + βq2P0

(
(2k + φd + νd)(φq − φd)

φd
+ νd + φd − 1− kνq − kφq + k

)
(B.23)

Similarly, adding equations B.15 and B.17:

αd2+αq2=
(1−λ2βq2)(1−φd)P0

2λ2
− µ2

2λ2
−
αq2
2

+
βq2νdP0

2
+

(1−λ2βd2)(1−φq)P0
2λ2

− µ2
2λ2
−αd2

2
+
βd2νqP0

2

=
(1−λ2βq2)(1−φd)P0

3λ2
+

(1−λ2βd2)(1−φq)P0
3λ2

+
βq2νdP0

3
+
βd2νqP0

3
− 2µ2

3λ2

(B.24)

From Eq. (B.13) and (B.14), we have:

µ2 = P0 − λ2(αd2 + αq2 + (βd2 + βq2)P0) (B.25)

Substituting αd2 + αq2 from Eq. (B.24) and solving for µ2:

µ2=P0−λ2

(
(1−λ2βq2)(1−φd)P0

3λ2
+

(1−λ2βd2)(1−φq)P0
3λ2

+
βq2νdP0

3
+
βd2νqP0

3
− 2µ2

3λ2
+(k+1)βq2P0

)
3µ2=3P0−(1−λ2βq2)(1−φd)P0−(1−λ2βd2)(1−φq)P0−βq2λ2νdP0−βd2λ2νqP0+2µ2−3(k+1)βq2λ2P0

µ2=3P0−(1−λ2βq2)(1−φd)P0−(1−λ2βd2)(1−φq)P0−βq2λ2νdP0−βd2λ2νqP0−3(k+1)βq2λ2P0

(B.26)

We have now solved for µ2 with previously calculated λ2,βq2,βd2, and can add Eq.
(B.23) and (B.24) and divide by 2 to solve for αd2:

αd2 = βq2P0

(
(2k + φd + νd)(φq − φd)

φd
+ νd + φd − 1− kνq − kφq + k

)
+

(1− λ2βq2)(1− φd)P0

3λ2

+
(1− λ2βd2)(1− φq)P0

3λ2

+
βq2νdP0

3
+
βd2νqP0

3
− 2µ2

3λ2

(B.27)
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Finally, using Eq. (B.23), we obtain:

αq2 = αd2 − βq2P0

(
(2k + φd + νd)(φq − φd)

φd
+ νd + φd − 1− kνq − kφq + k

)
(B.28)

B.3.1.1 Economy 2: Solution Summary

To summarize the solution, we first solve for βq2,βd2,λ2

βq2 = ±

√
ηφdφq

φqk2 + (2φq − νdφq − φdφq)k + νdφq − φd + φdφq
(B.29)

βd2 = kβq2 (B.30)

λ2 =
φd

2k + φd + νd
β−1
q2 , (B.31)

where

k =
2φd − φdφq − νdφq
2φq − φdφq − νqφd

νq = ρ

√
φq(1− φd)(1− φq)

φd

νd =
φd
φq
νq

and use the solutions for µ2,αq2,αd2

µ2=3P0−(1−λ2βq2)(1−φd)P0−(1−λ2βd2)(1−φq)P0−βq2λ2νdP0−βd2λ2νqP0−3(k+1)βq2λ2P0 (B.32)

αd2=βq2P0

(
(2k+φd+νd)(φq−φd)

φd
+νd+φd−1−kνq−kφq+k

)
+

(1−λ2βq2)(1−φd)P0
3λ2

+
(1−λ2βd2)(1−φq)P0

3λ2
+
βq2νdP0

3
+
βd2νqP0

3
− 2µ2

3λ2

(B.33)

αq2 = αd2 − βq2P0

(
(2k + φd + νd)(φq − φd)

φd
+ νd + φd − 1− kνq − kφq + k

)
(B.34)
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B.3.2 Economy 4: Fully-automated Quant, γ = 1

In this case the QI is fully-automated and applies the trading rule dictated by
Equation (2.9) without taking into consideration the behavior of the DI:

xq4 = xb

=
1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
(sq − P0)

= −1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
P0

+
1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
sq

≡ αb + βbsq

(B.35)

The DI pursues a strategy similar to Economy 2, specified by Eq. (B.11), but with
different inputs for the QI’s trading rule and the MM’s pricing function:

xd4 = arg max
x̃d4

E[x̃d4(v − P4(ω4))|sd]

=
(1− λ4βb)(1− φd)P0

2λ4

− µ4

2λ4

− αb
2

+
βbνdP0

2
+

(
φd
2λ4

− φdβb
2
− νdβb

2

)
sd

≡ αd4 + βd4sd

(B.36)

Similarly, the MM’s pricing rule is comparable to Economy 2, as given by Eq. (B.37),
with different inputs for the DI’s and QI’s strategies:

P4(ω4) = E[v|ω4]

= E[v|xd4 + xq4 + z]

= E[v|αd4 + βd4(v + ed) + αb + βb(v + eq) + z]

= P0 − (βd4+βb)σ
2
v(αd4+αb+(βd4+βb)P0)

(βd4+βb)2σ2
v+β2

d4σ
2
ed

+β2
bσ

2
eq

+2βd4βbσedeq+σ2
z

+
(βd4 + βb)σ

2
v

(βd4 + βb)2σ2
v + β2

d4σ
2
ed

+ β2
bσ

2
eq + 2βd4βbσedeq + σ2

z

ω4

≡ µ4 + λ4ω4

(B.37)

We have four equations and four unknowns:

µ4 = P0 −
(βd4 + βb)σ

2
v(αd4 + αb + (βd4 + βb)P0)

(βd4 + βb)2σ2
v + β2

d4σ
2
ed

+ β2
bσ

2
eq + 2βd4βbσedeq + σ2

z

(B.38)
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λ4 =
(βd4 + βb)σ

2
v

(βd4 + βb)2σ2
v + β2

d4σ
2
ed

+ β2
bσ

2
eq + 2βd4βbσedeq + σ2

z(
note that σedeq/σ

2
v=ρ(σed/σv)(σeq/σv)=ρ

√
(1−φd)(1−φq)

φdφq
=νq/φq=νd/φd

)
⇓

1

λ4

=βd4+βb+
β2d4

βd4+βb

1−φd
φd

+
β2b

βd4+βb

1−φq
φq

+
2βd4βb
βd4+βb

νq
φq

+ η
βd4+βb

(B.39)

αd4 =
(1− λ4βb)(1− φd)P0

2λ4

− µ4

2λ4

− αb
2

+
βbνdP0

2
(B.40)

βd4 =
φd
2λ4

− φdβb
2
− νdβb

2
(B.41)

From Eq. (B.61)

βd4 =
φd
2λ4

− φdβb
2
− νdβb

2

⇒ 1

λ4

=
2

φd
βd4 + βb +

νd
φd
βb

(B.42)

Setting Eq. (B.42) and (B.59) equal:

βd4+βb+
β2d4

βd4+βb

1−φd
φd

+
β2b

βd4+βb

1−φq
φq

+
2βd4βb
βd4+βb

νq
φq

+ η
βd4+βb

= 2
φd
βd4+βb+

νd
φd
βb

⇓

βd4(βd4+βb)+
1−φd
φd

β2
d4+

1−φq
φq

β2
b+

2βbνq
φq

βd4+η−( 2
φd
βd4+

νd
φd
βb)(βd4+βb)=0

⇓(
− 1
φd

)
β2
d4+

(
βb+

2βbνq
φq
− 2βb
φd
− νdβb

φd

)
βd4+

(
1−φq
φq

β2
b+η− νdβ

2
b

φd

)
=0

⇓

(
νq/φq=νd/φd

)
(
− 1
φd

)
β2
d4+βb

(
1+

νq
φq
− 2
φd

)
βd4+

(
1−φq
φq

β2
b+η− νdβ

2
b

φd

)
=0

⇓

βd4=βb

(
φd
2

+
νd
2
−1

)
±

√
β2
b

(
φ2
d
4

+
ν2
d
4

+1+
φdνd

2
−2φd−2νd+

φd
φq

)
+φdη

(B.43)
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We can now substitute βd3 from above to solve for market depth:

1

λ4

=
2

φd
βd4 + βb +

νd
φd
βb

= βb

(
2 +

2νd
φd
− 2

φd

)
± 2

φd

√
β2
b

(φ2
d

4
+
ν2
d

4
+ 1 +

φdνd
2
− 2φd − 2νd +

φd
φq

)
+ φdη

= βb

(
2 +

2νd
φd
− 2

φd

)
±

√
β2
b

(
1 +

ν2
d

φ2
d

+
4

φ2
d

+
2νd
φd
− 8

φd
− 8νd

φ2
d

+
4

φdφq

)
+

4η

φd

(B.44)

From Eq. (B.58) and (B.59), we have:

µ4 = P0 − λ4(αd4 + αb + (βd4 + βb)P0) (B.45)

Substituting Eq. (B.60) into the above

µ4 = P0 − λ4

(
(1− λ4βb)(1− φd)P0

2λ4

− µ4

2λ4

− αb
2

+
βbνdP0

2
+ αb + (βd4 + βb)P0

)
(B.46)

= 2P0 − (1− λ4βb)(1− φd)P0 − λ4αb − λ4βbνdP0 − 2λ4(βd4 + βb)P0 (B.47)

Finally, we have all of the inputs to solve for αd3 given by Eq. (B.60)

αd4 =
(1− λ4βb)(1− φd)P0

2λ4

− µ4

2λ4

− αb
2

+
βbνdP0

2
(B.48)

B.3.2.1 Economy 4: Solution Summary

To summarize, we first identify the QI’s trading rule:

αb = −1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
P0 (B.49)

βb =
1

2

√
η

φd

(
(2− φd)φq − ρ

√
φdφq(1− φd)(1− φq)

)
(B.50)

We then use this as an input into the DI’s trading intensity

βd4 = βb

(φd
2

+
νd
2
− 1
)
±

√
β2
b

(φ2
d

4
+
ν2
d

4
+ 1 +

φdνd
2
− 2φd − 2νd +

φd
φq

)
+ φdη,

(B.51)
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which feeds into the equilibrium market depth:

1

λ4
= βb

(
2 +

2νd
φd
− 2

φd

)
±

√
β2
b

(
1 +

ν2
d

φ2
d

+
4

φ2
d

+
2νd
φd
− 8

φd
− 8νd

φ2
d

+
4

φdφq

)
+

4η

φd

⇓

λ4 =

(
βb

(
2 +

2νd
φd
− 2

φd

)
±

√
β2
b

(
φ2
d +

ν2
d

φ2
d

+
4

φ2
d

+
2νd
φd
− 8

φd
− 8νd

φ2
d

+
4

φdφq

)
+

4η

φd

)−1

.

(B.52)

We can now solve for

µ4 = 2P0 − (1− λ4βb)(1− φd)P0 − λ4αb − λ4βbνdP0 − 2λ4(βd4 + βb)P0, (B.53)

which gives us

αd4 =
(1− λ4βb)(1− φd)P0

2λ4

− µ4

2λ4

− αb
2

+
βbνdP0

2
. (B.54)

B.3.3 Economy 3: Partially-automated Quant, 0 < γ < 1

The DI’s optimal demands are formulaically identical to Economy 2:

xd3 = arg max
x̃d3

E[x̃d3(v − P3(ω3))|sd]

=
(1− λ3βq3)(1− φd)P0

2λ3

− µ3

2λ3

− αq3
2

+
βq3νdP0

2
+

(
φd
2λ3

− φdβq3
2
− νdβq3

2

)
sd

≡ αd3 + βd3sd
(B.55)
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The QI now solves the following objective function for this optimal demand xq3 where
xb is given by Eq. (2.9):

xq3=arg minx̃q3 E[γ(x̃q3−xb)2+(1−γ)x̃q3(P3(ω3)−v)|sq ]

=arg minx̃q3 E[γ(x̃q3−xb)2+(1−γ)x̃q3(µ3+λ3(xd3+x̃q3+z)−v)|sq ]

=arg minx̃q3 E[γx̃2q3−2γx̃q3xb+γx
2
b+(1−γ)x̃q3(µ3+λ3xd3+λ3z−v)+(1−γ)λ3x̃2q3|sq ]

=arg minx̃q3 E[(γ+(1−γ)λ3)x̃2q3−2γx̃q3xb+γx
2
b+(1−γ)x̃q3(µ3+λ3xd3+λ3z−v)|sq ]

=arg minx̃q3 E
[(

γ+(1−γ)λ3

)
x̃2q3+

(
(1−γ)(µ3+λ3xd3+λ3z−v)−2γxb

)
x̃q3+γx2b |sq

]
=arg minx̃q3 E

{(
γ+(1−γ)λ3

)
x̃2q3+

(
(1−γ)(µ3+λ3E[xd3|sq ]−E[v|sq ])−2γxb

)
x̃q3+γx2b |sq

]
=

2γxb+(1−γ)(E[v|sq ]−µ3−λ3E[xd3|sq ])

2

(
γ+(1−γ)λ3

)
= γ
γ+(1−γ)λ3

xb+
(1−γ)λ3

γ+(1−γ)λ3
E[v|sq ]−µ3−λ3E[xd3|sq ]

2λ3

= γ
γ+(1−γ)λ3

(αb+βbsq)

+
(1−γ)λ3

γ+(1−γ)λ3

(
(1−λ3βd3)(1−φq)P0

2λ3
− µ3

2λ3
−αd3

2
+
βd3νqP0

2
+

(
φq
2λ3
−φqβd3

2
− νqβd3

2

)
sq

)
=

2γαb+(1−γ)
(
(1−λ3βd3)(1−φq)P0−µ3

)
−(1−γ)λ3αd3+(1−γ)λ3βd3νqP0

2(γ+(1−γ)λ3)

+
2γβb+(1−γ)φq−(1−γ)λ3(φq+νq)βd3

2(γ+(1−γ)λ3)
sq

≡ αq3 + βq3

(B.56)

The market maker also has a formulaically identical pricing rule to Economy 2:

P3(ω3) = E[v|ω3]

=P0−
(βd3+βq3)σ

2
v(αd3+αq3+(βd3+βq3)P0)

(βd3+βq3)
2σ2v+β

2
d3
σ2ed

+β2q3σ
2
eq+2βd3βq3σedeq

+σ2z
+

(βd3+βq3)σ
2
v

(βd3+βq3)
2σ2v+β

2
d3
σ2ed

+β2q3σ
2
eq+2βd3βq3σedeq

+σ2z
ω3

≡ µ3 + λ3ω3

(B.57)

We have six equations and six unknowns:

µ3 = P0 −
(βd3 + βq3)σ2

v(αd3 + αq3 + (βd3 + βq3)P0)

(βd3 + βq3)2σ2
v + β2

d3σ
2
ed

+ β2
q3σ

2
eq + 2βd3βq3σedeq + σ2

z

⇓
µ3 = P0 − λ3(αd3 + αq3 + (βd3 + βq3)P0)

(B.58)
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λ3 =
(βd3 + βq3)σ2

v

(βd3 + βq3)2σ2
v + β2

d3σ
2
ed

+ β2
q3σ

2
eq + 2βd3βq3σedeq + σ2

z(
note that σedeq/σ

2
v=ρ(σed/σv)(σeq/σv)=ρ

√
(1−φd)(1−φq)

φdφq
=νq/φq=νd/φd

)
⇓

1

λ3

=βd3+βq3+
β2d3

βd3+βq3

1−φd
φd

+
β2q3

βd3+βq3

1−φq
φq

+
2βd3βq3
βd3+βq3

νq
φq

+ η
βd3+βq3

(B.59)

αd3 =
(1− λ3βq3)(1− φd)P0

2λ3

− µ3

2λ3

− αq3
2

+
βq3νdP0

2
(B.60)

βd3 =
φd
2λ3

− φdβq3
2
− νdβq3

2
(B.61)

αq3 =
2γαb+(1−γ)

(
(1−λ3βd3)(1−φq)P0−µ3

)
−(1−γ)λ3αd3+(1−γ)λ3βd3νqP0

2(γ+(1−γ)λ3)
(B.62)

βq3 =
2γβb + (1− γ)φq − (1− γ)λ3(φq + νq)βd3

2(γ + (1− γ)λ3)
(B.63)

We first use Eq. (B.61) and (B.63) to solve for λ3 and set the results equal:

βd3 =
φd
2λ3

− φdβq3
2
− νdβq3

2

⇒ 1

λ3

=
2βd3

φd
+ βq3 +

νdβq3
φd

βq3 =
2γβb + (1− γ)φq − (1− γ)λ3(φq + νq)βd3

2(γ + (1− γ)λ3)

⇒ 1

λ3

=
2(1− γ)βq3 + (1− γ)(φq + νq)βd3

2γβb − 2γβq3 + (1− γ)φq

⇒ 2

φd
βd3 +

(
1 +

νd
φd

)
βq3 =

2(1− γ)βq3 + (1− γ)(φq + νq)βd3

2γβb − 2γβq3 + (1− γ)φq

⇒ βd3 =
2γ

(
1+

νd
φd

)
β2q3+

(
2(1−γ)−2γβb

(
1+

νd
φd

)
−(1−γ)φq

(
1+

νd
φd

))
βq3

− 4γ
φd

βq3+
4γβb
φd

+
2(1−γ)φq

φd
−(1−γ)(φq+νq)

≡
aβ2

q3 + bβq3

cβq3 + d

(B.64)
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Next, we use Eq. (B.61) to solve for 1/λ3 and set the result equal to Eq. (B.59):

βd3 =
φd
2λ3

− φdβq3
2
− νdβq3

2

⇒ 1

λ3

=
2βd3

φd
+ βq3 +

νdβq3
φd

⇒βd3+βq3+
β2d3

βd3+βq3

1−φd
φd

+
β2q3

βd3+βq3

1−φq
φq

+
2βd3βq3
βd3+βq3

νq
φq

+ η
βd3+βq3

=
2βd3
φd

+βq3+
νdβq3
φd

⇒ β2
d3 +

(
2− φd − νd

)
︸ ︷︷ ︸

≡e

βq3βd3 +
(
νd + φd −

φd
φq

)
︸ ︷︷ ︸

≡f

β2
q3 − φdη︸︷︷︸

≡g

= 0

⇒ (aβ2
q3 + bβq3)2 + eβq3(cβq3 + d)(aβ2

q3 + bβq3) + fβ2
q3(cβq3 + d)2 − g(cβq3 + d)2 = 0

⇒(a2+ace+c2f)β4
q3+(2ab+bce+ade+2cdf)β3

q3+(b2+bde+d2f−c2g)β2
q3−2cdgβq3−d2g=0

(B.65)

This is quartic, which has a closed-form solution for βq3 resulting in a maximum of
four roots. For each root, we can then utilize Eq. (C.20) to solve for βd3 and, in-turn,
use Eq. B.59 to solve for λ. We have solved for βd3, βq3, and λ3.

We proceed to solve for αd3, αq3, and µ3. This is a simple three variable linear
system of first degree. First we relabel Eq. (B.58), (B.60), and (B.62).

αd3 =
(1− λ3βq3)(1− φd)P0

2λ3

− µ3

2λ3

− αq3
2

+
βq3νdP0

2

=
(1− λ3βq3)(1− φd)P0 + βq3λ3νdP0

2λ3︸ ︷︷ ︸
≡h

− 1

2λ3︸︷︷︸
≡j

µ3 −
αq3
2

= h− jµ3 −
αq3
2

(B.66)

αq3 =
2γαb + (1− γ)

(
(1− λ3βd3)(1− φq)P0 − µ3

)
− (1− γ)λ3αd3 + (1− γ)λ3βd3νqP0

2(γ + (1− γ)λ3)

=
2γαb + (1− γ)(1− λ3βd3)(1− φq)P0 + (1− γ)λ3βd3νqP0

2(γ + (1− γ)λ3)︸ ︷︷ ︸
≡k

− 1− γ
2(γ + (1− γ)λ3)︸ ︷︷ ︸

≡l

µ3 −
(1− γ)λ3

2(γ + (1− γ)λ3)︸ ︷︷ ︸
m

αd3

= k − lµ3 −mαd3

(B.67)
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µ3 = P0 − λ3(αd3 + αq3 + (βd3 + βq3)P0)

= P0 − λ3(βd3 + βq3)P0︸ ︷︷ ︸
≡q

−λ3αd3 − λ3αq3

= q − λ3αd3 − λ3αq3

(B.68)

Solving the system of equations, we first obtain:

αq3 =
(k − lq)(1− jλ3) + lλ3(h− jq)−m(h− jq)

(1− lλ3)(1− jλ3)− lλ3(jλ3 − 1
2
) +m(jλ3 − 1

2
)
. (B.69)

We use the solution above to solve for:

αd3 =
h− jq + (jλ3 − 1

2
)αq3

1− jλ3

, (B.70)

and, finally, for

µ3 = q − λ3αd3 − λ3αq3. (B.71)

B.3.3.1 Economy 3: Solution Summary

We first obtain βq3 from the solution to

(a2+ace+c2f)β4
q3+(2ab+bce+ade+2cdf)β3

q3+(b2+bde+d2f−c2g)β2
q3−2cdgβq3−d2g=0

where

a = 2γ
(
1 +

νd
φd

)
b = 2(1− γ)− 2γβb

(
1 +

νd
φd

)
− (1− γ)φq

(
1 +

νd
φd

)
c = −4γ

φd

d =
4γβb
φd

+
2(1− γ)φq

φd
− (1− γ)(φq + νq)

e = 2− φd − νd

f = νd + φd −
φd
φq

g = φdη
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and use the solution to obtain

βd3 =
aβ2

q3 + bβq3

cβq3 + d

and

λ3 =
βd3 + βq3

(βd3 + βq3)2 + β2
d3

1−φd
φd

+ β2
q3

1−φq
φq

+ 2βd3βq3
νq
φq

+ η

Next we use the solutions above to obtain

αq3 =
(k − lq)(1− jλ3) + lλ3(h− jq)−m(h− jq)

(1− lλ3)(1− jλ3)− lλ3(jλ3 − 1
2
) +m(jλ3 − 1

2
)

where

h =
(1− λ3βq3)(1− φd)P0 + βq3λ3νdP0

2λ3

j =
1

2λ3

k =
2γαb + (1− γ)(1− λ3βd3)(1− φq)P0 + (1− γ)λ3βd3νqP0

2(γ + (1− γ)λ3)

l =
1− γ

2(γ + (1− γ)λ3)

m =
(1− γ)λ3

2(γ + (1− γ)λ3)

q = P0 − λ3(βd3 + βq3)P0

and use the solution to find

αd3 =
h− jq + (jλ3 − 1

2
)αq3

1− jλ3

,

and

µ3 = q − λ3αd3 − λ3αq3.

B.4 Derivations for Measures of Market Quality

B.4.1 Market Depth

We take the inverse of λj as derived for Economies 1-4 in Appendices B.1 and B.3.
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B.4.2 Price Informativeness

Economy 1

P1(ω1) = µ1 + λ1ω1

= µ1 + λ1(xd1 + z)

= µ1 + λ1(αd1 + βd1(v + ed) + z)

= µ1 + λ1(αd1 + βd1v + βd1ed + z)

= µ1 + λ1αd1 + λ1βd1v + λ1βd1ed + λ1z

(B.72)

Therefore,

Var(v|P1) = Var(v)− Cov(v, P1)Var(P1)−1Cov(P1, v)

= σ2
v −

Cov(v, µ1 + λ1αd1 + λ1βd1v + λ1βd1ed + λ1z)2

Var(µ1 + λ1αd1 + λ1βd1v + λ1βd1ed + λ1z)

= σ2
v −

λ2
1β

2
d1σ

4
v

λ2
1β

2
d1σ

2
v + λ2

1β
2
d1σ

2
ed

+ λ2
1σ

2
z

= σ2
v

β2
d1σ

2
ed

+ σ2
z

β2
d1σ

2
v + β2

d1σ
2
ed

+ σ2
z

⇓

Var(v|P1)−1 =
1

σ2
v

β2
d1 + β2

d1
1−φd
φd

+ η

β2
d1

1−φd
φd

+ η

Economies 2-4 For j ∈ {2, 3, 4}

Pj(ωj) = µj + λjωj

= µj + λj(xdj + xqj + z)

= µj + λj(αdj + βdjsd + αqj + βqjsq + z)

= µj + λj(αdj + βdj(v + ed) + αqj + βqj(v + eq) + z)

= µj + λjαdj + λjαqj + λj(βdj + βqj)v + λjβdjed + λjβqjeq + λjz

(B.73)
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Therefore,

Var(v|Pj) = Var(v)− Cov(v, Pj)Var(Pj)
−1Cov(Pj, v)

= σ2
v −

Cov(v, µj + λjαdj + λjαqj + λj(βdj + βqj)v + λjβdjed + λjβqjeq + λjz)2

Var(µj + λjαdj + λjαqj + λj(βdj + βqj)v + λjβdjed + λjβqjeq + λjz)

= σ2
v −

λ2
j(βdj + βqj)

2σ4
v

λ2
j(βdj + βqj)2σ2

v + λ2
jβ

2
djσ

2
ed

+ λ2
jβ

2
qjσ

2
eq + 2λ2

jβdjβqjσedeq + λ2
jσ

2
z

=
σ2
v(λ

2
jβ

2
djσ

2
ed

+ λ2
jβ

2
qjσ

2
eq + 2λ2

jβdjβqjσedeq + λ2
jσ

2
z)

λ2
j(βdj + βqj)2σ2

v + λ2
jβ

2
djσ

2
ed

+ λ2
jβ

2
qjσ

2
eq + 2λ2

jβdjβqjσedeq + λ2
jσ

2
z

= σ2
v

β2
dj

1−φd
φd

+ β2
qj

1−φq
φq

+ 2βdjβqj
νq
φq

+ η

(βdj + βqj)2 + β2
dj

1−φd
φd

+ β2
qj

1−φq
φq

+ 2βdjβqj
νq
φq

+ η

⇓

Var(v|Pj)−1 =
1

σ2
v

(βdj + βqj)
2 + β2

dj
1−φd
φd

+ β2
qj

1−φq
φq

+ 2βdjβqj
νq
φq

+ η

β2
dj

1−φd
φd

+ β2
qj

1−φq
φq

+ 2βdjβqj
νq
φq

+ η

B.4.3 Price Volatility

From equation B.73:

Var(Pj) = Var(µj + λjαdj + λjαqj + λj(βdj + βqj)v + λjβdjed + λjβqjeq + λjz)

= λ2
j

(
(βdj + βqj)

2σ2
v + β2

djσ
2
ed

+ β2
qjσ

2
eq + 2βdjβqjσedeq + σ2

z

)
= λ2

jσ
2
v

(
(βdj + βqj)

2 + β2
dj

1− φd
φd

+ β2
qj

1− φq
φq

+ 2βdjβqj
νq
φq

+ η
)

B.4.4 Risk Premium

E[v − Pj] = E
[
v −

(
µj + λjαdj + λjαqj + λj(βdj + βqj)v + λjβdjed + λjβqjeq + λjz

)]
= P0 − µj − λjαdj − λjαqj − λj(βdj + βqj)P0

Return Volatility From equation B.73:

Var(v − P ) = Var(v − µj − λjαdj − λjαqj − λj(βdj + βqj)v − λjβdjed − λjβqjeq − λjz)

= Var
(
(1− λj(βdj + βqj))v − λjβdjed − λjβqjeq − λjz

)
= (1− λj(βdj + βqj))

2σ2
v + λ2

jβ
2
djσ

2
ed

+ λ2
jβ

2
qjσ

2
eq + 2λ2

jβdjβqjσedeq + λ2
jσ

2
z

= σ2
v

(
(1− λj(βdj + βqj))

2 + λ2
jβ

2
dj

1− φd
φd

+ λ2
jβ

2
qj

1− φq
φq

+ 2λ2
jβdjβqj

νq
φq

+ λ2
jη
)
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Expected Trading Volume: Aggregate We are after E[|xdj + xqj|], which is the
expected value of the absolute value of a normal random variable. Otherwise known
as the “folded normal distribution,” given a normally distributed random variable
X ∼ N(µ, σ2), the expected value of |X| is given by:

E[|X|] = σ

√
2

π
exp

(
− µ2

2σ2

)
+ µ

(
1− 2Φ

(
− µ

σ

))
(B.74)

where Φ is the standard normal cumulative distribution function. We proceed to derive
the distribution of x1 + x2.

xdj + xqj = αdj + αqj + (βdj + βqj)v︸ ︷︷ ︸
∼N
(
αdj+αqj+(βdj+βqj)P0,(βdj+βqj)2σ2

v

)+ βdjed + βqjeq︸ ︷︷ ︸
∼N
(

0,β2
djσ

2
ed

+β2
qjσ

2
eq

+2βdjβqjσedeq

)
⇓

xdj + xqj ∼ N
(
αdj + αqj + (βdj + βqj)P0︸ ︷︷ ︸

≡µxdj+xqj

, (βdj + βqj)
2σ2
v + β2

djσ
2
ed

+ β2
qjσ

2
eq + 2βdjβqjσedeq︸ ︷︷ ︸

≡σ2
xdj+xqj

)

Substituting into equation B.74

E[|xdj + xqj|] = σxdj+xqj

√
2

π
exp

(
−
µ2
xdj+xqj

2σ2
xdj+xqj

)
+ µxdj+xqj

(
1− 2Φ

(
−
µxdj+xqj
σxdj+xqj

))

Expected Trading Volume: by Trader We are after E[|xij|], which is the expected
value of the absolute value of a normal random variable. We utilize equation B.74 to
derive the expectation of this random variable. The distribution of xij is:

xij = αij + βijsi

⇓
xij ∼ N

(
αij + βijP0︸ ︷︷ ︸
≡µxij

, β2
ij(σ

2
v + σ2

ei
)︸ ︷︷ ︸

≡σ2
xij

)

Substituting into equation B.74

E[|xij|] = σxij

√
2

π
exp

(
−
µ2
xij

2σ2
xij

)
+ µxij

(
1− 2Φ

(
−
µxij
σxij

))
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Expected Profits: By Trader and Aggregate Expected profits of trader i in
Economy j (πij) are equal to:

E[πij ] = E[xij(v − P )]

= E[(αij + βijsi)(v − µj − λjωj)]
= E[(αij + βijsi)(v − µj − λj(xdj + xqj + z))]

= E[(αij + βij(v + ei))(v − µj − λj(αdj + βdjsd + αqj + βqjsq + z))]

= E[(αij + βijv + βijei)(v − µj − λj(αdj + βdj(v + ed) + αqj + βqj(v + eq) + z))]

= E[(αij + βijv + βijei)

(v − µj − λjαdj − λjβdjv − λjβdjed − λjαdj − λjβqjv − λjβqjeq − λjz)]
= E[(αij + βijv + βijei)

((1− λjβdj − λjβqj)v − µj − λj(αdj + αqj)− λjβdjed − λjβqjeq − λjz)]
= αij(1− λjβdj − λjβqj)P0 − αijµj − λjαij(αdj + αqj) + βij(1− λjβdj − λjβqj)E[v2]

− βijµjP0 − βijλj(αdj + αqj)P0 − λjβ2
ijE[e2

i ]− λjβdjβqjE[edeq]

We have the following moments given to us by model parameters:

σ2
v = E[v2]− E[v]2 = E[v2]− P 2

0 ⇒ E[v2] = σ2
v + P 2

0

σ2
ed

= E[e2
d]− E[ed]

2 = E[e2
d]

σ2
eq = E[e2

q]− E[eq]
2 = E[e2

q]

σedeq = E[edeq]− E[ed]E[eq] = E[edeq]

Therefore

E[πij] = αij(1− λjβdj − λjβqj)P0 − αijµj − λjαij(αdj + αqj)

+ βij(1− λjβdj − λjβqj)(σ2
v + P 2

0 )

− βijµjP0 − βijλj(αdj + αqj)P0 − λjβ2
ijσ

2
ei
− λjβdjβqjσedeq

Finally,

E[πdj + πqj] = E[πdj] + E[πqj]

= (αdj + αqj)(1− λjβdj − λjβqj)P0 − (αdj + αqj)µj − λj(αdj + αqj)
2

+ (βdj + βqj)(1− λjβdj − λjβqj)(σ2
v + P 2

0 )

− (βdj + βqj)µjP0 − (βdj + βqj)λj(αdj + αqj)P0 − λj(β2
djσ

2
ed

+ β2
qjσ

2
eq)

− 2λjβdjβqjσedeq
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B.5 Strategy Correlation

Strategy Correlation

ρxdjxqj =
Cov(xdj, xqj))√
Var(xdj)Var(xqj)

=
Cov(αdj + βdjsd, αqj + βqjsq)√

Var(αdj + βdjsd)Var(αqj + βqjsq)

=
Cov(αdj + βdjv + βdjed, αqj + βqjv + βqjeq)√

Var(αdj + βdjv + βdjed)Var(αqj + βqjv + βqjeq)

=
βdjβqjσ

2
v + βdjβqjσedeq

|βdjβqj|
√

(σ2
v + σ2

ed
)(σ2

v + σ2
eq)

= sign (βdjβqj)
1 + ρ

√
(1−φd)(1−φq)

φdφq√
1

φdφq

= sign (βdjβqj)

(√
φdφq + ρ

√
(1− φd)(1− φq)

)

B.6 Comparative Statics for the Benchmark Case: Proposi-
tion II.1

The simplified version assumes the following model parameters: P0 = 0, φd = 1, ρ =
νq = νd = 0, σ2

v = 1. The model solution across the four economies is as follows:

- Backtest:

αb = 0

βb =
1

2

√
ηφq

- Economy 1:

αd1 = αq1 = µ1 = βq2 = 0

βd1 =
√
η

λ1 =
1

2

√
1

η
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- Economy 2:

αd2 = αq2 = µ2 = 0

βd2 =
√
η

√
(2− φq)2

φ2
q − 3φq + 4

βq2 =
√
η

√
φ2
q

φ2
q − 3φq + 4

λ2 =

√
1

η

√
φ2
q − 3φq + 4

(4− φq)2

- Economy 4 (with only the selected βd4 is market depth positive):

αd4 = αq4 = µ4 = 0

βd4 = −1

4

√
ηφq +

1

4

√
η
√
−3φ2

q + 4φq + 16

βq4 = βb =
1

2

√
ηφq

λ4 =
2
√
η

√
1

−3φ2
q + 4φq + 16

B.6.1 Market Depth

We first show that market depth increases with the introduction of the quantitative
investor, both with and without automation:

1

λ1

<
1

λ2

m
λ1 > λ2

m

1

2

√
1

η
>

√
1

η

√
φ2
q − 3φq + 4

(4− φq)2

m

3φq

(4

3
− φq

)
> 0
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where the latter inequality holds for φq ∈ (0, 1]

1

λ1

<
1

λ4

m
λ1 > λ4

m

1

2

√
1

η
>

2
√
η

√
1

−3φ2
q + 4φq + 16

m

3φq

(4

3
− φq

)
> 0

where the latter inequality holds for φq ∈ (0, 1]
We now show that market depth decreases due to automation by quant.

1

λ2

>
1

λ4

m
λ2 < λ4

m√
1

η

√
φ2
q − 3φq + 4

(4− φq)2
<

2
√
η

√
1

−3φ2
q + 4φq + 16

m
φ2
q − 3φq + 4

(4− φq)2
<

4

−3φ2
q + 4φq + 16

m ( note that − 3φ2
q + 4φq + 16 > 0 for φq ∈ (0, 1])

f(φq) ≡ −3φ2
q + 13φq − 12 < 0

where the latter inequality holds for φq ∈ (0, 1] since the roots of f(φq) are φ∗q ≈ 1.33
and φ∗∗q = 3.

Finally, we demonstrate that the gap in market depth between Economy 2 and
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Economy 4 increases with greater signal precision for the quant:

∂

∂φq

λ4

λ2

∨ 0

m
∂

∂φq

2(4− φq)√
(−3φ2

q + 4φq + 16)(φ2
q − 3φq + 4)

∨ 0

m
∂

∂φq

(4− φq)2

(−3φ2
q + 4φq + 16)(φ2

q − 3φq + 4)
∨ 0

m
(2φq−8)(−3φ4q+13φ3q−8φ2q−32φq+64)−(φ2q−8φq+16)(−12φ3q+39φ2q−16φq−32)∨0

m
f(φq) ≡ 6φ4

q − 85φ3
q + 400φ2

q − 720φq + 384 ∨ 0

We first note that f(0) = 384, f(1) = −15. We now demonstrate that f(φq) is mono-
tone for φq ∈ (0, 1] , implying a single root for φq ∈ (0, 1]. Note the following derivatives
of f(φq):

f ′(φq) = 24φ3
q − 255φ2

q + 800φq − 720

f ′′(φq) = 72φ2
q − 510φq + 800

The two roots of f ′′(φq) = 0 are ≈ 2.3,≈ 4.7, which implies that f ′′(φq) > 0 for
φq ∈ (0, 1]. This in turn means that f ′(φq) is increasing for φq ∈ (0, 1], which coupled
with f ′(0) = −720, f ′(1) = −151 demonstrates that f ′′(φq) < 0 for φq ∈ (0, 1]. The
latter implies that f(φq) is decreasing for φq ∈ (0, 1], which proves that there exists
φ∗q ∈ (0, 1] such that f(φq) > 0 for φq ∈ (0, φ∗q) and f(φq) < 0 for φq ∈ (φ∗q, 1].
Therefore, the percent decrease in market depth due to automation is hump-shaped
in the precision of the QI’s signal. The peak of the relative decline in market depth is
around φ∗q ≈ 0.91.
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B.6.2 Price Informativeness

Var(v|Pj)−1 =
1

σ2
v

(βdj + βqj)
2 + β2

dj
1−φd
φd

+ β2
qj

1−φq
φq

+ 2βdjβqj
νq
φq

+ η

β2
dj

1−φd
φd

+ β2
qj

1−φq
φq

+ 2βdjβqj
νq
φq

+ η

=
(βdj + βqj)

2 + β2
qj

1−φq
φq

+ η

β2
qj

1−φq
φq

+ η

= 1 +
(βdj + βqj)

2

β2
qj

1−φq
φq

+ η

We first show that price informativeness decreases due to automation by quant.

Var(v|P2)−1 > Var(v|P4)−1

m
(βd2 + βq2)2

β2
q2

1−φq
φq

+ η
>

(βd4 + βq4)2

β2
q4

1−φq
φq

+ η

m(
√
η

√√√√ (2−φq)2

φ2q−3φq+4
+
√
η

√√√√ φ2q

φ2q−3φq+4

)2

(
√
η

√√√√ φ2q

φ2q−3φq+4

)2

1−φq
φq

+η

>

(
− 1

4
√
ηφq+

1
4
√
η
√
−3φ2q+4φq+16+1

2
√
ηφq

)2

(
1
2
√
ηφq

)2

1−φq
φq

+η

m(√
(2−φq)2
φ2q−3φq+4

+
√

φ2q
φ2q−3φq+4

)2

(√
φ2q

φ2q−3φq+4

)2
1−φq
φq

+ 1

>

(
1
4
φq + 1

4

√
−3φ2

q + 4φq + 16

)2

(
1
2
φq

)2
1−φq
φq

+ 1

m
2

2− φq
>
−φ2

q + 2φq + 8 + φq
√
−3φ2

q + 4φq + 16

−2φ2
q + 2φq + 8

m note that − 2φ2
q + 2φq + 8 > 0 for φq ∈ (0, 1]

− φ3
q + 8φq + 16 > (2− φq)

√
−3φ4

q + 4φ3
q + 16φ2

q

m
f(φq) ≡ 4φ6

q − 16φ5
q − 4φ4

q + 16φ3
q + 256φq + 256 > 0

The latter inequality holds for the following reasons. First, note that f(0) = 256 and
f(1) = 512. Since f(φq) is continuous, if f(φq) is either monotone or hump-shaped for
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φq ∈ (0, 1] then f(φq) > 0 in this interval. We now take derivatives of f(φq) and work
backwards to demonstrate that f(φq) is monotone over the interval.

f ′(φq) = 24φ5
q − 80φ4

q − 16φ3
q + 48φ2

q + 256

f ′′(φq) = 120φ4
q − 320φ3

q − 46φ2
q + 96φq

f ′′′(φq) = 480φ3
q − 960φ2

q − 92φq + 96

f ′′′′(φq) = 1440φ2
q − 1920φq − 92

First note that the zeros of f ′′′′(φq) are ≈ −.05 and ≈ 1.38 implying that f ′′′′(φq) < 0
for φq ∈ (0, 1]. Since f ′′′(0) = 96 and f ′′′(1) = −476 and f ′′′(φq) is decreasing for
φq ∈ (0, 1], there exists φ∗q ∈ (0, 1] such that f ′′′(φq) > 0 for φq ∈ (0, φ∗q) and f ′′′(φq) < 0
for φq ∈ (φ∗q, 1]. This implies that f ′′(φq) is hump-shaped in the interval φq ∈ (0, 1],
which coupled with f ′′(0) = 0 and f ′′(1) = −150 suggests that there exists φ∗∗q ∈ (0, 1]
such that f ′′(φq) > 0 for φq ∈ (0, φ∗∗q ) and f ′′(φq) < 0 for φq ∈ (φ∗∗q , 1]. Therefore f ′(φq)
is also hump-shaped in the interval φq ∈ (0, 1]. Since f ′(0) = 256 and f ′(1) = 232 and
f ′(φq) is hump-shaped in the interval φq ∈ (0, 1], f ′(φq) > 0 in the interval. Coupled
with f(1) > f(0) > 0, f(φq) > 0 for φq ∈ (0, 1].

We now show that price informativeness is always greater with the quant, both
fully-discretionary and fully-automated.

Var(v|P2)−1 > Var(v|P1)−1

m
(βd2 + βq2)2

β2
q2

1−φq
φq

+ η
>
β2
d1

η

m
2

2− φq
> 1
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The latter inequality always holds for φq ∈ (0, 1].

Var(v|P4)−1 > Var(v|P1)−1

m
(βd4 + βq4)2

β2
q4

1−φq
φq

+ η
>
β2
d1

η

m
−φ2

q + 2φq + 8 + φq
√
−3φ2

q + 4φq + 16

−2φ2
q + 2φq + 8

> 1

m√
−3φ2

q + 4φq + 16 > −φq

The latter inequality always holds for φq ∈ (0, 1].

B.6.3 Return Volatility

Var(v − Pj) = σ2
v

(
(1− λj(βdj + βqj))

2 + λ2
jβ

2
dj

1− φd
φd

+ λ2
jβ

2
qj

1− φq
φq

+ 2λ2
jβdjβqj

νq
φq

+ λ2
jη
)
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We first demonstrate the return volatility increases with automation by the quant.

Var(v − P2) < Var(v − P4)

m

(1− λ2(βd2 + βq2))2 + λ2
2β

2
q2

1− φq
φq

+ λ2
2η < (1− λ4(βd4 + βq4))2 + λ2

4β
2
q4

1− φq
φq

+ λ2
4η

m(
1−

√
1
η

√
φ2q−3φq+4

(4−φq)2

(
√
η
√

(2−φq)2
φ2q−3φq+4

+
√
η
√

φ2q
φ2q−3φq+4

))2

+

(√
1
η

√
φ2q−3φq+4

(4−φq)2
√
η
√

φ2q
φ2q−3φq+4

)2

1−φq
φq

+

(√
1
η

√
φ2q−3φq+4

(4−φq)2

)2

η

<(
1− 2√

η

√
1

−3φ2q+4φq+16

(
− 1

4

√
ηφq + 1

4

√
η
√
−3φ2

q + 4φq + 16 + 1
2

√
ηφq

))2

+

(
2√
η

√
1

−3φ2q+4φq+16
1
2

√
ηφq

)2

1−φq
φq

+

(
2√
η

√
1

−3φ2q+4φq+16

)2

η

m

φ2
q − 6φq + 8

φ2
q − 8φq + 16

<
1

2
− 1

2

√
φ2
q

−3φ2
q + 4φq + 16

m

1

φq − 4
>

√
1

−3φ2
q + 4φq + 16

m

φq − 4 <
√
−3φ2

q + 4φq + 16

The latter inequality always holds for φq ∈ (0, 1] since the left-hand-side is negative
and the right-hand-side is positive within the interval.

We now demonstrate that return volatility decreases with the introduction of the
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quantitative investor, both with and without automation.

Var(v − P2) < Var(v − P1)

m
φ2
q − 6φq + 8

φ2
q − 8φq + 16

<
1

2

m
φq(φq − 4) < 0

The latter inequality always holds for φq ∈ (0, 1] since the left-hand-side is always
negative in the interval.

Var(v − P4) < Var(v − P1)

m

1

2
− 1

2

√
φ2
q

−3φ2
q + 4φq + 16

<
1

2

m

−φq

√
1

−3φ2
q + 4φq + 16

< 0

The latter inequality always holds for φq ∈ (0, 1] since the left-hand-side is always
negative in the interval.

B.6.4 Price Volatility

We will rely on derivations in the return volatility analysis by noting that

Var(v − Pj) = σ2
v + Var(Pj)− 2Cov(v, Pj)

Var(Pj) = Var(v − Pj)− σ2
v + 2λj(βdj + βqj)
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We first demonstrate that price volatility increases with automation by the quant.

Var(P2) > Var(P4)

m

φ2
q − 6φq + 8

φ2
q − 8φq + 16

+
4

4− φq
>

1

2
− 1

2

√
φ2
q

−3φ2
q + 4φq + 16

+ 1 +

√
φ2
q

−3φ2
q + 4φq + 16

m

φq
4− φq

>

√
φ2
q

−3φ2
q + 4φq + 16

m

4− φq <
√
−3φ2

q + 4φq + 16

m
φq(φq − 3) < 0

The latter inequality always holds for φq ∈ (0, 1] since the left-hand-side is always
negative in the interval.

We now demonstrate that price volatility increases with the introduction of the
quantitative investor, both with and without automation.

Var(P2) > Var(P1)

m
φ2
q − 6φq + 8

φ2
q − 8φq + 16

+
4

4− φq
>

1

2
+ 1

m
φq(4− φq) > 0

The latter inequality always holds for φq ∈ (0, 1] since the left-hand-side is always
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positive in the interval.

Var(P4) > Var(P1)

m

1

2
− 1

2

√
φ2
q

−3φ2
q + 4φq + 16

+ 1 +

√
φ2
q

−3φ2
q + 4φq + 16

>
1

2
+ 1

m

φq

√
1

−3φ2
q + 4φq + 16

> 0

The latter inequality always holds for φq ∈ (0, 1] since the left-hand-side is always
positive in the interval.

B.6.5 Trading Intensity and Expected Trading Volume

Quantitative investor The QI does not trade in Economy 1. She trades more
aggressively as a fully-discretionary than as a fully-automated investor:

βq2 > βq4

m

√
η

√
φ2
q

φ2
q − 3φq + 4

>
1

2

√
ηφq

m
φ2
q − 3φq < 0

m
φq(φq − 3) < 0,

where the latter inequality holds for φq ∈ (0, 1].
A higher trading intensity implies a greater expected trading volume and vice versa,

immediate from Eq. (B.74), with µxqj = 0 and σxqj = βqjσsq . Therefore the QI trades
less as she turns on her strategy.
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Discretionary investor We first show that βd4 is always positive:

βd4 > 0

m

−1

4

√
ηφq +

1

2

√
η

√
φq −

3

4
φ2
q + 4 > 0

m
1

2

√
η

√
φq −

3

4
φ2
q + 4 >

1

4

√
ηφq

m

− 3

16
φ2
q +

1

4
φq + 1 >

1

16
φ2
q

m
0 > φ2

q − φq − 4

The latter inequality holds for φq ∈ (0, 1] since the right-hand-side is an upwards
parabola with roots at ≈ −1.56 and ≈ 2.56.

Next, we show that the strategic speculator trades less once the QI is introduced
in the economy both with and without automation:
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βd2 < βd1

m

√
η

√
(2− φq)2

φ2
q − 3φq + 4

<
√
η

m
(2− φq)2 < φ2

q − 3φq + 4

m
−φq < 0

βd4 < βd1

m

−1

4

√
ηφq +

1

2

√
η

√
φq −

3

4
φ2
q + 4 <

√
η

m
−3φ2

q + 4φq + 16 <(φq + 4)2

m
−4φq(φq + 1) < 0

where the latter inequalities hold because φq ∈ (0, 1].
Finally, we show that the DI always trades more aggressively in Economy 4 than
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in Economy 2:

βd4 > βd2

m

−1

4

√
ηφq +

1

2

√
η

√
φq −

3

4
φ2
q + 4 >

√
η

√
(2− φq)2

φ2
q − 3φq + 4

m√
−3φ2

q + 4φq + 16− φq >
8− 4φq√
φ2
q − 3φq + 4

m

−2φ2
q + 4φq + 16−

√
−12φ4

q + 16φ3
q + 64φ2

q >
16φ2

q − 64φq + 64

φ2
q − 3φq + 4

m
(−2φ2

q + 4φq + 16)(φ2
q − 3φq + 4)− 16φ2

q + 64φq − 64 >(φ2q−3φq+4)
√
−12φ4q+16φ3q+64φ2q

m
−φ3

q + 5φ2
q − 10φq + 16 >(φ2q−3φq+4)

√
−3φ2q+4φq+16

m
f(φq) ≡ φ4

q − 8φ3
q + 26φ2

q − 44φq + 33 > 0

We demonstrate that the latter inequality holds for φq ∈ [0, 1] by proof by contradiction.
First, f(0) = 33, f(1) = 8. Therefore, for the inequality to not hold it must be the
case that f(φq) has a local minimum in φq ∈ (0, 1). However, this, in turn, implies that
f ′(φq) has a a value of zero in the interval φq ∈ (0, 1), i.e.:

f ′(φq) = 4φ3
q − 24φ2

q + 52φq − 44 = 0

However, this does not hold since, f ′(0) = −44,f ′(1) = −12, which in-turn implies that
f ′′(φq) must have a local minimum for φq ∈ (0, 1). Since

f ′′(φq) = 12φ2
q − 48φq + 52 > 0,

f ′(φq) cannot have a zero in φq ∈ (0, 1), which implies that f(φq) is always greater
than zero.

A higher trading intensity implies a greater expected trading volume and vice versa,
immediate from Eq. (B.74), with µxdj = 0 and σxdj = βdjσv. Therefore, the DI trades
more in expectation with automation by the QI.
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Speculator sector First, we show that the speculator sector as a whole trades more
with the addition of the QI:

βd4 + βq4 > βd1

m

−1

4

√
ηφq +

1

2

√
η

√
φq −

3

4
φ2
q + 4 +

1

2

√
ηφq >

√
η

m√
φq −

3

4
φ2
q + 4 > −1

2
φq

βd2 + βq2 > βd1

m

√
η

√
(2− φq)2

φ2
q − 3φq + 4

+
√
η

√
φ2
q

φ2
q − 3φq + 4

>
√
η

m
4

φ2
q − 3φq + 4

> 1

m
0 > φq(φq − 3)
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βd4 + βq4 < βd2 + βq2

m

−1

4

√
ηφq +

1

2

√
η

√
φq −

3

4
φ2
q + 4 +

1

2

√
ηφq <

√
η

√
(2−φq)2

φ2q−3φq+4
+
√
η

√
φ2q

φ2q−3φq+4

m

1

4
(
√
−3φ2

q + 4φq + 16 + φq) <

√
(2− φq)2

φ2
q − 3φq + 4

+

√
φ2
q

φ2
q − 3φq + 4

m

−φ2
q + 2φq + 8 + φq

√
−3φ2

q + 4φq + 16 <
32

φ2
q − 3φq + 4

m

(φ3
q − 3φ2

q + 4φq)
√
−3φ2

q + 4φq + 16 < (φ2
q − 3φq + 4)(φ2

q − 2φq − 8) + 32

m
f(φq) ≡ −φ5

q + 8φ4
q − 22φ3

q + 8φ2
q + 71φq − 96 < 0

We prove the latter inequality for φq ∈ (0, 1] via proof by contradiction. Let’s first
consider the first three derivatives of f(φq) and work backwards:

f ′(φq) = −5φ4
q + 32φ3

q − 66φ2
q + 16φq + 71

f ′′(φq) = −20φ3
q + 96φ2

q − 132φq + 16

f ′′′(φq) = −60φ2
q + 192φq − 132

Note that the two roots of f ′′′(φq) = 0 are φ∗q = 1 and φ∗∗q = 2.2. Since f ′′′(φq)
is a downwards parabola, f ′′′(φq) < 0 for φq ∈ (0, 1). This implies that f ′′(φq) is
decreasing for all φq ∈ (0, 1). Note that f ′′(0) = 16 and f ′′(1) = −40. Hence, there
exists an φ0

q ∈ (0, 1) such that f ′(φq) is increasing from φq ∈ (0, φ0
q) and decreasing

from φq ∈ (φ0
q, 1), while reaching a local maxima at φ0

q. Together with the fact that
f ′(0) = 71 and f ′(1) = 48, f ′(φq) > 0 for φq ∈ (0, 1). Finally, since f(0) = −96 and
f(1) = −32 and the function is monotone and increasing across the interval, f ′(φq) < 0
for all φq ∈ (0, 1). QED.

The speculator sector as a whole trades less with automation by the quant, which

follows from Eq. (B.74), with µxdj+xqj = 0 and σxdj+xqj =
√

(βdj + βqj)2σ2
v + β2

qjσ
2
eq ,

since both aggregate trading intensity βdj + βqj and the QI’s trading intensity βqj
decrease as the QI turns on the strategy (i.e. from Economy 2 to Economy 4).
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B.6.6 Speculator Profits

E[πij] = βij(1− λj(βdj + βqj))− λjβ2
ij

1− φi
φi

In what follows, note that:

βd2 + βq2 =
√
η

2√
φ2
q − 3φq + 4

βd4 + βq4 =
√
η

1

4

(
φq +

√
−3φ2

q + 4φq + 16

)
1− λ2(βd2 + βq2) =

2− φq
4− φq

1− λ4(βd4 + βq4) =
1

2

(
1− φq√

−3φ2
q + 4φq + 16

)
λ2β

2
q2

1− φq
φq

=
√
η

−φ2
q + φq

(4− φq)
√
φ2
q − 3φq + 4

λ4β
2
q4

1− φq
φq

=
√
η

1

2

−φ2
q + φq√

−3φ2
q + 4φq + 16

(B.75)

Quantitative investor

E[πq2] = βq2(1− λ2(βd2 + βq2))− λ2β
2
q2

1− φq
φq

E[πq4] = βq4(1− λ4(βd4 + βq4))− λ4β
2
q4

1− φq
φq

The quant’s profits decrease with automation by design, since she switches from a
profit-maximizing strategy.

Discretionary investor

E[πd1] = βd1(1− λ1βd1)

E[πd2] = βd2(1− λ2(βd2 + βq2))

E[πd4] = βd4(1− λ4(βd4 + βq4))
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First, we show that the profits of the DI increase with the automation by the QI:

E[πd2] < E[πd4]

m
βd2(1− λ2(βd2 + βq2)) < βd4(1− λ4(βd4 + βq4))

We have already demonstrated that βd2 < βd4. It is sufficient to show that 0 <
1− λ2(βd2 + βq2) < 1− λ4(βd4 + βq4).

1− λ2(βd2 + βq2) < 1− λ4(βd4 + βq4)

m

0 <
2− φq
4− φq

<
1

2

(
1− φq

√
1

−3φ2
q + 4φq + 16

)
m

1

4− φq
>

√
1

−3φ2
q + 4φq + 16

m
(4− φq)2 < −3φ2

q + 4φq + 16

m
φq(φq − 3) < 0

where the latter inequality holds for φq ∈ (0, 1]. Therefore E[πd2] < E[πd4].
Next, we show that the profits of the DI decrease with the introduction of the QI,

both with and without automation. It is sufficient to show that profits in Economy 4
are lower, since, as demonstrated above, Economy 2 profits are greater than Economy
4 profits.

E[πd4] < E[πd1]

m
βd4(1− λ4(βd4 + βq4)) < βd1(1− λ1βd1)

198



We have already demonstrated that βd4 < βd1. It remains to be shown that

1− λ4(βd4 + βq4) < 1− λ1βd1

m

1

2

(
1− φq

√
1

−3φ2
q + 4φq + 16

)
<

1

2

m

0 < φq

√
1

−3φ2
q + 4φq + 16

where the latter inequality holds for φq ∈ (0, 1].

Speculator sector

E[πd1 + πq1] = βd1(1− λ1βd1)

E[πd2 + πq2] = (βd2 + βq2)(1− λ2(βd2 + βq2))− λ2β
2
q2

1− φq
φq

E[πd4 + πq4] = (βd4 + βq4)(1− λ4(βd4 + βq4))− λ4β
2
q4

1− φq
φq

First, we show that profits for the entire speculator sector increase with automation
by the quantitative investor. From Eq. (B.75):

E[πd2] + E[πq2] < E[πd4] + E[πq4]

m

(βd2 + βq2)(1− λ2(βd2 + βq2))− λ2β
2
q2

1− φq
φq

<(βd4+βq4)(1−λ4(βd4+βq4))−λ4β2
q4

1−φq
φq

m
√
η

2√
φ2
q − 3φq + 4

2− φq
4− φq

−√η
−φ2

q + φq

(4− φq)
√
φ2
q − 3φq + 4

<

√
η 1
4

(
φq+
√
−3φ2q+4φq+16

)
1
2

(
1− φq√

−3φ2q+4φq+16

)
−√η 1

2

−φ2q+φq√
−3φ2q+4φq+16

m√
φ2
q − 3φq + 4

4− φq
<

2√
−3φ2

q + 4φq + 16

m
−3φ2

q + 13φq − 12 < 0
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The latter inequality holds for φq ∈ (0, 1] because the two roots of the quadratic are
4/3 and 3 and the parabola is concave.

We now demonstrate that the profits for the speculator sector as a whole decrease
with the introduction of the quant, either with or without automation. It is sufficient
to show that profits are lower for Economy 4, since they are greater than Economy 2,
as just demonstrated.

E[πd4] + E[πq4] < E[πd1] + E[πq1]

m

(βd4 + βq4)(1− λ4(βd4 + βq4))− λ4β
2
q4

1− φq
φq

< βd1(1− λ1βd1)

m
2√

−3φ2
q + 4φq + 16

<
1

2

m

0 < φq(1−
3

4
φq)

where the latter inequality holds for φq ∈ (0, 1].

B.7 Breakeven Correlation

We are after the conditions under which the fully automated quant (Economy 4)
trades more aggressively than the fully discretionary quant (Economy 2). From Eq.
(B.29) and (B.50), we have:

200



βq4 > βq2

m

1
2

√
η
φd

(
(2−φd)φq−ρ

√
φdφq(1−φd)(1−φq)

)
>

√
ηφdφq

φqk2+(2φq−νdφq−φdφq)k+νdφq−φd+φdφq

m (label w =
√
φdφq(1− φd)(1− φq))

1

2

√
η

φd
(2φq − φdφq − ρw) >

√
ηφdφq

φqk2 + φd

m

1

2

√
η

φd
(2φq − φdφq − ρw) >

√√√√√ ηφdφq

φq

(
2φd−φdφq−ρw
2φq−φdφq−ρw

)2

+ φd

m
1

4φd
>

φdφq
φq(2φd − φdφq − ρw)2 + φd(2φq − φdφq − ρw)2

m
φq(2φd − φdφq − ρw)2 + φd(2φq − φdφq − ρw)2 > 4φ2

dφq

m
f(ρ) ≡ w2(φd + φq)ρ

2 + 2wφdφq(φd + φq − 4)ρ+ φdφ
2
q(φdφq − 8φd + φ2

d + 4) > 0

To identify parameter values for which the inequality above holds, we solve f(ρ) = 0
analytically to obtain:

ρ∗± =

√
φdφq

(1− φd)(1− φq)

(
− 1 +

4

φd + φq
±

2
√

3− φq/φd
φd + φq

)
(B.76)

Since f(ρ) is an upward parabola and ρ ∈ [−1, 1], the inequality above holds for the
following conditions:

1. ∀ρ ∈ [−1, 1] if φq > 3φd or ρ∗− > 1 or ρ∗+ < −1

2. ∀ρ ∈ [ρ∗+, 1] if ρ∗− ≤ −1 and ρ∗+ ∈ (0, 1)

3. ∀ρ ∈ [−1, ρ∗−] if ρ∗+ ≥ 1 and ρ∗− ∈ (0, 1)

4. ∀ρ ∈ [0, ρ∗−] ∪ [ρ∗+, 1] if ρ∗− ∈ (0, 1) and ρ∗+ ∈ (0, 1)

5. Never holds if ρ∗− < −1 and ρ∗+ > 1

Given the range of φd ∈ (0, 1) and φq ∈ (0, 1), a numerical analysis demonstrates that
only conditions 1, 3, and 5 are possible.
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APPENDIX C

Arbitrage as Camouflage: Derivations and Proofs

C.1 Model Solution

C.1.1 Economy b: No Arbitrageur

I first solve the model with law of one price violations. I assume that the functional
forms for the price and supply functions are as follows (no intercept terms are necessary
since all random variables are mean zero):

x1b = β1bv

x2b = β2bv

P1b = λ1bω1b

P2b = λ2bω2b

For the strategic speculator:

[x1b, x2b] = arg max
x̃1,x̃2

E[x̃1(v − P1(ω1)) + x̃2(v − P2(ω2))|v]

= arg max
x̃1,x̃2

E[x̃1(v − λ1bω1) + x̃2(v − λ2bω2)|v]

= arg max
x̃1,x̃2

E[x̃1(v − λ1b(x̃1 + z1)) + x̃2(v − λ2b(x̃2 + z2))|v]

= arg max
x̃1,x̃2

(
x̃1v − λ1bx̃

2
1 + x̃2v − λ2bx̃

2
2

)
≡ arg max

x̃1,x̃2

fb(x̃1, x̃2)

(C.1)
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First order condition #1:

∂

∂x̃1

(
x̃1v − λ1bx̃

2
1 + x̃2v − λ2bx̃

2
2

)
= 0

v − 2λ1bx̃1 = 0

⇓

x1b =
1

2λ1b

v ≡ β1bv

(C.2)

First order condition #2:

∂

∂x̃1

(
x̃1v − λ1bx̃

2
1 + x̃2v − λ2bx̃

2
2

)
= 0

v − 2λ2bx̃2 = 0

⇓

x2b =
1

2λ2b

v ≡ β2bv

(C.3)

Finally, second order conditions would require that:

∂2

∂x̃2
1

(
x̃1v − λ1x̃

2
1 + x̃2v − λ2x̃

2
2

)
= −2λ1 < 0

∂2

∂x̃2
2

(
x̃1v − λ1x̃

2
1 + x̃2v − λ2x̃

2
2

)
= −2λ2 < 0

∂2fb
∂x̃2

1

∂2fb
∂x̃2

2

− ∂2fb
∂x̃1x̃2

∂2fb
∂x̃2x̃1

= 4λ1λ2 > 0

(C.4)

Therefore, to satisfy the second order conditions, I will require λ1b > 0 and λ2b > 0.
For market maker 1:

P1b(ω1b) = E[v|ω1b]

= E[v|x1 + z1]

= E[v|β1bv + z1]

=
β1bσ

2
v

β2
1bσ

2
v + σ2

z1

ω1

≡ λ1bω1b

(C.5)
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For market maker 2:

P2b(ω2b) = E[v|ω2b]

= E[v|x2 + z2]

= E[v|β2bv + z2]

=
β2bσ

2
v

β2
2bσ

2
v + σ2

z2

ω2

≡ λ2bω2b

(C.6)

I have four equations and four unknowns:

β1b =
1

2λ1b

λ1b =
β1bσ

2
v

β2
1bσ

2
v + σ2

z1

β2b =
1

2λ2b

λ2b =
β2bσ

2
v

β2
2bσ

2
v + σ2

z2

,

which is the classic Kyle (1985) setting yielding the following solutions:

β1b =

√
σ2
z1

σ2
v

≡ √η1

λ1b =
1

2

√
σ2
v

σ2
z1

=
1

2
√
η1

β2b =

√
σ2
z2

σ2
v

≡ √η2

λ2b =
1

2

√
σ2
v

σ2
z2

=
1

2
√
η2

.
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Price informativeness for each Asset i would be measured as:

Var(v|Pib) = Var(v|λib(xib + zi))

= Var
(
v|λib(βibv + zi)

)
= Var

(
v|1

2
v +

1

2
√
ηi
zi

)
=

1

2
σ2
v

(C.7)

C.1.2 Economy a: With Arbitrageur

I now solve the model without law of one price violations. Once again, I assume
that the strategic speculator’s trading signal and the market makers’ pricing rule is
linear in the payoff and order flow respectively:

x1a = β1av

x2a = β2av

P1a = λ1aω1a

P2a = λ2aω2a

I first derive the buy and sell order εa that will ensure that prices converge:

P1a = P2a

⇓
λ1aω1a = λ2aω2a

⇓
λ1(x1a + z1 + εa) = λ2a(x2a + z2 − εa)

⇓

εa = − λ1a

λ1a + λ2a

x1a +
λ2a

λ1a + λ2a

x2a −
λ1a

λ1a + λ2a

z1 +
λ2a

λ1a + λ2a

z2

⇓

εa = − λ1a

λ1a + λ2a

β1av +
λ2a

λ1a + λ2a

β2av −
λ1a

λ1a + λ2a

z1 +
λ2a

λ1a + λ2a

z2

(C.8)

205



For the strategic speculator:

[x1a, x2a] = arg max
x̃1a,x̃2a

E[x̃1a(v − P1a(ω1a)) + x̃2a(v − P2a(ω2a))|v]

= arg max
x̃1a,x̃2a

E[x̃1a(v − λ1aω1a) + x̃2a(v − λ2aω2a)|v]

= arg max
x̃1a,x̃2a

E[x̃1a(v − λ1a(x̃1a + z1 + εa)) + x̃2a(v − λ2a(x̃2a + z2 − εa))|v]

= arg max
x̃1a,x̃2a

E

[
x̃1a

(
v−λ1a

(
x̃1a+z1− λ1a

λ1a+λ2a
x̃1a+

λ2a
λ1a+λ2a

x̃2a− λ1a
λ1a+λ2a

z1+
λ2a

λ1a+λ2a
z2

))
+x̃2a

(
v−λ2a

(
x̃2a+z2+

λ1a
λ1a+λ2a

x̃1a− λ2a
λ1a+λ2a

x̃2a+
λ1a

λ1a+λ2a
z1− λ2a

λ1a+λ2a
z2

))
|v

]
= arg max

x̃1a,x̃2a

(
x̃1a

(
v − λ1a

(
x̃1a −

λ1a

λ1a + λ2a

x̃1a +
λ2a

λ1a + λ2a

x̃2a

))
+ x̃2a

(
v − λ2a

(
x̃2a +

λ1a

λ1a + λ2a

x̃1a −
λ2a

λ1a + λ2a

x̃2a

)))
≡ arg max

x̃1a,x̃2a

g(x̃1a, x̃2a)

(C.9)

First order condition #1:

∂g(x̃1a, x̃2a)

∂x̃1a

=
∂

∂x̃1a

(
x̃1a

(
v − 2λ1aλ2a

λ1a + λ2a

x̃2a

)
− x̃2

1a

(
λ1a −

λ2
1a

λ1a + λ2a

))
=
(
v − 2λ1aλ2a

λ1a + λ2a

x̃2a

)
− 2λ1aλ2a

λ1a + λ2a

x̃1a = 0

⇓

x1a =
λ1a + λ2a

2λ1aλ2a

v − x̃2a =
λ1a + λ2a − 2λ1aλ2aβ2a

2λ1aλ2a

v ≡ β1av

(C.10)

Similarly, first order condition #2:

∂g(x̃1a, x̃2a)

∂x̃2a

=
∂

∂x̃2a

(
x̃2a

(
v − 2λ1aλ2a

λ1a + λ2a

x̃1a

)
− x̃2

2a

(
λ2a −

λ2
2a

λ1a + λ2a

))
=
(
v − 2λ1aλ2a

λ1a + λ2a

x̃1a

)
− 2λ1aλ2a

λ1a + λ2a

x̃2a = 0

⇓

x2a =
λ1a + λ2a

2λ1aλ2a

v − x̃1a =
λ1a + λ2a − 2λ1aλ2aβ1a

2λ1aλ2a

v ≡ β2av

(C.11)
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Finally, second order conditions would require that:

∂2g(x̃1a, x̃2a)

∂x̃2
1a

= − 2λ1aλ2a

λ1a + λ2a

< 0

∂2g(x̃1a, x̃2a)

∂x̃2
2a

= − 2λ1aλ2a

λ1a + λ2a

< 0

∂2g(x̃1a,x̃2a)

∂x̃21a

∂2g(x̃1a,x̃2a)

∂x̃22a
− ∂

2g(x̃1a,x̃2a)
∂x̃1ax̃2a

∂2g(x̃1a,x̃2a)
∂x̃2ax̃1a

=
4λ21aλ

2
2a

(λ1a+λ2a)
2−

4λ21aλ
2
2a

(λ1a+λ2a)
2≯0

(C.12)

Since the latter condition is not satisfied, I will demonstrate that I have found a non-
unique local maximum by focusing on symmetric equilibria for which λ1a = λ2a = λa.
In this case:

g(x̃1a, x̃2a) = −1

2
λ(x̃1a + x̃2a)

2 + (x̃1a + x̃2a)v,

where, if I assume that λa > 0, then any cross-section of g(x̃1a, x̃2a), such that x̃1a +
x̃2a = c, will be a downward parabola. Therefore, g(x̃1a, x̃2a) is a downwards pointing
parabolic cylinder, implying that infinitely many solutions exist to the optimization.
As long as

x̃1a + x̃2a =
λ1a + λ2a

2λ1aλ2a

v, (C.13)

the speculator is maximizing her profits.
For market maker 1:

P1a(ω1a) = E[v|ω1a]

= E[v|x1a + z1 + εa]

= E[v|β1av + z1 −
λ1a

λ1a + λ2a
β1av +

λ2a

λ1a + λ2a
β2av −

λ1a

λ1a + λ2a
z1 +

λ2a

λ1a + λ2a
z2]

= E[v|
(
β1a −

λ1a

λ1a + λ2a
β1a +

λ2a

λ1a + λ2a
β2a

)
v +

(
1− λ1a

λ1a + λ2a

)
z1 +

λ2a

λ1a + λ2a
z2]

= E[v|(β1a + β2a)λ2a

λ1a + λ2a
v +

λ2a

λ1a + λ2a
z1 +

λ2a

λ1a + λ2a
z2]

=

(β1a+β2a)λ2a
λ1a+λ2a

σ2
v

(β1a+β2a)2λ22a
(λ1a+λ2a)2

σ2
v +

λ22a
(λ1a+λ2a)2

σ2
z1 +

λ22a
(λ1a+λ2a)2

σ2
z2

ω1a

=
(β1a + β2a)(λ1a + λ2a)λ2aσ

2
v

(β1a + β2a)2λ2
2aσ

2
v + λ2

2a(σ
2
z1 + σ2

z2)
ω1a

≡ λ1aω1a

(C.14)
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For market maker 2:

P2a(ω2a) = E[v|ω2a]

= E[v|x2a + z2 − εa]

= E[v|β2av + z2 +
λ1a

λ1a + λ2a
β1av −

λ2a

λ1a + λ2a
β2av +

λ1a

λ1a + λ2a
z1 −

λ2a

λ1a + λ2a
z2]

= E[v|
(
β2a +

λ1a

λ1a + λ2a
β1a −

λ2a

λ1a + λ2a
β2a

)
v +

λ1a

λ1a + λ2a
z1 +

(
1− λ2a

λ1a + λ2a

)
z2]

= E[v|(β1a + β2a)λ1a

λ1a + λ2a
v +

λ1a

λ1a + λ2a
z1 +

λ1a

λ1a + λ2a
z2]

=

(β1a+β2a)λ1a
λ1a+λ2a

σ2
v

(β1a+β2a)2λ21a
(λ1a+λ2a)2

σ2
v +

λ21a
(λ1a+λ2a)2

σ2
z1 +

λ21a
(λ1a+λ2a)2

σ2
z2

ω2a

=
(β1a + β2a)(λ1a + λ2a)λ1aσ

2
v

(β1a + β2a)2λ2
1aσ

2
v + λ2

1a(σ
2
z1 + σ2

z2)
ω2a

≡ λ2aω2a

(C.15)

I have four equations and four unknowns:

β1a =
λ1a + λ2a − 2λ1aλ2aβ2a

2λ1aλ2a

(C.16)

β2a =
λ1a + λ2a − 2λ1aλ2aβ1a

2λ1aλ2a

(C.17)

λ1a =
(β1a + β2a)(λ1a + λ2a)λ2aσ

2
v

(β1a + β2a)2λ2
2aσ

2
v + λ2

2a(σ
2
z1

+ σ2
z2

)
(C.18)

λ2a =
(β1a + β2a)(λ1a + λ2a)λ1aσ

2
v

(β1a + β2a)2λ2
1aσ

2
v + λ2

1a(σ
2
z1

+ σ2
z2

)
(C.19)

First, note that Eq. (C.16) and (C.17) are equivalent, yielding:

β1a + β2a =
λ1a + λ2a

2λ1aλ2a

(C.20)

Next, note that Eq. (C.18) and (C.19) are equivalent, yielding:

1 = (β1a + β2a)
λ1aλ2a

λ1a + λ2a

+
1

β1a + β2a

λ1aλ2a

λ1a + λ2a

σ2
z1

+ σ2
z2

σ2
v

(C.21)

208



Substituting Eq. (C.20) into Eq. (C.21) I obtain:

1 =
1

(β1a + β2a)2

σ2
z1

+ σ2
z2

σ2
v

⇓
β1a + β2a = ±

√
η1 + η2

⇓ (assuming symmetric equilibria)

λa ≡ λ1a = λ2a = = ± 1√
η1 + η2

(C.22)

I can derive the inverse of price informativeness for Market 1 as:

Var(v|P1a) = Var(v|λ1a(x1a + z1 + εa))

= Var

(
v

∣∣∣∣λ1a

((β1a + β2a)λ2a

λ1a + λ2a

v +
λ2a

λ1a + λ2a

z1 +
λ2a

λ1a + λ2a

z2

))

= Var

(
v

∣∣∣∣(β1a + β2a)λ1aλ2a

λ1a + λ2a

v +
λ1aλ2a

λ1a + λ2a

(z1 + z2)

)

= Var

(
v

∣∣∣∣12v +
1

2(β1a + β2a)
(z1 + z2)

)
=

1

2
σ2
v

(C.23)

I can derive the inverse of price informativeness for Market 2 as:

Var(v|P2a) = Var(v|λ2a(x2a + z2 − εa))

= Var

(
v

∣∣∣∣λ2a

((β1a + β2a)λ1a

λ1a + λ2a

v +
λ1a

λ1a + λ2a

z1 +
λ1a

λ1a + λ2a

z2

))

= Var

(
v

∣∣∣∣(β1a + β2a)λ1aλ2a

λ1a + λ2a

v +
λ1aλ2a

λ1a + λ2a

(z1 + z2)

)

= Var

(
v

∣∣∣∣12v +
1

2(β1a + β2a)
(z1 + z2)

)
=

1

2
σ2
v

(C.24)
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C.1.3 Economy s: With Fully Segmented Markets and Arbitrageur

The derivation of εs and functional form assumptions are the same as above:

x1s = β1sv

x2s = β2sv

P1s = λ1sω1s

P2s = λ2sω2s

By law of one price it must be that:

P1s = P2s

⇓
λ1sω1s = λ2sω2s

⇓
λ1s(x1s + z1 + εs) = λ2s(x2s + z2 − εs)

⇓

εs = − λ1s

λ1s + λ2s

x1s +
λ2s

λ1s + λ2s

x2s −
λ1s

λ1s + λ2s

z1 +
λ2s

λ1s + λ2s

z2

⇓

εs = − λ1s

λs1 + λ2s

β1sv +
λ2s

λ1s + λ2s

β2sv −
λ1s

λ1s + λ2s

z1 +
λ2s

λ1s + λ2s

z2

(C.25)

For Speculator 1:

x1s = arg max
x̃1s

E[x̃1s(v − P1s(ω1s))|v]

= arg max
x̃1s

E[x̃1s(v − λ1sω1s)|v]

= arg max
x̃1s

E[x̃1s(v − λ1s(x̃1s + z1 + εs))|v]

= arg max
x̃1s

E[x̃1s

(
v−λ1s

(
x̃1s+z1− λ1s

λ1s+λ2s
x̃1s+

λ2s
λ1s+λ2s

β2sv− λ1s
λ1s+λ2s

z1+
λ2s

λ1s+λ2s
z2

))
|v]

= arg max
x̃1s

{
x̃1s

(
v − λ1sλ2s

λ1s + λ2s

β2sv
)
− x̃2

1s

(
λ1s −

λ2
1s

λ1s + λ2s

)}
= arg max

x̃1s

{
x̃1s

λ1s + λ2s − λ1sλ2sβ2s

λ1s + λ2s

v − x̃2
1s

λ1sλ2s

λ1s + λ2s

}

(C.26)
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First order condition for Speculator 1:

x̃1s
2λ1sλ2s

λ1s + λ2s

=
λ1s + λ2s − λ1sλ2sβ2s

λ1s + λ2s

v

⇓

x1s =
λ1s + λ2s − λ1sλ2sβ2s

2λ1sλ2s

v

≡ β1sv

(C.27)

For Speculator 2:

x2s = arg max
x̃2s

E[x̃2s(v − P2s(ω2s))|v]

= arg max
x̃2s

E[x̃2s(v − λ2sω2s)|v]

= arg max
x̃2s

E[x̃2s(v − λ2s(x̃2s + z2 − εs))|v]

= arg max
x̃2s

E[x̃2s

(
v−λ2s

(
x̃2s+z2+

λ1s
λ1s+λ2s

β1sv− λ2s
λ1s+λ2s

x̃2s+
λ1s

λ1s+λ2s
z1− λ2s

λ1s+λ2s
z2

))
|v]

= arg max
x̃2s

{
x̃2s

(
v − λ1sλ2s

λ1s + λ2s

β1sv
)
− x̃2

2s

(
λ2s −

λ2
2s

λ1s + λ2s

)}
= arg max

x̃2s

{
x̃2s

λ1s + λ2s − λ1sλ2sβ1s

λ1s + λ2s

v − x̃2
2s

λ1sλ2s

λ1s + λ2s

}

(C.28)

First order condition for Speculator 2:

x̃2s
2λ1sλ2s

λ1s + λ2s

=
λ1s + λ2s − λ1sλ2sβ1s

λ1s + λ2s

v

⇓

x2s =
λ1s + λ2s − λ1sλ2sβ1s

2λ1sλ2s

v

≡ β2sv

(C.29)
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For market maker 1:

P1s(ω1s) = E[v|ω1s]

= E[v|x1s + z1 + εs]

= E[v|β1sv + z1 −
λ1s

λ1s + λ2s
β1sv +

λ2s

λ1s + λ2s
β2sv −

λ1s

λ1s + λ2s
z1 +

λ2s

λ1s + λ2s
z2]

= E[v|
(
β1s −

λ1s

λ1s + λ2s
β1s +

λ2s

λ1s + λ2s
β2s

)
v +

(
1− λ1s

λ1s + λ2s

)
z1 +

λ2s

λ1s + λ2s
z2]

= E[v|(β1s + β2s)λ2s

λ1s + λ2s
v +

λ2s

λ1s + λ2s
z1 +

λ2s

λ1s + λ2s
z2]

=

(β1s+β2s)λ2s
λ1s+λ2s

σ2
v

(β1s+β2s)2λ22s
(λ1s+λ2s)2

σ2
v +

λ22s
(λ1s+λ2s)2

σ2
z1 +

λ22s
(λ1s+λ2s)2

σ2
z2

ω1s

=
(β1s + β2s)(λ1s + λ2s)λ2sσ

2
v

(β1s + β2s)2λ2
2sσ

2
v + λ2

2s(σ
2
z1 + σ2

z2)
ω1s

≡ λ1sω1s

(C.30)

For market maker 2:

P2s(ω2s) = E[v|ω2s]

= E[v|x2s + z2 − εs]

= E[v|β2sv + z2 +
λ1s

λ1s + λ2s
β1sv −

λ2s

λ1s + λ2s
β2sv +

λ1s

λ1s + λ2s
z1 −

λ2s

λ1s + λ2s
z2]

= E[v|
(
β2s +

λ1s

λ1s + λ2s
β1s −

λ2s

λ1s + λ2s
β2s

)
v +

λ1s

λ1s + λ2s
z1 +

(
1− λ2s

λ1s + λ2s

)
z2]

= E[v|(β1s + β2s)λ1s

λ1s + λ2s
v +

λ1s

λ1s + λ2s
z1 +

λ1s

λ1s + λ2s
z2]

=

(β1s+β2s)λ1s
λ1s+λ2s

σ2
v

(β1s+β2s)2λ21s
(λ1s+λ2s)2

σ2
v +

λ21s
(λ1s+λ2s)2

σ2
z1 +

λ21s
(λ1s+λ2s)2

σ2
z2

ω2s

=
(β1s + β2s)(λ1s + λ2s)λ1sσ

2
v

(β1s + β2s)2λ2
1sσ

2
v + λ2

1s(σ
2
z1 + σ2

z2)
ω2s

≡ λ2sω2s

(C.31)
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I have four equations and four unknowns:

β1s =
λ1s + λ2s − λ1sλ2sβ2s

2λ1sλ2s

(C.32)

β2s =
λ1s + λ2s − λ1sλ2sβ1s

2λ1sλ2s

(C.33)

λ1s =
(β1s + β2s)(λ1s + λ2s)λ2sσ

2
v

(β1s + β2s)2λ2
2sσ

2
v + λ2

2s(σ
2
z1

+ σ2
z2

)
(C.34)

λ2s =
(β1s + β2s)(λ1s + λ2s)λ1sσ

2
v

(β1s + β2s)2λ2
1sσ

2
v + λ2

1s(σ
2
z1

+ σ2
z2

)
(C.35)

First, taking equations C.32 and C.33, solving for λ1 +λ2 and setting the results equal,
gets us:

2β1s + β2s = β1s + 2β2s

⇓
β1s = β2s ≡ βs

(C.36)

Plugging β into Eq. (C.32):

λ1s + λ2s

λ1sλ2s

= 3βs (C.37)

Note that Eq. (C.34) and (C.35) are equivalent. Let’s use the first one and substitute
Eq. (C.37):

1 = (β1s + β2s)
λ1sλ2s

λ1s + λ2s

+
1

β1s + β2s

λ1sλ2s

λ1s + λ2s

σ2
z1

+ σ2
z2

σ2
v

⇓
1

3
=

1

6β2
(η1 + η2)

⇓

βs = ±
√
η1 + η2

2

(C.38)
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Using Eq. (C.37), there are infinitely many solutions. Assume a symmetric equilibrium
λ1s = λ2s = λs to obtain:

2

λs
= ±3

√
η1 + η2

2

⇓

λs = ±2

3

√
2

η1 + η2

(C.39)

I can derive the inverse of price informativeness as:

Var(v|P1s) = Var(v|λ1s(x1s + z1 + εs))

= Var

(
v

∣∣∣∣λ1s

((β1s + β2s)λ2s

λ1s + λ2s

v +
λ2s

λ1s + λ2s

z1 +
λ2s

λ1s + λ2s

z2

))

= Var

(
v

∣∣∣∣(β1s + β2s)λ1sλ2s

λ1s + λ2s

v +
λ1sλ2s

λ1s + λ2s

(z1 + z2)

)

= Var

(
v

∣∣∣∣23v +
1

3

√
2σ2

v

σ2
z1

+ σ2
z2

(z1 + z2)

)
=

1

3
σ2
v ,

(C.40)

which will be identical for Asset 2, since their prices are the same by construction.

C.1.4 Economy m: With Segmented Speculators and Single Market Maker

In this case, there is no arbitrageur, and, instead, the market maker uses order
flow in both markets to set prices, which will be the same since they reflect the full
information set of the market maker. I will have the following demand and price
functions

x1m = β1mv (C.41)

x2m = β2mv (C.42)

Pm = λ1mω1m + λ2mω2m. (C.43)
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For Speculator 1:

x1m = arg max
x̃1m

E[x̃1m(v − Pm(ω1m, ω2m))|v]

= arg max
x̃1m

E[x̃1m(v − λ1mω1m − λ2mω2m)|v]

= arg max
x̃1m

E[x̃1m(v − λ1m(x̃1m + z1)− λ2m(x̃2m + z2))|v]

= arg max
x̃1m

E[x̃1m(v − λ1m(x̃1m + z1)− λ2m(β2mv + z2))|v]

= arg max
x̃1m

{
x̃1m(v − λ2mβ2mv)− λ1mx̃

2
1m

}
(C.44)

First order condition for Speculator 1:

2λ1mx̃1m = v − λ2mβ2mv

⇓

x1m =
1− λ2mβ2m

2λ1m

v

≡ β1mv

(C.45)

Similarly, for Speculator 2:

x2m = arg max
x̃2m

E[x̃2m(v − Pm(ω1m, ω2m))|v]

= arg max
x̃2m

E[x̃2m(v − λ1mω1m − λ2mω2m)|v]

= arg max
x̃2m

E[x̃2m(v − λ1m(x̃1m + z1)− λ2m(x̃2m + z2))|v]

= arg max
x̃2m

E[x̃2m(v − λ1m(β1mv + z1)− λ2m(x̃2m + z2))|v]

= arg max
x̃2m

{
x̃2m(v − λ1mβ1mv)− λ2mx̃

2
2m

}
(C.46)

First order condition for Speculator 2:

2λ2mx̃2m = v − λ1mβ1mv

⇓

x2m =
1− λ1mβ1m

2λ2m

v

≡ β2mv

(C.47)
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The market maker breaks even in expectation:

Pm = E[v|ω1m, ω2m]

= Cov(v, [ω1m, ω2m])

[
σ2
ω1m

σω1mω2m

σω1mω2m σ2
ω2m

]−1 [
ω1m

ω2m

]
(using ω1m = β1mv + z1, ω2m = β2mv + z2)

=
β1mσ

2
vσ

2
z2

β2
1mσ

2
vσ

2
z2

+ β2
2mσ

2
vσ

2
z1

+ σ2
z1
σ2
z2

ω1m +
β2mσ

2
vσ

2
z1

β2
1mσ

2
vσ

2
z2

+ β2
2mσ

2
vσ

2
z1

+ σ2
z1
σ2
z2

ω2m

≡ λ1mω1m + λ2mω2m

(C.48)

I have four equations and four unknowns:

β1m =
1− λ2mβ2m

2λ1m

(C.49)

β2m =
1− λ1mβ1m

2λ2m

(C.50)

λ1m =
β1mσ

2
vσ

2
z2

β2
1mσ

2
vσ

2
z2

+ β2
2mσ

2
vσ

2
z1

+ σ2
z1
σ2
z2

(C.51)

λ2m =
β2mσ

2
vσ

2
z1

β2
1mσ

2
vσ

2
z2

+ β2
2mσ

2
vσ

2
z1

+ σ2
z1
σ2
z2

(C.52)

I first substitute Eq. (C.50) into Eq. (C.49) and vice versa to obtain:

1

λ1m

= 3β1m (C.53)

1

λ2m

= 3β2m (C.54)

(C.55)

Next I take the reciprocal of Eq. (C.51) and (C.52):

1

λ1m

= β1m +
β2

2m

β1m

η1

η2

+
η1

β1m

(C.56)

1

λ2m

= β2m +
β2

1m

β2m

η2

η1

+
η2

β2m

(C.57)

(C.58)

216



Set the above equal to Eq. (C.53) and (C.54), to obtain:

2β2
1m = β2

2m

η1

η2

+ η1

2β2
2m = β2

1m

η2

η1

+ η2,
(C.59)

which yields:

β1m = ±√η1 (C.60)

β2m = ±√η2 (C.61)

λ1m = ± 1

3
√
η1

(C.62)

λ2m = ± 1

3
√
η2

(C.63)

I derive the inverse of price informativeness as:

Var(v|Pm) = Var(v|λ1m(x1m + z1) + λ2m(x2m + z2))

= Var(v|λ1m(β1mv + z1) + λ2m(β2mv + z2))

= Var

(
v
∣∣∣2
3
v +

1

3
√
η1

z1 +
1

3
√
η2

z2

)
=

1

3
σ2
v

(C.64)
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